
Black-Box Constructions of Protocols

for Secure Computation∗

Iftach Haitner† Yuval Ishai‡ Eyal Kushilevitz† Yehuda Lindell§

Erez Petrank†

December 12, 2010

Abstract

In this paper, we study the question of whether or not it is possible to construct protocols
for general secure computation in the setting of malicious adversaries and no honest majority
that use the underlying primitive (e.g., enhanced trapdoor permutation) in a black-box way
only. Until now, all known general constructions for this setting were inherently non-black-
box since they required the parties to prove zero-knowledge statements that are related to
the computation of the underlying primitive. Our main technical result is a fully black-box
reduction from oblivious transfer with security against malicious parties to oblivious transfer
with security against semi-honest parties. As a corollary, we obtain the first constructions of
general multiparty protocols (with security against malicious adversaries and without an honest
majority) which only make a black-box use of semi-honest oblivious transfer, or alternatively a
black-box use of lower-level primitives such as enhanced trapdoor permutations or homomorphic
encryption. In order to construct this reduction we introduce a new notion of security called
privacy in the presence of defensible adversaries. This notion states that if an adversary can
produce (retroactively, after the protocol terminates) an input and random tape that make
its actions appear to be honest, then it is guaranteed that it learned nothing more than its
prescribed output. We then show how to construct defensible oblivious transfer from semi-
honest oblivious transfer, and malicious oblivious transfer from defensible oblivious transfer, all
in a black-box way.

Keywords: Theory of cryptography, secure computation, black-box reductions, oblivious transfer

∗This paper combines the results appearing in [18] and [23]. The last four authors were supported by grant 36/03
from the Israel Science Foundation.

†Department of Computer Science, Tel-Aviv University, Israel. Campus. email: iftach.haitner@cs.tau.ac.il.
Most of this work was performed while at the Weizmann Institute of Science.

‡Department of Computer Science, Technion, Israel. email: {yuvali,eyalk,erez}@cs.technion.ac.il
§Department of Computer Science, Bar-Ilan University, Israel. email: lindell@cs.biu.ac.il. Some of this work

was carried out while the author was visiting the Technion.

1 Introduction

It is a known fact that most cryptographic tasks require the use of computational hardness as-
sumptions. These assumptions typically come in two types: specific assumptions like the hardness
of factoring, RSA, discrete log and others, and general assumptions like the existence of one-way
functions, trapdoor permutations and others. In this paper, we refer to general assumptions and
how they are used. Specifically, we consider an intriguing question regarding how secure protocols
utilize a primitive that is assumed to carry some hardness property. Here again, there is a clear
distinction between two types of uses:

1. Black-box usage: a protocol (or construction) uses a primitive in a black-box way if it
refers only to the input/output behavior of the primitive.1 For example, if the primitive is a
trapdoor permutation, then the protocol may sample a permutation and its domain, and may
compute the permutation and its inverse (if the trapdoor is given). Beyond this, no reference
is made to the primitive. In particular, the code used to compute the permutation (or carry
out any other task) is not referred to by the protocol. The vast majority of constructions in
cryptography are of this black-box type.

2. Non-black-box usage: a protocol (or construction) uses a primitive in a non-black-box way
if it refers to the code for computing its functionality. A typical example of a non-black-box
construction is where a Karp reduction is applied to the circuit computing the function, say,
in order to prove an NP zero-knowledge proof, as in [16].

A rich and fruitful body of work, initiated in [22], attempts to draw the borders between possibility
and impossibility for black-box constructions in cryptography. While many of the relations between
primitives are well understood, there are still some important tasks for which the only constructions
that we have rely on non-black-box access to the assumed primitive, yet the existence of a black-
box construction is not ruled out. In particular, this is the case for all constructions of public-key
encryption schemes that are secure against chosen-ciphertext attacks [9, 38, 31] (all these construc-
tions have the same flavor, but these are the only known constructions from general assumptions).
More relevant to this work is the fact that, starting from [17], all known general constructions of
multiparty protocols that are secure without an honest majority and in the presence of malicious
adversaries use non-black-box access to the assumed primitive.2 (We note that by “general con-
structions”, we mean construction that can be used to securely compute any functionality.) The
above phenomenon begs the following informally-stated question:

Is it possible to construct general protocols for secure computation without an honest
majority and with malicious adversaries, given only black-box access to a “low-level”
primitive?

1It is typically also required that the security proof of the construction be black-box in the sense that an adversary
breaking the protocol can be used as an oracle in order to break the underlying primitive. In such a case the
construction is referred to as a fully black-box reduction. All of the constructions in this paper are in fact fully
black-box reductions. See Section 2.3 and [12, 13, 37] for further discussion of reductions in cryptography.

2We stress that the above discussion is only true when considering general assumptions. Furthermore, it is only
true when considering “low-level primitives” like trapdoor permutations. Specifically, there do exist constructions
of secure multiparty protocols that use only black-box access to an oblivious transfer protocol with security against
malicious parties [26]. However, since it is not known how to construct the latter oblivious transfer protocols using
only black-box access to, say trapdoor permutations, the overall construction obtained does not use its “low-level”
primitive in a black-box way.

1

Answering the above question is of interest for several reasons. First, it is of theoretical interest
to understand whether or not non-black-box access to a primitive is necessary for these tasks. An
answer to this question would enhance our understanding of how hardness assumptions can (or
must) be used. Second, as we have mentioned, the non-black-box use of the underlying primi-
tive is typically utilized in order to apply a Karp reduction for the purpose of using a (general)
zero-knowledge proof. Such reductions are highly inefficient and are unlikely to be very useful in
practice. Furthermore, in these protocols the communication complexity depends on the complexity
of computing the primitive and the computational complexity grows more than linearly with that of
the primitive. (An exception to this rule is the communication-efficient compiler presented in [34],
which relies on the communication-efficient arguments of [28, 32]. However, the computational
complexity of the protocol of [34] is even worse than the GMW protocol [17].)

To illustrate the type of inefficiency resulting from current non-black-box constructions, recall
that current non-black-box techniques (e.g., the GMW protocol [17]) require parties to prove zero-
knowledge statements that involve the computation of the underlying primitive, say a trapdoor
permutation. For example, such a statement may be that a given value y that is sent was generated
by applying the permutation to a value x that is part of a party’s (committed) random tape.
Proving such a statement in zero-knowledge [16] involves the computation of a commitment for
every gate in a circuit that verifies the statement. At the very least, this requires the computation
of a commitment for every gate in a circuit that computes the permutation. However, the size of
such a circuit is cubic in the length of the key. Thus, for keys of size 1024 or 2048 bits, the number
of commitments that need to be computed is huge. In addition, doubling the security parameter
results in increasing the complexity of the original protocol by 8 (since n3 operations are needed
for a key of length n). Thus, as we have described, non-black-box protocols scale very poorly.
In contrast, in a black-box construction of a protocol from a trapdoor permutation primitive, the
number of invocations of the primitive is independent of the complexity of computing the primitive.

We conclude that the current non-black-box use of the underlying primitives constitutes an
obstacle to efficiency. (We note that the efficiency versus inefficiency of black-box versus non-black-
box constructions is very dependent on the context and what parameters are being considered. For
example, black-box constructions of pseudorandom generators from one-way permutations have
been shown to be inherently costly regarding the number of invocations of the underlying primi-
tive [29, 11]. In contrast, the use of non-black-box techniques results in other efficiency costs, as
described above.) It is therefore of great interest to know whether or not it is possible to obtain
solutions to these tasks that do not suffer from this obstacle. Despite the above, we stress that the
focus of this paper is not on efficiency, but rather on the theoretical question of whether or not it
is possible to obtain the aforementioned black-box constructions. We believe this question to be
interesting in its own right.

We stress that our work is not related to the question of black-box versus non-black-box zero-
knowledge. We focus on constructions that use an underlying cryptographic primitive in a black-
box or non-black-box manner. In contrast, the question of blackbox versus non-black-box zero-
knowledge relates to how the simulator uses the adversary/verifier in order to prove the zero-
knowledge property.

Our results. In this paper, we focus on the setting of no honest majority and malicious adver-
saries, and show how to construct protocols for general secure multiparty computation for this
case given black-box access to an oblivious transfer protocol with security against semi-honest ad-

2

versaries. Using previous constructions, the latter oblivious transfer protocol can be based (in a
black-box way) on either enhanced trapdoor permutations (cf. [14]) or homomorphic encryption
schemes (cf. [1]). We note that the standard general constructions of secure computation protocols
from “low-level” primitives rely on either enhanced trapdoor permutations or homomorphic encryp-
tion schemes. However, all previous protocols used these primitives in an inherently non-black-box
way. More concretely, we prove the following:

Theorem 1.1 There exist protocols for securely computing any multiparty functionality without
an honest majority and in the presence of static malicious adversaries, that rely only on black-
box access to either a semi-honest-secure oblivious transfer protocol, a family of enhanced trapdoor
permutations, or a homomorphic encryption scheme.

We remark that non-black-box access is not typically used when considering semi-honest adver-
saries [40, 17]. Rather, following [16, 17], the non-black-box access is utilized in known protocols in
order to have the parties prove (in zero-knowledge) that they are correctly following the protocol
specification. This is necessary for preventing a malicious adversary from (effectively) deviating
from the protocol instructions. We note also that in the case of an honest majority, it is possible to
securely compute any functionality information-theoretically, and without any hardness assump-
tion [3, 6]. Thus, no primitive at all is needed. For this reason, we focus on the case of no honest
majority (including the important two-party case) and malicious adversaries.

Techniques. We prove Theorem 1.1 by showing that it is possible to construct an oblivious
transfer protocol that is secure in the presence of malicious adversaries given only black-box access
to an oblivious transfer protocol that is secure in the presence of semi-honest adversaries; the
theorem then follows from [26] who show how general secure computation can be based on any
oblivious transfer that is secure in the presence of malicious adversaries. Our construction is fully
black-box meaning that the protocol that is secure in the presence of malicious adversaries uses
only black-box access to the semi-honest protocol, and our proof of security shows the existence
of an adversary that breaks the semi-honest protocol given black-box access to any adversary that
breaks the malicious protocol. Formally, we prove the following:

Theorem 1.2 There exists a fully black-box reduction from oblivious transfer that is secure in the
presence of malicious adversaries to oblivious transfer that is secure in the presence of semi-honest
adversaries.

Our main conceptual step towards proving Theorem 1.2 is to introduce a new type of adversary,
called a defensible adversary. In order to describe this notion, we describe what a defense is: a
defense is an input and random tape that is provided by the adversary after the protocol execution
concludes. A defense is good if the honest party using this very input and random tape would have
sent the exact same messages as the adversary sent. Such a defense is a supposed “proof” of honest
behavior. However, the adversary need not actually behave honestly and can construct its defense
retroactively (after the execution terminates). Loosely speaking, a protocol is said to be private in
the presence of defensible adversaries if the adversary learns nothing more than its prescribed output
when it provides a good defense. We stress that if the adversary does not provide a good defense
then nothing is guaranteed and the entire honest party’s input may be learned. This notion is
therefore rather weak, but is stronger than security in the presence of semi-honest adversaries. We
note that known oblivious transfer protocols like that of [10] are not secure under this notion.

3

Given the intermediate security notion of privacy in the presence of defensible adversaries, we
prove Theorem 1.2 by first showing that it is possible to construct an oblivious transfer protocol
that is private in the presence of defensible adversaries given any semi-honest oblivious transfer
protocol as a black box. Next, we show that it is possible to construct oblivious transfer that is
secure in the presence of malicious adversaries from oblivious transfer that is private in the presence
of defensible adversaries. Once again, this construction is fully black-box. We now give a more
detailed overview of the aforementioned construction. Recall that the first step is constructing
oblivious transfer protocols that are private in the presence of defensible adversaries from any
oblivious transfer that is secure in the presence of semi-honest adversaries. This construction is
essentially a very degenerate version of the GMW compiler [17]. Specifically, it works by having the
parties run a simple coin-tossing and input commitment protocol. The parties are then supposed to
run the protocol using the committed inputs and coins. The defense is then just a decommitment;
observe that given such a decommitment it is possible to check that the parties behaved in a
semi-honest manner, as required. We remark that our transformation from semi-honest security to
defensible security is generic and works for all protocols (and not just for oblivious transfer).

Having obtained oblivious transfer that is secure for defensible adversaries, we use this to
construct a new oblivious transfer protocol that is still private in the presence of defensible senders,
but is secure in the presence of malicious receivers (where security is “full security” according to
the ideal/real simulation paradigm). A central property of oblivious transfer that we use for this
transformation is the fact that it is possible to carry out oblivious transfer by first running an
oblivious transfer protocol on random inputs and then exchanging a single pair of messages that
“connect” the random inputs used to the real inputs of the parties. This naturally gives a way to
check that a party is behaving honestly. Specifically, have the parties run many oblivious transfer
protocols on random inputs, and then demand a defense on half of them chosen at random. Observe
that in general providing a defense is problematic because it reveals a party’s input. However, since
the parties use only random inputs at this stage, there is no harm in revealing a defense. The above
technique guarantees that if a party provides a good defense for all of the revealed executions, then
it must have a good defense for the vast majority of the executions. Since the protocol that we
start with guarantees that a party learns nothing more than the output when it can provide a good
defense, this suffices to ensure that a malicious adversary learns nothing more than the prescribed
output in a majority of the oblivious transfers. Of course, it does not suffice to show that a
malicious adversary learns nothing more than the output; we have to prove security under the
real/ideal model simulation paradigm. Nevertheless, as we show, this methodology suffices.

Our construction actually applies the above methodology twice, as follows. We first show that
the above-described method transforms an oblivious transfer protocol that achieves privacy in the
presence of a defensible adversary (sender or receiver) into one that achieves security in the presence
of a malicious receiver, whilst preserving privacy in the presence of a defensible sender. Then, we
show that this resulting oblivious transfer can be “reversed” so that we obtain security in the
presence of a malicious sender and privacy in the presence of a defensible receiver. Finally, we
apply the above method a second time to obtain security in the presence of a malicious sender and
receiver, as required. See Figure 1 for an outline of the progression of our construction.

4

Protocol number Security for corrupted sender Security for corrupted receiver

3.3 Private for defensible sender Private for defensible receiver
4.2 Private for defensible sender Secure for malicious receiver
5.1 Secure for malicious sender Private for defensible receiver

In Theorem 6.1 Secure for malicious sender Secure for malicious receiver

Figure 1: The progression of our constructions; each protocol uses the previous one as a subprotocol.

We note that Protocol 3.3 uses any semi-honest oblivious transfer as a starting point and
works for any protocol problem and not just oblivious transfer. This is in contrast to our other
constructions that are all specifically tailored to oblivious transfer.

This completes our high-level description of how we prove Theorem 1.2. Once we have con-
structed secure oblivious transfer protocols that use only black-box access to primitives, we apply
the well-known result of Kilian [26, 27] which shows that any two-party functionality can be securely
computed in the presence of malicious adversaries using black-box access to an oblivious transfer
protocol that is secure in the presence of malicious adversaries. This therefore yields Theorem 1.1.

Related and subsequent work. Independent of our work, it was shown in [8] that there are
constant-round protocols for the setting of an honest majority, that use only black-box access to
the assumed primitive (a pseudorandom generator). As we have mentioned, in the setting of an
honest majority, it is possible to construct information-theoretically secure protocols (which are,
by triviality, black-box). Nevertheless, there are no known (general) constant-round protocols for
the information-theoretic setting, and so [8] relates to this issue. The techniques used in [8] and
here are vastly different, due to the inherent differences between the setting of an honest majority
and that of no honest majority.

In a subsequent work [7], it is shown that if an ideal commitment is available, then the results
of the present work can be extended to provide universal composability and adaptive security (the
latter assumes that the semi-honest oblivious transfer is adaptively secure).

In another subsequent work [24] it is shown that, building on our black-box reduction from
malicious oblivious transfer to semi-honest oblivious transfer, it is possible to obtain a constant-
rate reduction of the same type. More concretely, ℓ instances of oblivious transfer with security
against malicious parties can be implemented by making a black-box use of only O(ℓ) + poly(n)
instances of oblivious transfer with security against semi-honest parties, where n is the security
parameter. Thus, for very large ℓ, the poly(n) factor becomes insignificant and the rate converges
to a constant. This is in contrast to our construction here that requires O(ℓ · poly(n)) semi-honest
oblivious transfers in order to obtain O(ℓ) oblivious transfers for malicious adversaries.

