
Secure and Fast Implementations of Two Involution Ciphers

Billy Bob Brumley?

Aalto University School of Science and Technology, Finland
billy.brumley@tkk.fi

Abstract. Anubis and Khazad are closely related involution block ciphers. Building on two recent
AES software results, this work presents a number of constant-time software implementations of
Anubis and Khazad for processors with a byte-vector shuffle instruction, such as those that support
SSSE3. For Anubis, the first is serial in the sense that it employs only one cipher instance and is
compatible with all standard block cipher modes. Efficiency is largely due to the S-box construction
that is simple to realize using a byte shuffler. The equivalent for Khazad runs two parallel instances
in counter mode. The second for each cipher is a parallel bit-slice implementation in counter mode.

Key words: Anubis, Khazad, involution ciphers, block ciphers, software implementation, timing
attacks.

1 Introduction

Anubis and Khazad are two block ciphers by Barreto and Rijmen submitted during the NESSIE
project (see [Pre02] for a summary). Anubis [BR01a] works on 128-bit blocks and is quite similar
in many respects to AES. Khazad [BR01b] is a “legacy-level” cipher working on 64-bit blocks
and is closely related to Anubis. These are both involution ciphers: decryption differs from
encryption only in the key schedule.

The motivation for this work comes largely from cache-timing attacks, where an attacker
attempts to recover parts of the cryptosystem state by observing the variance in timing mea-
surements due to processor data caching effects. These attacks can be time-driven and carried
out remotely by measuring the latency of a high level operation, or trace-driven and locally by
exploiting the cache structure to determine the sequence of lookups the cryptosystem performs.
The vulnerability exists when part of the state is used as an index into a memory-resident table.

A high-speed table-based implementation of AES unrolls lower level operations such as Sub-
Bytes, ShiftRows, and MixColumns into four tables of size 256 containing 32-bit values. Lookups
into these tables, indexed by state values, are combined with XOR to carry out AES rounds in
a more software-friendly manner, relaxing the need to manipulate a large number of single byte
values and bits within those bytes. Similar versions of both Anubis and Khazad exist, in fact pro-
vided as the C reference implementations and discussed in both specifications [BR01a,BR01b,
Sect. 7.1].

Cache-timing attacks are a serious threat and can easily lead to leakage of key material. Al-
though there are numerous published attacks on such implementations, a practical noteworthy
one is Bernstein’s AES time-driven attack [Ber04]. Anubis and Khazad are presumably suscepti-
ble to this and other timing attacks. In light of these attacks, a reasonable security requirement
for any cipher is that it can be implemented to use a constant amount of time. In this context,
Bernstein defines constant as “independent of the AES key and input” [Ber04, Sect. 8]. The
concept of security within this paper is with respect to timing attacks.

To this end, this work shows that constant-time and efficient implementations of both Anubis
and Khazad are possible. Four such implementations appear herein, summarized as follows.
? Supported in part by the European Commission’s Seventh Framework Programme (FP7) under contract

number ICT-2007-216499 (CACE).



– The first Anubis implementation runs only one instance of the cipher, compatible with all
standard block cipher modes. This is efficient due to a byte-vector shuffle instruction, allow-
ing elegant realization of the nonlinear layer in constant-time. The Khazad implementation
is otherwise analogous but with a smaller state runs two parallel cipher instances, here in
counter mode under the same key.

– The second Anubis implementation bit-slices the state and runs eight parallel instances, here
in counter mode. Not surprisingly, this is faster but requires a parallel block cipher mode.
Analogously, the Khazad implementation runs 16 parallel instances.

This work builds upon two recent results on AES software implementations that remarkably
manage to achieve constant-time and exceptional performance at one stroke.

– A common hardware technique to compute the AES S-box uses an isomorphism IF28 → IF2
24

and subsequently reduces the problem of inversion in the latter field to that of one in in the
ground field. Armed with a byte-vector shuffle instruction and using a novel field element
representation, Hamburg presents techniques for fast and constant-time software implemen-
tation of AES [Ham09]. Running only a single instance of the cipher, the implementation is
compatible with all standard block cipher modes.

