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Abstract

We study the design of cryptographic primitives resistant to a large class of side-channel attacks, called
“memory attacks”, where an attacker can repeatedly and adaptively learn information about the secret key,
subjectonly to the constraint that theoverall amountof such information is bounded by some parameter
`. Although the study of such primitives was initiated only recently by Akavia et al. [2], subsequent work
already produced many such “leakage-resilient” primitives [47, 4, 42], including signature, encryption, iden-
tification (ID) and authenticated key agreement (AKA) schemes. Unfortunately, every existing scheme, —
for any of the four fundamental primitives above, — fails to satisfy at least one of the following desirable
properties:

• Efficiency. While the construction may be generic, it should have someefficientinstantiations, based
on standard cryptographic assumptions, and without relying on random oracles.

• Strong Security. The construction should satisfy the strongest possible definition of security (even in
the presence of leakage). For example, encryption schemes should be secure against chosenciphertext
attack (CCA), while signatures should beexistentiallyunforgeable.

• Leakage Flexibility. It should be possible to set the parameters of the schemes so that the leakage
bound` can come arbitrarily close to the size of the secret keysk.

In this work we design the first signature, encryption, ID andAKA schemes which overcome these lim-
itations, and satisfy all the properties above. Moreover, all our constructions are generic, in several cases
elegantly simplifying and generalizing the prior constructions (which did not have any efficient instantia-
tions). We also introduce several tools of independent interest, such as the abstraction (and constructions)
of simulation extractableNIZK arguments, and a newdeniableDH-based AKA protocol based on any
CCA-secure encryption.
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1 Introduction

Traditionally, the security of cryptographic schemes has been analyzed in an idealized setting, where an adver-
sary only sees the specified “input/output behavior” of a scheme, but has no other access to its internal secret
state. Unfortunately, in the real world, an adversary may often learn some partial information about secret
state via variouskey leakageattacks. Such attacks come in a large variety and includeside-channel attacks
[43, 11, 8, 44, 51, 29], where the physical realization of a cryptographic primitive can leak additional informa-
tion, such as the computation-time, power-consumption, radiation/noise/heat emission etc. The cold-boot attack
of Halderman et al. [35] is another example of a key-leakage attack, where an adversary can learn (imperfect)
information about memory contents of a machine, even after the machine is powered down. Schemes that are
proven secure in an idealized setting, without key leakage,may become completely insecure if the adversary
learns even a small amount of information about the secret key. Indeed, even very limited leakage attacks have
been shown to have devastating consequences for the security of many natural schemes.

Unfortunately, it is unrealistic to assume that we can foresee, let alone block, all of the possible means
through which key leakage can occur in real-world implementations of cryptographic schemes. Therefore, the
cryptographic community has recently initiated the investigation of increasingly general (formally modeled)
classes of leakage attacks, with the aim of constructingleakage-resilientcryptographic schemes that remain
provably secure even in the presence of such attacks. Of course, if an adversary can get unrestricted information
about the secret key (say, of an encryption scheme), then shecan learn the key in its entirety and the security
of the system is necessarily compromised. Therefore, we must first place some “upper bound” on the type
or amount of information that the adversary can learn. The nature of such bounds varies in the literature, as
we survey later. For this work, we only restrict theamount, but not thetype, of information that an adversary
can learn through a key-leakage attack. In particular, we will assume that the attacker can learnany efficiently
computable function of the secret keysk, subject only to the constraint that the total amount of information
learned (i.e. the output size of the leakage function) is bounded by` bits, where` is called the “leakage
parameter” of the system.1 Clearly, at this level of generality, the secret-key sizes must be strictly greater than
the leakage-parameter`.2 Therefore, the quantitỳ/s can be thought as therelative leakageof the system, with
the obvious goal to make it as close to1 as possible.

Our model of leakage-resilience was recently introduced recently by Akavia et al. [2], but already attracted
a lot of attention from the cryptographic community [47, 4, 42, 3]. In particular, as we survey later, we al-
ready know many “leakage-resilient” primitives, including such fundamental primitives as signature schemes,
encryption schemes, identification (ID) schemes and authenticated key agreement (AKA) protocols. Unfortu-
nately, we observe that every existing scheme, — for any of the four fundamental primitives above, — fails to
satisfy at least one of the following desirable properties:

• Efficiency. While the proposed construction may be based on some genericcryptographic primitives, —
which is in fact preferable for modular design, — it should have someefficientinstantiations, based on
standard cryptographic assumptions, and without relying on random oracles. We view this property as
the main property we will strive to achieve.

• Strong Security. The construction should satisfy the strongest possible definition of security (even in
the presence of leakage). For example, encryption schemes should be secure against chosenciphertext
attack (CCA), while signatures should beexistentiallyunforgeable, etc.

• Leakage Flexibility. It should be possible to set the parameters of the schemes so that the relative leakage
`/s is arbitrarily close to1. We call such schemesleakage-flexible.

1More formally, we allow adaptive measurements, as long as the sum of leaked outputs is bounded by`.
2In fact, our actual constructions easily extend to the more general “noisy leakage” model of Naor and Segev [47], where the outputs

can be longer thans, as long as the “average min-entropy” ofsk drops by at most̀ bits. However, we do not pursue this generalization,
in order to keep our notation simple.
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1.1 Our Results

In this work we design the first signature, encryption, ID andAKA schemes which simultaneously satisfy the
efficiency, strong security and leakage flexibility properties mentioned above. Moreover, all our constructions
are generic. This means that the actual construction is modularly defined and explained using natural simpler
blocks, and its security against key leakage is also proven no matter how these simpler blocks are (securely)
implemented. However, unlike the prior generic constructions, which did not have any known efficient instanti-
ations (at least, with the desired security and flexibility we seek), ours are yet more general, which will allow us
to obtain several efficient instantiations. Given this fact, it is not surprising that our contributions can be roughly
split into two categories: “conceptual” contributions, allowing us to obtain more general (and, yet, conceptu-
ally simpler) leakage-resilient constructions, and “concrete” contributions, allowing us to actually instantiate
our general schemes efficiently.

CONCEPTUAL CONTRIBUTIONS. As we will see, existing schemes (e.g., signature and CCA-encryption)
could be largely divided into two categories: potentially efficient schemes, with someinherentlimitation not
allowing them to achieve relative leakage approaching1 (which also prevents us from using these ideas for our
purposes), and more theoretical schemes [47, 42], achieving good relative leakage, but relying on the notion of
simulation-soundnon-interactive zero-knowledge (ss-NIZK) [52]. Informally, ss-NIZK proofs remain sound
even if the attacker can see simulated proofs of arbitrary (even false) statements. Unfortunately, it appears that
the existing cryptographic machinery does not allow us to instantiate non-trivial ss-NIZK proofs efficiently.3

On the other hand, a recent breakthrough result of Groth-Sahai [34] showed that one can obtain efficientnon-
simulation-soundNIZK proofs for a non-trivial class of languages. Therefore, our first idea was to try to
generalize the existing constructions sufficiently, making them rely only on regular NIZKs, in the hope that
such regular NIZKs can then be instantiated using the powerful Groth-Sahai techniques.

In the end, this is indeed what we realized. However, in the process we also abstracted away an elegant
notion of independent interest:simulation-extractable(SE) NIZKs. Intuitively, both the Naor-Segev’s leakage-
resilient CCA encryption [47] and Katz-Vaikuntanathan’s leakage-resilient signature scheme [42] used the tech-
nique of encrypting a witnessx for some relationR, and then providing a ss-NIZK proofϕ that the ciphertext
c indeed contains the encryption of a valid witnessx. The main reason for using this technique is to allow the
reduction to extract a valid witness from any “new” valid pair (c∗, ϕ∗) produced by the attackerA (who saw
many such valid pairs earlier). In this paper, we will abstract this property into the SE notion mentioned above
(of which the above mentioned technique is a specific example, where the pair(c, ϕ) together makes up a sin-
gle SE-NIZK proof). Moreover, we show that simulation-extractability, as we abstract it, ispreciselythe right
notion for generalizing and proving the security of the previous constructions. This has two positive effects.
First, it makes the generic constructions of CCA-encryption and signatures somewhat more intuitive, both for
proving and understanding. For example, the traditional “double-encryption” paradigm of Naor-Yung [48] for
designing CCA-secure schemes from chosen-plaintext secure (CPA-secure) schemes, also used by [47] in the
context of key leakage, can be stated as “CPA-encrypting messagem under two keys and proving plaintext
equality”. Using our more general “simulation-extractability view”, it is now stated as “CPA-encryptingm and
proving that one knows the plaintext”. We believe that the latter view is not only more general, but also more
intuitive as a way of explaining “CPA-to-CCA” transformation. Similar discussion is true for our signature
constructions.

Second, we show a generic way to build SE-NIZKs whichavoids using (expensive) ss-NIZKs. Instead,
our method usesregular NIZKs and any CCA-secure encryption scheme.4 Perhaps surprisingly, given the
current state-of-the-art NIZK and CCA schemes, the combination “CCA + NIZK” appears to be much more

3At the very least, instantiating ss-NIZK appearssignificantlymore expensive than instantiatingregular NIZK proof.
4This is OK for the signature application, but might appear strange for our CCA-encryption application, as we need “CCA toget

CCA”. However, as a building block for SE-NIZKs, we only needstandardCCA schemes (which are known), and, as our result, obtain
leakage-resilientCCA schemes.

2



Reference Unforgeability Model Leakage Efficient?

[4] Existential Random Oracle 1/2 Yes
[4] Entropic Random Oracle 1 Yes
[42] Existential Standard 1 No

This Work Existential Standard 1 Yes

Table 1: Previous work on leakage-resilient signatures andresults of this work

Reference Attack Model Leakage Efficient?

[2, 47] CPA Standard 1 Yes
[47] CCA Standard 1/6 Yes
[47] CCA Standard 1 No

This Work CCA Standard 1 Yes

Table 2: Previous work on leakage-resilient encryption andresults of this work

efficient in practice than the combination ”CPA + ss-NIZK”.5 As a result, we were able to provide a general
framework for building leakage-flexible signature and CCA-encryption schemes, eventually allowing us to
efficiently instantiate our schemes (by avoiding using ss-NIZKs). We summarize our results for signature and
CCA-encryption schemes in Tables 1 and 2, also comparing them to the best prior constructions. In all the
tables, the “sub-optimal” entries (for efficiency, security, model or relative leakage of prior constructions) are
written in italics, and most prior rows are also explained inthe related work Section 1.2. For signatures, we
stress that no efficient construction in the standard model was known prior to our work, for any non-trivial
relative leakage fraction (let alone1).

Once we have efficient leakage-flexible signature schemes, we observe that the standard signature-based
ID scheme, where the verifier asks the prover to sign a random message, easily extends to the leakage setting.
Moreover, the resulting actively secure ID scheme inheritsits relative leakage from the corresponding signature
scheme, and satisfies the strongest notion of “anytime-leakage” [4] (see Section 6.1), where the leakage can
occur even during the impersonation attack. We summarize our results for ID schemes in Table 3. Although
our method is pretty simple, we notice that the other two popular methods of building ID schemes — the use
of Σ-protocols for hard relations analyzed in [4] (see first two rows of Tables 3), and the use of CCA-secure
encryption (where the prover decrypts a random challenge ciphertext) — inherently do not allow us to obtain
optimal results, even when instantiated with leakage-flexible hard relations or CCA-encryption schemes. See
Section 6.1 for more details.

Finally, we summarize our results for AKA protocols in Table4. We actually obtain two such protocols.
First, similarly to the case of ID schemes, we can obtain leakage-resilient AKA schemes from any leakage-
resilient signature scheme, as formally explained in [4]. The idea is to essentially sign every flow of a standard
Diffie-Hellman-based protocol, but with a leakage-resilient signature scheme. We notice, though, that the
resulting protocol is notdeniable. Namely, the transcript of the protocol leaves irrefutableevidence that the
protocol took place. Motivated by this deficiency, we designanother general AKA protocol based on CCA-
encryption. The details are given in Section 6.2, but, intuitively, the parties encrypt the flows of the standard
Diffie-Hellman-based protocol, effectively proving theiridentities by successfully re-encrypting the appropriate
flows. Although we do not formalize this, this protocols is “deniable”, because the transcript of the protocol
can be simulated without the knowledge of parties’ secret keys. To the best of our knowledge, this protocol
was not suggested and analyzed even in the leakage-free setting, where it appears interesting already. Here we
actually show that our (new) deniable AKA protocol works even in the presence of leakage.

CONCRETE CONTRIBUTIONS. As we explained above, we generically reduce the question of building effi-

5Indirectly, the same realization was made by Groth [32] and Camenisch et al. [13] in different concrete contexts.
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Reference Security Model Leakage Efficient?

[4] Pre-Impersonation Standard 1 Yes
[4] Anytime Standard 1/2 Yes

[42] (implicit) Anytime Standard 1 No
This Work Anytime Standard 1 Yes

Table 3: Previous work on leakage-resilient identificationschemes and results of this work

Reference Model Leakage Deniable? Efficient?

[4] Random Oracle 1 No Yes
[4, 42] Standard 1 No No

This Work Standard 1 No/Yes∗ Yes
∗ Our first AKA protocol is not deniable; our second — is.