The notion of defensible adversaries leads naturally to the notion of security in the presence
of covert adversaries, introduced subsequently to this work in [2]. Loosely speaking, a protocol is
secure in the presence of covert adversaries if any attempt to cheat is guaranteed to be detected with
good probability (e.g., with probability 1/2). A protocol that is private for defensible adversaries is
a natural starting point for obtaining security in the presence of covert adversaries because parties
can prove they have behaved honestly by providing a good defense. Of course, this can only work if
a defense can be provided without revealing the actual inputs, like in the case of oblivious transfer
(as described above).

5

2 Definitions

2.1 Preliminaries

A function ϵ(·) is said to be negligible if ϵ(n) < n−c for any constant c > 0 and sufficiently large
n. A distribution ensemble {Xn}n∈N is an infinite sequence of distributions, where the support
of each distribution Xn consists of binary strings of some fixed length m(n). We say that two
distribution ensembles {Xn}n∈N and {Yn}n∈N, are computationally indistinguishable, and write

Xn
c≡ Yn, if for every (non-uniform) polynomial-size circuit family {An}, the distinguishing advan-

tage |Pr[An(Xn) = 1]− Pr[An(Yn) = 1]| is negligible. Similarly, we say that the two distributions
are statistically indistinguishable if the above holds for arbitrary (computationally unbounded) dis-
tinguishers An.

We refer to standard cryptographic primitives such as one-way functions and commitment
schemes. For self-containment, we include formal definitions of these primitives in Appendix A.
We consider two-party protocols defined by a pair of probabilistic polynomial time algorithms P1

and P2. We denote by ⟨P1(1
n, x1, ρ1), P2(1

n, x2, ρ2)⟩ the transcript of an execution between par-
ties P1 and P2 with a security parameter n, where Pi has input xi and random tape ρi. (Such
a transcript consists of the messages exchanged between the two parties.) For brevity, we will
sometimes omit the security parameter 1n. The message sent by party Pi (on the above inputs)
after having received the sequence of incoming messages α is denoted by Pi(xi, ρi;α). Stated
otherwise, Pi(xi, ρi; ·) denotes the next message function of Pi. We denote the output of Pi in
an execution by outputPi

⟨P1(x1, ρ1), P2(x2, ρ2)⟩ and its view (including its input, random tape
and received messages) by viewPi⟨P1(x1, ρ1), P2(x2, ρ2)⟩. We denote by outputPi

⟨P1(x1), P2(x2)⟩
and viewPi⟨P1(x1), P2(x2)⟩ the corresponding random variables when ρ1 and ρ2 are uniformly dis-
tributed. Finally, we denote by Uk the random variable that receives a uniformly distributed string
in {0, 1}k.

2.2 Secure Computation

We assume readers to have basic familiarity with standard simulation-based definitions of secure
two-party computation in a standalone setting. We provide a self-contained definition for com-
pleteness, and refer to [14, Chapter 7] for a more complete treatment.

Overview. In this work, we consider both malicious adversaries, who may arbitrarily deviate
from the protocol specification, and semi-honest adversaries, who follow the protocol specification
but may try to infer additional information from the messages they receive. We restrict the attention
to static corruptions (meaning that the set of corrupted parties is fixed throughout the protocol’s
execution). We restrict our protocols to have black-box simulators, which treat the adversary as
an oracle, and allow the simulators to run in expected polynomial time (counting each oracle call
to the adversary as a single step). Finally, we assume adversaries to be non-uniform polynomial-
time algorithms (or circuit families) and therefore, without loss of generality, assume that they are
deterministic. However, we note that this is not essential and all of our proofs hold for the uniform
model of computation.

Definitions. We let n denote a security parameter which is given as input to both parties. For
simplicity we assume here that the private input of each party has a fixed length k, which does not

6

grow with n. The security of a protocol is defined with respect to a functionality f . A two-party
functionality is a (possibly randomized) mapping of a pair of inputs (x1, x2) to a pair of outputs
(y1, y2). A two-party protocol for computing f is a protocol running in polynomial time and
satisfying the following correctness requirement: For any pair of inputs (x1, x2), the pair of outputs
(y1, y2) obtained in the end of an honest execution of the protocol is statistically indistinguishable
from f(x1, x2).

The security of a protocol (with respect to a functionality f) is defined by comparing the
real-world execution of the protocol with an ideal-world evaluation of f by a trusted party. More
concretely, it is required that for every adversary A, which attacks the real execution of the protocol
by corrupting one of the two parties, there exists an adversary A′, also referred to as a simulator,
which can “achieve the same effect” by corrupting the same party in an ideal evaluation of f . As
noted above, we impose the stronger requirement that there exist a single universal simulator Sim
which has black-box access to A. This is made more precise in what follows.

The real execution. Let π be a protocol computing a two-party functionality f . Let A = {An}
be an efficient nonuniform adversary which plays the role of either P1 or P2. For a security parameter
n, inputs x1, x2 ∈ {0, 1}k and party index i ∈ {1, 2}, we let realπ,A,i(n, x1, x2) be a random variable
containing the identity i of the corrupted party, the view of the adversary when playing the role of
Pi (and interacting with an uncorrupted P2−i on security parameter n and inputs x1, x2), and the
output of the uncorrupted party P2−i. That is,

realπ,A,1(n, x1, x2) = (1, viewAn⟨An(1
n, x1), P2(1

n, x2, ρ2)⟩, outputP2
⟨An(1

n, x1), P2(1
n, x2, ρ2)⟩),

where ρ2 is uniformly distributed, and similarly

realπ,A,2(n, x1, x2) = (2, viewAn⟨P1(1
n, x1, ρ1),An(1

n, x2)⟩, outputP1
⟨P1(1

n, x1, ρ1),An(1
n, x2)⟩).

The ideal execution. In the ideal execution, an adversary A′ interacts with a trusted party who
computes f on inputs provided by the two parties. More concretely, the ideal execution proceeds
as follows:

• The uncorrupted party sends its real input to the trusted party. The adversary A′ may
send an arbitrary input on behalf of the corrupted party, depending on the real input and
the security parameter. (Any missing or “invalid” value is substituted by a default value.)
Denote by x′i the value sent by party Pi.

• The trusted party computes f(x′1, x
′
2) = (y1, y2). (If f is randomized, this computation

involves random coins that are generated by the trusted party.) It then sends to the adversary
its own output.

• The adversary chooses whether to continue or abort; this can be formalized by having the
adversary send either a continue or abort message to the trusted party. In the former case,
the trusted party sends to the uncorrupted party Pi its output value yi. In the latter case,
the trusted party sends the special symbol ⊥ to the uncorrupted party.

After the above, A′ outputs some (randomized) function of its view, and the uncorrupted party
outputs the value received from the trusted party. We let idealf⊥,A′,i(n, x1, x2) be the random
variable containing the identity i of the corrupted party, the output of the adversary in the end of

7

the above process when playing the role of Pi (and interacting with an uncorrupted P2−i on security
parameter n and inputs x1, x2), and the output of the uncorrupted party P2−i. The subscript “⊥”
indicates that the adversary has the ability to abort the ideal execution.

Defining security. With the above in place, we can now define our strongest notion of security.

Definition 2.1 (Security against malicious parties) Let π be a two-party protocol for com-
puting a functionality f . We say that π securely computes f in the presence of malicious adversaries
if there exists a probabilistic, expected polynomial-time (black-box) simulator Sim such that for ev-
ery polynomial-size circuit family A = {An}, every choice i ∈ {1, 2} of corrupted party, and every
choice of inputs x1, x2 ∈ {0, 1}k, we have

realπ,A,i(n, x1, x2)
c≡ idealf⊥,A′,i(n, x1, x2),

where A′ = {A′n} is the ideal execution adversary defined by A′n = SimAn(1n).

A definition of security against semi-honest parties can be obtained by restricting the adversaries
A and A′ to be semi-honest. In the case of A, this means that all messages sent by the adversary are
computed according to π. (For implementing the honest strategy, A should receive an additional
random input ρi.) In the case of A′ this means that A′ must send the true input to the trusted
party and never abort.

We note that the above definition does not allow the choice of inputs (x1, x2) to depend on the
security parameter. Since we assume the inputs to come from a fixed domain, this is equivalent
to the standard (and generally more stringent) definition which requires indistinguishability even
when the choice of inputs (x1, x2) may depend on n.

We will mostly be interested in functionalities which deliver an output to only one of the two
parties. In such a case, any protocol satisfying the above notion of “security with abort” can be
easily turned into a similar protocol with full security (without abort). This is done by having the
uncorrupted party handle an event where the protocol aborts by computing its output on its own
(using a default value for the input of the uncorrupted party). Thus, for such functionalities we
will use a simpler form of the above definition which does not allow the adversary to abort in the
ideal execution.

2.3 Black-Box Reductions

A reduction from a primitive P to a primitive Q (sometimes referred to as a construction of primitive
P using a primitive Q) consists of showing that if there exists a secure implementation C of Q,
then there exists a secure implementation MC of P . This is equivalent to showing that for every
adversary that breaks MC , there exists an adversary that breaks C. Such a reduction is semi black-
box if the implementation MC of P and the adversary breaking Q ignore the internal structure
of Q’s implementation and only use it as an oracle. The reduction is fully black-box if the proof
of security is black box as well. That is, the adversary breaking Q ignores the internal structure
of both Q’s implementation and the (alleged) adversary breaking3 P . One can similarly define

3The meaning of “breaking” a primitive is usually clear from the security definition of the primitive. When P is a
secure computation protocol with a black-box simulator Sim, as in Definition 2.1, an adversary breaking P consists
of a real-execution adversary A attacking the protocol along with a distinguisher violating the indistinguishability
condition between real and ideal from Definition 2.1.

8

a fully black-box reduction from P to a pair of primitives Q1, Q2; here it should be possible to
use an adversary breaking P as an oracle for breaking either Q1 or Q2. A taxonomy of black-box
reductions was provided by [37], and the reader is referred to this paper for a more complete and
formal overview of these notions. All the reductions considered in this paper are fully black-box,
though the black-box construction of an adversary breaking Q from an adversary breaking P will
only be implicit in the security analysis.

2.4 Defensible Adversarial Behavior

We introduce the notion of defensible adversarial behavior. Loosely speaking, an adversary that
exhibits defensible behavior may arbitrarily deviate from the protocol specification. However, at the
conclusion of the protocol execution, the adversary must be able to justify or defend its behavior
by presenting an input and a random tape such that the honest party (with this input and random
tape) would behave in the same way as the adversary did. A protocol is “private” under defensible
adversarial behavior if it is “private” whenever the adversary can successfully prevent such a good
defense. We stress that if an adversary behaves maliciously and cannot provide a good defense,
then no security guarantees are given.

The above notion of privacy against defensible adversaries will be made more formal later. For
now, we formally define the notion of a good defense. Intuitively, a defense is an “explanation” of
an adversary’s behavior during the protocol execution. Such an explanation consists of an input
and random tape, and the defense is “good” if an honest party, given that input and random tape,
would have sent the same messages as the adversary did during the protocol execution. The formal
definition follows.

Definition 2.2 (good defense for t): Let t be the transcript of an execution of a protocol π =
(P1, P2) between an adversary A (say, controlling P1) and the honest party (say P2). Then, we say
that the pair (x1, ρ1) constitutes a good defense by A for t in π, denoted (x1, ρ1) = defenseπA(t), if
for every ℓ ∈ N it holds that sentAℓ (t) = P1(x1, ρ1; received

A
1,...,ℓ−1(t)), where sentPi

ℓ (t) denotes the ℓth

message sent by Pi in t and receivedPi
1,...,ℓ(t) denote the first ℓ messages received by Pi in t.

In other words, every message sent by A in the execution is such that the honest party P1 with
input (x1, ρ1) would have sent the same message.

2.5 Security of Oblivious Transfer Protocols

An oblivious transfer protocol [36, 10] is a secure protocol for the following oblivious transfer
functionality. Instead of P1 and P2 we refer to the two parties as a sender S and a receiver R. The
sender’s input consists of a pair of strings (s0, s1) and the receiver’s input is a single selection bit
r ∈ {0, 1}. The receiver’s output is the selected string sr, and the sender has no output. Thus,
an oblivious transfer protocol has the property that the sender learns nothing about the receiver’s
selection bit r and the receiver obtains sr, but learns nothing about s1−r. (This variant of oblivious
transfer is usually referred to as “1-out-of-2 OT” [10].) We will typically restrict the attention
to the case of bit oblivious transfer, in which each of s0 and s1 is a single bit. Thus, by default,
oblivious transfer should be interpreted as bit oblivious transfer.

As outlined in the introduction, we apply a sequence of black-box constructions to obtain
an oblivious transfer protocol with security against malicious parties from any oblivious transfer

9

protocol with security against semi-honest parties. The first step is a black-box construction of an
oblivious transfer protocol that is private in the presence of a defensible adversary from an oblivious
transfer protocol that is secure against semi-honest parties.

In the following we define both of the above notions of oblivious transfer. While a definition
of semi-honest oblivious transfer can be derived as a special case of the general definition from
Section 2.2, it will be convenient to use the more explicit (but equivalent) formulation give below.

Non-trivial oblivious transfer protocols. One technicality that must be dealt with is that a
protocol that does nothing is trivially “private” in that it does not reveal anything about the parties’
inputs. Of course, such a protocol is also useless. In order to make sure that the oblivious transfer
protocols that we construct are “useful”, we define the notion of a non-trivial oblivious transfer
protocol. Such a protocol has the property that if both the sender and receiver are uncorrupted,
then the receiver will receive its output as designated by the oblivious transfer functionality except,
perhaps, with negligible probability in n. From here on, whenever we refer to an oblivious transfer
protocol we implicitly make the above non-triviality requirement.

Privacy in the presence of semi-honest adversaries. In an oblivious transfer protocol, the
sender is not supposed to learn anything about the receiver’s input, and the receiver is supposed
to learn only one of the sender’s inputs and nothing about the other. The standard definition
of security in the presence of semi-honest adversaries requires the existence of a simulator that
receives the corrupted party’s input and output, and generates a view that is indistinguishable
from the view of the corrupted party (adversary) in a real protocol execution; see Section 2.2. Here
we define a seemingly weaker notion that refers to “privacy with respect to a function g”, and
requires that a semi-honest adversary cannot distinguish between g(x, y) and g(x, y′) where x is
the adversary’s input, y is a uniformly distributed input of the honest party used in the actual
execution, and y′ is a uniform input distributed independently of y. Of course, it is only possible
to achieve privacy with respect to a function g if the designated output of the adversary does not
enable it to distinguish between g(x, y) and g(x, y′). For the specific case of oblivious transfer it is
possible to define functions gS and gR (for the case of a corrupted sender and receiver, respectively)
as follows:

• Corrupted sender: Since the sender is not supposed to learn anything about the receiver’s
input, we can just define gS((s0, s1), r) = r. This then implies that a corrupted sender cannot
distinguish the receiver’s input bit r from a random bit.

• Corrupted receiver: In this case, the receiver is supposed to learn one of the sender’s inputs,
and nothing about the other. Thus, we define gR((s0, s1), r) = s1−r. This implies that a
corrupted receiver cannot distinguish between the input bit of the sender that it did not
receive and a random bit.

We now formally define the notion of semi-honest privacy with respect to a function g. We begin by
presenting a general definition of this notion, and then present a specific instantiation for oblivious
transfer.

Definition 2.3 Let π = (P1, P2) be a two-party protocol, let k denote the length of the parties’
inputs, and let g1 : {0, 1}k × {0, 1}k 7→ {0, 1}∗ and g2 : {0, 1}k × {0, 1}k 7→ {0, 1}∗ be functions

10

defined over the parties’ inputs. We say that π is semi-honest private with respect to a corrupted P1

and function g1, if for every input x ∈ {0, 1}k it holds that

{viewP1⟨P1(1
n, x), P2(1

n, Uk)⟩, g1(x,Uk)}
c≡
{
viewP1⟨P1(1

n, x), P2(1
n, Uk)⟩, g1(x,U ′k)

}
,

where Uk and U ′k are independent random variables. Likewise, π is semi-honest private with respect
to a corrupted P2 and function g2, if for every input x ∈ {0, 1}k

{viewP2⟨P1(1
n, Uk), P2(1

n, x)⟩, g2(Uk, x)}
c≡
{
viewP2⟨P1(1

n, Uk), P2(1
n, x)⟩, g2(U ′k, x)

}
.

We say that π is semi-honest private with respect to (g1, g2) if it is semi-honest private with respect
to both g1 and g2.

