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A Comparison of Cryptanalytic Tradeoff Algorithms

Jin Hong · Sunghwan Moon

Abstract The three major time memory tradeoff algorithms are compared in this paper.
Specifically, the Hellman tradeoff algorithm, the distinguished point tradeoff method, and
the rainbow table method, in their non-perfect table versions, are considered.

We show that, under parameters that are typically considered in theoretic discussions
of the tradeoff algorithms, Hellman and distinguished point tradeoffs perform very close
to each other and the rainbow table method performs somewhatbetter than the other two
algorithms. Our method of comparison can easily be applied to other situations, where the
conclusions could be different.

The analysis presented in this paper takes the effects of false alarms into account and
also fully considers techniques for reducing storage, suchas the ending point truncation
method and index files.

Keywords time memory tradeoff· Hellman· distinguished point· rainbow table· random
function

1 Introduction

There are numerous security systems in use today that rely onpasswords. Access to many
contents on the network requires one to login with a passwordand many file formats today
have security features that restrict access to the file untilthe correct password is supplied.
These usually employ apassword hashsystem, which stores a one-way function image of
the password in the system or file. Indeed, storing the password in its raw form within the
file one wishes to set access control to would be meaningless.

A time memory tradeoff algorithm attempts to recover the password from the knowledge
of the one-way function image, with the help of a table created through pre-computation.
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A realistic barrier to applying the tradeoff technique to any specific security system is
the massive pre-computation required, before the actual attack can be mounted. The pre-
computation cost is roughly proportional to the space of possible passwords and, since most
users do not use long or random passwords, the tradeoff attacker is free to choose a smaller
subset consisting of short or more likely passwords and decide to be satisfied with recov-
ering only those passwords belonging to this subset. Then the pre-computation requirement
no longer stands as a barrier to the tradeoff attack.

It has long been known that properlysaltinga password can remove any realistic threats
from time memory tradeoff attacks. But, such measures are still not being taken by many
proprietary systems, and some systems are known to be using both the newer salted and
the older non-salted versions of the security system simultaneously to remain compatible
with older systems. Hence, the time memory tradeoff technique still remains a powerful tool
against these vulnerable password hash systems. Since human generated passwords will
continue to be used for some time, one would like to understand the power and limitations
of the tradeoff techniques.

In this work, we consider the three major tradeoff algorithms. These are the original
tradeoff algorithm [8] devised by Hellman, the distinguished points method, attributed to
Rivest in [4, p.100], and the rainbow table method [12], announced by Oechslin. There are
perfect table versions of these methods and, even though they are more efficient in recover-
ing passwords, they require more pre-computation to work. These are hence less practical
and we shall not consider them in this paper. There are also multi-target versions of trade-
off algorithms [3, 7] which attracted attention as attacks on streamciphers, but we will not
work with these either. The most practical application of the tradeoff technique today is with
password hash systems and we will present the current work with this application in mind.

It has been shown [2] that the performance of tradeoff algorithms that are known today
is asymptotically the best one can hope to find, among all algorithms belonging to a certain
category. But the measure of being best used in this theory isonly accurate modulo a small
multiplicative factor. The relative performance of different tradeoff algorithms has not been
accurately analyzed, and the choice of which algorithm to use can be a difficult one for
someone new to the tradeoff technique. In practice, experience seems to be the major basis
of the decisions, and researchers seem to have varied opinions on which algorithm performs
better.

Comparison of tradeoff algorithms has been a controversialsubject. There are two major
obstacles to making a fair comparison of tradeoff algorithms. The first is that the online time
of each algorithm is hard to predict accurately, due to the effects of events called false
alarms. Some answers to this problem may now be found in [1, 9]for the Hellman and
rainbow cases. The second obstacle concerns the number of bits that is required to store
each table entry resulting from the pre-computation. Thereis a technique for reducing this
number of bits called ending point truncation which has not been fully analyzed. Due to
these obstacles, previous comparisons of tradeoff algorithms have mostly relied on rough
arguments that emphasize a certain advantageous characteristic of one algorithm against
another.

There is a natural occurring measure1 of how efficiently a tradeoff algorithm can balance
time against memory and this measure becomes accessible once the first obstacle mentioned
above is resolved. In this work, we carefully note that this measure of tradeoff efficiency for
different algorithms are expressed in different units and provide arguments for converting

1 The optimal value of this measure is referred to as the tradeoff characteristic in [1], where it is used to
compare the perfect version of the rainbow table method against other algorithms.
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them to directly comparable units. This transition of unitsis intimately connected to the
second obstacle mentioned above.

Apart from the above two obstacles that are due to our lack of knowledge, there is yet
another problem of how to compare different tradeoff performances that are achievable only
after different pre-computation efforts.

In this work, we clear both of the obstacles mentioned above and use it to provide fair
comparisons between tradeoff algorithms. More precisely,we shall present a method to vi-
sualize what can be achieved by each algorithm in terms of pre-computation and tradeoff
performance. This will be done in a unified way so that the range of choices possible with
each algorithm can directly be compared against each other.Any potential user of the trade-
off technique can use this information to decide on which algorithm to use and which set of
parameters to use with the algorithm. The judgement of whichalgorithm is more suitable
depends on how the user relatively values the pre-computation cost and tradeoff efficiency,
and hence cannot be done in an objective manner in most cases.

In presenting the above comparison method, we will mainly focus on a certain set of pa-
rameters that is typically considered during theoretic analysis of tradeoff algorithms. Under
this parameter set, the Hellman and distinguish point methods is shown to perform very sim-
ilarly to each other, while the rainbow table method shows better performance than the other
two algorithms, under the additional assumption that the success rate requirement placed
on the tradeoff algorithms is rather high. In this specific case, the comparison judgement
will stand true for any reasonable way of valuing the pre-computation cost and tradeoff ef-
ficiency. Conclusions at other parameter ranges, which may be suitable for many situations,
can be different.

Another contribution of this paper is in making the basis of tradeoff technique analysis
theoretically more concrete. We discuss the use of the termrandom functionand how it is
related to the analysis of the tradeoff technique. We identify common arguments that are not
mathematically correct in the strict sense and provide plausible justifications for still using
such arguments in the analysis of tradeoff algorithms.

The rest of the paper is organized as follows. We briefly fix notation and terminologies
in the next section. The use of random functions in the analysis of the tradeoff algorithms
is discussed in Section 3. This is followed by a section clarifying the connection between
the theory of tradeoff algorithms and its application to password hash systems. In Section 5,
6, and 7, we study the distinguished point, Hellman, and rainbow table tradeoff algorithms,
in turn. For each algorithm, we present an accurate version of the tradeoff curve that does
not ignore small multiplicative factors and also analyze applicable storage reduction tech-
niques. Comparison of tradeoff performances under different parameter sets for the same
algorithm is discussed in Section 8, and performance comparison between different algo-
rithms is given in Section 9. Finally, the work is summarizedand concluding remarks are
given in Section 10.

2 Time Memory Tradeoff Algorithms

The details of the tradeoff algorithms will not be explainedand we ask readers to refer to
the original papers on the Hellman tradeoff [8] and the rainbow table method [12]. Here, we
only list and fix the basic terminologies. Notation of this section will be used throughout the
paper. From now on, we shall refer to the tradeoff algorithm that integrates the distinguished
point idea into the Hellman tradeoffs as the DP tradeoff and refer to the rainbow table method
simply as the rainbow tradeoff.
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A Hellman chain, associated with a one-way functionF : N →N , is of the form

spi = xi,0
F−→ xi,1

F−→ ·· · F−→ xi,t = epi (1≤ i ≤m).

TheHellman table{(spi ,epi)}mi=1, consisting of starting and ending point pairs, is sorted on
the ending points to make table lookups easier. We have omitted thereduction functions, as
this will only be mentioned briefly in Section 4.3. The complete set ofm chains, consisting
of m rowsandt +1 columns, is aHellman matrix. The original Hellman tradeoff specified
the matrix stopping rulemt2 = |N | and considered the use of exactlyt tables, but we shall
allow more flexibility. We let the positive integer parametersmandt satisfymt2 = Hmsr|N |,
with the positive constantHmsr = Θ(1), i.e., the constantHmsr specifying the matrix stopping
rule is to be neither very large nor too close to zero. The number of tables is set tol = Hntt,
whereHnt = Θ(1), so thatl andt are roughly of the same order.

A DP chain is a chain iteratively constructed by applyingF : N → N until a dis-
tinguished point(DP) is reached. Although not absolutely necessary, to simplify our later
discussion, we shall assume that the starting points are always chosen among non-DPs.
Hence, in a DP chain, every point before the ending point, including the starting point, is a
non-DP. The effects of this choice is quite negligible and a rigorous treatment that allows
starting points to be DPs will lose any differences it has with our treatment, during the many
numerical approximations that lead to the final statement ofresults.

We assume the distinguishing property is defined in such a waythat a random point
of N satisfies it with probability1

t . To detect chains that fall into infinite loops, a chain
length bound of̂t is fixed and any chain that fails to reach a DP by this length during either
the pre-computation phase or the online phase is discarded.Chains are generated until each
table contains approximatelym chains. What we mean by approximatelym will be made
more explicit at the start of Section 5.

Even though some of our result statements will display its dependence on̂t, we shall
mainly be interested of the limiting case wheret̂ is sufficiently large. When̂t≫ t, the number
of discarded chains is minimized, so that any additional pre-computation is more efficiently
be transformed into higher success rate of the tradeoff algorithm. Since pre-computation cost
is the main barrier to any large scale applications of the tradeoff technique, such a choice is
only natural in practical applications.

The termsDP tableandDP matrixwill be used, even though the DP matrix, with chains
of variable lengths, can no longer be visualized as a rectangle. The positive integer param-
etersm andt are chosen to satisfymt2 = Dmsr|N |, with the positive constantDmsr = Θ(1).
The DP tradeoff will usel = Dntt tables withDnt = Θ(1).

We similarly have the notions ofrainbow chain

spi = xi,0
F1−→ xi,1

F2−→ ·· · Ft−→ xi,t = epi (1≤ i ≤m),

rainbow table, andrainbow matrix. For rainbow tradeoffs, it is usual to takemt = Rmsr|N |
with Rmsr = Θ(1). A rainbow tradeoff will usel tables, wherel is a small positive integer.

Our inversion targetwill always be written asy = F(x) throughout the paper. The inputx
and outputy will be referred to as thepasswordand password hash, respectively, even
though they may not be related to any password system.

If the current endFk(y) of the Hellman tradeoff’sonline chain

y F−→ F(y)
F−→ F2(y)

F−→ ·· · F−→ Fk(y)

of lengthk matches an ending pointepi , we have analarm. If an alarm involvingepi shows
the propertyF t−k−1(spi) 6= x, it is said to be afalse alarm. Notice thatF t−k−1(spi) = x is



5

not guaranteed by the weaker conditionF t−k(spi) = y. False alarms are caused bymerges
between the online chain and apre-computed chain. There notion of false alarms is also
used with DP and rainbow tradeoffs.

Throughout this paper, the one-way functionF : N →N being considered will always
act on a setN of sizeN. The parametersm andt satisfying an appropriatemt2 = HmsrN,
mt2 = DmsrN, or mt = RmsrN are assumed to be reasonable in the sense that 1≪m, t≪ N.

There areperfecttable versions of the DP and rainbow tradeoffs. These are when chains
with identical ending points are removed and regenerated. These cases are interesting and
can be more efficient than the non-perfect versions during the online phase, but requires
more pre-computation to arrive at the same success rate. As we want to focus on the practical
applications of tradeoff algorithms, we shall not considerperfect tables.

3 Random Functions

The purpose of this section is to understand the usage of the term random functionand to
become familiar with arguments that involve random functions.

Throughout this section,A andB will be finite sets of respective sizesA andB. The set
of all functionsF : A →B will be denoted byBA , where the exponent notation symbolizes
the fact that each such function is an orderedA-tuple of elements fromB, i.e., that it belongs
to theA-times cartesian product ofB.

3.1 Definition of a random function

Readers that are fully comfortable with the cryptographic usage of the term random func-
tion may skip this subsection. The content of this subsection is briefly explained in [6, Sec-
tion 5.2], but since we were unable to find this in any formallypublished work, in the interest
of making it more widely known, we shall write this down with some more details.

Let us begin our discussion with a simpler notion that we are very comfortable with.
Consider the following sentence.

The size of a random element from the set{0,1,2,3} is expected to be32.

We all know that this is a short way of expressing the following more explicit statement.

If an element is chosen uniformly at random from the set{0,1,2,3}, then we can
expect its size to be32.

The termrandom elementthat appears in the first expression does not refer to a true el-
ement that belongs to the set in consideration. Instead, it indicates that a certain method
for selecting an element be used. Whenever the term is used, it is followed by a claim to
some expected value, and one is to understand that the probability distribution to be used in
computing the claimed expected value is to be the uniform distribution.

Sometimes the specific element that has been chosen is referred to asthe random ele-
ment, but this usage of the term is a source of confusion. Oncethe process of selection from
the set is complete, no randomness can be found in the resulting specific element.

Let us now turn to random functions. The following sentence presents a typical usage of
the term random function.

The image size of a random functionF : {0,1} → {0,1} is expected to be32.
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Once again, we should take this simply as a short way of expressing the following more
explicit statement.

Consider the set of all functionsF : {0,1}→{0,1}. If a function is chosen uniformly
at random from this set of four functions, then we can expect the image size of the
selected function to be32.

The termrandom functiondoes not refer to a concrete function that belongs to the set of
functions in consideration. Instead, the phrase specifies that a certain method forselectinga
function be used. Once the selection has been made, no randomness remains in the resulting
specific and fixed function. The term random function is always accompanied by a claim to
an expected value, and the term is used to signify that the uniform distribution on the set of
functions is to be used in computing the expectation.

So far, there seems to be no ambiguity concerning the notion of random functions. This
has been a straightforward extension of our common use of theterm random element or
random number. We now turn to the following quote2 from a textbook [11, Section 5.6], that
explains random functions.

A random functionF : A →B is a function which assigns independent and random
valuesF(x) ∈B to all argumentsx∈A .

This is thedefinitionof a random function which cryptographers, especially those working
on symmetric key cryptography, are more accustomed to. Whereas, in our previous discus-
sion, we could not define a random function and only explain the usage of the term, the
above quote seems to be defining a random function as a concrete object. In fact, at times,
readers may have come across sentences that resemble the following.

If F : {0,1}→ {0,1} is therandom function, then its image size is expected to be3
2 .

The random function referred to in this usage example seems to be the one that has just been
defined through the textbook quote, rather than have anything to do with the previously men-
tioned selection from a set of functions. But a closer look reveals that the quoted definition
does not define a true function. Instead, the definition provides a process by which a specific
function may beconstructedor defined. A function that is being constructed is not truly a
function until it has fully been defined on all its inputs. Hence, at least to a strict mathemati-
cian, the quote from the textbook is self-contradictory. Furthermore, as soon as the random
function is fully specified, thus earning the status of a truefunction, no randomness can be
found within the function. One more thing to note is that the latest usage example makes a
claim to a certain expected value, as was done in all our previous examples. Hence, once
again, we are not left with the definition of a concrete object, but a usage example where the
appearance of the term random function specifies certain actions to be taken in constructing
a function.

We have explained two approaches to the term random function. In both approaches,
there are no real entities that correspond to the term randomfunction. Sometimes the se-
lected or fully constructed function is referred to as the random function, but such usage is
a source of confusion, as no randomness remains in the specific function. The current situ-
ation is strictly analogous to the situation with random elements, except that there is more
room for confusion with random functions in that we intuitively tend to view a fully defined
specific function as still looking rather random, if we can not find any simple rule that can be
used to specify the output corresponding to each input. The termrandom functionis not the

2 We have given some notational changes.
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name of a mathematical object and cannot be defined. Instead,its appearance only signals
that a certain process for specifying a function be used in computing an expected value.

Let us distinguish between the two approaches to random functions by referring to them
through the termsselectionandconstruction. We will now show that the two approaches are
equivalent. Fix any specific functionF0 : A →B. If a function is constructed by assigning
a randomly and independently chosen element ofB to each element ofA , then the proba-

bility for the randomly constructed function to become identical toF0 is
(

1
B

)A
. On the other

hand, if a function is selected uniformly at random from the set of functionsBA , since the
size ofBA is B

A, the probability thatF0 is chosen is 1
B

A
. Hence, the construction approach

to specifying a function brings about the uniform distribution on BA . We can conclude
that the selection and construction approaches to random functions are identical in that they
provide the same distribution on which to compute the claimed expected value.