Table 4: Previous work on leakage-resilient AKA and resultsof this work.

cient leakage-flexible ID schemes and AKA protocol to the question of efficiently instantiating our leakage-
flexible signature and/or encryption schemes. Such instantiations are given in Section 5 (with most details in
Appendix C). We also explained how the latter instantiations became possible in our work, since we gave
generic constructions of both primitives based on the new notion of SE-NIZK, and then showed that satisfying
this notion maybe possible usingordinary NIZKs for appropriate languages, without relying on the expensive
simulation-sound NIZKs. Unfortunately, efficient construction of (even ordinary) NIZKs, due to Groth and Sa-
hai [34], are only known for a pretty restrictive class or languages in bilinear groups. Thus, obtaining aconcrete
efficient instantiation still requires quite a substantialeffort.

Specifically, all the building blocks have to be instantiated efficiently, and expressed in a form such that
the resulting NP relation satisfies the severe limitations imposed by the Groth-Sahai NIZKs. For example, to
build leakage-resilient CCA-encryption, we need to have anefficient leakage-flexible CPA scheme, a CCA
scheme supporting labels and a one-time signature scheme, all connected together by an efficient NIZK for
a complicated “plaintext equality” relation. Similarly, for leakage-resilient signature schemes, we need an
efficient second-preimage resistant (SPR; see Definition 2.1) relation and a CCA scheme supporting labels,
once again connected by an efficient NIZK for a complex relation. Not surprisingly, such tasks cannot typically
be done by simply combining “off-the-shelf” schemes from the literature. At best, it requires very careful
selection of parameters to make everything “match”, followed by a round of further efficiency optimizations.
Usually, though, it requires the design of new primitives, which work well with other known primitives, to
enable efficient NIZK. For example, in this work, we designedtwo new SPR relations (see Claims C.1 and
C.2), since prior SPR relations did not appear to mesh well with our CCA encryption scheme.

Overall, we get two different efficient instantiations of both leakage-resilient signature and CCA encryption
schemes in the standard model, based on standard (static and“fixed-length”) assumptions in bilinear groups,
called external Diffie-Hellman (SXDH) and Decision-Linear(DLIN). Ignoring many technicalities, the high-
level idea of all these schemes, as well as the efficiency theyachieve, is described in Section 5. The actual
low-level details of how to put “everything together”, in the most efficient manner, is described Appendix C.

1.2 Related Work

LEAKAGE-RESILIENCE AND MEMORY ATTACKS. Our model of leakage, sometimes called memory-attacks,
was first proposed by Akavia, Goldwasser and Vaikuntanathan[2], who also constructed CPA secure PKE
and IBE schemes in this model under thelearning with errors (LWE)assumption. Later Naor and Segev [47]
generalized the main ideas behind these constructions to show that all schemes based onhash proof systems(see
[17]) are leakage-resilient. In particular, this resultedin efficient constructions based on the DDH andK-Linear
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assumptions, where the relative leakage on the secret key could be made to approach 1. Moreover, [47] showed
how to also achieve CCA security in this model by either: (1) relying on the generic (and inefficient) Naor-
Yung paradigm where the leakage-rate can be made to approach1 or (2) using efficient hash proof systems with
leakage-rate only approaching1/6. Unfortunately, it seems that the hash proof system approach to building
CCA encryption is inherently limited to leakage-rates below 1/2: this is because the secret-key consists of two
components (one for verifying that the ciphertext is well-formed and one for decrypting it) and the proofs break
down if either of the components is individually leaked in its entirety.

The work of [3] generalizes [47] still further by showing howto construct leakage-resilient IBE schemes
generically based onidentity-based hash proof systems, with several instantiations.

Leakage-resilient signature schemes in the model of memoryattacks were constructed in the random-oracle
model by [4, 42], and in the standard model by [42]. The random-oracle schemes are highly-efficient but suffer
from two limitations. Firstly they rely on the Fiat-Shamir [27] transform which is only known to be secure in
the Random Oracle model and is not sound in general [31]. Secondly, the schemes can only tolerate leakage
which approaches1/2 of the secret key. On the other hand, the standard-model schemes allow for relative-
leakage approaching1, but are based on generic simulation-sound NIZKs and do not come with an efficient
instantiation.

The work of [4] also constructs identification (ID) schemes and authenticated-key agreement (AKA) pro-
tocols. For ID schemes, two notions of security (we describethese in detail in Section 6.1) were considered:
a weaker notion called pre-impersonation leakage-resilience and a stronger notion called anytime leakage-
resilience. Although efficient schemes in the standard model were given for both notions, the leakage resilience
could be made to approach1 only for pre-impersonation leakage while, for anytime leakage, the given schemes
can only tolerate a leakage-rate below1/2. For AKA schemes, a construction was given based on leakage-
resilient signatures (only requiring a weakened notion of security called entropic-unforgeability). Using the
appropriate signature schemes, this yielded two types of constructions: efficient constructions in the random-
oracle model and generic but inefficient constructions in the standard model (both of which have leakage-rates
approaching1).

OTHER MODELS OF LEAKAGE-RESILIENCE. Several other models of leakage-resilience have appearedin
the literature. They differ from the model we described in that they restrict thetype, as well asamount, of
information that the adversary can learn. For example, the work onexposure resilient cryptography[14, 22, 41]
studies the case where an adversary can only learn some smallsubset of the physical bits of the secret key.
Similarly, [39] studies how to implement arbitrary computation in the setting where an adversary can observe a
smallsubset of the physical wires of a circuit. Most recently, [26] study a similar problem, where the adversary
can observe a low-complexity (e.g.AC0) function of the wires. Unfortunately, these models fail tocapture
many meaningful side-channel attacks, such as learning thehamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzin [46] initiated the formal modeling of side-channel attacks under
the axiom that“only computation leaks information”(OCLI), where each invocation of a cryptographic primi-
tive leaks a function ofonly the bits accessed during that invocation. Several primitives have been constructed
in this setting including stream ciphers [24, 50] and signatures [25]. More recently, [40] construct a general
compiler that can secureall primitives in this setting assuming the use of some limited leak-free components
and the existence of fully homomorphic encryption. On the positive side, the OCLI model only imposes a bound
on the amount of information learned during each invocationof a primitive, but not on the overall amount of
information that the attacker can get throughout the lifetime of the system. On the negative side, this model
fails to capture many leakage-attacks, such as the cold-boot attack of [35], whereall memory contents leak
information, even if they were never accessed.

Lastly, we mention several models of leakage-resilience which are strictly stronger than the memory-attacks
model. Firstly, the Bounded-Retrieval Model [18, 23, 4, 3] imposes an additional requirement on leakage-
resilient schemes, by insisting that they provide a way to “grow” the secret-key (possibly to many Gigabytes)
so as to proportionally increase the amount of tolerated leakage, but without increasing the size of the public-
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key, the computational-efficiency of the scheme, or the ciphertext/signature/communication lengths. The work
of [4] constructs “entropic” signatures, ID schemes and AKAprotocols in this setting, while the work of [3]
constructs PKE and IBE schemes in this model. A different strengthening is the auxiliary input model [20, 19]
where the leakage is not necessarily bounded in length, but it is (only) assumed to be computationally hard to
recover the secret-key from the leakage. The work of [20] constructs symmetric-key encryption in this model,
under a strengthening of the learning parity with noise (LPN) assumption, while [19] constructs public-key
encryption under the DDH and LWE assumptions. Yet another strengthening of the memory-attacks model,
proposed by [30], is to require that there is a single scheme (parameterized only by the security parameter)
which can tolerate essentially any amount of relative-leakage where the exact-security of the scheme degrades
smoothly as the relative-leakage increases. In this model,[30] construct a symmetric-key encryption scheme.

2 Definitions of Leakage-Resilient Primitives

We model leakage attacks by giving the adversary access to aleakage oracle, which he can adaptively access to
learn leakage on the secret key. A leakage oracleOλ,`

sk (·) is parametrized by a secret keysk, a leakage parameter
`, and a security parameterλ. A query to the leakage oracle consists of a functionhi : {0, 1}

∗ → {0, 1}αi , to
which the oracle answers withyi = hi(sk). We only require that the functionshi be efficiently computable,
and the total number of bits leaked is

∑
i αi ≤ `.

Definition 2.1 (Leakage Resilient Hard Relation). A relationR with a randomized PPT sampling algorithm
KeyGen is an`-leakage resilient hard relationif:

• For any(sk, pk)← KeyGen(1λ), we have(sk, pk) ∈ R.

• There is a poly-time algorithm that decides if(sk, pk) ∈ R.

• For all PPT adversariesAO
λ,`
sk

(·) with access to the leakage oracleOλ,`
sk (·), we have that

Pr
[
R(sk∗, pk) = 1 | (pk, sk)← KeyGen(1λ) , sk∗ ← AO

λ,`
sk

(·)(pk)
]
≤ negl(λ)

Notice that without loss of generality, we can assume thatA queriesOλ,`
sk (·) only once with a functionh

whose output is̀ bits.

Definition 2.2 (Leakage Resilient Signatures). A signature schemeS = (KeyGen, Sign, SigVer) is `-leakage
resilientif ∀ PPTA we havePr[A wins] ≤ negl(λ) in the following game:

1. Key Generation: The challenger runs(vk, sk)← KeyGen(1λ) and givesvk toA.

2. Signing and leakage queries: AO
λ,`
sk

(·),Ssk(·) is given access to the leakage oracleOλ,`
sk (·) and the

signing oracleSsk(·). A query to the signing oracleSsk(·) consists of a messagem, to which the oracle
responds withσ = Signsk(m).

3. A outputs(m∗, σ∗) and wins ifSigVervk(m
∗, σ∗) = 1 andm∗ was not given toSsk(·) as a signing

query.

Definition 2.3 (Leakage Resilient CCA-Secure Encryption). We say that an encryption schemeE = (KeyGen, Enc, Dec)
is `-leakage resilient CCA-secureif ∀ PPTA we havePr[A wins] ≤ 1

2 + negl(λ) in the following game:

1. Key Generation: The challenger runs(pk, sk)← KeyGen(1λ) and givespk toA.

2. Decryption and leakage queries: AO
λ,`
sk

(·),Dsk(·) is given access to the leakage oracleOλ,`
sk (·) and the

decryption oracleDsk(·). A query to the decryption oracleDsk(·) consists of a ciphertextc, to which the
oracle responds withm = Decsk(c).
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3. Challenge generation: A sends plaintextsm0,m1 to the challenger. The challenger choosesb
$
←−

{0, 1}, and sendsc∗ ← Encpk(mb) toA.

4. Decryption queries: ADsk(·) is given access to the decryption oracleDsk(·) with the restriction thatA
cannot sendc∗ as a decryption query. Notice also thatADsk(·) is not given access to the leakage oracle
Oλ,`

sk (·).

5. A outputsb′, and wins ifb = b′.

If an encryption scheme is0-leakage-resilient CCA-securewe simply refer to it as beingCCA secure.

Recall that we can define labeled CCA encryption in which a message is encrypted and decrypted according
to a public labelL. If an encryption schemeE = (KeyGen, Enc, Dec) supports labels, we use the syntax
EncL(m) to denote the encryption of messagem under labelL. Similarly, we useDecL(c) to denote the
decryption of ciphertextc under the labelL. In this case, we extend the correctness of encryption/decryption
to requiring thatDecL(EncL(m)) = m. The security definition described in Definition 2.3 can alsobe easily
modified as follows. A query to the decryption oracle now consists of a ciphertextc and a labelL, to which
the oracle responds withm = DecLsk(c). In the challenge generation stage,A submits a labelL∗ as well as

messagesm0,m1 and the challenger computesc∗ ← EncL
∗

pk (mb) for b
$
←− {0, 1}. Finally, in the second stage

of decryption queries we require that the adversary is allowed to ask for decryptions of any ciphertextc under
labelL only subject to(L, c) 6= (L∗, c∗).

Definition 2.4 (Leakage Resilient CPA-Secure Encryption). We say that an encryption schemeE = (KeyGen, Enc, Dec)
is `-leakage resilient CPA-secureif ∀ PPTA we havePr[A wins] ≤ 1

2 + negl(λ) in the game described above
with the modification thatA does not have access to the decryption oracleDsk(·). If an encryption scheme is
0-leakage-resilient CPA-securewe simply refer to it as beingCPA secure.

3 Simulation Extractability

We start by briefly recalling the notion ofnon-interactive zero-knowledge (NIZK)[9]. For our purposes, it will
be slightly more convenient to use the notion of(same-string) NIZK argumentfrom [53]. Note, however, that
the definitions and constructions given in this section can be extended to the case of NIZK proofs.

Let R be an NP relation on pairs(x, y) with corresponding languageLR = {y | ∃x s.t. (x, y) ∈ R}. A
non-interactive zero-knowledge (NIZK) argumentfor a relationR consists of three algorithms(Setup, Prove, Verify)
with syntax:

• (CRS, TK)← Setup(1λ): Creates a common reference string (CRS) and a trapdoor key to the CRS.

• π ← ProveCRS(x, y): Creates an argument thatR(x, y) = 1.

• 0/1← VerifyCRS(y, π): Verifies whether or not the argumentπ is correct.

For the sake of clarity, we writeProve andVerify without theCRS in the subscript when theCRS can be
inferred from the context. We require that the following three properties hold:

Completeness:For any(x, y) ∈ R, if (CRS, TK)← Setup(1λ) , π ← Prove(x, y), thenVerify(y, π) = 1.