– Käsper and Schwabe present AES bit-slice techniques, aligning individual bits of state bytes
in distinct registers [KS09]. The implementation runs eight parallel streams in counter mode
under the same key. Not only does this provide a constant-time implementation, but also is
currently the fastest published AES counter mode implementation in software. Table-based
AES implementations on common platforms are inherently limited to 10 cycles per byte.
The authors show that bit-slicing circumvents this limit.

2 Vector Operations

In 64-bit mode, processors with Streaming SIMD Extensions 3 (SSE3) can operate on 16 128-bit
SIMD registers xmm0 through xmm15. SSE3 and predecessors contain a wealth of instructions for
parallel computation amongst these registers. Cryptosystem implementations usually restrict to
a smaller subset of these instructions dealing with integer values. Supplemental SSE3 (SSSE3)
introduces a handful of new instructions, the most interesting for this work being a byte shuffler
pshufb. Note that recent AMD processors implement SSE3 but not SSSE3, although a related
instruction is slated for the eXtended Operations (XOP) extension.

2.1 Byte Shuffling

Since the implementations in this work make heavy use of pshufb, a brief description of the
instruction is in order. The name already implies the ability to shuffle bytes around in a vector,
but perhaps hides an important aspect of the instruction. Aranha, López, and Hankerson note
its versatility [ALH10, Sect. 2.1]:

“A powerful use of this instruction is to perform 16 simultaneous lookups in a 16-byte
lookup table.”

Formally, given 16-signed-byte vector operands a and b, components of the 16-byte vector
output r of pshufb satisfy

ri =

{
abi mod 16 if bi ≥ 0,
0 otherwise,

so b holds the indices into the table and a the values. Indeed, this allows to implement any
IF4

2 → IF8
2 function in parallel: this is a constant-time hardware lookup table, shuffling the



values in a based on the indices in b. To summarize, the use of pshufb is either that of shuffling
bytes around in a fixed manner or implementing lookups into a fixed table, and the distinction
is in the operand order.

2.2 Linear Maps

Given the above, one can implement a linear map φ : IF8
2 → IF8

2 on 16 bytes in parallel.
Denote α ∈ IF28 by α = αHx

4 + αL where αi are the 4-bit nibbles. Linearity ensures φ(α) =
φ(αHx4)+φ(αL) and each input on the right is effectively only four bits. Denote 16-byte vectors
tφH and tφL that map the corresponding input to the output; these are the a from the previous
section. The following steps realize φ in parallel:

1. Mask the lower nibble (αL) of each byte in the input vector. (pand)
2. Bit-shift the input four positions towards LSB and mask again (αH). (psrlq, pand)
3. Shuffle tφL and tφH with their respective indices from the above steps. (pshufb × 2)
4. Bitwise XOR the two outputs together. (pxor)

The second mask is a minor inconvenience due to the lack of an instruction to shift bits of
individual bytes in a 16-byte vector (there are no psllb and psrlb instructions). The following
implementations uses this strategy often. Note that when applying multiple maps to the same
input, the first two steps are needed only once.

3 The Anubis Cipher and Implementation

Although Anubis supports variable length keys, this work only explicitly considers 16-byte keys;
generalizations are straightforward. Analogous to AES-128, Anubis consists of a 16-byte state.
The state is either viewed as a vector in IF16

28 or a 4×4 matrix with entries in IF28 depending on
the context. The specification denotes this by a map µ, but this work omits this formalization.

This section describes the components of the cipher following the style of the specification,
and at the same time presents the serial SSSE3 implementation of said components. See the
specification for a formal treatment [BR01a].

The nonlinear layer γ This layer is otherwise analogous to the AES SubBytes step, but
with a different S-box. It applies an S-box S : IF28 → IF28 to each byte of the input. To
facilitate efficient hardware implementation, the designers chose to build S using a three layer
substitution-permutation network (SPN), where each layer includes two S-boxes P,Q : IF24 →
IF24 termed “mini-boxes”. Fig. 1 depicts this structure.