Even though the selection approach and construction approach give the same distribu-
tion onBA , it is often much easier to work with the construction approach when explicitly
computing expectations. Roughly, the selection of many points leads to the selection of a
single function, and one can compute an expectation defined over the distribution of func-
tions by suitably combining many expectations defined over the distribution of points. The
expectations defined over points are simpler and easier to deal with. In our subsequent uses
of the random function notion, we shall not distinguish between the two approaches unless
absolutely necessary, but will mainly use expressions thatcan be read more naturally with
the construction approach in mind.

We briefly remark that a randomly constructed function is very close to a random ora-
cle. The only possible difference is that, while one needs tomake external queries for the
function values when using random oracles, with the construction approach to random func-
tions, the one working with the function can choose each of the function images randomly
by himself.

3.2 Random function arguments

There will be many arguments given in this paper that use the notion of random functions
and not all of them will be strictly correct in the mathematical sense. In this subsection, we
identify and discuss one such logical gap that is not easily noticed and provide justifications
for still using such an argument.

Before discussing proofs that use the notion of random functions, we briefly digress and
state a technical lemma that will be used throughout this paper.

Lemma 1 For positive integersA andB, we have

∣

∣

∣
exp

(

− A

B

)

−
(

1− 1
B

)A
∣

∣

∣
<

{1
2

A

B
2 +

1
(A+1)!

(

A

B

)A+1}

exp
(

A

B

)

.

Hence, ifA andB are large integers such thatA = O(B), then

exp
(

− A

B

)

≈
(

1− 1
B

)A

is an accurate approximation.
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Proof We start by writing exp
(

− A

B

)

in its Taylor series form and fully expanding the
term(1− 1

B
)A.

∣

∣

∣
exp

(

− A

B

)

−
(

1− 1
B

)A
∣

∣

∣

=
∣

∣

∣

{

1− A

B
+

1
2!

(

A

B

)2
−·· ·

}

−
{

1−
(

A

1

)

1
B

+

(

A

2

)

1

B
2 −·· ·+(−1)A

(

A

A

)

1

B
A

}∣

∣

∣
.

After noting that the beginning two pairs of terms cancel out, we collect corresponding pairs
from the two sequences of terms and bound the above by

{ ∣

∣

∣

A
2

2!
−

(

A

2

)

∣

∣

∣

1

B
2 + · · ·+

∣

∣

∣

A
A

A!
−

(

A

A

)

∣

∣

∣

1

B
A

}

+
{ 1

(A+1)!

(

A

B

)A+1
+ · · ·

}

. (1)

Since we have

0≤ A
k

k!
−

(

A

k

)

=
1
k!

{

A
k−A(A−1) · · ·(A−k+1)

}

=
1
k!

{k(k−1)

2
A

k−1−·· ·+(−1)k(k−1)! A
}

≤ 1
k!

k(k−1)

2
A

k−1 =
1
2

A
k−1

(k−2)!
,

for every 2≤ k≤ A, the terms of (1) that appear inside the first set of braces is bounded by

1
2

{

A

0!
1

B
2 +

A
2

1!
1

B
3 +

A
3

2!
1

B
4 + · · ·+ A

A−1

(A−2)!
1

B
A

}

=
1
2

A

B
2

{

1+
1
1!

A

B
+

1
2!

(

A

B

)2
+ · · ·+ 1

(A−2)!

(

A

B

)A−2}

≤ 1
2

A

B
2 exp

(

A

B

)

.

As for the second set of braces from (1), it is easy to see that

1
(A+1)!

(

A

B

)A+1
exp

(

A

B

)

can serve as its very rough bound. It now suffices to gather thetwo bounds to arrive at the
claim. ⊓⊔

Note that the error in the approximation
(

1− 1
B

)A ≈ exp
(

− A

B

)

is extremely small. For
example, whenA = B, the bound stated in the lemma is at moste

B
. This approximation will

be used so frequently in this paper, that we shall not even reference the above lemma when
applying it.

Our first example proof that uses random functions is now given.

Lemma 2 When the finite setsA andB are sufficiently large withA ≤ B, the image size
of a random function F: A →B is expected to be

B

{

1−
(

1− 1
B

)A}

≈ B

{

1−exp
(

− A

B

)}

.



9

Proof The approximation follows from the conditionA ≤ B and Lemma 1. We mentioned
this since we are at the very first application of the approximation, but our subsequent use
of the approximation will be less informative and even silent.

It suffices to show the following statement, which is the interpretation given by the
construction approach to random functions.

If one constructs a functionF : A →B by assigning independently and randomly
chosen elements ofB to each input element ofA , then the image size of the result-
ing function is expected to beB

{

1−
(

1− 1
B
)A

}

.

Let us focus on the elements ofB that remain as non-image points after the function con-
struction is complete. We want to compute the expected ratioof such elements amongB.

If necessary, we can enumerate all elements of the finite setA, so that we may refer to
each element as ani-th element. When a random point ofB is assigned to the first element
of A , the ratio of points amongB that remain as non-images will become

(

1− 1
B

)

. After a

random point ofB has been assigned to the second element ofA , we can expect
(

1− 1
B

)2

of the points ofB to remain as non-image points.
Since each assignment is independent of all other assignments, we may conclude that

when every element ofA has been made to map to some element ofB, the ratio of the
non-image points amongB is expected to be

(

1− 1
B

)A. Hence, the ratio of the image points

amongB is expected to be
{

1−
(

1− 1
B

)A}

, as stated by the lemma. ⊓⊔

Given a functionF : N →N , we shall writeFk = F ◦ · · · ◦F for thek-times iterated
composition of the functionF . The proof given above that involved random functions con-
tains no logical gaps. In the rest of this section, we shall try to illuminate the hidden difficulty
involved in proving the next lemma and also try to convince the readers that this logical gap
may safely be ignored.

Lemma 3 Let F : N → N be the random function on a finite set of sizeN. Given any
nonnegative m0 ≤ N, define mk through the recursive relation

mi+1

N
= 1−exp

(

− mi

N

)

(i = 0, . . . ,k−1).

If M ⊂ N is of size m0, then the iterated image size|Fk(M )| is expected to have the
asymptotic form mk, asN is sent to infinity.

The special case of this lemma for when the input setM is the complete domainN
may be found in [5, 11]. The case whenM is not the complete domain is used in [12] to
state the success probability of a non-maximal rainbow table. The work [12] includes a proof
that does not mention random functions, and while the core argument given here will be the
same, we focus on whether the core argument implies the abovelemma.

We start our discussion with the single iteration case.

Lemma 4 Let F : N →N be the random function on a finite set of sizeN. If M ⊂N is
of size m0, then the size of F(M ) is expected to be

m1 = N

{

1−
(

1− 1
N

)m0
}

.
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Proof It is clear that in dealing with the construction approach torandom functions, the
order in which elements of the domain are assigned elements of the range does not affect the
expected value being computed. Hence, we can choose to give assignments to all elements
of M , before assigning elements to other points of the domain. Itis also possible to stop the
assignments when we are finished withM , since the rest cannot affect the size ofF(M ).
With this observation, it now suffices to reread proof of Lemma 2 with the replacements
A ←M , A←m0, B←N , andB← N. ⊓⊔

We emphasize that this lemma for the simplest case contains no approximation or even
any mentioning of an asymptotic form. The value written is the exact expected value. To see
if this result concerning a single step can be iterated, we consider the following statement.

Lemma 5 (Incorrect) Let F : N → N be the random function acting on a finite set of
sizeN. If M ⊂N is of size m0, then the size of F2(M ) is expected to be m2, where

m1 = N

{

1−
(

1− 1
N

)m0
}

and m2 = N

{

1−
(

1− 1
N

)m1
}

.

As with the single iteration case, given by Lemma 4, we would expect this twice iterated
version to hold exactly, i.e, contain no approximation, butwe candisprovethis statement
with an explicit counterexample.

The set of all functionsF : {0,1} → {0,1} can be visualized as follows.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

When the input setM is a single point, the image size expectation is clearly 1. This is in
agreement with the value

2
{

1−
(

1− 1
2

)1}

= 1,

computed according to Lemma 4. When the input set is the complete domain{0,1}, the
image size expectation is

EF
[

|F({0,1})|
]

=
1
4
·1+

1
4
·2+

1
4
·2+

1
4
·1 =

3
2
,

and this is also identical to the value

EF
[

|F({0,1})|
]

= 2
{

1−
(

1− 1
2

)2}

=
3
2
,

computed according to Lemma 4. Hence, as we have already proved, Lemma 4 holds exactly
true for theN = {0,1} case, regardless of the input set size.

Now, the four functionsF2 = F ◦F can be visualized as follows.
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Hence, when the input setM is taken to be the complete domain, the twice iterated image
size expectation is

EF
[

|F2({0,1})|
]

=
2
4
·1+

2
4
·2 =

3
2
. (2)

The corresponding value claimed by Lemma 5 is

2
{

1−
(

1− 1
2

)2{1−(1− 1
2 )2}}

= 2
{

1−
(

1− 1
2

) 3
2
}

≈ 1.293. (3)
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The two values are clearly not equal.
Since Lemma 4 always holds exactly true, in particular, since it holds exactly true in the

environment of the counterexample, we can conclude that Lemma 5 does not logical follow
directly from Lemma 4. In particular, we cannot hope to claimthe correctness of Lemma 3,
our current goal, directly from the correctness of the single step result Lemma 4, at least
without providing additional arguments.

There is still the possibility that Lemma 5 is asymptotically true asN is sent to infin-
ity, but the focus of our argument here is that multiple iteration statement is not a direct
consequence of the single iteration statement.

A natural attempt at fixing the current situation would be to relax the strict correlation
between the two functions that are being composed. This is considered next.

Lemma 6 (Incorrect) Let F : N → N and G: N → N be two independent random
functions on a finite set of sizeN. If M ⊂N is of size m0, then the size of G

(

F(M )
)

is
expected to be m2, where

m1 = N

{

1−
(

1− 1
N

)m0
}

and m2 = N

{

1−
(

1− 1
N

)m1
}

.

This second version for the double iteration case seems structurally much simpler than
our previous attempt, given as Lemma 5. One might be tempted to say that this version is
a trivial consequence of the single step result, stated by Lemma 4, but, once again, we can
provide a counterexample.

We return to the situation ofF : {0,1}→ {0,1}. The set of all possible double iterations
of the four mapping can be visualized as follows.
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When the input setM is the complete domain{0,1}, after separately counting the number
of functions with image sizes one and two, the expected imagesize can be computed as

EF,G

[

∣

∣G
(

F({0,1})
)∣

∣

]

=
12
16
·1+

4
16
·2 =

5
4
. (4)

The corresponding value, as claimed by Lemma 6, is as was previously computed in (3).
Since the two values disagree, it is clear that Lemma 6 cannotbe true, at least in the strict
sense. Once again, we can conclude that Lemma 3, even when relaxed to allow independent
random functions at each iteration, is not a direct logical consequence of the single iteration
result Lemma 4.

We have disproved the double iteration case Lemma 5 and even the seemingly simpler
Lemma 6 with explicit counterexamples. On the other hand, weknow from experience that
Lemma 3 works quite well in accurately predicting the behavior of iterations done with
specific functions. Let us attempt to prove the incorrect Lemma 6 directly so as to locate the
source of this apparent contradiction.

The language pertaining to the selection approach to randomfunctions will be used
briefly. We start our examination of Lemma 6 by rewriting the conclusion we want to obtain
as

EF,G∈N N

[

∣

∣G
(

F(M )
)∣

∣

]

= N

{

1−
(

1− 1
N

)EF∈N N

[

|F(M )|
]

}

. (5)
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Here, the exponent on the right hand side given in terms of expectation is justified through
Lemma 4. The left hand size expectation can be written according to its definition as follows.

EF,G∈N N

[

∣

∣G
(

F(M )
)∣

∣

]

=
1

(

A
A
)2 ∑

F,G∈N N

∣

∣G
(

F(M )
)∣

∣

=
1

A
A ∑

F∈N N

1

A
A ∑

G∈N N

∣

∣G
(

F(M )
)∣

∣.

Now, for every fixedF ∈N N , the inner summation computes the image size that is ex-
pected, when a random functionG is applied to the fixed input setF(M ). Hence, the above
is equal to

1

A
A ∑

F∈N N

EG∈N N

∣

∣G
(

F(M )
)∣

∣ =
1

A
A ∑

F∈N N

N

{

1−
(

1− 1
N

)|F(M )|}

= EF∈N N

[

N

{

1−
(

1− 1
N

)|F(M )|}]

= N

{

1−EF∈N N

[(

1− 1
N

)|F(M )|]}
.

(6)

A moment of thought shows that this final form cannot be equal to the right hand side of (5).
For example, given a few numbers, we know very well that the average of their inverses
is not equal to the inverse of their average. The expectationoperator does not commute
with any nonlinear operator, and exponentiation with the base set to

(

1− 1
N

)

is certainly a
nonlinear operator. Hence, we come to the conclusion that Lemma 6 cannot be true.

Our failure to connect the end of (6) to the right hand side of (5) resulted from the
fact that the expectation operator does not commute with theexponentiation operator in
general. But, there is one situation when the expectation operator does commute with a
nonlinear operator. Namely, this is when the multiple numeric inputs being considered are
all identical. For example, if we are given a few numbers, butthe numbers are all the same,
then the average of their inverses is trivially the inverse of their average. As an extension of
this exceptional behavior, we can expect an approximate commutativity of operators when
the condition of inputs being identical is slightly relaxed. That is, it is reasonable to believe
that if the inputs being considered are very close to each other, then two values computed
using the two orderings of the operators will be close to eachother.

Let us briefly consider the binomial distributionB(n, p) corresponding ton trials with
probability of successp for each trial. We know that its standard deviation is

√

np(1− p), so
that the clustering of multiple test values around the mean valuenp is expected to intensify
with the increase ofn, at least when the distribution of test values are viewed relative tonp,
the expected data value. Hence, it is reasonable to believe that, with any natural distribution,
the clustering of data around the expected value will becometighter, as the space that is
being considered is enlarged.

In the current situation, the initial inputs to the expectation and nonlinear operators under
consideration are the multiple image sizes|F(M )|, where the functionF is made to run over
all elements ofN N . These are certainly not equal to each other, but it is not unrealistic to
believe that they will tend to cluster together asN is increased.

Let us summarize the above discussion. When the set sizeN is large, it is reasonable
to expect the image sizes{|F(M )|}F to mostly cluster around the averageEF

[

|F(M )|
]

.
Hence, we are justified in computing the expected image size of {G(F(M ))}F,G as if the
random functionG was simply given an input set of sizeEF

[

|F(M )|
]

. Although Lemma 6
is not strictly true, we can believe it to be approximately true whenN is large.
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Recall that our current goal is to justify Lemma 3. Since we know that it cannot directly
be inferred from the truth of Lemma 4, the single step statement, we turn to providing a
plausible justification for its use.

We have already mentioned that it was reasonable to believe the image sizes of a single
application ofF to be clustered whenN is large. Let us take this belief to the extreme and
make the unrealistic assumption that the relation of Lemma 4, i.e.,

image size= N

{

1−
(

1− 1
N

)input size}

, (7)

concerning the input and image sizes of a single iteration, holds exactly true, not just on
average, but for every choice of the functionF and input setM . Under this unrealistic
assumption, the iterative relation of Lemma 3 would be true for each functionF , over any
number of iterations. This automatically implies that the iterative relations are true when
averaged over all functions. In this argument, we are not requiring for the functions that are
being composed to be independent from each other.

The use of Lemma 3 as an approximation will now be justified, ifrelaxing our unrealistic
belief does not cause trouble. We first consider the discouraging extreme situations. When
the functionF is bijective, so that (7) is far from accurate forF , it is clear that this error
will persist throughout all iterations. That is, the error is not dampened through the multiple
iterations. At the other extreme is the case when the function F is the constant function. The
situation given by the iteration of this function is not reflected by (7) in any way. Hence
the the iterative relations appearing in Lemma 3 does not hold true for individual functions
that are extremely far away from our unrealistic assumption. But it should be noted that the
number of these extreme functions are very small compared tothe number of all functions.