Soundness:For any PPT adversaryA,

Pr

[
Verify(y, π∗) = 1

y 6∈ LR

∣∣∣∣
(CRS, TK)← Setup(1λ)

(y, π∗)← A(CRS)

]
≤ negl(λ).
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Composable Zero-Knowledge:There exists PPT simulatorSim such that, for any PPT adversaryA we have∣∣Pr[A wins ]− 1
2

∣∣ ≤ negl(λ) in the following game:

• The challenger samples(CRS, TK)← Setup(1λ) and gives(CRS, TK) toA.

• The adv.A chooses(x, y) ∈ R and gives these to the challenger.

• The challenger samplesπ0 ← Prove(x, y), π1 ← Sim(y, TK), b← {0, 1} and givesπb toA.

• The adv.A outputs a bit̃b and wins ifb̃ = b.

We define a new primitive, calledsimulation extractableNIZK arguments. Apart from satisfying the three
properties described above, we require that there exists a PPT extractorExt which (when given an additional
extraction trapdoor to theCRS) extracts a witnessx′ from any proofπ produced by a malicious proverP ∗,
evenif P ∗ has previously seen somesimulated proofsfor other statements. We make an important distinction
betweentrue-simulation extractability, where all simulated proofs seen byP ∗ are only oftrue statements, and
a stronger notion calledany-simulation extractability, whereP ∗ can also see proofs offalsestatements. As we
will see, the former notion is often simpler to construct andsufficient in our applications.

We extend our definition tof -extractability, whereExt only needs to output some functionf(x′) of a
valid witnessx′. We further extend this definition to supportlabels, so that theProve, Verify, Sim, and
Ext algorithms now also take a public labelL as input, and the correctness, soundness, and zero-knowlegde
properties are updated accordingly. IfΠ = (Setup, Prove, Verify) is an NIZK argument with simulator
Sim and extractorExt, we writeProveL, VerifyL, SimL, ExtL to denote proof, verification, simulation, and
extraction under labelL, respectively.

We start by defining a simulation oracleSIMTK(·). A query to the simulation oracle consists of a pair
(x, y) and a labelL. The oracle checks if(x, y) ∈ R. If true, it ignoresx and outputs a simulated argument
SimL(TK , y), and otherwise outputs⊥. We now give a formal definition of simulation extractability.

Definition 3.1 (True-Simulationf -Extractability). Letf be a fixed efficiently computable function and letΠ =
(Setup, Prove, Verify) be an NIZK argument for a relationR, satisfying the completeness, soundness and
zero-knowledge properties above. We say thatΠ is true-simulationf -extractable(f -tSE) with labels if:

• Apart from outputting a CRS and a trapdoor key,Setup also outputs an extraction key:
(CRS, TK , EK)← Setup(1λ).

• There exists a PPT algorithmExt(y, ϕ, EK) such that for allP ∗ we havePr[P ∗ wins] ≤ negl(λ) in the
following game:

1. Key Generation: The challenger runs(CRS, TK , EK)← Setup(1λ) and givesCRS to P ∗.

2. Simulation queries: P ∗SIMTK (·) is given access to the simulation oracleSIMTK(·), which it can
adaptively access.

3. Adversary Output: P ∗ outputs a tuple(y∗, L∗, ϕ∗).

4. Extraction: The challenger runsz∗ ← ExtL
∗
(y∗, ϕ∗, EK).

5. P ∗ wins if (a) the pair(y∗, L∗) was not part of a simulator query, (b)VerifyL
∗
(y∗, ϕ∗) = 1, and

(c) for all x′ such thatf(x′) = z∗ we haveR(x′, y∗) = 0.6

In the case whenf is the identity function, we simply say thatΠ is true-simulation extractable (tSE).

6In other words, the adversary wins if the extractor fails to extract a good valuez∗ which corresponds to at least one valid witness
x′; i.e. f(x′) = z∗. For the identity function,f(x) = x, this corresponds to the statement:R(z∗, y) = 0.
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We give several variations of this new primitive. First, we define one-timesimulation extractability, in
which the adversaryP ∗ is only givena singlequery to the simulation oracleSIMTK(·). Second, we define
the notion ofstrongsimulation extractability by changing the winning condition so thatP ∗ is now required to
output a new statement/argument pair instead of a new statement. More formally, condition 5a becomes: the
tuple (y∗, L∗, ϕ∗) is new, that is, either(y∗, L∗) was not part of a simulator query, or if it was, the argument
ϕ∗ is different from the one(s) given toP ∗ by SIMTK(·). We observe that we can generically construct strong
f -tSE NIZK arguments from (standard)f -tSE NIZK arguments if we additionally use a strongly-secure one-
time signature. In particular, the prover now computes the standardf -tSE argument, signs it, and attaches the
verification keyvk to the public label. To verify, we first check that the signature is valid and then verify the
f -tSE argument.

Finally, we say that an NIZK argumentΠ is any-simultationf -extractable (f -aSE) if the adversaryP ∗

instead has access to a modified simulation oraclẽSIMTK(·) that responds to all simulation queries without
checking thatR(x, y) = 1 (and hence might also give simulated arguments of false statements). In this work
we do not make use of this variation, but state it here becauseas we will see, this notion has been implicitly
used in prior works. However,f -aSE is a stronger notion thanf -tSE and isnot needed, as we will show that
f -tSE is sufficient in constructing leakage-resilient signatures and CCA-encryption.

4 Generic Constructions

In this section we give generic constructions of leakage-resilient hard relations (Section 4.1) , leakage-resilient
signatures (Section 4.2), leakage-resilient CCA-secure encryption (Section 4.3). In the latter two we use the
f -tSE NIZK primitive that we defined in Section 3. Finally, in Section 4.4 we give a construction off -tSE
NIZK arguments.

4.1 Leakage-Resilient Hard Relations

We begin by showing how to generically construct leakage-resilient hard relations from SPR relations. Infor-
mally, we say that a relationR is second-preimage resistant (SPR)if given a random(x, y) ∈ R it is difficult
to findx′ 6= x such that(x′, y) ∈ R. We formalize this in the following definition.

Definition 4.1 (Second-Preimage Resistant (SPR) Relation). A relationR with a randomized PPT sampling
algorithmKeyGen is second-preimage resistantif:

• For any(x, y)← KeyGen(1λ), we have(x, y) ∈ R.

• There is a poly-time algorithm that decides if(x, y) ∈ R.

• For any PPT algorithmA, we havePr

[
(x′, y) ∈ R ∧ x′ 6= x

∣∣∣∣
(x, y)← KeyGen(1λ)

x′ ← A(x, y)

]
≤ negl(λ).

We define theaverage-case pre-image entropyof the SPR relation to beHavg(R) = H̃∞(X | Y ) and theworst-
case pre-image entropyto beHworst(R) = miny H̃∞(X | Y = y), where the random variables(X,Y ) are
distributed according toKeyGen(1λ). (We refer the reader to Appendix A.1 for the definition ofH̃∞(X | Y ).)

Theorem 4.2. If R(x, y) is an SPR relation, then it is also aǹ-leakage resilient hard relation for̀ =
max(Havg(R)− ω(log λ) , Hworst(R)− 1), whereλ is the security parameter.

The proof of Theorem 4.2 is given in Appendix A.1.
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4.2 Leakage-Resilient Signatures

In this section, we give a generic construction of leakage-resilient signatures based on leakage-resilient hard
relations and tSE-NIZK arguments. LetR(x, y) be aǹ -leakage resilient hard relation with sampling algorithm
KeyGenR(1

λ). Let Π = (Setup, Prove, Verify) be a tSE-NIZK argument for relationR supporting labels.
Consider the following signature scheme:

• KeyGen(1λ) : Outputsk = x andvk = (CRS, y) where
(x, y)← KeyGenR(1

λ) , (CRS, TK , EK)← Setup(1λ).

• Signsk(m) : Outputσ = ϕ whereϕ← Provem(x, y). (Note thatm is thelabel in the argument.)

• SigVervk(m,σ): OutputVerifym(y, σ).

Theorem 4.3. If R(x, y) is an`-leakage resilient hard relation andΠ is a labeled tSE-NIZK argument forR,
then the above signature scheme is an`-leakage resilient signature scheme.

The proof of Theorem 4.3 is given in Appendix A.2.

4.3 Leakage-Resilient CCA-Secure Encryption

In this section, we give a generic construction of leakage-resilient CCA-secure encryption from leakage-
resilient CPA-secure encryption and strongf -tSE NIZK arguments. LetE = (KeyGen, Enc, Dec) be an`-
LR-CPA secure encryption scheme and letΠ = (Setup, Prove, Verify) be a one-time, strongf -tSE NIZK
argument for the relation

Renc = { ( (m, r) , (pk, c) ) | c = Encpk(m; r) }.

wheref(m, r) = m (i.e. the extractor only needs to extract the messagem, but not the randomnessr of
encryption). We show how to useE ,Π to construct aǹ-LR-CCA encryption schemeE∗.

DefineE∗ = (KeyGen∗, Enc∗, Dec∗) by:

KeyGen∗(1λ): Outputpk = (pk0, CRS), sk = sk0 where
(pk0, sk0)← KeyGen(1λ) , (CRS, TK, EK)← Setup(1λ).

Enc∗pk(m; r): OutputC = (c, π) wherec← Encpk0(m; r) , π ← ProveCRS((pk0, c), (m, r)).

Dec∗sk(C): ParseC = (c, π). If the argumentπ verifies outputDecsk(c), else output⊥.

Theorem 4.4. Assume thatE is `-LR-CPA secure, andΠ is a strong one-timef -tSE NIZK argument for the
relation Renc where, for any witness(m, r), we definef(m, r) = m. Then the schemeE∗ defined above is
`-LR-CCA secure.

The proof of Theorem 4.4 is given in Appendix A.3. We also notethat, if the tSE NIZK construction allows
labels, than we can naturally extend our construction aboveto yield a`-LR-CCA encryptionwith labels, by
simply putting the encryption labels into the NIZK proofs (and using them to verify the proofs).

4.4 True-Simulation f -Extractable (f -tSE) NIZK

Let f be any efficiently computable function, and letR(x, y) be an NP relation. We show how to con-
struct anf -tSE NIZK argumentΨ from any labeled CCA-secure encryption scheme, and (standard) NIZK
arguments. LetE = (KeyGen, Enc, Dec) be a CCA-secure encryption scheme supporting labels, and let
Π = (SetupΠ, ProveΠ, VerifyΠ) be an NIZK argument for the relation

RΠ = { ( (x, r) , (y, c, pk, L) ) | R(x, y) = 1 ∧ c = EncLpk(f(x); r) }

We definef -tSE NIZK argumentΨ (supporting labels) as follows:
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• Setup(1λ) : OutputCRS= (CRSΠ, pk), TK = TKΠ, EK = sk where
(pk, sk)← KeyGen(1λ) , (CRSΠ, TKΠ)← SetupΠ(1

λ).

• ProveL(x, y; r): Outputϕ = (c, π) wherec← EncLpk(f(x); r) , π ← ProveΠ((x, r), (y, c, pk, L)).

• VerifyL(y, ϕ): Parseϕ = (c, π) and runVerifyΠ((y, c, pk, L), π).

Theorem 4.5. If E is a labeled CCA-secure encryption scheme andΠ is an NIZK argument for relationRΠ,
thenΨ is af -tSE NIZK argument for relationR.

The proof of Theorem 4.5 is given in Appendix A.4.

4.5 Comparison of Our Generic Constructions to Prior Work

The idea of using an SPR relation to construct a leakage-resilient hard relation was implicit in [4, 42], and
explicitly described in [5] (but only in terms ofHavg , and so with slightly worse parameters).

Our constructions of leakage-resilient CCA encryption andsignatures from tSE NIZKs bear significant
resemblance to prior constructions. In particular, we observe that an alternate construction of tSE NIZK to that
of Section 4.4, could be achieved by using a CPA-secure encryption scheme instead of a CCA-secure one, and a
simulation-sound (SS) NIZK argument system [52] instead ofa standard one. In fact, the resulting construction
would yield anany-simulation extractable (aSE) NIZK argument. This instantiation of aSE NIZKs is implicitly
used by [42], in their construction of leakage-resilient signature schemes. It is also used implicitly in the Naor-
Yung “double-decryption” paradigm [48, 52, 45] for CCA security, which was also later used in [47] to construct
leakage-resilient CCA-encryption. However, as we have seen, tSE is sufficient for constructingboth leakage-
resilient signatures and CCA-encryption and thus, the stronger notion of aSE is not needed. Furthermore,
given the current state of efficient encryption schemes and NIZK, the difference in efficiency between SS NIZK
and standard NIZK is significantly greater that the difference between CCA and CPA-secure encryption, thus
making tSE superior in both simplicity and efficiency.

We note that our construction of tSE NIZKs (based on CCA encryption and standard NIZKs) was implicitly
used by [33] to construct signatures of group elements. In addition, it was also implicitly used by [13] to
construct efficient CCA-secure encryption scheme with key-dependent message (KDM) security out of a CPA
version of such scheme. Still, the abstractions of tSE and aSE NIZKs have not been explicitly defined in prior
work, despite their apparent usefulness.

