
Compact Implementations of BLAKE-32 and
BLAKE-64 on FPGA

Jean-Luc Beuchat, Eiji Okamoto, and Teppei Yamazaki

Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

Abstract. We propose compact architectures of the SHA-3 candidates
BLAKE-32 and BLAKE-64 for several FPGA families. We harness the
intrinsic parallelism of the algorithm to interleave the computation of
four instances of the Gi function. This approach allows us to design an
Arithmetic and Logic Unit with four pipeline stages and to achieve high
clock frequencies. With careful scheduling, we completely avoid pipeline
bubbles. For the time being, the designs presented in this work are the
most compact ones for any of the SHA-3 candidates. We show for in-
stance that a fully autonomous implementation of BLAKE-32 on a Xilinx
Virtex-5 device requires 56 slices and two memory blocks.

Keywords: SHA-3, BLAKE, fully autonomous implementation, compact im-
plementation, FPGA.

1 Introduction

In this article we present compact architectures of the SHA-3 candidates
BLAKE-32 and BLAKE-64, proposed by Aumasson et al. [2], on Field-Programmable
Gate Arrays (FPGAs). Such implementations are extremely valuable for con-
strained environments such as wireless sensor networks or Radio Frequency
Identification (RFID) technology, where some security protocols mainly rely on
cryptographic hash functions (see for example [17]).

After a short introduction to the BLAKE family of hash functions (Sec-
tion 2), we explain how to implement the required arithmetic operations on
several FPGAs (Section 3). Then, we harness the intrinsic parallelism to inter-
leave several computations, and design two pipelined Arithmetic and Logic Units
(ALUs) (Section 4). We have prototyped our architecture on several Altera and
Xilinx FPGAs and discuss our results in Section 5. We briefly discuss parallel
implementations of BLAKE in Appendix A.

2 Algorithm Specification

The BLAKE family combines three previously studied components, chosen by
Aumasson et al. for their complementarity [2]: the iteration mode HAIFA, the
internal structure of the hash function LAKE, and a modified version of Bern-
stein’s stream cipher ChaCha as compression function. BLAKE is a family of



2 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

four hash functions, namely BLAKE-28, BLAKE-32, BLAKE-48, and BLAKE-
64 (Table 1). In the following, we focus on BLAKE-32 and refer the reader
to [2] for more details about BLAKE-28, BLAKE-48, and BLAKE-64. The main
differences lie in the length of words and in some constants involved in the algo-
rithm. Once one has a coprocessor for BLAKE-32, writing a VHDL description
of another member of the BLAKE family is therefore straightforward and we
will only focus on BLAKE-32 in the following.

Table 1. Properties of the BLAKE family of hash functions (reprinted from [2]). All
sizes are given in bits).

Algorithm Word Message Block Digest Salt

BLAKE-28 32 < 264 512 224 128
BLAKE-32 32 < 264 512 256 128
BLAKE-48 64 < 2128 1024 384 256
BLAKE-64 64 < 2128 1024 512 256

BLAKE-32 involves only two arithmetic operations: the addition modulo
232 of two 32-bit unsigned integers (denoted by �) and the bitwise exclusive
OR of two 32-bit words (denoted by ⊕). The latter is sometimes followed by a
rotation of k bits to the right (denoted by ≫ k). The compression function of
BLAKE-32 produces a new chain value h′ = h′0, . . . , h

′
7 from a message block

m = m0, . . . ,m15, a chain value h = h0, . . . , h7, a salt s = s0, . . . , s3, a counter
t = t0, t1, and 16 constants ci given by:

c0 = 243F6A88, c4 = A4093822, c8 = 452821E6, c12 = C0AC29B7,

c1 = 85A308D3, c5 = 299F31D0, c9 = 38D01377, c13 = C97C50DD,

c2 = 13198A2E, c6 = 082EFA98, c10 = BE5466CF, c14 = 3F84D5B5,

c3 = 03707344, c7 = EC4E6C89, c11 = 34E90C6C, c15 = B5470917.

This process consists of three steps. First, a 16-word internal state v = v0, . . . ,
v15 is initialized as follows:

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←


h0 h1 h2 h3
h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7

 .

Then, a series of ten rounds is performed. Each of these rounds consists of
a transformation of the internal state v based on the Gi function described by
Algorithm 1, where σr denotes a permutation of {0, . . . , 15} parametrized by the
round index r (see Table 2). A column step updates the four columns of matrix
v as follows:

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), and G3(v3, v7, v11, v15).



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 3

Algorithm 1 The Gi function of BLAKE-32.