For the vast majority of the functions, relation (7) may not be exactly true for every
input setM , but will be such that (7) overestimates the image size for some input sets and
also underestimates for other input sets. Now, suppose thatfor someF andM , the size
of F(M ) is much smaller than what is estimated by (7). Note that it is unlikely for the
points of the image setF(M ) to be somehow related to the points ofM . In other words,
there is no reason to believe application ofF to the image setF(M ) will produce a second
image that is also smaller than would be estimated by (7), on aset of size|F(M )|. This
lack of relationship between a subset ofN viewed as an image set and the same subset
viewed as an input set to the next iteration assures us that a sequential buildup of any local
abnormal behavior is unlikely to happen. Hence, even if (7) is only approximately true and
no longer strictly true for every input to a certain specific function, the relations of Lemma 3
will remain approximately true for the same specific function.

We have shown that the validity of a statement concerning a single step of a random
function does not directly imply the validity of the same statement under multiple iterations.
There are many works in the literature, especially those concerning time memory tradeoffs,
that ignore the logical gap that we have discussed. These arguments are typically written in
the language of classical occupancy problems, but are in fact random function arguments
that ignore behavior under iterations. In the opposite direction, we have argued that results
for a single iteration of a random function may be generalized to multiple iterations when
the space that is being dealt with is very large and the statements are taken as good approxi-
mations.

The intension of this subsection was not in testing the validity of Lemma 3. In fact, at
least for the case whenM is the full domain, although inaccessible to the current author, a
full proof is provided by [5]. When the validity of Lemma 3 is firmly taken for granted, our
long discussion makes the following claim quite plausible.
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Lemma 7 (Belief) Let F : N →N be anyusualfunction acting on a finite set of sizeN. If
M ⊂N is of size m0, then the size of the iterated image Fk(M ) will be approximately mk,
where mk is defined recursively through

mi+1

N
= 1−exp

(

− mi

N

)

(i = 0, . . . ,k−1).

Here, ausualfunction is one that has been chosen or constructed without making any inten-
sional decisions that are likely to affect its iterated image sizes in a predictable way.

In short, we are claiming that Lemma 3 is likely to hold true quite accurately for most
functions and not just on average. We emphasize that this is abelief, which we shall freely
use, rather than a mathematically proven fact. In fact Lemma3 is a statement concerning
an average behavior, and, even if we had provided a strictly mathematically correct proof, it
cannot imply anything about the behavior of each individualfunction.

Recall that much of the discussion in this subsection was about whether we may inter-
change the application order of the expectation operator and a nonlinear operator. We now
have reasons to believe that the order of application may be changed without introducing big
errors when the space being dealt with is large. Throughout this paper, ourrandom function
argumentswill carelessly disregard the orders in which the operatorsare applied.

4 Applying Time Memory Tradeoff to Password Hashes

One usually states the objective of a tradeoff algorithm as the inversion of a one-way func-
tion. A closer look reveals that there are two version of the inversion problem and we will
explain how one of these corresponds to the application of tradeoff technique on password
systems. Issues concerning the use of random functions in the theoretic analysis of tradeoff
algorithms are also discussed in this section.

4.1 Password hash

Let us briefly explain how the security features of many file formats that rely on passwords
for access control work in its very basic form.

The designer of the system chooses and fixes a one-way function H. This one-way func-
tion is a part of the file format specification and is usually considered to be public, and can
always be extracted from the related software even if it was not originally made public.
When the owner of a file following this format wants access control to be applied to the file,
the user supplies a passwordx. An encryption key is derived from the password, and the
main content of the file is replaced by its encryption under this key. The imagey = H(x)
of the user password, under the one-way function specified for the file format, is recorded
within the file. Finally, any record of the encryption key andthe raw password supplied by
the user is destroyed.

Later, when authentication is required for file access, the supporting software asks for
a password. The one-way function imageH(x′) of the newly supplied passwordx′ is com-
puted by the software and is compared with the correspondinginformationy stored within
the file. If a perfect matchy = H(x′) is found, the main body of the file is decrypted using
the key derived from the password and access to the decryptedcontent is granted. Note that
the one-way function imagey of the correct password is stored within the file without any
protection and is accessible to anyone that has obtained thefile.
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User authentication procedure for system login works in much the same way. At the time
of initial user registration to the system, the one-way function image of a password supplied
by the user is recorded in a file that is stored within the system. In this case, access to one-
way function images may be harder, but this information is often sent over the network in
the clear to allow for logins to a group of computers after user registration at a central server.

As we have stated earlier, in this work, we shall refer to the one-way function image as
thepassword hashand the input as thepassword, regardless of whether the one-way function
to be attacked through the tradeoff technique is related to apassword authentication system.

4.2 Uniqueness of the pre-image to a password hash

Our first question is whether a password hash uniquely determines the password.

Proposition 8 Let H : P →H be a random function. Given anyx ∈P, the number of
inputs that H maps to H(x) is expected to be1+ |P |−1

|H | .

Proof When using the construction approach to a random function, we are free to choose
the order in which function value assignments are made to each domain element. So let us
first assign a randomly chosen value ofH to H(x) and then define all other function values.

The probability for any one of the later assignments to strikeH(x), which is an explicitly
fixed value inP, is 1

|H | . Each later assignment is independent of all other assignments, and

we can expect the number of later assignments toH(x) to be |P |−1
|H | . ⊓⊔

Readers should not misinterpret the above proposition as giving the pre-image size of a
randomy∈H under a randomH. For a random functionH, the distribution onH produced
by H(x), as passwordx runs over the password setP randomly, is the uniform distribution,

and everyy∈H is expected to have|P ||H | -many pre-images, rather than 1+ |P |−1
|H | . This is

not in contradiction with the proposition, as it essentially deals with the distribution onH
produced from random inputs by the specificH that has been constructed, and this is differ-
ent from the uniform distribution onH . Those points ofH that lie outsideH(P), for the
specifically constructedH, do not have any chance of appearing.

One can also ask for the pre-image size of a random password hash y ∈ H(P). Note
that this question can only be asked after the random function H has fully been constructed.
The corresponding answer will depend on the size ofH(P), but should be close to

|P|
E(|H(P)|) ≈

1

1− 1
e

≈ 1.582.

Once again, this question is not related to the content of theabove proposition. The current
question deals with the uniform distribution onH(P), which is different from the distribu-
tion onH(P) given by the fully specifiedH. Those points with larger pre-image sets will
have a larger probability of appearing than those with smaller pre-image sets.

Consider an application of the tradeoff technique to a blockcipher whose key length is
identical to the block length. In such a case, one is working with |P| = |H | and Proposi-
tion 8 states that there will be approximately two keys, on average, that map to a given target
ciphertext. This is probably larger than what many would have naively expected. Of course,
in practice, one usually assumes the use of a second ciphertext to almost uniquely identify
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the key. In fact, if one interprets the key to two-ciphertexts mapping as a new one-way func-
tion, then Proposition 8 claims that the key is almost alwaysuniquely determined from the
two ciphertexts.

Let us next discuss what Proposition 8 implies for systems that rely on passwords for
access control. These systems are usually designed so that the spaceH of potential hash
values is much larger than the spaceP of admissible passwords. A typical password hash
would be a bit string of at least 128 bits in length and the number of alphanumeric passwords
consisting of ten characters is only 6210≈ 259.5. In such a case, Proposition 8 shows that a
password hashH(x), produced from a passwordx, will almost always identifyx uniquely.

Furthermore, in practice, the set of all passwords admissible by the security system is
not very important. Note that human chosen passwords are most certainly not uniformly
distributed within the complete admissible password space. The tradeoff attacker first fixes
a subsetP of all possible passwords and decides to be satisfied with recovering passwords
that only lie within this subset. The size of this subset is determined by the computational
power that the attacker can allocate to the pre-computationphase and should preferably
cover the passwords that are most likely to be used. Under such a setting the password hash
setH is immensely larger than the set of passwordsP that is being considered and hence
the password hash determines the password uniquely.

For the remainder of this paper, we assume that the target system for the application of
the tradeoff technique is such that|P| ≪ |H |, implying that the password hash uniquely
determines the password.

4.3 The reduction function

The tradeoff technique requires the one-way function to be iterated. Since the range of the
one-way function is usually larger than the domain, iteration is achieved by utilizing are-
duction function R: H →P. The role of the reduction function is to let a password hash
be interpreted as another password. As any theoretic treatment of the tradeoff technique
assumesR◦H to be a random function, let us check whether this is appropriate.

Proposition 9 Let |P| be a divisor of|H |, so that |H ||P | is an integer. Let R: H →P

be any fixed function that is pre-image uniform in the sense that it is exactly |H ||P | -to-1. If
H : P →H is a random function, then R◦H : P→P is a random function.

Proof In more precise terms, we want to show that the distribution on PP , produced from
the uniform distribution onH P , through the mappingH 7→ R◦H, is the uniform distribu-
tion.

Let F0 : P →P be any specific function. It suffices to show that, after random con-
struction of a functionH : P →H , we will find R◦H = F0 with probability 1

|P ||P | . It is

clear that{R−1(z)}z∈P is a partition ofH into cells of size|H ||P | . The eventF0 = R◦H will

happen if and only if the value assigned asH(x) belongs to the cellR−1
(

F0(x)
)

, for every

x ∈P. Since the size ofR−1
(

F0(x)
)

is always |H ||P | , and since the assignment toH(x) is
independent and random for everyx, the probability of arriving atF0 = R◦H is

( |H |/|P|
|H |

)|P |
=

1

|P||P | ,

as claimed. ⊓⊔
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Every application of the time memory tradeoff technique on asecurity system involves a
specific one-way functionH : P→H and there is no strictly logical reason to believe that
the specificH will display the properties expected of a random function. Hence we first need
to discuss if predicting the behavior of an explicit tradeoff implementation with arguments
concerning random functions can be justified.

There can be two ways to resolve this problem. The first is to appeal to our intuition.
When one ignores his knowledge of the inner working of the given specific function, it
will seem as if the function is returning independently and randomly generated values to
each given input. Hence, viewed from the outside, it looks asif the specific function is the
random function of the construction sense. The second argument, which seems slightly more
plausible, is that the one-way function used in the securitysystem is in fact a function that
has been selected from the pool of all functions. As we discussed earlier in Section 3.2,
when the spaces involved are sufficiently large, unless we had chosen the one-way function
in an unusual way, any property exhibited by a specific function will be close to the property
averaged over all functions.

We have thus partly justified the use of random functions in place of specific one-way
functionsH : P →H when analyzing the behavior of time memory tradeoffs. What we
have shown through Proposition 9 is that if we may treat the specific one-way functionH
as a random function, then the same can be done with the function R◦H : P→P. Hence,
throughout this paper, while analyzing the behavior of timememory tradeoffs, we shall work
with a random functionF : N →N .

The discussion of reduction functions now brings us to another logical gap that fre-
quently appears in random function arguments, that is specific to the analysis of time mem-
ory tradeoffs. It is often the case that multiple tables are used in tradeoffs and any analysis
of tradeoff properties will assume these tables to be independent. Although a different re-
duction function or a family of reduction functions is used with each table, it is not true that
the tables are independent. In the language of the construction approach to random function,
assignments made during computation of an earlier table will prevent later assignments to
be made independently.

Suppose we try to analysis a time memory tradeoff propertiesthat involve multiple ta-
bles under our simple assumption thatF : N →N is a random function. Then this will
require averaging over functions of a value that combines multiple figures that come from
different tables and these multiple figures will be correlated to each other. This will be very
complex and difficult to handle. Once again, since the domainand range spaces that are be-
ing considered are usually very large, we assume the interchange of the expectation operator
and any nonlinear operator is possible and present analysisthat averages over functions be-
fore combining the figures to arrive at the final expectation.This is equivalent to assuming
that the random function used in computing multiple tables was not a single function, but
that multiple independently constructed random functionswere used for different tables.

4.4 Two versions of the inversion problem

We have already mentioned that we shall work in the situationH : P→H with sets of sizes
|P| ≪ |H |, so that a password hash almost always determines a unique password. We also
know that any analysis of time memory tradeoff behavior is done with a random function
F : N →N , whose image does not uniquely determine the input. The two functions are
related through the correspondenceH 7→ F = R◦H.
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Given y = H(x), the unique passwordx is obtained through the tradeoff algorithm,
which usesF , as follows. The tradeoff algorithm is givenR(y) to process and returns in-
putsx ∈P, such thatF(x) = R(y). This relation may be restated asR(H(x)) = R(H(x))
and does not necessarily implyx= x. Hence one tests whether the candidate passwordx sat-
isfiesH(x) = H(x), outside of the normal tradeoff algorithm. Since an output of H uniquely
determines the input, fulfillment of this test impliesx = x and recovery of the correct pass-
word.

As discussed in the previous subsection, the number of inputs to F satisfyingF(x) =
R(y) will only be two on average, and the number of such tests done outside the tradeoff
algorithm will be very small. Hence, the cost of such tests may be ignored during complexity
analysis.

During a tradeoff algorithm analysis, one usually does not mention anything aboutH
or R, the source of the inversion problem, and simply assume the inversion targety = F(x)
is given, for some functionF : N →N . In this work, the goal of the tradeoff algorithm will
be to findthecorrect passwordx, rather thanany password, corresponding to the giveny.
Theanyversion may be useful when working to find the pre-image of a true hash function,
but thethe version is suitable when looking for the correct password toan access control
mechanism.

Since it is logically impossible to distinguish between themany pre-images with only
they information, our analysis will focus on whetherx is among the possibly multipleF-pre-
images toy, returned by the tradeoff algorithm. The determination of whether each returned
value isthecorrect password is assumed to be done outside the tradeoff algorithm.

The small difference of looking forthepre-image rather thananypre-image implies that
the tradeoff algorithm will succeed under different circumstances. Thetheversion succeeds
if and only if the correct passwordx had appeared as aninput to the one-way functionF
during the pre-computation phase, i.e., ifx is among the pre-computation matrix entries
excluding the ending points. On the other hand, theany version succeeds if and only if
the imagey = F(x) had appeared as the functionoutputduring the pre-computation phase,
i.e., if y is among the pre-computation matrix entries excluding the starting points. The
two approaches will show differences in properties such as success probability and online
running time. Still, it should not be too difficult to tweak all the theversion results given in
this paper to work for theanyversion.

5 DP Tradeoff

An analysis of the DP tradeoff will be given in this section. We shall present a formula for
computing the probability of success for the algorithm and also provide a tradeoff curve
which takes the effects of false alarms into account. We alsodiscuss the number of bits
required to efficiently store the starting and ending point pairs.

If a chain is generated with a random function, with the chainlength bound set tôt, the

probability of not obtaining a DP chain will be
(

1− 1
t

)t̂ ≈ e−t̂/t . Rather than successively
generating more chains until we havemchains, we shall generate each table from

m0 =
m

1−e−t̂/t
(8)

distinct starting points. Then we can expect to collectmchains that terminate at DPs. And in
the limiting t̂ ≫ t case, which is of more practical interest, the two approaches will almost
be the same.
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All of our tradeoff algorithm analyses are done under the assumption that the one-way
function is the random function.

5.1 Probability of success

Let us discuss how to compute the probability of success for aDP tradeoff under a given
set of parameters. We shall first present general formulas connecting pre-computation and
probability of success and then show how to compute these forspecific parameter. Our first
lemma is quite trivial.

Lemma 10 The number of one-way function invocations required in either creating a DP
chain or stopping at thêt-th iteration without having reached a DP is expected to be

t (1−e−t̂/t).

Proof It suffices to add the probabilities of having to compute the successive iterations.
Since the next iteration is computed if and only if a DP has notyet been reached, the expected
one-way function invocation count is

t̂

∑
i=1

(

1− 1
t

)i−1

= t
{

1−
(

1− 1
t

)t̂}

,

which we can approximate tot
{

1−exp
(

− t̂
t

)}

. ⊓⊔

In the above proof, we have implicitly assumed the one-way function to be a random func-
tion and computed the probability for the firsti assignments to be non-DPs. A more exact
analysis would additionally consider the possibility of the next assignment producing a pre-
viously assigned value. We have not done so as this seems to bea good approximation.

Clearly, the success rate of a tradeoff algorithm is intimately connected to the amount of
pre-computation. So, let us first present a way to write down the pre-computation.

Proposition 11 The pre-computation phase of the DP tradeoff is expected to requireDpcN

one-way function invocations, where the pre-computation coefficient is

Dpc = DmsrDnt.

Proof We know from Lemma 10 that each attempt at a DP chain creation is expected to
requiret(1−e−t̂/t) one-way function invocations. On the other hand, the creation of a single
DP table starts withm0 = m

1−e−t̂/t chains. Together, this implies that the creation of a single

DP table is expected to consumemt one-way function invocations, regardless of thet̂ value.
Hence the total pre-computation requirement may be writtenasmtl = mt2 l

t = DmsrDntN. ⊓⊔

Note that the pre-computation cost of the DP tradeoff does not depend on the chain length
boundt̂.