5 Instantiations
ASSUMPTIONS. We review several standard hardness assumptions on which we will base our constructions.

Decisional Diffie-Hellman (DDH). Let G be a group of primer orderq. Let g1, g2
$
←− G andr, r1, r2

$
←− Zq.

The decisional Diffie-Hellman (DDH) assumption states thatthe following two distributions are computation-
ally indistinguishable:(G, g1, g2, g

r1
1 , gr22 ) and(G, g1, g2, g

r
1, g

r
2).

Let G1,G2,GT be groups of prime orderq and lete : G1 × G2 → GT be a non-degenerate efficiently
computable bilinear map.

Symmetric External Diffie-Hellman (SXDH) [54, 10, 6, 28, 56]. The symmetric external Diffie-Hellman as-
sumption (SXDH) is that the DDH problem is hard inboth groupsG1 andG2. The assumption is clearly
invalid for symmetric pairings (whenG1 = G2), but is believed to hold when there is no efficiently computable
mapping betweenG1 andG2.
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K-Linear [38, 55] and DLIN [10]. Let G be a group of primer orderq and letK ≥ 1 be constant. Let

g0, g1, . . . , gK
$
←− G andx0, x2, . . . , xK

$
←− Zq. TheK-Linear assumption states that the following two distribu-

tions are computationally indistinguishable:(G, g0, g1, . . . , gK , gx1

1 , . . . , gxK

K , gx0

0 ), and(G, g0, g1, . . . , gK , gx1

1 , . . .,
gxK

K , gX0 ), whereX =
∑K

i=1 xi.

Note that forK = 1, theK-Linear is the same as DDH, and that it does not hold when working with
symmetric pairings. In that setting, the2-Linear assumption is usually assumed to hold, and is often referred
to as the Decisional Linear (DLIN) assumption.Throughout this paper we assume theK-Linear assumption
holds in bothG1 andG2, which is the case when working with symmetric pairings, andslightly abuse notation
whenK = 1 and assume SXDH holds in that case.

OUR INSTANTIATIONS. We show efficient instantiations of the leakage-resilientsignature and CCA-secure
encryption constructions described in Sections 4.2 and 4.3, respectively. For each scheme, we give two instan-
tiations based on bilinear maps: one secure under the symmetric external Diffie-Hellman (SXDH) assumption,
and a second, secure under the Decision Linear (DLIN) assumption. The first can be used with asymmetric
pairings, while the second applies to the case of symmetric pairings. We give details of all instantiations in
Appendix C but give a high-level idea below.

Signatures. Recall that in order to instantiate the signature scheme from Section 4.2, we need a leakage-
resilient hard relationR (which we will derive from an SPR relation) and a true-simulation extractable (tSE)
NIZK argument, which we build from CCA-secure encryption and a standard NIZK argument for the relation
{ ( (x, r) , (y, c, pk, L) ) | R(x, y) = 1∧ c = EncLpk(f(x); r) }. We show our choice of instantiations for these
components:

• CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use efficient encryption
schemes in the style of Cramer-Shoup [16, 55].

• NIZK Argument: We use the Groth-Sahai proof system [34], which can be instantiated both under SXDH
and DLIN. See Appendix B for a brief description of the proof system.

• SPR Relation:Previous constructions of leakage-resilient primitives use the SPR functiongx1

1 gx2

2 . . . gxn
n .

However, this function has the problem that the witness liesin the exponent. This means that we cannot
combine it with an encryption scheme for elements inG (unless each witness component is committed
bit by bit which, among other things, results in proofs growing linearly with the security parameter), and
unfortunately encryption schemes for messages inZq cannot be combined with the Groth-Sahai system.
We therefore construct two new SPR relations based on pairing-product equations. For our SXDH in-
stantiation, we use the relatione(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y, g̃), whereg̃ is a generator ofG2.
We prove that this relation is SPR under the SXDH assumption.In the DLIN case, we use the relation:
e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y1, g) , e(~1, x1) e(~2, x2) . . . e(~n, xn) = e(y2, g), whereg is a
generator ofG. We prove that this relation is SPR under the DLIN assumption.

To achieve(1− ε)|sk| leakage resilience, we letn (the number of witness components) in the SPR relation
be inversely proportional toε.

Theorem 5.1.LetG1,G2 be groups of primer orderq. For anyε > 0, there exists a(1−ε)|sk|-leakage resilient
signature scheme, secure under the SXDH assumption, using signatures consisting of(9/ε)(1 + 1/ log q) + 24
group elements and 2 elements inZq. Similarly, for anyε > 0, there exists a(1 − ε)|sk|-leakage resilient
signature scheme, secure under the DLIN assumption, using signatures consisting of(19/ε)(2 + 1/ log q)+ 70
group elements and 6 elements inZq.
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CCA-Secure Encryption. Recall that for leakage-resilient encryption, we need leakage-resilient CPA-secure
encryption, standard CCA-secure encryption and strong tSENIZK, which we can get from combining regular
tSE NIZK with a strong one-time signature. We build regular tSE NIZK from CCA-secure encryption and
regular NIZK. We describe our choices for each of these below.

• LR-CPA-Secure Encryption:We construct a new leakage-resilient CPA-secure encryption scheme for
our purpose in the style of ElGamal (similar to ones used in [47, 13] but making it more efficient).

• CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use efficient encryption
schemes in the style of Cramer-Shoup [16, 55].

• NIZK Argument: We use the Groth-Sahai proof system [34], which can be instantiated both under SXDH
and DLIN. See Appendix B for a brief description of the proof system.

• One-Time Signature:We observe thatanystrong one-time signature secure under these assumptions can
be used. Here, we opt for the scheme of [33], secure under the Discrete Log assumption (implied by both
SDXH and DLIN), because its signature size is small, namely 2elements inZq.

The leakage that our new CCA-secure encryption tolerates isthe same as the leakage for the CPA-secure
scheme. Informally, we achieve(1 − ε)|sk| leakage resilience in the CPA-secure scheme by increasing the
number of generators used in the public key and ciphertext. This number will be inversely proportional toε.

Theorem 5.2.LetG1,G2 be groups of primer orderq. For anyε > 0, there exists a(1−ε)|sk|-leakage resilient
encryption scheme, secure under the SXDH assumption, usingciphertexts consisting of(2/ε)(2+λ/ log q)+15
group elements and 2 elements inZq. Similarly, for anyε > 0, there exists a(1 − ε)|sk|-leakage resilient
encryption scheme, secure under the DLIN assumption, usingciphertexts consisting of(3/ε)(3+λ/ log q)+34
group elements and 2 elements inZq.

6 Other Applications
6.1 Leakage-Resilient ID Schemes

Recall that, in an identification scheme, an honest prover chooses a public/secret key pair(pk, sk) and publishes
pk. An identification scheme is a protocol in which theproverusessk to identify herself to averifier that only
knowspk. The security property of an identification scheme considers an adversaryA that acts in two stages: a
learning stage and an impersonation stage. In the learning stage,A repeatedly interacts with the honest prover
while taking the role of amaliciousverifier in an attempt to learn some non-trivial informationaboutsk. In the
impersonation stage, the honest prover “goes away” andA attempts to impersonate the prover’s identity to an
honest verifier. We say such a scheme is secure if the adversary has only a negligible probability of succeeding
in the impersonation stage.

Leakage-resilient identification schemes were first studied and constructed in [4]. Two distinct notions of
leakage-resilience were considered:pre-impersonationleakage andanytimeleakage. In the former notion, the
attacker can only get leakage on the secret key during the learning stage, while in the latter notion, the adversary
might also get some additional leakage during the impersonation stage, possibly after seing some “challenges”
from the verifier (see [4] for formal definitions). It was shown in [4] that the Okamoto identification scheme
[49], and in fact anyΣ-Protocol for an SPR hard-relation, is leakage-resilient.Moreover, for anyε > 0, there
is a generalization of the Okamoto ID scheme which is(1 − ε)|sk|-leakage-resilient forpre-impersonation
leakage. Unfortunately, due to the rewinding nature of the securityproof, the scheme was only shown to be
(1/2 − ε)|sk|-leakage-resilient for anytime leakage.

We recall that a simple, well-known, identification-schemebased on signatures consists of the verifier
choosing a random messagem and the prover replying withSignsk(m) which the verifier validates usingpk.
It is easy to see that this scheme is leakage-resilient in theanytime leakagesetting as long as the signature
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scheme is leakage-resilient (with the same bound`). Therefore, using our(1 − ε)|sk|-LR signature schemes
from Section 5 we get an efficient identification scheme with optimal leakage-resilience in the anytime leakage
model.

Theorem 6.1. There exists a construction of`-LR identification schemes w.r.t. anytime leakage from any`-LR
signature scheme, preserving the public-key size, secret-key size, and efficiency of the underlying signature.

Interestingly, another well-known identification-schemebased on CCA-encryption, consists of the verifier
encrypting a random messagem and sendingc = Encpk(m) to the prover who decrypts and replies withm.
Although this scheme seems secure w.r.t. pre-impersonation leakage if the encryption scheme is LR-CCA
secure, it does not seem secure w.r.t. anytime leakage, since, in this setting, the leakage on the encryption
secret-keycandepend on the ciphertext.

6.2 Leakage-Resilient Authenticated Key Agreement

Using our leakage-resilient signature scheme from Section4.2 and our leakage-resilient CCA-secure encryption
scheme from Section 4.3 (and instantiating them as described in Appendix C), we construct two(1 − ε)|sk|-
leakage resilient authenticated key agreement (AKA) schemes. We prove perfect forward security in the
unauthenticated-links model. We refer the reader to [15, 4]for a detailed description of the model and def-
initions of security, but give a high level idea of the problem and solution below.

MODEL AND SECURITY DEFINITIONS. We consider the problem of two parties, Alice and Bob, who need
to establish a shared cryptographic key in the presence of anadversary, and want to have the guarantee that
the privacy of such key is conserved. At the same time, Alice wants to be sure that she has exchanged a
key with Bob, and similarly, Bob wants to be sure that he has indeed exchanged a key with Alice (and not
an adversarial third party). In the leakage setting, the adversary is a “man-in-the-middle” attacker that has
the power to learn arbitrary information about Alice’s and Bob’s long-term secretsskA, skB . We model this
by giving the adversary access to leakage oraclesOλ,`

skA
,Oλ,`

skB
, which he can accessbeforethe key-agreement

execution but not during. The adversary is also able to observe (and possibly intervene in) key exchanges
between Alice and/or Bob, and other parties. Our constructions satisfy the notion ofperfect forward security,
which guarantees that the privacy of a key is conserved even if the adversary learns theentire long-term secret
keysskA, skB after the exchange had been completed and the key has been deleted from memory.

OUR CONSTRUCTIONS. Our first construction follows from directly applying the general result of [4], who
show that any leakage-resilient signature scheme is sufficient to achieve leakage-resilient AKA. The protocol
eSig-DH of [4] is simply the (passive) Diffie-Hellman key agreement,authenticated with a signature scheme:
a party authenticates to his peer by signing the message he received from him. Our second construction of
leakage-resilient AKA (shown in Figure 1) is based on leakage-resilient CCA-secure encryption. This new
protocol, which we refer to asEnc-DH, is a modification of the Diffie-Hellman key agreement protocol, in which
both parties authenticate to each other by correctly decrypting a ciphertext encrypted with their corresponding
public key. Intuitively, this achieves authentication since given a ciphertext encrypted under a certain public
key, only the party in possession of the corresponding secret key is able to correctly decrypt the ciphertext.

Our second construction also satisfiesdeniability. Informally, this means that without knowing the long-
term secrets of the parties participating in an execution ofthe protocol, it is possible to simulate a transcript of
the execution that is computationally indistinguishable from the real transcript. We do not formalize the notion
of deniability here, but it is easy to see that simulating a transcript of anEnc-DH execution can be achieved by
simply choosing all internal state variables and encrypting them using the parties’ public keys. Notice that AKA
schemes that use signatures (in particular, theeSig-DH construction of [4]) do not satisfy deniability, since we
cannot “simulate” a signature without knowing the signing key (which is the long-term key of the protocol).
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The protocolEnc-DH can also be used in the leakage-free setting using standard (not necessarily leakage-
resilient) CCA-secure encryption. To the best of our knowledge this construction isnewand is therefore of
independent interest.

Theorem 6.2. Let E = (KeyGen, Enc, Dec) be an`-leakage resilient CCA-secure encryption scheme sup-
porting labels. ThenEnc-DH is an `-SK-secure key agreement protocol with perfect forward security in the
unauthenticated-links model under the DDH assumption.

We notice that botheSig-DH andEnc-DH preserve the leakage-tolerance of the underlying signature and
encryption scheme, respectively. Thus, plugging in our(1 − ε)|sk|-leakage resilient signature scheme into
eSig-DH and our(1− ε)|sk|-leakage resilient CCA-secure encryption scheme intoEnc-DH yields two different
constructions of(1 − ε)|sk|-leakage resilient AKA. As described above, the latter construction also satisfies
deniability.
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A Proofs of Theorems
A.1 Hard Relations

Before proving Theorem 4.2, we write a couple of definitions and a lemma that we will use in the proof.

Definition A.1 (Min-Entropy). Themin-entropyof a random variableX, denoted asH∞(X) is:
H∞(X) = − log(maxx Pr[X = x]).