Observe that the definition requires that the joint distribution over P1’s input and the function
g1 be indistinguishable when g1 is computed on both parties’ real inputs x and Uk and when
it is computed over P1’s real input x and an independent input U ′k for P2. Observe also that
the definition only requires privacy for a random input of the honest party; this suffices for our
purposes. We now define semi-honest private oblivious transfer.

Definition 2.4 A two-party protocol π = (S,R) is a semi-honest private oblivious transfer if it is
a non-trivial oblivious transfer protocol and it is semi-honest private with respect to (gS , gR), where
gS and gR are as defined above.

It is straightforward to verify that security against semi-honest parties, as defined in Section 2.2
(or in [14, Definition 7.2.1]) implies Definition 2.4.

Proposition 2.5 Any protocol that computes the oblivious transfer functionality with security
against semi-honest parties is a semi-honest private oblivious transfer protocol as in Definition 2.4.

We use the notion of privacy with respect to a function, since it is more convenient for our
purposes. Furthermore, it suffices for our use, because we use it in order to construct protocols
that are secure in the presence of malicious adversaries. Since semi-honest security implies privacy,
this does not affect the generality of our result.

Privacy for defensible adversaries. As in the semi-honest case, we begin by presenting a gen-
eral definition of privacy with respect to a function for defensible adversaries, and then present a
specific instantiation of the definition for oblivious transfer. Observe that when defining privacy
with respect to a function g for semi-honest adversaries, g is computed upon the corrupted party’s
input and either the honest party’s real input or a random input. In the case of defensible ad-
versaries, we wish to capture the intuition that an adversary should not be able to simultaneously
present a good defense of its behavior and distinguish the case that g is computed upon the honest
party’s input or a random input. Now, unlike the case of semi-honest adversaries, a defensible
adversary can use any input that it wishes in the protocol execution. This raises the question as to
which input for the adversary is to be used when computing g. However, recall that an adversary’s
defense includes the input that it supposedly used. Thus, it is natural to use this input when
computing g. Furthermore, this is exactly what we wish to require: if an adversary outputs a
defense including an input x, then it should only be able to learn what it can learn when indeed
using input x. Formally, we use the following definition.

11

Definition 2.6 Let π = (P1, P2) be a two-party protocol, let k denote the length of the parties’
inputs, and let g1 : {0, 1}k × {0, 1}k 7→ {0, 1}∗ and g2 : {0, 1}k × {0, 1}k 7→ {0, 1}∗ be functions
defined over the parties’ inputs. We say that π is defensibly private with respect to (g1, g2), if for
every family of polynomial-size circuits A = {An}n∈N

1. {Γ(v, g1(x, Uk))}
c≡ {Γ(v, g1(x,U ′k))}, where v = viewAn⟨An, P2(1

n, Uk)⟩, Γ(v, ∗) equals (v, ∗)
if following the execution An outputs a valid defense for π and ⊥ otherwise, x is P1’s input
in this defense, and Uk and U ′k are independent random variables.

2. {Γ(v, g2(Uk, x))}
c≡ {Γ(v, g2(U ′k, x))}, where v = viewAn⟨P1(1

n, Uk),An⟩, and Γ, x, Uk and
U ′k are as above.

If only the first (resp. second) item holds, then we say that π is defensibly private with respect to a
corrupted P1 and function g1 (resp., corrupted P2 and g2).

In order to see how this is applied to oblivious transfer, consider again the functions gS and
gR above. Now, when the sender is corrupted (and so A plays the role of S = P1) we have that
whenever A outputs a good defense on a transcript t, it cannot distinguish the receiver’s input bit
r from random. Furthermore, when the receiver is corrupted and A outputs a good defense on t
that includes the bit r for input, then A cannot distinguish s1−r from a random bit, where the
inputs of S are (s0, s1).

Definition 2.7 A two-party protocol π = (S,R) is a defensibly private oblivious transfer if it is a
non-trivial oblivious transfer protocol and it is defensibly private with respect to (gS , gR), where gS
and gR are as defined above.

2.5.1 An Alternative Formulation of Defensible Oblivious Transfer

For most of the reductions in this paper (with the exception of the first step from semi-honest to
defensible adversaries), we find it easier to work with definitions of privacy for defensible adversaries
that are based on “experiments”. We present these definitions here and note that they are easily
derived from Definition 2.6 when instantiated for oblivious transfer with functions gS and gR.

Privacy in the presence of a defensible sender. As we have seen, in an oblivious transfer
protocol, the sender is not supposed to learn anything about the receiver’s input. When considering
a defensible adversary, this means that the adversary should not be able to simultaneously present a
good defense of its behavior and obtain a significant advantage in guessing the value of the receiver’s
input. We stress that this privacy requirement only needs to hold when the sender outputs a
good defense; in all other cases, there may be no privacy whatsoever. We begin by defining an
adversarial experiment for a protocol π, an adversary A modeled by a (polynomial-size) family of
circuits {An}n∈N, and an input r for the receiver:

Experiment Exptsndπ (An, r):

1. Let ρR be a uniformly distributed random tape for the receiver R, and let t =
⟨An, R(1n, r, ρR)⟩. (That is, t is the transcript generated by an execution between
the adversarial sender An and an honest R with input r and random tape ρR,
running Protocol π.)

12

2. Let ((s0, s1, ρS), (τ)) be the output of An(t). (The triple (s0, s1, ρr) constitutes An’s
defense and τ is its guess for r.)

3. If (s0, s1, ρS) is a good defense by An for t in π, then output τ . Otherwise, output ⊥.

Given the above experiment, we can define privacy:

Definition 2.8 (privacy in the presence of a defensible sender): Let π = (S,R) be a non-trivial
oblivious transfer protocol. We say that π is private in the presence of a defensible sender if for every
family of polynomial-size circuits A = {An}n∈N controlling S, every polynomial p(·) and for all
sufficiently large n ∣∣∣Pr [Exptsndπ (An, 1) = 1

]
− Pr

[
Exptsndπ (An, 0) = 1

]∣∣∣ < 1

p(n)
.

Privacy for random inputs in the presence of a defensible receiver. We now proceed to
define privacy for defensible receivers. Recall that the receiver in an oblivious transfer protocol is
supposed to obtain one of the pair (s0, s1) in the execution. However, the other value must remain
secret. The fact that the receiver should learn something (unlike the sender), makes the definition
a little more involved. As above, when considering defensible adversaries, the requirement is that,
as long as the adversary can provide a good defense, it can only learn one of the values. Recall
that by Definition 2.2, a party’s defense includes its input (in this case, the bit r of the receiver,
meaning that it wishes to obtain the value sr). We therefore require that a defensible receiver can
learn nothing about s1−r when its defense contains the input value r. Due to technical reasons
in our proofs later on, we define privacy only for the case that the sender’s inputs are uniformly
distributed bits. Fortunately, this will suffice for our constructions.

As above, we define an experiment for a protocol π and an adversary A modeled by a family
of polynomial-size circuits {An}n∈N. Informally, the experiment begins by choosing a random pair
of bits (s0, s1) to be used for the sender’s input. The adversary’s aim is to guess the value of the
input that it doesn’t receive as output. Notice that unlike in Exptsndπ , the sender’s input is chosen
as part of the experiment here.

Experiment Exptrecπ (An):

1. Choose s0, s1 ∈R {0, 1} uniformly at random.

2. Let ρS be a uniformly distributed random tape for S and let t = ⟨S(1n, s0, s1, ρS),An⟩.
3. Let ((r, ρr), (τ)) be the output of An(t). (The pair (r, ρr) constitute An’s defense

and τ is its guess for s1−r.)

4. Output 1 if and only if (r, ρr) is a good defense by An for t in π, and τ = s1−r.

Notice that A’s defense includes its input r, and so its defense states that it should have received
sr for output (because this is its designated output). The challenge of the adversary is therefore to
guess the value of s1−r; if it cannot do this, then the sender’s privacy is preserved.

Definition 2.9 (privacy for random inputs in the presence of a defensible receiver): Let π = (S,R)
be a non-trivial oblivious transfer protocol. We say that π is private for random inputs in the presence

13

of a defensible receiver if for every family of polynomial-size circuits A = {An}n∈N controlling R,
for every polynomial p(·) and for all sufficiently large n

Pr [Exptrecπ (An) = 1] <
1

2
+

1

p(n)
.

Remark: Using the terminology of the first definition, we have that an oblivious transfer protocol
is defensibly private if and only if it is private in the presence of a defensible sender and private
for random inputs in the presence of a defensible receiver.

2.5.2 Fully Secure Oblivious Transfer

All the above definitions refer only to “privacy”, meaning that the adversary can learn nothing more
about the honest party’s input than what is revealed by the output. However, these definitions
say nothing about the simulatability of the protocols in question. A protocol that is private by
one of the above definitions, or even private against unrestricted malicious parties, may not be
secure against malicious parties according to the simulation-based definition from Section 2.2. For
instance, the oblivious transfer protocols from [35, 1, 25] are private against malicious parties but
they do not satisfy the stronger simulation-based definition (see Section 5.1 in [1] for discussion).

A fully secure oblivious transfer protocol (against malicious parties) is a protocol which securely
computes the oblivious transfer functionality according to Definition 2.1. We note that in this case
the definition can be simplified by not allowing the adversary to abort the ideal execution. It will
be useful to separately consider security against a malicious sender and security against a malicious
receiver. These notions can be naturally defined by restricting Definition 2.1 to the case i = 1 or
i = 2. Since we will be constructing our protocols one step at a time, we will consider protocols that
are private in the presence of defensible senders and secure in the presence of malicious senders, or
vice versa.

3 From Semi-Honest Privacy to Defensible Privacy

In this section, we show how to transform (in a black-box way) any protocol that is semi-honest
private with respect to a pair of functions (g1, g2) into a protocol that is defensibly private with
respect to (g1, g2). The transformation shown here is generic and holds for all protocols, and thus
the transformation for oblivious transfer is obtained as a special case. We say that two protocols
π and π′ have the same functionality if on any pair of inputs, the joint distributions of the outputs
of honest parties running π and π′ are identically distributed.

Theorem 3.1 Let π = (P1, P2) be a two-party protocol and let g1, g2 : {0, 1}k × {0, 1}k 7→ {0, 1}∗
be functions defined over the parties’ inputs. Assume that π is semi-honest private with respect
to (g1, g2). Then there exists a fully black-box reduction from a protocol π′ = (P ′1, P

′
2) to π and

one-way functions, where π′ and π have the same functionality and π′ is defensibly private with
respect to (g1, g2).

The proof of Theorem 3.1 is obtained by applying the following proposition twice. Informally
speaking, the proposition states that it is possible to “upgrade” the security of a protocol with

14

respect to one of its parties while maintaining the initial security with respect to the other party.
The proposition is applied in different directions, once in order to upgrade the security of the first
party and another time to upgrade the security of the second party. In order to make this clear, we
write the transformation for a protocol π = (A,B) with parties A and B. Then in one application
of the proposition A is set to P1 and B is set to P2, and in the other application of the proposition
A is set to P2 and B is set to P1.

Proposition 3.2 Let π = (A,B) be a two-party protocol and let gA, gB: {0, 1}k ×{0, 1}k 7→ {0, 1}∗
be functions defined over the parties’ inputs. Assume that π is semi-honest private with respect to a
corrupted A and gA. Then, there exists a fully black box reduction from a protocol π′ = (A′, B′) to
π and one-way functions, where π′ and π have the same functionality and π′ is defensibly private
with respect to a corrupted A′ and gA. Furthermore, if π is semi-honest (resp., defensibly) private
with respect to a corrupted B and gB then π′ is semi-honest (resp., defensibly) private with respect
to a corrupted B′ and gB.

Proof: We define a protocol π′ that uses π and a commitment scheme Com in a black-box
way. This suffices, because there exists a fully black-box reduction from Com to one-way functions
(see Theorem A.3). In the new protocol A′ first commit (using Com) to an input string xA and a
random string ρA′ , then B′ sends a random string ρB′ to A′, and finally the two parties engage in
the protocol π, where A′ uses xA and ρA′ ⊕ ρB′ as the input and random coins of A respectively.

The hiding guarantee of Com yields that π′ is as “safe” for A′ as π is for A. Where the
binding property of Com yields that when giving a valid defense (which in particular contains
a valid decommitment of Com), A′ acts in the embedded π as the honest party A would on a
predetermined input. Namely, π′ is defensibly private with respect to (a corrupted) A′.

In the following we formally define π′ and then prove its security.

Protocol 3.3 (The defensible protocol π′ = (A′, B′))

Common input: 1n

A′’s input and random tape: xA ∈ {0, 1}k and ρA′ = (ρ1A′ , ρ2A′)

B′’s input and random tape: xB ∈ {0, 1}k and ρB′ = (ρ1B′ , ρ2B′ , ρ3B′)

1. A′ and B′ run an execution of Com in which A′ commits to (xA, ρ
2
A′); the parties use security

parameter 1n, and random coins ρ1A′ and ρ1B′, respectively.

2. B′ sends ρ3B′ to A′.

3. A′ and B′ run the protocol π = (A,B), where A′ runs A with security parameter 1n, input xA
and random tape ρ2A′ ⊕ ρ3B′, and B′ runs B with security parameter 1n, input xB and random
tape ρ2B′.

4. A′ outputs whatever A outputs in π and B′ outputs whatever B outputs in π.

It is immediate that π′ has the same functionality as π. It remains to show that π′ maintains the
same level of privacy with respect to a corrupted B′ and gB, and that π′ is defensibly private with
respect to A′ and gA. The fact that the same level of privacy is kept with respect to B′ is shown
in Lemma 3.4 below, and the fact that defensible privacy is obtained with respect to a corrupted
A′ is shown in Lemma 3.5; this latter lemma is the heart of the proof.

15

Lemma 3.4 If π is semi-honest (resp., defensibly) private with respect to a corrupted B and func-
tion gB then π′ is semi-honest (resp., defensibly) private with respect to a corrupted B′ and gB.

Proof: We assume that π is semi-honest private with respect to a corrupted B and gB and prove
that π′ is also semi-honest private with respect to a corrupted B′ and gB. That is, we show the
result for the semi-honest private case; the proof for the defensibly private case is analogous. First,
observe that the messages that B′ receives in π′, and thus its view, consist of a commitment from
A′ (to xA and ρ2A′) followed by an execution of π. Thus, we can write the view of B′ in π′ as follows:

viewB′

⟨
A′(1n, xA, ρ

1
A′ , ρ2A′), B′(1n, xB, ρ

1
B′ , ρ2B′ , ρ3B′)

⟩
=

(
Com(xA, ρ

2
A′), viewB⟨A(1n, xA, ρ

2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩

)
. (1)

Now, by a straightforward reduction to the hiding property of Com, we have that for every xB ∈
{0, 1}k{(

Com(Uk, ρ
2
A′), viewB⟨A(1n, Uk, ρ

2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(Uk, xB)

)}
c≡
{(

Com(0ℓ), viewB⟨A(1n, Uk, ρ
2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(Uk, xB)

)}
where ℓ is the combined length of Uk and ρ2A′ (note that the input xA of A′ is taken to be a random
value Uk here). Next, since π is semi-honest private with respect to a corrupted B and function
gB, we have that{(

Com(0ℓ), viewB⟨A(1n, Uk, ρ
2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(Uk, xB)

)}
c≡
{(

Com(0ℓ), viewB⟨A(1n, Uk, ρ
2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(U ′k, xB)

)}
.

Applying the hiding property of the commitment scheme once again, we have that{(
Com(0ℓ), viewB⟨A(1n, Uk, ρ

2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(U ′k, xB)

)}
c≡
{(

Com(Uk, ρ
2
A′), viewB⟨A(1n, Uk, ρ

2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(U ′k, xB)

)}
.

Combining the above three equations we have that{(
Com(Uk, ρ

2
A′), viewB⟨A(1n, Uk, ρ

2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(Uk, xB)

)}
c≡
{(

Com(Uk, ρ
2
A′), viewB⟨A(1n, Uk, ρ

2
A′ ⊕ ρ3B′), B(1n, xB, ρ

2
B′)⟩, gB(U ′k, xB)

)}
.

However, by Eq. (1), this is equivalent to writing that{
viewB′

⟨
A′(1n, Uk, ρ

1
A′ , ρ2A′), B′(1n, xB, ρ

1
B′ , ρ2B′ , ρ3B′)

⟩
, gB(Uk, xB)

}
c≡
{
viewB′

⟨
A′(1n, Uk, ρ

1
A′ , ρ2A′), B′(1n, xB, ρ

1
B′ , ρ2B′ , ρ3B′)

⟩
, gB(U

′
k, xB)

}
.