Input: A function index i and four 32-bit integers a, b, c, and d.
Output: Gi(a, b, c, d).
1. a← a� b;
2. a← a� (mσr(2i) ⊕ cσr(2i+1));
3. d← (d⊕ a)≫ 16;
4. c← c� d;
5. b← (b⊕ c)≫ 12;
6. a← a� b;
7. a← a� (mσr(2i+1) ⊕ cσr(2i));
8. d← (d⊕ a)≫ 8;
9. c← c� d;

10. b← (b⊕ c)≫ 7;

Note that each call to Gi updates a distinct column of matrix v. Since we focus
on compact implementations of BLAKE-32 in this work, we interleave the com-
putation of G0, G1, G2, and G3. This approach allows us to design an ALU with
four pipeline stages and to achieve high clock frequencies. Then, a diagonal step
updates the four diagonals of v:

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), and G7(v3, v4, v9, v14).

Here again, each call to Gi modifies a distinct diagonal of the matrix, allowing
us to interleave the computation of G4, G5, G6, and G7.

Table 2. Permutations of {0, . . . , 15} used by the BLAKE functions (reprinted
from [2]).

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

At the end of the tenth round, a new chain value h′ = h′0, . . . , h
′
7 is computed

from the internal state v and the previous chain value h (finalization step):

h′0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8, h′3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11, h′6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14,

h′1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9, h′4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12, h′7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15.

h′2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10, h′5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13,



4 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

In order to guarantee that the length ` < 264 of a message is a multiple of
512, Aumasson et al. suggest the following approach [2]: first, they append a
bit 1 followed by a sufficient number of 0 bits such that the length is congruent
to 447 modulo 512. Then, they append a bit 1 followed by the 64-bit binary
representation of `. The hash can now be computed iteratively (Algorithm 2):
the padded message is divided into 16-word blocks m(0), . . . ,m(N−1) and the
chain value h(0) is set to the same initial value as SHA-2 (IV0 = 6A09E667,
IV1 = BB67AE85, IV2 = 3C6EF372, IV3 = A54FF53A, IV4 = 510E527F, IV5 =
9B05688C, IV6 = 1F83D9AB, and IV7 = 5BE0CD19). The counter t(i) denotes the
number of message bits in m(0), . . . ,m(i) (i.e. excluding padding bits). Note that,
if the last block contains only padding bits, then t(N−1) is set to zero. In the
following, we assume that our coprocessor is provided with padded messages. A
hardware wrapper interface for the SHA-3 candidates comprising communication
and padding is described in [4].

Algorithm 2 Iterated hash.

Input: A padded message split into N 16-word blocks and a salt s.
Output: A 256-bit digest.

1.
(
h
(0)
0 , . . . , h

(0)
7

)
← (IV0, . . . , IV7);

2. for i← 0 to N − 1 do

3. h(i+1) ← compress
(
h(i),m(i), s, t(i)

)
;

4. end for
5. return h(N);

3 FPGA-Specific Issues and their Implications on the
Design of BLAKE

Modern FPGAs are mainly designed for digital signal processing applications
involving rather small operands (16 to 64 bits). Several FPGA manufacturers
(Altera, Xilinx, etc.) chose to include dedicated carry logic enabling the imple-
mentation of fast Carry-Ripple Adders (CRA) for such operand sizes.

Let us study the architecture of a Xilinx Spartan-3 device [16]. Figure 1
describes the simplified architecture of a slice, which is the main logic resource for
implementing synchronous and combinatorial circuits (one finds the same kind of
slices in several other Xilinx FPGAs: Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Virtex-4, etc.). Each slice embeds two 4-input function generators (G-LUT and
F-LUT), two storage elements (flip-flops FFY and FFX), carry logic (CYSELG,
CYMUXG, CYSELF, and CYMUXF), arithmetic gates (GAND, FAND, XORG,
and XORF), and wide-function multiplexers (F5MUX, FXMUX, and FiMUX).
Each function generator is implemented by means of a programmable Look-Up
Table (LUT).

A Full-Adder (FA) cell computes the sum of a carry-in bit carryj (coming
from a lower bit position) and two bits of same magnitude xj and yj . The



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 5

G1 CYOG

4

1

A[4:1] D
G-LUT

D Q
FFY

COUT

YBMUX

CIN

0

G2

GAND

FiMUX

GYMUX

CYMUXG

table

Flip-flop

FXINA

FXINB

BY

YQ

1

Y

1

Fi

10

YB

1

G[4:1]

0

C
Y

M
U

X
F

CYSELF

CYSELG

Look-up

Look-up

XORG

0

F2F1

FAND

CYOF

4

1

A[4:1] D
F-LUT

D Q
FFX

XORF

XBMUX

F5MUX

FXMUXtable

Flip-flop

BX

XQ

X

F5

XB

F[4:1]

