
Identity-Based Encryption Secure under Selective Opening Attack

Mihir Bellare1, Brent Waters2, and Scott Yilek1

1 University of California at San Diego
{mihir,syilek}@cs.ucsd.edu

2 University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. We present the first Identity-Based Encryption (IBE) scheme that is proven secure against
selective opening attack (SOA). This means that if an adversary, given a vector of ciphertexts, adaptively
corrupts some fraction of the senders, exposing not only their messages but also their coins, the privacy
of the unopened messages is guaranteed. Achieving security against such attacks is well-known to be
challenging and was only recently solved in the PKE case via lossy encryption. We explain why those
methods won’t work for IBE and instead rely on an approach based on encryption schemes that have a
property we call one-sided public openability. Our SOA-secure IBE scheme is quite efficient and proven
secure without random oracles based on the Decision Linear assumption.

1 Introduction

Security against selective-opening attack (SOA) has been one of the more vexing and intriguing open
questions in the entire theory of encryption. However, recently (and 10 years after the problem was
identified), we have seen solutions [1] for the case of Public-Key Encryption (PKE).

In this paper, we define SOA-secure IBE. We explain why the lossy encryption methods that did
the trick for PKE do not work in the IBE case. Instead, we return to ideas from non-committing [10]
and deniable [9] encryption. We introduce IBE with one-sided public openability (1SPO) and show
that it implies SOA-secure IBE. We then show how to achieve 1SPO IBE without random oracles
based on the decision-linear assumption of [5].

Background. A selective-opening attack on a PKE scheme imagines n senders and receivers. Sender
i encrypts a message m[i] under fresh, random coins r[i] and the public key pk[i] of the i-th receiver to
get a ciphertext c[i]. An adversary given the vector c corrupts some subset of the senders and learns not
only their messages but also their coins. SOA-security requires that the remaining, unopened messages
retain their privacy. SOA-security is required when implementing the assumed secure channels in
an adaptively-secure multi-party computation protocol. More pragmatically, it would be required to
distribute shares in a distributed file-system that is using secret-sharing for privacy.

IND-CPA and IND-CCA, widely-accepted as the “right” notions of encryption privacy, are not
known to imply security under SOA. The difficulty of establishing SOA-security stems from the fact
that the adversary gets the coins and also that the messages m[1], . . . ,m[n] may be related. Construc-
tions of SOA secure schemes also remained elusive, the area colored by negative results for related
primitives or questions [14, 18, 22]. Finally, Bellare, Hofheinz, and Yilek (BHY) [1] showed a large class
of encryption schemes, which they call lossy [1, 20, 23], are SOA secure. Schemes they show to be lossy
include variants of El Gamal [21], the IND-CPA scheme built from lossy trapdoor functions by Peik-
ert and Waters [24], and even the original Goldwasser-Micali encryption scheme [16]. Subsequently,
Hemenway and Ostrovsky [17] showed that re-randomizable encryption and statistically hiding, two-
round oblivious transfer imply lossy encryption, yielding still more examples of SOA secure PKE
schemes via the lossy-implies-SOA-secure connection of BHY.

SOA for IBE. We can adapt the SOA framework to IBE in a natural way but there are two new
elements that will be central to the technical challenges in achieving the goal. The first is the Extract

1

oracle, a feature of IBE security formalizations since the pioneering work of Boneh and Franklin [6],
that allows the adversary to obtain the decryption key of any (non-target) receiver of its choice.
The second is that the target identities are chosen by the adversary. (We will achieve full, rather
than selective-id security [11].) To expand on this, a vector id of adversarially-chosen target receiver
identities replaces the vector pk of public receiver keys. Sender i encrypts message m[i] under coins
r[i] for identity id[i] to get a ciphertext c[i]. As before the adversary, given c, corrupts a subset of the
senders and learns their messages and coins, and SOA-security requires that the unopened messages
are secure. At any time, the adversary can query Extract with any identity not in the vector id and
obtain its decryption key. Our formalization is simulation-based.

IBE can conveniently replace PKE in applications such as those mentioned above, making its
SOA-security important. Beyond this, we feel that determining whether SOA-secure IBE is possible
is a question of both foundational and technical interest.

Our contributions. As we explain below, there are fundamental obstacles to extending the lossy-
implies-SOA-secure approach, that worked for PKE, to the IBE setting. We describe a new technique
for achieving SOA-security. It involves constructing one-bit IBE schemes that have a property we
call one-sided public openability (1SPO) and is an IBE-analogue of a weak form of deniable PKE [9].
Bit-by-bit encryption then results in a scheme that can encrypt long messages. We show that if the
1SPO scheme is also IND-CPA then the constructed scheme is SOA-secure. This reduces the task of
obtaining an SOA-secure IBE scheme to obtaining an IND-CPA secure 1SPO scheme. Existing non-RO
schemes [25, 4] do not have the property, but we describe a 1SPO scheme based on the (anonymous)
IBE scheme of Boyen and Waters [8]. We prove it is 1SPO directly, and adapt techniques from [8, 2] to
show it is IND-CPA under the DLIN (Decision Linear) assumption of [5]. The proof technique of [2]
allows us to avoid Water’s artificial abort step [25] thereby resulting in a more efficient reduction. Let
us now look at our approach in more depth, beginning with a discussion of the difficulty of extending
the BHY approach to IBE.

Limitations of lossiness. In order to understand our technical approach it is instructive to re-
view BHY’s lossy-implies-SOA-secure approach for PKE (Hemenway and Ostrovsky [17] also rely on
this approach, their contribution being new lossy encryption schemes) and expose the difficulties in
adapting this to IBE.

Roughly, an encryption scheme is lossy if its public keys (called injective keys) are computationally
indistinguishable from lossy keys, produced by an alternative lossy key generator, and encryption
under the lossy keys is statistically secure. BHY’s claim is that any lossy PKE encryption scheme is
SOA-secure. They consider the real SOA game (with injective keys) and another in which the keys
encrypting messages are changed from injective to lossy. The indistinguishability of key types means
any attacker that had a noticeable advantage in the real SOA game (with injective keys) would have
a noticeable advantage in the SOA game with lossy keys. But in the latter game, each ciphertext
is information theoretically “ambiguous” with regard to which particular message was encrypted in
the sense that every message was equally likely to have generated the ciphertext, within a negligible
probability of error. A key property of this stage of the reduction is that although the public key type
is unknown, the reduction algorithm will know the coins and messages used to encrypt each message
and can reveal them on demand. Once the SOA game is transformed to have lossy keys, SOA-security
can be established by a relatively simple information theoretic argument.

In constructing SOA secure IBE systems we would like to take a similar approach, first using a
hybrid argument to make the encrypted messages ambiguous and then culminating with an information
theoretic argument. A natural first step would be to find some notion and construction of lossy keys
in an IBE system analogous to that in PKE. However, this direction runs into some fundamental
obstacles. First, we note that we cannot simply make the IBE system lossy on all identities. If we
published a set of IBE parameters that made all ciphertexts to every identity lossy, this would be

2

readily detectable by an attacker. The latter would use its Extract oracle to obtain the decryption
key sk of some non-target identity id, encrypt a random message M to id to get a ciphertext C, and
then attempt to decrypt C using sk. If M is recovered, the system was in injective mode, else lossy.
What would be required is that the keys of the target identities are lossy and those of non-target
identities are injective. However, this approach also runs into fundamental difficulties. To begin with,
the target identity is not known in advance, meaning at the time public parameters need to be created
by the reduction and there are too many possibilities to guess. It is tempting now to think we could
at least achieve security in the selective-id model where the vector of target identities is supplied in
advance, but even if we were willing to do this (we prefer to achieve full security) it is not possible.
For a given security parameter, an IBE system’s public parameters will have some maximum size, say
` bits, and the length of the vector of target identities is allowed to be arbitrary and independent of `.
If this length is more than `, it is information theoretically impossible to “program” the parameters
to be lossy only on the target identities and injective on all other identities! This appears to be a
fundamental limitation of proving security with key lossiness in IBE systems since the entire point of
IBE is to have identity spaces that are much larger than the public parameter size.