Thus, π′ is semi-honest private for a corrupted B′ and function gB, as in Definition 2.3.

We now prove the more interesting part of the lemma; the fact that π′ is defensibly private with
respect to a corrupted A′.

16

Lemma 3.5 If π is semi-honest private with respect to a corrupted A and function gA, then π′ is
defensibly private with respect to A′ and gA.

Proof: Assume by contradiction that there exists a probabilistic polynomial-time adversary A′
and a distinguisher D′ that violate the defensible privacy of π′ with respect to A′ and gA. Hence,
we assume without loss of generality that there exists a polynomial p(·) such that for infinitely
many n’s:

Pr[D′(Γ(v, g1(x,Uk))) = 1]− Pr[D′(Γ(v, g1(x,U
′
k))) = 1] ≥ 1

p(n)
, (2)

where v is A′n’s view in ⟨A′n, B′(1n, Uk)⟩, Γ(v, ∗) equals (v, ∗) if following the execution A′n outputs a
valid defense for π′ and ⊥ otherwise, x is A′’s input in this defense, and Uk and U ′k are independent
random variables. We now use A′ and D′ to construct an efficient distinguisher D with oracle
access to A′ and D′ that violates the semi-honest privacy of (A,B) with respect to A and gA.
Recall that in order to violate the semi-honest privacy of (A,B), algorithm D first picks an input
element xA (this is implicit in the fact that in Definition 2.3 we quantify over all inputs). Then,
D receives A’s view from the execution of ⟨A(1n, xA), B(1n, Uk)⟩ together with a challenge value c
that equals either gA(xA, Uk) or gA(xA, U

′
k), and it attempts to distinguish between these two. In

order to make the dependencies between the two stages explicit, D uses the variable z to transfer
information from the input sampling stage to the distinguishing stage.

Algorithm 3.6 (The distinguisher D)

Sampling stage:

• Input: 1n

• Instructions:

1. Choose uniformly distributed random values for ρA′ and ρ1B′, and fix A′’s random
coins to ρA′.

2. Simulate the first step of (A′, B′) (i.e., the execution of Com), where B′ uses ρ1B′ as
its random coins.

3. Run the following n · p(n) times:

(a) Simulate the last two steps of (A′, B′), choosing B′’s input and random coins
(i.e., xB, ρ

2
B′ and ρ3B′) uniformly at random.

(b) If A′ outputs a valid defense d, then set xA = xA′ and z = (ρA′ , ρ1B′ , ρ2A′), where
xA′ and ρ2A′ are the values of these input variables in d, and return.4

4. If no valid defense is obtained, then set z =⊥ and an arbitrary value for xA.

Predicting stage:

• Input: a tuple (z, vA, c) where z equals either (ρA′ , ρ1B′ , ρ2A′) or ⊥, vA is A’s view
viewA⟨A(1n, xA), B(1n, Uk)⟩ from the semi-honest execution with xA from the sampling
stage, and c is either gA(xA, Uk) or gA(xA, U

′
k).

• Instructions:
4Observe that when A′ provides a valid defense, it decommits to the committed pair (xA, ρ

2
A′). Furthermore, if

A′ is able to provide a valid defense then it must use random coins ρA = ρ2A′ ⊕ ρ3B′ where ρ3B′ is the string it received
in step 1 of the protocol.

17

1. If z =⊥, output a random coin and return.

2. Fix the random coins of A′ to z[ρA′], where z[ρA′] denotes the first element ρA′ in
the tuple z.

3. Simulate the first step of (A′, B′) (i.e., the execution of Com), using random coins
z[ρ1B′] (the second value in the tuple z) for B′’s random coins.

4. Simulate the second step of (A′, B′), by simulating B′ sending ρ3B′ = vA[ρA]⊕ z[ρ2A′]
to A′, where vA[ρA] are A’s coins in the view vA and z[ρ2A′] is the third element
of z. (Observe that this implies that z[ρ2A′] ⊕ ρ3B′ equals the random tape ρA of the
semi-honest A.)

5. Simulate the last step of (A′, B′), where B′ sends the same messages that B sends
in vA (recall that vA is A’s view in the semi-honest execution of π).

6. Let vA′ be the view of A′ at the end of the above simulation.
If A′ outputs a good defense for vA′, then D outputs what D′ outputs when given
input (vA′ , c). Otherwise, D outputs a random coin.

It is easy to verify that D is efficient given oracle access to A′ and D′. We now show that D violates
the semi-honest privacy of π with respect to A and gA.

We consider an execution of (D,A,B) with security parameter 1n, respective inputs xA and
xB, where xA is chosen in the sampling phase of D and xB is chosen at random, and respective
uniformly-distributed random tapes ρA and ρB. Let z = (ρA′ , ρ1B′ , ρ2A′) be the output of D from the
sampling stage, let trans be the transcript of the simulation of π′ carried out by D in the predicting
stage (where trans = ⊥ if z = ⊥). Finally, define the random variable Sim (which is a simulation
of π′ based on π) by

Sim =
{
(xA, xB, z[ρA′], ρB′ = (z[ρ1B′], ρB, ρA ⊕ z[ρ2A′]), trans)

}
where all elements are distributed as above, and if z = ⊥, then all the variables that depend on z
are set to ⊥. Intuitively, Sim represents a simulation of an execution of π′ based on π. Note that
the random tape of the defensible A′ is ρA′ (as output in z by D) and the random tape of B′ is set
so that the third element (which is sent to A′ in step 2 of protocol π′) equals ρ3B′ = ρA ⊕ z[ρ2A′].

This essentially5 implies that if A′ is able to provide a defense, then it must use random coins
ρ3B′⊕ρ2A′ = ρA in the step in which the semi-honest protocol π is run. Recall that ρA is the random
tape of A in the real semi-honest execution of π.

Let Supp(X) denote the support of the random variable X. Given s ∈ Supp(Sim), let defense(s)
denote the defense that A′ outputs upon random tape and execution transcript s[ρA′] and s[trans]
respectively, and let IsGoodDef(s) be a predicate that equals 1 if and only if defense(s) is a good
defense. For s ∈ Supp(Sim) and c ∈ Im(gA), let OutD(s, c) be the output bit of D induced by s
and c — A′ is simulated on random tape and execution transcript s[ρA′] and s[trans], and then
D′ is executed on (vA′ , c). Observe that OutD(s, c) is a random variable that depends only on the
random coins used to invoke D′, and that for any value of c this is the same random variable as
the output of D (on the same c) in any execution of (D,A,B) that “yields” s. Finally, let AdvD(s)
be the advantage of D in distinguishing between the case that c is obtained by computing gA using
B’s real input and a random input, given s. That is,

AdvD(s) = Pr[OutD(s, gA(s[xA], s[xB])) = 1]− Pr[OutD(s, gA(s[xA], Uk)) = 1].

5Unless A′ decommits in the predicting stage to different value than the one it decommitted to in the sampling
stage, but this can only happen with negligible probability.

18

Since Sim is a deterministic function of the random variable that describes the execution of
(D,A,B), it follows that Exp[AdvD(Sim)] is exactly the advantage of D in breaking the semi-honest
privacy of π with respect to A and gA.

We would like to relate the above success probability to that of D distinguishing, after an
execution of π′, between the case that c is obtained by computing gA using B’s real input and using
a random input. Let Real be the random variable Real = (xA, xB, ρA′ , ρB′ , trans) induced by an
execution of (A′, B′) with security parameter 1n, where xA is the input of A′ in the defense of A′
(we set xA =⊥ if no good defense is given). Let OutD′(s, c) be the output bit of D′ given s and
c if IsGoodDef(s) = 1, and a random coin if otherwise, and let AdvD′(s) be the advantage of D′

in distinguishing the case that c is obtained by computing gA using B’s real input and a random
input, given s. As above, it is easy to verify that |Exp[AdvD′(Real)]| is exactly the advantage of D′

in breaking the defensible privacy of π′ with respect to A′ and gA.
We use the following claim to relate the advantage of D in breaking the semi-honest privacy of

π to that of D′ in breaking the defensible privacy of π′.

Claim 3.7 For all large enough n, there exists a set L ⊆ Supp(Real) for which the following hold:

1. The event {IsGoodDef(s)∧s /∈ L} happens with probability at most 1
4p(n) , for s that is sampled

according to either Real or Sim,

2. (1− 1
4p(n)) · Pr[Real = s] ≤ Pr[Sim = s] ≤ Pr[Real = s], for every s ∈ L,

where p(·) is from Eq. (2).

Informally, L contains all the transcripts for which A′ has a significant chance to provide a good
defense, both with respect to Real and with respect to Sim, where in addition, Real and Sim induce
essentially the same distribution on L. It follows that the advantage of A′ in predicting gA in π′

while providing a good defense comes from transcripts inside L, and that D is most likely to flip
a random coin as output when outside L. Hence, the advantage of D in predicting gA in π is
noticeable. Before proving Claim 3.7, let us first follow the above intuition for formally proving
Lemma 3.5.

Let n be large enough so that Claim 3.7 holds. Eq. (2) yields that

Exp
[
AdvD′(Real) · χL(Real)

]
(3)

= Exp
[
AdvD′(Real)

]
− Exp

[
AdvD′(Real) · χL(Real)

]
= Exp

[
AdvD′(Real)

]
− Exp

[
AdvD′(Real) · IsGoodDef(Real) · χL(Real)

]
≥ 1

p(n)
− Pr

[
IsGoodDef(Real) ∧ Real /∈ L

]
≥ 1

p(n)
− 1

4p(n)
,

where χL(s) is one if s ∈ L and zero otherwise. The second equality holds since AdvD′(s) = 0 for
s with IsGoodDef(s) = 0, and the last inequality is by Claim 3.7(1). Similarly, Claim 3.7(1) yields
that

Exp
[
AdvD(Sim)

]
(4)

= Exp
[
AdvD(Sim) · χL(Sim)

]
+ Exp

[
AdvD(Sim) · χL(Sim)

]
19

= Exp
[
AdvD(Sim) · χL(Sim)

]
+ Exp

[
AdvD(Sim) · χL(Sim) · IsGoodDef(Sim)

]
≥ Exp

[
AdvD(Sim) · χL(Sim)

]
− Pr

[
Sim /∈ L ∧ IsGoodDef(Sim)

]
≥ Exp

[
AdvD(Sim) · χL(Sim)

]
− 1

4p(n)
,

where the second equality holds since AdvD(s) = 0 for s with IsGoodDef(s) = 0. Since OutD(s, c)
and OutD′(s, c) are distributed the same, Claim 3.7(2) yields that

Pr
[
OutD(Sim, gA(Sim[xA], Uk)) = 1 ∧ Sim ∈ L

]
(5)

=
∑
s∈L

Pr[Sim = s] · Pr
[
OutD′(s, gA(s[xA′], Uk)) = 1

]
≤

∑
s∈L

Pr[Real = s] · Pr
[
OutD′(s, gA(s[xA′], Uk)) = 1

]
= Pr

[
OutD′(Real, gA(Real[xA′], Uk)) = 1 ∧ Real ∈ L

]
,

and similarly,

Pr
[
OutD(Sim, gA(Sim[xA, xB])) = 1 ∧ Sim ∈ L

]
(6)

≥
(
1− 1

4p(n)

)
· Pr

[
OutD′(Real, gA(Real[xA′ , xB])) = 1 ∧ Real ∈ L

]
.

Eq. (4) and the definition of AdvD yield that

Exp[AdvD(Sim)]

≥ Pr
[
OutD(Sim, gA(Sim[xA, xB])) = 1 ∧ Sim ∈ L

]
−Pr

[
OutD(Sim, gA(Sim[xA], Uk)) = 1 ∧ Sim ∈ L

]
− 1

4p(n)
.

We conclude that

Exp[AdvD(Sim)]

≥
(
1− 1

4p(n)

)
· Pr

[
OutD′(Real, gA(Real[xA′ , xB])) = 1 ∧ Real ∈ L

]
−Pr

[
OutD′(Real, gA(Real[xA′], Uk)) = 1 ∧ Real ∈ L

]
− 1

4p(n)

≥
(
1− 1

4p(n)

)
· (Pr

[
OutD′(Real, gA(Real[xA′ , xB])) = 1 ∧ Real ∈ L

]
−Pr

[
OutD′(Real, gA(Real[xA′], Uk)) = 1 ∧ Real ∈ L

]
)− 2

4p(n)

=

(
1− 1

4p(n)

)
· Exp

[
AdvD′(Real) · χL(Real)

]
− 2

4p(n)

≥
(
1− 1

4p(n)

)
·
(

1

p(n)
− 1

4p(n)

)
− 1

2p(n)

>
1

8p(n)
,

20

where the first inequality follows by Eq. (5) and Eq. (6), the third one by Eq. (3), and for the last
inequality we assume without loss of generality that p(n) > 8. Since the above holds for infinitely
many n’s, this concludes the proof of Lemma 3.5 and thus the proof of Proposition 3.2.

We turn to prove Claim 3.7.

Proof: For s ∈ Supp(Real), let decom(s) equal the decommitment of Com that appears in
defense(s) when s is a good defense, and let it equal ⊥ otherwise (note that since s contains all
random tapes, this value is uniquely determined). Now, for any string σ ∈ {0, 1}∗ and pair of given
random tapes (ρ1B′ , ρA′), we denote

DecomPrσ(ρ
1
B′ , ρA′)

def
= Pr

[
decom(Real) = σ | Real[ρ1B′ , ρA′] = (ρ1B′ , ρA′)

]
.6

Observe that as long as the binding property holds with respect to the commitment scheme, this
means that the decommitment value of Real[(ρ1B′ , ρA′)] is unique. Stated differently, if there exist
multiple values σ such that DecomPrσ(ρ

1
B′ , ρA′) is non-negligible, then this implies the existence

of an adversary who breaks the binding of the commitment scheme; we describe this adversary in
more detail below.

For any (ρ1B′ , ρA′), let Heaviest(ρ1B′ , ρA′) be the most likely decommitment given that these
values were used in the commitment stage. Namely,

Heaviest(ρ1B′ , ρA′) = argmaxσ∈{0,1}∗
(
DecomPrσ(ρ

1
B′ , ρA′)

)
,

and let ¬Heaviest(ρ1B′ , ρA′) = {0, 1}t \ {Heaviest(ρ1B′ , ρA′)}, where t is the length of (xA, ρ
2
A′) (i.e.,

¬Heaviest(ρ1B′ , ρA′) contains all possible decommitment values excluding the most likely one). For

a finite set S ⊆ {0, 1}∗, we let DecomPrS(ρ
1
B′ , ρA′)

def
=

∑
σ∈S DecomPrσ(ρ

1
B′ , ρA′), and define the set

L as follows:

L =

s ∈ Supp(Real)

∣∣∣∣∣∣∣
decom(s) = Heaviest(s[ρ1B′ , ρA′]) ∧
DecomPrHeaviest(s[ρ

1
B′ , ρA′]) ≥ 1

8p(n) ∧
DecomPr¬Heaviest(s[ρ

1
B′ , ρA′]) ≤ 1

8np(n)2

 .

Note that each s ∈ L contains a valid decommitment, whose value can be extracted efficiently given
only the prefix of s (i.e., s[ρ1B′ , ρA′]) by sampling from Real conditioned on this prefix (as done in the
sampling stage of D). Moreover, since DecomPr¬Heaviest is small, it is unlikely that this prefix yields
a different decommitment. Hence, if the prefix of s is sampled in the sampling stage of D, then
with very high probability D extracts the decommitment of s in this stage. Moreover, conditioned
on the event that D was successful in the sampling stage, it is easy to verify that the probability
of s with respect to Sim and with respect to Real are essentially the same, which establishes the
second property of L stated by Claim 3.7. The first property follows since it is unlikely that A′, or
D, generates a transcript s /∈ L with IsGoodDef(s) = 1 — the binding property of the commitment
yields that it is unlikely for s such that decom(s) ̸= Heaviest(s[ρ1B′ , ρA′]), and by Markov’s inequality
it is also unlikely for s such that decom(s) = Heaviest(s[ρ1B′ , ρA′]). In the following we formalize
the above observations for proving the two properties of L required by Claim 3.7.

6We define DecomPr as a function of ρ1B′ and ρA′ because the messages sent in the commitment phase depend
only on A′’s random tape ρA′ and the random coins ρ1B′ used by B′ in the commitment phase.

