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Abstract. We show that for any elliptic curve E(Fqn), if an adversary
has access to a Static Diffie-Hellman Problem (SDHP) oracle, then by

making O(q1− 1
n+1 ) SDHP oracle queries during an initial learning phase,

for fixed n > 1 and q →∞ the adversary can solve any further instance

of the SDHP in heuristic time Õ(q1− 1
n+1 ). This reduces the security of

elliptic curves defined over Fp2 and Fp4 proposed by Galbraith, Lin and
Scott at EUROCRYPT 2009, should these curves be used in any protocol
where a user can be made to act as a proxy SDHP oracle. Our algorithm
also solves the Delayed Target DHP as defined by Freeman; we provide
further algorithms for solving the Delayed Target DLP, the One-More
DHP and One-More DLP as studied by Koblitz and Menezes in the con-
text of jacobians of hyperelliptic curves of small genus. We correct an
oversight in their analysis, and show that for any group in which index
calculus can be effectively applied, the above problems have a natural
relationship, and will always be easier than the DLP.

Keywords: Static Diffie-Hellman problem, elliptic curves.

1 Introduction

In recent years, there has been a steadily growing appreciation of the existence
of an apparent separation between the difficulty of solving a single instance of
some hard problem, and the difficulty of breaking a cryptosystem whose security
is related to or depends upon it, when used in practice. In 2004 for example,
Brown and Gallant showed that given access to a Static Diffie-Hellman Prob-
lem (SDHP) oracle, in the best case one can compute a static Diffie-Hellman
secret in a group of order n with only O(n1/3) SDHP oracle queries and O(n1/3)
group operations [6]. For cryptographically interesting elliptic curves, i.e., those
for which generic attacks are the best known, this result is in stark contrast to
the time required to compute discrete logarithms, namely O(n1/2). In the pro-
tocols [15, 17] and [7] for instance, a user can be made to act as a proxy SDHP
oracle, thus rendering such systems vulnerable to this attack. So while solving
the SDHP in this case may still be hard, it has lower complexity than the best



discrete logarithm problem (DLP) - and hence Diffie-Hellman problem (DHP) -
algorithms.

In 2006 Cheon rediscovered the Brown-Gallant algorithm when the requisite
information is provided in the guise of the Strong Diffie-Hellman Problem [8].
Cheon also extended the attack to utilise divisors of n + 1 as well as of n − 1,
as with the Brown-Gallant algorithm; indeed both algorithms can be regarded
as instances of the well-known reduction from the DLP to the DHP due to den
Boer, Maurer, Wolf et al., (see [38] for a survey), but with restricted access to
a DHP oracle. Incidently Cheon’s break of the Strong DHP does not in itself
reveal any weakness in the protocols that depend upon it, since the reduction
given in security proofs had until then been in the wrong direction. In the case
of Boneh-Boyen signatures [4], in 2009 Jao and Yoshida proved the reduction
in the reverse direction, thus providing a proof of security, and an attack on
the scheme with complexity O(n2/5+ε), when O(n1/5+ε) signature queries are
performed [30].

For the RSA problem, in 2007 Joux, Naccache and Thomé showed that with
initial subexponential access to an e-th root oracle an attacker can later compute
the e-th root of any element with complexity lower than that required to factor
the modulus [34]. This algorithm was then adapted to solve the SDHP in finite
fields [32], with similar efficiency improvements.

It is therefore natural to ask whether initial access to an SDHP oracle can
aid in solving later SDHP instances faster than solving the DLP in the context
of elliptic curves? Depending on the divisors of n ± 1, one can always use the
Brown-Gallant-Cheon algorithm to reduce the computational complexity at the
cost of making SDHP oracle queries. However for elliptic curves defined over
extension fields Fqn , we present a family of algorithms which for fixed n > 1 and
q → ∞ requires potentially far fewer oracle queries and far less computation.
We also present a subexponential SDHP algorithm for a family of finite fields.
In all cases, the resulting SDHP algorithm is nearly a square root faster than
the fastest known DLP algorithm.

As exemplified in the case of the Strong DHP and Cheon’s algorithm, there
has also been a growing appreciation of the fact that in some security proofs,
the reduction to a hard problem is often in one direction only, which means
algorithms that solve the resulting hard problem do not result in a break of the
system. Koblitz and Menezes have studied this situation in detail [35] and have
given examples of groups for which the expected relations between the difficulty
of such problems arising from a variety of protocols do not appear to behave as
one expects (see also [36, 37]). We point out a simple oversight in their analysis
and show that in the context of any group in which index calculus is effective,
i.e., provides the best known algorithm for the given problems, which includes
jacobians of hyperelliptic curves and elliptic curves over extension fields, the
aforementioned problems do indeed have natural relationships. Not only does this
alter their conclusions significantly, but this enables us to argue that there exist
numerous cryptographically interesting groups for which some cryptographically
interesting problems will always be easier than the DLP. Hence should reductions
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in the reverse direction be found, the security assurances provided by these
groups will most likely be weaker than desired.

