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Abstract

We study the design of cryptographic primitives resistant to a large class of side-channel attacks, called
“memory attacks”, where an attacker can repeatedly and adaptively learn information about the secret key,
subject only to the constraint that the overall amount of such information is bounded by some parameter
`. Although the study of such primitives was initiated only recently by Akavia et al. [2], subsequent work
already produced many such “leakage-resilient” primitives [49, 4, 44], including signature, encryption, iden-
tification (ID) and authenticated key agreement (AKA) schemes. Unfortunately, every existing scheme, —
for any of the four fundamental primitives above, — fails to satisfy at least one of the following desirable
properties:

• Efficiency. While the construction may be generic, it should have some efficient instantiations, based
on standard cryptographic assumptions, and without relying on random oracles.

• Strong Security. The construction should satisfy the strongest possible definition of security (even in
the presence of leakage). For example, encryption schemes should be secure against chosen ciphertext
attack (CCA), while signatures should be existentially unforgeable.

• Leakage Flexibility. It should be possible to set the parameters of the schemes so that the leakage
bound ` can come arbitrarily close to the size of the secret key sk.

In this work we design the first signature, encryption, ID and AKA schemes which overcome these lim-
itations, and satisfy all the properties above. Moreover, all our constructions are generic, in several cases
elegantly simplifying and generalizing the prior constructions (which did not have any efficient instantia-
tions). We also introduce several tools of independent interest, such as the abstraction (and constructions)
of true-simulation extractable NIZK arguments, and a new deniable DH-based AKA protocol based on any
CCA-secure encryption.
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1 Introduction

Traditionally, the security of cryptographic schemes has been analyzed in an idealized setting, where an adver-
sary only sees the specified “input/output behavior” of a scheme, but has no other access to its internal secret
state. Unfortunately, in the real world, an adversary may often learn some partial information about secret
state via various key leakage attacks. Such attacks come in a large variety and include side-channel attacks
[45, 11, 8, 46, 55, 30], where the physical realization of a cryptographic primitive can leak additional informa-
tion, such as the computation-time, power-consumption, radiation/noise/heat emission etc. The cold-boot attack
of Halderman et al. [37] is another example of a key-leakage attack, where an adversary can learn (imperfect)
information about memory contents of a machine, even after the machine is powered down. Schemes that are
proven secure in an idealized setting, without key leakage, may become completely insecure if the adversary
learns even a small amount of information about the secret key. Indeed, even very limited leakage attacks have
been shown to have devastating consequences for the security of many natural schemes.

Unfortunately, it is unrealistic to assume that we can foresee, let alone block, all of the possible means
through which key leakage can occur in real-world implementations of cryptographic schemes. Therefore, the
cryptographic community has recently initiated the investigation of increasingly general (formally modeled)
classes of leakage attacks, with the aim of constructing leakage-resilient cryptographic schemes that remain
provably secure even in the presence of such attacks. Of course, if an adversary can get unrestricted information
about the secret key (say, of an encryption scheme), then she can learn the key in its entirety and the security
of the system is necessarily compromised. Therefore, we must first place some “upper bound” on the type
or amount of information that the adversary can learn. The nature of such bounds varies in the literature, as
we survey later. For this work, we only restrict the amount, but not the type, of information that an adversary
can learn through a key-leakage attack. In particular, we will assume that the attacker can learn any efficiently
computable function of the secret key sk, subject only to the constraint that the total amount of information
learned (i.e. the output size of the leakage function) is bounded by ` bits, where ` is called the “leakage
parameter” of the system.1 Clearly, at this level of generality, the secret-key size s must be strictly greater than
the leakage-parameter `.2 Therefore, the quantity `/s can be thought as the relative leakage of the system, with
the obvious goal to make it as close to 1 as possible.

Our model of leakage-resilience was recently introduced recently by Akavia et al. [2], but already attracted
a lot of attention from the cryptographic community [49, 4, 44, 3]. In particular, as we survey later, we al-
ready know many “leakage-resilient” primitives, including such fundamental primitives as signature schemes,
encryption schemes, identification (ID) schemes and authenticated key agreement (AKA) protocols. Unfortu-
nately, we observe that every existing scheme, — for any of the four fundamental primitives above, — fails to
satisfy at least one of the following desirable properties:

• Efficiency. While the proposed construction may be based on some generic cryptographic primitives, —
which is in fact preferable for modular design, — it should have some efficient instantiations, based on
standard cryptographic assumptions, and without relying on random oracles. We view this property as
the main property we will strive to achieve.

• Strong Security. The construction should satisfy the strongest possible definition of security (even in
the presence of leakage). For example, encryption schemes should be secure against chosen ciphertext
attack (CCA), while signatures should be existentially unforgeable, etc.

• Leakage Flexibility. It should be possible to set the parameters of the schemes so that the relative leakage
`/s is arbitrarily close to 1. We call such schemes leakage-flexible.

1More formally, we allow adaptive measurements, as long as the sum of leaked outputs is bounded by `.
2In fact, our actual constructions easily extend to the more general “noisy leakage” model of Naor and Segev [49], where the outputs

can be longer than s, as long as the “average min-entropy” of sk drops by at most ` bits. However, we do not pursue this generalization,
in order to keep our notation simple.
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1.1 Our Results

In this work we design the first signature, encryption, ID and AKA schemes which simultaneously satisfy the
efficiency, strong security and leakage flexibility properties mentioned above. Moreover, all our constructions
are generic. This means that the actual construction is modularly defined and explained using natural simpler
blocks, and its security against key leakage is also proven no matter how these simpler blocks are (securely)
implemented. However, unlike the prior generic constructions, which did not have any known efficient instanti-
ations (at least, with the desired security and flexibility we seek), ours are yet more general, which will allow us
to obtain several efficient instantiations. Given this fact, it is not surprising that our contributions can be roughly
split into two categories: “conceptual” contributions, allowing us to obtain more general (and, yet, conceptu-
ally simpler) leakage-resilient constructions, and “concrete” contributions, allowing us to actually instantiate
our general schemes efficiently.

CONCEPTUAL CONTRIBUTIONS. As we will see, existing schemes (e.g., signature and CCA-encryption)
could be largely divided into two categories: potentially efficient schemes, with some inherent limitation not
allowing them to achieve relative leakage approaching 1 (which also prevents us from using these ideas for our
purposes), and more theoretical schemes [49, 44], achieving good relative leakage, but relying on the notion of
simulation-sound non-interactive zero-knowledge (ss-NIZK) [56]. Informally, ss-NIZK proofs remain sound
even if the attacker can see simulated proofs of arbitrary (even false) statements. Unfortunately, it appears that
the existing cryptographic machinery does not allow us to instantiate non-trivial ss-NIZK proofs efficiently.3

On the other hand, a recent breakthrough result of Groth-Sahai [36] showed that one can obtain efficient non-
simulation-sound NIZK proofs for a non-trivial class of languages. While the techniques of [34] could be
applied to Groth-Sahai proofs to achiehve ss-NIZKs, it is a non-trivial “exercise” and the resulting proofs
are significantly less efficient, as the construction involves OR-proofs for Groth-Sahai languages. Therefore,
our first idea was to try to generalize the existing constructions sufficiently, making them rely only on regular
NIZKs, in the hope that such regular NIZKs can then be instantiated using the powerful Groth-Sahai techniques.

In the end, this is indeed what we realized. However, in the process we also abstracted away an elegant
notion of independent interest: true-simulation extractable (tSE) NIZKs. While quite similar to the notion of
simulation-sound extractable NIZKs [34], it involves a subtle but rather important difference: whether the ad-
versary has oracle access to simulated proofs for arbitrary (even false) statements or only true ones. Intuitively,
both the Naor-Segev’s leakage-resilient CCA encryption [49] and Katz-Vaikuntanathan’s leakage-resilient sig-
nature scheme [44] used the technique of encrypting a witness x for some relation R, and then providing a
ss-NIZK proof ϕ that the ciphertext c indeed contains the encryption of a valid witness x. The main reason
for using this technique is to allow the reduction to extract a valid witness from any “new” valid pair (c∗, ϕ∗)
produced by the attackerA (who saw many such valid pairs earlier). In this paper, we will abstract this property
into the tSE notion mentioned above (of which the above mentioned technique is a specific example, where the
pair (c, ϕ) together makes up a single tSE-NIZK proof). Moreover, we show that true-simulation extractability,
as we abstract it, is precisely the right notion for generalizing and proving the security of the previous construc-
tions. This has two positive effects. First, it makes the generic constructions of CCA-encryption and signatures
somewhat more intuitive, both for proving and understanding. For example, the traditional “double-encryption”
paradigm of Naor-Yung [50] for designing CCA-secure schemes from chosen-plaintext secure (CPA-secure)
schemes, also used by [49] in the context of key leakage, can be stated as “CPA-encrypting message m under
two keys and proving plaintext equality”. Using our more general “simulation-extractability view”, it is now
stated as “CPA-encrypting m and proving that one knows the plaintext”. We believe that the latter view is not
only more general, but also more intuitive as a way of explaining “CPA-to-CCA” transformation. A similar
discussion is true for our signature constructions.

Second, we show a generic way to build tSE-NIZKs which avoids using (expensive) ss-NIZKs. Instead,
3 The work of [34] constructs ss-NIZK proofs for practical languages and uses them to construct group signatures, but the resulting

scheme has signature size of “thousands or perhaps even millions of group elements” [35] despite being constant.
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Reference Unforgeability Model Leakage Efficient?
[4] Existential Random Oracle 1/2 Yes
[4] Entropic Random Oracle 1 Yes
[44] Existential Standard 1 No

This Work Existential Standard 1 Yes

Table 1: Previous work on leakage-resilient signatures and results of this work

Reference Attack Model Leakage Efficient?
[2, 49] CPA Standard 1 Yes

[49] CCA Standard 1/6 Yes
[49] CCA Standard 1 No

This Work CCA Standard 1 Yes

Table 2: Previous work on leakage-resilient encryption and results of this work

our method uses regular NIZKs and any CCA-secure encryption scheme.4 Perhaps surprisingly, given the
current state-of-the-art NIZK and CCA schemes, the combination “CCA + NIZK” appears to be much more
efficient in practice than the combination “CPA + ss-NIZK”.5 As a result, we were able to provide a general
framework for building leakage-flexible signature and CCA-encryption schemes, eventually allowing us to
efficiently instantiate our schemes (by avoiding using ss-NIZKs). We summarize our results for signature and
CCA-encryption schemes in Tables 1 and 2, also comparing them to the best prior constructions. In all the
tables, the “sub-optimal” entries (for efficiency, security, model or relative leakage of prior constructions) are
written in italics, and most prior rows are also explained in the related work Section 1.2. For signatures, we
stress that no efficient construction in the standard model was known prior to our work, for any non-trivial
relative leakage fraction (let alone 1).

Once we have efficient leakage-flexible signature schemes, we observe that the standard signature-based
ID scheme, where the verifier asks the prover to sign a random message, easily extends to the leakage setting.
Moreover, the resulting actively secure ID scheme inherits its relative leakage from the corresponding signature
scheme, and satisfies the strongest notion of “anytime-leakage” [4] (see Section 6.1), where the leakage can
occur even during the impersonation attack. We summarize our results for ID schemes in Table 3. Although
our method is pretty simple, we notice that the other two popular methods of building ID schemes — the use
of Σ-protocols for hard relations analyzed in [4] (see first two rows of Tables 3), and the use of CCA-secure
encryption (where the prover decrypts a random challenge ciphertext) — inherently do not allow us to obtain
optimal results, even when instantiated with leakage-flexible hard relations or CCA-encryption schemes. See
Section 6.1 for more details.

Finally, we summarize our results for AKA protocols in Table 4. We actually obtain two such protocols.
First, similarly to the case of ID schemes, we can obtain leakage-resilient AKA schemes from any leakage-
resilient signature scheme, as formally explained in [4]. The idea is to essentially sign every flow of a standard
Diffie-Hellman-based protocol, but with a leakage-resilient signature scheme. We notice, though, that the
resulting protocol is not deniable. Namely, the transcript of the protocol leaves irrefutable evidence that the
protocol took place. Motivated by this deficiency, we design another general AKA protocol based on CCA-
encryption. The details are given in Section 6.2, but, intuitively, the parties encrypt the flows of the standard
Diffie-Hellman-based protocol, effectively proving their identities by successfully re-encrypting the appropriate
flows. Although we do not formalize this, this protocols is “deniable”, because the transcript of the protocol

4This is OK for the signature application, but might appear strange for our CCA-encryption application, as we need “CCA to get
CCA”. However, as a building block for tSE-NIZKs, we only need standard CCA schemes (which are known), and as a result obtain
leakage-resilient CCA schemes.

5Indirectly, the same realization was made by Groth [35] and Camenisch et al. [13] in different concrete contexts.
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Reference Security Model Leakage Efficient?
[4] Pre-Impersonation Standard 1 Yes
[4] Anytime Standard 1/2 Yes

[44] (implicit) Anytime Standard 1 No
This Work Anytime Standard 1 Yes

Table 3: Previous work on leakage-resilient identification schemes and results of this work

Reference Model Leakage Deniable? Efficient?
[4] Random Oracle 1 No Yes

[4, 44] Standard 1 No No
This Work Standard 1 No/Yes∗ Yes

∗ Our first AKA protocol is not deniable; our second — is.

