
Improved Fault Attack on FOX

Jianxiong You1, Ruilin Li1, Bing Sun1, and Chao Li1,2

1 Department of Mathematics and System Science, Science College, National
University of Defense Technology, Changsha, 410073, China

jianxiongyou@gmail.com
2State Key Laboratory of Information Security, Institute of Software, Chinese

Academy of Sciences, Beijing, 100190, China

Abstract. In this paper, we present an improved fault attack on the
block cipher FOX64. Our improved method can deduce any round sub-
key through 4.25 faults on average (4 in the best case), and retrieve the
whole round sub-keys through 45.45 faults on average (38 in the best
case). Furthermore, it could be applied to other series of FOX.

Keywords: FOX, block cipher, Lai-Massay scheme, fault attack

1 Introduction

FOX [7], also known as IDEA-NXT, is a family of block ciphers designed by
Junod and Vaudenay. The block size of FOX is either 64-bit or 128-bit, both
of which have a variable key length ranging from 8 to 256 bits. The high-level
structure of FOX is the so-called (extended) Lai-Massey scheme, and the round
function is SPS style with three layers of round key addition.

Differential Fault Analysis (DFA) [1] attack was introduced by Biham and
Shamir to DES-like secret key cryptosystems. Since then, it has been used to
attack many other block ciphers, especially on AES, see e.g. [3-6,8-12].

In FDTC 2006, Breveglieri, Koren, and Maistri introduced a DFA attack on
FOX [2]. Take FOX64 as an example, they showed that one round subkey could
be retrieved by 11.45 faults on average using the random byte fault model, and
the whole round sub-keys could be recovered by 183 faults on average. In this
paper, we improve the fault attack on FOX64. Using our technique, the 64-bit
subkey could be revealed by 4.25 faults on average, and the whole round sub-keys
can be deduced through 45.45 faults on average.

The outline of this paper is as follows: we begin with a brief description of
FOX in Section 2, and then present some properties related to the improved
fault attack in Section 3. The proposed fault attack is introduced in Section 4.
Section 5 demonstrates experimental results and Section 6 is the conclusion.

2 Description of FOX

We only introduce FOX64, for other series, see [7].

2 Jianxiong You et al.

2.1 Encryption of FOX64

FOX64 has a 64-bit block size and a 128-bit key length. It iterates 15-times the
round transformation lmor64, as illustrated in Fig.1, followed by a final round
transformation called lmid64.

f32

or

xl(32) xr(32)

yl(32) yr(32)

rk(64)

Fig. 1. Round transformation lmor64

xl(16) xr(16)

yl(16) yr(16)

Fig. 2. Orthomorphism or

The round transformation lmor64 transforms a 64-bit input x(64) and a
64-bit round key rk(64) into a 64-bit output y(64), which is defined as

y(64) = lmor64(xl(32)‖xr(32), rk(64))
= or(xl(32) ⊕ f32(xl(32) ⊕ xr(32), rk(64)))‖(xr(32) ⊕ f32(xl(32) ⊕ xr(32), rk(64))),

where f32 is the round function, and or is an orthomorphism.
The orthomorphism or is a function that takes a 32-bit input x(32) and

returns a 32-bit output y(32), illustrated in Fig.2, which is defined by a simple
Feistel transformation as

yl(32)||yr(32) = or(xl(16)||xr(16)) = xr(16)||(xl(16) ⊕ xr(16)).

The lmid64 function is a slightly modified version of lmor64, where the
transformation or is replaced by a identify transformation.

The encryption c(64) by FOX64 of a 64-bit plaintext p(64) is defined as

c(64) = lmid64(lmor64(· · · lmor64(p(64), rk0), · · · , rk14), rk15),

where rki, i = 0, 1, · · · , 15, are round sub-keys generated through the key sched-
ule from the master key.

2.2 Round Function f32

The round function f32 consists of three main parts: a substitution part, denoted
sigma4, a diffusion part, denoted mu4, and a round key addition part. Formally,

Improved Fault Attack on FOX 3

the round function f32 takes a 32-bit input x(32) , a 64-bit round key rk(64) =
rk0(32)||rk1(32) and returns

y(32) = f32(x(32), rk(64))
= sigma4(mu4(sigma4(x(32) ⊕ rk0(32))⊕ rk1(32)))⊕ rk0(32).