This composition can be implemented elegantly using pshufb. Since P and Q are four bits to
four bits but the instruction allows a parallel four bit to eight bit lookup, the bit permutations
following P and Q can be unrolled for each layer to provide shifted and spread versions of their
output. For example, Q(0x1) = 0xE = 1110 but following the first layer the upper two bits get
shifted two positions towards the MSB: here the lookup provides Q0(0x1) = 0x32 = 110010.
This unrolling yields the following six lookup tables for the corresponding layers:

tQ0 = 0x20012313311000333003022212113221

tP0 = 0x0408804C488488C4C08C404400C8CC0C

tP1 = 0x01022013122122313023101100323303

tQ1 = 0x80048C4CC44000CCC00C08884844C884

tQ2 = 0x08010B070D04000F0C03020A06050E09

tP2 = 0x102080706090A0D0C0B0405000E0F030.



???? ????

P Q

????

"
"

"
"

"

"
"

"
"

"b
b

b
b

b

b
b

b
b

b

????

Q P

????

"
"

"
"

"

"
"

"
"

"b
b

b
b

b

b
b

b
b

b

????

P Q

???? ????

Fig. 1. S-box S as a three layer SPN with mini-boxes P and Q.

As the last layer does not permute the bits, note tP2 and tQ2 are simply the nibble-shifted
and original contents as bytes, respectively, of P and Q.

With these tables in hand, the following steps implement layer i of S:

1. Mask the lower nibble of each byte in the input vector. (pand)
2. Bit-shift the input four positions towards LSB and mask again. (psrlq, pand)
3. Shuffle tPi and tQi with their respective indices from the above steps. (pshufb × 2)
4. Bitwise OR the two outputs together. (por)

Iterating this concept for all layers shows that S can be realized in parallel on all 16 input
bytes using six pand, three psrlq, six pshufb, and three por.

The transposition τ Viewing the input as a 4×4 matrix, this mapping outputs the transpose.
To illustrate: 

0 1 2 3
4 5 6 7
8 9 A B
C D E F

 7→

0 4 8 C
1 5 9 D
2 6 A E
3 7 B F

 .
This requires only one pshufb instruction with indices defined as

tτ = 0x0F0B07030E0A06020D0905010C080400.

The linear diffusion layer θ This layer shares some similarities with the AES MixColumns
step. It multiplies the input in matrix form by the symmetric matrix

H =


01 02 04 06
02 01 06 04
04 06 01 02
06 04 02 01

 =


1 x x2 x2 + x
x 1 x2 + x x2

x2 x2 + x 1 x
x2 + x x2 x 1





and θ : a 7→ a · H with all operations done in IF28 = IF2[x]/(x8 + x4 + x3 + x2 + 1). Viewing
the input vector components as ai ∈ IF28 , examining this matrix product reveals we need aibj
for all i and all bj ∈ {1, x, x2, x2 + x}. That is, we need the result of three distinct linear maps
applied to the input. Applying the machinery from Sect. 2.2 yields t2 = ax and t4 = ax2, then
the final product is t6 = t4 + t2. It remains to shuffle these vectors using the following indices
corresponding to their positions in the columns of H:

tθ2 = 0x0E0F0C0D0A0B08090607040502030001

tθ4 = 0x0D0C0F0E09080B0A0504070601000302

tθ6 = 0x0C0D0E0F08090A0B0405060700010203

and the output is the XOR of these three shuffled vectors with the input. This strategy realizes
the entire layer using seven pshufb, six pxor, two pand, and one psrlq.

The cyclical permutation π This operation is otherwise analogous to the AES ShiftRows
step, but cyclically shifts column i of the matrix downward i positions instead. This map only
appears in the key schedule. To illustrate:

0 1 2 3
4 5 6 7
8 9 A B
C D E F

 7→

0 D A 7
4 1 E B
8 5 2 F
C 9 6 3

 .
Again this requires only one pshufb instruction with indices defined as

tπ = 0x0306090C0F0205080B0E0104070A0D00.

The key extraction ω This is a linear mapping involving the Vandermonde matrix

V =


01 01 01 01
01 02 022 023

01 06 062 063

01 08 082 083

 =


1 1 1 1
1 x x2 x3

1 x2 + x x4 + x2 x6 + x5 + x4 + x3

1 x3 x6 x5 + x4 + x3 + x

 =


01 01 01 01
01 02 04 08
01 06 14 78
01 08 40 3A


and ω : a 7→ V · a. This map also only appears in the key schedule.