Definition A.2 (Average-Conditional Min-Entropy [21]). Theaverage-conditional min-entropyof a random
variableX conditioned onZ, denoted as̃H∞(X|Z) is:

H̃∞(X|Z) = − log
(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2H∞[X|Z=z]

])

Lemma A.3 ([21]). LetX,Y,Z be random variables whereZ takes values in a set of size at most2`. Then
H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y )|Z)− ` ≥ H̃∞(X|Z)− `, and in particular,H̃∞(X|Y ) ≥ H∞(X)− `

We now proceed to prove Theorem 4.2.

Proof of Theorem 4.2:We assume, for the sake of contradiction, that there exists an adversaryA that succeeds
in breaking the security of leakage-resilient hard relation R with non-negligible probabilityε. We constructB
that breaks the security of the SPR relation with non-negligible probability.

On input(x, y), B emulatesA on inputy, responds toA’s leakage queries usingx. WhenA eventually
outputsx∗, B also outputsx∗.
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We know thatPr[R(x∗, y) = 1] = ε but we need to computePr[x∗ 6= x] sinceB only breaks the SPR
property ifx∗ 6= x. Notice that:

Pr[B succeeds] = Pr[A succeeds∧ x 6= x∗] ≥ Pr[A succeeds]− Pr[x = x∗] = ε− Pr[x = x∗]

Notice that the only information thatA has aboutx comes fromy and the leakage queries. LetX,Y be the
random variables forx, y respectively, and letZ be the random variable for the total leakage learned byA.
ThenH̃∞(X|(Y,Z)) ≥ H̃∞(X|Y )− ` and

Pr[x = x∗] ≤ 2−H̃∞(X|Y )+` = 2−Havg(R)+`.

Assuming that̀ ≤ Havg(R)−ω(log(λ)) we have thatPr[B succeeds] ≥ ε−2−ω(log(λ), which is non-neglibible.
We now analyze the probability thatB succeeds in a different way. Consider a fixedy. Notice that

Pr[B succeeds| Y = y] = Pr[A succeeds∧ x 6= x∗ | Y = y]
≥ Pr[A succeeds| Y = y] · Pr[x 6= x∗ | A succeeds∧ Y = y]

Sincey is fixed we have thatPr[x∗ 6= x | A succeeds∧ Y = y] = 1 − Pr[x∗ = x | A succeeds∧ Y =
y] = 1 − Pr[x∗ = x | Y = y]. This is because sincey is fixed then the event thatA succeeds does not affect
the probability thatx∗ = x. We thus have:

Pr[B succeeds| Y = y] ≥ ε · (1− Pr[x = x∗ | Y = y])

≥ ε ·
(
1− 2−H̃∞(X|Y=y)+`

)
≥ ε ·

(
1− 2−Hworst(R)+`

)

If we assume that̀ ≤ Hworst(R)− 1 thenPr[B succeeds| Y = y] ≥ ε/2. By total probability:

Pr[B succeeds] =
∑

y

Pr[B succeeds| Y = y] · Pr[Y = y] ≥
ε

2

∑

y

Pr[Y = y] =
ε

2
,

which is non-negligible.

A.2 Signatures

Proof of Theorem 4.3:Consider the following series of games.

Game 0: This is the leakage-resilient game in Definition 2.2. Let(m∗, σ∗ = ϕ∗) be the message/signature pair
thatA outputs.

Game 1: We change the signing oracle in the way it answersA’s queries. Instead of giving a valid argumentϕ,
it answers querym with a simulated proofSim(TK, y,m). Game 0 and Game 1 are indistinguishable by
thezero-knowledgeof Π. Notice that the simulated arguments given toA as answers to leakage queries
are always of true statements. As in the previous game, the winning condition is thatA produces a valid
forgery(m∗, σ∗), i.e. Verifym

∗
(y, σ∗) = 1 andm∗ was not part of a signature query.

Game 2: We change the winning condition: we say thatA wins iff it produces a valid forgery(m∗, σ∗) and
R(z∗, y) = 1 wherez∗ ← Extm

∗
(y, ϕ∗, EK). Game 1 and Game 2 are indistinguishable by thetrue-

simulation extractabilityof Π.

We have proven that|Pr2[A wins] − Pr0[A wins]| ≤ negl(λ). We need to show thatPr2[A wins] ≤
negl(λ). But notice that ifPr2[A wins] is non-negligible then this violates the security of the leakage-resilient
hard relationR. In other words, we can create an adversaryB that on inputy, generates(CRS, TK, EK) ←
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Setup(1λ) and emulatesA on inputpk ← (CRS, y). B answersA’s leakage queries using the leakage oracle
Oλ,`

sk (·) and answers signing queriesmi by creating simulated argumentsSim(TK, y,mi). Eventually,A will
output a forgery(m∗, σ∗ = ϕ∗). B runsExtm

∗
(y, ϕ∗, EK) → z∗ and outputsz∗. Notice that the probability

thatB outputsz∗ such thatR(z∗, y) = 1 (thus breaking the hardness ofR) is exactlyPr2[A wins]. Therefore,
we must have thatPr2[A wins] ≤ negl(λ).

A.3 CCA-Secure Encryption

Proof of Theorem 4.4: We do a series of games argument to prove the above theorem. The games are all
variants of thè -LR-CCA game, and in all of the games, the adversary gets correctly generatedpk = (pk∗, CRS)
and adversarial leakage queries are answered using the correctly generated secret keysk. The games will
differ in how the challenge ciphertextC is generated, and how the challenger answers decryption queries of
ciphertextsC̃i = (c̃i, π̃i).

Game 1: This is the original̀ -LR-CCA attack game (in definition 2.3) against the schemeE∗ where the chal-
lenge ciphertext and the decryption queries are generated/answered correctly. In other words:

Challenge:c← Encpk(mb; r), π ← ProveCRS( (pk, c) , (m, r)). Decrypt using:Decsk(c̃i).

wheremb is one of the messagesm0,m1 chosen by the adversary, andb is chosen randomly by the
challenger.

Game 2: In this game theCRS for Π is generated together with a simulation trapdoorTK and the argumentsπ
are simulated usingSimTK(pk, c) so that:

Challenge:c← Encpk(mb; r), π ← SimTK(pk, c). Decrypt using:Decsk(c̃i).

Games 1 and 2 are indistinguishable by theNIZK property of the argumentΠ.

Game 3: In this game theCRSfor Π is generated together with a simulation trapdoorTK and an extraction trap-
door EK. The decryption queries̃Ci = (c̃i, π̃i) are answered by running the extractor on the arguments
π̃i to extractf(mi, ri) = mi.

Challenge:c← Encpk(mb; r), π ← SimTK(pk, c). Decrypt using:Ext((pk, c̃i), π̃i, EK).

Games 2 and 3 are indistinguishable by the strong one-time true-simulationf -extractability ofΠ. This
is because the adversary only gets a single simulated argument of a true statement(pk, c), and therefore
cannot produce any new statement, argument pair(c̃i, π̃i) 6= (c, π) for which the argument̃πi verifies but
the extractor fails to extract the correctmi.

Game 4: In this game, the challenge ciphertextc is generated by encrypting the message0 7 so that:

Challenge:c← Encpk(0; r), π ← SimTK(pk, c). Decrypt using:Ext((pk, c̃i), π̃i, EK).

Games 3 and 4 are indistinguishable by the`-LR CPAsecurity ofE . Recall that leakage queries are
always answered usingsk and so we need to rely on leakage-resilience here. However, CPA security
now suffices since the decryption secret-keysk is never used otherwise in Games 3,4.

Notice that Game 4 is completely independent of the challenger’s bit b, and hence the advantage of any ad-
versary in Game 4 is exactly0 (the probability of guessingb is exactly 1

2 ). Therefore, the advantage of any
adversary in Game 0 must be at mostnegl(λ), since the games are indistinguishable, which concludes the
proof.

7. . . or any fixed message in the message domain

20



A.4 True-Simulation f -Extractable (f -tSE) NIZK

Proof of Theorem 4.5:Correctness and soundness follow from the correctness and soundness properties ofΠ.
We show that the zero-knowledge and true-simulation extractability hold as well.

Zero-Knowledge. We constructSim as follows: On input(TK, y) and labelL, Sim lets c ← EncL(0) and
π ← SimΠ(y, c, pk, L), and outputsϕ = (c, π). By theCCA-securityof E and thezero-knowledgeof Π, we
have that the distribution of a simulated argumentSimL(TK, y) is computationally indistinguishable from a real
argumentProveL(x, y; r).

True-Simulation Extractability. We constructExt as follows: On input(y, ϕ = (c, π), EK = sk) and label
L, Ext letsx← DecLsk(c) and outputsx. Consider the following sequence of games:

Game 0: This is the game described in Definition 3.1. Let(x1, y1), . . . , (xq, yq) beP ∗’s simulation queries,
and let(y∗, L∗, ϕ∗ = (c∗, π∗)) be the output ofP ∗. Note that the challenger usesxj only to check
R(xj , yj); in other words, the answerϕj = (cj , πj) to query(xj , yj, Lj) is a simulated argument and
therefore contains an encryption of 0 (not off(xj)).

Game1.i (for i = 1, . . . , q): We change the simulation oracle so that in Game1.i, for j ≤ i the oracle answers
query(xj , yj, Lj) as follows: ifR(xj, yj) = 0 the challenger returns⊥ as before, but ifR(xj, yj) = 1
it lets cj ← EncLj (xj) andπj ← SimΠ(yj , cj , pk, Lj), and outputsϕj = (cj , πj). Games 0 and1.1,
and Games1.i and1.(i+ 1) for i = 1, . . . , q − 1 are indistinguishable by theCCA-securityof E . This is
because if adversaryA can distinguish between them, we could construct adversaryB that givenpk runs
(CRSΠ, TKΠ, EKΠ) ← SetupΠ(1

λ) and emulatesA on CRS = (pk, CRSΠ). Notice that we need to rely
on the stronger notion of CCA-security (instead of CPA-security) sinceB needs to decrypt the ciphertext
c∗ fromA’s output in order to extract a valuez∗ and check thef -tSE winning condition.

Game2: We change the simulator oracle so that the challenger answers query(xj , yj, Lj) as follows: if
R(xj , yj) = 0 the challenger returns⊥ as before, but ifR(xj , yj) = 1 it lets cj ← EncLj(f(xj)) and
πj ← ProveΠ(xj, (yj , cj , pk, Lj)), and outputsϕj = (cj , πj). Games 2 and1.q are indistinguishable by
thezero-knowledgeof Π.

Notice that if adversaryA wins Game 2, then it must be the case thatVerifyL
∗
(y∗, ϕ∗) = 1. But if this

is the case then bysoundnessof Π we have that with high probabilityR(x∗, y∗) = 1. Otherwise, we could
construct an adversaryB that on inputCRSΠ, computes(sk, pk) ← KeyGen(1λ) and emulatesA on CRS =
(pk, CRSΠ), answering simulation queries by encryptingf(xj) and runningProveΠ(xj , (yj , cj , pk, Lj)) on its
own. WhenA eventually outputs(y∗, L∗, ϕ∗ = (c∗, π∗)), B outputsϕ∗. Since we assume thatΠ is sound, we
must have thatPr2[A wins] ≤ negl(λ) and it follows thatPr0[A wins] ≤ negl(λ). This concludes the proof
of the theorem.

A.5 Authenticated Key Agreement

We prove that the AKA protocolEnc-DH in Figure 1 has perfect forward security in the unauthenticated-links
model. We refer the reader to [15, 4] for a detailed description of the model and definitions of security, but give
a high level idea of the problem and solution below.

MODEL AND SECURITY DEFINITIONS. We prove security in the unauthenticated-links model witherasures
of [15] (with the modifications of [4]), where we consider a “man-in-the-middle” adversary that plays against
concurrent sessions of the protocol betweenn playersP1, . . . ,Pn. We allow the adversary to schedule the start
of each session and determine its participants. We also givethe adversary the power to corrupt players, perform
leakage queries on their long-term secrets (vian leakage oraclesOλ,`

ski
), and learn their ephemeral states. The
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Public Parameters:G be a DDH group with generatorg and orderq.
Common Input: public keys(pki, pkj) for encryption

InitiatorPi(ski) ResponderPj(skj)

a
$
←− Zq, α = ga

Ci = EncPi

pkj
(α)

registersession (Pj , α)
Pi, Ci

−−−−−−−−−−−−−−−−−−−−→

Pi,Pj , Cj

b
$
←− Zq, β = gb

α̂ = DecPi

skj
(Ci)

Cj = Enc
Pi,Pj

pki
(α̂, β)

registersession (Pi, α̂, β)
←−−−−−−−−−−−−−−−−−−−−

(α̂, β̂) = Dec
Pi,Pj

ski
(Cj)

outputpeer = Pj, sid = (α, β̂),
output session keyγi = β̂a

deletea Pi, β̂
−−−−−−−−−−−−−−−−−−−−→

marksession complete outputpeer =Pi, sid =(α̂, β)
output session keyγj = α̂b

deleteb
marksession complete

Sanity Checks:

• If Pi receives a round-2 message(Pi,Pj , Cj) whereDecPi,Pj

ski
(Cj) = (α̂, β̂) but has not registered asession

(Pj , α̂) thenPi ignores the message. Similarly, ifPj receives a round-3 message(Pi, β̂) but has not registered
a session (Pi, β̂) thenPj ignores the message.