The coverage rateDcr of a DP table, is defined to be the expected number of distinct
nodes that appear among the DP chains as inputs to the one-wayfunction, divided bymt.
Since we are taking starting points to be non-DPs, all of the nodes that are counted will
be non-DPs. Note that the mentioned expectation is an average over the choice of one-way
functions, in addition to the choice of starting points. In other words, the coverage rate is a
certain expected value for the random function. Our next statement reduces the search for
success rate to the computation of the coverage rate.
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Proposition 12 The success probability of the DP tradeoff is

Dps = 1−e−DcrDpc.

Proof If we are giveny = F(x) as the inversion target, the DP tradeoff will succeed in
recovering the correct answerx, if and only ifx had appeared as one of the inputs to the one-
way function during the creation of the DP table. As discussed earlier, this is not equivalent
to asking for the appearance ofy among the output values. The objective of recovering
the correct, rather thanany inverse, corresponds to findingx among the one-way function
inputs.

By definition of the coverage rate, a single DP matrix is expected to containDcrmt dis-
tinct nodes that were used as inputs to the one-way function.Hence the processing of a
single table will fail in returning the correct answer with probability

(

1− Dcrmt
N

)

. The suc-
cess probability of the complete DP tradeoff process is given by

Dps = 1−
(

1− Dcrmt
N

)l
≈ 1−exp

(

−Dcr
mtl
N

)

= 1−e−DcrDpc.

As discussed at the end of Section 4.3, we confide that our treatment here of separate tables
as being independent is not strictly correct. ⊓⊔

If the creator of the inversion targety = F(x) has a sufficiently large storage capability,
it may be possible for him to compute and collect the completeset of one-way function
inputs used during the DP table creation, and choose a password x that does not belong to
this set. The DP tradeoff will always fail under such challenges. The above proof cannot
capture this situation since the one-way functionF was taken to be a random function while
definingDcr.

In practice, this implies that, for our analysis to be correct, the hidden answerx needs
to be chosen without reference to the DP tradeoff table. Notethat this is not as strong a re-
quirement as asking for the choice ofx to be random. The choice only needs to be unrelated
to the structure of the DP matrices.

Within this subsection, all chains belonging to the DP matrix will be seen as having been
aligned at the starting points, rather than at the ending points, and the starting point column
will be referred to as the 0-th column.

The above expression for probability of success can only be put to use if we know how
to compute the coverage rate. Our computation of the coverage rate will be done in two
steps. Of them0 chains generated, onlym will be DP chains, but we disregard this in the
first step and count the number of new nodes added by each column of the complete matrix.
Sum of these values gives us the total number of all distinct input entries. In the second step,
we will count the number of nodes that belonged to chains not ending at DPs and subtract
these from the total count.

Let us writemj for the number of new nodes added by thej-th column. Them0 value,
stated by (8), conforms to this notation.

Lemma 13 The number of new nodes added by each column satisfies the recurrence rela-
tion

mj = N

{

1−exp
(

− mj−1

N

)}(

1− 1
t

){

1− ∑ j−1
i=0 mi

N(1−1/t)

}

.
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Proof Suppose a node positioned in the( j − 1)-th column is old, in the sense that it has
appeared in one of the 0-th through( j−2)-th columns. Application of random function to
this node will not result in a random element ofN , but a node that had appeared in one of
the 1-st through( j−1)-th columns. Hence when counting new nodes of thej-th column we
need only consider the nodes of thej-th column that are assigned as images to new nodes of
the ( j−1)-th column. Recalling Lemma 4, we write this as theN

{

1−exp
(

− mj−1
N

)}

part
appearing in the claimed equation.

Of the distinct entries that have appeared in thej-th column, that are not automatically
old, we want to filter out the DPs. The previous count is restricted to the non-DPs by multi-
plying the

(

1− 1
t

)

factor.
Still, not all of these non-DPs are new nodes. Those that haveappeared in previous

columns are removed by multiplying
{

1− ∑i mi
N(1−1/t)

}

. Notice that we haveN(1− 1
t ), rather

thanN, in the denominator, as we are dealing only with non-DPs at this point. ⊓⊔

The next two lemmas are technical computation results. We first turn the recursive for-
mula formj into a difference equation concerning a certain sum ofmj .

Lemma 14 Let µi = mi
N(1−1/t) andσ j = ∑ j−1

i=0 µi . Then,σ j satisfies the recursive formula

σ j+1−σ j =
m0

N
− 1

t
σ j −

1
2

σ 2
j with σ0 = 0,

which is accurate up to modulo O
(

1
t3

)

.

Proof It is straightforward to rewrite the recursive formula of Lemma 13 in terms of the
notationµ j .

µ j =
{

1−exp
(

−
(

1− 1
t

)

µ j−1

)}(

1−
j−1

∑
i=0

µi

)

.

This may be rewritten once again as

exp
(

−
(

1− 1
t

)

µ j−1

)

= 1− µ j

1−σ j
=

1−σ j+1

1−σ j
.

Now, by taking products of both sides overj = 1, . . . ,k, we can find

exp
(

−
(

1− 1
t

)

σk

)

=
1−σk+1

1−σ1
.

We have thus arrived at a relation involving only theσk notation.
By expanding the exponential function in its Taylor series,we obtain

σk+1 = 1− (1−σ1)
{

1−
(

1− 1
t

)

σk +
1
2

(

1− 1
t

)2

σ 2
k −·· ·

}

,

and we can modify the above into the difference equation

σk+1−σk = σ1−
(

σ1 +
1
t
− σ1

t

)

σk−
1
2
(1−σ1)

(

1− 1
t

)2

σ 2
k + · · · .

Noting that the left hand sideσk+1−σk = µk is of orderO
(

m
N

)

= O
(

1
t2

)

, we remove every

term on the right hand side ofO
(

1
t3

)

order. This may easily be done after noting thatσ1 = µ0

is O
(

1
t2

)

and thatσk is O
(

mk
N

)

, which is at mostO
(

1
t

)

. The simplified equation is now

σk+1−σk = µ0−
1
t

σk−
1
2

σ 2
k +O

( 1
t3

)

.
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It is clear that the initial conditionσ1 = µ0 may be replaced byσ0 = 0, under this recursive
formula. As a final tweak, we subtractm0

N(t−1) , which is ofO
(

1
t3

)

order, from the constant

termµ0 = m0
N(1−1/t) = m0

N

(

1+ 1
t−1

)

, to arrive at the claimed formula. ⊓⊔

Now that we have a difference equation, we can obtainσk through an application of the
Euler method.

Lemma 15 For each non-negative integer k, we have

mk ≈ N
(

σ (k+1)−σ (k)
)

,

where

σ (k) =
2−1
t

exp
(

k
t

)

−1

( +1)exp
(

k
t

)

+( −1)
with =

√

1+
2Dmsr

1−e−t̂/t
.

Proof Let functionσ : R→ R be the unique solution to the differential equation

d
dk

σ =
m0

N
− 1

t
σ − 1

2
σ 2 and σ (0) = 0. (9)

If one defines the sequence{σk}k≥0 through the corresponding difference equation

σk+1−σk =
m0

N
− 1

t
σk−

1
2

σ 2
k and σ0 = 0, (10)

the the Euler method tells us thatσ (k), the evaluation of the functionσ at the non-negative
integerk, may be approximated by the sequence valueσk. We may turn this the other way
around to present approximate values ofσk through the function evaluationsσ (k).

The unique solution to differential equation (9) is

σ (k) =
2m0t
N

exp
(

√

1+ 2m0t2

N

k
t

)

−1
(

√

1+ 2m0t2

N
+1

)

exp
(

√

1+ 2m0t2

N

k
t

)

+
(

√

1+ 2m0t2

N
−1

)

.

The form ofσ (k) stated by this lemma is obtained whenm0 = m
1−e−t̂/t andmt2 = DmsrN are

substituted.
Since the definition ofσk given by (10) is identical to the approximate recursive relation

of Lemma 14, we have

σ (k)≈ σk ≈
k−1

∑
i=0

µi , where µi =
mi

N(1−1/t)
.

This allows us to write

mk ≈ N

(

1− 1
t

)

(

σ (k+1)−σ (k)
)

≈ N
(

σ (k+1)−σ (k)
)

,

where the1
t term removal is justifiable, as it is of strictly smaller order. ⊓⊔

This completes the first step of the coverage rate computation. The coverage rate cor-
responds to the number of distinct non-DP nodes contained injust the DP chains, but the
currently computedmk includes all points contained in even the non-DP chains. We need to
account for these nodes belonging to non-DP chain nodes. This is the second step to finding
the coverage rate.
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Proposition 16 The coverage rate of a single DP table is expected to be

Dcr =
2

et̂/t −1

∫ t̂/t

0

exp( u)−1
( +1)exp( u)+( −1)

exp(u) du,

where =
√

1+ 2Dmsr
1−e−t̂/t .

Proof To count the number of distinct non-DPs belonging to all DP chains, we need to sub-
tract the number of all new points belonging to non-DP chainsfrom ∑t̂−1

i=0 mi . Before doing
this, we first need to consider whether these points may not also appear within the DP chains
as new points. It is clear that any new node belonging to a non-DP chain cannot have ap-
peared in a column previous to its position, as the node is assumed to be new. Furthermore,
such a node cannot appear within the DP chains in the same column or any future columns,
since it would then reach a DP before the chain length bound isexceeded. Hence new nodes
belonging to non-DP chains do not appear within any DP chains, and we may safely re-
move all these new points without worrying about their possible contribution to DP chain
coverage.

Now, let us count how many points belong to non-DP chains, each column at a time. We
start with the 0-th column. Among allm0 chains, even though we do not know ahead of time
which ones they would turn out to be, there will bem0(1− 1

t )
t̂ chains that do not reach a DP

even after̂t more iterations. Hencem0
(

1− 1
t )

t̂ nodes among them0 nodes belonging to the
0-th column need to be removed from the count of new nodes. As for the 1-st column, we
had focused onm1 chains, butm1

(

1− 1
t

)t̂−1 nodes among these will not reach a DP before
exceeding chain length bound, and need to be removed. The general term is now clear.

The coverage rate of a single DP table can now be stated as

1
mt

t̂−1

∑
k=0

mk

{

1−
(

1− 1
t

)t̂−k}

.

Using Lemma 15, we can approximate this to

1
mt

t̂−1

∑
k=0

N
(

σ (k+1)−σ (k)
)

{

1−
(

1− 1
t

)t̂−k}

=
N

mt
1
t

σ (t̂)+
N

mt

t̂−1

∑
k=0

σ (k)
(

1− 1
t

)t̂−k 1
t

≈ σ (t̂)
Dmsr

+
t

Dmsr
exp

(

− t̂
t

) t̂−1

∑
k=0

σ (k)exp
(k

t

)1
t

Since the coverage rate is ofO(1) order and the first termσ(t̂)
Dmsr

is of O
( 1

t

)

order, we simply
discard the first term, and the summation term can be approximated by the integration

t
Dmsr

e−t̂/t
∫ t̂/t

0
σ (tu)exp(u) du,

when 1
t is small. The claimed formula follows after substitution ofσ (tu), as given by

Lemma 15, and some simplifications. ⊓⊔

We state thêt≫ t case separately for later use.



24

Proposition 17 The expected coverage rate of a single DP table is approximately

Dcr =
2√

1+2Dmsr+1
,

when the chain length bound̂t is sufficiently large.

Proof When the chain length bound̂t is sufficiently large, almost all of them0 ≈m chains
that are generated will terminate with a DP, and hence the coverage rate may be computed
as 1

mt ∑t̂−1
i=0 mi .

Based on Lemma 15, we may write

Dcr = lim
t̂→∞

∑t̂−1
i=0 mi

mt
≈ lim

t̂→∞

Nσ (t̂)
mt

= lim
t̂→∞

2

1−e−t̂/t

e t̂/t −1

( +1)e t̂/t +( −1)
,

where =
√

1+ 2Dmsr
1−e−t̂/t . The limit can be simplified to what is claimed. ⊓⊔

5.2 Time memory tradeoff curve

Our next goal is to summarize the ability of the DP tradeoff algorithm to balance storage
size and online time in a single tradeoff equation.

We now visualize the chains of the DP matrix as having been aligned at the ending
points. The online iterations for the processing of a singleDP table are counted starting
from the 1-st iteration. That is, checking whether the giveninversion targety = F(x) is
among the DPs in the DP table is referred to as the 1-st iteration.

Our first task is to find the probability for merges to occur between DP chains.

Lemma 18 Fix a random function F: N → N and suppose that we are given a pre-
computed DP chain of length j≤ t̂ , generated with F from a random non-DP starting point.
If a second chain is generated with F from a random starting point, the probability for it to
become a DP chain of length i and merge with the given pre-computed chain is

t
N

{

exp
(min{i, j}

t

)

−1
}

exp
(

− i
t

)

.

Proof Within this proof, let us refer to the event of the second chain becoming a DP chain
of lengthi and merging with the pre-computed chain simply asthe event.

We first restrict ourselves to thei ≤ j case and fix notation for the two chains as follows.

x0→ ·· ·→ x j−i → x j−i+1 → x j−i+2 → ·· · → x j−1 → x j

y0 → y1 → y2 → ·· · → yi−1 → yi

The nodesx0, . . . ,x j−1 are non-DPs andx j is a DP.
Let us consider all possible scenarios by which the event canoccur. If the randomly

chosen starting pointy0 happens to be equal tox j−i , then the second chain will follows the
first chain and the event surely will occur. On the other hand,if either y0 is one of the points
x0, . . . ,x j−i−1, x j−i+1, . . . ,x j−1, or is a DP, then the event cannot occur. In the remaining
case, i.e. wheny0 is neither a DP nor any one of the pointsx0, . . . ,x j−1, then the possibility
of the event occurring remains. Furthermore, in this last case, we may freely setF(y0) to a
randomly chosen point ofN .
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The above argument may now be repeated. If the randomly chosen y1 = F(y0) is equal
to x j−i+1, then the event occurs. Ify1 is either a DP or one of the pointsx0, . . . ,x j−i , x j−i+2,
. . . ,x j−1, then the event cannot occur. And ify1 is neither a DP nor one of the pointsx0, . . . ,
x j−1, then the event occurrence is yet undecided and we are free todefiney2 = F(y1) to a
random point ofN .

Hence, wheni ≤ j, the probability for the event to occur may be written as

1
N

+
(

1− 1
t
− j

N

) 1
N

+
(

1− 1
t
− j

N

)2 1
N

+ · · ·+
(

1− 1
t
− j

N

)i 1
N

,

which is equal to

1
N

1−
(

1− 1
t −

j
N

)i+1

1−
(

1− 1
t −

j
N

) .

Noting that j
N
≪ 1

t and using
(

1− 1
t

)i+1 ≈
(

1− 1
t

)i ≈ exp
(

− i
t

)

, we can approximate this
as

t
N

{

1−exp
(

− i
t

)}

.

We can similarly work with thei ≥ j case. The event can occur only if the beginning
random choicesy0, . . . , yi− j−1 are made among non-DPs that are different fromx0, . . . ,
x j−1. The probability for the event to occur is

(

1− 1
t
− j

N

)i− j 1
N

+
(

1− 1
t
− j

N

)i− j+1 1
N

+ · · ·+
(

1− 1
t
− j

N

)i 1
N

,

which is approximately

t
N

{

exp
(

− i− j
t

)

−exp
(

− i
t

)}

.

The results for the casesi ≤ j andi ≥ j can now be combined and stated as claimed.⊓⊔

With the probability of alarms in our hands, we can compute the cost induced by false
alarms.

Lemma 19 The number of extra one-way function invocations induced byalarms is ex-
pected to be

t
Dmsr

1−e−t̂/t

{

2−8e−t̂/2t +
(

5+3(t̂/t)− 1
2
(t̂/t)2)e−t̂/t +e−2t̂/t

}

,

for each DP table.

Proof When the chains are generated fromm0 = m
1−e−t̂/t non-DP starting points, one can

expect to collect
m

1−e−t̂/t

(

1− 1
t

) j−1 1
t
≈

m
t

1−e−t̂/t
exp

(

− j
t

)

(11)

DP chains of lengthj. The probability of collision between the online chain and any one of
these DP chains of lengthj, at thei-th iteration of the online phase, is given by Lemma 18.
Here, the 1-st iteration deals with an online chain of lengthone, rather than zero, that starts
at the unknown password and ends at the inversion target. Thethird component is the work
required at each collision. If we take advantage of the fact that there is a chain length bound,
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the maximum number of iterations required to deal with a collision between a pre-computed
chain of lengthj and an online chain of lengthi is min{t̂− i +1, j}.