The fuction sigma4 takes a 32-bit input x(32) = x0(8)‖x1(8)‖x2(8)‖x3(8) and
returns a 32-bit output y(32), it consists of 4 parallel computations of a non-linear
mapping sbox, i.e.

y(32) = sigma4
(
x0(8)‖x1(8)‖x2(8)‖x3(8)

)

= sbox(x0(8))‖sbox(x1(8))‖sbox(x2(8))‖sbox(x3(8)).

The function mu4 takes a 32-bit input x0(8)‖x1(8)‖x2(8)‖x3(8) and returns a
32-bit output y0(8)‖y1(8)‖y2(8)‖y3(8). It is defined by

y0(8)

y1(8)

y2(8)

y3(8)

 =

1 1 1 θ
1 z θ 1
z θ 1 1
θ 1 z 1

×

x0(8)

x1(8)

x2(8)

x3(8)

 ,

where θ ∈GF(28) is the root of the irreducible polynomial m(x) = x8 + x7 +
x6 + x5 + x4 + x3 + 1 ∈ GF(2)[x] and z = θ−1 + 1.

2.3 Key Schedule

The key schedule procedure of FOX64 generates 16 round sub-keys rki, i =
0, 1, . . . , 15, from a master key K. Each round subkey is 64-bit, denoted as a
concatenation of two 32-bit strings, i.e. rki = rki,0‖rki,1.

The key schedules of FOX series are very complex compared with other
existing block ciphers, each subkey is related to the secret key and it is very
difficult to acquire information about secret key or other subkeys from some
certain subkeys. Due to this, in this paper, we assume that all subkeys are
independent with each other. One can refer [7] for the detail of the key schedule.

3 Some Properties of FOX64

3.1 Property of Two-round Lai-Massay Scheme In a Fault Model

Consider a two-round Lai-Massay scheme in a fault model as shown in Fig.3.
Let Li and Ri be the left and right halves of the round input or output, where
i = 0, 1, 2. Let Aj and Dj be the input and output of the bijective round function
f32, where j = 0, 1. Assume a fault is induced into A0, and denote the difference
of a 32-bit state X as ∆X, then we have the following proposition:

4 Jianxiong You et al.

f32

or

L0 R0

f32

L1 R1

L2 R2

D0

A0

A1

D1

Fig. 3. Two round Lai-Massay scheme

Proposition 1. Given a two-round Lai-Massay scheme as described above, as-
sume ∆L0 = 0, ∆R0 = 0, and a fault is induced into A0, i.e. ∆A0 6= 0. Let
∆L2 = (α0, α1, α2, α3), ∆R2 = (β0, β1, β2, β3) be known values, then both the
input difference and output difference of f32 in the second round, i.e. ∆A1 and
∆D1, could be calculated.

Proof. From ∆A0 6= 0, we have ∆D0 6= 0. Assume ∆D0 = (x0, x1, x2, x3), then
{

∆L1 = or(∆L0 ⊕∆D0) = or(x0, x1, x2, x3) = (x2, x3, x0 ⊕ x2, x1 ⊕ x3)
∆R1 = (x0, x1, x2, x3)

Notice that ∆A1 = ∆L1 ⊕∆R1 = ∆L2 ⊕∆R2, thus

∆A1 = (α0 ⊕ β0, α1 ⊕ β1, α2 ⊕ β2, α3 ⊕ β3)

are known. Meanwhile, from

(x2, x3, x0 ⊕ x2, x1 ⊕ x3)⊕ (x0, x1, x2, x3) = (α0, α1, α2, α3)⊕ (β0, β1, β2, β3),

we get

(x0, x1, x2, x3) = (α2 ⊕ β2, α3 ⊕ β3, α0 ⊕ α2 ⊕ β0 ⊕ β2, α1 ⊕ α3 ⊕ β1 ⊕ β3).