21

Proving 1. We start by upper bounding the probability of the event {IsGoodDef(Real) ∧Real /∈
L}. Recall this even happens if one of the following events holds:

1. {IsGoodDef(Real) ∧ decom(Real) ̸= Heaviest(Real[ρ1B′ , ρA′])}

2. {IsGoodDef(Real) ∧ DecomPrHeaviest(Real[ρ
1
B′ , ρA′]) < 1

8p(n)}

3. {IsGoodDef(Real) ∧ DecomPr¬Heaviest(Real[ρ
1
B′ , ρA′]) > 1

8np(n)2
}

For the sake of clarity in our analysis below, we use the shorthand decom to denote the first event,
DecomPrHeaviest to denote the second event, and DecomPr¬Heaviest to denote the third event. Using
this notation, we have:

Pr [IsGoodDef(Real) ∧ Real /∈ L]

= Pr[DecomPr¬Heaviest] + Pr[DecomPrHeaviest ∧ ¬DecomPr¬Heaviest]

+Pr[decom ∧ ¬DecomPrHeaviest ∧ ¬DecomPr¬Heaviest]

≤ Pr[DecomPr¬Heaviest] + Pr[DecomPrHeaviest ∧ ¬DecomPr¬Heaviest] + Pr[decom ∧ ¬DecomPr¬Heaviest].

We proceed to bound each of these three terms. For bounding the first term, we observe that for
every polynomial q(·) and sufficiently large n,

Pr

[
DecomPr¬Heaviest(Real[ρ

1
B′ , ρA′]) >

1

q(n)

]
<

1

q(n)
. (7)

If this does not hold, then there exists a value σ′ ̸= σ
def
= Heaviest(Real[ρ1B′ , ρA′]) such that

DecomPrσ′(Real[ρ1B′ , ρA′]) ≥ 1/q(n).

This in turn implies that
DecomPrσ(Real[ρ

1
B′ , ρA′]) > 1/q(n),

because σ is at least as “heavy” as σ′ (recall the definition of Heaviest(·)). We conclude that there
are two distinct values σ and σ′ that are decommitted to with non-negligible probability. As we
have discussed above, this implies the existence of an adversary ACom that violates the binding
property of Com. Formally, adversary ACom runs A′ in the first step of Protocol π′ using random
coins ρA′ for A′ and coins ρ1B′ for B′. Next, it simulates the rest of the protocol twice (with the same
prefix) and outputs the two decommitments implied by A′’s defenses, if there are two. By what
we have seen, if DecomPr¬Heaviest(Real[ρ

1
B′ , ρA′]) > 1

q(n) holds then ACom obtains decommitments

to two different values σ and σ′ with probability 1/q2(n) (1/q(n) independently for each). Thus, if
the contradicting assumption holds and this occurs with probability at least 1/q(n), we have that
ACom breaks the binding property of the commitment scheme with probability 1/q3(n), which is a
contradiction. In particular,

Pr [DecomPr¬Heaviest] <
1

8np(n)2
. (8)

Next, we claim that

Pr [DecomPrHeaviest ∧ ¬DecomPr¬Heaviest)] <
1

7p(n)
.

22

In order to see this, observe that in the event {DecomPrHeaviest ∧ ¬DecomPr¬Heaviest} we have that

DecomPrHeaviest(s[ρ
1
B′ , ρA′]) ≤ 1

8p(n)
and DecomPr¬Heaviest(s[ρ

1
B′ , ρA′]) ≤ 1

8np(n)2
.

This implies that

DecomPr{0,1}t(s[ρ
1
B′ , ρA′]) ≤ 1

8p(n)
+

1

8np(n)2
<

1

7p(n)
.

However, DecomPr{0,1}t(s[ρ
1
B′ , ρA′]) just equals the probability that decom(s) ̸= ⊥. Therefore, the

above equation yields that Pr[IsGoodDef(Real)] < 1
7p(n) , and thus

Pr [DecomPrHeaviest ∧ ¬DecomPr¬Heaviest] (9)

≤ Pr

[
IsGoodDef(Real) ∧ DecomPr{0,1}t(s[ρ

1
B′ , ρA′]) <

1

7p(n)

]
<

1

7p(n)
.

Finally, it holds that

Pr [decom ∧ ¬DecomPr¬Heaviest] (10)

≤ Pr

[
decom(Real) ∈ ¬Heaviest(Real[ρ1B′ , ρA′]) | DecomPr¬Heaviest(Real[ρ

1
B′ , ρA′]) ≤ 1

8np(n)2

]
≤ 1

8np(n)2
.

Putting all of this together, we conclude that

Pr [IsGoodDef(Real) ∧ Real /∈ L] ≤ 1

8np(n)2
+

1

7p(n)
+

1

8np(n)2
<

1

6p(n)
.

In order to complete the proof of this part, we need to prove that the above equation holds also
with respect to Sim. We first note that for every s ∈ Supp(Real) it holds that

Pr[Sim = s] ≤ Pr[Real = s]. (11)

In order to see this, observe that a sample s = (xA, xB, ρA′ , ρB′ , trans) drawn according to Real is
fully determined by the value of s(xB, ρA′ , ρB′), since ρA′ contains all the random coins of A′ includ-
ing those used to make a defense. Furthermore, the value of s(xB, ρA′ , ρB′) is uniformly distributed
over its domain. Thus, for every s ∈ Supp(Real) it holds that Pr[Real = s] = 1

|DomxB,ρA′ ,ρB′ |
, where

DomxB ,ρA′ ,ρB′ contains all the possible values for (xB, ρA′ , ρB′) as induced by Real. On the other
hand, it is easy to verify that Pr[Sim[xB, ρA′ , ρB′] = (xB, ρA′ , ρB′)] ≤ 1/|DomxB ,ρA′ ,ρB′ | for every
(xB, ρA′ , ρB′) ∈ DomxB ,ρA′ ,ρB′ , where the reason for the inequality is that the sampling stage of D
may result in setting z = ⊥, and the proof of Eq. (11) is concluded.

We conclude the proof of 1. by showing that

Pr[IsGoodDef(Sim) = 1 ∧ Sim /∈ Supp(Real)] ≤ neg(n), (12)

23

which together with Eq. (11) yield that

Pr [IsGoodDef(Sim) ∧ Sim /∈ L]

= Pr [IsGoodDef(Sim) ∧ Sim /∈ L ∧ Sim ∈ Supp(Real)]

+Pr [IsGoodDef(Sim) ∧ Sim /∈ L ∧ Sim /∈ Supp(Real)]

≤ Pr [IsGoodDef(Real) ∧ Real /∈ L] + Pr [IsGoodDef(Sim) ∧ Sim /∈ Supp(Real)]

≤ 1

6p(n)
+ neg(n) <

1

4p(n)
.

In order to prove Eq. (12), we introduce a random variable DecomSampl which is jointly distributed
with Sim and is equal to the decommitment of Com that appears in the first valid defense given
in the sampling stage of D induced by a random execution of (D,A,B) (it equals to ⊥ if no
valid defense is given). The definition of D yields that if decom(Sim) = DecomSampl ̸=⊥, then
Sim ∈ Supp(Real). Thus, it suffices to show that

Pr[IsGoodDef(Sim) = 1 ∧ decom(Sim) ̸= DecomSampl] ≤ neg(n).

As in the case of Eq. (8), it is easy to show that if the above does not holds, then Com is not
binding.

Proving 2. Note that given Eq. (11), it suffices to prove that (1− 1
4p(n)) ·Pr[Real = s] ≤ Pr[Sim =

s], for every s ∈ L.
We introduce another random variable InitSampl jointly distributed with Sim, which is equal to

the value of (ρA′ , ρ1B′) as chosen in the sampling stage of D induced by a random execution of
(D,A,B).7 The following claim concludes the proof of 2., since both InitSampl and Real[ρA′ , ρ1B′]
are uniformly distributed over the same set of values.

Claim 3.8 For every s ∈ L it holds that

Pr
[
Sim = s | InitSampl = s[ρA′ , ρ1B′]

]
≥ (1− 1

4p(n)
) · Pr

[
Real = s | Real[ρA′ , ρ1B′] = s[ρA′ , ρ1B′]

]
.

Proof: We first note that since DecomPrHeaviest(s[ρ
1
B′ , ρA′]) ≥ 1

8p(n) (recall that s ∈ L), it holds
that

Pr
[
DecomSampl =⊥| InitSampl = s[ρA′ , ρ1B′]

]
< (1− 1

8p(n)
)n·p(n) = neg(n).

Since DecomPr¬Heaviest(s[ρ
1
B′ , ρA′]) ≤ 1

8np(n)2
, it also holds that

Pr
[
DecomSampl ∈ ¬Heaviest(ρ1B′ , ρA′) | InitSampl = s[ρA′ , ρ1B′]

]
< n · p(n) · 1

8np(n)2
=

1

8p(n)
.

Hence,

Pr
[
DecomSampl = Heaviest(ρ1B′ , ρA′) = decom(s) | InitSampl = s[ρA′ , ρ1B′]

]
(13)

> 1− neg(n)− 1

8p(n)
> 1− 1

4p(n)
.

7Note that whenever the variable z in the generation of Sim is not ⊥, then InitSampl is simply equal to Sim[ρA′ , ρ1B′].

24

Assuming that InitSampl = s[ρA′ , ρ1B′], DecomSampl = decom(s) and Sim[xB, ρ
2
B′ , ρ3B′] = s[xB, ρ

2
B′ , ρ3B′],

it is easy to verify that A′ acts in Sim as A does in the underlying execution of π that generates
Sim, and thus Sim = s. It follows that

Pr
[
Sim = s | InitSampl = s[ρA′ , ρ1B′] ∧ DecomSampl = decom(s)

]
≥ Pr

[
Sim[xB, ρ

2
B′ , ρ3B′] = s[xB, ρ

2
B′ , ρ3B′] | InitSampl = s[ρA′ , ρ1B′] ∧ DecomSampl = decom(s)

]
= Pr

[
Real[xB, ρ

2
B′ , ρ3B′] = s[xB, ρ

2
B′ , ρ3B′]

]
= Pr

[
Real = s | Real[ρA′ , ρ1B′] = s[ρA′ , ρ1B′]

]
,

where the second equality follows from the fact that under the given conditioning, Sim[xB, ρ
2
B′ , ρ3B′]

is uniformly distributed over the same set of possible values that Real[xB, ρ
2
B′ , ρ3B′] is uniformly

distributed on. We conclude that

Pr
[
Sim = s | InitSampl = s[ρA′ , ρ1B′]

]
≥ Pr

[
DecomSampl = decom(s) | InitSampl = s[ρA′ , ρ1B′]

]
· Pr

[
Real = s | Real[ρA′ , ρ1B′] = s[ρA′ , ρ1B′]

]
≥ (1− 1

4p(n)
) · Pr

[
Real = s | Real[ρA′ , ρ1B′] = s[ρA′ , ρ1B′]

]
.

This completes the proof of Claim 3.7.

Applying Proposition 3.2 twice, once with A = P1 and B = P2 (and gA = g1,gB = g2) and
another time with A = P2 and B = P1 (and gA = g2,gB = g1), we obtain that π′ is defensibly
private with respect to (g1, g2) if π was semi-honest private with respect to (g1, g2). This completes
the proof of Theorem 3.1.

We have the following corollary of Theorem 3.1:

Corollary 3.9 There exists a fully black-box reduction from defensibly private oblivious transfer to
semi-honest private oblivious transfer.

Proof: Theorem 3.1 yields the existence of a fully black-box reduction from defensibly private
oblivious transfer to semi-honest private oblivious transfer and one-way functions. Thus, the proof
of the corollary follows from the fact that there exists a fully black-box reduction from one-way
functions to semi-honest oblivious transfer. A proof of this folklore fact can be found in Appendix B.

4 Achieving Security Against a Malicious Receiver

In this section we transform any defensibly private oblivious transfer protocol into a bit oblivious
transfer protocol that is secure in the presence of a malicious receiver and private in the presence
of a defensible sender. We stress that the security achieved for malicious receivers is according to
the ideal/real model definition of security for secure computation. Our construction uses black-box
access to an oblivious transfer protocol that is private for defensible receivers and senders (like the
one given by Corollary 3.9). That is, we prove the following theorem:

25

Theorem 4.1 There exists a fully black-box reduction from oblivious transfer that is secure in the
presence of a malicious receiver and private in the presence of a defensible sender to oblivious
transfer that is defensibly private.

Stated differently, in this section we show how to boost the security guarantee from privacy
in the presence of a defensible receiver to security in the presence of a malicious receiver. The
guarantee regarding a corrupted sender remains unchanged. In order to prove this theorem (and
the next), we find it more convenient to use the alternative and more explicit definition of defensible
oblivious transfer found in Section 2.5.1.

We begin by presenting the protocol:

Protocol 4.2 (bit oblivious transfer secure in the presence of malicious receivers):

• Inputs: The sender S has a pair of bits (s0, s1) for input and the receiver R has a bit r.

• The protocol:

1. The receiver R chooses 2n random bits r1, . . . , r2n ∈R {0, 1}.
2. The sender S chooses 2n pairs of random bits s0i , s

1
i ∈R {0, 1} for i = 1, . . . , 2n.

3. S and R run 2n parallel executions of a bit oblivious transfer protocol π that is private
in the presence of defensible receivers and defensible senders. In the ith execution, S
inputs (s0i , s

1
i) and R inputs ri. Let t1, . . . , t2n be the transcripts that result from these

executions.

4. S and R run a secure two-party coin-tossing protocol (that accesses a one-way function
in a black-box way) for generating a random string q = q1, . . . , qn of length n.8 The
string q is used to define a set of indices Q ⊂ {1, . . . , 2n} of size n in the following way:
Q = {2i− qi}ni=1. (Thus, for n = 3 and q = 010 we have that Q = {2, 3, 6}.)

5. For every i ∈ Q, the receiver R provides a defense (ri, ρ
i
r) for π with transcript ti.

6. S checks that for every i ∈ Q, the pair (ri, ρ
i
r) constitutes a good defense by R for ti. If

not, then S aborts and halts. Otherwise, it continues to the next step.

7. For every j /∈ Q, the receiver R computes αj = r ⊕ rj (where r is R’s initial input) and
sends {αj}j /∈Q to S.

8. S computes σ0 = s0 ⊕
(⊕

j /∈Q s
αj

j

)
and σ1 = s1 ⊕

(⊕
j /∈Q s

1−αj

j

)
, and sends (σ0, σ1)

to R.

9. R computes and outputs sr = σr ⊕
(⊕

j /∈Q s
rj
j

)
.

We stress that our proof below of Protocol 4.2 relies on the fact that the sender’s inputs are
single bits.9

8Sequential executions of the coin-tossing protocol of [4] can be used. The fact that this is a fully black-box
reduction from secure coin-tossing to bit commitment (hence, via [20, 33] to one-way functions) is proved in [14].

9This is due to our definition of “oblivious transfer that is private for defensible adversaries”. It is possible to
define a stronger notion of defensible adversaries that is sufficient for proving that Protocol 4.2 is secure even when
the sender’s inputs are strings of an arbitrary length. Nevertheless, the case of bit oblivious transfer is simpler and
suffices for proving our result.

26

Claim 4.3 Assume that π is a non-trivial oblivious transfer protocol that is private for random
inputs in the presence of defensible senders and receivers. Then, Protocol 4.2 is a non-trivial
oblivious transfer protocol that is secure in the presence of malicious receivers and private in the
presence of defensible senders.

Proof: We first demonstrate the non-triviality property; that is, we show that if S and R are
honest, then R receives sr, as required. To see this, first note that by the non-triviality of π, the
receiver R obtains all of the bits s

rj
j , and in particular all s

rj
j for j /∈ Q. Now, if r = 0, then R

sets αj = rj for every j. Therefore, R will compute s0 = σ0 ⊕
(⊕

j /∈Q s
rj
j

)
= σ0 ⊕

(⊕
j /∈Q s

αj

j

)
.

This computation is correct because S computed σ0 = s0⊕
(⊕

j /∈Q s
αj

j

)
. In contrast, if r = 1, then

αj = 1⊕ rj for every j, which is equivalent to rj = 1− αj . Thus, once again, R’s computation of⊕
j /∈Q s

rj
j when computing s1 equals S’s computation of

⊕
j /∈Q s

1−αj

j when computing σ1, and R
will obtain σ1.