Our approach. We circumvent these limitations by establishing ambiguity of ciphertext creation at
a much finer granularity than an entire public key or IBE identity at a time. In particular, we will
create an encryption system where we can modify the way individual ciphertexts are created one at
a time and leave the distribution of the public parameters unmolested throughout our reductions. In
order to do this, we devise an encryption system with two methods of encrypting a message M . In
addition to the standard method, there will exist an alternative method of encrypting a message M
such that the ciphertext will information theoretically hide the message M . Achieving this property
alone under the standard IND-CPA definition is not necessarily difficult, but in proving SOA security
we will have the challenge that it should be difficult to tell whether the standard encryption algorithm
or the alternative ambiguous algorithm was used even when the encryption randomness is revealed.
The most natural way to meet this requirement involves introducing a negligible correctness error into
the system. After we conduct a series of hybrid experiments in which all of the encryptions use the
alternative ambiguous method, we can apply an information theoretic argument in a similar manner
to BHY.

We create our IBE-with-alternative-associated-encryption system by introducing IBE schemes that
have a property we call one-sided public openability. In short, a one-bit IBE scheme is 1SPO if it is
possible, given the public parameters par, an identity id, and the encryption C of message 1 under
par and id, to efficiently open the encryption, meaning find correctly-distributed randomness r such
that encrypting a 1 using par, id, r results in the ciphertext C. We emphasize that this opening must
be done without the aid of any secret information. If a 1SPO one-bit IBE scheme is also IND-CPA, it
is easy to see that encryptions of message 0 can also be opened to a 1 (or else it would be possible to
distinguish encryptions of 0 from encryptions of 1). As indicated above, we then use our one-bit 1SPO
IBE schemes to construct many-bit schemes in the standard way (i.e., by concatenating independent
encryptions of each bit under the same parameters) and show that if the one-bit 1SPO scheme is
IND-CPA secure, then the many-bit IBE scheme is SOA-secure.

In order to construct 1SPO IND-CPA schemes we apply some ideas from the Boyen and Waters [8]
anonymous IBE scheme. In our SOA IBE system an encryption of 0 to a given identity, id, is the
generation of a ciphertext to that identity using (a modification of) the Boyen-Waters encryption
algorithm. This output of the encryption will be five group elements that share a certain structure,
that is only detectable to a user with the private key for id. To encrypt a 1 we simply choose five
random group elements using what we call a publicly reversible process (see below). The main feature
of this encryption scheme is that an encryption of 0 can always be claimed as just five random group
elements, and thus as an encryption of 1. This discussion reveals why we choose to build off of the

3

Boyen-Waters anonymous IBE scheme as opposed to other simpler IBE systems without random
oracles. The main feature of the Boyen-Waters ciphertexts is that they have no detectable structure
from an attacker that does not have a private key for id. In contrast, in the Boneh-Boyen IBE system
[4] the attacker cannot recover the message, but it can test for structure between two group elements
in well formed ciphertexts. Therefore we cannot simply create an encryption system by replacing these
with random group elements.

Regarding achieving public openability, recall the encryption of a 1 in our scheme is five random
group elements. Traditionally, one picks a random group element by choosing a random exponent and
exponentiating a generator of the group to that value. Unfortunately, this is not usually a reversible
process given only public parameters, as this requires computing discrete logarithms. Thus, our scheme
has to use groups that have what we call publicly reversible sampling. To solve this problem we use
techniques from hashing into elliptic curves. Specifically, we can use a modified version of the hash
function from the BLS signature scheme [7].

Applying the results of [9] this also gives us deniable IBE, which may be of independent interest.

Independent work. The PKE version of 1SPO was discovered and used by Fehr, Hofheinz, Kiltz,
and Wee (FHKW) [15] to achieve SOA-CCA-secure PKE. Their work and ours are independent and
concurrent. Both were submitted to Eurocrypt 2010, but their’s was accepted and ours was rejected.
FHKW do not consider IBE.

Related work. Canetti, Feige, Goldreich and Naor [10] introduced non-committing encryption
(NCE) to achieve adaptively secure multi-party computation in the computational (as opposed to
secure channels) setting without erasures. In their treatment, NCE is an interactive protocol, and
their definition of security is in the MPC framework. The model allows corruption of both senders
and receivers. They show how to achieve NCE but, viewed as a public-key system, they would have
keys larger than the total number of message bits that may be securely encrypted. Damg̊ard and
Nielsen [13] introduced more efficient schemes but this restriction remained, and Nielsen [22] showed
it was necessary. With partial erasures, more efficient solutions were provided by Canetti, Halevi and
Katz [12].

Dwork, Naor, Reingold and Stockmeyer [14] extracted out a stand-alone notion of committment
secure against selective opening defined directly by a game rather than via the MPC framework.
Corruptions allow the adversary to obtain the committer’s coins along with its message. This was
adapted to public-key encryption in [1], who focused on sender (as opposed to receiver) corruptions
and were then able to obtain solutions based on lossy encryption.

Canetti, Dwork, Naor and Ostrovsky [9] introduced deniable encryption, where a sender may open
a ciphertext to an arbitrary message by providing coins produced by a faking algorithm. The authors
explain that this is stronger than NCE because in the latter only a simulator can open in this way. A
weak form of their requirement is that encryptions of 1 can be opened as encryptions of 0 even if not
vice versa. 1SPO IBE is an IBE analogue of this notion.

In hindsight, the NCE and deniable encryption techniques are a natural approach to SOA. Yet, it
has been almost 15 years before this seems to have been realized and exploited, by us for IBE and, as
discussed above, by Fehr, Hofheinz, Kiltz, and Wee [15] for PKE.

2 Preliminaries

Notation. We use boldface to denote vectors, i.e., m. For vector m, we let |m| denote the number of
components in the vector. When m[i] ∈ {0, 1}∗, we denote by m[i][j] the jth bit of the ith component
of m, i.e., the jth bit of m[i]. On the other hand, when c[i] is a sequence, we let c[i][j] denote the jth
value in the sequence c[i]. We sometimes abuse notation and treat vectors as sets. Specifically, if S is
a set we may write S ∪m to denote S ∪ {m[1]} ∪ {m[2]} If two adversaries A and B have access

4

to different oracles with the same name (e.g., NewMesg) we sometimes write NewMesgB to mean
B’s version of the oracle.

We fix pairing parameters GP = (G,GT , p, e) where G,GT are groups of order prime p and the
map e : G×G→ GT is an efficiently computable non-degenerate bilinear map. We let Texp(G) be the
time to compute an exponentiation in the group G. We let Top(G) be the time to compute a group
operation in G. For any group G, let G∗ denote the generators of G.

Code-Based Games. We use code based games [3] for our security definitions. A game consists of
numerous procedures including an Initialize procedure and a Finalize procedure. When an adversary
A executes with the game, the Initialize procedure is executed first and its outputs are the initial
inputs to adversary A. Then A executes and its oracle queries are answered by the corresponding
procedures of the game. When the adversary halts with some final output, this output is given as
input to the Finalize procedure. The output of the Finalize procedure is then considered the output
of the game. We let GA ⇒ y be the event that game G, when executed with adversary A, has output
y. We abbreviate “GA ⇒ true” by “GA”. We let BD(GA) denote the event that the execution of G
with A sets flag bad, and GD(GA) its complement. The running time of the adversary while playing
the game is considered to be the running time of the adversary while playing the game plus the time
to execute all of the game procedures during the execution.

Randomized Algorithms and Sampling from Groups. We assume that all algorithms have
access to a RNG Rand that is the only source of randomness in the system. On input a positive
integer n, function Rand returns a value uniformly distributed in Zn. We stress that Rand is not
viewed as having an underlying source of coins in the form of bits as in complexity-theoretic/Turing
machine models. Rather, its operation is atomic and its outputs are the coins.

When we write a←$ G we mean that we run i←$ Rand(p), where p = |G|, and let a = gi where g is
a generator of G. However, we also want to use publicly reversible sampling. A publicly reversible (PR)
sampler Sample takes no input and, via access to Rand, outputs a point in G or the failure symbol ⊥.
It has sampling failure probability ζ if the probability that it outputs ⊥ is at most ζ. We require that
for all a ∈ G

Pr
[
a′ = a | a′ 6= ⊥

]
=

1
|G|

where the probability is over a′←$ Sample.
If (r1, . . . , rs) is a sequence of non-negative integers, we let Sample[r1, . . . , rs] be the result of

running Sample with Rand replaced by the subroutine that returns ri in response to the i-th query
made to it, for 1 ≤ i ≤ s. We require that there is an algorithm Sample−1 which on input a ∈ G outputs
a sequence (r1, . . . , rs) such that Sample[r1, . . . , rs] = a. (Sample−1, as with any other algorithm, has
access to Rand.) Sample−1 also might fail (and output ⊥). We call this the reverse sampling failure
probability and denote it with θ.