Fig. 1. Simplified diagram of a slice of a Spartan-3 FPGA.

result is encoded by a sum bit sumj and a carry-out bit carryj+1 such that
2carryj+1 + sumj = xj + yj + carryj . Let zj = xj ⊕ yj . Then, we have:

sumj = zj ⊕ carryj , (1)

carryj+1 =

{
xj if zj = 0 (i.e. xj = yj),

carryj otherwise.
(2)

Assume that the F-LUT function generator outputs zj . Then, the XORF gate
computes the sum bit sumj . The generation of the carry-out bit carryj+1 ac-
cording to Equation (2) involves three multiplexers (CYOF, CYSELF, and CY-
MUXF). Thanks to the G-LUT function generator, one can implement a second
FA cell within the same slice, which thus embeds a 2-bit CRA (Figure 2a). The
gates GAND and FAND allows one to build multipliers: one can generate two
partial products and compute their sum with a single stage of LUTs.

Since we focus on compact coprocessors for the BLAKE family in this work,
we perform a single arithmetic operation at each clock cycle (� or ⊕). A first
solution consists in implementing a modular adder and an array of XOR gates,
and selecting the operation by means of a multiplexer commanded by a control
bit. However, several Xilinx devices (Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Virtex-4, and Spartan-3) offer a much more elegant and compact solution (also



6 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

see Appendix B): we can enable or disable carry propagations using a control
bit ctrl as input to the gates GAND and FAND (Figure 2b). Thus, Equation (2)
becomes:

carryj+1 =

{
xj · ctrl if zj = 0 (i.e. xj = yj),

carryj otherwise.
(3)

Assuming that carry0 = 0, we easily check that our operator now behaves as a
CRA when ctrl = 1 and computes the bitwise exclusive OR of its inputs when
ctrl = 0 (since ctrl = carryj = 0, the output carry carryj+1 is also equal to zero
and carry propagations are disabled).

XORF

CYMUXF

carryj+1

yj+1

xj+1

sumj+1

GLUT

xj+3

sumj+2

ctrl

1

sumj+3

LUT6 2

carryj

LUT6 2

yj+1

yj

xj yj+3

xj+1

ctrl

carryj+2

10

1

LUT6 2

F-LUT 10

sumj+1

yj+2

xj+2

LUT6 2

yj

sumj

ctrl

xj

1

ctrl

xj · ctrl

xj+1 · ctrl

carryj

yj

xj
ctrl

F-LUT

XORF

1

(a) Addition of two operands on a Spartan-3 device

FAND

CYMUXF

carryj+1

carryj+2

0
yj+1

ctrl

1

xj+1

GLUT

Spartan-3 slice

XORG

GAND

CYMUXG

sumj

CARRY4

zj

zj+1

carryj+4
Virtex-5 slice

zj

sumj+1

zj+1

CYMUXG

zj+2

zj+3

XORG

Spartan-3 slice

(c) Addition or bitwise exclusive OR of two operands on a Virtex-5 device
operands on a Spartan-3 device

sumj

xj+3 · ctrl

carryj+3

(b) Addition or bitwise exclusive OR of two

xj+2 · ctrl

carryj+2

xj+1 · ctrl

carryj+1

1

xj · ctrl

0

1

0 1

0

0 1

1

carryj

0

zj

zj+1

1

1

0

1

0

1

0

0

Fig. 2. Addition and bitwise exclusive OR on Xilinx FPGAs.



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 7

The latest FPGA families introduced by Xilinx (Virtex-5, Virtex-6, and
Spartan-6) are based on 6-input LUTs, each of them having six independent
inputs and two independent outputs. It is for instance possible to implement
any two 5-input logic functions with shared inputs thanks to this building block
(LUT6 2 primitive). Each slice embeds four LUTs and a carry chain that consists
of a series of four multiplexers and four XOR gates (CARRY4 primitive). Fig-
ure 2c describes how to implement an operator returning either the sum or the
bitwise exclusive OR of its two inputs according to a control bit. The carry-out
bit carryj+1 is determined according to Equation (3), the only difference being
that the product xj · ctrl is now computed within a LUT6 2 primitive. The main
drawback of this approach is that design tools are unable to generate such an
architecture from a high-level VHDL description of the operator. It is necessary
to use specific libraries provided by the FPGA manufacturer and to modify the
VHDL code for each device.

Additionally, modern FPGAs feature embedded memory blocks to store rel-
atively large amounts of data. They support several modes (e.g. single port, true
dual-port, ROM, etc.) and port-width configurations. We refer the reader to the
technical literature provided by Altera or Xilinx for further details. In this work,
we will take advantage of such memory blocks to implement our register file and
store the micro-code of our coprocessors.