The sequel is organised as follows. In §2 we recall the SDHP. In §3 we motivate
our main idea, present our basic algorithm, and analyse asymptotic variants of
it. Then in §4 we detail existing proposals in the literature that are vulnerable
to our attack. In §5 we give a full account of our experimental implementation
at the 128-bit security level for extension degrees n = 2, 3, 4 and 5, and assess
their impact on the above curves. In §6 we present algorithms for three other
problems which arise in cryptographic protocols and analyse their impact, and
make some concluding remarks.

2 The Static Diffie-Hellman Problem

Let G be a cyclic group of prime order p, and let g be fixed generator of G. The
classical Diffie-Hellman problem in G can be stated as follows [12]:

Problem 1. (DHP): Given g and random gx and gy, find gxy.

In Diffie-Hellman (DH) key agreement between two parties, Alice chooses
a random secret x ∈ Z/pZ and computes gx, while Bob chooses a random se-
cret y ∈ Z/pZ and computes gy, which are then exchanged. Upon receipt each
party computes the shared secret gxy by exponentiating the other party’s group
element by their own secret. A fundamental security requirement of DH key
agreement is that the DHP should be hard.

Should Alice for any reason repeatedly reuse the same secret, x = d say,
then the resulting problem is a strict subproblem of the DHP. This problem is
referred to as the Static DHP, which we state as follows:

Problem 2. (SDHPd): Given fixed g and gd, and random gy, find gdy.

Note that this situation need not just arise as an efficiency measure during
multiple DH key agreements (Alice need only compute gd once and reuse this
value for multiple key agreements), but may also arise in text-book El-Gamal
encryption [15], Ford-Kaliski key retrieval [17] and Chaum-Van Antwerpen’s
undeniable signatures [7].

As in [6] we define an oracle for solving the SDHP as follows:

Definition 1. (SDHPd Oracle). Let G be a cyclic group of prime order p, writ-
ten additively. Let d ∈ Z/pZ be arbitrary. An SDHPd oracle (with respect to G)
computes the function δ : G → G defined by:

δ(X) = dX.

We now consider how to solve the SDHP when G = E(Fqn).
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3 An SDHP Algorithm for E(Fqn)

In this section we motivate and present our algorithm for solving the SDHP in
the present context.

The key observation in [34] is that if one is able to define a suitable ‘factor
base’ in the group under consideration, i.e., a relatively small subset of group
elements over which a non-negligible proportion of all group elements can be
‘factored’ via the group operation, then it is possible to solve the SDHP with
input an arbitrary group element, given knowledge of the action of the SDHP
oracle on the factor base elements alone. This follows from the simple fact that
if in an additively written group G we have R = P1 + · · ·+ Pn, with Pi in some
factor base F , then

SDHPd(R) = dR = dP1 + · · ·+ dPn.

Note that if an arbitrary group element R is not expressible over the factor base,
then by adding random elements Pr ∈ F to R and testing expressibility, one can
produce an element R + Pr which factors over F , thus permitting the SDHP
to be solved as before. Therefore a good factor base over which a non-negligible
proportion of elements may be expressed, combined with randomisation, enables
one to solve the SDHP for arbitrary group elements.

Observe that in contrast to the DHP, for the SDHP one does not need to
know d in order to compute it’s action on an arbitrary element of G, and the
implicit information ‘leaked’ via the SDHP oracle calls enables one to solve the
SDHP using the above observation more readily than one is able to factor a
modulus in RSA, or solve the DLP in Fp, for example, for which there is no such
information. This same idea is also applied in both [32] and [35].

When G is the multiplicative group of a finite field, the problem of how
best to construct a factor base, and how to express arbitrary elements over such
a factor base is well studied [33, 31, 32]. For finite fields there exists a natural
notion of size for elements, or equivalently a norm function, given by either the
absolute value of an element for prime fields, or the degree of an element for
extension fields, or a combination of both depending on the algorithm being
used to generate multiplicative relations. A norm function imbues a notion of
smoothness for a group and those elements of small norm generate more group
elements than those elements of larger norm, hence the best choice for a factor
base is those elements of norm up to some bound.

In the context of elliptic curves over prime fields, there does not appear to
be a utilisable notion of norm that enables the selection of a factor base that
generates a higher proportion of group elements than any other, nor a means
by which to factor elements over one should one be chosen. It is precisely this
issue that has so far precluded the discovery of a successful native index calculus
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algorithm for computing discrete logarithms on such curves1, which is why they
are so attractive from a security perspective.