This is quite a different situation compared to θ, where we needed the product of every
entry in the matrix with every component of the input vector a. For example, here we need
(x2 +x)ai only for 4 ≤ i < 8. When computing with 16-component vectors, this kind of selective
computation is difficult to accomplish in an elegant fashion.

On the other hand, realizing distinct linear maps as in Sect. 2.2 with the same input amor-
tizes the cost of the first two steps: the nibbles (indices into tables) need be produced only once.
In light of this, one strategy is overcomputation by producing aibj for all i and all bj as distinct
entries in V . Computing six of the maps (02, 04, 08, 14, 3A, and 40) is enough to reach the
remaining two with XOR chains (06 and 78). This strategy uses 12 pshufb, nine pxor, two
pand, and one psrlq.

Denote the resulting vectors by ri; these need to combined at different indices before
XOR-summing them to arrive at the result (three pxor). For column j of V with entries
[v0j , v1j , v2j , v3j ] the needed vector is

[v0j [a4j , . . . , a4j+3], v1j [a4j , . . . , a4j+3], v2j [a4j , . . . , a4j+3], v3j [a4j , . . . , a4j+3]].



One way to achieve this is through a series of interleaves: punpckldq interleaves the lower two
4-byte values in the first operand with those in the second, and punpckhqdq the high 8-byte
value.

The following illustrates this concept with j = 1 where vectors {r1 = a, r2 = ax, r6 =
a(x2 + x), r8 = ax3} facilitate constructing the vector

[01a4, 01a5, 01a6, 01a7, 02a4, 02a5, 02a6, 02a7, 06a4, 06a5, 06a6, 06a7, 08a4, 08a5, 08a6, 08a7].

Here the ri are filled with dummy data to help observe the interleaving action:

r1 = 0x33333333222222221111111100000000

r2 = 0x77777777666666665555555544444444

r6 = 0xBBBBBBBBAAAAAAAA9999999988888888

r8 = 0xFFFFFFFFEEEEEEEEDDDDDDDDCCCCCCCC

t0 = 0x55555555111111114444444400000000 (punpckldq)

t1 = 0xDDDDDDDD99999999CCCCCCCC88888888 (punpckldq)

t2 = 0xDDDDDDDD999999995555555511111111 (punpckhqdq).

These operations accomplish the goal of extracting bytes v4, . . . , v7 from each of the given
v = ri to a vector in a specific order corresponding to column j of V . The vectors for other
j are obtained similarly with three instructions, but different interleaves. The exception being
j = 0, using only one pshufd to broadcast the lower 4-byte value of the input across the vector
(the instruction takes an immediate argument).

The key schedule Given the cipher key K, round keys Ki for 0 ≤ i ≤ 12 satisfy Kr =
(τ ◦ ω ◦ γ)(κr) where κ0 = K and κr = (σ[cr] ◦ θ ◦ π ◦ γ)(κr−1) for r > 0, σ is addition in IF16

28 ,
and cr are vector constants dependent only on S. Note the shared application of γ.

The complete cipher Anubis initializes the state as σ[K0] applied to the input. This gets
iteratively transformed through 12 rounds by σ[Kr] ◦ θ ◦ τ ◦ γ where the last round omits θ.

4 A Bit-slice Implementation

Käsper and Schwabe use the SIMD registers to represent eight AES instances running in par-
allel [KS09]. While these can be unrelated instances with distinct keys, parallel block cipher
modes such as counter mode are where this method is particularly interesting: encrypting the
next eight counter values under one distinct key in parallel. Eight SIMD registers hold the entire
state for these eight instances, but each register represents one bit-slice of the state bytes for
all instances.

Naturally, the same approach can be used to implement Anubis in counter mode. Denote
128-bit SIMD registers ri for 0 ≤ i < 7 each holding bit i of all state bytes. Byte j of ri holds
bit i of the jth state byte for all eight instances, each instance at a fixed offset within these
bytes.