Table 4: Previous work on leakage-resilient AKA and results of this work.

can be simulated without the knowledge of parties’ secret keys. To the best of our knowledge, this protocol
was not suggested and analyzed even in the leakage-free setting, where it appears interesting already. Here we
actually show that our (new) deniable AKA protocol works even in the presence of leakage.

CONCRETE CONTRIBUTIONS. As we explained above, we generically reduce the question of building efficient
leakage-flexible ID schemes and AKA protocol to the question of efficiently instantiating our leakage-flexible
signature and/or encryption schemes. Such instantiations are given in Section 5 (with most details in Ap-
pendix C). We also explained how the latter instantiations became possible in our work, since we gave generic
constructions of both primitives based on the new notion of tSE-NIZK, and then showed that satisfying this
notion may be possible using ordinary NIZKs for appropriate languages, without relying on the expensive
simulation-sound NIZKs. Unfortunately, efficient construction of (even ordinary) NIZKs, due to Groth and Sa-
hai [36], are only known for a pretty restrictive class or languages in bilinear groups. Thus, obtaining a concrete
efficient instantiation still requires quite a substantial effort.

Specifically, all the building blocks have to be instantiated efficiently, and expressed in a form such that
the resulting NP relation satisfies the severe limitations imposed by the Groth-Sahai NIZKs. For example, to
build leakage-resilient CCA-encryption, we need to have an efficient leakage-flexible CPA scheme, a CCA
scheme supporting labels and a one-time signature scheme, all connected together by an efficient NIZK for
a complicated “plaintext equality” relation. Similarly, for leakage-resilient signature schemes, we need an
efficient second-preimage resistant (SPR; see Definition 2.1) relation and a CCA scheme supporting labels,
once again connected by an efficient NIZK for a complex relation. Not surprisingly, such tasks cannot typically
be done by simply combining “off-the-shelf” schemes from the literature. At best, it requires very careful
selection of parameters to make everything “match”, followed by a round of further efficiency optimizations.
Usually, though, it requires the design of new primitives, which work well with other known primitives, to
enable efficient NIZK. For example, in this work, we designed two new SPR relations (see Claims C.1 and
C.2), since prior SPR relations did not appear to mesh well with our CCA encryption scheme. To emphasize
the importance of the new SPR relations, we point out that combining previous constructions with Groth-Sahai
proofs would require committing to the witness bit-by-bit in order to achieve full extractability.

Overall, we get two different efficient instantiations of both leakage-resilient signature and CCA encryption
schemes in the standard model, based on standard (static and “fixed-length”) assumptions in bilinear groups,
called external Diffie-Hellman (SXDH) and Decision-Linear (DLIN). Ignoring many technicalities, the high-
level idea of all these schemes, as well as the efficiency they achieve, is described in Section 5. The actual
low-level details of how to put “everything together”, in the most efficient manner, is described Appendix C.
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1.2 Related Work

LEAKAGE-RESILIENCE AND MEMORY ATTACKS. Our model of leakage, sometimes called memory-attacks,
was first proposed by Akavia, Goldwasser and Vaikuntanathan [2], who also constructed CPA secure PKE
and IBE schemes in this model under the learning with errors (LWE) assumption. Later Naor and Segev [49]
generalized the main ideas behind these constructions to show that all schemes based on hash proof systems (see
[18]) are leakage-resilient. In particular, this resulted in efficient constructions based on the DDH and K-Linear
assumptions, where the relative leakage on the secret key could be made to approach 1. Moreover, [49] showed
how to also achieve CCA security in this model by either: (1) relying on the generic (and inefficient) Naor-
Yung paradigm where the leakage-rate can be made to approach 1 or (2) using efficient hash proof systems with
leakage-rate only approaching 1/6. Unfortunately, it seems that the hash proof system approach to building
CCA encryption is inherently limited to leakage-rates below 1/2: this is because the secret-key consists of two
components (one for verifying that the ciphertext is well-formed and one for decrypting it) and the proofs break
down if either of the components is individually leaked in its entirety.

The work of [3] generalizes [49] still further by showing how to construct leakage-resilient IBE schemes
generically based on identity-based hash proof systems, with several instantiations.

Leakage-resilient signature schemes in the model of memory attacks were constructed in the random-oracle
model by [4, 44], and in the standard model by [44]. The random-oracle schemes are highly-efficient but suffer
from two limitations. Firstly they rely on the Fiat-Shamir [28] transform which is only known to be secure in
the Random Oracle model and is not sound in general [32]. Secondly, the schemes can only tolerate leakage
which approaches 1/2 of the secret key. On the other hand, the standard-model schemes allow for relative-
leakage approaching 1, but are based on generic simulation-sound NIZKs and do not come with an efficient
instantiation.

The work of [4] also constructs identification (ID) schemes and authenticated-key agreement (AKA) pro-
tocols. For ID schemes, two notions of security (we describe these in detail in Section 6.1) were considered:
a weaker notion called pre-impersonation leakage-resilience and a stronger notion called anytime leakage-
resilience. Although efficient schemes in the standard model were given for both notions, the leakage resilience
could be made to approach 1 only for pre-impersonation leakage while, for anytime leakage, the given schemes
can only tolerate a leakage-rate below 1/2. For AKA schemes, a construction was given based on leakage-
resilient signatures (only requiring a weakened notion of security called entropic-unforgeability). Using the
appropriate signature schemes, this yielded two types of constructions: efficient constructions in the random-
oracle model and generic but inefficient constructions in the standard model (both of which have leakage-rates
approaching 1).

OTHER MODELS OF LEAKAGE-RESILIENCE. Several other models of leakage-resilience have appeared in
the literature. They differ from the model we described in that they restrict the type, as well as amount, of
information that the adversary can learn. For example, the work on exposure resilient cryptography [14, 23, 43]
studies the case where an adversary can only learn some small subset of the physical bits of the secret key.
Similarly, [41] studies how to implement arbitrary computation in the setting where an adversary can observe a
small subset of the physical wires of a circuit. Most recently, [27] study a similar problem, where the adversary
can observe a low-complexity (e.g. AC0) function of the wires. Unfortunately, these models fail to capture
many meaningful side-channel attacks, such as learning the hamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzin [48] initiated the formal modeling of side-channel attacks under
the axiom that “only computation leaks information” (OCLI), where each invocation of a cryptographic primi-
tive leaks a function of only the bits accessed during that invocation. Several primitives have been constructed
in this setting including stream ciphers [25, 54] and signatures [26]. More recently, [42] construct a general
compiler that can secure all primitives in this setting assuming the use of some limited leak-free components
and the existence of fully homomorphic encryption. On the positive side, the OCLI model only imposes a bound
on the amount of information learned during each invocation of a primitive, but not on the overall amount of
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information that the attacker can get throughout the lifetime of the system. On the negative side, this model
fails to capture many leakage-attacks, such as the cold-boot attack of [37], where all memory contents leak
information, even if they were never accessed.

Lastly, we mention several models of leakage-resilience which are strictly stronger than the memory-attacks
model. Firstly, the Bounded-Retrieval Model [19, 24, 4, 3] imposes an additional requirement on leakage-
resilient schemes, by insisting that they provide a way to “grow” the secret-key (possibly to many Gigabytes)
so as to proportionally increase the amount of tolerated leakage, but without increasing the size of the public-
key, the computational-efficiency of the scheme, or the ciphertext/signature/communication lengths. The work
of [4] constructs “entropic” signatures, ID schemes and AKA protocols in this setting, while the work of [3]
constructs PKE and IBE schemes in this model. A different strengthening is the auxiliary input model [21, 20]
where the leakage is not necessarily bounded in length, but it is (only) assumed to be computationally hard to
recover the secret-key from the leakage. The work of [21] constructs symmetric-key encryption in this model,
under a strengthening of the learning parity with noise (LPN) assumption, while [20] constructs public-key
encryption under the DDH and LWE assumptions. Yet another strengthening of the memory-attacks model,
proposed by [31], is to require that there is a single scheme (parameterized only by the security parameter)
which can tolerate essentially any amount of relative-leakage where the exact-security of the scheme degrades
smoothly as the relative-leakage increases. In this model, [31] construct a symmetric-key encryption scheme.

2 Definitions of Leakage-Resilient Primitives

We model leakage attacks by giving the adversary access to a leakage oracle, which he can adaptively access to
learn leakage on the secret key. A leakage oracleOλ,`

sk (·) is parametrized by a secret key sk, a leakage parameter
`, and a security parameter λ. A query to the leakage oracle consists of a function hi : {0, 1}∗ → {0, 1}αi , to
which the oracle answers with yi = hi(sk). We only require that the functions hi be efficiently computable,
and the total number of bits leaked is

∑
i αi ≤ `.

Definition 2.1 (Leakage Resilient Hard Relation). A relation R with a randomized PPT sampling algorithm
KeyGen is an `-leakage resilient hard relation if:

• For any (sk, pk)← KeyGen(1λ), we have (sk, pk) ∈ R.

• There is a poly-time algorithm that decides if (sk, pk) ∈ R.

• For all PPT adversaries AO
λ,`
sk (·) with access to the leakage oracle Oλ,`

sk (·), we have that

Pr
[
R(sk∗, pk) = 1 | (pk, sk)← KeyGen(1λ) , sk∗ ← AO

λ,`
sk (·)(pk)

]
≤ negl(λ)

Notice that without loss of generality, we can assume that A queries Oλ,`
sk (·) only once with a function h

whose output is ` bits.

Definition 2.2 (Leakage Resilient Signatures). A signature scheme S = (KeyGen, Sign, SigVer) is `-leakage
resilient if ∀ PPT A we have Pr[A wins] ≤ negl(λ) in the following game:

1. Key Generation: The challenger runs (vk, sk)← KeyGen(1λ) and gives vk to A.

2. Signing and leakage queries: AO
λ,`
sk (·),Ssk(·) is given access to the leakage oracle Oλ,`

sk (·) and the
signing oracle Ssk(·). A query to the signing oracle Ssk(·) consists of a message m, to which the oracle
responds with σ = Signsk(m).

3. A outputs (m∗, σ∗) and wins if SigVervk(m
∗, σ∗) = 1 and m∗ was not given to Ssk(·) as a signing

query.
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Definition 2.3 (Leakage Resilient CCA-Secure Encryption). We say that an encryption scheme E = (KeyGen, Enc, Dec)
is `-leakage resilient CCA-secure if ∀ PPT A we have Pr[A wins] ≤ 1

2 + negl(λ) in the following game:

1. Key Generation: The challenger runs (pk, sk)← KeyGen(1λ) and gives pk to A.

2. Decryption and leakage queries: AO
λ,`
sk (·),Dsk(·) is given access to the leakage oracle Oλ,`

sk (·) and the
decryption oracle Dsk(·). A query to the decryption oracle Dsk(·) consists of a ciphertext c, to which the
oracle responds with m = Decsk(c).

3. Challenge generation: A sends plaintexts m0,m1 to the challenger. The challenger chooses b
$←−

{0, 1}, and sends c∗ ← Encpk(mb) to A.

4. Decryption queries: ADsk(·) is given access to the decryption oracle Dsk(·) with the restriction that A
cannot send c∗ as a decryption query. Notice also that ADsk(·) is not given access to the leakage oracle
Oλ,`

sk (·).

5. A outputs b′, and wins if b = b′.

If an encryption scheme is 0-leakage-resilient CCA-secure we simply refer to it as being CCA secure.

Recall that we can define labeled CCA encryption in which a message is encrypted and decrypted according
to a public label L. If an encryption scheme E = (KeyGen, Enc, Dec) supports labels, we use the syntax
EncL(m) to denote the encryption of message m under label L. Similarly, we use DecL(c) to denote the
decryption of ciphertext c under the label L. In this case, we extend the correctness of encryption/decryption
to requiring that DecL(EncL(m)) = m. The security definition described in Definition 2.3 can also be easily
modified as follows. A query to the decryption oracle now consists of a ciphertext c and a label L, to which
the oracle responds with m = DecL

sk(c). In the challenge generation stage, A submits a label L∗ as well as

messages m0,m1 and the challenger computes c∗ ← EncL∗
pk (mb) for b

$←− {0, 1}. Finally, in the second stage
of decryption queries we require that the adversary is allowed to ask for decryptions of any ciphertext c under
label L only subject to (L, c) 6= (L∗, c∗).

Definition 2.4 (Leakage Resilient CPA-Secure Encryption). We say that an encryption scheme E = (KeyGen, Enc, Dec)
is `-leakage resilient CPA-secure if ∀ PPT A we have Pr[A wins] ≤ 1

2 + negl(λ) in the game described above
with the modification that A does not have access to the decryption oracle Dsk(·). If an encryption scheme is
0-leakage-resilient CPA-secure we simply refer to it as being CPA secure.

3 Simulation Extractability

We start by briefly recalling the notion of non-interactive zero-knowledge (NIZK) [9]. For our purposes, it will
be slightly more convenient to use the notion of (same-string) NIZK argument from [57]. Note, however, that
the definitions and constructions given in this section can be extended to the case of NIZK proofs.