For elliptic curves over extension fields, the story is very different. While the
‘Weil descent’ methodology [19, 25, 28] has proven successful for solving or weak-
ening the DLP in some cases, this involves mapping to a generally larger group,
which although possessing a natural factor base, does not allow the requisite
SDHP oracle queries to be made on the preimages of the factor base elements,
since in general such preimages will not exist. There does however exist a notion
of smoothness for such elliptic curves, as remarkably discovered by Gaudry [24].

3.1 Gaudry’s insight

Developing upon an intriguing idea due to Semaev [43], in 2004 Gaudry showed
how to define a useful factor base for E(Fqn), over which elements can be ‘fac-
tored’, or more properly, decomposed, which leads to a an index calculus algo-
rithm for computing logarithms over these curves. For fixed n > 1 and q →∞,
the algorithm has complexity O(q2−

2
n ), which is much faster than the Pollard

rho complexity O(qn/2).
We begin by recalling Semaev’s Summation Polynomials.

Definition 2. For char(Fq) > 3 let E be an elliptic curve defined over Fqn

by the equation y2 = x3 + ax + b. The summation polynomials fn of E are
defined by the following recurrence, with initial values for n = 2 and 3 given by
f2(X1, X2) = X1 −X2, and

f3(X1, X2, X3) = (X1 −X2)2X2
3 − 2((X1 +X2)(X1X2 + a) + 2b)X3

+((X1X2 − a)2 − 4b(X1 +X2)),

and for n ≥ 4 and 1 ≤ k ≤ n− 3,

fn(X1, . . . , Xn) = ResX(fn−k(X1, . . . , Xn−k−1, X), fk+2(Xn−k, . . . , Xn, X)).

While this definition may appear rather mysterious, Semaev derived the above
formulae by insisting that fn satisfies the following property, which relates fn to
the addition law on E.

Theorem 1. Let E be an elliptic curve over a field k, n ≥ 2 and fn its n-th
summation polynomial. Let x1, . . . , xn be n elements of an algebraic closure k̂ of
k. Then fn(x1, . . . , xn) = 0 iff there exists an n-tuple (y1, . . . , yn) of elements in
k̂ such that for all i, Pi = (xi, yi) is a point on E and

P1 + · · ·+ Pn = O.
1 There are of course attacks that apply to a very small minority of elliptic curves [39,

20, 44, 42, 41], though these are well understood and are easily avoided, or in the case
of pairing-based cryptography, which relies on curves which are susceptible to [39,
20], are employed.
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One can therefore see immediately that fn provides an encoding for all sets
of n points on a given curve whose sum is the identity element. For an elliptic
curve E over a prime field Fp, Semaev proposed setting the factor base to be the
set be all points on E whose abscissa have magnitude less than p1/n. Then one
computes random multiples of some base point P , say Ri = riP , and attempts
to write each such Ri as a sum of n points in the factor base. To do this one
need only solve

fn+1(x1, . . . , xn, xRi) = 0. (1)

By symmetry, one expects this to be possible for a proportion 1/n! of points Ri,
and when O(p1/n) points that decompose have been found (the approximate size
of the factor base) one can obtain their logarithms w.r.t. P via a sparse linear
algebra elimination, which has complexity O(p2/n). Finding the logarithm of an
arbitrary group element is then easy. Therefore, if finding small roots of (1) were
possible, for fixed n ≥ 5 and p→∞ this algorithm would be faster than Pollard
rho.

Unfortunately, finding such small roots, at least for more than two vari-
ables [9], appears hard. Gaudry’s insight was to observe that for elliptic curves
over extension fields, if one uses a factor base consisting of points whose abscissae
form a one-dimensional subvariety of E(Fqn), then the Weil restriction of scalars
of equation (1) from Fqn to Fq forms an algebraic system of n equations in n
indeterminates, which is nearly always zero-dimensional and which can be solved
via elimination theory, Using a ‘double large prime variation’ [26] this leads to a
DLP algorithm with complexity O(q2−

2
n ). We are now ready to present the basic

version of our algorithm, in which we detail how this Weil restriction approach
works.

3.2 Basic SDHP Algorithm

Let E be an elliptic curve whose field of definition is Fqn . We define a factor
base F à la Gaudry as follows:

F = {P = (x, y) ∈ E(Fqn) | x ∈ Fq}.

On heuristic grounds, one expects |F| ≈ q, see [24]. For each P ∈ F we make an
oracle call to the SDHP-oracle, to give SDHPd(P ) = dP .

For an arbitrary point R ∈ E(Fqn), the goal is to find dR. We attempt write
R as a sum of n elements of F , i.e.,

R = P1 + · · ·+ Pn.