Identity-Based Encryption. An Identity-based encryption scheme (IBE) is a tuple of algorithms
Π = (Pg,Kg,Enc,Dec) with identity space IdSp, message space MsgSp, and the following properties.
The parameter generation algorithm Pg takes no input and outputs a public parameter string par
and a master secret key msk. The identity key generation algorithm Kg takes as input the public
parameter string par, the master secret key msk, and an identity id, and outputs a secret key sk for
identity id. The encryption algorithm Enc takes as input the public parameters par, an identity id,
and a message M , and outputs a ciphertext C. Lastly, the decryption algorithm Dec takes as input
the public parameters par, an identity secret key sk, and a ciphertext C, and outputs either a message
M or a failure symbol ⊥. We say that an IBE scheme has completeness error ε if the probability that

Dec(par, sk, id,Enc(par, id,M)) = M

5

proc. Initialize:
(par,msk)←$ Pg ; b←$ {0, 1}
Return par

proc. Extract(id):
Return Kg(par,msk, id)

proc. LR(id,M0,M1): INDCPAΠ

Return Enc(par, id,Mb)

proc. Finalize(b′):

Return (b = b′)

Fig. 1. The IBE IND-CPA Game

proc. Initialize:
g, g1, g2←$ G∗ ; a1, a2←$ Zp
d←$ {0, 1} ; h1 ← ga11 ; h2 ← ga22

If d = 1 then W = ga1+a2 Else W ←$ G
Return (g, g1, g2, h1, h2,W)

DLING

proc. Finalize(d′):

Return (d = d′)

Fig. 2. The DLIN game for the decisional linear assumption.

is ≥ 1− ε for all id ∈ IdSp, all M ∈ MsgSp, all (par,msk) ∈ [Pg], and all sk ∈ [Kg(par,msk, id)], where
the probability is taken over the coins used in encryption.

A one-bit IBE scheme Π = (Pg,Kg,Enc,Dec) is one with MsgSp = {0, 1}, while an `-bit IBE
scheme has MsgSp = {0, 1}`. We will build `-bit IBE schemes from one-bit IBE schemes as follows.
Given one-bit IBE scheme Π as above, let Π` = (Pg`,Kg`,Enc`,Dec`) be an `-bit IBE scheme defined
as follows: parameter and key generation are unchanged, i.e., Pg` = Pg and Kg` = Kg. The encryption
algorithm Enc`, on input par, id, M ∈ {0, 1}`, outputs Enc(par, id,M [1]) ‖ . . . ‖ Enc(par, id,M [`]),
whereM [i] is the ith bit ofM . In other words, encryption encrypts each bit separately and concatenates
the resulting ciphertexts. Decryption works in the obvious way: decrypt each ciphertext component
separately to learn individual bits. It is easy to see that if Π has ε completeness error, then the resulting
`-bit scheme has completeness error at most ` · ε.

The standard notion of security for IBE schemes is indistinguishability under chosen plaintext
attack (IND-CPA) [6]. We define the IND-CPA advantage of an IND-CPA adversary A against IBE
scheme Π to be

Advind-cpa
Π (A) = 2 · Pr

[
INDCPAA

Π ⇒ true
]
− 1 ,

where game INDCPA can be found in Figure 1. An IND-CPA adversary interacts with game INDCPA,
querying LR only once and on an identity id∗ ∈ IdSp that is never queried to Extract and on equal
length messages M0,M1 ∈ MsgSp. We note that adversaries may query the same identity id to Extract
multiple times, since key generation is randomized.

We associate to encryption algorithm Enc the set Coins(par,m). This is the set from which Enc
draws its coins when encrypting message m using parameters par. Similarly, we let Coins(par, id, c, 1)
be the set of coins {r | c = Enc(par, id, 1; r)}.

The Decisional Linear Assumption. We will use the Decisional Linear Assumption [5] in our
proofs of security. The decisional linear game DLIN is found in Figure 2. We say the DLIN-advantage
of an adversary A against GP is

Advdlin
GP (A) = 2 · Pr

[
DLINA

GP ⇒ true
]
− 1 .

6

3 Security against Selective Opening Attacks

In this section we formalize SOA security for IBE, closely following the formalizations from [1]. Before
proceeding, we need two definitions. A (k, `)-message sampler is a randomized algorithm M that on
input string α ∈ {0, 1}∗ outputs a vector of messages m such that |m| = k and each m[i] ∈ {0, 1}`. A
relation R is any randomized algorithm that outputs a single bit.

An soa-adversary is one that runs with game IBESOAREAL making one query to NewMesg
before making one query to Corrupt; it may make one or more queries to Extract at any time
during the game. An soa-simulator is an adversary that runs with game IBESOASIM, makes one
query to NewMesg and later makes one query to Corrupt. It makes no Extract queries. We define
the soa-advantage of soa-adversary A against an IBE scheme Π with respect to a (k, `)-message
sampler M, relation R, and soa-simulator S as

Advsoa
Π,k,S,M,R(A) = Pr

[
IBESOAREALAΠ,k,M,R ⇒ 1

]
− Pr

[
IBESOASIMSΠ,k,M,R ⇒ 1

]
.

Discussion. In game IBESOAREAL (shown in Figure 3), the Initialize procedure runs the parameter
generation algorithm and returns the scheme parameters to the adversary. The adversary then runs
with oracles NewMesg, Corrupt, and Extract. The adversary may never query an identity to
Extract that appears in a query to NewMesg.

The adversary may query the NewMesg oracle once with a vector of identities id and a string α
that is meant to capture state to pass on to the message sampler. Procedure NewMesg, on input id
and α, samples a vector of messages from the message sampling algorithmM and encrypts the entire
vector using independent coins to the identities specified in id. This means that the ith component of
the resulting ciphertext vector c is Enc(par, id[i],m[i]; r[i]), the encryption of the ith message to the
ith identity with the ith coins.

After querying the NewMesg oracle, the adversary may make one query to Corrupt with a set
of indices I ⊆ [k]. These indices specify which ciphertexts from the vector c returned by NewMesg
the adversary would like opened. The Corrupt procedure returns the messages and randomness used
in NewMesg corresponding to indices in I. Additionally, at any time the adversary may query the
Extract oracle on an identity of its choice and learn a secret key for that identity. We do not allow
the adversary to query Extract on any identity appearing in the vector id queried to NewMesg.

Finally, the adversary halts with output out and the output of the game is the relation R applied
to the message vector m, the set of challenge IDs ChID, the corrupt set I, and the output out.

In game IBESOASIM (shown in Figure 4), the Initialize procedure does nothing and returns
⊥ to the simulator. The simulator then runs with two oracles, NewMesg and Corrupt. On input
an identity vector id and a string α, oracle NewMesg samples a vector m of messages using the
message sampling algorithm M applied to the state string α. Nothing is returned to the simulator.
The simulator is only allowed one NewMesg query. At a later time, the simulator may then make a
single query to oracle Corrupt with a set of indices I and as a result will learn the messages in m
corresponding to I. Finally, the simulator halts with output out and the output of the game is the
relation R applied to the message vector m, the set of challenge IDs ChID, the corrupt set I, and the
output out.