Let R be an NP relation on pairs (x, y) with corresponding language LR = {y | ∃x s.t. (x, y) ∈ R}. A
non-interactive zero-knowledge (NIZK) argument for a relation R consists of three algorithms (Setup, Prove, Verify)
with syntax:

• (CRS, TK)← Setup(1λ): Creates a common reference string (CRS) and a trapdoor key to the CRS.

• π ← ProveCRS(x, y): Creates an argument that R(x, y) = 1.

• 0/1← VerifyCRS(y, π): Verifies whether or not the argument π is correct.
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For the sake of clarity, we write Prove and Verify without the CRS in the subscript when the CRS can be
inferred from the context. We require that the following three properties hold:

Completeness: For any (x, y) ∈ R, if (CRS, TK)← Setup(1λ) , π ← Prove(x, y), then Verify(y, π) = 1.

Soundness: For any PPT adversary A,

Pr
[

Verify(y, π∗) = 1
y 6∈ LR

∣∣∣∣ (CRS, TK)← Setup(1λ)
(y, π∗)← A(CRS)

]
≤ negl(λ).

Composable Zero-Knowledge: There exists PPT simulator Sim such that, for any PPT adversary A we have∣∣Pr[A wins ]− 1
2

∣∣ ≤ negl(λ) in the following game:

• The challenger samples (CRS, TK)← Setup(1λ) and gives (CRS, TK) to A.

• The adv. A chooses (x, y) ∈ R and gives these to the challenger.

• The challenger samples π0 ← Prove(x, y), π1 ← Sim(y, TK), b← {0, 1} and gives πb to A.

• The adv. A outputs a bit b̃ and wins if b̃ = b.

We revisit the notion of simulation extractable NIZK arguments [58, 16, 52, 53, 34], and define a new prim-
itive called true-simulation extractable NIZK arguments. Apart from satisfying the three properties described
above, an NIZK argument is simulation extractable if there exists a PPT extractor Ext which (when given
an additional extraction trapdoor to the CRS) extracts a witness x′ from any proof π produced by a malicious
prover P ∗, even if P ∗ has previously seen some simulated proofs for other statements. We make an important
distinction between our new definition of true-simulation extractability, where all simulated proofs seen by P ∗

are only of true statements, and the stronger notion of any-simulation extractability, where P ∗ can also see
proofs of false statements. As we will see, the former notion is often simpler to construct and sufficient in our
applications.

We extend our definition to f -extractability, where Ext only needs to output some function f(x′) of a
valid witness x′. We further extend this definition to support labels, so that the Prove, Verify, Sim, and
Ext algorithms now also take a public label L as input, and the correctness, soundness, and zero-knowlegde
properties are updated accordingly. If Π = (Setup, Prove, Verify) is an NIZK argument with simulator
Sim and extractor Ext, we write ProveL, VerifyL, SimL, ExtL to denote proof, verification, simulation, and
extraction under label L, respectively.

We start by defining a simulation oracle SIMTK(·). A query to the simulation oracle consists of a pair
(x, y) and a label L. The oracle checks if (x, y) ∈ R. If true, it ignores x and outputs a simulated argument
SimL(TK, y), and otherwise outputs ⊥. We now give a formal definition of true-simulation extractability.

Definition 3.1 (True-Simulation f -Extractability). Let f be a fixed efficiently computable function and let Π =
(Setup, Prove, Verify) be an NIZK argument for a relation R, satisfying the completeness, soundness and
zero-knowledge properties above. We say that Π is true-simulation f -extractable (f -tSE) with labels if:

• Apart from outputting a CRS and a trapdoor key, Setup also outputs an extraction key:
(CRS, TK, EK)← Setup(1λ).

• There exists a PPT algorithm Ext(y, ϕ, EK) such that for all P ∗ we have Pr[P ∗ wins] ≤ negl(λ) in the
following game:

1. Key Generation: The challenger runs (CRS, TK, EK)← Setup(1λ) and gives CRS to P ∗.

2. Simulation queries: P ∗SIMTK(·) is given access to the simulation oracle SIMTK(·), which it can
adaptively access.
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3. Adversary Output: P ∗ outputs a tuple (y∗, L∗, ϕ∗).

4. Extraction: The challenger runs z∗ ← ExtL∗
(y∗, ϕ∗, EK).

5. P ∗ wins if (a) the pair (y∗, L∗) was not part of a simulator query, (b) VerifyL∗
(y∗, ϕ∗) = 1, and

(c) for all x′ such that f(x′) = z∗ we have R(x′, y∗) = 0.6

In the case when f is the identity function, we simply say that Π is true-simulation extractable (tSE).

We give several variations of this new primitive. First, we define one-time simulation extractability, in
which the adversary P ∗ is only given a single query to the simulation oracle SIMTK(·). Second, we define
the notion of strong simulation extractability by changing the winning condition so that P ∗ is now required to
output a new statement/argument pair instead of a new statement. More formally, condition 5a becomes: the
tuple (y∗, L∗, ϕ∗) is new, that is, either (y∗, L∗) was not part of a simulator query, or if it was, the argument
ϕ∗ is different from the one(s) given to P ∗ by SIMTK(·). We observe that we can generically construct strong
f -tSE NIZK arguments from (standard) f -tSE NIZK arguments if we additionally use a strongly-secure one-
time signature. In particular, the prover now computes the standard f -tSE argument, signs it, and attaches the
verification key vk to the public label. To verify, we first check that the signature is valid and then verify the
f -tSE argument.

Finally, we say that an NIZK argument Π is any-simultation f -extractable (f -aSE) (similar to the notion of
simulation-sound extractability of [34]) if the adversary P ∗ instead has access to a modified simulation oracle
S̃IMTK(·) that responds to all simulation queries without checking that R(x, y) = 1 (and hence might also
give simulated arguments of false statements). In this work we do not make use of this variation, but state it
here because as we will see, this notion has been implicitly used in prior works. However, f -aSE is a stronger
notion than f -tSE and is not needed, as we will show that f -tSE is sufficient in constructing leakage-resilient
signatures and CCA-encryption.

4 Generic Constructions

In this section we give generic constructions of leakage-resilient hard relations (Section 4.1) , leakage-resilient
signatures (Section 4.2), leakage-resilient CCA-secure encryption (Section 4.3). In the latter two we use the
f -tSE NIZK primitive that we defined in Section 3. Finally, in Section 4.4 we give a construction of f -tSE
NIZK arguments.

4.1 Leakage-Resilient Hard Relations

We begin by showing how to generically construct leakage-resilient hard relations from SPR relations. Infor-
mally, we say that a relation R is second-preimage resistant (SPR) if given a random (x, y) ∈ R it is difficult
to find x′ 6= x such that (x′, y) ∈ R. We formalize this in the following definition.

Definition 4.1 (Second-Preimage Resistant (SPR) Relation). A relation R with a randomized PPT sampling
algorithm KeyGen is second-preimage resistant if:

• For any (x, y)← KeyGen(1λ), we have (x, y) ∈ R.

• There is a poly-time algorithm that decides if (x, y) ∈ R.

• For any PPT algorithm A, we have Pr
[
(x′, y) ∈ R ∧ x′ 6= x

∣∣∣∣ (x, y)← KeyGen(1λ)
x′ ← A(x, y)

]
≤ negl(λ).

6In other words, the adversary wins if the extractor fails to extract a good value z∗ which corresponds to at least one valid witness
x′; i.e. f(x′) = z∗. For the identity function, f(x) = x, this corresponds to the statement: R(z∗, y) = 0.
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We define the average-case pre-image entropy of the SPR relation to be Havg(R) = H̃∞(X | Y ) , where the
random variables (X, Y ) are distributed according to KeyGen(1λ). (We refer the reader to Appendix A.1 for
the definition of H̃∞(X | Y ).)

Theorem 4.2. If R(x, y) is an SPR relation, then it is also an `-leakage resilient hard relation for ` =
Havg(R)− ω(log λ), where λ is the security parameter.

The proof of Theorem 4.2 is given in Appendix A.1.

4.2 Leakage-Resilient Signatures

In this section, we give a generic construction of leakage-resilient signatures based on leakage-resilient hard
relations and tSE-NIZK arguments. Let R(x, y) be an `-leakage resilient hard relation with sampling algorithm
KeyGenR(1λ). Let Π = (Setup, Prove, Verify) be a tSE-NIZK argument for relation R supporting labels.
Consider the following signature scheme:

• KeyGen(1λ) : Output sk = x and vk = (CRS, y) where
(x, y)← KeyGenR(1λ) , (CRS, TK, EK)← Setup(1λ).

• Signsk(m) : Output σ = ϕ where ϕ← Provem(x, y). (Note that m is the label in the argument.)

• SigVervk(m,σ): Output Verifym(y, σ).

Theorem 4.3. If R(x, y) is an `-leakage resilient hard relation and Π is a labeled tSE-NIZK argument for R,
then the above signature scheme is an `-leakage resilient signature scheme.

The proof of Theorem 4.3 is given in Appendix A.2.

4.3 Leakage-Resilient CCA-Secure Encryption

In this section, we give a generic construction of leakage-resilient CCA-secure encryption from leakage-
resilient CPA-secure encryption and strong f -tSE NIZK arguments. Let E = (KeyGen, Enc, Dec) be an `-
LR-CPA secure encryption scheme and let Π = (Setup, Prove, Verify) be a one-time, strong f -tSE NIZK
argument for the relation

Renc = { ( (m, r) , (pk, c) ) | c = Encpk(m; r) }.

where f(m, r) = m (i.e. the extractor only needs to extract the message m, but not the randomness r of
encryption). We show how to use E ,Π to construct an `-LR-CCA encryption scheme E∗.

Define E∗ = (KeyGen∗, Enc∗, Dec∗) by:

KeyGen∗(1λ): Output pk = (pk0, CRS), sk = sk0 where
(pk0, sk0)← KeyGen(1λ) , (CRS, TK, EK)← Setup(1λ).

Enc∗pk(m; r): Output C = (c, π) where c← Encpk0(m; r) , π ← ProveCRS((pk0, c), (m, r)).

Dec∗sk(C): Parse C = (c, π). If the argument π verifies output Decsk(c), else output ⊥.

Theorem 4.4. Assume that E is `-LR-CPA secure, and Π is a strong one-time f -tSE NIZK argument for the
relation Renc where, for any witness (m, r), we define f(m, r) = m. Then the scheme E∗ defined above is
`-LR-CCA secure.

The proof of Theorem 4.4 is given in Appendix A.3. We also note that, if the tSE NIZK construction allows
labels, than we can naturally extend our construction above to yield a `-LR-CCA encryption with labels, by
simply putting the encryption labels into the NIZK proofs (and using them to verify the proofs).
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4.4 True-Simulation f -Extractable (f -tSE) NIZK

Let f be any efficiently computable function, and let R(x, y) be an NP relation. We show how to con-
struct an f -tSE NIZK argument Ψ from any labeled CCA-secure encryption scheme, and (standard) NIZK
arguments. Let E = (KeyGen, Enc, Dec) be a CCA-secure encryption scheme supporting labels, and let
Π = (SetupΠ, ProveΠ, VerifyΠ) be an NIZK argument for the relation

RΠ = { ( (x, r) , (y, c, pk, L) ) | R(x, y) = 1 ∧ c = EncL
pk(f(x); r) }

We define f -tSE NIZK argument Ψ (supporting labels) as follows:

• Setup(1λ) : Output CRS = (CRSΠ, pk), TK = TKΠ, EK = sk where
(pk, sk)← KeyGen(1λ) , (CRSΠ, TKΠ)← SetupΠ(1λ).

• ProveL(x, y; r): Output ϕ = (c, π) where c← EncL
pk(f(x); r) , π ← ProveΠ((x, r), (y, c, pk, L)).

• VerifyL(y, ϕ): Parse ϕ = (c, π) and run VerifyΠ((y, c, pk, L), π).

Theorem 4.5. If E is a labeled CCA-secure encryption scheme and Π is an NIZK argument for relation RΠ,
then Ψ is a f -tSE NIZK argument for relation R.

The proof of Theorem 4.5 is given in Appendix A.4.

4.5 Comparison of Our Generic Constructions to Prior Work

The idea of using an SPR relation to construct a leakage-resilient hard relation was implicit in [4, 44], and
explicitly described in [5] for the case of leakage-resilient one-way functions.

Our constructions of leakage-resilient CCA encryption and signatures from tSE NIZKs bear significant
resemblance to prior constructions. In particular, we observe that an alternate construction of tSE NIZK to
that of Section 4.4, could be achieved by using a CPA-secure encryption scheme instead of a CCA-secure one,
and a ss-NIZK argument system [56] instead of a standard one. In fact, the resulting construction would yield
an any-simulation extractable (aSE) NIZK argument. This instantiation of aSE NIZKs is implicitly used by
[44], in their construction of leakage-resilient signature schemes. It is also used implicitly in the Naor-Yung
“double-decryption” paradigm [50, 56, 47] for CCA security, which was also later used in [49] to construct
leakage-resilient CCA-encryption. However, as we have seen, tSE is sufficient for constructing both leakage-
resilient signatures and CCA-encryption and thus, the stronger notion of aSE is not needed. Furthermore, given
the current state of efficient encryption schemes and NIZK, the difference in efficiency between ss-NIZK and
standard NIZK is significantly greater than the difference between CCA and CPA-secure encryption7, thus
making tSE superior in both simplicity and efficiency.