By symmetry, one expects the proportion of elements expressible in such a way
to be approximately 1/n!. To perform this decomposition one uses Semaev’s
summation polynomial fn+1, and attempts to solve

fn+1(x1, . . . , xn, xR) = 0 ∈ Fqn . (2)
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Note that the expression on the left of equation (2) involves the defining coeffi-
cients of the curve E, and the abscissa xR, all of which are in Fqn . Assume that
the extension Fqn/Fq has the polynomial basis {1, t, . . . , tn−1}. Then each one
of the n coefficients of powers of t must be zero. Since each of the n abscissae
xi are in Fq, equation (2) defines a variety with n equations in n indeterminates
over Fq, which we solve via a Grobner basis computation, see §5.

If there is a solution (x1, . . . , xn) to the system (2), then one needs to compute
all 2n possible combinations ±P1 ± · · · ± Pn for the corresponding ordinates in
order to find the correct combination which sums to R. Then the solution to the
SDHP for R is immediate:

SDHPd(R) = dR = dP1 + · · ·+ dPn,

where all the terms on the right hand side are already known, due to the oracle
queries on F .

If a solution does not exist, then one adds to R a random element Pr ∈ F
(or any linear combination thereof) and attempts to decompose this point once
again. One expects this to succeed after approximately n! attempts. When it
does we have the following equation:

R+ Pr = P1 + · · ·+ Pn,

which implies that

SDHPd(R) = dR = dP1 + · · ·+ dPn − dPr,

where again all the terms on the right hand side are already known. Hence our
SDHPd instance is solved.

3.3 Discussion

Our first observation is that the above algorithm and this discussion of it are
entirely heuristic; however we believe that the algorithm and its complexity can
be made completely rigorous using the results of Diem [10, 11], should one choose
to do so, see §3.4.

Our second observation - which is fundamental to the complexity of the
algorithm - is that in contrast to the DLP, there is no linear algebra elimination,
since only a single relation is sought. So once the initial oracle querying phase
is complete, the complexity of the algorithm depends only on the problem of
computing one relation. We therefore analyse this cost now.

For n ≥ 3, Semaev’s summation polynomials {fn} are symmetric and are of
degree 2n−2 in each variable. Hence equation (2) is of degree 2n−1 each variable.
In order to simplify the system greatly, it pays to express fn+1 in terms of the
elementary symmetric functions e1, . . . , en in the variables x1, . . . , xn. We then
have a system of n equations in the n indeterminates e1, . . . , en each of which
again has degree bounded by 2n−1 in each variable. In order to solve this system,
we perform a Gröbner basis computation.
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In practice our experiments showed that the Gröbner basis w.r.t the lexi-
cographic ordering always satisfies the so-called shape lemma, i.e., it is of the
following form:

e1 − g1(en), e2 − g2(en), . . . , en−1 − gn−1(en), gn(en), (3)

where gi(en) is a univariate polynomial in en for each i. In general the degree of
the univariate polynomial in en that we obtain will be 2n(n−1) and indeed in our
experiments this is borne out. The complexity of Faugere’s algorithm F4 [16] to
compute this basis is therefore at least

Õ(Poly(2n(n−1))).

Since this is doubly exponential in n, this makes the algorithm practical only
for very small values of n. However for fixed n and q →∞, this is polynomial in
log q.

To find whether or not the system has roots e1, . . . , en ∈ Fq, one extracts the
linear factors of the univariate polynomial gn(en) using the Cantor-Zassenhaus
algorithm and then substitutes each Fq root en into gi(en) to find en−1, . . . , e1.
For each such vector of Fq roots (e1, . . . , en) one tests whether the polynomial

p(x) = xn − e1x
n−1 + e2x

n−2 − · · · − (−1)nen (4)

splits over Fq. If it does then these roots are the abscissae of points in E(Fq),
and there exists a linear combination

ε1P1 + · · ·+ εnPn (5)

with εi ∈ {−1, 1} which sums to R. This step is also polynomial in log q.
On average one expects to have to perform n! such decompositions in order

to find a relation. Therefore the complexity of the our basic SDHP algorithm for
fixed n > 1 and q →∞ is polynomial in log q. This gives the following heuristic
result.

Heuristic Result 1. For any elliptic curve E(Fqn), by making O(q) queries to
an SDHP oracle during an initial learning phase, for fixed n > 1 and q → ∞,
an adversary can solve any further instance of the SDHP in time Õ(1).

Note that prior to the learning phase, the adversary needs to construct the factor
base by testing whether a given abscissa x ∈ Fq gives a point lying on E or not.
We incorporate this computation into the learning phase, since it has the same
complexity of Õ(q). The solving phase then has complexity Õ(1). It is of course
possible to balance the cost of these phases, which we now consider.