4 Two Compact Coprocessors for the BLAKE Family

Our compact coprocessor for BLAKE-32 is based on the observation that the
four calls to Gi in a column step or a diagonal step can be computed in parallel.
In order to achieve a high clock frequency, we suggest to design an ALU with
four pipeline stages and to interleave the computation of four Gi functions. A
closer look at Algorithm 1 indicates that each instruction involves the result of
the previous one. Thus, our ALU includes a feedback mechanism to bypass the
register file of the coprocessor.

4.1 Arithmetic and Logic Unit

Figure 3a describes our first ALU designed for FPGAs based on 4-input LUTs.
It consists of four stages performing the following tasks:

À Operand selection. The first operand comes from the register file imple-
mented by means of dual-ported memory. Routing a signal from a memory
block to a slice is usually expensive in terms of wire delay and it is rec-
ommended to store this signal in a register before performing arithmetic
operations. Since a flip-flop is always associated with a 4-input LUT (see
for instance Figure 1), we can perform some simple pre-processing without
increasing the number of slices of the ALU: a control bit ctrl0 selects ei-
ther a word read from port A or the bitwise exclusive OR of two words
read from ports A and B. This allows us to compute mσr(2i) ⊕ cσr(2i+1) and
mσr(2i+1) ⊕ cσr(2i) for free (Algorithm 1, lines 2 and 7).



8 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

As explained above, the second input is almost always the result of a previous
operation. However, we have to disable this feedback mechanism during the
initialization step: the computation of v8 ← s0⊕ c0 involves for instance two
words stored in the register file. An array of AND gates controlled by ctrl1
allows us to force the second operand to zero in such cases. The critical path
is limited to a single LUT and a flip-flop.

Á Addition modulo 232 or bitwise exclusive OR. This stage consists of
the arithmetic operator described in the previous section.

Â Rotation of 0, 7, 8, or 12 bits to the right. The two multiplexers
commanded by ctrl3 are implemented by means of LUTs. On Xilinx FPGAs,
the output of this stage is then selected thanks to a F5MUX primitive.

Ã Rotation of 0 or 16 bits to the right. The final stage allows us to perform
the rotation of 16 bits towards less significant bits requested to update d in
Algorithm 1 (line 3). Here again, the critical path is limited to a single LUT
and a flip-flop.

Optional

1 0

0 1ctrl0

ctrl5 0 1

ctrl2

ctrl4

ctrl3

ctrl5

ctrl1

pipeline stage
Optional

Port A Port B

≫ 1

0 1

≫ 5 ≫ 9

0 1

0 1

Â

Á pipeline stage

Port A Port B

or

≫ 7

0 1

≫ 12≫ 8

0 1

≫ 16

0 1ctrl5

ctrl4

ctrl30 1

ctrl2

0 1

ctrl1
ctrl0À

Á

Â

Ã

(a) ALU for FPGAs based on 4-input LUTs (b) ALU for FPGAs based on 6-input LUTs

or

≫ 7

À

≫ 7

Fig. 3. Two arithmetic and logic units for BLAKE-32. (N.B. All control bits ctrlj
belong to {0, 1}.)

Recall that recent FPGAs embed 6-input function generators. We propose
here a simple rewriting of the Gi function that allows us to take advantage of



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 9

these new building blocks. It suffices to notice that rotation operations always
follow a bitwise exclusive OR and can thus be performed in two steps. We have
for instance:

(d⊕ a)≫ 16 = ((d≫ 7)⊕ (a≫ 7))≫ 9.

Algorithm 3 describes an alternative version of the Gi function based on this
observation. We obtain a new ALU with three stages (Figure 3b):

À Operand selection. We slightly modified the selection of the first operand
in order to include the rotation of 7 to the right: the computation of the first
operand involves now an array of 5-input LUTs.

Á Addition modulo 232 or bitwise exclusive OR. This stage consists
again of the arithmetic operator described in the previous section.

Â Rotation of 0, 1, 5, or 9 bits to the right. This stage simply consists of
a 4-input multiplexer implemented by means of an array of 6-input LUTs.

We have two options for the fourth pipeline stage (Figure 3b). The first one
consists in storing the inputs in registers in order to reduce the critical path
between the register file and the ALU (note that the embedded memory blocks
available in several FPGA families include optional output registers). The second
one is to introduce pipeline registers to shorten the worst-case carry path of the
modulo 232 adder. We strongly recommend to consider both solutions and to
select the most appropriate one according to place-and-route results. According
to our place-and-route results on Virtex-5 FPGAs, we obtain the best throughput
for BLAKE-32 with the first option, whereas the second one seems to be more
appropriate for BLAKE-64.