• If Pj receives a round-1 message(Pi, Ci) and the decryption ofCi fails thenPj ignores the message. Simi-
larly, if Pi receives a round-2 message(Pi,Pj, Cj) and the decryption ofCj fails thenPi ignores the message.

Figure 1: ProtocolEnc-DH

goal of the adversary is to learn thesession key for a test session of its choice, performed between players
Pi andPj , also chosen by the adversary. We do not allow the adversary to corruptPi,Pj or to learn their
ephemeral states during thetest session, as this compromises the underlying Diffie-Hellman key agreement
protocol. In terms of leakage, we require that before thetest session, the adversary learns at most` bits of
information from leakage queries, and does not perform any leakage queries during thetest session.

Enc-DH also satisfiesperfect forward security, which guarantees that the privacy of asession key is con-
served even if the adversary learns the entire long-term secret keys of the participating parties after thesession
is complete and thesession key has been deleted from their memory.

Proof of Theorem 6.2: To prove that the construction in Figure 1 is an`-leakage resilient authenticated key
agreement scheme, we prove that it satisfies the completeness and privacy properties.

Completeness:Consider twouncorrupted partiesPi,Pj . If their two sessions arematching, we have that
(α̂, β) = (α, β̂) and soα̂ = α andβ̂ = β. Thereforeγi = βa = gab andγj = αb = gab.

Privacy: We follow the approach of [4]. LetA be an adversary attackingEnc-DH and consider the
following two cases:

1. There is a non-negligible probability that in awinning test session A produces a round-2 or round-3
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message that passes the sanity check performed by theowner (thus allowingA to impersonate thepeer
and learn theowner’s session key).

2. There is a negligible probability that in awinning test sessionA produces a round-2 or round-3 message
that passes the sanity check performed by theowner.

In the first case, we prove that the privacy ofEnc-DH reduces to the CCA-security ofE . In the second case,
we prove that the privacy ofEnc-DH, reduces to the DDH assumption.

Claim A.4. LetA be an adversary attackingEnc-DH. If there is a non-negligible probabilityε that in awinning
test session A produces a round-2 or round-3 message that passes the sanitycheck performed by theowner
(therefore breaking the privacy ofEnc-DH), then there exists an attackerB1 that breaks the CCA-security ofE
with probability polynomial inε.

Proof. Let Q be an upper bound on the number of sessions started byA1. We constructB1 breaking the
CCA-security ofE .

• B1 receivespk from the CCA challenger, choosesr
$
←− [1, Q] andP

$
←− {P1, . . . ,Pn} (it guesses that the

rth session will be thetest session and thatP will be thepeer).

• B1 runsA1 against{P1, . . . ,Pn} with the modification that it publishespk for P and uses the CCA
decryption oracle to decrypt incoming messages, and the CCAleakage oracle to answer leakage queries
aboutsk.

• If the rth session is not thetest session or P is not thepeer, thenB1 halts. Otherwise, we consider two
cases:

– If P is theresponder: B1 choosesα0, α1
$
←− Zq and sends them to the CCA challenger along with

labelPi, and receives the challenge ciphertextc∗ = EncPi(αb). It sendsc∗ as the round-1 message
and receiveŝα as part of the round-2 message. (Notice thatB1 knowsski so it is able to decrypt the
ciphertext sent in round-2).B1 outputŝb such that̂α = α

b̂
.

– If P is the initiator: B1 receives round-1 message containingα̂ and choosesβ0, β1
$
←− Zq. It

sends(α̂, β0), (α̂, β1) to the CCA challenger along with label(Pi,Pj), and receives the challenge
ciphertextc∗ = EncPi,Pj (α̂, βb). It sendsc∗ as the ciphertext in round-2, and receivesβ̂ as part of
the round-3 message.B1 outputŝb such that̂β = β

b̂
.

We now analyze the probability thatB1 succeeds in guessingb (the probability that̂b = b). Let E be the
event that in awinning test session A produces a round-2 or round-3 message that passes the sanitycheck
performed by theowner. By assumption,Pr[E] = ε. LetE1 be the event thatE occurs, therth session is the
test session andP is thepeer. ThenPr[E1] = ε/Qn.

Conditioning onE1 gives that the message sent byA is the correct decryption of the ciphertext sent by
theowner (sinceE1 implies that theowner’s sanity check passed). In other words, ifP is the responder then
α̂ = Dec(c∗) and if P is the initiator thenβ̂ = Dec(c∗). Therefore, ifE1 occurs thenB1 breaks the CCA-
security ofE . This happens with probabilityε/Qn which is polynomial inε.

Claim A.5. LetA be an adversary attackingEnc-DH. If there is a negligible probability that in awinning
test session A produces a round-2 or round-3 message that passes the sanitycheck performed by theowner,
andA breaks the privacy ofEnc-DH with probability ε, then there exists an attackerB2 that breaks the DDH
assumption with probability polynomial inε.

Proof. We constructB2, which on input(α∗, β∗, γ∗) determines whether or not it’s a DDH tuple.
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• B2 choosesr
$
←− [1, Q] (it guesses that therth session will be thetest session).

• If the rth session is not thetest session thenB2 halts. Otherwise, it sendsEncPi

pkj
(α∗) as the round-3

message, andEnc
Pi,Pj

pki
(α̂, β∗) as the round-2 message.

• B2 givesγ∗ toA as the challengesession key, and outputs according toA’s output.

Let E be the event that in awinning test session A produces a round-2 or round-3 message that passes
the sanity check performed by theowner. By assumption,Pr[E] ≤ negl(λ). LetE1 be the event that thetest
session is therth session and the execution iswinning. ThenPr[E1] = ε/Q. We have thatPr[E1 ∧ ¬E] =
Pr[E1]− Pr[E1 ∧ E] ≥ ε/Q− Pr[E] ≥ ε/Q− negl(λ).

Conditioning on the eventE2 = E1 ∧ ¬E, gives thatsid = (α∗, β∗) and so if(α∗, β∗, γ∗) is a DDH tuple,
then the challenge key presented toA is the realsession key. Otherwise, the challenge key is a random element
in G. Therefore, ifE2 occurs thenB2 breaks DDH (sinceE2 implies that the execution iswinning), and this
happens with probability at leastε/Q− negl(λ), which is polynomial inε.

To prove perfect forward security, notice that if an adversary A learns the decryption keys of one or both
parties at some pointafter the session is complete, then the only information it can learn is the decryption of
the ciphertexts interchanged during thesession. In particular, the only “new” information thatA learns isα,
and soA only knowsα andβ. By the DDH assumption, we know that given only this information A cannot
learn thesession key γ. This concludes the proof of Theorem 6.2.

B The Groth-Sahai (GS) Proof System

In this section, we review the NIZK proof system of Groth and Sahai [34] for proving that a system of equations
is satisfiable. We give details for the type of equations usedin this paper, i.e. pairing-product (one-sided in the
DLIN case) and one-sided multi-exponentiation. For full details and more general form of these types refer to
[34]. In fact, we use the system as a NIZK argument system, achieving only computational soundness. This can
be done by running all the algorithms with a simulated CRS. Note that in the GS proof system, there are two
type of CRS and those are computationally indistinguishable: one (called real) gives perfectly sounds proofs
and another (called simulated) yields perfect witness indistinguishable proofs, which could in many cases be
transformed into zero-knowledge proofs.

When working under theK-Linear assumption (K = 1 for the SXDH assumption andK = 2 for the DLIN
assumption), the common reference strings for the proof systemΠ consists of~u0, ~u1, . . . , ~uK , ~u. Regardless
of whether the CRS is real or simulated,~ui = (u0, 1, . . . , 1, ui, 1, . . . , 1), i = 1, . . . ,K, whereu0, . . . , uk are
randomly chosen group elements inG∗1. Let’s denote withU thespan(~u1, . . . , ~uK); note that(g, 1, . . . , 1) 6∈ U.

For the real CRS, which yields perfectly sound proofs,~u0
$
←− U and~u

$
←− GK+1

q \U. When the CRS is simulated,

~u0
$
←− GK+1

1 \U and~u
$
←− U. In the case of asymmetric pairings, i.e. in the SXDH setting, another set of

vectors~v0, ~v1, . . . , ~vK , ~v ∈ GK+1
2 is defined analogously for randomly chosenv0, . . . , vn ∈ G∗2. Although for

symmetric pairings we use only one-sided equations and a second set of vectors is not needed, we set~v = ~u
and~vi = ~ui, i = 0, . . . ,K, and use the two sets of vectors interchangeably for consistent notation (in the two
settings).

To commit to a witness memberx ∈ G2, choose a random~s = (s0, s1, . . . , sK)
$
←− ZK+1

q and compute
~δx ← ComΠ(x;~s) = (x, 1, . . . , 1)

∏K
j=0 ~v

sj
j , where vector multiplication is defined component-wise. To

commit to a witnessχ ∈ Zq, for equations inG2, select~t = (t1, . . . , tK)
$
←− ZK

q , and compute~γχ ←

ComΠ(χ;~t) = ~uχ
∏K

j=1 ~u
tj
j .
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The GS proof system gives a proof for a set of equations being satisfiable by committing to each witness
component separately and computing corresponding proof elements for each of the equations. Next we de-
scribed how those proof elements are computed for each type of equations and how the satisfiability of the
equations is verified; some of the notation is borrowed from [13].

One-sided Multi-exponentiation Equations

For an equation of the following type:
g0 = gχ1

1 gχ2

2 . . . gχn
n

whereg0, . . . , gn ∈ G2 are constants (one could view an equation being described bythose constants) and
χ1, . . . , χn ∈ Zq are variables (the witness for which the equation is satisfiable), the proof elements are
p1, . . . , pK :

pj =

n∏

i=1

g
tij
i , j = 1, . . . ,K,

where~ti is the randomness used to commit toχi, i.e.~γχi
= ComΠ(χi; ~ti).

When verifying a proof, for each equationg0 = gχ1

1 gχ2

2 . . . gχn
n the verifier checks that the proof elements

corresponding to the equation and the commitments satisfy

n∏

i=1

E(~γi, gi) = E(~u, g0)
K∏

j=1

E(~uj , pj),

whereE : GK+1
1 ×G2 → GK+1

T , sending((α0, . . . , αK), β) to (e(α0, β), . . . , e(αK , β)), is a bilinear map.
The proofs for multi-exponentiation equations are zero knowledge (ZK). The size of a proof for set ofS

such equations being satisfiable with a witness of sizeN is (K + 1)N +KS group elements. Note again that
K = 1 when working under the SXDH andK = 2 under DLIN.

(One-sided) Pairing Product Equations

For an equation
n∏

i=1

e(hi, xi) = T

whereh1, . . . , hn ∈ G1 andT ∈ GT are constants andx1, . . . , xn ∈ G2 are variables, the proof elements
p0, . . . , pK :

pj =

n∏

i=1

h
sij
i , j = 0, . . . ,K,

where~si is the randomness used to commit toxi, i.e. ~δxi
= ComΠ(xi; ~si). When verifying a proof, for each

equation
∏n

i=1 e(hi, xi) = T the verifier checks that the proof elements corresponding tothe equation and the
commitments satisfy

n∏

i=1

E(hi, ~δi) = (T, 1, 1, . . . , 1)

K∏

j=0

E(pj, ~vj),

whereE : G1 ×GK+1
2 → GK+1

T , sending(α, (β0, . . . , βK)) to (e(α, β0), . . . , e(α, βK )), is a bilinear map.
These proofs are only witness indistinguishable (WI), and for a set ofS pairing product equations satisfiable

with a witness of sizeN , the proof size is(K + 1)(N + S).
When representation ofT as a pairing product is know it could be transformed into ZK [34] but resulting

in somewhat larger proofs. However, in our caseT−1 = e(h0, x0) where bothh0 andx0 are constants. So,
we could transform the above equation into an equation

∏n
i=0 e(hi, xi) = 1 and give a WI proof accordingly
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treatingx0 as a part of the witness. Then, we produce a second commitmentof ~δ′x0
= ComΠ(x0; ~s′0), include its

randomness~s′0 and a NIZK proof that~δx0
and~δ′x0

are commitment to the same message using a set of one-sided
multi-exponentiation equations. This way, when the simulator has to produce a ZK proof for the equation, it
samples any(x′1, . . . , x

′
n) along with the appropriatex′0, and gives a simulated proof that~δx0

= ComΠ(x
′
0; ~s0)

and~δ′x0
= (x0; ~s

′
0) are commitments to the same message. That results in additional 2(K +1)2 group elements

and(K + 1) Zq-elements per equation to achieve ZK. (The count is as follows: (K + 1) group elements for
~δx0

, (K + 1) Zq-elements for~s′0, (K + 1)2 group elements for the commitments to each component of~s0, and
K(K + 1) group elements for the NIZK proof of~δ′x0

and~δ′x0
being commitments of the same value (using

(K + 1) one-sided multi-exponentiation equations).
So, under DLIN we get ZK proofs of size3N + 21S elements inG and3S elements inZq for a set ofS

equations being satisfiable with a witness which has sizeN .
In the SXDH setting, the equation is no longer one-sided asT = e(y, g̃) andy ∈ G1 whereasxi ∈ G2.