With this representation, some of the components from the previous section remain un-
changed and are simply iterated for each ri. For example, τ and the byte shuffles at the end
of θ. As this counter mode implementation uses only a single distinct key, the key schedule
components stay the same, but the resulting round keys must be subsequently converted into
bit-slice format using eight times the storage.



See [KS09, Sect. 4.1] for a brief discussion on data conversion to and from bit-slice format.
This implementation uses the same code for said conversion.

The two components that differ significantly in implementation compared to the serial case
are γ and θ, the only layers where any time consuming operations are carried out during
encryption. A discussion follows.

The nonlinear layer γ The previous serial implementation relies heavily on pshufb as a
lookup table to realize γ. In contrast, bit-slicing relies on boolean expressions alone to evaluate
the S-box, facilitated by access to individual bits of all state bytes collected in one register.
Indeed, this is the allure of bit-slicing.

The specification gives boolean expressions for P and Q with 18 gates each, implementing
S with 108 gates [BR01a, Appx. B]. This is not significantly lighter than the current smallest
published AES S-box with 115 gates [BP09], although the former appeared at inception while
the later took roughly a decade of research to whittle down. SSE instructions pand, por, and
pxor directly implement said expressions.

The simple construction of S as an SPN using smaller P and Q easily allows the implemen-
tation to remain entirely within the working register set: the stack is not required.

The linear diffusion layer θ This component also does not require the stack. Similar to
MixColumns, viewing the input and output of θ as matrices one can derive a formula for each
byte of the output:

bij = aij + x(ai1−j + ai3−j + x(ai2+j + ai3−j))

where all the subscripts are modulo 4. Each multiplication by x implies three XOR gates for
reduction. This leads to a cost of 38 pxor and 24 pshufb, noteably heavier than the 27 pxor
and 16 pshufd of MixColumns [KS09, Sect. 4.4]. This is compounded by the fact that pshufd
takes a destination register operand, saving register to register moves; unfortunately pshufb
does not allow this.

5 The Khazad Cipher

The Khazad block cipher [BR01b] works on 8-byte blocks and uses a 16-byte key. The state
is viewed as an element of IF8

28 . The components are almost identical to those of Anubis in
many respects. A description of the components follows alongside a description of the first
implementation. This sections presents two Khazad implementations, analogous to the two
Anubis implementations. Both require a parallel block cipher mode when only one distinct key
is used.

5.1 Two Parallel Instances

As the SIMD registers are 16-byte, this section considers implementation of stateful-decryption
counter mode (SDCTR) [BK06], although one can also run two unrelated instances in parallel.
In this case, the counter is initially set to the 8-byte IV. The implementation here uses most of
the machinery developed in Sect. 3. The nonlinear layer γ remains the same and the previous
implementation is reused here verbatim. The permutations π and τ in Anubis have no equivalent
in Khazad.



The linear diffusion layer θ This linear layer multiplies the input vector by the symmetric
matrix

H =



01 03 04 05 06 08 0B 07
03 01 05 04 08 06 07 0B
04 05 01 03 0B 07 06 08
05 04 03 01 07 0B 08 06
06 08 0B 07 01 03 04 05
08 06 07 0B 03 01 05 04
0B 07 06 08 04 05 01 03
07 0B 08 06 05 04 03 01


and θ : a 7→ a ·H. The strategy is the same as the corresponding layer in Anubis. First compute
three linear maps (02, 04, and 08) and derive the remaining maps with XOR chains. The output
is the XOR-sum of the input and the seven shuffled vectors resulting from the linear maps. This
implementation uses 15 pxor, 13 pshufb, two pand and one psrlq.

The key schedule Round keys satisfy Kr = (σ[Kr−2] ◦ σ[cr] ◦ θ ◦ γ)(Kr−1) where 0 ≤ r ≤ 8
and K−2 and K−1 are the first and second eight bytes of the key K, respectively. There is no
component corresponding to the key extraction ω in Anubis.

The complete cipher Khazad initializes the state as σ[K0] applied to the input. This gets
iteratively transformed through eight rounds by σ[Kr] ◦ θ ◦ γ where the last round omits θ.