Privacy in the presence of defensible senders. We now prove that Protocol 4.2 is private
in the presence of a defensible sender A. Intuitively, if protocol π is private in the presence of a
defensible sender, then a defensible adversary here cannot learn any of the ri values in the execution
(apart from those explicitly revealed by R when it provides its defenses). Therefore, the αj = rj⊕r
values that it receives reveal nothing of the receiver’s input r, because for all j /∈ Q, the value rj
is not learned. Before we prove this formally, we define the following experiment that considers n
executions of the subprotocol π:

Experiment Exptnπ(An, b):

1. Choose r = r1, . . . , rn ∈R {0, 1}n uniformly at random, and give r to An.

2. Run n executions of π with An as the sender and the honest R as the receiver. In
the ith execution, R uses input ri ⊕ b. (Thus, the inputs of R in all executions are
either r or its complement.)

3. S outputs defenses for all executions and a guess τ .

4. If all the defenses are good, output τ . Otherwise, output ⊥.

We now show that if π is private in the presence of a defensible sender (as defined with respect
to Exptsndπ in Section 2.5.1), then for every adversary A = {An}, every polynomial p(·), and all
sufficiently large n

|Pr [Exptnπ(An, 1) = 1]− Pr [Exptnπ(An, 0) = 1]| < 1

p(n)
. (14)

Assume by contradiction that there exists an adversary A and polynomial p(·) for which the above
does not hold. We use these to construct a defensible adversary Â that succeeds in Exptsndπ with
polynomial advantage. We prove this using a hybrid argument. For ℓ such that 0 ≤ ℓ ≤ n,
define by Hℓ(An) an experiment with An defined exactly as above, except that the receiver R uses
input ri for i ≤ ℓ, and input ri ⊕ 1 for i > ℓ; the output is defined in the same way. We have
that H0(An) = Exptnπ(An, 1) and Hn(An) = Exptnπ(An, 0). Thus, by our contradicting assumption

27

|Pr[H0(An) = 1] − Pr[Hn(An) = 1]| ≥ 1/p(n). By the triangle inequality, there exists a value ℓ
(0 ≤ ℓ < n) such that

|Pr[Hℓ(An) = 1]− Pr[Hℓ+1(An) = 1]| ≥ 1

np(n)
.

We use this fact in order to construct a defensible adversary Â = {Ân} who attacks the protocol π.
Adversary Ân internally invokes An and simulates an execution of the experiment in the following
way. Ân chooses a random r = r1, . . . , rn and runs the honest R in all executions except for the
(ℓ+ 1)th one; the messages of the (ℓ+ 1)th execution are forwarded externally from An to the real
honest receiver that Ân interacts with (for a single execution of π). For the internally simulated
executions, Ân uses inputs r1, . . . , rℓ for executions 1 to ℓ, respectively, and inputs rℓ+2⊕1, . . . , rn⊕1
for executions ℓ + 2 to n, respectively. At the end of all executions Ân obtains A’s outputs (that
include its defenses and a guess τ). If any of the defenses are not good, then Ân outputs ⊥.
Otherwise, if all the defenses are good, Ân outputs τ .

Now, notice that if the real external R’s input equals rℓ+1 then the view of An is identical to
Hℓ+1(An). In contrast, if the real external R’s input equals rℓ+1⊕1 then the view of An is identical
to Hℓ(An). It therefore follows that

Pr
[
Exptsndπ (Ân, rℓ+1) = 1

]
= Pr [Hℓ+1(An) = 1]

and
Pr

[
Exptsndπ (Ân, rℓ+1 ⊕ 1) = 1

]
= Pr [Hℓ(An) = 1] .

Since rℓ+1 equals 0 if and only if rℓ+1 ⊕ 1 = 1, we have that∣∣∣Pr [Exptsndπ (Ân, 1) = 1
]
− Pr

[
Exptsndπ (Ân, 0) = 1

]∣∣∣
=

∣∣∣Pr[Hℓ(An) = 1]− Pr[Hℓ+1(An) = 1]
∣∣∣ ≥ 1

np(n)

in contradiction to the assumption that π is private in the presence of defensible senders.
We now use Eq. (14) in order to prove that Protocol 4.2 is private in the presence of defensible

senders. We will present a proof in the “hybrid model”, where the parties have access to a trusted
party computing the coin-tossing protocol. The soundness of this methodology follows from the
sequential composition theorems in [5, 14] and the fact that the coin-tossing protocol we employ in
Step 4 of Protocol 4.2 is secure under the simulation-based security definitions from [5, 14].

Assume, by contradiction, that there exists an adversary A and a polynomial p(·) such that for
infinitely many n’s ∣∣∣Pr [ExptsndΠ (An, 1) = 1

]
− Pr

[
ExptsndΠ (An, 0) = 1

]∣∣∣ ≥ 1

p(n)

where Π denotes Protocol 4.2 (not to be confused with π that denotes the subprotocol). Then, we
construct an adversary Â = {Ân} that contradicts Eq. (14).

The adversary Ân interacts with an external R in Exptnπ; let r be the n-bit string that Ân receives
in the context of this experiment. Now, Ân internally invokes An and simulates an execution of
Protocol 4.2 for An, as follows. First, Ân chooses a random n-bit string q and defines the index set

28

Q as specified in the protocol. Then, Ân runs 2n executions of π with An: for every i ∈ Q, adversary
Ân internally plays the honest receiver R in the ith execution of π with a random input; for every
j /∈ Q, adversary Ân forwards the messages of the jth execution between the external receiver and
An. After the executions of π have concluded, Ân hands An the string q as if coming from the
trusted party who computes the coin-tossing functionality for the parties (in the hybrid model).
Given that q and thus Q is determined, Ân hands An good defenses for every execution i ∈ Q (Ân

can do this because these are exactly the executions that it ran internally with An). Finally Ân

defines the αj values to hand to An. These values are computed from the string r = r1, . . . , rn that
Ân received in its experiment Exptnπ. Let αj1 , . . . , αjn be the n values of ji /∈ Q. Then, Ân defines
αji = ri. Finally, Ân receives An’s defense and guess τ , and outputs this same pair.

First, notice that if the input of the honest R that Ân interacts with in Exptnπ is r = r1, . . . , rn,
then An’s view is identical to its view in Protocol 4.2 where the receiver has input 0 (because each
αji = rj where rj is the input used in the jthi execution of π and ji /∈ Q). Next, if the input of
the honest R that Ân interacts with in Exptnπ is r1 ⊕ 1, . . . , rn ⊕ 1, then An’s view is identical to
its view in Protocol 4.2 where the receiver has input 1 (because each αji = 1 ⊕ rj where rj is the
input used in the jthi execution of π and ji /∈ Q). Thus, for b ∈ {0, 1},

Pr
[
Exptnπ(Ân, b) = 1

]
= Pr

[
ExptsndΠ (An, b) = 1

]
and so by the contradicting assumption, for infinitely many n’s∣∣∣Pr [Exptnπ(Ân, 1) = 1

]
− Pr

[
Exptnπ(Ân, 0) = 1

]∣∣∣ ≥ 1

p(n)

which contradicts Eq. (14). We remark that this proof holds irrespective of the scheduling of the
2n executions of π. Therefore, for efficiency reasons, they can be run in parallel (as described in
the protocol itself).

Security in the presence of malicious receivers. We now prove that Protocol 4.2 is secure
in the presence of malicious receivers. The intuition behind this proof is that the cut-and-choose
technique forces an adversarial receiver A to be able to provide a good defense for most of the
oblivious transfer executions (or be caught with overwhelming probability). In particular, there
must be at least one j /∈ Q for which A could have provided a good defense. This implies that there
exists an index j for which A cannot predict the value of s

1−rj
j with any non-negligible advantage.

Since s1−r is masked by s
1−rj
j , it follows that A also learns nothing about s1−r. We stress that the

above intuition shows that a malicious A cannot learn anything about s1−r. However, we actually
need to prove a much stronger claim in that the protocol is secure for a malicious R∗, as defined via
the ideal/real model simulation paradigm. As above, we present our analysis in the hybrid model,
where the honest parties use a trusted party to compute the coin-tossing functionality for them.

We now describe the simulator Sim (given black-box access to the adversary A = {An}):

1. For each i = 1, . . . , 2n, simulator Sim chooses random pairs s0i , s
1
i ∈R {0, 1} and plays the

honest sender in π with these inputs, where An plays the receiver.

2. Sim chooses a random string q ∈R {0, 1}n and hands it to An as if it is the output of the
coin-tossing functionality, as sent by the trusted party. Let Q be the index set derived from
q. Upon receiving back pairs (ri, ρ

i
r) for i ∈ Q, simulator Sim checks that they all constitute

good defenses, respectively. If not, then it aborts (just like the honest sender).

29

3. Sim rewinds An to the beginning of the previous step and chooses a new random string q′

with associated index set Q′. (We stress that the choice of q′ is independent of the choice of
q.) Sim hands q′ to An and sees if it replies with pairs (ri, ρ

i
r) that are good defenses, for all

i ∈ Q′. Sim repeats this process with a new q′ until An indeed replies with pairs (ri, ρ
i
r) that

are good defenses, for all i ∈ Q′. If Q′ = Q, then Sim outputs fail. Otherwise it proceeds to
the next step.

4. Given that Q′ ̸= Q (and |Q′| = |Q|), there exists at least one index j such that j /∈ Q′ but
j ∈ Q. For such a j, Sim computes r = rj ⊕ αj and sends r to the trusted party. (Note that

rj is obtained from the defense (rj , ρ
j
r) that was received from An after it was sent the query

set Q. In contrast, αj is the value received from An after rewinding; i.e., when the query set
was Q′.)

5. Upon receiving back a bit sr from the trusted party, Sim computes σ0 and σ1 as follows:

(a) If r = 0, then σ0 = s0 ⊕
(⊕

j /∈Q′ s
αj

j

)
and σ1 ∈R {0, 1}.

(b) If r = 1, then σ0 ∈R {0, 1} and σ1 = s1 ⊕
(⊕

j /∈Q′ s
1−αj

j

)
.

Sim sends (σ0, σ1) to An and outputs whatever An does.

We now prove that the joint output of Sim and the honest sender S in the ideal model is computa-
tionally indistinguishable from the joint output of An and S in the real model. Actually, since the
honest S has no output from the protocol, it suffices here to show that the output of Sim in the
ideal model is computationally indistinguishable from the output of An in the real model.

We first claim that apart from the pair (σ0, σ1), the view of An in the simulation with Sim is
statistically close to its view in a real execution with S; the only difference being in the case that
Sim outputs fail. This can be seen as follows: if An does not send good defenses after receiving
q, then Sim aborts, just as the honest S would (and in this case the simulation is perfect). If
An does send good defenses, then Sim continues until it finds another (independent) q′ for which
An also replies with good defenses. This strategy can be described as follows: uniformly sample
a partial transcript from the distribution ⟨S,An⟩ to see if the event X occurs (the event X here
is An replying correctly and the partial transcript is until the point that (σ0, σ1) is sent); if yes,
then sample a partial transcript from amongst those for which X occurs. It is immediate that
the resulting partial transcript is uniformly distributed among all partial transcripts. The only
deviation from the above strategy occurs if q′ = q, in which case Sim outputs fail. In order to
see that this occurs with only negligible probability, let ϵ denote the probability that An replies
correctly upon receiving a random string q of length n, as the output from the coin-tossing protocol.
Since there are 2n such strings, it follows that An replies correctly on ϵ · 2n of these strings. Now,
the probability that Sim outputs fail equals the probability that An replied correctly to the first
string q, times the probability that q′ = q, where this latter probability is 1/ϵ2n because there are
ϵ2n strings upon which An replies correctly. Thus:

Pr[Sim outputs fail] = ϵ · 1

ϵ · 2n
=

1

2n

which is negligible.
Until now, we have shown that in the simulation by Sim, the adversary An’s partial view up

until the point that it receives (σ0, σ1) is statistically close to its view in a real execution with S.

30

We now show that An’s full view is computationally indistinguishable. To do this, we consider
a modified ideal-model simulator Sim′ who receives the sender S’s input pair (s0, s1). Simulator
Sim′ works in exactly the same way as Sim, except that it computes σ1−r as an honest sender
would instead of choosing it uniformly. By the above argument, it follows that the distribution
generated by Sim′ in the ideal model is statistically close to the distribution generated by a real
execution between S and An. (Recall that Sim already generates σr in the same way as an honest
S, and therefore so does Sim′.) It remains to show that the distribution generated by Sim′ is
computationally indistinguishable from that generated by Sim.

The only difference between Sim′ and Sim is in the generation of σ1−r: simulator Sim′ generates it
“honestly”, whereas Sim chooses it uniformly. As mentioned above, intuitively, indistinguishability
follows from the fact that at least one s

1−rj
j masks the value of s1−r. Formally, we show that if this

“fake” σ1−r can be distinguished from a real one, then we can construct a defensible receiver Ãn

that can break the oblivious transfer protocol π.
That is, we show that if the output generated by Sim and Sim′ can be distinguished with non-

negligible probability, then it is possible for a defensible adversary Ãn to succeed in the experiment
of Definition 2.9 with non-negligible advantage, with respect to the subprotocol π. Assume by
contradiction that there exists a distinguisher D, a polynomial p(·) and infinitely many n’s such
that

|Pr[D(outputSim) = 1]− Pr[D(outputSim′) = 1]| ≥ 1

p(n)
.

Without loss of generality, assume that

Pr[D(outputSim) = 1]− Pr[D(outputSim′) = 1] ≥ 1

p(n)
. (15)

We now use the above to construct a defensible adversary Ã = {Ãn}. Adversary Ãn begins
its attack by starting the simulation of Protocol 4.2, according to Sim’s strategy. Specifically,
Ãn chooses s0, s1 ∈R {0, 1} and runs the simulation strategy of Sim with An up until the point
where σ0 and σ1 are sent. The simulation is the same as Sim, except for the following difference:
Ãn begins by choosing j ∈R {1, . . . , 2n} and internally invokes An, simulating an execution of
Protocol 4.2. Then, all of the oblivious transfer subexecutions of π, except for the jth one, are run
internally with Ãn playing the honest sender (Ãn also chooses the s0i and s1i values as S would);
in contrast, the messages of the jth execution of the oblivious transfer protocol π are forwarded
between Ãn’s external sender and the internal An playing the receiver. Following the oblivious
transfer executions, Ãn runs the honest sender in the coin-tossing protocol to generate q and thus
Q as required. If j /∈ Q, then Ãn outputs fail and halts. Otherwise, Ãn receives back the defenses;
since j ∈ Q, the jth defense is included. If (rj , ρ

j
r) is not a good defense, then Ãn outputs fail and

halts. Otherwise, it stores (rj , ρ
j
r) and continues like Sim by rewinding An and generating a new

q′ and Q′. If j ∈ Q′, then once again Ãn outputs fail and halts. Otherwise, it continues like Sim
(using the j chosen above for which it is given that j ∈ Q and j /∈ Q′). Ãn continues in the same
way that Sim does up until (but not including) the point at which (σ0, σ1) must be sent. Now, Ãn

computes (σ0, σ1) as follows. First, note that Ãn knows the values (s0, s1) and s0i , s
1
i for all i ̸= j

(because it chose them). However, the values s0j and s1j are not known to Ãn because these are
the values used by the external sender with whom it interacts. Nevertheless, the (good) defense
provided by An is enough to obtain the value s

rj
j . This holds because given the transcript of the

jth oblivious transfer execution and the input and random tape of the receiver, it is possible to

31

derive s
rj
j . The only value unknown to Ãn is therefore s

1−rj
j . Therefore, Ãn is able to compute σr

like the honest sender. In contrast, it cannot honestly compute σ1−r. Rather, Ãn guesses the value

of s
1−rj
j ∈R {0, 1} randomly, and then computes σ1−r using s1−r, all of the si values that it knows

(i.e., all apart from s
1−rj
j), and the uniformly chosen s

1−rj
j .

In order to determine its output, Ãn obtains the output of An and runs the distinguisher D
(from Eq. (15)) on this output; let b be the bit output by D. Then, Ãn sets τ = s

1−rj
j ⊕ b. (Recall

that τ is Ãn’s guess for the “not-received” bit used by the honest sender. The motivation for this
guess is that by Eq. (15), D outputs 1 with higher probability on Sim (when the bit is random)

than on Sim′ (when the bit is correct). Thus, when D outputs 1, we flip Ãn’s guess for s
1−rj
j .)

Finally, Ãn outputs the defense (rj , ρ
j
r) obtained above and the bit τ .