Algorithm 3 The Gi function of BLAKE-32 revisited.

Input: A function index i and four 32-bit integers a, b, c, and d.
Output: Gi(a, b, c, d).
1. a← a� b;
2. a← a� (mσr(2i) ⊕ cσr(2i+1));
3. d← ((d≫ 7)⊕ (a≫ 7))≫ 9;
4. c← c� d;
5. b← ((b≫ 7)⊕ (c≫ 7))≫ 5;
6. a← a� b;
7. a← a� (mσr(2i+1) ⊕ cσr(2i));
8. d← ((d≫ 7)⊕ (a≫ 7))≫ 1;
9. c← c� d;

10. b← (b≫ 7)⊕ (c≫ 7);

4.2 Scheduling

We have to be careful in order to avoid pipeline bubbles between a column
step and a diagonal step. Figure 4 describes the state of the ALU depicted in



10 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

Figure 3a at the end of a column step. It suffices to process the four calls to Gi
of the diagonal step in the following order: G7, G4, G5, and G6. We check for
instance that the ALU outputs the new value of v4 (last instruction of G0) at
time τ+4. If we load v3 from the register file, we can start the computation of G7

at time τ + 5. We easily check that this scheduling also avoids pipeline bubbles
between a diagonal step and a column step. Since each call to Gi involves ten
instructions, we need 80 clock cycles to perform a round of BLAKE-32.

v6 and v10

v6← v6 ⊕ v10
v6← v6≫ 7

v6← v6

v7← v7≫ 7

v7← v7

v7← v7 ⊕ v11

v7 and v11

v0← v0� v5

v0 and v5v3 and v4

v3← v3� v4

v3← v3

v1 and v6

v11← v11

v11← v11

v11← v11� v15

v10← v10

v10← v10v9← v9

v4 and v8

v4← v4 ⊕ v8
v4← v4≫ 7

v4← v4

À
Á
Â
Ã

G0 G1 G2 G3 G7 G4 G5

G0 G1 G2 G3

τ τ + 1 τ + 2 τ + 3 τ + 4 τ + 5 τ + 6

Time [clock cycles]

v5← v5≫ 7

v5← v5

v5← v5 ⊕ v9

v5 and v9

Fig. 4. Avoiding pipeline bubbles between a column step and a diagonal step. The
digits À to Ã refer to the four stages of the ALU depicted in Figure 3a.

The initialization and finalization steps involve 16 and 24 clock cycles, re-
spectively. Furthermore, we need four clock cycles to load v4, v5, v6, and v7 in
the pipeline before the first call to G0, G1, G2, and G3 (the first operation of G0

is for instance v0 ← v0 � v4; recall that we bypass the register file thanks to a
feedback mechanism: when we load v0, we expect the ALU to output v4). There-
fore, we need 16+4+10·80+24 = 844 clock cycles to process a 16-word block. In
terms of scheduling, the only difference between BLAKE-32 and BLAKE-64 lies
in the number of rounds. The latter involves four additional rounds and requires
1164 clock cycles to process a block.

4.3 Register File and Control Unit

The register file stores the 16 constants ci, a message block m = m0, . . . ,m15,
the internal state v = v0, . . . , v15, the chain value h = h0, . . . , h7, the salt s =
s0, . . . , s3, and the counter t = t0, t1 (Figure 5). When we process several message
blocks (iterated hash), we use the same salt s for each call to the compression
function. Therefore, the four words s0⊕c0, s1⊕c1, s2⊕c2, and s3⊕c3 involved in
the initialization step are constants that can be computed only once and stored
in the register file for subsequent calls. Note that no instruction of BLAKE
involves at the same time the salt s and the counter t. Therefore, if we store s
and t from addresses 64 to 69, we save a control bit: all variables are accessible
from port A (7 address bits), but Port B is restricted to the 64 least significant
words of the register file (6 address bits).

The control unit mainly consists of a program counter that addresses an
instruction memory implemented by means of a memory block. Our micro-code



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 11

c0, . . . , c15

m0, . . . , m15

v0, . . . , v15

h0, . . . , h7
s0 ⊕ c0, . . . , s3 ⊕ c3t0 ⊕ c4, . . . , t1 ⊕ c7

s0, . . . , s3t0, t1

Po
rt

B
Po

rt
A

0

48

16

32

56

64

Accessible only from port A

Register file (dual-ported memory block)

O
pt

io
na

lp
ip

el
in

e
st

ag
e

WE

Address

Data

Address

Data

Arithmetic and
logic unit

Port A Port B

Control
unit

WE

Done

Start Instruction memory (ROM)

WE Address (7 bits)Address (6 bits)