5.2 Sixteen Parallel Instances

Lastly, the bit-slice implementation of Khazad in counter mode. Khazad works on 8-byte blocks
and with 128-bit SIMD registers aligning the bits of bytes in the state, this implies 16 parallel
streams. With all the machinery from the previous implementations, the only component to
implement is θ. The approach is exactly the same as with the bit-slice Anubis implementation:
derive a formula for the output bytes and accumulate the result in output bits iteratively. For
each of the eight input bits, this works out to 14 pxor and seven pshufb to produce a degree-10
polynomial. Similarly the reduction uses a total of 12 pxor to clear the three top bits.

6 Results

Table 1 contains the timings for all of the implementations described in this paper. All SSSE3
implementations are in assembly, while the “Table” entry denotes the C reference implementa-
tions available with the cipher specifications.

7 Conclusion

This paper presents a number of constant-time and implementations of the Anubis and Khazad
block ciphers. The results show that constant-time and efficient are not mutually exclusive with
respect to their software implementation. Irrespective of their current usage or lack thereof, the
work here also further showcases the potential of a vector-byte shuffle instruction to provide both
secure and fast software implementations of cryptosystems. It is surprising that the compact
S-box used in Anubis and Khazad has not managed to make its way into other recent cipher
designs. Its particularly efficient software implementation here using pshufb greatly encourages
further use: within these two ciphers themselves or even as a building block for other ciphers.



Table 1. Timing results in cycles per byte.

Cipher Method Mode Instances Core 2 Quad Q9550

Anubis SSSE3 CTR 1 23.1

Anubis SSSE3 CTR 8 11.2

Anubis Table CTR 1 20.7

Khazad SSSE3 CTR 2 18.6

Khazad SSSE3 CTR 16 10.3

Khazad Table CTR 1 19.8

Realizing the threat that timing attacks pose to software implementations, more recent
trends in cipher design are away from the rather traditional view of an S-box as a lookup
table towards methods that better suit constant-time implementations using native instructions
supported by common processors. For example, the Threefish block cipher explicitly states this
as a design criteria [FLS+09, Sect. 8.1], using an extremely simple nonlinear function MIX
consisting of a rotation, XOR, and addition modulo 264 iterated during a large number of
rounds. However, equipped with powerful instructions like pshufb it will be interesting to see
how cryptologists harness this machinery and what the future holds for cipher design.

References

[ALH10] Diego F. Aranha, Julio López, and Darrel Hankerson. High-speed parallel software implementation of
the ηT pairing. In Josef Pieprzyk, editor, CT-RSA, volume 5985 of Lecture Notes in Computer Science,
pages 89–105. Springer, 2010.

[Ber04] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/papers.html#cachetiming,
2004.

[BK06] M. Bellare and T. Kohno. The secure shell (SSH) transport layer encryption modes. RFC 4344, January
2006.

[BP09] Joan Boyar and Rene Peralta. New logic minimization techniques with applications to cryptology.
Cryptology ePrint Archive, Report 2009/191, 2009. http://eprint.iacr.org/.

[BR01a] Paulo S. L. M. Barreto and Vincent Rijmen. The Anubis block cipher. http://www.larc.usp.br/

~pbarreto/anubis-tweak.zip, 2001.
[BR01b] Paulo S. L. M. Barreto and Vincent Rijmen. The Khazad legacy-level block cipher. http://www.larc.

usp.br/~pbarreto/khazad-tweak.zip, 2001.
[CG09] Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embedded Systems - CHES

2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, volume
5747 of Lecture Notes in Computer Science. Springer, 2009.

[FLS+09] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon
Callas, and Jesse Walker. The Skein hash function family. Submission to NIST (Round 2), 2009.

[Ham09] Mike Hamburg. Accelerating AES with vector permute instructions. In Clavier and Gaj [CG09], pages
18–32.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM. In Clavier and Gaj
[CG09], pages 1–17.

[Pre02] B. Preneel. The NESSIE project: towards new cryptographic algorithms. In Information Security
Applications, 3rd International Workshop, WISA 2002, pages 16–33, 2002.