3.4 Balancing the setup and relation-finding costs

To balance the cost of the oracle querying phase and the relation finding phase,
one needs to reduce the size of the factor base by some proportion. To this end,
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Let |F| = qα, with 0 < α ≤ 1. Then given the decomposition of a random point
R ∈ E as a sum of points whose abscissa are in Fq, the probability that each
abscissa is in F is qα−1. Assuming these events are independent, the probability
that all n abscissae are in F is qn(1−α). Hence in order to obtain one relation,
one expects to have to perform 1/qn(1−α) = qn(1−α) successful decompositions.

Asymptotically for fixed n > 1 and q → ∞ one can regard the cost of a
decomposition as unital (modulo some log factors) and hence to balance the two
stages α must satisfy:

qα = qn(1−α),

and so α = n/(n + 1) = 1 − 1
n+1 . This gives the following heuristic result as

stated in the abstract.

Heuristic Result 2. For any elliptic curve E(Fqn), by making O(q1−
1

n+1 )
queries to an SDHP oracle during an initial learning phase, for fixed n > 1
and q → ∞, an adversary can solve any further instance of the SDHP in time
Õ(q1−

1
n+1 ).

Observe that there is no possibility (nor necessity) for considering so-called large
primes, i.e., those with absicissa in Fq but not lying in F , since there is no linear
algebra elimination step on the single relation. If we compare the above com-
plexity to that obtained by Gaudry for the DLP - O(q2−

2
n ), which uses a double

large-prime variant - we see that our algorithm for solving the SDHP is nearly a
square root faster. Intuitively this difference in complexity arises from there not
being a linear algebra step in the solution of the SDHP.

We note that Diem has given a rigorous algorithm that is essentially equiv-
alent to Gaudry’s DLP algorithm above [10], which for fixed n ≥ 2 solves the
DLP on any elliptic curve over Fqn in proven expected time q2−2/n(log q)O(1).
We believe his treatment can be adapted mutatis mutandis to transform the
above two heuristic results into theorems, though since it is not the primary
focus of this paper, we have not verified this here.

Observe that in practice the limiting factor is not the decompositions, but
the oracle queries, since these would typically be performed on a single server,
whereas the former can be easily distributed. One can therefore reduce the num-
ber of such queries below the above threshold, at the cost of needing to perform
more decompositions. Such a trade-off is easily optimised, based on the amount
of computing power available, but will nevertheless require an exponential num-
ber of oracle queries, for fixed n and q →∞.

3.5 Subexponential SDHP algorithm via Diem’s algorithm

Diem has also proven the following remarkable result. For n→∞ and assuming
n = O(

√
log q), the DLP over any elliptic curve E(Fqn) can be solved in expected

time qO(1) = eO(log (qn)2/3), see [11]. Thus for a family of finite fields, any elliptic
curve DLP can be solved using a native subexponential index calculus algorithm.

While Diem is not precise in his analysis of the exponents in the complexity
of the constituent parts of the algorithm, it is clear that since for the SDHP
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there is no linear algebra step, one expects a similar improvement over the DLP
algorithm in this context to the fixed n case, i.e., nearly square root, and that
this also can be rigorously proven. This therefore provides an SDHP algorithm
that requires a subexponential number of oracle queries. We leave it as an open
problem to find the precise complexity of Diem’s algorithm, and the resulting
complexity of our SDHP algorithm in this context.

4 Potentially Vulnerable Curves

In this section we consider curves in the literature that are potentially vulnerable
to our attack.

At EUROCRYPT 2009, Galbraith, Lin and Scott proposed the use of spe-
cial elliptic curves over Fp2 and Fp4 [21], which possess efficiently computable
homomorphisms that permit a particularly efficient version of Gallant-Lambert-
Vanstone point multiplciation method [23]. As well as the single bit speed-up of
Pollard rho available on these curves, both the GHS attack [25] and Gaudry’s
attack [24] are considered, and appropriate recommendations are made in light
of these. In particular, for curves over Fp2 , neither of these attacks is faster
than Pollard rho, and so the use of these curves may be considered ‘risk free’.
For curves over Fp4 , in light of the latter attack the authors recommend that
primes of length 80 bits should be used to achieve 128-bit security, rather than
of length 64 bits, although it is stated that this is a very conservative choice,
since Gaudry’s algorithm requires expensive computations, and so potentially
smaller primes could be used. Similarly Hankerson, Karabina and Menezes have
considered the GLS point multiplication method over binary fields of the form
Fq2 [27].