We note that our construction of tSE NIZKs (based on CCA encryption and standard NIZKs) was implicitly
used by [34] to construct signatures of group elements. It was also implicitly used by [13] to construct efficient
CCA-secure encryption scheme with key-dependent message (KDM) security out of a CPA version of such
scheme. Still, the abstraction of tSE has not been explicitly defined in prior work despite its apparent usefulness.

5 Instantiations
ASSUMPTIONS. We review several standard hardness assumptions on which we will base our constructions.

7Informally, the difference between CCA and CPA-secure encryption is only 2 group elements, whereas the size of a ss-NIZK proof
is more than twice the size of a standard NIZK proof.
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Decisional Diffie-Hellman (DDH). Let G be a group of primer order q. Let g1, g2
$←− G and r, r1, r2

$←− Zq.
The decisional Diffie-Hellman (DDH) assumption states that the following two distributions are computation-
ally indistinguishable: (G, g1, g2, g

r1
1 , gr2

2 ) and (G, g1, g2, g
r
1, g

r
2).

Let G1, G2, GT be groups of prime order q and let e : G1 × G2 → GT be a non-degenerate efficiently
computable bilinear map.

Symmetric External Diffie-Hellman (SXDH) [59, 10, 6, 29, 61]. The symmetric external Diffie-Hellman as-
sumption (SXDH) is that the DDH problem is hard in both groups G1 and G2. The assumption is clearly
invalid for symmetric pairings (when G1 = G2), but is believed to hold when there is no efficiently computable
mapping between G1 and G2.

K-Linear [40, 60] and DLIN [10]. Let G be a group of primer order q and let K ≥ 1 be constant. Let

g0, g1, . . . , gK
$←− G and x0, x2, . . . , xK

$←− Zq. The K-Linear assumption states that the following two distribu-
tions are computationally indistinguishable: (G, g0, g1, . . . , gK , gx1

1 , . . . , gxK
K , gx0

0 ), and (G, g0, g1, . . . , gK , gx1
1 , . . .,

gxK
K , gX

0 ), where X =
∑K

i=1 xi.

Note that for K = 1, the K-Linear is the same as DDH, and that it does not hold when working with
symmetric pairings. In that setting, the 2-Linear assumption is usually assumed to hold, and is often referred
to as the Decisional Linear (DLIN) assumption. Throughout this paper we assume the K-Linear assumption
holds in both G1 and G2, which is the case when working with symmetric pairings, and slightly abuse notation
when K = 1 and assume SXDH holds in that case.

OUR INSTANTIATIONS. We show efficient instantiations of the leakage-resilient signature and CCA-secure
encryption constructions described in Sections 4.2 and 4.3, respectively. For each scheme, we give two instan-
tiations based on bilinear maps: one secure under the symmetric external Diffie-Hellman (SXDH) assumption,
and a second, secure under the Decision Linear (DLIN) assumption. The first can be used with asymmetric
pairings, while the second applies to the case of symmetric pairings. We give details of all instantiations in
Appendix C but give a high-level idea below.

Signatures. Recall that in order to instantiate the signature scheme from Section 4.2, we need a leakage-
resilient hard relation R (which we will derive from an SPR relation) and a true-simulation extractable (tSE)
NIZK argument, which we build from CCA-secure encryption and a standard NIZK argument for the relation
{ ( (x, r) , (y, c, pk, L) ) | R(x, y) = 1∧ c = EncL

pk(f(x); r) }. We show our choice of instantiations for these
components:

• CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use efficient encryption
schemes in the style of Cramer-Shoup [17, 60].

• NIZK Argument: We use the Groth-Sahai proof system [36], which can be instantiated both under SXDH
and DLIN. See Appendix B for a brief description of the proof system.

• SPR Relation: Previous constructions of leakage-resilient primitives use the SPR function gx1
1 gx2

2 . . . gxn
n .

However, this function has the problem that the witness lies in the exponent. This means that we cannot
combine it with an encryption scheme for elements in G (unless each witness component is committed
bit by bit which, among other things, results in proofs growing linearly with the security parameter), and
unfortunately encryption schemes for messages in Zq cannot be combined with the Groth-Sahai system.
We therefore construct two new SPR relations based on pairing-product equations. For our SXDH in-
stantiation, we use the relation e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y, g̃), where g̃ is a generator of G2.
We prove that this relation is SPR under the SXDH assumption. In the DLIN case, we use the relation:
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e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y1, g) , e(~1, x1) e(~2, x2) . . . e(~n, xn) = e(y2, g), where g is a
generator of G. We prove that this relation is SPR under the DLIN assumption.

To achieve (1− ε)|sk| leakage resilience, we let n (the number of witness components) in the SPR relation
be inversely proportional to ε.

Theorem 5.1. Let G1, G2 be groups of primer order q. For any ε > 0, there exists a (1 − ε)|sk|-leakage
resilient signature scheme, secure under the SXDH assumption, using signatures consisting of (9/ε)(1 +
ω(log λ)/ log q) + 24 group elements and 2 elements in Zq. Similarly, for any ε > 0, there exists a (1 −
ε)|sk|-leakage resilient signature scheme, secure under the DLIN assumption, using signatures consisting of
(19/ε)(2 + ω(log λ)/ log q) + 70 group elements and 6 elements in Zq.

CCA-Secure Encryption. Recall that for leakage-resilient encryption, we need leakage-resilient CPA-secure
encryption, standard CCA-secure encryption and strong tSE NIZK, which we can get from combining regular
tSE NIZK with a strong one-time signature. We build regular tSE NIZK from CCA-secure encryption and
regular NIZK. We describe our choices for each of these below.

• LR-CPA-Secure Encryption: We construct a new leakage-resilient CPA-secure encryption scheme for
our purpose in the style of ElGamal (similar to ones used in [49, 13] but making it more efficient).

• CCA-Secure Encryption: Under both the SXDH and DLIN assumptions, we use efficient encryption
schemes in the style of Cramer-Shoup [17, 60].

• NIZK Argument: We use the Groth-Sahai proof system [36], which can be instantiated both under SXDH
and DLIN. See Appendix B for a brief description of the proof system.

• One-Time Signature: We observe that any strong one-time signature secure under these assumptions can
be used. Here, we opt for the scheme of [34], secure under the Discrete Log assumption (implied by both
SDXH and DLIN), because its signature size is small, namely 2 elements in Zq.

The leakage that our new CCA-secure encryption tolerates is the same as the leakage for the CPA-secure
scheme. Informally, we achieve (1 − ε)|sk| leakage resilience in the CPA-secure scheme by increasing the
number of generators used in the public key and ciphertext. This number will be inversely proportional to ε.

Theorem 5.2. Let G1, G2 be groups of primer order q. For any ε > 0, there exists a (1−ε)|sk|-leakage resilient
encryption scheme, secure under the SXDH assumption, using ciphertexts consisting of (2/ε)(2+λ/ log q)+15
group elements and 2 elements in Zq. Similarly, for any ε > 0, there exists a (1 − ε)|sk|-leakage resilient
encryption scheme, secure under the DLIN assumption, using ciphertexts consisting of (3/ε)(3+λ/ log q)+34
group elements and 2 elements in Zq.

6 Other Applications
6.1 Leakage-Resilient ID Schemes

Recall that, in an identification scheme, an honest prover chooses a public/secret key pair (pk, sk) and publishes
pk. An identification scheme is a protocol in which the prover uses sk to identify herself to a verifier that only
knows pk. The security property of an identification scheme considers an adversaryA that acts in two stages: a
learning stage and an impersonation stage. In the learning stage, A repeatedly interacts with the honest prover
while taking the role of a malicious verifier in an attempt to learn some non-trivial information about sk. In the
impersonation stage, the honest prover “goes away” and A attempts to impersonate the prover’s identity to an
honest verifier. We say such a scheme is secure if the adversary has only a negligible probability of succeeding
in the impersonation stage.

13



Leakage-resilient identification schemes were first studied and constructed in [4]. Two distinct notions of
leakage-resilience were considered: pre-impersonation leakage and anytime leakage. In the former notion, the
attacker can only get leakage on the secret key during the learning stage, while in the latter notion, the adversary
might also get some additional leakage during the impersonation stage, possibly after seing some “challenges”
from the verifier (see [4] for formal definitions). It was shown in [4] that the Okamoto identification scheme
[51], and in fact any Σ-Protocol for an SPR hard-relation, is leakage-resilient. Moreover, for any ε > 0, there
is a generalization of the Okamoto ID scheme which is (1 − ε)|sk|-leakage-resilient for pre-impersonation
leakage. Unfortunately, due to the rewinding nature of the security proof, the scheme was only shown to be
(1/2− ε)|sk|-leakage-resilient for anytime leakage.

We recall that a simple, well-known, identification-scheme based on signatures consists of the verifier
choosing a random message m and the prover replying with Signsk(m) which the verifier validates using pk.
It is easy to see that this scheme is leakage-resilient in the anytime leakage setting as long as the signature
scheme is leakage-resilient (with the same bound `). Therefore, using our (1 − ε)|sk|-LR signature schemes
from Section 5 we get an efficient identification scheme with optimal leakage-resilience in the anytime leakage
model.

Theorem 6.1. There exists a construction of `-LR identification schemes w.r.t. anytime leakage from any `-LR
signature scheme, preserving the public-key size, secret-key size, and efficiency of the underlying signature.

Interestingly, another well-known identification-scheme based on CCA-encryption, consists of the verifier
encrypting a random message m and sending c = Encpk(m) to the prover who decrypts and replies with m.
Although this scheme seems secure w.r.t. pre-impersonation leakage if the encryption scheme is LR-CCA
secure, it does not seem secure w.r.t. anytime leakage, since, in this setting, the leakage on the encryption
secret-key can depend on the ciphertext.

6.2 Leakage-Resilient Authenticated Key Agreement

Using our leakage-resilient signature scheme from Section 4.2 and our leakage-resilient CCA-secure encryption
scheme from Section 4.3 (and instantiating them as described in Appendix C), we construct two (1 − ε)|sk|-
leakage resilient authenticated key agreement (AKA) schemes. We prove perfect forward security in the
unauthenticated-links model. We refer the reader to [15, 4] for a detailed description of the model and def-
initions of security, but give a high level idea of the problem and solution below.

MODEL AND SECURITY DEFINITIONS. We consider the problem of two parties, Alice and Bob, who need
to establish a shared cryptographic key in the presence of an adversary, and want to have the guarantee that
the privacy of such key is conserved. At the same time, Alice wants to be sure that she has exchanged a
key with Bob, and similarly, Bob wants to be sure that he has indeed exchanged a key with Alice (and not
an adversarial third party). In the leakage setting, the adversary is a “man-in-the-middle” attacker that has
the power to learn arbitrary information about Alice’s and Bob’s long-term secrets skA, skB . We model this
by giving the adversary access to leakage oracles Oλ,`

skA
,Oλ,`

skB
, which he can access before the key-agreement

execution but not during. The adversary is also able to observe (and possibly intervene in) key exchanges
between Alice and/or Bob, and other parties. Our constructions satisfy the notion of perfect forward security,
which guarantees that the privacy of a key is conserved even if the adversary learns the entire long-term secret
keys skA, skB after the exchange had been completed and the key has been deleted from memory.

OUR CONSTRUCTIONS. Our first construction follows from directly applying the general result of [4], who
show that any leakage-resilient signature scheme is sufficient to achieve leakage-resilient AKA. The protocol
eSig-DH of [4] is simply the (passive) Diffie-Hellman key agreement, authenticated with a signature scheme:
a party authenticates to his peer by signing the message he received from him. Our second construction of
leakage-resilient AKA (shown in Figure 1) is based on leakage-resilient CCA-secure encryption. This new
protocol, which we refer to as Enc-DH, is a modification of the Diffie-Hellman key agreement protocol, in which
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both parties authenticate to each other by correctly decrypting a ciphertext encrypted with their corresponding
public key. Intuitively, this achieves authentication since given a ciphertext encrypted under a certain public
key, only the party in possession of the corresponding secret key is able to correctly decrypt the ciphertext.

Our second construction also satisfies deniability. Informally, this means that without knowing the long-
term secrets of the parties participating in an execution of the protocol, it is possible to simulate a transcript of
the execution that is computationally indistinguishable from the real transcript. We do not formalize the notion
of deniability here, but it is easy to see that simulating a transcript of an Enc-DH execution can be achieved by
simply choosing all internal state variables and encrypting them using the parties’ public keys. Notice that AKA
schemes that use signatures (in particular, the eSig-DH construction of [4]) do not satisfy deniability, since we
cannot “simulate” a signature without knowing the signing key (which is the long-term key of the protocol).

The protocol Enc-DH can also be used in the leakage-free setting using standard (not necessarily leakage-
resilient) CCA-secure encryption. To the best of our knowledge this construction is new and is therefore of
independent interest.