Thus

∆D1 = ∆R2 ⊕∆R1 = (β0, β1, β2, β3)⊕ (x0, x1, x2, x3)
= (α2 ⊕ β0 ⊕ β2, α3 ⊕ β1 ⊕ β3, α0 ⊕ α2 ⊕ β0, α1 ⊕ α3 ⊕ β1).

ut

Improved Fault Attack on FOX 5

Remark 1. Proposition 1 also holds in the situation, where the second round
transformation in the two-round Lai-Massay scheme contains the orthomorphism
or. This is due to the simplicity of or, leading to easy calculation of the input
from the output.

3.2 Property of the Substitution Layer sigma4

Given an 8 × 8 Sbox S(·), α, β ∈ {0, 1}8, define NS(α, β) = #{x ∈ {0, 1}8 :
S(x)⊕ S(x⊕ α) = β}. The differential property of an Sbox can be depicted by
all the possible triplets (α, β,NS(α, β)). The differential property of the Sbox
employed in the substitution layer of FOX64 is summarized in table 1.

Table 1. Differential property of the Sbox

NS(α, β) Frequency NS(α, β) Frequency

0 42871 10 19
2 15377 12 6
4 5758 16 70
6 680 256 1
8 754 – –

Remark 2. Assume S(·) is the Sbox of FOX64, if NS(α, β) 6= 0, then the
expected value of NS(α, β) = 65536/(65536 − 42871) ≈ 2.89. This indicates
that on average, one pair (α, β) could provide about 2.89 inputs x such that
S(x)⊕ S(x⊕ α) = β.

3.3 Property of the Diffusion Layer mu4

The differential branch number of mu4 is 5, which implies that any input with
one non-zero byte will lead to some output with four non-zero bytes. Moreover,
the inversion of mu4, denoted as mu4−1, can be expressed as follow:

a c d e
a d e c
a e c d
b a a a

 ,

where a = θ6 + θ5 + θ4 + θ3 + θ2 + θ, b = θ7 + θ6 + θ + 1, c = θ7 + θ6 + θ5 + 1,
d = θ7 + θ5 + θ3 + θ2 + 1 and e = θ7 + θ5 + θ4.

4 Improved Fault Attack On FOX64

4.1 Notations

– Assume all the round sub-keys, generated from the secret master key K
through the key schedule, are rki = rki,0‖rki,1, i = 0, 1, 2, . . . , 15.

6 Jianxiong You et al.

– Denote a plaintext by p = pl‖pr, and the corresponding ciphertext by
c = EK(p) = cl‖cr. This ciphertext is called the right ciphertext and any
indeterminate states corresponding to it are called the right indeterminate
states.

– Consider the last round of FOX64: Let A16 denote the input of the round
function f32; I1 and B16 denote the input and output of the first substitution
layer, respectively, i.e. I1 = A16 ⊕ rk15,0, B16 = sigma4(I1); C16 denote the
output of the diffusion layer, i.e. C16 = mu4(B16); I2 and D16 denote the
input and output of the second substitution layer, i.e. I2 = C16 ⊕ rk15,1,
D16 = sigma4(I2).

– Given a 32-bit right state X, X∗ denotes the faulty counterpart , and ∆X =
X ⊕X∗ denotes their difference.

4.2 Previous Fault Attack

As discussed in Section 2.3, due to the complexity of the key schedule, any fault
attack on FOX64 aims to deduce all the round sub-keys.

Take the last round of FOX64 as an example, see Fig.4, both the previous
fault attack and our improved fault attack (as described later) try to retrieve
the 64-bit subkey by recovering the right intermediate state I1 and I2. Once I1

and I2 are known, one can do as follows:

– According to I1 = A16 ⊕ rk15,0 = cl ⊕ cr ⊕ rk15,0, we thus have rk15,0 =
cl ⊕ cr ⊕ I1.

– According to I2 = C16 ⊕ rk15,1 = mu4(B16) ⊕ rk15,1 = mu4(sigma4(I1)) ⊕
rk15,1, we thus have rk15,1 = I2 ⊕ mu4(sigma4(I1)).

In order to recover the right state I1 and I2, previous fault attack adopts
the random byte fault model and divides the attack procedure into the following
two phases.

– In the first phase, the adversary injects faults into the calculation of round
function, and the location is between the input of the round function and
input of the diffusion layer. By using both the correct ciphertext and faulty
ciphertexts, he applies differential cryptanalysis on the second substitution
layer to recover I2. The number of faults in this phase is about 2 ∼ 8 and
2.94 on average.