4 One-Sided Public Opening

Before describing our IBE scheme we first formalize the key property we will need to prove SOA
security. A perfect one-sided public (1SP) opener for one-bit IBE scheme Π = (Pg,Kg,Enc,Dec) is
an algorithm OpenToOne that takes input parameters par, identity id, and ciphertext c, and has

7

proc. Initialize:
(par,msk)←$ Pg
Return par

proc. NewMesg(id, α):
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id
m←$M(α)
For i in 1 to k

r[i]←$ Coins(par,m[i])
c[i]← Enc(par, id[i],m[i]; r[i])

Return c

proc. Corrupt(I):
Return r[I], m[I]

proc. Extract(id):
If id ∈ ChID then return ⊥
ExID← ExID ∪ {id}
sk←$ Kg(par,msk, id)
Return sk

proc. Finalize(out):
Return R(m,ChID, I, out)

Fig. 3. Game IBESOAREALΠ,k,M,R.

proc. Initialize:
Return ⊥

proc. NewMesg(id, α):
ChID← ChID ∪ id
m←$M(α)
Return ⊥

proc. Corrupt(I):
Return m[I]

proc. Finalize(out):
Return R(m,ChID, I, out)

Fig. 4. Game IBESOASIMΠ,k,M,R.

the following property: for all par ∈ [Pg], all id ∈ IdSp, every c ∈ [Enc(par, id, 1)], and every r̄ ∈
Coins(par, id, c, 1),

Pr [r←$ OpenToOne(par, id, c) : r = r̄] =
1

|Coins(par, id, c, 1)|
.

We can weaken this definition slightly by considering opening algorithms that can fail with some
probability δ, but in the case of success their output distribution is identical to the actual coin dis-
tribution. This is reflected as for all par ∈ [Pg], all id ∈ IdSp, every c ∈ [Enc(par, id, 1)], and every
r̄ ∈ Coins(par, id, c, 1),

Pr [r←$ OpenToOne(par, id, c) : r = r̄ | r 6= ⊥] =
1

|Coins(par, id, c, 1)|
.

Notice that the probability is only over the coins used by OpenToOne. We call such an OpenToOne
algorithm a δ-1SP opener and we also call an IBE scheme with a δ-1SP opener δ-one-sided publicly
openable (δ-1SPO).

The idea of constructing encryption schemes with such one-sided opening is originally due to
Canetti, Dwork, Naor, and Ostrovsky [9]. They used PKE schemes with this property to build deniable
public-key encryption schemes. To achieve what we call the 1SPO property, they built PKE schemes
from translucent sets with the property that an encryption of a 1 was pseudorandom, while the
encryption of a 0 was perfectly random; it was then always possible to simply claim the encryption of
a 1 was random to open to a 0. The secret key allowed one to tell the difference between pseudorandom
and random values, allowing correct decryption. More recently, in independent work, Fehr, Hofheinz,
Kiltz, and Wee [15] used PKE schemes with a 1SPO property as a building block to achieve CCA
SOA public-key encryption security. Of course, both of these works focus on PKE. Our focus, on the
other hand, is on building secure IBE schemes. In the next section we will show how to achieve the
1SPO property in the IBE setting.

8

5 A 1SPO IBE Scheme

5.1 Scheme Description

We now describe the details of our IBE scheme LoR = (Pg,Kg,Enc,Dec). We call it LoR, which is
short for “Linear or Random” to represent the fact that in our scheme the encryption of a 0 consists of
five group elements that are related similar to the group elements in the decisional linear assumption,
while an encryption of a 1 consists of five random group elements. Our scheme is a one-bit version
of the anonymous IBE scheme from Boyen and Waters [8] and using the Waters’ hash function [25]
for adaptive security. The scheme will use a cyclic group G of prime order p with an efficiently
computable pairing e : G×G→ GT . We also require the group has a PR sampler Sample with failure
probability ζ and corresponding inverse sampler Sample−1 with reverse failure probability θ. Let G∗
denote the generators of G. Let 1GT be the identity element of the target group GT . Define hash
function H : Gn+1 × {0, 1}n → G as H(u, id) = u[0]

∏n
i=1 u[i]id[i], where id[i] is the ith bit of string

id. This is the Waters’ hash function [25]. The following scheme has message space {0, 1} and identity
space {0, 1}n:

alg. Pg :
g←$ G∗
u←$ Gn+1

t1, t2, t3, t4←$ Z∗p
v1 ← gt1 ; v2 ← gt2

v3 ← gt3 ; v4 ← gt4

par ← (g,u, v1, v2, v3, v4)
msk ← (t1, t2, t3, t4)
Return (par,msk)

alg. Kg(par,msk, id) :
(g,u, v1, v2, v3, v4)← par
r1, r2←$ Zp
d0 ← gr1t1t2+r2t3t4

d1 ← H(u, id)−r1t2
d2 ← H(u, id)−r1t1
d3 ← H(u, id)−r2t4
d4 ← H(u, id)−r2t3
Return (d0, d1, d2, d3, d4)

alg. Enc(par, id,M) :
(g,u, v1, v2, v3, v4)← par
if M = 0 then
s, s1, s2←$ Zp
C0 ← H(u, id)s

C1 ← vs−s11 ; C2 ← vs12

C3 ← vs−s23 ; C4 ← vs24

else
For i = 0 to 4 do
Ci←$ SampleG()

Return (C0, C1, C2, C3, C4)

The decryption algorithm Dec(par, sk, C) parses the secret key sk as (d0, d1, d2, d3, d4), parses C
as (C0, C1, C2, C3, C4) and outputs 0 if

∏4
i=0 e(Ci, di) = 1GT and outputs 1 otherwise. It is easy to see

the scheme has completeness error 1/p2.
We claim the scheme is δ-1SPO where δ ≤ 5θ. The algorithm OpenToOne simply runs Sample−1

on each of the five ciphertext components with independent failure probabilities θ. Further, we show
in Section 7 that the scheme is IND-CPA secure.

5.2 Instantiation

The missing piece in the above construction is how to efficiently instantiate the PR sampler Sample
(and, for our proofs, its inverse Sample−1). For this, we rely on the techniques for hashing into elliptic
curve groups, specifically the techniques from Boneh, Lynn, and Shacham (BLS) [7]. We review the
relevant parts of their hash function below. Hashing techniques from [6] and [19] could also potentially
be used.

The BLS Hash Function. In [7], the authors describe a hash function H : {0, 1}∗ → G, where G
is a subgroup of an elliptic curve. We review the details of their hash function with minor notational
differences.

Consider an elliptic curve with points in Fq, where Fq is a field with characteristic greater than 2.
Let the curve be defined by equation y2 = f(x), and let E(Fq) denote the corresponding group of
order m. Let g ∈ E(Fq) be a point with prime order p such that p2 does not divide m. To build a hash
function that hashes into the subgroup generated by g (call it G), BLS first hash onto Fq ×{0, 1} and

9

then apply a procedure (which we call FqBitToGroup) to that hash value to try and get a point in G.
They then use this group to construct their signature scheme3. This is the group we will use for our
scheme above. We now define FqBitToGroup and an inverse procedure, following [7].

FqBitToGroup(x, b)
If f(x) is not a quadratic residue in Fq then Return ⊥
Compute square roots y0, y1 ∈ Fq of f(x) such that y0 < y1 by some fixed ordering.
g̃ ← (x, yb) ; h← (g̃)m/p

Return h

The algorithm has approximately a 1/2 probability of failure. Note that we slightly deviate from
BLS in that we do not fail when h = 1G, since we do not need to exponentiate with h. BLS also
describe an inverse procedure that, given a group element h ∈ 〈g〉, finds a random (x, b) such that
FqBitToGroup(x, b) = h. In the procedure, let z = (m/p)−1 mod p, which exists since m divides p but
not p2 (and thus gcd(p,m/p) = 1). We will describe the procedure as taking input an element h ∈ G
and an element u ∈ E(Fq) (think of u as the randomness used by the procedure).

FqBitToGroup−1(h, u)
(x, y) = h̃← up · hz
Compute square roots y0, y1 of f(x), where y0 < y1

If y = y0 then output (x, 0) else output (x, 1)

BLS show that if u is a uniform point in E(Gq) then the output (x, b) of FqBitToGroup−1(h, u) is such
that x is uniformly distributed in Fq, b is uniform in {0, 1}, and applying FqBitToGroup(x, b) results
in h.

Our PR Sampler. We can use the above two algorithms to create our PR sampler Sample and its
inverse Sample−1.