We proceed to analyze the probability that Ãn succeeds in Exptrecπ . First, note that unless Ãn

outputs fail, the view of An when interacting with Ãn above is identical to its view in the simulation
by Sim. This is due to the fact that Ãn follows Sim’s strategy, except for two differences. The first
difference is that in the jth execution of the oblivious transfer protocol π is run externally. However,
since Sim plays the role of an honest receiver in all of the executions, this makes no difference to
An’s view. The second difference is in how σ1−r is computed: Sim chooses it uniformly, whereas Ãn

computes it as described above. Clearly, the distribution generated is the same because Ãn uses a
uniformly distributed s

1−rj
j , and thus σ1−r is also uniformly distributed.

Now, denote the inputs of the honest sender that Ãn interacts with by (s̃0, s̃1). Using the facts

that (a) Ãn generates the exact same distribution as Sim, (b) Ãn sets τ = s
1−rj
j ⊕ b (where b is

D’s output bit), and (c) Ãn presents a good defense every time that it does not output fail, we
have that

Pr
[
Exptrecπ (Ãn) = 1 | outputÃn

̸= fail
]
= Pr

[
D(outputSim)⊕ s

1−rj
j = s̃1−rj

]
.

(Recall that Exptrecπ (Ãn) = 1 if Ãn presents a good defense and τ = s̃1−rj .)

In contrast to the above, conditioned on the event that s
1−rj
j = s̃1−rj (i.e., the event that Ãn

guessed correctly), the result is an execution that is distributed exactly according to Sim′. (Recall
that the only difference between Sim and Sim′ is with respect to the computation of σ1−r.) That
is,

Pr
[
D(outputSim)⊕ s

1−rj
j = s̃1−rj | s

1−rj
j = s̃1−rj

]
= Pr

[
D(outputSim′)⊕ s

1−rj
j = s̃1−rj | s

1−rj
j = s̃1−rj

]
= Pr [D(outputSim′) = 0]

where the last equality is just due to the fact that s
1−rj
j = s̃1−rj . Now, recalling that s

1−rj
j is chosen

uniformly by Ãn (and so equals s̃1−rj with probability exactly 1/2), we have:

Pr
[
D(outputSim)⊕ s

1−rj
j = s̃1−rj

]
=

1

2
· Pr

[
D(outputSim)⊕ s

1−rj
j = s̃1−rj | s

1−rj
j = s̃1−rj

]
+

1

2
· Pr

[
D(outputSim)⊕ s

1−rj
j = s̃1−rj | s

1−rj
j ̸= s̃1−rj

]
32

=
1

2
· Pr [D(outputSim′) = 0] +

1

2
· Pr

[
D(outputSim) = 1 | s1−rjj ̸= s̃1−rj

]
=

1

2
· (1− Pr [D(outputSim′) = 1]) +

1

2
· Pr

[
D(outputSim) = 1 | s1−rjj ̸= s̃1−rj

]
=

1

2
+

1

2
· Pr

[
D(outputSim) = 1 | s1−rjj ̸= s̃1−rj

]
− 1

2
· Pr [D(outputSim′) = 1] .

Recalling again that when s
1−rj
j = s̃1−rj the output of Sim is the same as Sim′, we have that

1

2
+

1

2
· Pr

[
D(outputSim) = 1 | s1−rjj ̸= s̃1−rj

]
− 1

2
· Pr [D(outputSim′) = 1]

=
1

2
+

1

2
· Pr

[
D(outputSim) = 1 | s1−rjj = s̃1−rj

]
+

1

2
· Pr

[
D(outputSim) = 1 | s1−rjj ̸= s̃1−rj

]
− Pr [D(outputSim′) = 1]

=
1

2
+ Pr [D(outputSim) = 1]− Pr [D(outputSim′) = 1] .

Combining the above with Eq. (15), we have that for infinitely many n’s

Pr
[
Exptrecπ (Ãn) = 1 | outputÃn

̸= fail
]
= Pr

[
D(outputSim)⊕ s

1−rj
j = s̃1−rj

]
≥ 1

2
+

1

p(n)
.

Recall now that Ãn outputs fail if An does not output a good defense, if j /∈ Q, or if j ∈ Q′.
We first claim that An must output a good defense with non-negligible probability. This follows
simply from the fact that when An does not output a good defense, the execution is truncated
and the distributions generated by Sim and Sim′ are identical. Therefore, Eq. (15) implies that for
infinitely many n’s, An outputs a good defense with probability at least 1/p(n). Next, recall that
Ãn chooses the sets Q and Q′ randomly (under the constraints prescribed in the protocol). Thus,
with probability exactly 1/4, j ∈ Q and j /∈ Q′ (because the probability that a given j is in a
specified set is exactly 1/2). We conclude that with non-negligible probability, Ãn does not output
fail, and thus Pr[Exptrecπ (Ãn) = 1] is non-negligible.

It remains to show that Sim runs in expected polynomial-time. Aside from the rewinding stage,
all work takes a fixed polynomial amount of time. Regarding the rewinding stage, we have the
following. Let p denote the probability that An replies correctly upon a random set of indices Q of
size n, as specified in the protocol. Then, given that An replied correctly to the initial query set Q,
the expected number of rewinding attempts with independent Q′ made by Sim equals 1/p. Since
these rewinding attempts are only made if An replied correctly to the initial query set Q, we have
that the expected number of attempts overall equals p · 1/p = 1. This completes the proof.

5 Security for Malicious Senders and Privacy for Defensible Re-
ceivers

In this section, we reverse the oblivious transfer protocol of Protocol 4.2 to obtain a protocol that
is secure in the presence of a malicious sender and private for random inputs in the presence of a
defensible receiver. We use the construction of [39] for reversing Protocol 4.2. The protocol is as
follows:

Protocol 5.1 (reversing oblivious transfer):

33

• Inputs: The sender S has a pair of bits (s0, s1) for input and the receiver R has a bit r.

• The protocol:

1. The sender and receiver run an oblivious transfer protocol π that is secure in the presence
of a malicious receiver and private in the presence of a defensible sender:

(a) The sender S, playing the receiver in π, inputs r̃ = s0 ⊕ s1

(b) The receiver R, playing the sender in π, chooses a random bit ρ ∈R {0, 1} and inputs
s̃0 = ρ and s̃1 = ρ⊕ r.

Denote S’s output from π by a.

2. S sends R the bit α = s0 ⊕ a.

3. R outputs sr = ρ⊕ α.

We now prove the security of the reversed protocol. We remark that although Protocol 5.1 can
easily be proven as an information-theoretic reduction (and likewise, when the original oblivious
transfer protocol is secure in the presence of both a malicious sender and receiver), it is far more
subtle in the setting where only privacy in the presence of a defensible sender is assumed.

Claim 5.2 If π is a non-trivial oblivious transfer protocol that is secure in the presence of a mali-
cious receiver and private in the presence of a defensible sender, then Protocol 5.1 is a non-trivial
oblivious transfer protocol that is secure in the presence of a malicious sender and private for
random inputs in the presence of a defensible receiver.

Proof: We first show that if S and R follow the protocol, then R receives the correct output. In
order to see this, notice that ρ⊕ α = ρ⊕ s0 ⊕ a. Now, there are two cases:

1. Case s0 ⊕ s1 = 0: In this case, a = ρ and so ρ⊕ α = ρ⊕ s0 ⊕ ρ = s0. Now, since s0 ⊕ s1 = 0,
it holds that s0 = s1 and so R’s output is correct (irrespective of the value of r).

2. Case s0 ⊕ s1 = 1: In this case, a = ρ⊕ r and so ρ⊕α = ρ⊕ s0 ⊕ ρ⊕ r = s0 ⊕ r. Now, on the
one hand, if r = 0 then R outputs s0, which is correct. On the other hand, if r = 1, then R
outputs s0 ⊕ 1. Since, in this case, s0 ⊕ s1 = 1, it holds that s1 = s0 ⊕ 1, and so once again,
R’s output is correct.

We now proceed to prove the security and privacy of the protocol.

Security in the presence of a malicious sender. As in the proof of Claim 4.3, we present
the proof in the “hybrid model”, where the parties have access to a trusted party computing the
oblivious transfer protocol.10 Let A be an adversary who controls the sender S in Protocol 5.1. We
construct a simulator Sim as follows:

1. Sim invokes A and receives from it the input σ = s0 ⊕ s1 that A sends to the trusted party
for the oblivious transfer subprotocol.

10We note that the composition theorems of [5, 14] both relate to the case of “full security”. However, the analysis
(for the case of static adversaries) works by separately analyzing a corrupted P1 and a corrupted P2. It therefore
follows also in our case.

34

2. Sim hands A a uniformly distributed bit a ∈R {0, 1}.

3. Sim receives a bit α from A and computes s0 = α⊕ a and s1 = α⊕ a⊕ σ, and sends (s0, s1)
to its own trusted party (recall that Sim works in the ideal model).

4. Sim outputs whatever A outputs.

We show that the joint output of Sim and the honest R (in the ideal model) is identical to the joint
output of A and the honest R in a real execution of Protocol 5.1. First, note that the view of A in
the simulation by Sim is identical to its view in a real execution; this follows simply from the fact
that a is uniformly distributed (it equals either ρ or ρ⊕ r where ρ is uniformly distributed). Next,
note that R’s output is fully determined by σ, a, and α. To see this, consider the following case
analysis:

1. Case σ = 0: In this case, the output a that A receives in π equals ρ and so R’s output equals
ρ⊕α = a⊕α. Note that when σ = 0, it holds that s0 = s1. Therefore,the fact that Sim sends
s0 = a⊕ α and s1 = a⊕ α⊕ σ = a⊕ α = s0 results in the correct output distribution for R.

2. Case σ = 1: In this case, the output a that A receives in π equals ρ ⊕ r and so R’s output
equals ρ ⊕ α = a ⊕ r ⊕ α (because ρ = a ⊕ r). Now, if r = 0, then R’s output equals a ⊕ α
which is exactly the value of s0 sent by Sim to the trusted party. On the other hand, if
r = 1, then R’s output equals a ⊕ 1 ⊕ α. However, since σ = 1 in this case, we have that
a⊕ 1⊕ α = a⊕ σ ⊕ α which is exactly the value of s1 sent by Sim to the trusted party.

We conclude that in all cases, the value that the honest R would output in a real execution of
Protocol 5.1 with A equals the value that the honest R outputs in an ideal execution with Sim.
Thus, the distribution generated by Sim in the ideal model is identical to a real execution of
Protocol 5.1.

Privacy for random inputs in the presence of a defensible receiver. LetA be an adversary
that controls R in an execution of Protocol 5.1. We show that A can learn at most one bit of (s0, s1).
To see this, recall that π is private in the presence of a defensible sender. Thus, if A provides a
good defense, it learns nothing of the sender’s input s0 ⊕ s1 into π. This implies that the only
information that A learns from the protocol is α = s0 ⊕ a. Intuitively, since a is essentially a
function of s0 ⊕ s1, the value α cannot reveal more than either s0 or s1.

To prove this formally, denote r′ = s0⊕ s1; recall that s0 and s1 are uniformly distributed, and
therefore so is r′. Now, S’s input to π is r′, and following the execution, S sends R the message
α = s0 ⊕ a, where s0 is uniformly distributed and independent of r′ (independence follows because
s0 and s1 are independent of each other and r′ = s0 ⊕ s1).

11 Thus, the message α that S sends
to A controlling R can be simulated. This enables us to show that if a defensible receiver A can
guess the values of both s0 and s1 with non-negligible advantage in an execution of Protocol 5.1,
then this can be used by a defensible sender to guess the value of r′ = s0 ⊕ s1 with non-negligible
advantage in an execution of π. This would then contradict the security of π.

11We stress an important point here: the assumption regarding the security of π is only that it is private for a
defensible sender. Thus, there is no guarantee that the output a that S receives from π is “correctly” distributed.
Nevertheless, S’s input to π is r′ and this is independent of s0. Thus, α is uniformly distributed, irrespective of the
output that S receives in π.

35

Formally, assume by contradiction that there exists an adversarial defensible receiver A = {An},
a polynomial p(·) and infinitely many n’s such that

Pr [ExptrecΠ (An) = 1] ≥ 1

2
+

1

p(n)

where Π denotes Protocol 5.1 (not to be confused with the subprotocol π). We construct an
adversarial defensible sender Â who attacks an execution of the subprotocol π, while interacting
with an honest receiver R. Adversary Â internally invokes A and forwards all of A’s messages to
the honest receiver and vice versa. After the execution of π concludes, Â chooses a random bit
α ∈R {0, 1} and internally hands A the bit α. Adversary Â obtains A’s defense and guess τ . If the
defense is not good it outputs ⊥. Otherwise, it uses the defense and τ to obtain a pair (s′0, s

′
1) as

follows. A’s defense represents an honest receiver’s view in Protocol 5.1. As such, it contains an
input r′ and defines an output s′r′ (a party’s view implicitly contains its output). In addition, the

bit τ represents A’s guess s′1−r′ for the honest sender’s other input bit. Adversary Â defines its
output guess to be τ ′ = s′0 ⊕ s′1. Furthermore, its defense just consists of the part of A’s defense
that relates to π. Adversary Â outputs this defense and τ ′.

We now show that for some polynomial p′(·) and infinitely many n’s∣∣∣Pr [Exptsndπ (Ân, 1) = 1
]
− Pr

[
Exptsndπ (Ân, 0) = 1

]∣∣∣ ≥ 1

p′(n)
.

First, we claim that A’s view in this simulation by Â is identical to its view in a real execution of
Protocol 5.1 where s0, s1 ∈R {0, 1}. This follows from the fact that α is uniformly distributed and
independent of s0 ⊕ s1. Furthermore, the input value used by the honest receiver running π with
Â is distributed exactly according to s0 ⊕ s1 (because they are both uniform). Finally, the output
guess generated by Â is correct in the case that A’s defense is good and τ really equals s1−r. This
holds because if A’s defense is good, then the output it implicitly defines must equal sr (because
an honest receiver with input r must receive sr). Thus, both s0 and s1 are correct in this case, and
so is s0 ⊕ s1. This implies that:

Pr
[
Exptsndπ (Ân, b) = b

]
= Pr

[
ExptrecΠ (An) = 1

]
≥ 1

2
+

1

p(n)
. (16)

We wish to now bound Pr
[
Exptsndπ (Ân, b) = 1− b

]
. We have:

Pr
[
Exptsndπ (Ân, b) = 1− b

]
= 1− Pr

[
Exptsndπ (Ân, b) = b

]
− Pr

[
Exptsndπ (Ân, b) = ⊥

]
≤ 1− Pr

[
Exptsndπ (Ân, b) = b

]
≤ 1−

(
1

2
+

1

p(n)

)
=

1

2
− 1

p(n)
. (17)

Combining Equations (16) and (17), we have:∣∣∣Pr [Exptsndπ (Ân, 1) = 1
]
− Pr

[
Exptsndπ (Ân, 0) = 1

]∣∣∣ ≥ 1

2
+

1

p(n)
−
(
1

2
− 1

p(n)

)
=

2

p(n)

36

in contradiction to the assumption that π is private in the presence of defensible senders.

We have the following corollary:

Corollary 5.3 There exists a fully black-box reduction from oblivious transfer that is secure in
the presence of a malicious sender and private for random inputs in the presence of a defensible
receiver, to oblivious transfer that is secure in the presence of a malicious receiver and private in
the presence of a defensible sender.

6 Fully Secure Oblivious Transfer

In this section, we use the construction of Protocol 4.2 again in order to boost the security of
Protocol 5.1 so that it is secure in the presence of both a malicious sender and a malicious receiver;
the resulting protocol satisfies the standard simulation-based security definition of oblivious transfer
(see Definition 2.1).

By Claim 4.3, we have that Protocol 4.2 boosts the security of any oblivious transfer protocol
that is private for defensible receivers into one that is secure in the presence of malicious receivers.
We can therefore use Protocol 4.2 to boost the security of Protocol 5.1 so that the result is a protocol
that is secure in the presence of malicious receivers. This does not suffice, however, because we
must show that if the subprotocol used in Protocol 4.2 is secure in the presence of malicious senders,
then the result is still secure in the presence of malicious senders. (Claim 4.2 considers only privacy
for defensible senders.) This is actually easy to show, and we sketch the proof here.

Theorem 6.1 There exists a fully black-box reduction from fully secure oblivious transfer to obliv-
ious transfer that is secure in the presence of malicious senders and private for random inputs in
the presence of defensible receivers.

Proof Sketch: Let π be any oblivious transfer protocol that is secure in the presence of malicious
senders and private for random inputs in the presence of defensible receivers, and let π′ be the
result of applying the transformation of Protocol 4.2 to this π. We claim that π′ is fully secure.