However, we could still apply the idea of treatingy as a part of the witness and computing a second commitment
~γ′y = ComΠ(y; ~s′y), and then showing that the commitments~γy and~γ′y are commitments of the same message.
According to [34], the WI GS proofs under SXDH are of size2N +8S for a set ofS equations being satisfiable
and the witness being of sizeN . Combining this with the extra group elements we need per equations to
achieve ZK, we get proofs of size2N + 16S elements in either group and2S elements inZq when working
under SXDH.

C Instantiations
C.1 Preliminaries
A NOTE ONNOTATION. We follow the notation of [13]: for~g = (g1, g2, . . . , gn) ∈ Gn and~x = (x1, x2, . . . , xn) ∈
Zq we define:

〈~g, ~x〉 := gx1

1 . . . gxn
n

When we write
∏n

i=1 ~gi ∈ Gn for vectors~gi ∈ Gn, we mean the component-wise product of each of then
terms.

CCA-SECURE ENCRYPTION BASED ON K-L INEAR. In our instantiations of both leakage-resilient signa-
tures and CCA-secure encryption, we will need to use a (standard) CCA-secure encryption scheme. Since our
instantiations are based on theK-Linear assumption, we will use the Linear Cramer-Shoup encryption scheme
from [55], modified to support labels as in [13]. We review it here. We use the paradigm of [7] to transform it
into a multi-message randomness-reuse encryption scheme,which we further optimize by reusing the consis-
tency ciphertext element. LetG be a group of prime orderq, and letH : {0, 1} → Zq be a collision resistant
hash function. The label space is{0, 1}∗.

• KeyGen(1λ) :

1. Chooseg0, g1, . . . , gK
$
←− G and choose~x1, . . . , ~xN , ~y, ~z

$
←− ZK+1

q .

2. Define vectors~g1, . . . , ~gK ∈ GK+1 as follows:

~g1 = (g0, g1, 1, . . . , 1, 1), ~g2 = (g0, 1, g2, 1, . . . , 1, 1), . . . , ~gK = (g0, 1, . . . , 1, gK)

3. Fori = 1, . . . ,K andj = 1, . . . , N : let dji ← 〈~gi, ~xj〉, ei ← 〈~gi, ~y〉, fi ← 〈~gi, ~z〉

4. Ouputsk = ( ~x1, . . . , ~xN , ~y, ~z) andpk = ({gi}
K
i=0, {dji}

K,N
i=1,j=1, {ei}

K
i=1, {fi}

K
i=1)
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• EncLpk(~m = (m1, . . . ,mN )) : Pick~r
$
←− ZK

q . Fori = 1, . . . ,K: define~gi as inKeyGen. Output

~c = (~g, a1, . . . , aN , b) =

(
K∏

i=1

~gi
ri ,m1 ·

K∏

i=1

dri1i, . . . ,mN ·

K∏

i=1

driNi,

K∏

i=1

(eif
t
i )

ri

)
,

wheret = H(~g, a1, . . . , aN , L)

• DecLsk(c = (~g, a1, . . . , aN , b, )) : Let t ← H(~g, a1, . . . , aN , L). If b 6= 〈~g, ~y + t~z〉, output⊥. Else, for
j = 1, . . . , N , letmj ← aj/〈~g, ~xj〉.

Notice that forK = 1, the encryption scheme described above is the Cramer-Shoup(multi-message
randomness-reuse) encryption scheme.

C.2 Leakage-Resilient Signatures

In order to efficiently instantiate the construction in Section 4.2, we need to give an SPR relationR, a CCA-
secure encryption scheme, and an efficient NIZK argument forrelationRΠ. We will use the CCA-secure
scheme described in the preliminaries and the NIZK argumentsystem from Appendix B. We now discuss our
choice of SPR relation. Henceforth, we letG1,G2,GT be groups of prime orderq ande : G1×G2 → GT be a
non-degenerate bilinear map that is efficiently computable. We letg be a random generator ofG1 and letg̃ be
a random generator ofG2.

C.2.1 SPR Relations

Previous constructions of leakage-resilient primitives often use the functiongx1

1 gx2

2 . . . gxn
n , but this does not al-

low an efficient extraction of the witness(xn, . . . , xn) when using GS proofs (unless each witness in committed
bit by bit which, among other things, results in proofs growing linearly with the security parameter). To over-
come this problem, we use SPR functions based on bilinear maps. For our SXDH instantiation, we use the SPR
relatione(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y, g̃), whereg̃ is a generator ofG2. In the DLIN case, we use
the relation:e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y1, g) ∧ e(~1, x1) e(~2, x2) . . . e(~n, xn) = e(y2, g). Both
cases allow for easy extraction of the witness(x1, . . . , xn) and a seamless combination with the encryption
scheme. As a side note, we use an SPR relation instead of an SPRfunctionin order to achieve zero-knowledge
in the Groth-Sahai arguments. In general, GS proofs are witness indistinguishable for pairing product equations
but can be made zero-knowledge if we can represent the equation product itself as a product of one or more
pairings.

We show the details of our SPR constructions below, but first we review two assumptions that we will use
in our SPR proofs.

Double Pairing (DBP) [1, 32]. The double pairing assumption states that given two random elementsg1, g2 ∈
G1, it is hard to find a non-trivial couple(z1, z2) ∈ G2

2 such thate(g1, z1)e(g2, z2) = 1. It is easy to check that
DBP is implied by SXDH (see [1, 32] for details).

Simultaneous Triple Pairing (STP) [32].The simultaneous triple pairing assumption states that given six
random elementsg1, g2, g3, g′1, g

′
2, g
′
3 ∈ G1, it is hard to find a non-trivial triple(z1, z2, z3) ∈ G3

2 such that
e(g1, z1)e(g2, z2)e(g3, z3) = 1 ande(g′1, z1)e(g

′
2, z2)e(g

′
3, z3) = 1. It was shown in [32] that the STP assump-

tion is implied by the DLIN assumption.
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Based on SXDH. Let n ≥ 2 andh1, h2, . . . , hn be random elements inG1, and letg̃ be a generator ofG2.
We construct the SPR relation:

• KeyGen(1λ) : Output~x = (x1, . . . , xn) andy where:

r1, . . . , rn
$
←− Zq , {xi ← g̃ri}ni=1 , y ←

∏n
i=1 h

ri
i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y, g̃). Otherwise output 0.

Claim C.1. Under the SXDH assumption, the relationR described above is SPR with worst-case preimage
entropyHworst(R) = (n − 1) log(q).

Proof. For any fixed choice ofy, the conditional distribution of~x is uniform over somen − 1 dimensional
subspace ofGn

2 , which gives us the worst-case preimage entropy of(n− 1) log(q).
We prove thatR is SPR under the double-pairing assumption. Since the SXDH assumption implies the

double-pairing assumption, the claim holds.
Consider an adversaryA that givenh1, . . . , hn, ~x, y such that

∏n
i=1 e(hi, xi) = T , whereT = e(y, g̃),

finds ~x∗ 6= ~x such that
∏n

i=1 e(hi, x
∗
i ) = T , with probability ε > negl(λ). We construct adversaryB that

breaks the double pairing assumption.
B takes as inputg1, g2, choosesα1, β1, . . . , αn, βn ← Zq, and setshi = gαi

1 gβi

2 , for i = 1, . . . , n.
B then samples(~x, y) and givesh1, . . . , hn, ~x, y to A. With probability ε, A returns ~x∗ 6= ~x for which∏n

i=1 e(hi, x
∗
i ) = T . Dividing the two pairing product equations:

n∏

i=1

e(hi, xi/x
∗
i ) = e(g1,

n∏

i=1

(xi/x
∗
i )

αi)e(g2,

n∏

i=1

(xi/x
∗
i )

βi) = e(g1, z1)e(g2, z2) = 1.

It remains to prove that(z1, z2) = (
∏n

i=1(xi/x
∗
i )

αi ,
∏n

i=1(xi/x
∗
i )

βi) 6= (1, 1). There existsj ∈ [1, . . . , n] for
which xj/x

∗
j 6= 1 andαj is information theoretically hidden. Therefore,z1 6= 1 with probability (1 − 1/q).

B outputs(z1, z2) and with probabilityε(1 − 1/q) > negl(λ), e(g1, z1)e(g2, z2) = 1 and(z1, z2) 6= (1, 1) .
Thus,B breaks the double pairing assumption with non-negligible probability.

Based on DLIN. Let n ≥ 3 andh1, . . . , hn, ~1, . . . , ~n be2n elements inG and letg be a generator ofG.
We construct the SPR relation:

• KeyGen(1λ) : Output~x = (x1, . . . , xn) and~y = (y1, y2) where:

r1, . . . , rn
$
←− Zq , {xi ← gri}ni=1 , y1 ←

∏n
i=1 h

ri
i , y2 ←

∏n
i=1 ~

ri
i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y1, g) and
∏n

i=1 e(~i, xi) = e(y2, g). Otherwise output 0.

Claim C.2. Under the DLIN assumption, the relationR described above is SPR with worst-case preimage
entropyHworst(R) = (n − 2) log(q).

Proof. For any fixed choice ofy, the conditional distribution of~x is uniform over somen − 2 dimensional
subspace ofGn, which gives us the worst-case preimage entropy of(n− 2) log(q).

We prove thatR is SPR under the simultaneous triple pairing assumption (STP). Since the DLIN assumption
implies the STP assumption, we have thatR is SPR under the DLIN assumption.

The proof is analogous to that of Claim C.1. Ifg1, g2, g3, g
′
1, g
′
2, g
′
3 is the instance for whichB tries to break

the STP, it computeshi = gαi
1 gβi

2 gγi3 and~i = (g′1)
αi(g′2)

βi(g′3)
γi , for i = 1, . . . , n, whereα1, β1, γ1, . . .,

αn, βn, γn ← Zq. Then,B samples~x, ~y and runsA with the appropriate input. With probabilityε > negl(λ),
A returns~x∗ 6= ~x such that

∏n
i=1 e(hi, xi) = e(y1, g) and

∏n
i=1 e(~i, xi) = e(y2, g). But notice that

e(g1,
∏

i

(xi/x
∗
i )

αi) e(g2,
∏

i

(xi/x
∗
i )

βi) e(g3,
∏

i

(xi/x
∗
i )

γi) = 1, and

e(g′1,
∏

i

(xi/x
∗
i )

αi) e(g′2,
∏

i

(xi/x
∗
i )

βi) e(g′3,
∏

i

(xi/x
∗
i )

γi) = 1.
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B outputs(z1, z2, z3) = (
∏

i(xi/x
∗
i )

αi ,
∏

i(xi/x
∗
i )

βi ,
∏

i(xi/x
∗
i )

γi). Since there existsj ∈ [1, . . . , n] such that
xj 6= x∗j (because~x∗ 6= ~x) andαj is information theoretically hidden (which is easily observed and is fully
explained in [32]), then with non-negligible probability(z1, z2, z3) 6= (1, 1, 1), e(g1, z1)e(g2, z2)e(g3, z3) = 1
ande(g′1, z1)e(g

′
2, z2)e(g

′
3, z3) = 1. Hence, with non-negligible probabilityB breaks the STP assumption.

We now show instantiations of the construction described inSection 4.2, meeting the parameters of Theo-
rem 5.1.

C.2.2 Instantiation 1: Based on SXDH

Our first instantiation is based on SXDH when working with asymmetric bilinear groups.

SPR Relation. We use the SPR relation described in Section C.2.1.

• KeyGen(1λ) : Output~x = (x1, . . . , xn) andy where:

r1, . . . , rn
$
←− Zq , {xi ← g̃ri}ni=1 , y ←

∏n
i=1 h

ri
i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y, g̃). Otherwise output 0.

Recall that this relation has worst-case preimage entropy of (n− 1) log(q).

CCA-Secure Encryption. We use the Cramer-Shoup encryption scheme described in Section C.1, working
in the groupG2. We encrypt~x = (x1, . . . , xn) under the same randomnessr. More formally, for a public key
pk = (g0, g1, d1, . . . , dn, e, f), we encrypt~x with labelm as

C = (c1, c2, c3, . . . , cn+2, cn+3)← Encmpk(x1, x2; r) = (gr0, g
r
1, x1d

r
1, . . . , xnd

r
n, (ef

t)r),

wheret = H(c1, . . . , cn+2,m).
The total size of the ciphertext isn+ 3.

NIZK Argument. We use the NIZK proofs described in Appendix B to prove that “Rspr(x, y) = 1 andC =
Encmpk(x; r)”. First we show thatR(~x, y) = 1 by creating a commitmentδi = ComΠ(xi; (si0, si1)) for each
componentxi of ~x = (x1, . . . , xn) and producing proof elements which show that the committed values satisfy
the pairing product equation

∏n
i=1 e(gi, xi) = e(y, g̃). Then, we show thatC = Encmpk(~x; r) using a system

of one-sided multi-exponentiation equations with witness(r, s10, s11, . . . , sn0, sn1) to show that the plaintext
encrypted inC is equal to the committed values in theδi’s. Details follow. Let

~δ1 = (x1, 1)~v
s10
0 ~v s11

1 , . . . , ~δn = (xn, 1)~v
sn0

0 ~v sn1

1 ,

and, as defined above,C = (c1, . . . , cn+3). Proving equality of the plaintext and the committed valuesreduces
to proving the satisfiability of the following system of2n+ 3 equations:

~δ1
(c3,1)

= ~v s10
0 ~v s11

1 (d−11 , 1)r , . . . ,
~δn

(cn+2,1)
= ~v sn0

0 ~v sn1

1 (d−1n , 1)r ,

c1 = gr0 , c2 = gr1 , cn+3 = er(f t)r .