Theorem 6.2. Let E = (KeyGen, Enc, Dec) be an `-leakage resilient CCA-secure encryption scheme sup-
porting labels. Then Enc-DH is an `-SK-secure key agreement protocol with perfect forward security in the
unauthenticated-links model under the DDH assumption.

We notice that both eSig-DH and Enc-DH preserve the leakage-tolerance of the underlying signature and
encryption scheme, respectively. Thus, plugging in our (1 − ε)|sk|-leakage resilient signature scheme into
eSig-DH and our (1−ε)|sk|-leakage resilient CCA-secure encryption scheme into Enc-DH yields two different
constructions of (1 − ε)|sk|-leakage resilient AKA. As described above, the latter construction also satisfies
deniability.
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A Proofs of Theorems
A.1 Hard Relations

Before proving Theorem 4.2, we write a couple of definitions and a lemma that we will use in the proof.

Definition A.1 (Min-Entropy). The min-entropy of a random variable X , denoted as H∞(X) is:
H∞(X) = − log(maxx Pr[X = x]).

Definition A.2 (Average-Conditional Min-Entropy [22]). The average-conditional min-entropy of a random
variable X conditioned on Z, denoted as H̃∞(X|Z) is:

H̃∞(X|Z) = − log
(
Ez←Z

[
max

x
Pr[X = x|Z = z]

])
= − log

(
Ez←Z

[
2H∞[X|Z=z]

])
Lemma A.3 ([22]). Let X, Y, Z be random variables where Z takes values in a set of size at most 2`. Then
H̃∞(X|(Y, Z)) ≥ H̃∞((X, Y )|Z)− ` ≥ H̃∞(X|Z)− `, and in particular, H̃∞(X|Y ) ≥ H∞(X)− `

We now proceed to prove Theorem 4.2.

Proof of Theorem 4.2: We assume, for the sake of contradiction, that there exists an adversaryA that succeeds
in breaking the security of leakage-resilient hard relation R with non-negligible probability ε. We construct B
that breaks the security of the SPR relation with non-negligible probability.

On input (x, y), B emulates A on input y, responds to A’s leakage queries using x. When A eventually
outputs x∗, B also outputs x∗.

We know that Pr[R(x∗, y) = 1] = ε but we need to compute Pr[x∗ 6= x] since B only breaks the SPR
property if x∗ 6= x. Notice that:

Pr[B succeeds] = Pr[A succeeds ∧ x 6= x∗] ≥ Pr[A succeeds]− Pr[x = x∗] = ε− Pr[x = x∗]

Notice that the only information that A has about x comes from y and the leakage queries. Let X, Y be the
random variables for x, y respectively, and let Z be the random variable for the total leakage learned by A.
Then H̃∞(X|(Y, Z)) ≥ H̃∞(X|Y )− ` and

Pr[x = x∗] ≤ 2− eH∞(X|Y )+` = 2−Havg(R)+`.

Assuming that ` ≤ Havg(R)−ω(log(λ)) we have that Pr[B succeeds] ≥ ε−2−ω(log(λ), which is non-neglibible.

A.2 Signatures

Proof of Theorem 4.3: Consider the following series of games.

Game 0: This is the leakage-resilient game in Definition 2.2. Let (m∗, σ∗ = ϕ∗) be the message/signature pair
that A outputs.

Game 1: We change the signing oracle in the way it answersA’s queries. Instead of giving a valid argument ϕ,
it answers query m with a simulated proof Sim(TK, y,m). Game 0 and Game 1 are indistinguishable by
the zero-knowledge of Π. Notice that the simulated arguments given to A as answers to leakage queries
are always of true statements. As in the previous game, the winning condition is that A produces a valid
forgery (m∗, σ∗), i.e. Verifym∗

(y, σ∗) = 1 and m∗ was not part of a signature query.

Game 2: We change the winning condition: we say that A wins iff it produces a valid forgery (m∗, σ∗) and
R(z∗, y) = 1 where z∗ ← Extm∗

(y, ϕ∗, EK). Game 1 and Game 2 are indistinguishable by the true-
simulation extractability of Π.
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We have proven that |Pr2[A wins] − Pr0[A wins]| ≤ negl(λ). We need to show that Pr2[A wins] ≤
negl(λ). But notice that if Pr2[A wins] is non-negligible then this violates the security of the leakage-resilient
hard relation R. In other words, we can create an adversary B that on input y, generates (CRS, TK, EK) ←
Setup(1λ) and emulates A on input pk ← (CRS, y). B answers A’s leakage queries using the leakage oracle
Oλ,`

sk (·) and answers signing queries mi by creating simulated arguments Sim(TK, y,mi). Eventually, A will
output a forgery (m∗, σ∗ = ϕ∗). B runs Extm∗

(y, ϕ∗, EK) → z∗ and outputs z∗. Notice that the probability
that B outputs z∗ such that R(z∗, y) = 1 (thus breaking the hardness of R) is exactly Pr2[A wins]. Therefore,
we must have that Pr2[A wins] ≤ negl(λ).

A.3 CCA-Secure Encryption

Proof of Theorem 4.4: We do a series of games argument to prove the above theorem. The games are all
variants of the `-LR-CCA game, and in all of the games, the adversary gets correctly generated pk = (pk∗, CRS)
and adversarial leakage queries are answered using the correctly generated secret key sk. The games will
differ in how the challenge ciphertext C is generated, and how the challenger answers decryption queries of
ciphertexts C̃i = (c̃i, π̃i).

Game 1: This is the original `-LR-CCA attack game (in definition 2.3) against the scheme E∗ where the chal-
lenge ciphertext and the decryption queries are generated/answered correctly. In other words:

Challenge: c← Encpk(mb; r), π ← ProveCRS( (pk, c) , (m, r)). Decrypt using: Decsk(c̃i).

where mb is one of the messages m0,m1 chosen by the adversary, and b is chosen randomly by the
challenger.

Game 2: In this game the CRS for Π is generated together with a simulation trapdoor TK and the arguments π
are simulated using SimTK(pk, c) so that:

Challenge: c← Encpk(mb; r), π ← SimTK(pk, c). Decrypt using: Decsk(c̃i).

Games 1 and 2 are indistinguishable by the NIZK property of the argument Π.

Game 3: In this game the CRS for Π is generated together with a simulation trapdoor TK and an extraction trap-
door EK. The decryption queries C̃i = (c̃i, π̃i) are answered by running the extractor on the arguments
π̃i to extract f(mi, ri) = mi.

Challenge: c← Encpk(mb; r), π ← SimTK(pk, c). Decrypt using: Ext((pk, c̃i), π̃i, EK).

Games 2 and 3 are indistinguishable by the strong one-time true-simulation f -extractability of Π. This
is because the adversary only gets a single simulated argument of a true statement (pk, c), and therefore
cannot produce any new statement, argument pair (c̃i, π̃i) 6= (c, π) for which the argument π̃i verifies but
the extractor fails to extract the correct mi.

Game 4: In this game, the challenge ciphertext c is generated by encrypting the message 0 8 so that:

Challenge: c← Encpk(0; r), π ← SimTK(pk, c). Decrypt using: Ext((pk, c̃i), π̃i, EK).

Games 3 and 4 are indistinguishable by the `-LR CPA security of E . Recall that leakage queries are
always answered using sk and so we need to rely on leakage-resilience here. However, CPA security
now suffices since the decryption secret-key sk is never used otherwise in Games 3,4.

Notice that Game 4 is completely independent of the challenger’s bit b, and hence the advantage of any ad-
versary in Game 4 is exactly 0 (the probability of guessing b is exactly 1

2 ). Therefore, the advantage of any
adversary in Game 0 must be at most negl(λ), since the games are indistinguishable, which concludes the
proof.

8. . . or any fixed message in the message domain
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A.4 True-Simulation f -Extractable (f -tSE) NIZK

Proof of Theorem 4.5: Correctness and soundness follow from the correctness and soundness properties of Π.
We show that the zero-knowledge and true-simulation extractability hold as well.

Zero-Knowledge. We construct Sim as follows: On input (TK, y) and label L, Sim lets c ← EncL(0) and
π ← SimΠ(y, c, pk, L), and outputs ϕ = (c, π). By the CCA-security of E and the zero-knowledge of Π, we
have that the distribution of a simulated argument SimL(TK, y) is computationally indistinguishable from a real
argument ProveL(x, y; r).

True-Simulation Extractability. We construct Ext as follows: On input (y, ϕ = (c, π), EK = sk) and label
L, Ext lets x← DecL

sk(c) and outputs x. Consider the following sequence of games:

Game 0: This is the game described in Definition 3.1. Let (x1, y1), . . . , (xq, yq) be P ∗’s simulation queries,
and let (y∗, L∗, ϕ∗ = (c∗, π∗)) be the output of P ∗. Note that the challenger uses xj only to check
R(xj , yj); in other words, the answer ϕj = (cj , πj) to query (xj , yj , Lj) is a simulated argument and
therefore contains an encryption of 0 (not of f(xj)).

Game 1.i (for i = 1, . . . , q): We change the simulation oracle so that in Game 1.i, for j ≤ i the oracle answers
query (xj , yj , Lj) as follows: if R(xj , yj) = 0 the challenger returns ⊥ as before, but if R(xj , yj) = 1
it lets cj ← EncLj (xj) and πj ← SimΠ(yj , cj , pk, Lj), and outputs ϕj = (cj , πj). Games 0 and 1.1,
and Games 1.i and 1.(i + 1) for i = 1, . . . , q − 1 are indistinguishable by the CCA-security of E . This is
because if adversary A can distinguish between them, we could construct adversary B that given pk runs
(CRSΠ, TKΠ, EKΠ) ← SetupΠ(1λ) and emulates A on CRS = (pk, CRSΠ). Notice that we need to rely
on the stronger notion of CCA-security (instead of CPA-security) since B needs to decrypt the ciphertext
c∗ from A’s output in order to extract a value z∗ and check the f -tSE winning condition.

Game 2: We change the simulator oracle so that the challenger answers query (xj , yj , Lj) as follows: if
R(xj , yj) = 0 the challenger returns ⊥ as before, but if R(xj , yj) = 1 it lets cj ← EncLj (f(xj)) and
πj ← ProveΠ(xj , (yj , cj , pk, Lj)), and outputs ϕj = (cj , πj). Games 2 and 1.q are indistinguishable by
the zero-knowledge of Π.

Notice that if adversary A wins Game 2, then it must be the case that VerifyL∗
(y∗, ϕ∗) = 1. But if this

is the case then by soundness of Π we have that with high probability R(x∗, y∗) = 1. Otherwise, we could
construct an adversary B that on input CRSΠ, computes (sk, pk) ← KeyGen(1λ) and emulates A on CRS =
(pk, CRSΠ), answering simulation queries by encrypting f(xj) and running ProveΠ(xj , (yj , cj , pk, Lj)) on its
own. When A eventually outputs (y∗, L∗, ϕ∗ = (c∗, π∗)), B outputs ϕ∗. Since we assume that Π is sound, we
must have that Pr2[A wins] ≤ negl(λ) and it follows that Pr0[A wins] ≤ negl(λ). This concludes the proof
of the theorem.

A.5 Authenticated Key Agreement

We prove that the AKA protocol Enc-DH in Figure 1 has perfect forward security in the unauthenticated-links
model. We refer the reader to [15, 4] for a detailed description of the model and definitions of security, but give
a high level idea of the problem and solution below.

MODEL AND SECURITY DEFINITIONS. We prove security in the unauthenticated-links model with erasures
of [15] (with the modifications of [4]), where we consider a “man-in-the-middle” adversary that plays against
concurrent sessions of the protocol between n players P1, . . . ,Pn. We allow the adversary to schedule the start
of each session and determine its participants. We also give the adversary the power to corrupt players, perform
leakage queries on their long-term secrets (via n leakage oracles Oλ,`

ski
), and learn their ephemeral states. The
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Public Parameters: G be a DDH group with generator g and order q.
Common Input: public keys (pki, pkj) for encryption

Initiator Pi(ski) Responder Pj(skj)

a
$←− Zq, α = ga

Ci = EncPi

pkj
(α)

register session (Pj , α)
Pi, Ci

−−−−−−−−−−−−−−−−−−−−→

Pi,Pj , Cj

b
$←− Zq, β = gb

α̂ = DecPi

skj
(Ci)

Cj = Enc
Pi,Pj

pki
(α̂, β)

register session (Pi, α̂, β)
←−−−−−−−−−−−−−−−−−−−−

(α̂, β̂) = Dec
Pi,Pj

ski
(Cj)

output peer = Pj , sid = (α, β̂),
output session key γi = β̂a

delete a Pi, β̂
−−−−−−−−−−−−−−−−−−−−→

mark session complete output peer =Pi, sid =(α̂, β)
output session key γj = α̂b

delete b
mark session complete

Sanity Checks:
• If Pi receives a round-2 message (Pi,Pj , Cj) where DecPi,Pj

ski
(Cj) = (α̂, β̂) but has not registered a session

(Pj , α̂) then Pi ignores the message. Similarly, if Pj receives a round-3 message (Pi, β̂) but has not registered
a session (Pi, β̂) then Pj ignores the message.

• If Pj receives a round-1 message (Pi, Ci) and the decryption of Ci fails then Pj ignores the message. Simi-
larly, ifPi receives a round-2 message (Pi,Pj , Cj) and the decryption of Cj fails thenPi ignores the message.