– In the second phase, the adversary also injects faults into the calculation
of the round function and the location this time is only before the first
substitution layer. He then applies differential cryptanalysis to the first sub-
stitution layer to recover I1 based on the correct ciphertext and those faulty
ciphertexts. The number of faults in this phase is about 8 ∼ 28 and 8.51 on
average.

In total, about 8 ∼ 31 faults (11.45 on average) are needed to recover the right
state I1 and I2.

Improved Fault Attack on FOX 7

4.3 General Idea of the Improved Fault Attack

We adopt the same attack model as in [2] and improve the efficiency of the
previous fault attacks in the following two ways:

– In order to retrieve the 64-bit subkey for some certain round, say the i-th
round, previous fault attack injects sufficient faults (about 8 ∼ 31) to the
same i-th round, while ours is to induce faults at both the i-th and (i−1)-th
round to deduce the subkey, thus it decreases the number of needed faults.

– In our improved attack, the faulty ciphertexts that are obtained when faults
are injected in the i-th round are used twice (one for deducing the (i + 1)-
th round subkey, and the other for deducing the i-th roun subkey), thus it
also decreases the number of needed faults (previous fault attack use those
ciphertexts only once for deducing the i-th round subkey).

We briefly summarize the improved fault attack below:

1. Choose an arbitrary plaintext, encrypt it with the secret key and obtain the
ciphertext. For the same plaintext, induce several random byte faults into the
input of the round function in each round, obtain these faulty ciphertexts.

2. Deduce the last round subkey through the right ciphertext and the faulty
ciphertexts that are obtained when faults are induced in the last round and
penultimate round.
(a) Consider the right ciphertext and faulty ciphertexts that are obtained

when faults are induced into the last round, recover the right input state
before the second substitution layer sigma4 in the last round.

(b) Consider the right ciphertext and faulty ciphertexts that are obtained
when faults are induced into the penultimate round, recover the right
input state before the first substitution layer sigma4 in the last round.

(c) Use the right intermediate states obtained from (a)(b) and the correct
ciphertext, directly deduce the 64-bit subkey in the last round.

3. Recover sub-keys from the 2-dn round to the 15-th round in reverse order
by using the same technique as in Step 2.

4. Recover the first round sub-key as described in Section 4.2.

4.4 Attack Procedure

Step 1 Data gathering. Choose an arbitrary plaintext p = pl‖pr, and obtain
the right ciphertext c = cl‖cr under the secret user key K. For the same plaintext
p, induce several random byte faults into the input of the round function f32 in
each round, and obtain these faulty ciphertexts.

Step 2 Recover the last round subkey rk15 = rk15,0‖rk15,1.

8 Jianxiong You et al.

rk15,0

rk15,1

rk15,0

L15 R15

L16 R16

sigma4

mu4

sigma4

A16

B16

C16

D16

zero difference non-zero difference

I2

I1

Fig. 4. Attack last round in step 2.1

rk14,0

rk14,1

rk14,0

L14 R14

sigma4

mu4

sigma4

rk15,0

rk15,1

rk15,0

L15 R15

L16 R16

sigma4

mu4

sigma4

A16

B16

C16

D16

A15

B15

C15

D15

or

zero difference non-zero difference

I2

I1

Fig. 5. Attack last round in step 2.2

Step 2.1 Recover the right input state I2 before the second substitution
layer in the last round. This is finished by considering the right ciphertext
and faulty ciphertexts c∗ = c∗l ‖c∗r , which are obtained when faults are induced
into the last round. The attack procedure is depicted in Fig.4.

On the basis of assumption of one random byte fault, ∆A16 has 4×255 = 1020
possibilities, so is ∆B16, thus ∆C16 = mu4(∆B16) also has only 1020 possibilities.

Improved Fault Attack on FOX 9

The output difference after the second substitution layer can be calculated by
∆D16 = ∆L16 ⊕∆L15 = cl ⊕ c∗l . For all possible values of (∆C16,∆D16), when
apply differential cryptanalysis, this would lead to many possibilities of I2 =
C16 ⊕ rk15,1. We can further decrease the number of I2 candidates by repeating
the above method through other collected faulty ciphertexts, until the candidate
set of I2 has only one element.