Arithmetic and logic unit

ctrl5:0

ctrl5 ctrl4 ctrl2ctrl3 ctrl0ctrl1

Port B Port A

Fig. 5. General architecture of a BLAKE coprocessor.

for BLAKE-32 involves only 14 distinct control words ctrl5:0 and it is therefore
possible to encode them with 4 bits, thus reducing the size of an instruction
to 18 bits at the cost of 6 4-input LUTs. Recall that BLAKE-32 involves 844
instructions1 and that several FPGAs embed memory blocks whose aspect ratio
(i.e. width versus depth) is configurable. The 18Kbit blocks available in Spartan-
3 or Virtex-4 devices allow one to store 1024 words of 18 bits. Consequently, we
can load our micro-code in a single memory block on such FPGAs.

5 Results and Comparisons

We captured our architectures in the VHDL language and prototyped our copro-
cessors on several Xilinx and Altera FPGAs with average speedgrade (Tables 3
to 6). To our best knowledge, the only compact implementations of BLAKE-32
and BLAKE-64 were proposed by Aumasson et al. in their SHA-3 proposal [2].
Their lightweight architecture consists of an initialization unit, a single Gi unit,
and a finalization unit. Since they have to read four elements of the internal
state v at each clock cycle, they can not implement the register file by means
of dual-ported memory and need 16 registers. Our approach leads to a lower

1 Note that it is possible to reduce the size of the code by storing the table defining
the permutation of {0 . . . , 15} parametrized by the round index r (Table 2) and by
generating the addresses of mσr(2i) and cσr(2i+1) on the fly. However, this approach
would require a more complex control unit. As long as the micro-code fits into a
single block of memory, there is no need to try to reduce the number of instructions.



12 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

throughput, however, our architectures are significantly smaller and improves
the area–time trade-off of the compact implementations previously published
by Aumasson et al. [2]. Note that embedded memory blocks are not a critical
resource and we do not report them in the benchmarks.

A few researchers proposed compact implementations of other SHA-3 candi-
dates. We include in our comparisons the results reported in the SHA-3 Zoo [1].
Currently, only five candidates have been evaluated on FPGA, and it is unfortu-
nately difficult to draw conclusions. Among these algorithms, the BLAKE family
offers the best area–time trade-off and leads to the smallest coprocessors on re-
configurable devices. We expect the four candidates based on (or at least inspired
by) the AES, namely ECHO [5], Fugue [12], Grøstl [10], and SHAvite-3 [8], to re-
quire more hardware resources than the BLAKE family. Each of the eight rounds
of ECHO involves 32 calls to the AES round function followed by shift opera-
tions (BIG.ShiftRows) and arithmetic operations over F28 (BIG.MixColumns).
To our best knowledge, the smallest hardware implementation of the AES on
a Spartan-3 device occupies 163 slices and three memory blocks [14], and com-
putes one round in four clock cycles. The clock frequency on a Spartan xc3s50-4
is equal to 71.5MHz. Note that Good and Benaissa [11] proposed a slightly more
compact but slower architecture on Spartan-II. However, since the comparison
between the Spartan-II and Spartan-3 families is biased, we focus here on the
results reported in [14]. A hardware implementation of ECHO based on such a
compact AES coprocessor would already require 1024 clock cycles to compute the
AES rounds. Additional slices and clock cycles are then needed to implement
the BIG.MixColumns operation. Consequently, our BLAKE-32 coprocessor is
smaller in terms of slices and memory blocks, achieves a better clock frequency,
and requires fewer clock cycles.

Table 3. Compact implementations of SHA-3 candidates on Xilinx Spartan-3 devices.

Algorithm FPGA
Area Frequency Throughput
[slices] [MHz] [Mbps]

This work BLAKE-32 xc3s50-5 124 190 115

This work BLAKE-64 xc3s200-5 229 158 138

Jungk et al. [13] Grøstl-224/256 xc3s5000-5 2486 63.2 404

Baldwin et al. [3] Shabal xc3s5000-5 1933 89.71 540

6 Conclusion

We took advantage of the intrinsic parallelism of the BLAKE family of hash
functions to interleave the computation of four instances of the Gi function.
Thanks to this approach, we designed an ALU with four pipeline stages and
achieved high clock frequencies. A careful scheduling allowed us to totally avoid



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 13

Table 4. Compact implementations of SHA-3 candidates on Xilinx Virtex-4 devices.

Algorithm FPGA
Area Frequency Throughput
[slices] [MHz] [Mbps]

This work BLAKE-32 xc4vlx15-11 124 357 216

Aumasson et al. [2] BLAKE-32 xc4vlx100 960 68 430

This work BLAKE-64 xc4vlx15-11 230 250 219

Aumasson et al. [2] BLAKE-64 xc4vlx100 1856 42 381

Table 5. Compact implementations of SHA-3 candidates on Xilinx Virtex-5 devices.