The total size of the argument is8n+ 21 group elements and 2Zq-elements.

Combining the ciphertext and the NIZK argument makes the size of the signature9n + 24 group elements
and 2 elements inZq. By Theorem 4.2 and Theorem 4.3, we know that the above instantiation gives us a
((n − 1) log q − 1)-leakage resilient signature scheme. To translate this into (1 − ε)|sk| leakage tolerance, we
need

n ≥
1

ε
+

1

ε · log q
=

1

ε
·

(
1 +

1

log q

)

This gives us signature of size(9/ε)(1 + 1/ log q) + 24 ≈ 9/ε+ 24 group elements and 2 elements inZq.
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C.2.3 Instantiation 2: Based on DLIN

In the case ofG1 = G2 = G, we give an instantiation under the DLIN assumption.

SPR Relation. We use the SPR relation described in Section C.2.1.

• KeyGen(1λ) : Output~x = (x1, . . . , xn) and~y = (y1, y2) where:

r1, . . . , rn
$
←− Zq , {xi ← gri}ni=1 , y1 ←

∏n
i=1 h

ri
i , y2 ←

∏n
i=1 ~

ri
i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y1, g) and
∏n

i=1 e(~i, xi) = e(y2, g). Otherwise output 0.

Recall that this relation has worst-case preimage entropy of (n− 2) log(q).

CCA-Secure Encryption. We use the Cramer-Shoup encryption scheme described in Section C.1. We en-
crypt~x = (x1, . . . , xn) under the same randomnessr and labelm. More formally, for a public key

pk = (g0, g1, g2, d11, d12, . . . , dn1, dn2, e1, e2, f1, f2),

we compute the ciphertext

C = (c1, . . . , cn+4) ← Encmpk(~x; (r1, r2))

= (gr1+r2
0 , gr11 , gr22 , x1d

r1
11d

r2
12, . . . , xnd

r1
n1d

r2
n2, (e1f

t
1)

r1(e2f
t
2)

r2),

wheret = H(c1, . . . , cn+3,m).
The size of the ciphertext isn+ 4.

NIZK Argument. First we prove thatR(x, y) = 1 using the pairing product equations

e(h1, x1) . . . e(hn, xn) = e(g, y1) and
e(~1, x1) . . . e(~n, xn)) = e(g, y2).

We create commitmentsδi = ComΠ(xi; ~si) = (xi, 1, 1)v
si0
0 vsi11 vsi22 , for each componentxi of ~x = (x1, . . . , xn)

using randomness~si = (si0, si1, si2). Then we prove that the plaintext ofC = Encmpk(x1, x2, x3;~r) is the com-
mitted values in theδi’s by proving that the following system of3n+4 one-sided multi-exponentiation equations
is satisfiable with a witness(r1, r2, ~s1, . . . , ~sn):

~δ1
(c4,1,1)

= ~v s10
0 ~v s11

1 ~v s12
2 (d−111 , 1, 1)

r1(d−112 , 1, 1)
r2 ,

. . .
~δn

(cn+3,1,1)
= ~v sn0

0 ~v sn1

1 ~v sn2

2 (d−1n1 , 1, 1)
r1(d−1n2 , 1, 1)

r2 ,

c1 = gr10 gr20 , c2 = gr11 , c3 = gr22 , cn+4 = (e1f
t
1)

r1(e2f
t
2)

r2 .

The total size of the proof is 18n+66 group elements and 6Zq-elements.
Combining the ciphertext and the NIZK argument makes the size of the signature19n+70 group elements

and 6 elements inZq. By Theorem 4.2 and Theorem 4.3, we know that the above instantiation gives us a
((n − 2) log q − 1)-leakage resilient signature scheme. To translate this into (1 − ε)|sk| leakage tolerance, we
need

n ≥
2

ε
+

1

ε · log q
=

1

ε
·

(
2 +

1

log q

)

This gives us signature of size(19/ε)(2 + 1/ log q) + 70 ≈ 38/ε + 70 group elements and 6 elements inZq.
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C.3 Leakage-Resilient Encryption

In order to use the construction in Section 4.3, we need a(1 − ε)|sk|-leakage resilient CPA-secure encryption
schemeE1 = (KeyGen1, Enc1, Dec1) and a strongf -tSE NIZK argument (see Section 3), which we can con-
struct from a CCA-secure encryption scheme supporting labels E2 = (KeyGen2, Enc2, Dec2), a strongly-secure
one-time time signature schemeS, and an NIZK argumentΠ for the relation

Req = { ( (r1, r2,m) , (c1, c2, L) | c1 = Enc1(m; r1) ∧ c2 = EncL2 (m; r2) }.

The same technique was used in[13] to construct an efficient CCA-secure encryption scheme withkey-dependent
message (KDM) security from a CPA-secure version of the scheme. We use the same technique in the leakage-
setting, to achieve leakage-resilient CCA-secure encryption from leakage-resilient CPA-secure encryption.

We now show an instantiation of the construction shown in Section 4.3, meeting the parameters of Theorem
5.2.

LR-CPA-Secure Encryption (E1). We show a(1 − ε)|sk|-leakage resilient CPA-secure encryption scheme
based on theK-Linear assumption. Similar versions of this scheme appearin [47] and [13] (based on the KDM
scheme of [12]), but we modify it here to make it more efficient. In particular, our public key and ciphertexts
are shorter by a factor oflog q.

LetG be a group of primer orderq, and letJ be an integer. We define the schemeE1 by:

• KeyGen(1λ) : Choosef01, . . . , f0J , f1, . . . fK
$
←− G and~x

$
←− ZK+J

q . Define vectors~f1, . . . , ~fK ∈ GK+J

as follows:
~f1 = (f01, . . . , f0J , f1, 1, . . . , 1)

~f2 = (f01, . . . , f0J , 1, f2, . . . , 1)

...

~fK = (f01, . . . , f0J , 1, 1, . . . , fK)

For i = 1, . . . ,K: let hi = 〈~fi, ~x〉. Let~h = (h1, . . . , hK). Outputsk = ~x andpk = ({~fi}
K
i=1,

~h).

• Encpk(m) : Choose~w
$
←− ZK

q . Let ~f =
∏K

i=1
~fi
wi

anda = m · 〈~h, ~w〉. OutputC = (~f, a).

• Decsk(C) : Outputm← a/〈~f , ~x〉.

Theorem C.3. For any ε > 0, if J ≥ 1
ε
(K + λ/ log(q) + 1), then the above encryption scheme is`-leakage

resilient wherè = (1− ε)|sk|. The scheme is secure under theK-linear assumption.

The proof follows from the same technique as those used to prove leakage-resilience of hash-proof system
based schemes in [47]. Indeed, it is relatively simple to seethat the above construction is based on an underlying
hash-proof system. However, for simplicity, we just prove the leakage resilience of the scheme directly without
defining the notion of a hash-proof system formally in this work.

Proof. We do a series of games argument to show that the scheme is`-LR-CPA.

Game 0: This is thè -LR-CPA attack game. The adversary gets` bits of leakage onsk = ~x and the challenge
ciphertext is (later) computed as:

C = (~f , a) where~w
$
←− ZK

q , ~f =

K∏

i=1

~fi
wi
, a = mb · 〈~h, ~w〉.

as an encryption of messagemb where the bitb is chosen by the challenger.
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Game 1: In this game the challenge ciphertext is computed using thesecret key~x as:

C = (~f , a) where~w
$
←− ZK

q , ~f =
K∏

i=1

~fi
wi
, a = mb · 〈~f , ~x〉.

Games 0 and games 1 are equivalently distributed since〈~f , ~x〉 = 〈~h, ~w〉 (this is essentially the correctness
of decryption).

Game 2: In this game the~f part of the ciphertext is just chosen uniformly at random:

C = (~f , a) where~f ← GJ+K , a = mb · 〈~f , ~x〉.

The fact that games 1 and 2 are computationally indistinguishable follows from theK-linear assumption,
which ensures that a random linear combination of~f1, . . . , ~fK (used to compute~f in Game 2) is com-
putationally indistinguishable from a uniformly random~f . This holdsevengiven all of the secret-key~x,
and hence certainly in the presence of limited leakage.

Game 3: In this game,a is chosen uniformly at random so that

C = (~f , a) where~f ← GJ+K , a← G.

We claim that games 2 and 3 are statistically indistinguishable. This is because, in game 2,〈~f , ~x〉 can
be thought of as a universal hash function of the secret-key~x under the hash-key~f . Since, a univer-
sal hash function is a good average-case randomness extractor (see [21]), the value〈~f , ~x〉 is statis-
tically indistinguishable from uniform, as long as the conditional entropy of~x given everything else
the adversary sees in game 2 is at leastlog(q) + λ bits. But the only information that the adver-
sary sees in game 2 which is correlated with~x is the component~h of the public-key and the leak-
age. Therefore,~x has at least(K + J) log(q) − K log(q) − ` bits of conditional entropy. Since
` = (1− ε)|sk| = (1− ε)(K + J) log(q) ≤ (J − 1) log(q)− λ, this means~x has at leastlog(q) + λ bits
of conditional entropy, as desired.

It is clear that Game 3 is independent of the challenger’s bitb and hence the adversary’s advantage is 0 (the
probability thatb′ = b is 1

2 ). Therefore, by the hybrid argument, the adversary’s advantage in Game 0 is
negligible.

For the instantiation, we use the LR-CPA-secure encryptionscheme described above, working in the group
G2. We encryptm under randomness~w = (w1, . . . wK): for a public keypk = (~f1, . . . , ~fK ,~h) with ~fi =
(f01, . . . , f0J , 1, . . . , fi, . . . , 1), we computeW =

∑K
i=1 wi and ciphertext

C1 = (c11, . . . , c1(J+K+1))← Enc1(m; ~w) = (fW
01 , . . . , f

W
0J , f

w1

1 . . . , fwK

K ,m

K∏

i=1

hwi

i )

The size of the ciphertext isJ +K + 1.

CCA-secure Encryption (E2). We use the Linear Cramer-Shoup encryption scheme describedin section C.1,
working in the groupG2. We encryptm under randomness~r = (r1, . . . , rK) and labelL: for a public key
pk = ({gi}

K
i=0, {di}

K
i=1, {ei}

K
i=1, {fi}

K
i=1), we computeR =

∑K
i=1 ri and the ciphertext

C2 = (c21, . . . , c2(K+3))← EncL2 (m;~r) = (gR0 , g
r1
1 . . . , grKK ,m

K∏

i=1

drii ,
K∏

i=1

(eif
t
i )

ri),

wheret = H1(c21, . . . , c2(K+2), L) andH1 is a collision-resistant hash function.
The size of the ciphertext isK + 3.
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NIZK Argument System. We use the NIZK proofs described in Appendix B. LetC1, C2 be as described
above. To prove that there exists(m, r1, r2) such that((m, r1, r2), (C1, C2, L)) ∈ RΠ, we use a system of
multi-exponentiation equations.

c1j = f
∑K

i=1
wi

0j for j = 1, . . . , J

c1(J+i) = fwi

i for i = 1, . . . ,K

c21 = g
∑K

i=1
ri

0

c2(i+1) = grii for i = 1, . . . ,K

c2(K+3) =

K∏

i=1

(eif
t
i )

ri

c1(J+K+1)/c2(K+2) =

K∏

i=1

hwi

i (d−1i )ri

This corresponds to a system ofJ + 2K + 3 equations with witness(r1, . . . , rK , w1, . . . , wK). Using the
proofs described in appendix B we can give a proof for the simultaneous satisfiability of the equations using
2K commitments andK · (J + 2K + 3) proof elements.

Based on SXDH:In this case we haveK = 1, so the size of the proof isJ + 9 group elements.
Based on DLIN: In this case we haveK = 2, so the size of the proof is2J + 26 group elements.

One-Time Signature (S). We use the strongly-secure signature of [33]. LetH2 : {0, 1}
∗ → Zq be a collision-

resistant hash function.

• KeyGenS(1
λ) : Outputvk = (g, f, h, z) andsk = (a1, a2), where:

a1, a2, b1, b2
$
←− Z∗q , g

$
←− G2 , f← ga1 , h← ga2 , z← fb1hb2

• SignS(m; r) : Outputσ = (r, s), where

s←

(
(a1(b1 − r) + a2b2 −H2(m))

a2

)

• SigVerS(m,σ = (r, s)) : Check thatz = gH2(m)frhs

The size of the one-time signature if 2 elements inZq.

Combining both ciphertexts, together with the NIZK argument and the one-time signature, we have that the
size of the ciphertext is2J + 15 group elements and 2 elements inZq in the SXDH case, and3J + 34 group
elements and 2 elements inZq in the DLIN case. From Theorem C.3 we needJ ≥ 1

ε
(K+λ/ log(q)+ 1). This

gives us the following ciphertext size:
Based on SXDH:The size of the ciphertext is(2/ε)(2 + λ/ log q) + 15 group elements and 2 elements in

Zq.
Based on DLIN: The size of the ciphertext is(3/ε)(3 + λ/ log q) + 34 group elements and 2 elements in

Zq.
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