Multiplying the three components and summing over all possible indicesi and j, the
expected number of iteration can be expressed as

t̂

∑
i=1

t̂

∑
j=1

m
t

1−e−t̂/t
exp

(

− j
t

)

· t
N

{

exp
(min{i, j}

t

)

−1
}

exp
(

− i
t

)

·min{t̂− i +1, j}.

Replacingi
t with u and j

t with v, the above can be approximated by the integration

mt2
N

t

1−e−t̂/t

∫ t̂/t

0

∫ t̂/t

0
exp(−u)exp(−v)

{

exp
(

min{u,v}
)

−1
}

min
{ t̂

t
−u,v

}

dvdu,

when 1
t is small. The claimed value appears when this definite integral is computed. ⊓⊔

Finally, we write the tradeoff curve for the DP tradeoff in a way that takes the extra cost
of false alarms into account.

Theorem 20 The time memory tradeoff curve for the DP tradeoff is TM2 = DtcN
2, where

the tradeoff coefficient is

Dtc =
{

(2Dmsr+1)− 8Dmsr

et̂/2t
+

(5+ 3t̂
t − t̂2

2t2
)Dmsr−2

et̂/t
+

Dmsr+1

e2t̂/t

} 1−e−Dcr Dpc

1−e−t̂/t

D
2
pc

Dcr Dmsr
.

Proof The i-th DP table is processed if and only if all previous tables donot return the

correct inverse. The probability of such a failure is
(

1− Dcrmt
N

)i−1
. The time required in

processing a single table is the sum of hash invocation counts given by Lemma 10 and
Lemma 19. Hence the expected total running time of the DP tradeoff may be written as

T =
l

∑
i=1

(

1− Dcrmt
N

)i−1{
(

1−e−t̂/t)+
Dmsr

1−e−t̂/t

(

2− 8

et̂/2t
+

5+ 3t̂
t − t̂2

2t2

et̂/t
+

1

e2t̂/t

)}

t.

The summation index here appears only in the first multiplicative factor, and we can easily
check that

l

∑
i=1

(

1−Dcrmt
N

)i−1
=

N

Dcrmt

{

1−
(

1− Dcrmt
N

)l}

≈ t
DcrDmsr

{

1−exp
(

−Dcr
mtl
N

)}

=
1−e−DcrDpc

DcrDmsr
t.

The running time can now be rewritten as

T =
1−e−DcrDpc

DcrDmsr

{

(

1−e−t̂/t)+
Dmsr

1−e−t̂/t

(

2− 8

et̂/2t
+

5+ 3t̂
t − t̂2

2t2

et̂/t
+

1

e2t̂/t

)}

t2.

Since the storage isM = ml, we have

TM2 =
1−e−DcrDpc

DcrDmsr

{

(

1−e−t̂/t)+
Dmsr

1−e−t̂/t

(

2− 8

et̂/2t
+

5+ 3t̂
t − t̂2

2t2

et̂/t
+

1

e2t̂/t

)}

(mtl)2

=
{

(

1−e−t̂/t)+
Dmsr

1−e−t̂/t

(

2− 8

et̂/2t
+

5+ 3t̂
t − t̂2

2t2

et̂/t
+

1

e2t̂/t

)}1−e−DcrDpc

DcrDmsr
D

2
pcN

2,

which is equal to what is claimed. ⊓⊔
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The following statement is an immediate consequence of the above theorem.

Corollary 21 The time memory tradeoff curve for the DP tradeoff is M2T = DtcN
2 with

Dtc = (2Dmsr+1)
(

1−e−Dcr Dpc
) D

2
pc

Dcr Dmsr
,

when the chain length boundt̂ is sufficiently large.

5.3 Efficient use of storage

The storage sizeM appearing in the tradeoff curves is the total number of starting and ending
point pairs that need to be stored in the tradeoff tables. In practice, it is important to know
the actual storage size, or the number of bits, required. Each starting and ending point pair
can surely be stored in 2logN bits, but there are techniques that allow more efficient storage.

Below, we shall assume a suitable method of enumerating the elements ofN has been
fixed and treat elements ofN as logN-bit integers. This enumeration is trivial whenN is
the set of all bit strings of certain length, but may require asmall amount of work whenN
is given as the set of character passwords with certain complicated structures.

The most widely known technique for storage reduction, other than the trivial fact that
the distinguished part of the ending point need not be recorded in the DP table, concerns
the choice of starting points. One fixes the starting points3 to the integers 0 throughm−1,
instead of using randomly chosen points. Then the storage ofeach starting point will require
logm bits, rather than logN bits. If one wishes to use different starting points for eachsep-
arate table, one can concatenate the table number to the above mentioned integers before
using them as starting points. Note that any part that is common within each table need not
be stored separately for each starting point. In view of whatrandom functions are, employ-
ing such a deterministic way of choosing starting points will not cause any change in the
behavior of the tradeoff.

The second method of reducing storage is called the hash table technique. To facilitate
fast table lookups, the tradeoff tables are usually sorted on the ending point before being
written to storage. Instead of performing the sorting operation, one fixes a hash function4

that maps elements ofN to logm-bit strings and records each starting and ending point
pair at the position in the table addressed by the hash value of the ending point. There are
various ways to deal with collision of addresses. Note that,since the address containsmbits
of information, roughlym bits of the ending point can be removed with minimal loss of
information. One advantage of this method, in addition to reducing storage, is that, whereas
a lookup to a sorted table requires time logarithmic in tablesize, the hash table technique
allows constant time table lookups.

Let us also explain a simplified form of the hash table technique, commonly referred to
as the index file method. After sorting the table on the endingpoints, one focuses on the most
significant{(logm)− ε} bits of each ending point, whereε is a small positive integer. For
each integer 0≤ i < m

2ε , we can expect to find 2ε consecutive entries in the sorted table that
have the first{(logm)− ε} bits of the ending point equal to integeri. One can now remove
{(logm)− ε} bits of each ending point and provide an index file that pointsto the starting

3 To be more exact, this should be 0 throughm0−1, but we will be content with the approximate value.
4 The same term is used, but this is not necessarily a cryptographic hash function. At the extreme, even

truncation to logm bits may be used.
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11101001
11001010
10111001
01101110
01011100
01010101
00101100
00010110

101001
001010
111001
101110
011100
010101
101100
010110

11
10
01
00

Fig. 1 Index file technique (The sorted list on the LHS is transformed to the RHS list, which contains two
less bits per entry.)

positions for eachi value without loosing any information. The number of entries contained
in the index file is onlym

2ε and hence the additional storage required by its appearancecan be
ignored. An example is illustrated in Figure 1. In practice,the index file often contains the
number of entries corresponding to each index value rather than the full physical addresses.

The two methods considered so far reduce storage requirement without any loss of in-
formation concerning each starting and ending point pair. This is not so with the third and
final method we explain. In this method one simply truncates apart of the ending point
before storage. After each iteration of the online phase, the current end of the online chain
is truncated and compared with the truncated ending points of the table. The table lookups
may now return a match even when a merge between the online chain and a pre-computation
chain did not happen. Still, since we were already expectingfalse alarms, no new measure
needs to be devised to deal with such a new type of false alarms. Aggressive ending point
truncation will cause more frequent false alarms, hence it should be balanced with its effect
in reducing storage.

The word truncation may give the impression that such a method is applicable only when
the spaceN consists of bit strings. On spaces that look different, any surjective map that is
pre-image uniform, in the sense that the number of pre-images for each element in the range
is identical, can serve as the truncation operation. In practice, password hashes are usually
bit strings and one does not apply the reduction function at the end of any chain. In fact, DPs
are usually defined using the password hashes, rather than the passwords produced through
the reduction function.

The ending point truncation method seems to be known among many cryptographers,
but no guideline as to how much of the ending point can be truncated can be found. Let us
analyze the effects of ending point truncation on the running time of the online phase. Below,
we assume that the ending points are truncated in such a way that two random points ofN ,
when truncated in the specified manner, will have probability 1

r of agreeing with each other.
We shall express such a situation as having1

r probability of truncated match. For example,
if log t bits from the ending points were truncated withDmsr = 1, so that(logm+ logt) bits
remain, then the truncated matches would happen with probability 1

mt. When truncating
ending DPs, one should truncate the random-looking part, rather than the distinguished part.
Removal of the distinguished part can always be undone, and does not cause any loss of
ending point information.

Lemma 22 Let us assume the use of ending point truncation with the truncated match prob-
ability set to1

r . The number of extra one-way function invocations induced by false alarms
related to ending point truncation is expected to be

t
1−2(t̂/t) e−t̂/t −e−2t̂/t

1−e−t̂/t

mt
r

,
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for each DP table.

Proof Consider a random functionF : N →N and suppose that the first chain, generated
with F and a random non-DP starting point, produced a DP chain of length j ≤ t̂. Now,
suppose a second chain is generated withF from a random non-DP starting point. Let us
compute the probability for the second chain to become a DP chain of lengthi and not merge
with the first chain, but have the same truncated ending pointas the first chain.

The firsti nodes of the second chain must be chosen among non-DPs that are different
from the j pre-ending points of the first chain. Thei-th node chosen, when truncated, needs
to agree with the truncated ending point of the first chain. Note that this agreement already
requires the final point to be a DP. Thus the probability we aimed to write can be expressed
as

(

1− 1
t
− j

N

)i 1
r
≈ exp

(

− i
t

)1
r
. (12)

Now, we can combine the number of DP chains of lengthj, as given by (11), together
with the probability of non-merging truncated collision with such a chain, as given by (12),
to write the cost of truncation related false alarms as

t̂

∑
i=1

t̂

∑
j=1

m
t

1−e−t̂/t
exp

(

− j
t

)

·exp
(

− i
t

)1
r
·min{t̂− i +1, j}.

It now suffices to simplify this expression. Replacingi
t with u and j

t with v, the above can
be approximated by the definite integral

mt2

1−e−t̂/t

1
r

∫ t̂/t

0

∫ t̂/t

0
exp(−u)exp(−v)min

{ t̂
t
−u,v

}

dvdu,

when 1
t is small. We arrive at the claimed value when this is explicitly computed. ⊓⊔

Combining Lemma 10, 19, and 22, we know that the online processing of a single DP
table requires

t
(

1−e−t̂/t) (13)

+ t
Dmsr

1−e−t̂/t

{

2−8e−t̂/2t +
(

5+3(t̂/t)− 1
2
(t̂/t)2)e−t̂/t +e−2t̂/t

}

(14)

+ t
1

1−e−t̂/t

{

1−2(t̂/t) e−t̂/t −e−2t̂/t
} mt

r
, (15)

invocations of the one-way function. The first two terms (13)and (14) are both of orderΘ(t).
The total cost will remain of the same order if the third term (15), addressing the cost of
false alarms related to ending point truncation, is of the same order. One can see that this
is equivalent to requiringmt

r = Θ(1). Now, observe that whenmt
r = Θ(1), increasing the

truncated matching probability1r by a factor of two will have a significant undesirable effect
on the total online running time, while the reduction in storage achieved by such an increase
is only by a single bit per table entry. Hence we would like theterm (15) to become a
very small fraction of the sum of the terms (13) and (14). In other words, for each set of
parameterst, m, andt̂, it is advisable to chooser as small as possible, i.e., truncate as much
as possible, under the condition that

mt
r
≪

(

1−e−t̂/t
)2

+Dmsr
{

2−8e−t̂/2t +
(

5+3(t̂/t)− 1
2(t̂/t)2

)

e−t̂/t +e−2t̂/t
}

1−2(t̂/t) e−t̂/t −e−2t̂/t
.
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All our further discussion will assume such an approach has been taken so that Theorem 20,
in particular, remains valid.

Let us summarize the discussion of this subsection. We shallbe very rough and ignore
all constants of orderΘ(1). Sequential use of starting points allows each starting point to be
recorded in approximately logm bits. One can truncate close to logt bits from each ending
point with minimal effect on the online running time. Of the remaining logm+ logt bits of
the ending point, we do not need to store the logt bits that is fixed through the distinguishing
property. Furthermore, the hash table or index file technique allows us to remove almost
logm more bits without any loss of information. In all, logm bits are required to store each
starting point and a very small number of bits are required tostore each ending point.

6 Hellman Tradeoff

In this section, we summarize facts about the Hellman tradeoff. Even though none of these
have appeared in the literature in the current form, each fact, other than that concerning
optimal use of storage, is either very easy to prove or is a straightforward consequence of
the recent works [9, 10].

All of our tradeoff algorithm analyses are done under the assumption that the one-way
function is the random function.

Our first two facts are rather easily obtainable from the definitions. The pre-computation
effort of the Hellman tradeoff can be expressed as follows.

Proposition 23 The pre-computation phase of the Hellman tradeoff requiresHpcN one-way
function invocations, where the pre-computation coefficient is

Hpc = HmsrHnt.

Proof Since a single Hellman table consists ofmchains of lengtht, its creation requiresmt
one-way function invocations. The total pre-computation cost ismtl = mt2 l

t = HmsrHntN. ⊓⊔

The proof for the next statement is almost identical to that for Proposition 12, and we
shall be very brief.

Proposition 24 The success probability of the Hellman tradeoff is

Hps = 1−e−HcrHpc.

Proof The success probability expected after completely processing all l tables is

1−
(

1− Hcrmt
N

)l
≈ 1−exp

(

−Hcr
mtl
N

)

= 1−e−HcrHpc.

This argument ignores the fact that the multiple tables are not independent from each other
for each randomly chosen functionF . ⊓⊔

We next show how to compute the coverage rate, so that the above expression for prob-
ability of success can be put to use.

Proposition 25 The coverage rate of a single Hellman table is expected to be

Hcr =

√
2√

Hmsr

e
√

2Hmsr−1

e
√

2Hmsr +1
.
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Proof The coverage rate of a single Hellman table is given in [10] as

Hcr =
2N

mt

(

1− m
2N

) e
√

mt2/2N−e−
√

mt2/2N

(√

2N/m+1
)

e
√

mt2/2N +
(√

2N/m−1
)

e−
√

mt2/2N
.

Since m
2N ≪ 1, we can approximate this by ignoring the second multiplicative factor. When

the matrix stopping rulemt2 = HmsrN is applied, the approximation becomes

Hcr =
2t
Hmsr

e
√

2Hmsr−1

t
√

2/Hmsr
(

e
√

2Hmsr +1
)

+
(

e
√

2Hmsr−1
) ,

after some rearrangements. Noting that
(

e
√

2Hmsr−1
)

≪ t
√

2/Hmsr
(

e
√

2Hmsr +1
)

, we approx-
imate this once more to

Hcr =
2t
Hmsr

e
√

2Hmsr−1

t
√

2/Hmsr
(

e
√

2Hmsr +1
) ,

which is equal to the claimed coverage rate. ⊓⊔
The performance of the Hellman tradeoff is compactly expressed by the following time

memory tradeoff curve.

Theorem 26 The time memory tradeoff curve for the Hellman tradeoff is M2T = HtcN
2,

where the tradeoff coefficient is

Htc =
(

1+
Hmsr

6

)

(

1−e−HcrHpc
) H

2
pc

HcrHmsr
.

Proof The i-th Hellman table is processed if and only if all previous tables have failed in

returning the correct inverse. The probability of such a failure is
(

1− Hcrmt
N

)i−1
. The number

of one-way function invocations required in processing a single Hellman table may be found
in [9], and is

(

1+ Hmsr
6

)

t, with the cost of resolving alarms taken into account. Hencethe
expected total running time of the Hellman tradeoff may be written as

T =
l

∑
i=1

(

1− Hcrmt
N

)i−1(

1+
Hmsr

6

)

t.

The summation index here appears only in the first multiplicative factor, and we can easily
check that

l

∑
i=1

(

1−Hcrmt
N

)i−1
=

N

Hcrmt

{

1−
(

1− Hcrmt
N

)l}

≈ t
HcrHmsr

{

1−exp
(

−Hcr
mtl
N

)}

=
1−e−HcrHpc

HcrHmsr
t.

The running time can now be rewritten as

T =
1−e−HcrHpc

HcrHmsr

(

1+
Hmsr

6

)

t2. (16)

Since the storage isM = ml, we have

M2T =
1−e−HcrHpc

HcrHmsr

(

1+
Hmsr

6

)

(mtl)2 =
1−e−HcrHpc

HcrHmsr

(

1+
Hmsr

6

)

H
2
pcN

2,

which is equal to what is claimed. ⊓⊔
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Before continuing, we note that the timeT, computed in the proof as (16), counts
the number of one-way function computations, and includes the efforts for resolving false
alarms. Since the number of table lookups will be smaller, wemake this more explicit.