Algorithm FPGA
Area Frequency Throughput
[slices] [MHz] [Mbps]

This work BLAKE-32 xc5vlx50-2 56 372 225

Aumasson et al. [2] BLAKE-32 xc5vlx110 390 91 575

This work BLAKE-64 xc5vlx50-2 108 358 314

Aumasson et al. [2] BLAKE-64 xc5vlx110 939 59 533

Bertoni et al. [6] Keccak xc5vlx50-3 448 265 52

Baldwin et al. [3] Shabal xc5vlx220-2 2307 222.22 1330

Feron and Francq [9] Shabal not specified 596 109 1142

pipeline bubbles and memory collisions. We also addressed FPGA-specific issues:
we described how to enable or disable dedicated carry logic in Xilinx devices,
thus sharing slices between addition and bitwise exclusive OR of two operands.
We showed that a rewriting of the Gi function allows us to fully exploit the 6-
input LUTs available in the most recent FPGAs. For the time being, our designs
are the most compact ones for any of the SHA-3 candidates.

Acknowledgements

The authors would like to thank Simon Kramer, Jean-Michel Muller, and Fran-
cisco Rodŕıguez-Henŕıquez for their valuable comments.

References

1. The SHA-3 zoo. http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.
2. J.-P. Aumasson, L. Henzen, W. Meier, and R.C.-W. Phan. SHA-3 proposal BLAKE

(version 1.3). Available online at http://www.131002.net/blake, 2009.
3. B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R.P. McEvoy, W. Pan, and W.P.

Marnane. FPGA implementations of SHA-3 candidates: CubeHash, Grøstl, LANE,
Shabal and Spectral Hash. Cryptology ePrint Archive, Report 2009/342, 2009.

4. B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W.P.
Marnane. A hardware wrapper for the SHA-3 hash algorithms. Cryptology ePrint
Archive, Report 2010/124, 2010.



14 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

Table 6. Compact implementations of SHA-3 candidates on Altera Cyclone III devices.

Algorithm FPGA
Area Frequency Throughput
[LEs] [MHz] [Mbps]

This work BLAKE-32 EP3C5E144A7 285 192 116

This work BLAKE-64 EP3C5F256I7 542 140 123

Bertoni et al. [6] Keccak EP3C5F256C6 1559 181 47.8

5. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw,
and Y. Seurin. SHA-3 proposal: ECHO. Available online at http://crypto.

rd.francetelecom.com/echo, 2009.
6. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge function

family main document (version 2.0). Available online at http://keccak.noekeon.
org, 2009.

7. J.-L. Beuchat and J.-M. Muller. Automatic generation of modular multipliers for
FPGA applications. IEEE Transactions on Computers, 57(12):1600–1613, Decem-
ber 2008.

8. E. Biham and O. Dunkelman. The SHAvite-3 hash function (tweaked version).
Available online at http://www.cs.technion.ac.il/~orrd/SHAvite-3, 2009.

9. R. Feron and J. Francq. FPGA implementation of Shabal: Our first results. Avail-
able online at http://www.shabal.com, 2010.

10. P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S.S. Thomsen. Grøstl – a SHA-3 candidate. Available online
at http://www.groestl.info, 2008.

11. T. Good and M. Benaissa. AES on FPGA from the fastest to the smallest. In
J. R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems
– CHES 2005, number 3659 in Lecture Notes in Computer Science, pages 427–440.
Springer, 2005.

12. S. Halevi, W.E. Hall, and C.S. Jutla. The hash function ”Fugue”. Available on-
line at http://domino.research.ibm.com/comm/research_projects.nsf/pages/
fugue.index.html, 2009.

13. B. Jungk, S. Reith, and J. Apfelbeck. On optimized FPGA implementations of
the SHA-3 candidate Grøstl. Cryptology ePrint Archive, Report 2009/206, 2009.

14. G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Compact and
efficient encryption/decryption module for FPGA implementation of the AES
Rijndael very well suited for small embedded applications. In Proceedings of
the International Conference on Information Technology: Coding and Computing
(ITCC’04), volume 2, pages 583–587. IEEE Computer Society, 2004.

15. S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and A. Szekely.
High-speed hardware implementations of BLAKE, Blue Midnight Wish, Cube-
Hash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD,
and Skein. Cryptology ePrint Archive, Report 2009/510, 2009.

16. Xilinx. Spartan-3 FPGA family, December 2009. Available online at http://www.
xilinx.com/support/documentation/data_sheets/ds099.pdf.