Since π is private for random inputs in the presence of defensible receivers, Claim 4.3 imme-
diately implies that π′ is secure in the presence of malicious receivers. It remains to show that
security in the presence of malicious senders is preserved. We construct the following simulator
Sim for a malicious sender (since the subprotocol π is secure in the presence of a malicious sender,
A works in the “hybrid model” with access to a trusted party computing the oblivious transfer
functionality):

1. Sim invokes A and plays the honest receiver using input bit r = 0.

2. Since A works in the hybrid model, Sim obtains all of the pairs s0i , s
1
i that A inputs into the

oblivious transfer protocol.

3. At the conclusion of the protocol, Sim obtains the values σ0 and σ1. Since Sim knows all of
the sbi values, it can compute (s0, s1). Therefore, Sim computes these values and sends them
to the trusted party. This completes the simulation.

First, the view of A in the simulation is computationally indistinguishable from its view in a real
execution. This follows from the fact that it learns nothing of the ri values in the oblivious transfer

37

subprotocol. Thus, the αj = r ⊕ rj values reveal nothing about r. Next, we claim that the joint
output of A and the honest receiver in the ideal model is indistinguishable from the joint output
in a real execution. This follows from the fact that the honest receiver’s output is determined from
the σ0 and σ1 values (irrespective of whether or not A computes them “correctly”). Since Sim
obtains these values in the same way as the honest receiver would (with the only difference that it
can obtain both), we have that the receiver’s output is the same in the real and ideal executions.
This completes the proof sketch.

Conclusion – black-box construction of oblivious transfer. By combining Corollary 3.9,
Theorem 4.1, Corollary 5.3, and Theorem 6.1, we have that there exists a fully black-box reduction
from fully secure oblivious transfer to semi-honest oblivious transfer. In addition, there exist fully
black-box reductions from semi-honest oblivious transfer to enhanced trapdoor permutations [10]
and homomorphic encryption (cf. [1]). We therefore conclude with the following corollary:

Corollary 6.2 There exists a fully black-box reduction from fully secure oblivious transfer to semi-
honest oblivious transfer. Furthermore, there exist fully black-box reductions from fully secure obliv-
ious transfer to enhanced trapdoor permutations and homomorphic encryption schemes.

7 Black-Box Secure Multiparty Computation

Kilian [26], and later Ishai et al. [24], showed that any functionality can be securely computed given
black-box access to an oblivious transfer functionality. We therefore have the following theorem,
that constitutes our main result:

Theorem 7.1 For any probabilistic polynomial-time functionality f , there exists a fully black-box
reduction from a protocol that securely computes f (with any number of corrupted parties, in the
presence of a static malicious adversary) to semi-honest oblivious transfer. Furthermore, there exist
similar reductions to a family of enhanced trapdoor permutations and a homomorphic encryption
scheme.

Proof: In [26, 24] it is shown that f can be securely computed in the OT-hybrid model, i.e., in a
model where the parties can access an ideal oblivious transfer oracle. Using a sequential composi-
tion theorem [5, 14, 15], we can (sequentially) replace each oracle call by an instance of the protocol
from Corollary 6.2 (using either semi-honest oblivious transfer, enhanced trapdoor permutations, or
homomorphic encryption) and obtain reductions as required. We note that Corollary 6.2 only guar-
antees security with expected polynomial-time simulation. However, this does not cause a problem
because the straight-line simulation of the protocol from [24] guarantees its security even against
expected polynomial-time adversaries (with expected polynomial-time simulation). This ensures
(cf. [15]) that the resulting protocol for f is secure with expected polynomial-time simulation.

An important ramification of Theorem 7.1 is the following corollary:

Corollary 7.2 For any probabilistic polynomial-time functionality f there exists a protocol that
uses only black-box access to a family of enhanced trapdoor permutations or a homomorphic en-
cryption scheme, and securely computes f with any number of corrupted parties and in the presence
of a static malicious adversary.

38

We remark that as is standard for the setting of no honest majority, the security guarantee achieved
here is that of “security with abort”; see Definition 2.1 for a formal definition in the two-party case
and [14, Chapter 7] for the general multiparty case.

Acknowledgements

We would like to thank the anonymous referees for their many helpful corrections and comments.

References

[1] W. Aiello, Y. Ishai and O. Reingold. Priced Oblivious Transfer: How to Sell Digital Goods.
In EUROCRYPT 2001, Springer-Verlag (LNCS 2045), pages 119–135, 2001.

[2] Y. Aumann and Y. Lindell. Security Against Covert Adversaries: Efficient Protocols for
Realistic Adversaries. In 4th TCC, Springer-Verlag (LNCS 4392), pages 137–156, 2007.

[3] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

[4] M. Blum. Coin Flipping by Phone. In IEEE Spring COMPCOM, pages 133–137, 1982.

[5] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[6] D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure Protocols. In
20th STOC, pages 11–19, 1988.

[7] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Simple, Black-Box Constructions
of Adaptively Secure Protocols. In 6th TCC, pages 387-402, 2009.

[8] I. Damg̊ard and Y. Ishai. Constant-Round Multiparty Computation Using a Black-Box
Pseudorandom Generator. In CRYPTO 2005, Springer-Verlag (LNCS 3621), pages 378–
394, 2005.

[9] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal on Com-
puting, 30(2):391–437, 2000.

[10] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Contracts. In
Communications of the ACM, 28(6):637–647, 1985.

[11] R. Gennaro and L. Trevisan. Lower Bounds on the Efficiency of Generic Cryptographic
Constructions. In 41st FOCS, pages 305–314, 2000.

[12] Y. Gertner, S. Kannan, T. Malkin, O. Reingold and M. Viswanathan. The Relationship
between Public Key Encryption and Oblivious Transfer. In 41st FOCS, pages 325–334,
2000.

[13] Y. Gertner, T. Malkin and O. Reingold. On the Impossibility of Basing Trapdoor Functions
on Trapdoor Predicates. In 42nd FOCS, pages 126–135, 2001.

39

[14] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[15] O. Goldreich. On Expected Probabilistic Polynomial-Time Adversaries: A Suggestion for
Restricted Definitions and Their Benefits. In the 4th TCC, Springer-Verlag (LNCS 4392),
pages 174–193, 2007.

[16] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or
All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, 38(1):691–
729, 1991.

[17] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987. For
details see [14, Chapter 7].

[18] I. Haitner. Semi-honest to Malicious Oblivious Transfer – the Black-Box Way. In the 5th
TCC, Springer-Verlag (LNCS 4948) pages 412–426, 2008.

[19] I. Haitner, M.-H. Nguyen, S. J. Ong, O. Reingold, and S. P. Vadhan. Statistically Hiding
Commitments and Statistical Zero-Knowledge Arguments from Any One-Way Function.
SIAM Journal on Computing 39(3):1153–1218, 2009.

[20] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[21] R. Impagliazzo and M Luby. One-way Functions are Essential for Complexity Based Cryp-
tography. In 30th FOCS, pages 230-235, 1989.

[22] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-way Permuta-
tions. In CRYPTO’88, Springer-Verlag (LNCS 403), pages 8–26, 1988.

[23] Y. Ishai, E. Kushilevitz, Y. Lindell and E. Petrank. Black-Box Constructions for Secure
Multiparty Computation. In the 38th STOC, pages 99-108, 2006.

[24] Y. Ishai, M. Prabhakaran and A. Sahai. Founding Cryptography on Oblivious Transfer -
Efficiently. In CRYPTO 2008, Springer-Verlag (LNCS 5157), pages 572–591, 2008.

[25] Y.T. Kalai. Smooth Projective Hashing and Two-Message Oblivious Transfer. In EURO-
CRYPT 2005, Springer-Verlag (LNCS 3494) pages 78–95, 2005.

[26] J. Kilian. Founding Cryptograph on Oblivious Transfer. In 20th STOC, pages 20–31, 1988.

[27] J. Kilian. Uses of Randomness In Algorithms and Protocols. MIT Press, 1990.

[28] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages
723-732, 1992.

[29] J.H. Kim, D.R. Simon and P. Tetali. Limits on the Efficiency of One-Way Permutation-
Based Hash Functions. In 40th FOCS, pages 535–542, 1999.

[30] E. Kushilevitz and R. Ostrovsky. Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval. In 38th FOCS, pages 364–373, 1997.

40

[31] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryption Under General
Assumptions. In EUROCRYPT 2003, Springer-Verlag (LNCS 2656), pages 241–254, 2003.

[32] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000.

[33] M. Naor. Bit Commitment Using Pseudorandomness. J. Cryptology 4(2): 151-158, 1991.

[34] M. Naor and K. Nissim. Communication Preserving Protocols for Secure Function Evalua-
tion. In 33rd STOC, pages 590–599, 2001.

[35] M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In 12th SODA, pages
458–457, 2001.

[36] M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard U., 1981. Can be found at Cryptology ePrint Archive,
Report 2005/187.

[37] O. Reingold, L. Trevisan, and S. Vadhan. Notions of Reducibility between Cryptographic
Primitives. In 1st TCC, pages 1–20, 2004.

[38] A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Adaptive Chosen-Ciphertext
Security. In 40th FOCS, pages 543–553, 1999.

[39] S. Wolf and J. Wullschleger. Oblivious Transfer Is Symmetric. In EUROCRYPT 2006,
Springer-Verlag (LNCS 4004), pages 222–232, 2006.

[40] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

A Standard Cryptographic Primitives

In this section we define one-way functions and commitment schemes, and note the relation between
them.

A.1 One-way Functions

Definition A.1 A polynomial-time computable function f : {0, 1}n 7→ {0, 1}ℓ(n) is one-way if the
following hold for every family of polynomial-size circuits A = {An}n∈N:

Pr
y←f(Un)

[An(y) ∈ f−1(y)] = neg(n)

A.2 Commitment Schemes

Commitment schemes are the main tool we use in the transformation from semi-honest security to
defensible security.

Definition A.2 A commitment scheme (S,R) for (bit) strings of length k is an efficient two-party
protocol consisting of two stages. Throughout, both parties receive the security parameter 1n as
input.

41

Commit. The sender S has a private input σ ∈ {0, 1}k, which she wishes to commit
to the receiver R, and a sequence of coin tosses r. At the end of this stage, both parties
receive as common output a commitment z.

Reveal. Both parties receive as input a commitment z. S also receives the private
input σ and coin tosses r used in the commit stage. This stage is non-interactive: S
sends a single message to R, and R either outputs a bit-string (and accepts) or rejects.

In addition, the following properties hold:

(Perfect) Completeness. If both parties are honest, then for any string σ ∈ {0, 1}k
that S gets as private input, R accepts and outputs σ at the end of the reveal stage.

(Computational) Hiding. For any family of polynomial-size circuits R∗ = {R∗}n∈N
and any σ, σ′ ∈ {0, 1}k, it holds that the distribution ensembles viewR∗

n
⟨S(1n, σ), R∗n⟩

and viewR∗
n
⟨S(1n, σ′), R∗n⟩ are computationally indistinguishable.

(Computational) Binding. Any family of polynomial-size circuits S∗ = {S∗n}n∈N
succeeds in the following game (breaks the commitment) with only negligible probability
in n:

• S∗n interacts with an honest R in the commit stage on security parameter 1n, which
yields a commitment z.

• S∗n outputs two messages τ0, τ1 and distinct strings σ0, σ1 ∈ {0, 1}k, such that for
both b ∈ {0, 1} the receiver R on input (z, τb) accepts and outputs σb.

It is well known that commitment scheme can be based on one-way functions in a black-box way.

Theorem A.3 [[20, 33],[19]] There is a fully black-box construction of a commitment scheme from
a one-way function, for any polynomial string length k(n).

Remarks:

Non-uniform security: To be consistent with rest of the paper, we defined the security of one-
way functions and commitment schemes above with respect to non-uniform adversaries. While
[20, 33] and [19] are stated in the uniform setting, their uniform proofs of security immediately
yield the non-uniform variant stated in Theorem A.3.

Statistical security: We note that the commitment schemes achieved by [20, 33] and by [19], have
stronger guarantees than stated in Theorem A.3 (statistical binding by [20, 33], and statistical
hiding by [19]). For the sake of this paper, however, we only care about computational security.

B One-Way Functions from Semi-Honest Oblivious Transfer

In this appendix we show how one-way functions can be constructed in a black-box way from semi-
honest oblivious transfer. It is possible to achieve this result by using the reduction from one-way
functions to key agreement of [21] and then from key agreement to semi-honest oblivious transfer
of [12]. Since the following alternative proof is rather simple, we have chosen to give it here for the
sake of self containment.

42

Theorem B.1 There exists a fully black-box reduction from one-way functions to semi-honest
oblivious transfer.

Proof: We start by using semi-honest oblivious transfer to construct a semi-honest bit commitment
scheme, where the latter is a bit commitment scheme that only guarantees security when both
parties are acting semi-honestly in the commit stage. We stress that the sender is allowed to be
malicious in the decommit phase, and binding must still hold. We then finish the proof by using a
semi-honest bit commitment scheme to construct a one-way function.

Semi-honest oblivious transfer to semi-honest bit commitment. Let (S,R) be a semi-
honest oblivious transfer protocol. We construct the semi-honest commitment (S′, R′) as follows:

Inputs: S′ has a bit b to commit to; both parties also have input 1n.

Commit stage: R′ chooses uniformly at random n pairs of secrets (σ0
0, σ

1
0), . . . , (σ

0
n, σ

1
n), and S′

chooses a random index i ∈ {0, 1}. For each j ∈ [n], the two parties run the semi-honest
oblivious transfer protocol (S(σ0

j , σ
1
j), R(i)), where R′ plays the sender in the oblivious transfer

and S′ plays the receiver. S′ sends c = i⊕ b to R′ as its commitment to b.

Reveal stage: S′ sends i, b, and σi
1, . . . , σ

i
n to R′. R′ accepts the decommitment, outputting b, if

i⊕ b = c and the values of σi
1, . . . , σ

i
n sent by S′ are consistent with the values input by R′ to

the oblivious transfers.

The correctness of the above protocol is obvious. Furthermore, since the privacy of the oblivious
transfer implies that the value of i does not leak to S = R′ (even in a polynomial number of
executions), the hiding of the commitment scheme follows. Finally, the binding follows since in
order to violate it, the sender S′ needs to guess correctly the values of σ1−i

1 , . . . , σ1−i
n . By the

privacy of the semi-honest oblivious transfer, however, the sender cannot do the latter with more
than negligible success probability, as long as it behaved semi-honestly in the commit phase.

Semi-honest bit commitment to one-way functions. Given a semi-honest bit commitment
scheme (S′, R′), let b, ρS′ and ρR′ be the secret bit of S′ and the random coins of the parties
respectively. We define a function

f(1n, b, ρS′ , ρR′)
def
= trans(S′(1n, b, ρS′), R′(1n, ρR′)).

Note that f is not necessarily defined over all input lengths. Nevertheless, we show that f is
hard to invert over the infinite set of input lengths implied by the above definition. The existence
of a one-way function which is defined over all input lengths follows by using standard padding
techniques. (In particular, given a string of any length n, the first step is to take the longest prefix
of the string that can be interpreted as (b, ρS′ , ρR′). Then f is applied to 1n and this prefix.)

Letm(n) be the total length of the random coins of the parties executed with security parameter
1n and assume the existence of a probabilistic polynomial-time A for which the following probability
is non negligible

Pr
b←{0,1},x←{0,1}m(n)

[
A(1n, f(b, x)) ∈ f−1(f(b, x))

]
.

43

We first claim that the probability that A outputs a valid preimage containing a different b is
negligible. That is,

Pr
b←{0,1},x←{0,1}m(n)

[
(b′, XS)← A(1n, f(b, x)) | (b′, XS) ∈ f−1(f(b, x)) ∧ b′ ̸= b

]
= neg(n) .

Assume otherwise and consider a semi-honest sender that after the execution of the protocol runs
A on the transcript. With non-negligible probability, the sender obtains a pair (b′, ρ′S′ , ρ′R′) such
that b ̸= b′ and S′(b′, ρ′S′) is consistent with the protocol. This is a contradiction, since the above
sender can violate the binding of the commitment.

Consider now the semi-honest receiver that runs A to invert f after the interaction concludes,
obtaining (b′, XS). The receiver checks if (b

′, XS) is consistent with the transcript of the protocol. If
yes, it outputs b′; otherwise it outputs a random bit. Since b′ = b except with negligible probability
(as we have shown) it follows that the receiver has a non-negligible advantage in guessing b, thereby
violating the hiding of the semi-honest commitment.

44