Prior to our attack, the only potential weakness of cryptographically inter-
esting curves over Fp2 would be due to the Brown-Gallant-Cheon attack. In the
best case (from an adversary’s perspective), should the group order ±1 be di-
visible by an integer of size O(p1/3), then the SDHP secret can be computed
in time Õ(p2/3). Such a condition can be easily avoided should this attack be a
concern. For the curves considered in [27], the Weil descent method is analysed
and it is shown that the proportion of susceptible curves is negligible and can be
provably avoided with a feasible computation. However, regardless of the divisi-
bility properties of the group order ±1, the balanced SDHP algorithm from §3.4
achieves a complexity of Õ(p2/3) (and similarly for the binary curves). Assuming
that point decompositions over the factor base can be computed efficiently, this
attack may therefore pose a real threat.

For curves over Fp4 , our attack has complexity Õ(p4/5), which is much faster
than Gaudry’s attack on the DLP, which has complexity Õ(p3/2). Again assum-
ing that point decompositions can be performed efficiently, curves over degree 4
extensions may also be vulnerable.

Also of interest but lesser so are the legacy curves which until recently formed
part of the Oakley Key Determination Protocol, a part of IPSEC. These are the
‘Well Known Groups’ 3 and 4 [29] which are elliptic curves defined over the fields
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F2155 and F2185 , and which have been the target of numerous attempted attacks
via the Weil descent method [45, 25, 22, 40], since their inception.

In the following section we address whether our attack poses a threat to these
systems in practice.

5 Experimental Results

In this section we detail the results of an implementation of our SDHP algorithm
using the computational algebra system MAGMA [5] (V2.16-5), which was run
on an Intel Xeon running at 3.16GHz with 32G of memory. We considered two
sets of curves. The first set consisted of four randomly produced curves of prime
order, each of which were 256 bits in length, for fields of the form Fp2 , Fp3 , Fp4

and Fp5 , see §5.1 and §5.2. These curves were chosen in order to measure how
vulnerable the curves proposed in [21] are to our algorithm. We also provide
estimates for solving the DLP on these curves via Pollard rho and the state of
the art index calculus algorithms.

The second set consisted of four randomly produced curves of order 4 ·p with
p of bitlength 256 over the binary fields F2ln , for n = 2, 3, 4 and 5, so that ln
is as close to 256 as possible. The reason for implementing the attack on these
curves was twofold: firstly to assess the security of the curves proposed in [27];
and secondly to compare the efficiency of the attack with the prime field case,
with a view to assessing whether it is possible to break the SDHP on the Oakley
curves, see §5.3.

While our implementations in all cases are clearly sub-optimal, our goal was
to provide a proof-of-concept implementation. Our results give a reasonable in-
dication of what can be achieved in practice, and indeed provide an upper bound
for the time required to solve the SDHP in each case. With a tailored and op-
timised low-level implementation our attack times could no doubt be improved
significantly.

5.1 Large prime characteristic

For each of n = 2, 3, 4 and 5 we used curves of the form

E(Fpn) : y2 = x3 + ax+ b,

for a and b randomly chosen elements of Fpn , such that #E(Fpn) was a prime
of bitlength 256.

For n = 2, 3 and 4 we computed the symmetrised summation polynomials
f3, f4 and f5 respectively, and all experiments were completed within two hours.
For the computation of f6, we surprisingly ran out of memory, and so instead
independently symmetrised the two f4 polynomials used in the resultant com-
putation to reduce the number of terms, and substituted xR into this partially
symmmetrised version of f6. One can extract the elementary symmetric polyno-
mials from these two independent sets by appropriately recombining them. The
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resulting Gröbner basis computation eventually exhausted the available memory
and so the n = 5 experiments were unfortunately not completed. Without an
accurate idea of how long the Gröbner basis computation might take were we
to have sufficient available memory, we consider finding relations for curves over
these fields to be impractical given our resources at the present time. Note how-
ever that for prime base fields, we know of no proposals in the literature for the
use of degree five extension fields for elliptic curve cryptography. We therefore
include results only for n = 2, 3 and 4, in Table 1.

Table 1. Data for testing and decomposing points for elliptic curves over extension
fields. Times are in seconds.

n log p #fn+1 # symfn+1 T (GB) T (roots)

2 128 13 5 0.001 0.009
3 85.3 439 43 0.029 0.027
4 64 54777 1100 5363 3.68

The column titles in the table denote respectively: the degree of the extension
field; the size of the prime base field in bits; the number of monomials in fn+1;
the number of monomials in fn+1 once symmetrised; the average time required
to perform a Gröbner basis computation; and the average time required to find
the points that sum to the point being decomposed respectively.

As per §3.3 the last of these consists of the extraction of the degree one fac-
tors of the polynomial gn(en) and then substitutes the roots into the remaining
polynomials gi(en) in equation (3). This is followed by the desymmetrisation fac-
torisation (equation (4)) and then computation of the correct linear combination
of factor base elements that sum to P (equation (5)).