Lemma 27 The full online processing of the Hellman tradeoff, that usethe parameters m,
t, and l, is expected to require

t2 1−e−HcrHpc

HcrHmsr

lookups to the Hellman tables.

Proof The i-th Hellman table is processed if and only if all previous tables have failed in
returning the correct inverse and processing of each table requirest table lookups. Hence,
the expected total number of table lookups is

l

∑
i=1

(

1− Hcrmt
N

)i−1
t =

1−e−HcrHpc

HcrHmsr
t2,

as claimed. ⊓⊔
We have so far secured access to the pre-computation cost, the success probability, and

the tradeoff performance of the Hellman tradeoff. It remains to discuss the efficient use of
storage. The three approaches to storage reduction, discussed in Section 5.3, remain valid
for Hellman tradeoffs and an analysis of the ending point truncation method is given below.
The concept of probability of truncated match, explained for the DP tradeoff, will be carried
over to the Hellman tradeoff.

Lemma 28 Let us assume the use of ending point truncation with the truncated match prob-
ability set to 1

r . The number of extra one-way function invocations induced by truncation
related alarms is expected to be

t
mt
2r

,

for each Hellman table.

Proof Fix a random functionF : N →N and suppose that we are given a pre-computed
chain of lengtht, generated withF from a random starting point. Now consider a second
chain generated withF from a random starting point. The probability for it to produce an
alarm related to truncation, i.e., a truncated ending pointmatch without a merge with the
first chain, on thei-th iteration, is

(

1− 1
N

)i(1
r
− 1

N

)

≈
(

1− i
N

)(1
r
− 1

N

)

≈ 1
r
.

This is because the firsti nodes of the second chain must be chosen among nodes that are
different from thet pre-ending points of the first chain.

Taking account of allmpre-computed chains, the cost induced by the truncation related
alarms can now be written as

t

∑
i=1

m
r
· (t− i +1)≈ mt2

r

t

∑
i=1

(

1− i
t

) 1
t
.

When 1
t is small, by replacingi

t with u, the above can be approximated with the definite
integral

mt2

r

∫ 1

0
(1−u)du,

which computes tomt2
2r , as claimed. ⊓⊔
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Combining this with what we saw during the proof of Theorem 26, the total online time
required to deal with a single Hellman table can be stated as

t + t
Hmsr

6
+ t

mt
2r

.

The first two terms are of orderΘ(t). After reviewing the arguments concerning ending point
truncation for the DP tradeoff, we see that it is advisable touse ending point truncation that
truncates as much as possible, while satisfying the condition

mt
2r
≪ 1+

Hmsr

6
.

Let us summarize the number of bits required to store each starting and ending point pair.
We shall ignore all constants ofΘ(1) order and be very rough. Each starting point requires
logmbits. Ending points may be truncated so that slightly more than logm+ logt bits remain
without visible side-effects on the online running time. The hash table method allows almost
logm additional bits to be saved per ending point without any lossof information. In all,
logm bits are required for each starting point and slightly more than logt bits are required
for each ending point.

7 Rainbow Tradeoff

In this section, we summarize facts about the rainbow tradeoff. The contents appearing in
the first half of this section are either very easy to prove or trivial extensions to ideas that
have appeared before.

There are two ways of ordering the online phase processing ofmultiple rainbow tables.
In the sequential approach, one fully processes one table before moving onto the next table.
In the simultaneous approach, one searches through the samek-th column of all rainbow
matrices before moving onto the next column. The simultaneous approach is more efficient
in terms of the expected number of one-way function invocations. In practice, handling
multiple tables simultaneously may increase the average table lookup time.

In this work, we assume that thel rainbow tables are processed with the simultaneous
approach. The 1-st iteration refers to the searching ofy = F(x) among the ending points of
all l tables. Thek-th iteration will require(k−1) · l invocations of the one-way function and
l lookups to different tables. Columns of the rainbow matrices are numbered from the 0-th,
containing the starting points, to thet-th, containing the ending points.

Our first claim is an easy consequence of the relationmt = RmsrN that defines the nota-
tion Rmsr.

Proposition 29 The pre-computation phase of the Rainbow tradeoff requiresRpcN one-way
function invocations, where the pre-computation coefficient is

Rpc = Rmsrl .

Contents of the following lemma forl = 1 were already used in [9], but let us rewrite
it here for easy reference. The first statement of this lemma is a trivial extension of a sim-
ilar statement appearing in [12]. As the proof of the first statement, given in the appendix
of [12], makes no mentioning of random functions, we rewriteit here within the framework
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explained in Section 3 of the current paper. The two proofs are essentially the same at the
core.5

Lemma 30 The probability for the first k iterations of the online phaseto fail is

k

∏
i=1

(

1− mt−i

N

)l
,

where m0 = m andmi+1
N

= 1−exp
(

− mi
N

)

. This product may be approximated by

{2N+m(t−k−1)

2N+m(t−1)

2N+m(t−k−2)

2N+m(t−2)

}l
.

Proof The number of distinct nodes expected in each rainbow matrixcolumn is given by the
statedmi . As fully discussed in Section 3.2, there are logical gaps that lead to this claim, but
its use as a good approximation can still be justified. In passing, we remark that the different
reduction functions used at each column do not remove the logical gap and they do not even
provide independence of random function construction between columns.

We can now suppose that a specific one-way functionF has been given, and that the
rainbow matrix constructed fromF containsmi distinct nodes in thei-th column, for each
0≤ i ≤ t. Lety = F(x) be the inversion target. Thei-th iteration of the online phase succeeds
if and only if the hidden answerx is located within the(t− i)-th column. Assuming thatx
was chosen without reference to the rainbow matrix, thei-th iteration fails with probability
(

1− mt−i
N

)

, and allk iterations will fail with the stated probability. Once again, we have
ignored the interdependence between columns.

The second statement is based on the approximation

mi

N
≈ 1

N/m+ i/2
.

This is a very small generalization of Theorem 1 from [1], which treats them= N case. The
proof there can easily be modified to fit the current statement. After rewriting this as

1− mt−i

N
≈ 2N+m(t− i−2)

2N+m(t− i)
,

the sequential cancelations within the product become visible, and we are left with the
claimed approximation. ⊓⊔

We can arrive at the next claim by substitutingk = t into the above lemma and appro-
priately approximating the outcome.

Proposition 31 The success probability of the rainbow tradeoff is

Rps = 1−
( 2

2+Rmsr

)2l
.

Performance of the rainbow tradeoff is compactly expressedby the following theorem.

5 Simplification of the approximation given by Lemma 30, for the special case ofm= N andl = 1, results

in the relation∏t−1
i=c−1

(

1− mi
N

)

≈ c(c−1)
t(t+1)

. We acknowledge that this relation was used multiple times within [1]
and that the authors of the paper are likely to have been awareof the statement given here.
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Theorem 32 The time memory tradeoff curve for the rainbow tradeoff is M2T = RtcN
2,

where the tradeoff coefficient is

Rtc =
l3

(2l +1)(2l +2)(2l +3)

















{

(2l −1)+(2l +1)Rmsr
}

(2+Rmsr)
2

−4
{

(2l −1)+ l(2l +3)Rmsr
}

( 2
2+Rmsr

)2l

















.

Proof Substitutingk = i − 1 into Lemma 30, we know that thei-th iteration is processed
with probability

{ 2N+m(t− i)
2N+m(t−1)

2N+m(t− i−1)

2N+m(t−2)

}l

≈
{(

1− m(i−1)

2N+m(t−1)

)(

1− m(i−1)

2N+m(t−2)

)}l
≈

(

1− Rmsr
i
t

2+Rmsr

)2l
.

The probability of alarm associated with a single chain in a single rainbow matrix at thei-th
iteration may be inferred from [9] to bei+1

N
. Hence, the expected total running time of the

rainbow tradeoff, with false alarms associated with allm rows taken into account, may be
written as

T =
t

∑
i=1

l
{

(i−1)+(t− i +1)
m(i +1)

N

}(

1− Rmsr
i
t

2+Rmsr

)2l

≈ t2l
t

∑
i=1

{ i
t
+

(

1− i
t

)

Rmsr
i
t

}(

1− Rmsr
i
t

2+Rmsr

)2l 1
t
.

This may be approximated by the definite integral

T = t2l
∫ 1

0
u
{

1+Rmsr(1−u)
}

(

1− Rmsru
2+Rmsr

)2l
du,

which computes to

T = t2l

















{

(2l −1)+(2l +1)Rmsr
}

(2+Rmsr)
2

−4
{

(2l −1)+ l(2l +3)Rmsr
}( 2

2+Rmsr

)2l

















(2l + l)(2l +2)(2l +3)R2
msr

(17)

It now suffices to combine this with the storage sizeM = ml and simplify to arrive at the
claim. ⊓⊔

It should be noted that the timeT appearing in the above tradeoff curve gives the count
of one-way function invocations and ignores table lookups.

Lemma 33 The full online processing of the rainbow tradeoff is expected to require

t l
2+Rmsr−2

(

2
2+Rmsr

)2l

(2l +1)Rmsr

lookups to the rainbow tables.
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Proof At the start of proof to Theorem 32, we saw that thei-th iteration is processed with
approximate probability

(

1− Rmsr
i
t

2+Rmsr

)2l
.

Since each iteration requiresl table lookups, it suffices to compute

t

∑
i=1

l
(

1− Rmsr
i
t

2+Rmsr

)2l
≈ t l

∫ 1

0

(

1− Rmsru
2+Rmsr

)2l
du,

to arrive at the expected number of table lookups. ⊓⊔

We now turn to the issue of efficient use of storage. The three approaches to storage
reduction, discussed in Section 5.3, remain valid for rainbow tradeoffs and an analysis of
the ending point truncation method is given below. The concept of probability of truncated
match, used for the DP and Hellman tradeoffs, will also be carried over to the rainbow
tradeoff.

Lemma 34 Let us assume the use of ending point truncation with the truncated match prob-
ability set to1

r . The number of extra one-way function invocations induced by false alarms
related to ending point truncation is expected to be

t2l
m
r

−4+4lRmsr+(2l +1)R2
msr+4

(

2
2+Rmsr

)2l

(2l +1)(2l +2)R2
msr

Proof For exactly the same reason as given in the proof of Lemma 28, the probability for
a randomly generated second chain to produce a truncation induced alarm without merging
with the first chain is

(

1− 1
N

)i(1
r
− 1

N

)

≈
(

1− i
N

)(1
r
− 1

N

)

≈ 1
r
.

After recalling the probability for thei-th iteration to be processed, and taking account of all
theml pre-computed chains, the expected online cost can be written as

t

∑
i=1

(t− i +1) · ml
r
·
(

1− Rmsr
i
t

2+Rmsr

)2l
.

Replacingi
t with u, the above can be approximated by the definite integral

mt2l
r

∫ 1

0
(1−u)

(

1− Rmsru
2+Rmsr

)2l
du,

when 1
t is small, and the claimed value appears when this is computed. ⊓⊔

After reviewing the arguments concerning ending point truncation for the DP and Hell-
man tradeoffs, we can compare the value given by this lemma against the previously com-
puted main online time (17) to conclude that it is advisable to use ending point truncation
that truncates as much as possible, while satisfying the condition

m
r
≪

{

(2l −1)+(2l +1)Rmsr
}

(2+Rmsr)
2−4

{

(2l −1)+ l(2l +3)Rmsr
}(

2
2+Rmsr

)2l

(2l +3)
{

−4+4lRmsr+(2l +1)R2
msr+4

(

2
2+Rmsr

)2l } .
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Note that the right hand side is ofΘ(1) order so that the total online time remains ofΘ(t2)
order when ending point truncation satisfiesm

r = O(1).
Let us summarize the number of bits required to store each starting and ending point

pair. We shall ignore all constants ofΘ(1) order and be very rough. Each starting point
requires logm bits. Ending points may be truncated so that slightly more than logm bits
remain without visible side-effects on the online running time. The hash table method allows
most of the remaining logm bits to be removed from the ending point without any loss of
information. In all, logm bits are required for each starting point and only a very small
number of bits are required for each ending point.

8 Optimal Tradeoff Parameters

In this section, we shall find optimal parameter sets for eachof the three tradeoff algorithms.
Let us present our initial arguments in terms of the Hellman tradeoff. The balance

between time and memory achievable by the Hellman tradeoff is expressed by the curve
M2T = HtcN

2. It is clear that the Hellman algorithm at parameters that bring about a smaller
tradeoff coefficientHtc will require less resources to run. In other words, tradeoffcoeffi-
cient Htc is a measure of the tradeoff efficiency, with a smaller value representing better
tradeoff performance.

The tradeoff coefficientHtc is determined by the parametersm, t, and l . It should first
be noticed that a better tradeoff coefficient should always be achievable, if one decides to
sacrifice the success probability for finding the correct password. Hence, any comparison
between two Hellman tradeoff coefficients, achievable through two different sets of param-
eters, should be done under the condition that they produce the same success probability.

Arguments similar to the above may be made for the DP and rainbow tradeoffs. Hence,
for each of the three algorithms, we shall work to find the smallest tradeoff coefficient
achievable under a fixed requirement on the success rate. This is not yet a comparison be-
tween different algorithms, but only a study of optimal tradeoff coefficient for each separate
algorithm. Such an analysis may certainly seem interestingin view of optimal usage of trade-
off algorithms, but can be of limited value in practice. Parameters achieving better tradeoff
performance may require more pre-computation, and with large scale implementations of
the tradeoff technique, lowering the pre-computation costmay be much more valuable than
achieving better tradeoff performance. Our purpose of locating the optimal tradeoff param-
eters is for its use in the next section, where we compare between different algorithms.

8.1 DP tradeoff

The parameter set that achieves optimal DP tradeoff performance, under a fixed requirement
on the probability of success, is given below.

Proposition 35 Let 0 < Dps < 1 be any fixed value. The DP tradeoff, under any set of pa-
rameters m, t, l, and̂t, that are subject to the relations

mt2 = 1.26453N, l = 1.28007 ln
( 1

1−Dps

)

t, and t̂ = 2.59169t,

attains the given valueDps as its probability of success, and exhibits tradeoff performance
corresponding to

Dtc = 5.49370Dps
{

ln(1−Dps)
}2

,
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as the four parameters are varied. Under any such choice of parameters, the number of
one-way function invocations required for the pre-computation phase is

Dpc = 1.61869 ln
( 1

1−Dps

)

,

in multiples ofN.
The three relations restricting the parameter choices giveoptimal parameters in the

sense that no choice of m, t, l, andt̂ can lead to a tradeoff coefficient smaller than the above
while achievingDps as its probability of success.

Proof Proposition 11 and 12 state the probability of success for DPtradeoffs as

Dps = 1−e−Dcr Dpc = 1−e−Dcr DmsrDnt .

Recalling the definitionDnt = l
t , this relation may equivalently be stated as

l =
1

Dcr Dmsr
ln

( 1
1−Dps

)

t. (18)

Now, referencing Proposition 16, we know that the DP coverage rateDcr = Dcr[Dmsr, t̂/t] may
be treated as a function of the two variablesDmsr and t̂

t . Hence, given anym, t, t̂, andDps, if

we setDmsr =
mt2
N

andDcr = Dcr[Dmsr, t̂/t], and also fixl through relation6 (18), then the DP
tradeoff with these parameters will always achieve successprobability ofDps.

Keeping in mind that we may freely choosem, t, andt̂, and still obtain any requested
success probability, we now work to minimize the DP tradeoffcoefficient

Dtc =

{

(2Dmsr+1)− 8Dmsr

et̂/2t
+

(5+ 3t̂
t − t̂2

2t2
)Dmsr−2

et̂/t
+

Dmsr+1

e2t̂/t

}

1−e−Dcr Dpc

1−e−t̂/t

D
2
pc

Dcr Dmsr
,

as given by Theorem 20. After some regrouping of variables, we can rewrite this as

Dtc = Dtmp

[

Dmsr,
t̂
t

]

·
(

1−e−DcrDpc
)

(−DcrDpc)
2

= Dtmp

[

Dmsr,
t̂
t

]

·Dps
{

ln(1−Dps)
}2

,

where

Dtmp

[

Dmsr,
t̂
t

]

=

{

(2Dmsr+1)− 8Dmsr

et̂/2t
+

(5+ 3t̂
t − t̂2

2t2
)Dmsr−2

et̂/t
+

Dmsr+1

e2t̂/t

}

× 1
(

1−e−t̂/t
)

1

D3
cr

[

Dmsr,
t̂
t

]

1
Dmsr

.