Sample
h← ⊥
For i = 1 to ρ do

(xi ‖ bi)←$ Zq × Z2

h′ ← FqBitToGroup(xi, bi)
If (h′ 6= ⊥ ∧ h = ⊥) then
h← h′

Continue
Return h

Sample−1(h)
j ← ⊥
For i = 1 to ρ do

(xi ‖ bi)←$ Zq × Z2

If j = ⊥ ∧ FqBitToGroup(xi, bi) 6= ⊥ then j ← i
If j = ⊥ then Return ⊥
Else

Compute square roots yj,0, yj,1 of f(xj).
u← (xj , yj,bj)
(xj , bj)←$ FqBitToGroup−1(h, u)

Return (x1, b1), . . . , (xρ, bρ)

The Sample algorithm has failure probability ζ ≈ 1/2ρ. Notice the set of coins used by Sample is
(Zq × Z2)ρ. The inverse operation Sample−1 is similar to the way random oracle queries are answered
in the BLS proof [7]. It has failure probability θ ≈ 1/2ρ. Note that we cannot simply invert the point
h but also need to simulate all ρ attempts Sample makes, including any failed attempts that precede

3 Actually, they explicitly use asymmetric pairings in their paper and mention symmetric pairings (which we are using
in this paper) could be used instead.

10

finding h. If it does not fail on input h ∈ G it is easy to see it outputs correctly-distributed randomness
for Sample.

6 Selective Opening Security from One-Side Openable IBE

We now state and prove our main result: IND-CPA 1SPO one-bit IBE schemes lead to many-bit
SOA-secure IBE schemes. Let Π = (Pg,Kg,Enc,Dec) denote a one-bit IBE scheme that is δ-one
sided openable and let Π` = (Pg`,Kg`,Enc`,Dec`) the `-bit IBE scheme built from Π as described in
Section 2. We prove the following theorem.

Theorem 1. Let Π be a one-bit IBE scheme with a δ one-sided opener OpenToOne, and let Π` be
the `-bit scheme built from it. Let k be an integer, A an soa-adversary making at most q queries to
Extract, R a relation, andM a (k, `)-message sampler. Then there exists an soa-simulator S and an
IND-CPA adversary B such that

Advsoa
Π`,k,M,R,S(A) ≤ k` ·Advind-cpa

Π (B) + k` · δ ,

where T(S) = O(T(A) +k` ·T(OpenToOne) + q ·T(Kg`) +k ·T(Enc`) + T(Pg`)) and T(B) = O(T(A) +
T(M) + k` · T(Enc) + k` · T(OpenToOne) + T(R)). ut

Proof. Let A be an arbitrary soa-adversary against Π`. We describe a simulator S for A in Figure 5.
The simulator runs Pg to generate par and msk. It will run A on input par, answering oracle queries as
follows. On oracle query NewMesg(id, α) from A, S forwards the query to its own NewMesg oracle,
receiving nothing in response. S then generates a vector of ciphertexts, where each ciphertext is an
encryption of the all-zero message {0, 1}`, and returns it to the adversary as the output of NewMesg.
Later, on query Corrupt(I) from A, S queries its own Corrupt oracle on I and learns m[I]. For
each index i ∈ I and each j ∈ [`], if m[i][j] (the jth bit of the ith message) is 0 then S will return
the actual randomness it used to generate c[i] (in answering the previous NewMesg oracle query).
If m[i][j] = 1, however, S will run OpenToOne on the jth component of the ciphertext c[i] to find
coins that can open that component to a 1. In addition to the randomness, of course, S also returns
the messages m[I]. On extract queries from A, S simply uses msk to answer correctly. Lastly, when
A halts with output out, S halts with the same output.

We prove the theorem through a series of game transitions. Their precise code can be found in
Figures 5,6, and 7. The transitions are summarized as follows.

– G0: The IBESOAREAL game.
– G1: Change Corrupt procedure to resample coins before opening.
– G2: Replace resampling from G1 with call to OpenToOne. If OpenToOne fails, set bad flag and

resample as in G1.
– G3: Same as above except if OpenToOne fails do not do any other resampling.
– Hv: The first v bits sampled from M (possibly across many messages) are ignored by NewMesg

and replaced by 0s. However, Corrupt still uses OpenToOne to open ciphertexts to 1 depending
on M.

– Hk`: all messages from M are completely ignored by NewMesg and only all-0 messages are
encrypted.

– G4: Since NewMesg ignores the messages sampled from M, the message sampling is moved to
the Corrupt procedure.

More formally, we first claim that

Pr
[

IBESOAREALA ⇒ true
]

= Pr
[
GA0 ⇒ true

]
.

11

alg.S() :

(par,msk)←$ Pg`

Run A(par).

On query NewMesg(id, α):

⊥ ← NewMesgS(id, α)
For i in 1 to k

r[i]← Coins(par, 0`)
c[i]← Enc`(par, id[i], 0`; r[i])

Return c

On query Corrupt(I):

m[I]← CorruptS(I)
For i ∈ I

For j in 1 to `
if m[i][j] = 1 then
r[i][j]←$ OpenToOne(par, id[i], c[i][j])

Return (r[I],m[I])

On query Extract(id):

Return Kg`(par,msk, id)

When A halts with output out, halt and output out.

proc. Initialize: All Games

(par,msk)←$ Pg`

Return par

proc. NewMesg(id, α): G0, G1, G2, G3

If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id
m←$M(α)
For i in 1 to k

For j in 1 to `
r[i][j]←$ Coins(par,m[i][j])
c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])

Return c

proc. Corrupt(I): G0

Return r[I], m[I]

proc. Extract(id): All Games

Return Kg`(par,msk, id)

proc. Finalize(out): All Games
Return R(m,ChID, I, out)

Fig. 5. Simulator S and the start of the game sequence.

Next, we claim

Pr
[
GA0 ⇒ true

]
= Pr

[
GA1 ⇒ true

]
,

since from the coins returned in Corrupt are identically distributed given the view of A. Next, we can
see that

Pr
[
GA1 ⇒ true

]
= Pr

[
GA2 ⇒ true

]
,

since by definition when OpenToOne does not fail its output is identically distributed to as in G1, and
when it does fail G1 ignores its output and resamples as in G1. Now, the Fundamental Lemma of game
playing justifies

Pr
[
GA2 ⇒ true

]
− Pr

[
GA3 ⇒ true

]
≤ Pr

[
BD(GA2)

]
,

and since the probability that any execution of OpenToOne fails is at most δ (over just the coins of
OpenToOne) and there are at most ` · k bits that have to be opened by Corrupt, we see that

Pr
[
BD(GA2)

]
≤ k`δ .

Next, H0 is just a rewriting of G3. Next, we claim that

Pr
[
HA0 ⇒ true

]
− Pr

[
HAk` ⇒ true

]
≤ k` ·Advind-cpa

Π (B) , (1)

where adversary B is described in Figure 8. To justify this claim, let M0v+1(HAv′) be the event that
in the execution of HAv′ the v + 1st bit sampled by M in NewMesg is a 0. The complement event is
denoted by M1. Notice that in the case that the event that the v + 1st bit sampled in Hv is a 0, the
games Hv and Hv+1 are identical, since Hv will encrypt the actual v + 1st bit (which is a 0 since the
event is true) and Hv+1 will ignore the actual bit and encrypt a 0. In both cases, 0 is encrypted. Also
notice that in both Hv and Hv+1 the message sampled is independent of whether it is game v or v+ 1

12

proc. Corrupt(I): G1

For i in I
For j in 1 to `

If m[i][j] = 1 then
r[i][j]←$ Coins(par, id[i], c[i][j], 1)

Return r[I], m[I]

proc. NewMesg(id, α): Hv
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id ; m←$M(α)
For i in 1 to k

For j in 1 to `
if ((i− 1) · `+ j) ≤ v then

r[i][j]←$ Coins(par, 0)
c[i][j]← Enc(par, id[i], 0; r[i][j])

Else
r[i][j]←$ Coins(par,m[i][j])
c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])

Return c

proc. Corrupt(I): Hv
For i in I

For j in 1 to `
If m[i][j] = 1 then

r[i][j]←$ OpenToOne(par, id[i], c[i][j])
Return r[I], m[I]

proc. Corrupt(I): G2 , G3

For i in I
For j in 1 to `

If m[i][j] = 1 then
r[i][j]←$ OpenToOne(par, id[i], c[i][j])
If r[i][j] = ⊥ then

bad← true
r[i][j]←$ Coins(par, id[i], c[i][j], 1)

Return r[I], m[I]

proc. NewMesg(id, α): Hk`
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id ; m←$M(α)
For i in 1 to k

For j in 1 to `
r[i][j]←$ Coins(par, 0)
c[i][j]← Enc(par, id[i], 0; r[i][j])

Return c

proc. Corrupt(I): Hk`
For i in I

For j in 1 to `
If m[i][j] = 1 then

r[i][j]←$ OpenToOne(par, id[i], c[i][j])
Return r[I], m[I]

Fig. 6. Games for the proof of Theorem 1.

proc. NewMesg(id, α):
If id ∩ ExID 6= ∅ then return ⊥
ChID← ChID ∪ id
For i in 1 to k

For j in 1 to `
r[i][j]←$ Coins(par, 0)
c[i][j]← Enc(par, id[i], 0; r[i][j])

Return c

proc. Corrupt(I): G4

m←$M(α)
For i in I

For j in 1 to `
If m[i][j] = 1 then

r[i][j]←$ OpenToOne(par, id[i], c[i][j])
Return r[I], m[I]

Fig. 7. The last game G4.

since v is not used until after the message has been sampled. Thus, M0v+1(HAv+1) = M0v+1(HAv).