As one can see, symmetrisation reduces the size of the system greatly. Note
that the only setup cost comes from computing fn+1 and its symmetrisation; the
final two columns give the average decomposition cost per input point, which
for n = 2 and 3 is over 1000 inputs includes both those that do decompose over
F , as well as those that do not.

For n = 4, since the computation is significantly more costly, we report the
time for one input point only; note that the input system for the Gröbner basis
computation always has the same form but with different coefficients, and hence
one expects this part of the computation to be very consistent. With regards
to the root finding time, the three stages described above took 3.68s, 0.00s and
0.04s respectively, and so the dominant cost is the initial factorisation, which
is necessary whether an input point decomposes or not. Hence we estimate the
average time over uniformly chosen input points to be ≈ 3.68 + 0.04/4! ≈ 3.68s,
since a point decomposes with probability 1/4!.
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5.2 Upper bounds on attack times

From the data in Table 1 and the time required to compute a scalar multipli-
cation, one can compute an upper bound on the time required to carry out the
attack in §3.4. Setting |F| = pα, a minimising α balances the two stages of the
attack, namely the oracle calls, and the relation finding stage. We ignore the
cost of constructing the factor base since this only involves a handful of field
operations and a Legendre symbol computation. A more careful version of the
argument of §3.4 leads to the following equation:

pn(1−α) · n! · (T (GB) + T (roots)) = pα · T (scalar),

where T (scalar) denotes the average cost of a scalar multiplication. With our
implementation the latter costs approximately 0.008s, 0.011s and 0.012s on the
curves defined over Fp2 , Fp3 and Fp4 respectively. Table 2 details the resulting
values of alpha for n = 2, 3, 4 and the corresponding attack times.

Table 2. Attack data for our implementation. Times are in seconds.

n α Attack time Pollard rho

2 0.6701 (2/3) 279.8 2111.3

3 0.7645 (3/4) 259.7 2111.4

4 0.8730 (4/5) 250.5 2111.4

The Pollard rho attack times have been estimated as
√
π · 2256/2 group op-

erations, where the cost of a group operation has been estimated using the
T (scalar) times above, assuming use of the double and add algorithm.

We have incorporated the speed-up afforded by performing random walks on
equivalence classes of points [14, 47] when the set of points {±ψi(P ) : 0 ≤ i < m}
for a given point P are deemed to be equivalent, where ψ is the homomorphism
from [21]. This results in the three curves have virtually identical security.

Pollard rho however is not the fastest asymptotic DLP algorithm in this
context. In the basic index calculus one finds O(p) relations with a linear algebra
cost of O(p2). Assuming the decomposition cost is sufficiently small, one can
reduce the size of the factor base to balance the cost the cost of the two stages,
to O(p2− 2

n+1 ), which is originally due to Harley. In addition, one can also use
single and double large prime variations [46, 26], resulting in complexities of
O(p2− 2

n+1/2 ) and O(p2− 2
n ) respectively.

Our implementation allows one to give upper bounds for the attack times
for each of these approaches, and consequently provides information regarding
what size of p should be chosen to provide 128 bit security, for each n, subject
to our attack implementation. This security level is the length of time required
to compute 2128 basic group operations.
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Note that in the double large prime variation, for the most interesting case
n = 4 the number of relations required is O(p3/2). With our decomposition
implementation, the time for the relation generation stage is p3/2 ·4! ·5366.68s ≈
2113.0s, which is comparable to Pollard rho. Hence for this security level, p of
length 64 bits would appear to be secure.

However, in a real attack the decomposition time could clearly be improved,
necessitating increasing p accordingly to compensate. Furthermore, since the
relation generation stage is more costly than the linear algebra, to balance the
two stages of the algorithm one would need to increase the factor base size
marginally; how this affects the expected runtime we leave as an open problem.

5.3 Characteristic two

For each of n = 2, 3, 4 and 5 we used curves of the form

E(F2ln) : y2 + xy = x3 + b,

for b a randomly chosen element of F2ln , such that #E(F2ln) was a four times a
prime of bitlength 256. Note that this is the form of the Oakley curves [29].

Note that the base fields F2l in each case are not necessarily of prime exten-
sion degree over F2. Since our focus was to compare the effect of characteristic
for fields of a given size with particular small extension degrees, we disregard
any possible DLP weaknesses due to Weil descent for these example curves.

For these curves the summation polynomials are surprisingly simple, and
very sparse, making their computation easy, in contrast to the prime base field
case. Observe that as a result the size of the fi and their symmetrisation is
much smaller than before, faciliting a much faster Gröbner basis computation
for n = 4.

Unfortunately, while promising, for n = 5 we also had insufficient memory
to complete a decomposition, but expect that if both this computation and the
prime field computation completed, this one would be far quicker and would
require far less memory. For n = 2, 3 and 4 the time for a scalar multiplication
was 0.014s. Table 3 details our results.