Figure 1: Protocol Enc-DH

goal of the adversary is to learn the session key for a test session of its choice, performed between players
Pi and Pj , also chosen by the adversary. We do not allow the adversary to corrupt Pi,Pj or to learn their
ephemeral states during the test session, as this compromises the underlying Diffie-Hellman key agreement
protocol. In terms of leakage, we require that before the test session, the adversary learns at most ` bits of
information from leakage queries, and does not perform any leakage queries during the test session.

Enc-DH also satisfies perfect forward security, which guarantees that the privacy of a session key is con-
served even if the adversary learns the entire long-term secret keys of the participating parties after the session
is complete and the session key has been deleted from their memory.

Proof of Theorem 6.2: To prove that the construction in Figure 1 is an `-leakage resilient authenticated key
agreement scheme, we prove that it satisfies the completeness and privacy properties.

Completeness: Consider two uncorrupted parties Pi,Pj . If their two sessions are matching, we have that
(α̂, β) = (α, β̂) and so α̂ = α and β̂ = β. Therefore γi = βa = gab and γj = αb = gab.

Privacy: We follow the approach of [4]. Let A be an adversary attacking Enc-DH and consider the
following two cases:

1. There is a non-negligible probability that in a winning test session A produces a round-2 or round-3
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message that passes the sanity check performed by the owner (thus allowing A to impersonate the peer
and learn the owner’s session key).

2. There is a negligible probability that in a winning test sessionA produces a round-2 or round-3 message
that passes the sanity check performed by the owner.

In the first case, we prove that the privacy of Enc-DH reduces to the CCA-security of E . In the second case,
we prove that the privacy of Enc-DH, reduces to the DDH assumption.

Claim A.4. LetA be an adversary attacking Enc-DH. If there is a non-negligible probability ε that in a winning
test session A produces a round-2 or round-3 message that passes the sanity check performed by the owner
(therefore breaking the privacy of Enc-DH), then there exists an attacker B1 that breaks the CCA-security of E
with probability polynomial in ε.

Proof. Let Q be an upper bound on the number of sessions started by A1. We construct B1 breaking the
CCA-security of E .

• B1 receives pk from the CCA challenger, chooses r
$←− [1, Q] and P $←− {P1, . . . ,Pn} (it guesses that the

rth session will be the test session and that P will be the peer).

• B1 runs A1 against {P1, . . . ,Pn} with the modification that it publishes pk for P and uses the CCA
decryption oracle to decrypt incoming messages, and the CCA leakage oracle to answer leakage queries
about sk.

• If the rth session is not the test session or P is not the peer, then B1 halts. Otherwise, we consider two
cases:

– If P is the responder: B1 chooses α0, α1
$←− Zq and sends them to the CCA challenger along with

label Pi, and receives the challenge ciphertext c∗ = EncPi(αb). It sends c∗ as the round-1 message
and receives α̂ as part of the round-2 message. (Notice that B1 knows ski so it is able to decrypt the
ciphertext sent in round-2). B1 outputs b̂ such that α̂ = αb̂.

– If P is the initiator: B1 receives round-1 message containing α̂ and chooses β0, β1
$←− Zq. It

sends (α̂, β0), (α̂, β1) to the CCA challenger along with label (Pi,Pj), and receives the challenge
ciphertext c∗ = EncPi,Pj (α̂, βb). It sends c∗ as the ciphertext in round-2, and receives β̂ as part of
the round-3 message. B1 outputs b̂ such that β̂ = βb̂.

We now analyze the probability that B1 succeeds in guessing b (the probability that b̂ = b). Let E be the
event that in a winning test session A produces a round-2 or round-3 message that passes the sanity check
performed by the owner. By assumption, Pr[E] = ε. Let E1 be the event that E occurs, the rth session is the
test session and P is the peer. Then Pr[E1] = ε/Qn.

Conditioning on E1 gives that the message sent by A is the correct decryption of the ciphertext sent by
the owner (since E1 implies that the owner’s sanity check passed). In other words, if P is the responder then
α̂ = Dec(c∗) and if P is the initiator then β̂ = Dec(c∗). Therefore, if E1 occurs then B1 breaks the CCA-
security of E . This happens with probability ε/Qn which is polynomial in ε.

Claim A.5. Let A be an adversary attacking Enc-DH. If there is a negligible probability that in a winning
test session A produces a round-2 or round-3 message that passes the sanity check performed by the owner,
and A breaks the privacy of Enc-DH with probability ε, then there exists an attacker B2 that breaks the DDH
assumption with probability polynomial in ε.

Proof. We construct B2, which on input (α∗, β∗, γ∗) determines whether or not it’s a DDH tuple.
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• B2 chooses r
$←− [1, Q] (it guesses that the rth session will be the test session).

• If the rth session is not the test session then B2 halts. Otherwise, it sends EncPi
pkj

(α∗) as the round-3

message, and Enc
Pi,Pj

pki
(α̂, β∗) as the round-2 message.

• B2 gives γ∗ to A as the challenge session key, and outputs according to A’s output.

Let E be the event that in a winning test session A produces a round-2 or round-3 message that passes
the sanity check performed by the owner. By assumption, Pr[E] ≤ negl(λ). Let E1 be the event that the test
session is the rth session and the execution is winning. Then Pr[E1] = ε/Q. We have that Pr[E1 ∧ ¬E] =
Pr[E1]− Pr[E1 ∧ E] ≥ ε/Q− Pr[E] ≥ ε/Q− negl(λ).

Conditioning on the event E2 = E1 ∧ ¬E, gives that sid = (α∗, β∗) and so if (α∗, β∗, γ∗) is a DDH tuple,
then the challenge key presented toA is the real session key. Otherwise, the challenge key is a random element
in G. Therefore, if E2 occurs then B2 breaks DDH (since E2 implies that the execution is winning), and this
happens with probability at least ε/Q− negl(λ), which is polynomial in ε.

To prove perfect forward security, notice that if an adversary A learns the decryption keys of one or both
parties at some point after the session is complete, then the only information it can learn is the decryption of
the ciphertexts interchanged during the session. In particular, the only “new” information that A learns is α,
and so A only knows α and β. By the DDH assumption, we know that given only this information A cannot
learn the session key γ. This concludes the proof of Theorem 6.2.

B The Groth-Sahai (GS) Proof System

In this section, we review the NIZK proof system of Groth and Sahai [36] for proving that a system of equations
is satisfiable. We give details for the type of equations used in this paper, i.e. pairing-product (one-sided in the
DLIN case) and one-sided multi-exponentiation. For full details and more general form of these types refer to
[36]. In fact, we use the system as a NIZK argument system, achieving only computational soundness. This can
be done by running all the algorithms with a simulated CRS. Note that in the GS proof system, there are two
types of CRS and those are computationally indistinguishable: one (called real) gives perfectly sounds proofs
and another (called simulated) yields perfect witness indistinguishable proofs, which could in many cases be
transformed into zero-knowledge proofs.

When working under the K-Linear assumption (K = 1 for the SXDH assumption and K = 2 for the DLIN
assumption), the common reference strings for the proof system Π consists of ~u0, ~u1, . . . , ~uK , ~u. Regardless
of whether the CRS is real or simulated, ~ui = (u0, 1, . . . , 1, ui, 1, . . . , 1), i = 1, . . . ,K, where u0, . . . , uk are
randomly chosen group elements in G∗1. Let’s denote with U the span(~u1, . . . , ~uK); note that (g, 1, . . . , 1) 6∈ U.

For the real CRS, which yields perfectly sound proofs, ~u0
$←− U and ~u

$←− GK+1
q \U. When the CRS is simulated,

~u0
$←− GK+1

1 \U and ~u
$←− U. In the case of asymmetric pairings, i.e. in the SXDH setting, another set of

vectors ~v0, ~v1, . . . , ~vK , ~v ∈ GK+1
2 is defined analogously for randomly chosen v0, . . . , vn ∈ G∗2. Although for

symmetric pairings we use only one-sided equations and a second set of vectors is not needed, we set ~v = ~u
and ~vi = ~ui, i = 0, . . . ,K, and use the two sets of vectors interchangeably for consistent notation (in the two
settings).

To commit to a witness member x ∈ G2, choose a random ~s = (s0, s1, . . . , sK) $←− ZK+1
q and compute

~δx ← ComΠ(x;~s) = (x, 1, . . . , 1)
∏K

j=0 ~v
sj

j , where vector multiplication is defined component-wise. To

commit to a witness χ ∈ Zq, for equations in G2, select ~t = (t1, . . . , tK) $←− ZK
q , and compute ~γχ ←

ComΠ(χ;~t) = ~uχ
∏K

j=1 ~u
tj
j .
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The GS proof system gives a proof for a set of equations being satisfiable by committing to each witness
component separately and computing corresponding proof elements for each of the equations. Next we de-
scribed how those proof elements are computed for each type of equations and how the satisfiability of the
equations is verified; some of the notation is borrowed from [13].

One-sided Multi-exponentiation Equations

For an equation of the following type:
g0 = gχ1

1 gχ2
2 . . . gχn

n

where g0, . . . , gn ∈ G2 are constants (one could view an equation being described by those constants) and
χ1, . . . , χn ∈ Zq are variables (the witness for which the equation is satisfiable), the proof elements are
p1, . . . , pK :

pj =
n∏

i=1

g
tij
i , j = 1, . . . ,K,

where ~ti is the randomness used to commit to χi, i.e. ~γχi = ComΠ(χi; ~ti).
When verifying a proof, for each equation g0 = gχ1

1 gχ2
2 . . . gχn

n the verifier checks that the proof elements
corresponding to the equation and the commitments satisfy

n∏
i=1

E(~γi, gi) = E(~u, g0)
K∏

j=1

E(~uj , pj),

where E : GK+1
1 ×G2 → GK+1

T , sending ((α0, . . . , αK), β) to (e(α0, β), . . . , e(αK , β)), is a bilinear map.
The proofs for multi-exponentiation equations are zero knowledge (ZK). The size of a proof for set of S

such equations being satisfiable with a witness of size N is (K + 1)N + KS group elements. Note again that
K = 1 when working under the SXDH and K = 2 under DLIN.

(One-sided) Pairing Product Equations

For an equation
n∏

i=1

e(hi, xi) = T

where h1, . . . , hn ∈ G1 and T ∈ GT are constants and x1, . . . , xn ∈ G2 are variables, the proof elements
p0, . . . , pK :

pj =
n∏

i=1

h
sij

i , j = 0, . . . ,K,

where ~si is the randomness used to commit to xi, i.e. ~δxi = ComΠ(xi; ~si). When verifying a proof, for each
equation

∏n
i=1 e(hi, xi) = T the verifier checks that the proof elements corresponding to the equation and the

commitments satisfy
n∏

i=1

E(hi, ~δi) = (T, 1, 1, . . . , 1)
K∏

j=0

E(pj , ~vj),

where E : G1 ×GK+1
2 → GK+1

T , sending (α, (β0, . . . , βK)) to (e(α, β0), . . . , e(α, βK)), is a bilinear map.
These proofs are only witness indistinguishable (WI), and for a set of S pairing product equations satisfiable

with a witness of size N , the proof size is (K + 1)(N + S).
When representation of T as a pairing product is know it could be transformed into ZK [36] but resulting

in somewhat larger proofs. However, in our case T−1 = e(h0, x0) where both h0 and x0 are constants. So,
we could transform the above equation into an equation

∏n
i=0 e(hi, xi) = 1 and give a WI proof accordingly
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treating x0 as a part of the witness. Then, we produce a second commitment of ~δ′x0
= ComΠ(x0; ~s′0), include its

randomness ~s′0 and a NIZK proof that ~δx0 and ~δ′x0
are commitment to the same message using a set of one-sided

multi-exponentiation equations. This way, when the simulator has to produce a ZK proof for the equation, it
samples any (x′1, . . . , x

′
n) along with the appropriate x′0, and gives a simulated proof that ~δx0 = ComΠ(x′0; ~s0)

and ~δ′x0
= (x0; ~s′0) are commitments to the same message. That results in additional 2(K +1)2 group elements

and (K + 1) Zq-elements per equation to achieve ZK. (The count is as follows: (K + 1) group elements for
~δx0 , (K + 1) Zq-elements for ~s′0, (K + 1)2 group elements for the commitments to each component of ~s0, and
K(K + 1) group elements for the NIZK proof of ~δ′x0

and ~δ′x0
being commitments of the same value (using

(K + 1) one-sided multi-exponentiation equations).
So, under DLIN we get ZK proofs of size 3N + 21S elements in G and 3S elements in Zq for a set of S

equations being satisfiable with a witness which has size N .
In the SXDH setting, the equation is no longer one-sided as T = e(y, g̃) and y ∈ G1 whereas xi ∈ G2.

However, we could still apply the idea of treating y as a part of the witness and computing a second commitment
~γ′y = ComΠ(y; ~s′y), and then showing that the commitments ~γy and ~γ′y are commitments of the same message.
According to [36], the WI GS proofs under SXDH are of size 2N +8S for a set of S equations being satisfiable
and the witness being of size N . Combining this with the extra group elements we need per equations to
achieve ZK, we get proofs of size 2N + 16S elements in either group and 2S elements in Zq when working
under SXDH.