Pr
[
HAv

]
− Pr

[
HAv+1

]
=
(
Pr
[
HAv ∧M0v+1(HAv)

]
+ Pr

[
HAv ∧M1v+1(HAv)

])
−(

Pr
[
HAv+1 ∧M0v+1(HAv+1)

]
+ Pr

[
HAv+1 ∧M1v+1(HAv+1)

])
= Pr

[
M0v+1(HAv)

]
·
(
Pr
[
HAv | M0v+1(HAv)

]
− Pr

[
HAv+1 | M0v+1(HAv+1)

])
+

Pr
[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
. (2)

Now as we said above, in the event M0v+1 both Hv+1 and Hv are identical, thus the first term in (2)
becomes zero. This means that,

Pr
[
HAv

]
− Pr

[
HAv+1

]
= Pr

[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
, (3)

13

alg.B(par) :

v←$ {0, . . . , k`− 1}
Run A(par).

On query NewMesg(id, α):

m←$M(α)
For i in 1 to k

For j in 1 to `
if ((i− 1) · `+ j) ≤ v then

r[i][j]←$ Coins(par, 0) ; c[i][j]← Enc(par, id[i], 0; r[i][j])
Else if ((i− 1) · `+ j) = v + 1 then

If m[i][j] = 1 then c[i][j]← LRB(id[i], 0, 1)
Else

r[i][j]←$ Coins(par,m[i][j]) ; c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])
Else

r[i][j]←$ Coins(par,m[i][j]) ; c[i][j]← Enc(par, id[i],m[i][j]; r[i][j])
Return c

On query Corrupt(I):

m[I]← CorruptS(I)
For i ∈ I

For j in 1 to `
if m[i][j] = 1 then r[i][j]←$ OpenToOne(par, id[i], c[i][j])

Return (r[I],m[I])

On query Extract(id):

Return ExtractB(id)

When A halts with output out, halt and output R(m,ChID, I, out).

Fig. 8. IND-CPA adversary B

and thus

Pr
[
HA0

]
− Pr

[
HAk`

]
=

k`−1∑
v=0

Pr
[
HAv

]
− Pr

[
HAv+1

]
=

k`−1∑
v=0

Pr
[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
, (4)

Consider again IND-CPA adversary B in Figure 8. The adversary picks a random integer v and
runs A while simulating its environment as in either Hv or Hv−1, depending on whether its LR oracle
encrypts the left or right message, respectively. Notice that B only uses its LR oracle in the event
M1v+1, and thus all of its advantage comes from this case. It is thus easy to see that

Advind-cpa
Π (B) =

1
k`

k`−1∑
v=0

Pr
[
M1v+1(HAv)

]
·
(
Pr
[
HAv | M1v+1(HAv)

]
− Pr

[
HAv+1 | M1v+1(HAv+1)

])
,

which combined with (4) justifies (1).
Next, we see that

Pr
[
HAk` ⇒ true

]
= Pr

[
GA4 ⇒ true

]
,

which is true since G4 is identical to Hk` except the message sampling is moved to Corrupt. This
can be done since the messages sampled in NewMesg are completely ignored in Hk` (only 0s are
encrypted).

14

Finally, the simulator S described in Figure 5 can run identically to G4 (where it learns m[I]
through a Corrupt query instead of sampling as in G4), so we have that

Pr
[
GA4 ⇒ true

]
= Pr

[
IBESOASIMS ⇒ true

]
.

Combining all of the above equations we get that

Pr
[

IBESOAREALA ⇒ true
]
− Pr

[
IBESOASIMS ⇒ true

]
≤ k` ·Advind-cpa

Π (B) + k`δ ,

which proves the theorem. ut

7 IND-CPA Security of LoR

Theorem 1 allows us to achieve SOA-secure IBE given a 1-bit 1SPO, IND-CPA scheme. We have seen
that LoR is 1SPO. It remains to show it is IND-CPA.

The following theorem establishes this based on the Decisional Linear Assumption.

Theorem 2. Fix pairing parameters GP = (G,GT , p, e) and an integer n ≥ 1, and let LoR =
(Pg,Kg,Enc,Dec) be the one-bit IBE scheme associated to GP and IdSp = {0, 1}n. Assume G is PR-
samplable with sampling failure probability ζ. Let A be an IND-CPA adversary against LoR which has
advantage ε = Advind-cpa

LoR (A) > 2n+1/p+ 5ζ and makes at most q ∈ [1 .. pε/9n] queries to its Extract
oracle. Let

δ =
1
2

(
ε

2
− 2n

p
− 5ζ

)
.

Then there is a DLIN-adversary B such that

Advdlin
GP (B) ≥ δ2

9qn+ 3δ
, and (5)

T(B) = T(A) + Tsim(n, q) (6)

where

Tsim(n, q) = O(qn+ (n+ q)Texp(G)) .

ut

The proof of the theorem combines techniques from [8, 25, 2] and can be found in Appendix A.

References

1. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment secure
under selective opening. In A. Joux, editor, Advances in Cryptology – EUROCRYPT 2009, number 5479 in Lecture
Notes in Computer Science, pages 1–35. Springer, 2009.

2. M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete security
for waters’ ibe scheme. In Advances in Cryptology – EUROCRYPT 2009, number 5479 in Lecture Notes in Computer
Science. Springer, 2009.

3. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. In Advances
in Cryptology – EUROCRYPT 2006, number 4004 in Lecture Notes in Computer Science, pages 409–426. Springer,
2006.

4. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In Advances
in Cryptology – EUROCRYPT 2004, pages 223–238. Springer, 2004.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology – CRYPTO 2004, number
3152 in LNCS, pages 41–55. Springer, 2004.

6. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. SIAM J. Comp., 32(3):586–615,
2003.

7. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J. Cryptology, 17(4):297–319, 2004.

15

8. X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random oracles). In Advances
in Cryptology – CRYPTO 2006. Springer, 2005.

9. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In Advances in Cryptology – CRYPTO
1997, pages 90–104. Springer, 1997.

10. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. In Twenty-Eighth
Annual ACM Symposium on Theory of Computing, Proceedings of STOC 1995, pages 639–648. ACM Press, 1996.

11. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In Advances in
Cryptology – EUROCRYPT 2004. Springer, 2004.

12. R. Canetti, S. Halevi, and J. Katz. Adaptively-secure, non-interactive public-key encryption. In J. Kilian, editor,
Theory of Cryptography, Proceedings of TCC 2005, number 3378 in Lecture Notes in Computer Science, pages
150–168. Springer-Verlag, 2005.

13. I. Damg̊ard and J. B. Nielsen. Improved non-committing encryption schemes based on general complexity assump-
tions. In M. Bellare, editor, Advances in Cryptology, Proceedings of CRYPTO 2000, number 1880 in Lecture Notes
in Computer Science, pages 432–450. Springer-Verlag, 2000.