(19)

It is clear that, when the probability of success requirement is fixed, minimizingDtc

is equivalent to finding the minimum ofDtmp[Dmsr, t̂/t]. Note that, even thoughDmsr =
mt2
N

and t̂/t share the parametert, since we are free to setm, t, and t̂ to any value, there are
enough degrees of freedom, and we may treatDmsr and t̂/t as independent variables when
looking for the minimum ofDtmp[Dmsr, t̂/t].

6 Note thatl must be set to an integer. Since the RHS of (18) is rather large, the error to the success
probability, introduced by taking the nearest integer to the RHS value, will be very small.
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Fig. 2 Tradeoff coefficient for DP tradeoff at fixed probability of success (Dtmp = Dtc
Dps·{ln(1−Dps)}2 )

After substitutingDcr[Dmsr, t̂/t], as given by Proposition 16, into the right hand side
of (19), we can use numerical methods to find its minimum. One discovers that the minimum
value ofDtmp = 5.49370 is obtained atDmsr = 1.25453 and̂t/t = 2.59169. The claimed rela-
tion betweenl andt follows from (18), after evaluation of 1

Dcr [Dmsr, t̂/t]Dmsr
at Dmsr = 1.25453

and t̂/t = 2.59169. The final claim concerning the pre-computation cost follows from an
evaluation based on Proposition 11. ⊓⊔

The parameter set achieving minimum tradeoff coefficient for the DP tradeoff is visible
through Figure 2. It plotsDtmp = Dtc

Dps{ln(1−Dps)}2 , which is given by (19), as a function of

variablesDmsr andt̂/t.
The tradeoff curve, as given by this proposition, allows us to say more about the tradeoff

than the previously known rough curve ofM2T ≈ N
2. Suppose that, for some fixed set of

parameters, the success rate of the DP tradeoff is not too small, and suppose that one wishes
to increase the success rate, to the extent that the failure rate becomes the square of its
current value. Then, for optimal choice of parameters, theDps factor will change little and
the{ln(1−Dps)}2 factor will increase by a factor of four. Hence, one must allow an increase
in the online time by a factor of four or use twice the current storage. The proposition also
shows that one must endure twice the pre-computation cost toachieve this aim. Of course,
the simplest way of doing this would be to increase the numberof tables by twice, while
keeping all other parameters the same.

While the above result gives the parameters that achieves the optimal tradeoff perfor-
mance, in practical applications, pre-computation is verycostly and one is more likely to
choose a sufficiently largêt, so as not to discard any of the pre-computed results.

Proposition 36 Let 0 < Dps < 1 be any fixed value. When the use oft̂ ≫ t is assumed, the
DP tradeoff, under any set of parameters m, t, and l, that are subject to the relations

mt2 = 0.562047N and l = 2.18614 ln
( 1

1−Dps

)

t,

attains the given valueDps as its probability of success, and exhibits tradeoff performance
corresponding to

Dtc = 7.01057Dps
{

ln(1−Dps)
}2

,
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Fig. 3 Tradeoff coefficients for DP tradeoff witĥt≫ t and Hellman tradeoff at fixed probability of success

as the three parameters are varied. Under any such choice of parameters, the number of
one-way function invocations required for the pre-computation phase is

Dpc = 1.22871 ln
( 1

1−Dps

)

,

in multiples ofN.
The two relations restricting the parameter choices give optimal parameters in the sense

that, as long aŝt ≫ t is assumed, no choice of m, t, and l can lead to a tradeoff coefficient
smaller than the above while achievingDps as its probability of success.

Proof The proof is almost identical to that of Proposition 35. The only difference is that we
refer to Proposition 17 to viewDcr as a function ofDmsr and obtain the tradeoff coefficient
from Corollary 21. Through some regrouping of terms we can write

Dtc =
(

2+
1

Dmsr

) 1
D3

cr

(

1−e−Dcr Dpc
)(

D
2
crD

2
pc

)

and by substitutingDcr into the appropriate part ofDtc, we obtain

Dtc =
(

2+
1

Dmsr

)(

√
1+2Dmsr+1

2

)3
Dps

{

ln(1−Dps)
}2

. (20)

It suffices to minimize

Dtmp[Dmsr] :=
Dtc

Dps{ln(1−Dps)}2
=

(

2+
1

Dmsr

)(

√
1+2Dmsr+1

2

)3
,

seen a function of the single variableDmsr. ⊓⊔

In comparison to the previous optimal parameters that utilizest̂ as a free variable, this
version shows less efficient tradeoff performance, but requires less pre-computation. The
behavior of the DP tradeoff coefficient witht̂≫ t, under a fixed requirement for success rate
is given as the left hand side graph of Figure 3. The point of minimum tradeoff coefficient
is marked, together with the position corresponding toDmsr = 1.



41

8.2 Hellman tradeoff

We now turn to the Hellman tradeoffs. This is very similar to the DP tradeoff case that uses
a sufficiently largêt.

Proposition 37 Let 0 < Hps < 1 be any fixed value. The Hellman tradeoff, under any set of
parameters m, t, and l, that are subject to the relations

mt2 = 2.25433N and l = 0.598941 ln
( 1

1−Hps

)

t,

attains the givenHps as its probability of success, and exhibits the tradeoff performance
corresponding to

Htc = 1.50217Hps
{

ln(1−Hps)
}2

,

as the three parameters are varied. Under any such choice of parameters, the number of
one-way function invocations required for the pre-computation phase is

Hpc = 1.35021 ln
( 1

1−Hps

)

in multiples ofN.
The two relations restricting the parameter choices give optimal parameters in the sense

that no choice of m, t, and l can lead to a tradeoff coefficient smaller than the above while
achievingHps as its probability of success.

Proof Since the proof is similar to those of Proposition 35 and 36 weshall be more compact.
Based on Proposition 23 and 24, we may claim the relationl = 1

Hcr Hmsr
ln

( 1
1−Hps

)

t. Reference

to Proposition 25 shows that the Hellman coverage rateHcr = Hcr[Hmsr] may be seen as a

function ofHmsr =
mt2
N

. Hence, given anym, t, andHps, we can setl to an appropriate value
with which the Hellman tradeoff achieves success probability of Hps.

We now work to minimize the Hellman tradeoff coefficient. Thecontent of Theorem 26
may be rewritten as

Htc =
( 1
Hmsr

+
1
6

) 1
H3

cr
Hps

{

ln(1−Hps)
}2

and substitution ofHcr results in

Htc =
( 1
Hmsr

+
1
6

)(

√
Hmsr√

2

e
√

2Hmsr +1

e
√

2Hmsr−1

)3
Hps

{

ln(1−Hps)
}2

. (21)

For a fixed success probability, it suffices to minimize

Htmp[Hmsr] :=
Htc

Hps{ln(1−Hps)}2
=

( 1
Hmsr

+
1
6

)(

√
Hmsr√

2

e
√

2Hmsr +1

e
√

2Hmsr−1

)3
, (22)

which is a function of the single variableHmsr.
One can use numeric methods to identify the minimum valueHtmp = 1.50217, which

appears atHmsr = 2.25433. The two remaining constants appearing in the proposition may
now be obtained through appropriate evaluations. ⊓⊔
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The original Hellman tradeoff, which is set to usemt2 = N and l = t attains a success
probability of 57.68% and the tradeoff curveM2T = 0.7797N2, when the cost of false alarms
are taken into account. In comparison, the choice ofmt2 = 2.2543N2 andl = 0.5160t, rec-
ommended by Proposition 37, givesM2T = 0.6409N2, while achieving the same success
rate. This is visible through the right hand side graph of Figure 3, where the two dots mark
the two parameter choices we have discussed.

The price paid for this better tradeoff performance is the moderate increase in pre-
computation fromN to 1.1630N. Indeed, after combining Proposition 24 and 25 into

Hpc =− ln(1−Hps)

Hcr[Hmsr]
= ln

( 1
1−Hps

)

√
Hmsr√

2

e
√

2Hmsr +1

e
√

2Hmsr−1
, (23)

one can check that the pre-computationHpc[Hmsr] required under any fixed probability of
success is an increasing function ofHmsr. Hence, while any point that is situated to the left
of the minimal point may not be optimal in view of tradeoff performance, it corresponds to
less pre-computation. Depending on the available computational resources, one may choose
to lower pre-computation cost rather than increase the tradeoff efficiency. On the other hand,
increasingHmsr beyond the minimizing value 2.25433 will have bad effects on both the pre-
computation and the tradeoff performance and should be avoided.

Let us briefly return to the DP tradeoff that only utilizes sufficiently larget̂. By combin-
ing Proposition 12 and 17, we can write

Dpc =− ln(1−Dps)

Dcr[Dmsr]
= ln

( 1
1−Dps

)

√
1+2Dmsr+1

2
, (24)

and, as with the Hellman tradeoff, confirm thatDpc is an increasing function ofDmsr. Since
we know from Proposition 36 that the best performance is achieved atDmsr = 0.562047, the
choice ofDmsr < 0.562047 may be reasonable in view of lowering pre-computation cost,
but usingDmsr > 0.562047 should be avoided. In particular, the use ofDmsr = 1 cannot be
justified.

8.3 Rainbow tradeoff

The analyses of optimal parameters for the DP and Hellman tradeoffs were very similar.
Rainbow tradeoff does not allow the same approach because wehave less control over the
parameterl . The number of tablesl used with DP and Hellman tradeoffs are quite large and
we had treatedl as if it were a continuous variable. In the rainbow tradeoff case, the table
count is usually a small integer and we must keep in mind that it takes only discrete values.

Let us start with a fixed number of tablesl . For any given requirement on the success
rate, we can rewrite Proposition 31 as

Rmsr = 2
{( 1

1−Rps

)
1
2l −1

}

(25)

and understand this as a lower bound onRmsr that can be used. It is clear that increasingRmsr

under a fixedl will increase the pre-computation costRmsrlN. One can also work with the
tradeoff coefficientRtc, as provided by Theorem 32, to confirm that increasingRmsr under a
fixed l will reduce the tradeoff efficiency. Hence, under any fixedl , the exact value ofRmsr,
suggested by (25), should be used to achieve the required success rate.
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We can now treatRmsr as a function of the success rate requirementRps, for any fixedl .
After substitutingRmsr, as given by (25), into the tradeoff coefficient of Theorem 32, one
can rewrite it as

Rtc =
4 l3

(2l +1)(2l +2)(2l +3)

×



























{

− (2l +3)+2(2l +1)
( 1

1−Rps

)
1
2l

}( 1
1−Rps

)
1
l

+
{

(2l +1)2−2l(2l +3)
( 1

1−Rps

)
1
2l

}

(1−Rps)



























.

(26)

For each fixedl , this is a function of the single variableRps. A plot of this is given as Figure 4
for table countsl = 1, 2, and 3. The the right hand side box is a magnified partial view of
the left hand side box in logarithmic scale.

Recalling that a smaller tradeoff coefficient implies better tradeoff performance, one can
clearly read from the figure that the use ofl = 1 is optimal when the requirement for success
rate is very low and that the use of successively higher number of tables becomes optimal
as the success rate requirement is made more stringent. We have numerically solved for the
explicit probabilities at which the transition to the next table count should be made and have
recorded this in Table 1.

Let us briefly explain the content of the table with examples.Suppose one aims to
achieve the success probability of 99.9% with the rainbow tradeoff. Since 0.999 sits between
0.998775 and 0.999314, it is optimal to use ten tables. If one is requested toset the proba-
bility of failure to 1

27 , we locate−7 between−6.17353 and−7.08171 and conclude that six
tables would be optimal. To understand the other three columns of the table, let us focus on
the row that sits betweenl = 1 andl = 2. The use of a single table withRmsr = 1.87905, or
the use two tables atRmsr = 0.785335 will both result in the optimal tradeoff coefficient of
Rtc = 1.48026= 20.565848and success rate 73.4166%.

Note that any given success rate requirementRps makes a certain number of tablesl as
optimal, and thel value fixesRmsr through (25). Since the tradeoff coefficient of Theorem 32
is already determined byl andRmsr, and since the relation (25) guaranteesRps success rate,
any parameter set satisfying the mentioned restriction will be optimal in view of the tradeoff
coefficient. Let us gather what we have discussed in a proposition.
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Table 1 Range of success probability requirements for which each table countl is optimal

l Rps log2(1−Rps) log2Rtc Rmsr[Rps, l ↑] Rmsr[Rps, l ↓]
0 0 0

1 0.734166 -1.91140 0.565848 1.87905 0.785335
2 0.886651 -3.14116 2.08082 1.44688 0.874929
3 0.946562 -4.22600 2.88968 1.25878 0.884357
4 0.973305 -5.22729 3.41666 1.14577 0.873341
5 0.986146 -6.17353 3.79818 1.06812 0.856920
6 0.992618 -7.08171 4.09387 1.01079 0.839893
7 0.995992 -7.96295 4.33425 0.966542 0.823891
8 0.997795 -8.82486 4.53663 0.931326 0.809415
9 0.998775 -9.67274 4.71157 0.902658 0.796529

10 0.999314 -10.5104 4.86585 0.878902 0.785129
11 0.999614 -11.3404 5.00406 0.858929 0.775059
12 0.999782 -12.1649 5.12941 0.841927 0.766150
13 0.999877 -12.9850 5.24421 0.827299 0.758246
14 0.999930 -13.8020 5.35019 0.814594 0.751208
15 0.999960 -14.6163 5.44869 0.803466 0.744914

Proposition 38 Let 0 < Rps < 1 be any given fixed value. Locate the table count l from
Table 1 that corresponds to the givenRps and compute

Rmsr = 2
{( 1

1−Rps

)
1
2l −1

}

.

Then the rainbow tradeoff that uses the located l and any parameters m and t satisfying the
relation

mt = RmsrN

attains the given valueRps as its probability of success. The tradeoff performance corre-
sponding to

Rtc =
l3

(2l +1)(2l +2)(2l +3)











{

(2l −1)+(2l +1)Rmsr
}

(2+Rmsr)
2

−4
{

(2l −1)+ l(2l +3)Rmsr
}

(1−Rps)











,

can be observed as m and t are varied under the restriction. With any such choice of param-
eters, the number of one-way function invocations requiredfor the pre-computation phase
is

Rpc = Rmsrl ,

in multiples ofN.
The choice of l through Table 1 and the single relation concerning m and t lead to opti-

mal parameters in the sense that no choice of m, t, and l can result in a tradeoff coefficient
smaller than the above while achievingRps as its probability of success.

To be strictly logical, one must also consider the possibility that allowing the multiple
tables to be of different sizes may lead to better tradeoff coefficients. We have analyzed the
case of three tables with the most general table sizes and came to the conclusion optimal
tradeoff performance is achieved at equal sized tables. Ourmethod of analyzing this pos-
sibility can probability be extended to larger number of tables, but the computations will
be much more complicated than what was presented here. Sincethe examination of the 3-
table case showed that we are not likely to gain anything fromthe more general analysis,
we chose to work with equal sized tables. In comparison, for the case of perfect rainbow
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tables, we have reasons to believe that this extra flexibility will bring about better tradeoff
performance.

Finally, we want to provide an argument that is analogous to what was discussed at the
end of Section 8.2. One can check that

Rpc = Rmsrl = 2l
{( 1

1−Rps

)
1
2l −1

}

(27)

is a decreasing function ofl , for each fixedRps. Hence, use of anl count that is larger than
what is suggested by Table 1 will decrease the pre-computation requirement at the cost of
reduced tradeoff efficiency. This may be preferable in some situations. On the other hand,
use of anl count that is smaller than the optimal count will have bad effects on both the
pre-computation cost and tradeoff efficiency, and should beavoided.

9 Comparison of tradeoff performances

All the tools required for a fair comparison of performancesbetween the tradeoff algorithms
are now ready.

9.1 Conversion of the tradeoff coefficients to a common unit

Discussion of the previous section has made it clear that forany comparison of tradeoff
algorithms to be fair, the algorithms must be made to presentthe same probability of suc-
cess. One must also consider the pre-computation cost required by each algorithm, but this
aspect will be considered later. We are also aware that the tradeoff coefficient is a measure
of tradeoff performance. Hence let us assume that the DP, Hellman, and rainbow tradeoff
algorithms display the respective tradeoff curves

M2
DTD = DtcN

2, M2
HTH = HtcN

2, and M2
RTR = RtcN

2, (28)

at the same success rate. We will discuss how to interpret theratiosDtc : Htc, Dtc : Rtc, and
Htc : Rtc of the tradeoff coefficients as ratios of tradeoff performances.