Table 3. Attack data for testing and decomposing points for elliptic curves over binary
extension fields. Times are in seconds.

n l #fn+1 # symfn+1 Time GB Time roots α Attack time

2 129 5 3 0.000 0.008 0.6672 (2/3) 280.9

3 86 24 6 0.005 0.008 0.7572 (3/4) 260.0

4 65 729 39 247 0.88 0.8575 (4/5) 250.6

5 52 148300 638 N/A N/A N/A N/A

Note that despite the α values being smaller for binary fields - due to faster
decompositions - the attack times are slightly higher, because the fields are 258
and 260 bits in size, as opposed to 256.
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Whether the Oakley curves are immune to this attack remains unclear, but
is a question certainly worthy of further investigation if resources are available.
Incidentally, the field over which the Group 4 curve is defined has already been
shown to be weak in the sense of [40], but only by a small margin in comparison
with Pollard rho.

6 Other Cryptographically Relevant Assumptions

The SDHP algorithm presented in this paper also solves the Delayed Target
DHP (DTDHP), as defined by Freeman [18], which may be phrased as follows:
A solver is given X ∈ G and initial access to an SDHP oracle for the element X;
when the SDHP is removed, the solver is given a random element Y ∈ G and
must solve the DHP for input (X,Y ).

Koblitz and Menezes studied this problem in the context of jacobian’s of
hyperelliptic curves of small genus [35], along with several other problems, in-
cluding the Delayed Target DLP (DTDLP), the One-More DHP (1MDHP) and
the One-More DLP (1MDLP). In the DTDLP, rather than given access to an
SDHP oracle, the solver is given access to a discrete logarithm oracle but the
problem is otherwise identical. In the one-more versions the solver is supplied
with a challenge oracle that outputs random elements of the group, as well as
an SDHP and a DLP oracle respectively. This time however the solver chooses
an integer t and must solve t instances of the SDHP or DLP, but is only allowed
to use the SDHP or DLP oracle at most t− 1 times.

The 1MDHP was first formulated in [3] while the 1MDLP was first formulated
in [1] and [2]. Using their given context as an example Koblitz and Menezes argue
that the two pairs of problems - the DTDHP and DTDLP, and the 1MDHP and
1MDLP - should each be incomparable to one another. However, we point out
that their analysis of the DTDHP and 1MDHP contains an error, since it only
considers the impact of the Brown-Gallant-Cheon algorithm and not the index
calculus methods they have used for studying the DTDLP and 1MDLP. Had they
done so then for jacobians of curves of genus ≥ 3, the complexity for the delayed
target problems would be identical, and similarly for the one-more variants.

Indeed, taking the basic SDHP algorithm presented in §3.2, one sees that by
changing the SDHP oracle calls to DLP oracle calls, one obtains an otherwise
unaltered algorithm and hence their complexities are the same. Similarly any
variation in factor base size will give rise to algorithms of the same complexity;
the oracle calls themselves are not relevant to the structure of the algorithm,
so it should be clear that for any group in which one can identify and use a
factor base to generate relations, the DTDHP and DTDLP will have identical
complexities, relative to the algorithm under consideration. Exceptions to this
statement arise when other algorithms such as the BGC algorithm apply for
just one of the problems, or are generic, i.e., do not exploit any representational
properties of the group.

Similarly for the one-more problem variants, in our context we have the
following simple algorithm. We choose the same factor base as in §3.2, and
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perform |F| oracle calls on its elements. Then for each of the |F| + 1 challenge
elements, we solve the appropriate problem exactly as before. The only difference
between the one-more and the delayed target problems is that for the one-more
variants we must solve |F|+ 1 such challenges, and not just one. If we perform
the analysis of §3.4 once more we find that the optimal size of F is given by
α = 1, exactly as in §4.5 of [35]. Again either oracle can be used for a given
relation and so the 1MDHP and 1MDLP have the same complexity, and the
same argument as before implies that this observation holds for all groups in
which index calculus is effective, i.e., is the best available algorithm.

So we have the rather curious situation that even though one can not neces-
sarily find a natural reduction between two problems, the presence of an index
calculus algorithm implies that any representation-specific algorithm that solves
one problem, can be used to solve the other automatically. Note that the BGC
is generic and hence is not representation-specific.

One should perhaps therefore conclude that these pairs of problems do have
a very natural relationship, for elliptic curves over extension fields and for jaco-
bians of hyperelliptic curves of small genus, and indeed any group that permits
index calculus. Furthermore, due to the algorithms specified, one can also con-
clude that in the prescence of index calculus algoithms, all four of these problems
(as well as the SDHP) are easier to solve than the DLP, whenever index calculus
is effective.
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