14. C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions. Journal of the ACM, 50(6):852–921, 2003.
15. S. Fehr, D. Hofheinz, E. Kiltz, and H. Wee. Encryption schemes secure against chosen-ciphertext selective opening

attacks. In Advances in Cryptology – EUROCRYPT 2010. Springer, 2010. To Appear.
16. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2), 1984.
17. B. Hemenway and R. Ostrovsky. Lossy encryption from general assumptions. IACR ePrint Archive Report 2009/088.
18. D. Hofheinz. Possibility and impossibility results for selective decommitments. IACR ePrint Archive, Apr. 2008.
19. T. Icart. How to hash into elliptic curves. In Advances in Cryptology – CRYPTO 2009, pages 303–316. Springer,

2009.
20. G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging information. In TCC

2008, pages 320–339. Springer, 2008.
21. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Twelfth Annual Symposium on Discrete Algorithms,

Proceedings of SODA 2001, pages 448–457. ACM/SIAM, 2001.
22. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption

case. In Advances in Cryptology – CRYPTO 2002, pages 111–126. Springer, 2002.
23. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer. In

Advances in Cryptology – CRYPTO 2008, pages 554–571. Springer, 2008.
24. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In Fortieth Annual ACM Symposium on

Theory of Computing – STOC 2008, pages 187–196. ACM Press, 2008.
25. B. Waters. Efficient identity-based encryption without random oracles. In Advances in Crypology – EUROCRYPT

2005, pages 114–127, 2005.

A Proof of Theorem 2

In this section, we prove Theorem 2, establishing the IND-CPA security of our scheme LoR based on
the decisional linear assumption. We will closely follow the proof of security from [2] which gave an
alternative proof to Waters’ IBE scheme [25]. Consider the games in Figures 9,10, and 11. We have

Pr
[
GA2

]
− Pr

[
GA3

]
≤ Pr

[
BAD(GA3)

]
(7)

≤ 2n

p
(8)

Games G2, G3 are identical until bad so (7) is by the Fundamental Lemma of game playing [3]. To
justify (8) first note H(u, id) = gt1F(x,id)+G(y,id). Thus, the event BD(GA3) happens when t1F(x, id) +
G(y, id) ≡ 0 (mod p). Fix t1 and x. For any particular id, the probability over y that G(y, id) +
F(x, id)t1 ≡ 0 (mod p) is 1/p. But the number of choices of id is 2n so we conclude by the union
bound. Now we have

ε = Advind-cpa
LoR (A) ≤ 2

(
Pr
[
GA0

]
+ 5ζ

)
− 1

= 2
(

Pr
[
GA0

]
− 1

2

)
+ 10ζ

= 2
(

Pr
[
GA0

]
− Pr

[
GA1

]
+ Pr

[
GA1

]
− Pr

[
GA2

]
+ Pr

[
GA2

]
− Pr

[
GA3

]
+ Pr

[
GA3

]
− 1

2

)
+ 10ζ

16

proc. Initialize: Games G0, G1, G2, G3

c←$ {0, 1} ; u←$ Gn+1

t1, t2, t3, t4←$ Z∗p
For i = 1, 2, 3, 4 do vi ← gti

par ← (u, v1, v2, v3, v4) ; msk ← (t1, t2, t3, t4)
Return par

proc. Extract(id): Games G0, G1, G2, G3

r1, r2←$ Zp
d0 ← gr1t1t2+r2t3t4

d1 ← H(u, id)−r1t2 ; d2 ← H(u, id)−r1t1

d3 ← H(u, id)−r2t4 ; d4 ← H(u, id)−r2t3

Return (d0, d1, d2, d3, d4)

proc. LR(id,M0,M1): Game G0

If Mc = 0 then
s, s1, s2←$ Zp
C0 ← H(u, id)s

C1 ← vs−s11 ; C2 ← vs12

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C1, C2, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

proc. Finalize(c′): Games G0, G1, G2, G3

Return (c = c′)

proc. LR(id,M0,M1): Game G1

If Mc = 0 then
s, s1, s2←$ Zp
C0 ← H(u, id)s

C1←$ G ; C2 ← vs12

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C1, C2, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

proc. LR(id,M0,M1): Games G2, G3

If Mc = 0 then
s, s1, s2←$ Zp
C0 ← H(u, id)s

If (H(u, id) = 1G) then

bad← true ; C0←$ G
C1←$ G ; C2 ← vs12

C3←$ G ; C4 ← vs24

Else
C0, C1, C2, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

Fig. 9. Game transitions

However Pr
[
GA3

]
= 1

2 . Using this and (8) we have

ε = Advind-cpa
Π (A) ≤ 2ε1 + 2ε2 +

2n+1

p
+ 10ζ

where

ε1 = Pr
[
GA0

]
− Pr

[
GA1

]
and ε2 = Pr

[
GA1

]
− Pr

[
GA2

]
We consider two cases. The first is when

ε1 ≥
1
2

(
ε

2
− 2n

p
− 5ζ

)
and the second is when

ε2 ≥
1
2

(
ε

2
− 2n

p
− 5ζ

)
.

In the first case we design B1 so that

Advdlin
GP (B1) ≥ ε21

9qn+ 3ε1
(9)

and in the second case we design B2 so that

Advdlin
GP (B2) ≥ ε22

9qn+ 3ε2
.

The adversary B of the theorem statement is either B1 or B2 depending which case is true. In the
sequel we describe B1 and sketch the proof of (9) based on [8, 2]. The design and analysis of B2 is
similar and omitted.

17

Adversary B1(g, v1, v2, C1, C2,W):
c←$ {0, 1}
t3, t4←$ Z∗p ; v3 ← gt3 ; v4 ← gt4

For j = 0, . . . , n do
y[j]←$ Zp
If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]

u[j]← v
x[j]
1 gy[j]

par ← (g,u, v1, v2, v3, v4)
Run A(par), answering queries by

On query Extract(id):
sk(id)← ⊥
If F(x, id) = 0 then bad← true
Else sk(id)←$ KgS(g, v1, v2, t3, t4,u,x,y, id)
Return sk(id)

On query LR(id,M0,M1):
C ← ⊥
If F(x, id) 6= 0 then bad← true
Else
C←$ EncS(g, C1, C2, v3, v4, t3,W,y, id,Mc)

Return C

A finishes, returning bit c′

If bad = true then c′←$ {0, 1}
If c = c′ then return 1 else return 0

proc. Initialize: Games G4, G5, G6

c, d←$ {0, 1} ; t1, t2, t3, t4←$ Z∗p ; s, s1, s2←$ Zp
v1 ← gt1 ; v2 ← gt2 ; v3 ← gt3 ; v4 ← gt4

C1 ← vs−s11 ; C2 ← vs12

If d = 1 then W ← gs else W ←$ G
For j = 0, . . . , n do

y[j]←$ Zp
If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]

u[j]← v
x[j]
1 gy[j]

par ← (g,u, v1, v2, v3, v4) ; msk ← (t1, t2, t3, t4)
Return par

proc. Extract(id): Games G4, G5

sk(id)← ⊥
If F(x, id) = 0 then

bad← true ; sk(id)←$ Kg(par,msk, id)

Else sk(id)←$ KgS(g, v1, v2, t3, t4,u,x,y, id)
Return sk(id)

proc. LR(id,M0,M1): Games G4, G5

C ← ⊥
If F(x, id) 6= 0 then

bad← true

If Mc = 0 then
t←$ Zp ; If d = 1 then t← s
C0 ← H(u, id)t

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C3, C4←$ G

C ← (C0, C1, C2, C3, C4)

Else C←$ EncS(g, C1, C2, v3, v4, t3,W,y, id,Mc)
Return C

proc. Finalize(c′): Games G4, G5

c′′ ← c′

If bad = true then c′′←$ {0, 1} ; c′′ ← c′

If (c = c′′) then return 1 else return 0

Fig. 10. Adversary B and the continuation of the game sequence.