Step 2.2 Recover the right input state I1 before the first substitution
layer in the last round. This is finished by considering the right input state
I2 deduced in step 2.1 and the faulty ciphertexts c∗ = c∗l ‖c∗r , which are ob-
tained when faults are induced in the penultimate round. The attack procedure
is depicted in Fig.5.

Since the round-key addition layer doesn’t influence the difference, according
to proposition 1, both ∆A16 and ∆D16 could be calculated by ∆L16 = ∆cl

and ∆R16 = ∆cr. Moreover, D16 is obtained through D16 = sigma4(I2), thus
D∗

16 = D16 ⊕∆D16 is known, and ∆C16 can be obtained as

∆C16 = C16 ⊕ C∗16 = sigma4−1(D16)⊕ rk15,1 ⊕ sigma4−1(D∗
16)⊕ rk15,1

= sigma4−1(D16)⊕ sigma4−1(D∗
16).

According to mu4−1, ∆B16 can be calculated by ∆B16 = mu4−1(∆C16). After
getting sufficient pairs (∆A16,∆B16) from the correct and faulty ciphertexts, we
can apply the differential cryptanalysis on the first substitution layer to uniquely
deduce the right input state I1 = A16 ⊕ rk15,0 before this substitution layer.

Step 2.3 Recover the last round subkey rk15,0 and rk15,1. This is finished
by directly calculate these sub-keys from the right intermediate state I1, I2 as
described in Section 4.2.

Step 3 Recover round sub-keys from the 2-nd round to the 15-th
round in reverse order. Since the last round sub-key is obtained, we can peel
off the last round to obtain the output of the penultimate round. Then the same
technique as described in Step 2 could be used to recover other round sub-keys.
More precisely, we can do as follows:

For i = 2, 3, . . . , 15, consider the right ciphertext and faulty ciphertexts when
faults are induced in the (16−i)-th and (17−i)-th round, peel off the last (i−1)-
th round(s) according to the deduced sub-key(s), and use these outputs of the
(17 − i)-th round to recover the (17 − i)-th round subkey. This can be finished
by adopting the same technique as in Step 2.

Step 4 Recover the first round sub-key. According to the recovered sub-
keys from the 2-nd round to the 16-th round, obtain the outputs of the first
round for the right ciphertext and faulty ciphertexts when faults are induced
in the first round. Retrieve the first round subkey using the same technique as
described in Section 4.2.

10 Jianxiong You et al.

4.5 Complexity Analysis

To evaluate how many faults are needed to recover the whole round sub-keys, we
firstly concentrate on the one round situation. It is easy to show that, to recover
one round sub-key, the main complexity is dominated by step 2.1 and step 2.2.

In step 2.1, ∆C16 has 1020 possibilities, so to uniquely deduce all bytes of I2

(thus D16), the number of faulty ciphertexts, denoted by N , must be satisfied

2564 ×
(

1020
2554

)N

≤ 1.

Thus in general, two faults are needed to uniquely retrieve I2.
According to the differential property of the Sbox of FOX64, if NS(α, β) 6= 0,

this difference pair (α, β) will lead to about 2.89 ≈ 3 possible inputs to the Sbox.
Thus in step 2.2, when the number of faulty ciphertexts is 2, we have one passible
value left for I1 with probability

Prob =

(
255
2

)
×

(
255− 2

2

)

(
255
2

)2

4

≈ 93.88%.

The above analysis indicates that, in most cases, about 4 faults are enough
to uniquely deduce the round sub-key (excluding the first round). Note that, to
recover the first round subkey, we have to use the same technique as in [2], i.e.
we must induce about 8 ∼ 31 faults. Thus, to retrieve the whole round sub-keys,
we need 2× 16 + 6 = 38 faults in the best case.

5 Experimental Results

Our proposed improved fault attack against the last round of FOX64 has been
successfully implemented through computer simulation, and the fault injection
is simulated by computer software. We implement the attack procedure in C++
code and execute it on a PC with Intel Pentium 1.80 GHz processor. We repeat
the attack 10000 times and the results are shown in Fig.6.