C Instantiations
C.1 Preliminaries
A NOTE ON NOTATION. We follow the notation of [13]: for ~g = (g1, g2, . . . , gn) ∈ Gn and ~x = (x1, x2, . . . , xn) ∈
Zq we define:

〈~g, ~x〉 := gx1
1 . . . gxn

n

When we write
∏n

i=1 ~gi ∈ Gn for vectors ~gi ∈ Gn, we mean the component-wise product of each of the n
terms.

CCA-SECURE ENCRYPTION BASED ON K-LINEAR. In our instantiations of both leakage-resilient signa-
tures and CCA-secure encryption, we will need to use a (standard) CCA-secure encryption scheme. Since our
instantiations are based on the K-Linear assumption, we will use the Linear Cramer-Shoup encryption scheme
from [60], modified to support labels as in [13]. We review it here. We use the paradigm of [7] to transform it
into a multi-message randomness-reuse encryption scheme, which we further optimize by reusing the consis-
tency ciphertext element. Let G be a group of prime order q, and let H : {0, 1} → Zq be a collision resistant
hash function. The label space is {0, 1}∗.

• KeyGen(1λ) :

1. Choose g0, g1, . . . , gK
$←− G and choose ~x1, . . . , ~xN , ~y, ~z

$←− ZK+1
q .

2. Define vectors ~g1, . . . , ~gK ∈ GK+1 as follows:

~g1 = (g0, g1, 1, . . . , 1, 1), ~g2 = (g0, 1, g2, 1, . . . , 1, 1), . . . , ~gK = (g0, 1, . . . , 1, gK)

3. For i = 1, . . . ,K and j = 1, . . . , N : let dji ← 〈~gi, ~xj〉, ei ← 〈~gi, ~y〉, fi ← 〈~gi, ~z〉

4. Ouput sk = ( ~x1, . . . , ~xN , ~y, ~z) and pk = ({gi}Ki=0, {dji}K,N
i=1,j=1, {ei}Ki=1, {fi}Ki=1)

26



• EncL
pk(~m = (m1, . . . ,mN )) : Pick ~r

$←− ZK
q . For i = 1, . . . ,K: define ~gi as in KeyGen. Output

~c = (~g, a1, . . . , aN , b) =

(
K∏

i=1

~gi
ri ,m1 ·

K∏
i=1

dri
1i, . . . ,mN ·

K∏
i=1

dri
Ni,

K∏
i=1

(eif
t
i )

ri

)
,

where t = H(~g, a1, . . . , aN , L)

• DecL
sk(c = (~g, a1, . . . , aN , b, )) : Let t ← H(~g, a1, . . . , aN , L). If b 6= 〈~g, ~y + t~z〉, output ⊥. Else, for

j = 1, . . . , N , let mj ← aj/〈~g, ~xj〉.

Notice that for K = 1, the encryption scheme described above is the Cramer-Shoup (multi-message
randomness-reuse) encryption scheme.

C.2 Leakage-Resilient Signatures

In order to efficiently instantiate the construction in Section 4.2, we need to give an SPR relation R, a CCA-
secure encryption scheme, and an efficient NIZK argument for relation RΠ. We will use the CCA-secure
scheme described in the preliminaries and the NIZK argument system from Appendix B. We now discuss our
choice of SPR relation. Henceforth, we let G1, G2, GT be groups of prime order q and e : G1×G2 → GT be a
non-degenerate bilinear map that is efficiently computable. We let g be a random generator of G1 and let g̃ be
a random generator of G2.

C.2.1 SPR Relations

Previous constructions of leakage-resilient primitives often use the function gx1
1 gx2

2 . . . gxn
n , but this does not al-

low an efficient extraction of the witness (xn, . . . , xn) when using GS proofs (unless each witness in committed
bit by bit which, among other things, results in proofs growing linearly with the security parameter). To over-
come this problem, we use SPR functions based on bilinear maps. For our SXDH instantiation, we use the SPR
relation e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y, g̃), where g̃ is a generator of G2. In the DLIN case, we use
the relation: e(h1, x1) e(h2, x2) . . . e(hn, xn) = e(y1, g) ∧ e(~1, x1) e(~2, x2) . . . e(~n, xn) = e(y2, g). Both
cases allow for easy extraction of the witness (x1, . . . , xn) and a seamless combination with the encryption
scheme. As a side note, we use an SPR relation instead of an SPR function in order to achieve zero-knowledge
in the Groth-Sahai arguments. In general, GS proofs are witness indistinguishable for pairing product equations
but can be made zero-knowledge if we can represent the equation product itself as a product of one or more
pairings.

We show the details of our SPR constructions below, but first we review two assumptions that we will use
in our SPR proofs.

Double Pairing [1, 33]. The double pairing assumption states that given two random elements g1, g2 ∈ G1,
it is hard to find a non-trivial couple (z1, z2) ∈ G2

2 such that e(g1, z1)e(g2, z2) = 1. It is easy to check that the
Double Pairing assumption is implied by SXDH (see [1, 33] for details).

Simultaneous Triple Pairing (STP) [1, 33]. The simultaneous triple pairing assumption states that given six
random elements g1, g2, g3, g

′
1, g
′
2, g
′
3 ∈ G1, it is hard to find a non-trivial triple (z1, z2, z3) ∈ G3

2 such that
e(g1, z1)e(g2, z2)e(g3, z3) = 1 and e(g′1, z1)e(g′2, z2)e(g′3, z3) = 1. It was shown in [33] that the STP assump-
tion is implied by the DLIN assumption.
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Based on SXDH. Let n ≥ 2 and h1, h2, . . . , hn be random elements in G1, and let g̃ be a generator of G2.
We construct the SPR relation:

• KeyGen(1λ) : Output ~x = (x1, . . . , xn) and y where:

r1, . . . , rn
$←− Zq , {xi ← g̃ri}ni=1 , y ←

∏n
i=1 hri

i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y, g̃). Otherwise output 0.

Claim C.1. Under the SXDH assumption, the relation R described above is SPR with average-case preimage
entropy Havg(R) = (n− 1) log(q).

Proof. For any fixed choice of y, the conditional distribution of ~x is uniform over some n − 1 dimensional
subspace of Gn

2 , which gives us the worst-case preimage entropy of (n− 1) log(q).
We prove that R is SPR under the double-pairing assumption. Since the SXDH assumption implies the

double-pairing assumption, the claim holds.
Consider an adversary A that given h1, . . . , hn, ~x, y such that

∏n
i=1 e(hi, xi) = T , where T = e(y, g̃),

finds ~x∗ 6= ~x such that
∏n

i=1 e(hi, x
∗
i ) = T , with probability ε > negl(λ). We construct adversary B that

breaks the double pairing assumption.
B takes as input g1, g2, chooses α1, β1, . . . , αn, βn ← Zq, and sets hi = gαi

1 gβi
2 , for i = 1, . . . , n.

B then samples (~x, y) and gives h1, . . . , hn, ~x, y to A. With probability ε, A returns ~x∗ 6= ~x for which∏n
i=1 e(hi, x

∗
i ) = T . Dividing the two pairing product equations:

n∏
i=1

e(hi, xi/x∗i ) = e(g1,

n∏
i=1

(xi/x∗i )
αi)e(g2,

n∏
i=1

(xi/x∗i )
βi) = e(g1, z1)e(g2, z2) = 1.

It remains to prove that (z1, z2) = (
∏n

i=1(xi/x∗i )
αi ,
∏n

i=1(xi/x∗i )
βi) 6= (1, 1). There exists j ∈ [1, . . . , n] for

which xj/x∗j 6= 1 and αj is information theoretically hidden. Therefore, z1 6= 1 with probability (1 − 1/q).
B outputs (z1, z2) and with probability ε(1 − 1/q) > negl(λ), e(g1, z1)e(g2, z2) = 1 and (z1, z2) 6= (1, 1) .
Thus, B breaks the double pairing assumption with non-negligible probability.

Based on DLIN. Let n ≥ 3 and h1, . . . , hn, ~1, . . . , ~n be 2n elements in G and let g be a generator of G.
We construct the SPR relation:

• KeyGen(1λ) : Output ~x = (x1, . . . , xn) and ~y = (y1, y2) where:

r1, . . . , rn
$←− Zq , {xi ← gri}ni=1 , y1 ←

∏n
i=1 hri

i , y2 ←
∏n

i=1 ~ri
i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y1, g) and
∏n

i=1 e(~i, xi) = e(y2, g). Otherwise output 0.

Claim C.2. Under the DLIN assumption, the relation R described above is SPR with worst-case preimage
entropy Havg(R) = (n− 2) log(q).

Proof. For any fixed choice of y, the conditional distribution of ~x is uniform over some n − 2 dimensional
subspace of Gn, which gives us the worst-case preimage entropy of (n− 2) log(q).

We prove that R is SPR under the simultaneous triple pairing assumption (STP). Since the DLIN assumption
implies the STP assumption, we have that R is SPR under the DLIN assumption.

The proof is analogous to that of Claim C.1. If g1, g2, g3, g
′
1, g
′
2, g
′
3 is the instance for which B tries to break

the STP, it computes hi = gαi
1 gβi

2 gγi
3 and ~i = (g′1)

αi(g′2)
βi(g′3)

γi , for i = 1, . . . , n, where α1, β1, γ1, . . .,
αn, βn, γn ← Zq. Then, B samples ~x, ~y and runs A with the appropriate input. With probability ε > negl(λ),
A returns ~x∗ 6= ~x such that

∏n
i=1 e(hi, xi) = e(y1, g) and

∏n
i=1 e(~i, xi) = e(y2, g). But notice that

e(g1,
∏

i

(xi/x∗i )
αi) e(g2,

∏
i

(xi/x∗i )
βi) e(g3,

∏
i

(xi/x∗i )
γi) = 1, and

e(g′1,
∏

i

(xi/x∗i )
αi) e(g′2,

∏
i

(xi/x∗i )
βi) e(g′3,

∏
i

(xi/x∗i )
γi) = 1.
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B outputs (z1, z2, z3) = (
∏

i(xi/x∗i )
αi ,
∏

i(xi/x∗i )
βi ,
∏

i(xi/x∗i )
γi). Since there exists j ∈ [1, . . . , n] such that

xj 6= x∗j (because ~x∗ 6= ~x) and αj is information theoretically hidden (which is easily observed and is fully
explained in [33]), then with non-negligible probability (z1, z2, z3) 6= (1, 1, 1), e(g1, z1)e(g2, z2)e(g3, z3) = 1
and e(g′1, z1)e(g′2, z2)e(g′3, z3) = 1. Hence, with non-negligible probability B breaks the STP assumption.

We now show instantiations of the construction described in Section 4.2, meeting the parameters of Theo-
rem 5.1.

C.2.2 Instantiation 1: Based on SXDH

Our first instantiation is based on SXDH when working with asymmetric bilinear groups.

SPR Relation. We use the SPR relation described in Section C.2.1.
• KeyGen(1λ) : Output ~x = (x1, . . . , xn) and y where:

r1, . . . , rn
$←− Zq , {xi ← g̃ri}ni=1 , y ←

∏n
i=1 hri

i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y, g̃). Otherwise output 0.

Recall that this relation has average-case preimage entropy of (n− 1) log(q).

CCA-Secure Encryption. We use the Cramer-Shoup encryption scheme described in Section C.1, working
in the group G2. We encrypt ~x = (x1, . . . , xn) under the same randomness r. More formally, for a public key
pk = (g0, g1, d1, . . . , dn, e, f), we encrypt ~x with label m as

C = (c1, c2, c3, . . . , cn+2, cn+3)← Encm
pk(x1, x2; r) = (gr

0, g
r
1, x1d

r
1, . . . , xndr

n, (ef t)r),

where t = H(c1, . . . , cn+2,m).
The total size of the ciphertext is n + 3.

NIZK Argument. We use the NIZK proofs described in Appendix B to prove that “Rspr(x, y) = 1 and C =
Encm

pk(x; r)”. First we show that R(~x, y) = 1 by creating a commitment δi = ComΠ(xi; (si0, si1)) for each
component xi of ~x = (x1, . . . , xn) and producing proof elements which show that the committed values satisfy
the pairing product equation

∏n
i=1 e(gi, xi) = e(y, g̃). Then, we show that C = Encm

pk(~x; r) using a system
of one-sided multi-exponentiation equations with witness (r, s10, s11, . . . , sn0, sn1) to show that the plaintext
encrypted in C is equal to the committed values in the δi’s. Details follow. Let

~δ1 = (x1, 1)~v s10
0 ~v s11

1 , . . . , ~δn = (xn, 1)~v sn0
0 ~v sn1

1 ,

and, as defined above, C = (c1, . . . , cn+3). Proving equality of the plaintext and the committed values reduces
to proving the satisfiability of the following system of 2n + 3 equations:

~δ1
(c3,1) = ~v s10

0 ~v s11
1 (d−1

1 , 1)r , . . . ,
~δn

(cn+2,1) = ~v sn0
0 ~v sn1

1 (d−1
n , 1)r ,

c1 = gr
0 , c2 = gr

1 , cn+3 = er(f t)r .