17. J. Zhai, C.M. Park, and G.-N. Wang. Hash-based RFID security protocol us-
ing randomly key-changed identification procedure. In M. Gavrilova, O. Gervasi,
V. Kumar, C.J. Kenneth Tan, D. Taniar, A. Laganà, Y. Mun, and H. Choo, edi-
tors, Computational Science and Its Applications – ICCSA 2006, number 3983 in
Lecture Notes in Computer Science, pages 296–305. Springer, 2006.



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 15

A A Note on Parallel Implementations

In order to achieve a high throughput, Tillich et al. [15] recommend to implement
four parallel instances of the Gi function, thus computing a round of BLAKE-32
in two clock cycles. They focus on ASIC implementations and use carry-save
adders inside the Gi function to shorten the critical path. However, carry-save
adders do not take advantage of the dedicated carry logic available in modern FP-
GAs and other addition algorithms should be considered [7]. Figure 6 describes
a parallel implementation of the Gi function. In the following, we explain how
to optimize the highlighted part of the circuit by means of Carry-Select Adders
(CSAs). Let us consider four 32-bit operands W , X, Y , and Z. We want to mini-
mize the critical path of the operator computing (((W�X)⊕Y )≫ 16)�Z. The
main difficulty arises from the rotation operation: if we use CRAs, a first carry
propagation occurs when we compute W �X (Figure 7a). The most significant
bit of the sum is then XORed with the most significant bit of Y and becomes
an input of weight 215 of the last addition because of the rotation. The critical
path includes therefore a second carry propagation (limited to 16 bits).

d

cσr(2i)

mσr(2i+1)mσr(2i)

cσr(2i+1)

≫ 16

≫ 12

≫ 8

≫ 7

a

b

c

d

a

b

c

Fig. 6. The Gi function.

A CSA approach allows us to split each operand in two 16-bit chunks. Let
carry16 denote the carry-out bit of the CRA computing the sum of the lower
halves of W and X, namely W15:0 and X15:0. A first CSA outputs the 16 least
significant bits of the result by selecting either ((W31:16�X31:16)⊕Y31:16)�Z15:0

or ((W31:16 �X31:16 � 1) ⊕ Y31:16) � Z15:0 according to carry16. A second CSA
returns the 16 most significant bits of the result, namely ((W15:0 � X15:0) ⊕
Y15:0)� Z31:16 or ((W15:0 �X15:0)⊕ Y15:0)� Z31:16 � 1.

B A Note on Xilinx FPGAs

In Section 3, we described how to enable or disable carry propagations in several
Xilinx FPGAs: thanks to a control bit, our operator is able to perform the
addition or the bitwise exclusive OR of its inputs. We describe here a slightly
more general architecture. On Spartan-3 FPGAs (and on all other Xilinx FPGAs



16 J.-L. Beuchat, E. Okamoto, and T. Yamazaki

CRA

W15:0 X15:0

CRA

CRA

carry16 CRA

CRA

1

CRA CRA

Y15:0

X15:0

CRA
carry16

X31:16W31:16

0

1

Z15:0

Y31:16

1010

1

CRA

Z31:16

Y15:0

(b) Architecture based on CRAs and CSAs

(a) Architecture based on CRAs

Z31:16

CRA

Y31:16

W31:16 X31:16

CRA

W15:0

Z15:0

Fig. 7. Computation of (((W � X) ⊕ Y ) ≫ 16) � Z. Shaded components belong to
the critical path.

based on the same slice architecture), it is possible to compute a sum or any
function of up to three Boolean variables (Figure 8).

The LUT6 2 primitive available for instance in Virtex-5 devices offers even
more flexibility. One can for instance compute the sum of two partial products
or any function of up to four Boolean variables (Figure 8). When the control bit
is set to one, we check that:

2carry3 + sum2 = x0y2 + x1y1 + carry2.

Otherwise, all carry bits are forced to zero and the circuit computes the function
implemented by the LUT4 table.



Compact Implementations of BLAKE-32 and BLAKE-64 on FPGA 17

1

ctrl

xj+1

yj+1

wj+1

ctrl

xj

yj

wj 0 1

sumj

carryj+1

carryj

carryj+2
Spartan-3 slice

1

xj+1 · ctrl

0

GAND

G-LUT

L
U

T
3

zj+1

CYMUXG

XORG

0 1

sumj+1

xj · ctrl

0

FAND

F-LUT
L

U
T

3

zj

CYMUXF

XORF

Fig. 8. Addition or function of three Boolean variables.

ctrl

carry2

CARRY4

x1

x0y2

y2

L
U

T
4

LUT6 2

0

1

x0

sum2

1

zj

carry3
y1

10

1

0

Fig. 9. Sum of two partial products or function of four Boolean variables.