Unit for T. Let us fist consider the time variableT. The appearance of the time valueTD
in a DP tradeoff curve signifies that there are parameterstD, mD, lD, andt̂D with which the
DP algorithm will display running time corresponding toTD. To be more exact, the expected
online execution time will be that consumed byTD = Θ(t2

D) invocations of the one-way
function and at mostlD = Θ(tD) table lookups. In comparison, the valueTH for the Hellman
tradeoff corresponds toTH = Θ(t2

H) one-way function computations and, as testified through
Lemma 27, table lookups of the sameΘ(t2

H) order.
Hence, even if we are working with two parameter sets for the DP and Hellman tradeoffs

which leads to identical timeTD = TH, the real-world execution time of the two algorithms
will be different. For a fair interpretation of the tradeoffcoefficient ratioDtc : Htc as a ratio of
tradeoff performances, the difference in the time units used by the two algorithms must be
taken into account.

To continue the discussion, we recall the online time complexity of the rainbow tradeoff.
In this case, we can expect the appearance of the time valueTR to call for TR = Θ(t2

R lR) one-
way function computations and, according to Lemma 33, tablelookups of orderΘ(tRlR).
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In both the DP and rainbow tradeoffs, the number of table lookups is of strictly smaller
order than the number of one-way function computations. Hence, in these cases, we may
ignore the time taken by table lookups and treatTD and TR as the count of just one-way
function invocations. In the Hellman case, we can combine (16) and Lemma 27 to conclude
that aTH must be treated asTH one-way function computations and6

6+Hmsr
TH table lookups.

Ignoring any issues concerning the storage countM for the moment, we can state that
to compare the DP or rainbow tradeoff algorithm against the Hellman tradeoff, one should
look at the ratios

Dtc :
(

1+
6

6+Hmsr

single table lookup time
single one-way function computation time

)

Htc

and
(

1+
6

6+Hmsr

single table lookup time
single one-way function computation time

)

Htc : Rtc

rather than the raw ratioDtc : Htc andHtc : Rtc.
If the one-way function is computationally very heavy and all the pre-computed tables

are to reside on the fast online memory during the online phase, then the table lookup time
could be insignificant in comparison to the one-way functioncomputation time. In such a
case, the above ratios would essentially reduce toDtc : Htc andHtc : Rtc. On the other hand, if
huge pre-computed tables are to be accessed through slow network storage and the one-way
function is computationally very light, the above conversion of units will be necessary.

It is clear that when comparing the DP tradeoff against the rainbow tradeoff, no conver-
sion of the time units is necessary. At least when the issue ofthe storage unit is ignored, the
ratioDtc : Rtc is equal to the tradeoff performance ratio.

Unit for M. Let us now discuss the storage unit. In all of the three tradeoff algorithms,
M represents the number of starting and ending point pairs that need to be stored, but the
actual number of bits required to store each table entry willbe different for different trade-
off algorithms. We saw through Section 5.3 that, for the DP tradeoff, slightly more than
logmD bits are required to store a single starting and ending pointpair. On the other hand,
slightly more than logmH+ logtH bits are required for the Hellman tradeoff, and the rainbow
tradeoff requires slightly more than logmR bits to store each table entry.

The implementation environment and tradeoff requirementswill place the choice of
suitable parameters into a certain range, and it is reasonable to assume that the parameters
chosen to be used with each algorithm will be related by

logmD ≈ logmH, logtD ≈ logtH, and logmR ≈ logmD + logtD ≈ logmH + logtH.

Some readers may object that our discussion on the number of bits required for each table
entry makesmD = 2mH a more reasonable choice, but this difference by a factor twois lost in
the approximation when, as in the above assumption, their logarithm values are compared.

Given the same amount of physical storage, the number of table entries that can be
stored by the DP tradeoff will be greater than the number of entries that can be stored by the
Hellman tradeoff by a factor of

logmH + logtH
logmD

≈ 1+
logtD
logmD

≈ 1+
logtH
logmH

.
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Noting that the change in storage affects the tradeoff performance through a square factor,
and ignoring effects of time unit differences for the moment, we can state that, to compensate
for the storage unit differences, the ratio

Dtc :
(

1+
logtH
logmH

)2
Htc

should be used instead ofDtc : Htc for comparison of tradeoff performances. Similarly, ig-
noring the time unit, since we havelogmR

logmD
≈ 1+ logtD

logmD
, the ratioDtc : Rtc should be converted

into

Dtc :
(

1+
logtD
logmD

)2
Rtc.

The remaining ratioHtc : Rtc requires no conversion to deal with storage units, since we have
logmH+ logtH ≈ logmR.

Combined unit conversion.It now suffices to combine the two arguments concerning units
of time and storage to give fair comparisons of different tradeoff algorithms.

Proposition 39 Consider different tradeoff algorithms that are set to run with specific cor-
responding parameters. Suppose that the tradeoff coefficients for the algorithms are given
as Dtc, Htc, andRtc. Then the tradeoff performance ratios between tradeoff algorithms are
given by the ratios

Dtc :
(

1+
6

6+Hmsr

single table lookup time
single one-way function computation time

)(

1+
logtH
logmH

)2
Htc,

Dtc :
(

1+
logtD
logmD

)2
Rtc,

and
(

1+
6

6+Hmsr

single table lookup time
single one-way function computation time

)

Htc : Rtc.

In our further discussions below, we shall mainly work with parameter sets that roughly
satisfy

logmD ≈ logmH ≈ logtD ≈ logtH ≈ logtR ≈
1
3

logN and logmR ≈
2
3

logN.

and also mostly assume that the table lookup time is negligible in comparison to the one-
way function computation time. Under these assumptions, the ratios that need to be studied
are

Dtc : 4Htc, Dtc : 4Rtc, and Htc : Rtc.

Hence, it suffices to compare the values1
4Dtc, Htc, andRtc against each other.

We shall refer to the above situation as thetypical situation, as it often appears during
theoretic developments of the tradeoff technique, but we donot claim this to be typical in
practical applications of the tradeoff technique.

We emphasize that our further discussions given below concerning tradeoff performance
comparisons will only be valid under the typical environment assumption that was just ex-
plained. If the environment and tradeoff performance requirements make parameter choices
such thatmH≫ tH or mH≪ tH more appropriate, or if the table lookup time is not negligible
in comparison to the one-way function computation time, theconclusions will be different.
Still, one will be able to start from Proposition 39 and similarly discuss these other situa-
tions.
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9.2 DP tradeoff versus Hellman tradeoff

The focus of this work is with practical uses of the tradeoff algorithms, and we shall restrict
discussion of the DP tradeoff to the case whent̂≫ t. As discussed in the previous subsection,
it suffices to compare14Dtc againstHtc for a fair comparison between the DP and Hellman
tradeoffs. Note that we are assuming the typical situation explained at the end of the previous
subsection and any conclusion we make could be different under different circumstances.

The contents of Proposition 36 and 37 show that the optimal performances of the two
algorithms are given by

1
4
Dtc = 1.75264Dps

{

ln(1−Dps)
}2

and Htc = 1.50217Hps
{

ln(1−Hps)
}2

.

One may be lead to believe that the Hellman tradeoff, with thesmaller tradeoff coefficient,
will be more efficient, but this is only true when the pre-computation is totally ignored. In
practice, pre-computation cost is the largest barrier to any large scale deployment of tradeoff
algorithms and hard to ignore.

The pre-computation costs required to achieve the above tradeoff performances are

Dpc = 1.22871 ln
( 1

1−Dps

)

and Hpc = 1.35021 ln
( 1

1−Hps

)

.

The pre-computation cost of the DP tradeoff is seen to be lower and we are faced with
the problem of how to compare low tradeoff performance at lower pre-computation against
better tradeoff performance at higher pre-computation cost.

A moment of thought shows that such a comparison can not be objective. It is closely
related to the relative value of the tradeoff performance against the pre-computation effort,
and there is no unit with which to express either of these values. As an extension of this
thought, one must question whether it is reasonable to compare the two tradeoffs at parame-
ters giving their respective optimal tradeoff performances. Non-optimal parameters may be
preferable under many situations in view of lower pre-computation cost.

We can conclude that all we can do is present the range of choices that can be made and
allow the users to make their conclusions based on their situation. The crucial information
that must be displayed to allows easy judgement of which tradeoff is more suitable is the
relation between tradeoff performance and pre-computation cost. This must be done under
each fixed requirement for success rate.

As was previously noted through (24) and (23), when under a fixed probability of suc-
cess, bothDpc andHpc are functions of their respectiveDmsr andHmsr values. The tradeoff
coefficientsDtc andHtc, under a fixed success rate requirement, were similarly expressed as
functions of the correspondingDmsr andHmsr values in (20) and (21).

For a comparison of the DP tradeoff against the Hellman tradeoff, it now suffices to
present the graphs

{(Dpc[Dmsr],
1
4
Dtc[Dmsr]) | Dmsr≤ 0.562047} (29)

and
{(Hpc[Hmsr],Htc[Hmsr]) | Hmsr≤ 2.25433}, (30)

where the bounds onDmsr andHmsr were placed in accordance to the discussion at the end of
Section 8.2. These graphs are given in Figure 5.

Since the two graphs are to be compared at identical success rate requirementsDps= Hps,
we have removed the common parts that depend on the success probability from both of the
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Fig. 5 The tradeoff coefficient14Dtc (dotted) andHtc (dashed) in relation to their respective pre-computation
cost

cases before plotting the graphs. Hence, the graphs do not depend on the success rate and
are valid for all success rate requirements. Both graphs extend further upwards, but the right
ends, corresponding to the optimal tradeoff performances,are clearly marked with dots.

The two graphs are very close to each other. Even though slightly better tradeoff perfor-
mance can be obtained with the Hellman tradeoff at higher pre-computation cost, in practice,
unless parameters far from the typicalm≈ t ≈N

1
3 region are to be used, the DP tradeoff will

be favored in view of less number of table lookups. For example, if the table lookup time
makes1

5Dtc : Htc a more appropriate measure of tradeoff performance ratio than the current
1
4Dtc : Htc, the dotted curve for the DP tradeoff would move down and present itself as a more
advantageous algorithm.

If table lookup time is absolutely negligible in comparisonto the one-way function com-
putation time, there is a small range of parameters with which the Hellman tradeoff can
slightly outperform the DP tradeoff using the same amount ofpre-computation. If table
lookup time is negligible and pre-computation is not to be considered, the Hellman tradeoff
can be somewhat better.

9.3 Rainbow tradeoff versus DP and Hellman tradeoffs

As was discussed in Section 9.1, we assume the typical situation concerning the approximate
range of parameters and table lookup time, and consider comparisons between14Dtc, Htc,
andRtc to be fair.

In addition to the graphs (29) and (30), we need to plot all possible(Rpc,Rtc) points. We
can first check through (27) thatRpc can be seen as a function of the table countl , when
success rate requirementRps is fixed. As for the tradeoff coefficient, equation (26) presents
it as a function of justl , whenRps is fixed. Given any requirement on the success rateRps, it
is now possible to draw the graph

{(Rpc[l ],Rtc[l ]) | l ≥ optimal table count forRps}, (31)

where the optimal table count can be obtained from Table 1. Note that this is no longer a
continuous graph, but a discrete set of points. In the strictsense, previous graphs were also
discrete set of points, but whenN is large, the points will be extremely close to each other.

Unlike our comparison between DP and Hellman tradeoffs, theparts that depend onRps

appearing in the expressions (27) and (26) are not identicalto those appearing in the corre-
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1
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sponding expressions (24), (23), (20), and (21). Hence separate graphs need to be drawn for
each success rate. This is given in Figure 6 for some success rates.

In all of the graphs, one can see that the curve for the rainbowtradeoff sits closer to
the origin than the curves for DP and Hellman tradeoffs. Notethat a graph sitting lower
shows better tradeoff performance and being positioned more to the left implies lower pre-
computation cost. In all the cases except for the ones corresponding to 25% and 50% success
rates, given any position on the curve for either the DP or Hellman tradeoff there is a rainbow
tradeoff position that presents better tradeoff performance at a smaller pre-computation cost.
Hence use of the rainbow tradeoff is definitely advisable in these cases.

The existence of better rainbow position is also mostly truein the 50% case. The excep-
tion is marked with an⊗ on the curve for the Hellman tradeoff. This position is very slightly
to the left of the optimal rainbow position and hence corresponds to less pre-computation
than the optimal rainbow position. At the same time, it is positioned lower than the sec-
ond best rainbow position and hence shows better tradeoff performance than this second
best position. Hence, there can be no rainbow tradeoff parameter set that can replace the
Hellman position marked with an⊗ without at least very slightly sacrificing either the pre-
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computation cost or the tradeoff efficiency. Still, anybodycan agree that this exception is
quite unreasonable and one would normally choose to sacrifice the extremely small amount
of either the pre-computation cost or the tradeoff performance for a somewhat better value
of the other factor.

The 25% case also displays the rainbow tradeoff requiring less pre-computation than
the other two tradeoffs in achieving the equal tradeoff performance, but the awkward excep-
tional position discussed for the 50% can be found here as rather large segments. In addition,
the best performance achievable by the rainbow tradeoff falls short of what is reachable by
the other two algorithms. Hence there may be situations where the DP or Hellman tradeoffs
may be preferable over the rainbow tradeoff, when required to achieve 25% success rate.

The relative advantage of using rainbow tradeoff is clearlyseen to grow with the increase
in the success rate requirement. For the 99% success rate case, it seems almost safe to
say that the rainbow tradeoff is approximately two times more efficient than the other two
tradeoffs in any of their reasonable usages.

In conclusion, the use of rainbow tradeoff is advisable for high success rate requirements
and there may occasionally be low success rate applicationswith special situations where
the other two tradeoffs are preferable. We emphasize once more that this conclusion is only
valid under the typical situation assumption explained in Section 9.1. For example, if we
must work with parameters such that 2 logmD ≈ logtD and 2logmH ≈ logtH, then comparison
of the coefficients1

9Dtc, Htc, andRtc would be appropriate, which would bring the curve for
the DP tradeoff lower, leading to different conclusions.

10 Conclusion

In the first part of this work, we solidified the basis on which analysis of tradeoff algorithms
may be discussed. Logical gaps in common arguments were identified and plausible expla-
nations for ignoring them were given. We next studied the performance of DP, Hellman, and
rainbow tradeoffs, and summarized each as a tradeoff curve that is correct even up to the
small multiplicative factor. These results were used in thelast part of this work to compare
the performance of tradeoff algorithms against each other.

Even though we did provide explicit statements comparing the three tradeoff algorithms,
our conclusions are only true under a certain assumption on the tradeoff situation. We em-
phasize once more that one should not extend our conclusionsto other situations. Rather,
one should see this work as providing the tools that allow fora fair comparison of tradeoff
algorithms, and use these to arrive at their own final judgements.

One conclusion we can provide about the relative performance of different tradeoff algo-
rithms is that any difference in performance will be rather small. The practical inconvenience
of having to align each entry of the pre-computed tradeoff table at a byte boundary has not
been considered in this work, and the performance differences between algorithms can be
so small that such obscure issues may be of more importance inpractice. In the extreme
case, issues as small as which algorithm is easier to implement may affect the choice of
algorithms.

The fact that algorithm performances are not very differentis disappointing to us as au-
thors of this work, but this fact should be relieving to practitioners of the tradeoff algorithm
that are not concerned with small performance differences.Still, even if one decides to ig-
nore small performance differences, graphs of the previoussection show that meaningful
reduction in pre-computation cost can be achieved with onlya small sacrifice to tradeoff
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performance, and being able to take advantage of this knowledge will be of practical impor-
tance.

This work did not consider the use of checkpoints [1], which can be used to reduce the
cost of false alarms. This decision was mostly base on the work [9], where the effect of
checkpoints in reducing the online time of non-perfect Hellman and rainbow tradeoffs was
shown to be quite smaller than 10% at typical parameters. Since its introduction will add
much complication to the analysis, while having only a smalleffect on the final difference
of tradeoff performances, we chose not to consider its use. Still, the effect of checkpoints on
the DP tradeoff has not yet been accurately analyzed, and there is a small possibility that its
behavior on the DP tradeoff will be different from that on theother algorithms.

Analysis of perfect table versions of the tradeoff algorithms analogous to what is given
here also remains to be done, with some partial results available from [1, 9, 13]. Due to the
larger pre-computation cost, the perfect table cases may beof less practical interest, but they
are certainly interesting theoretically.
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