The total size of the argument is 8n + 21 group elements and 2 Zq-elements.

Combining the ciphertext and the NIZK argument makes the size of the signature 9n + 24 group elements
and 2 elements in Zq. By Theorem 4.2 and Theorem 4.3, we know that the above instantiation gives us a
((n− 1) log q − 1)-leakage resilient signature scheme. To translate this into (1− ε)|sk| leakage tolerance, we
need

n ≥ 1
ε

+
ω(log λ)
ε · log q

=
1
ε
·
(

1 +
ω(log λ)

log q

)
This gives us signatures of size (9/ε)(1 + ω(log λ)/ log q) + 24 group elements and 2 elements in Zq.
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C.2.3 Instantiation 2: Based on DLIN

In the case of G1 = G2 = G, we give an instantiation under the DLIN assumption.

SPR Relation. We use the SPR relation described in Section C.2.1.

• KeyGen(1λ) : Output ~x = (x1, . . . , xn) and ~y = (y1, y2) where:

r1, . . . , rn
$←− Zq , {xi ← gri}ni=1 , y1 ←

∏n
i=1 hri

i , y2 ←
∏n

i=1 ~ri
i .

• R(x, y) : Output 1 if
∏n

i=1 e(hi, xi) = e(y1, g) and
∏n

i=1 e(~i, xi) = e(y2, g). Otherwise output 0.

Recall that this relation has average-case preimage entropy of (n− 2) log(q).

CCA-Secure Encryption. We use the Cramer-Shoup encryption scheme described in Section C.1. We en-
crypt ~x = (x1, . . . , xn) under the same randomness r and label m. More formally, for a public key

pk = (g0, g1, g2, d11, d12, . . . , dn1, dn2, e1, e2, f1, f2),

we compute the ciphertext

C = (c1, . . . , cn+4) ← Encm
pk(~x; (r1, r2))

= (gr1+r2
0 , gr1

1 , gr2
2 , x1d

r1
11d

r2
12, . . . , xndr1

n1d
r2
n2, (e1f

t
1)

r1(e2f
t
2)

r2),

where t = H(c1, . . . , cn+3,m).
The size of the ciphertext is n + 4.

NIZK Argument. First we prove that R(x, y) = 1 using the pairing product equations

e(h1, x1) . . . e(hn, xn) = e(g, y1) and
e(~1, x1) . . . e(~n, xn)) = e(g, y2).

We create commitments δi = ComΠ(xi; ~si) = (xi, 1, 1)vsi0
0 vsi1

1 vsi2
2 , for each component xi of ~x = (x1, . . . , xn)

using randomness ~si = (si0, si1, si2). Then we prove that the plaintext of C = Encm
pk(x1, x2, x3;~r) is the com-

mitted values in the δi’s by proving that the following system of 3n+4 one-sided multi-exponentiation equations
is satisfiable with a witness (r1, r2, ~s1, . . . , ~sn):

~δ1
(c4,1,1) = ~v s10

0 ~v s11
1 ~v s12

2 (d−1
11 , 1, 1)r1(d−1

12 , 1, 1)r2 ,

. . .
~δn

(cn+3,1,1) = ~v sn0
0 ~v sn1

1 ~v sn2
2 (d−1

n1 , 1, 1)r1(d−1
n2 , 1, 1)r2 ,

c1 = gr1
0 gr2

0 , c2 = gr1
1 , c3 = gr2

2 , cn+4 = (e1f
t
1)

r1(e2f
t
2)

r2 .

The total size of the proof is 18n+66 group elements and 6 Zq-elements.
Combining the ciphertext and the NIZK argument makes the size of the signature 19n+70 group elements

and 6 elements in Zq. By Theorem 4.2 and Theorem 4.3, we know that the above instantiation gives us a
((n− 2) log q − 1)-leakage resilient signature scheme. To translate this into (1− ε)|sk| leakage tolerance, we
need

n ≥ 2
ε

+
ω(log λ)
ε · log q

=
1
ε
·
(

2 +
ω(log λ)

log q

)
This gives us signature of size (19/ε)(2 + ω(log λ)/ log q) + 70 group elements and 6 elements in Zq.
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C.3 Leakage-Resilient Encryption

In order to use the construction in Section 4.3, we need a (1 − ε)|sk|-leakage resilient CPA-secure encryption
scheme E1 = (KeyGen1, Enc1, Dec1) and a strong f -tSE NIZK argument (see Section 3), which we can con-
struct from a CCA-secure encryption scheme supporting labels E2 = (KeyGen2, Enc2, Dec2), a strongly-secure
one-time time signature scheme S, and an NIZK argument Π for the relation

Req = { ( (r1, r2,m) , (c1, c2, L) | c1 = Enc1(m; r1) ∧ c2 = EncL
2 (m; r2) }.

The same technique was used in [13] to construct an efficient CCA-secure encryption scheme with key-dependent
message (KDM) security from a CPA-secure version of the scheme. We use the same technique in the leakage-
setting, to achieve leakage-resilient CCA-secure encryption from leakage-resilient CPA-secure encryption.

We now show an instantiation of the construction shown in Section 4.3, meeting the parameters of Theorem
5.2.

LR-CPA-Secure Encryption (E1). We show a (1 − ε)|sk|-leakage resilient CPA-secure encryption scheme
based on the K-Linear assumption. Similar versions of this scheme appear in [49] and [13] (based on the KDM
scheme of [12]), but we modify it here to make it more efficient. In particular, our public key and ciphertexts
are shorter by a factor of log q.

Let G be a group of primer order q, and let J be an integer. We define the scheme E1 by:

• KeyGen(1λ) : Choose f01, . . . , f0J , f1, . . . fK
$←− G and ~x

$←− ZK+J
q . Define vectors ~f1, . . . , ~fK ∈ GK+J

as follows:
~f1 = (f01, . . . , f0J , f1, 1, . . . , 1)

~f2 = (f01, . . . , f0J , 1, f2, . . . , 1)

...

~fK = (f01, . . . , f0J , 1, 1, . . . , fK)

For i = 1, . . . ,K: let hi = 〈~fi, ~x〉. Let ~h = (h1, . . . , hK). Output sk = ~x and pk = ({~fi}Ki=1,
~h).

• Encpk(m) : Choose ~w
$←− ZK

q . Let ~f =
∏K

i=1
~fi

wi and a = m · 〈~h, ~w〉. Output C = (~f, a).

• Decsk(C) : Output m← a/〈~f, ~x〉.

Theorem C.3. For any ε > 0, if J ≥ 1
ε (K + λ/ log(q) + 1), then the above encryption scheme is `-leakage

resilient where ` = (1− ε)|sk|. The scheme is secure under the K-linear assumption.

The proof follows from the same technique as those used to prove leakage-resilience of hash-proof system
based schemes in [49]. Indeed, it is relatively simple to see that the above construction is based on an underlying
hash-proof system. However, for simplicity, we just prove the leakage resilience of the scheme directly without
defining the notion of a hash-proof system formally in this work.

Proof. We do a series of games argument to show that the scheme is `-LR-CPA.

Game 0: This is the `-LR-CPA attack game. The adversary gets ` bits of leakage on sk = ~x and the challenge
ciphertext is (later) computed as:

C = (~f, a) where ~w
$←− ZK

q , ~f =
K∏

i=1

~fi
wi

, a = mb · 〈~h, ~w〉.

as an encryption of message mb where the bit b is chosen by the challenger.
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Game 1: In this game the challenge ciphertext is computed using the secret key ~x as:

C = (~f, a) where ~w
$←− ZK

q , ~f =
K∏

i=1

~fi
wi

, a = mb · 〈~f, ~x〉.

Games 0 and games 1 are equivalently distributed since 〈~f, ~x〉 = 〈~h, ~w〉 (this is essentially the correctness
of decryption).

Game 2: In this game the ~f part of the ciphertext is just chosen uniformly at random:

C = (~f, a) where ~f ← GJ+K , a = mb · 〈~f, ~x〉.

The fact that games 1 and 2 are computationally indistinguishable follows from the K-linear assumption,
which ensures that a random linear combination of ~f1, . . . , ~fK (used to compute ~f in Game 2) is com-
putationally indistinguishable from a uniformly random ~f . This holds even given all of the secret-key ~x,
and hence certainly in the presence of limited leakage.

Game 3: In this game, a is chosen uniformly at random so that

C = (~f, a) where ~f ← GJ+K , a← G.

We claim that games 2 and 3 are statistically indistinguishable. This is because, in game 2, 〈~f, ~x〉 can
be thought of as a universal hash function of the secret-key ~x under the hash-key ~f . Since, a univer-
sal hash function is a good average-case randomness extractor (see [22]), the value 〈~f, ~x〉 is statis-
tically indistinguishable from uniform, as long as the conditional entropy of ~x given everything else
the adversary sees in game 2 is at least log(q) + λ bits. But the only information that the adver-
sary sees in game 2 which is correlated with ~x is the component ~h of the public-key and the leak-
age. Therefore, ~x has at least (K + J) log(q) − K log(q) − ` bits of conditional entropy. Since
` = (1− ε)|sk| = (1− ε)(K + J) log(q) ≤ (J − 1) log(q)− λ, this means ~x has at least log(q) + λ bits
of conditional entropy, as desired.

It is clear that Game 3 is independent of the challenger’s bit b and hence the adversary’s advantage is 0 (the
probability that b′ = b is 1

2 ). Therefore, by the hybrid argument, the adversary’s advantage in Game 0 is
negligible.

For the instantiation, we use the LR-CPA-secure encryption scheme described above, working in the group
G2. We encrypt m under randomness ~w = (w1, . . . wK): for a public key pk = (~f1, . . . , ~fK ,~h) with ~fi =
(f01, . . . , f0J , 1, . . . , fi, . . . , 1), we compute W =

∑K
i=1 wi and ciphertext

C1 = (c11, . . . , c1(J+K+1))← Enc1(m; ~w) = (fW
01 , . . . , fW

0J , fw1
1 . . . , fwK

K ,m

K∏
i=1

hwi
i )

The size of the ciphertext is J + K + 1.

CCA-secure Encryption (E2). We use the Linear Cramer-Shoup encryption scheme described in section C.1,
working in the group G2. We encrypt m under randomness ~r = (r1, . . . , rK) and label L: for a public key
pk = ({gi}Ki=0, {di}Ki=1, {ei}Ki=1, {fi}Ki=1), we compute R =

∑K
i=1 ri and the ciphertext

C2 = (c21, . . . , c2(K+3))← EncL
2 (m;~r) = (gR

0 , gr1
1 . . . , grK

K ,m

K∏
i=1

dri
i ,

K∏
i=1

(eif
t
i )

ri),

where t = H1(c21, . . . , c2(K+2), L) and H1 is a collision-resistant hash function.
The size of the ciphertext is K + 3.

32



NIZK Argument System. We use the NIZK proofs described in Appendix B. Let C1, C2 be as described
above. To prove that there exists (m, r1, r2) such that ((m, r1, r2), (C1, C2, L)) ∈ RΠ, we use a system of
multi-exponentiation equations.

c1j = f
PK

i=1 wi

0j for j = 1, . . . , J

c1(J+i) = fwi
i for i = 1, . . . ,K

c21 = g
PK

i=1 ri

0

c2(i+1) = gri
i for i = 1, . . . ,K

c2(K+3) =
K∏

i=1

(eif
t
i )

ri

c1(J+K+1)/c2(K+2) =
K∏

i=1

hwi
i (d−1

i )ri

This corresponds to a system of J + 2K + 3 equations with witness (r1, . . . , rK , w1, . . . , wK). Using the
proofs described in appendix B we can give a proof for the simultaneous satisfiability of the equations using
2K commitments and K · (J + 2K + 3) proof elements.

Based on SXDH: In this case we have K = 1, so the size of the proof is J + 9 group elements.
Based on DLIN: In this case we have K = 2, so the size of the proof is 2J + 26 group elements.

One-Time Signature (S). We use the strongly-secure signature of [34]. Let H2 : {0, 1}∗ → Zq be a collision-
resistant hash function.

• KeyGenS(1λ) : Output vk = (g, f, h, z) and sk = (a1, a2), where:

a1, a2, b1, b2
$←− Z∗q , g

$←− G2 , f← ga1 , h← ga2 , z← fb1hb2

• SignS(m; r) : Output σ = (r, s), where

s←
(

(a1(b1 − r) + a2b2 −H2(m))
a2

)

• SigVerS(m,σ = (r, s)) : Check that z = gH2(m)frhs

The size of the one-time signature if 2 elements in Zq.

Combining both ciphertexts, together with the NIZK argument and the one-time signature, we have that the
size of the ciphertext is 2J + 15 group elements and 2 elements in Zq in the SXDH case, and 3J + 34 group
elements and 2 elements in Zq in the DLIN case. From Theorem C.3 we need J ≥ 1

ε (K +λ/ log(q)+1). This
gives us the following ciphertext size:

Based on SXDH: The size of the ciphertext is (2/ε)(2 + λ/ log q) + 15 group elements and 2 elements in
Zq.

Based on DLIN: The size of the ciphertext is (3/ε)(3 + λ/ log q) + 34 group elements and 2 elements in
Zq.
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