Simulation subroutines. Towards the proof we begin with some definitions from [2]. Let m =
d3q/ε1e and let X = [−n(m − 1) .. 0] × [0 ..m − 1] × · · · × [0 ..m − 1] where the number of copies of
[0 ..m− 1] is n. For x ∈ X, y ∈ Zn+1

p and id ∈ {0, 1}n we let

F(x, id) = x[0] +
n∑
i=1

x[i]id[i] and G(y, id) = y[0] +
n∑
i=1

y[i]id[i] mod p . (10)

In the above, the computation of G is over Zp, while the computation of F is over Z. Adversary B1 is
shown in Figure 10. We now describe the subroutines it utilizes to answer Extract and LR queries.
We define the following procedures:

18

proc. Extract(id): Game G6

If F(x, id) = 0 then bad← true
sk(id)←$ Kg(par,msk, id)
Return sk(id)

proc. LR(id,M0,M1): Game G6

If F(x, id) 6= 0 then bad← true
If Mc = 0 then
t←$ Zp ; If d = 1 then t← s
C0 ← H(u, id)t

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C3, C4←$ G

C ← (C0, C1, C2, C3, C4)
Return (C0, C1, C2, C3, C4)

proc. Finalize(c′): Game G6

If (c = c′) then return 1 else return 0

proc. Initialize: Game G7

c, d←$ {0, 1} ; cnt← 0
t1, t2, t3, t4←$ Z∗p ; s, s1, s2←$ Zp
v1 ← gt1 ; v2 ← gt2 ; v3 ← gt3 ; v4 ← gt4

C1 ← vs−s11 ; C2 ← vs12

If d = 1 then W ← gs else W ←$ G
For j = 0, . . . , n do

z[j]←$ Zp ; u[j]← gz[j]

If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]
y[j]← z[j]− t1 · x[j] mod p

par ← (g,u, v1, v2, v3, v4)
msk ← (t1, t2, t3, t4)
Return par

proc. Finalize(c′): Game G7

For j = 0 to cnt do
If F(x, idj) = 0 then bad← true

If F(x, id0) 6= 0 then bad← true
If (c = c′) then return 1 else return 0

proc. Initialize: Game G8

c, d←$ {0, 1} ; cnt← 0
t1, t2, t3, t4←$ Z∗p ; s, s1, s2←$ Zp
v1 ← gt1 ; v2 ← gt2 ; v3 ← gt3 ; v4 ← gt4

C1 ← vs−s11 ; C2 ← vs12

If d = 1 then W ← gs else W ←$ G
For j = 0, . . . , n do

z[j]←$ Zp ; u[j]← gz[j]

par ← (g,u, v1, v2, v3, v4)
msk ← (t1, t2, t3, t4)
Return par

proc. Extract(id): Games G7, G8

cnt← cnt+ 1 ; idcnt ← id
sk(id)←$ Kg(par,msk, id)
Return sk(id)

proc. LR(id,M0,M1): Game G7, G8

id0 ← id
If Mc = 0 then
t←$ Zp ; If d = 1 then t← s
C0 ← H(u, id)t

C3 ← vs−s23 ; C4 ← vs24

Else
C0, C3, C4←$ G

C ← (C0, C1, C2, C3, C4)
Return (C0, C1, C2, C3, C4)

proc. Finalize(c′): Game G8

For j = 0 to cnt do
For j = 0, . . . , n do

If j = 0 then x[j]←$ [−n(m− 1) .. 0]
Else x[j]←$ [0 ..m− 1]
If F(x, idj) = 0 then bad← true

If F(x, id0) 6= 0 then bad← true
If (c = c′) then return 1 else return 0

Fig. 11. Game transitions

proc. KgS(g, v1, v2, t3, t4,u,x,y, id):

r1, r2←$ Zp
d0 ← gr2t3t4vr12

If H(u, id) 6= 1G then
d1 ← v

−r1·F(x,id)
2

d2 ← v
−r1·F(x,id)
1

d3 ← H(u, id)−r2t4v−r1·G(y,id)/t3
2

d4 ← H(u, id)r2t3v−r1·G(y,id)/t4
2

Else
d1, d2, d3, d4 ← 1G

Ret (d0, d1, d2, d3, d4)

proc. EncS(g, C1, C2, v3, v4, t3,W,y, id,M):

If M = 0 then
s2←$ Zp
C0 ←WG(y,id)

C3 ←W t3v−s23

C4 ← vs24

Else
C0, C3, C4←$ G

Return (C0, C1, C2, C3, C4)

19

The next lemma captures a fact about the simulation subroutine KgS, which we will use in our analysis.
It is obtained by adapting a lemma in [8] for use with the Waters’ hash.

Lemma 1. Suppose g, v1, v2, v3, v4 ∈ G∗, id ∈ {0, 1}n, W ∈ GT , x ∈ X, y ∈ Zn+1
p , u[j] = v

x[j]
1 gy[j]

for 0 ≤ j ≤ n. Further, suppose F(x, id) 6= 0 and let ti = logg(vi) for 1 ≤ i ≤ 4. Let par =
(g,u, v1, v2, v3, v4) and msk = (t1, t2, t3, t4). Then the outputs of KgS(g, v1, v2, t3, t4,u,x,y, id) and
Kg(par,msk, id) are identically distributed. ut

Proof. First assume t1F(x, id) + G(y, id) 6= 0 (mod p). Define f1, f2 : Zp → Zp by

f1(r1) =
r1 · F(x, id)

t1F(x, id) + G(y, id)
and

f2(r2) = r2 +
r1t2G(y, id)

(t3t4)(t1F(x, id) + G(y, id))
.

These are well defined because t1F(x, id) + G(y, id) was assumed 6= 0 (mod p) and also we know
t3, t4 6= 0 (mod p). Then letting r′1 = f(r1) and r′2 = f(r2), a computation shows that

gr2t3t4vr12 = gr
′
1t1t2+r′2t3t4 , v

−r1F(x,id)
2 = H(u, id)−r

′
1t2 , v

−r1F(x,id)
1 = H(u, id)−r

′
1t1

H(u, id)−r2t4v−r1G(u,id)/t3
2 = H(u, id)−r

′
2t4 , H(u, id)−r2t3v−r1G(y,id)/t4

2 = H(u, id)−r
′
2t3

Given that F(x, id) 6= 0, the functions f1, f2 are permutations so from above we are done. Now, in the
case

t1F(x, id) + G(y, id) ≡ 0 (mod p)

we have H(u, id) = 1G. We let

f1(r1) =

{
r1/t1 If t1 6= 0

r1 otherwise

and f2(r2) = r2. Again, f1, f2 are permutations and we are done. ut

Analysis. Consider games G4–G8 of Figures 10 and 11. We have

Pr
[

DLINB1
GP ⇒ true

]
= Pr

[
GA4 ⇒ d

]
= Pr

[
GA4 ⇒ d | BD(GA4)

]
· Pr

[
BD(GA4)

]
+ Pr

[
GA4 ⇒ d ∧ GD(GA4)

]
=

1
2

Pr
[
BD(GA4)

]
+ Pr

[
GA4 ⇒ d ∧ GD(GA4)

]
=

1
2

Pr
[
BD(GA5)

]
+ Pr

[
GA5 ⇒ d ∧ GD(GA5)

]
,

the last because G4, G5 are identical until bad. We now claim

Pr
[
BD(GA5)

]
= Pr

[
BD(GA6)

]
and Pr

[
GA5 ⇒ d ∧ GD(GA5)

]
= Pr

[
GA6 ⇒ d ∧ GD(GA6)

]
.

Lemma 1 implies that the Extract procedures in G5, G6 are equivalent. We now claim the LR
procedures are as well. To see this consider separately the cases d = 0 and d = 1. (In the former, if
w = gt is random then EncS is equivalent to the boxed code.) Additionally c′′ = c′ in Finalize of G5

hence the Finalize procedures of G5, G6 are equivalent. Standard game manipulations following [2]
now give us

Pr
[
BD(GA6)

]
= Pr

[
BD(GA7)

]
= Pr

[
BD(GA8)

]
Pr
[

GA6 ⇒ d ∧ GD(GA6)
]

= Pr
[
GA6 ⇒ d ∧ GD(GA7)

]
= Pr

[
GA8 ⇒ d ∧ GD(GA8)

]
.

20

Putting the above together we have

Advdlin
GP (B1) = 2 · Pr

[
DLINB1

GP

]
− 1 = 2 · Pr

[
GA8 ⇒ d ∧ GD(GA8)

]
− Pr

[
GD(GA8)

]
.

Next

Pr
[
GA8 ⇒ d

]
=

1
2

Pr
[
GA8 ⇒ 1 | d = 1

]
− 1

2
Pr
[
GA8 ⇒ 1 | d = 0

]
+

1
2

=
1
2

Pr
[
GA0

]
− 1

2
Pr
[
GA1

]
=

1
2

+
ε1
2

Now use [2, Lemmas 3.4,3.5], and define γmin, γmax as there. Then, using the fact that m = d3q/ε1e,
calculation (omitted) shows

Advdlin
GP (B1) ≥ γminε1 + (γmin − γmax)

≥ ε21
9qn+ 3ε1

.

ut

21