From Fig.6, it is observed that step 2.1 requires from 2 to 5 faults (2.11
on average), while step 2.2 requires from 2 to 7 faults (2.14 on average). The
complete attack requires from 4 to 9 faults and the average value is 4.25. A
comparison between our proposed and the previous fault attack [2] against the
last round of FOX64 is shown in Table 2.

Table 2 shows that to derive the last round subkey, our improved fault attack
requires less faulty ciphertexts, an average of about 4.25 faults compared to 11.45
faults required in the previous fault attack [2]. Thus to recover the whole round
sub-keys, our fault attack need about 4.25 × 8 + 11.45 = 45.45 (38 in the best
case) faults on average, while about 11.45 × 16 = 183.20 (128 in the best case)
faults on average are needed using the method in [2]. This is shown in Table 3.

Improved Fault Attack on FOX 11

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of faults in step2.1

fr
e
q
u
e
n
c
y

2 3 4 5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of faults in step2.2

fr
e
q
u
e
n
c
y

4 5 6 7 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of faults in step 2

fr
e
q
u
e
n
c
y

Fig. 6. Simulation results of the improved fault attack against the last round of FOX64

Table 2. Comparison with fault attacks against the last round of FOX64

Fault Location Min Avg Max Attack

Last round 8 11.45 31 [2]

Last and penultimate round 4 4.25 9 Section 4

Table 3. Comparison with fault attacks against the whole rounds of FOX64

Fault Location Best Case Average Attack

Each round 128 183.20 [2]

Each round 38 45.45 Section 4

6 Conclusion

We propose an improved fault attack on FOX64. In the improved attack, one
round subkey can be deduced with 4.25 faults on average, and the whole cipher
can be broken with 45.45 faults on average. The technique of the proposed attack
in this paper can also be easily extended to other series of FOX.

12 Jianxiong You et al.

Acknowledgments

The work in this paper is supported by the Natural Science Foundation of China
(No:60803156) and the open research fund of State Key Laboratory of Informa-
tion Security(No: 01-07).

References

1. Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. CRYPTO 97, LNCS 1294, pp. 513-525, Springer-Verlag, 1997.

2. L. Breveglieri, I. Koren, and P. Maistri. A Fault Attack Against the FOX Cipher
Family. FDTC 2006, LNCS 4236, pp. 98-105, Springer-Verlag 2006.

3. Johannes Blömer and Jean-Pierre Seifert. Fault Based Cryptanalysis of the Ad-
vanced Encryption Standard (AES). FC 2003, LNCS 2742, pp. 162-181, Springer-
Verlag, 2003.

4. Chien-Ning Chen and Sung-Ming Yen. Differential Fault Analysis on AES key
Schedule and Some Countermeasures. ACISP 2003, LNCS 2727, pp. 118-129,
Springer-Verlag, 2003.

5. Pierre Dusart, Gilles Letourneux and Olivier Vivolo. Differential Fault Analysis on
A.E.S. ACNS 2003, LNCS 2846, pp. 293-306, Springer-Verlag, 2003.

6. Christophe Giraud. DFA on AES. AES 2004, LNCS 3373, pp. 27-41, Springer-
Verlag, 2005.

7. P Junod, S Vaudenay. FOX: A New Family of Block Ciphers . SAC 2004, LNCS
3357, pp. 114-129, 2005.

8. Chong Hee Kim and Jean-Jacques Quisquater. New Differential Fault Analysis on
AES Key Schedule: Two Faults Are Enough. CARDIS 2008, LNCS 5189, pp. 48-60,
Springer-Verlag, 2008.

9. Debdeep Mukhopadhyay. An Improved Fault Based Attack of the Advanced En-
cryption Standard. Africacrypt 2009, LNCS 5580, pp. 421-434, 2009.

10. Amir Moradi, Mohammad T. Manzuri Shalmani, and Mahmoud Salmasizadeh.
A Generalized Method of Differential Fault Attack Against AES Cryptosystem.
CHES 2006, LNCS 4249, pp. 91-100, Springer-Verlag, 2006.

11. Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD. CHES 2003,
LNCS 2779, pp. 77-88, Springer-Verlag, 2003.

12. Junko Takahashi, Toshinori Fukunaga, Kimihiro Yamakoshi. DFA Mechanism on
the AES Key Schedule. FDTC 2007, pp. 62-74, IEEE Computer Society, 2007.

