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Abstract

In this paper, we propose a class of 1-resilient Boolean function with optimal
algebraic degree and high nonlinearity, moreover, based on the conjecture proposed in
[4], it can be proved that the algebraic immunity of our function is at least suboptimal.
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1 Introduction

Symmetric crypto-systems are commonly used in encrypting and decrypting communica-
tions. Stream ciphers is a popular and traditional symmetric system, in which there are
two usual models, the filter model and the combiner model, both models have a critical
part—-boolean functions. To resist known attacks, there have been many criteria for de-
signing boolean functions, such as balanced-ness, a high algebraic degree, a high nonlinear-
ity and a high correlation immunity. The concept of correlation immunity was proposed
by Siegenthaler, then Xiao and Massey gave a simple spectra characterization[11]. For
this reason, many papers discussed functions with high nonlinearity and high-order corre-
lation immunity, and there have been many constructions [14, 15, 16, 17], but many are
Maiorana-McFarland like functions. When n is small, some resilient functions with max-
imal nonlinearity have been obtained[18, 19, 20]. Moreover, the recent algebraic attacks
proposed by Courtois and Meier[1, 2, 3, 6] have received the world’s attention, then the al-
gebraic immunity of boolean functions has been introduced, and the study of annihilators
of boolean functions become important. Well, designing a boolean function to meet all
criteria is really a challenge. An infinite class of boolean functions with optimum algebraic
immunity, optimal algebraic degrees and very high nonlinearity, were proposed by Carlet
and K.Feng in[10]. Very recently, Tu and Deng proposed in [4] a class of algebraic immu-
nity optimal functions of even number variables under an assumption of a combinatoric
conjecture, the nonlinearity of these functions were even better than functions proposed
in [10]. Although Carlet proved in [21] that the tu-deng function was weak against fast
algebraic attacks, he could repair this weakness through small modifications. However,
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among all the main designing criteria of boolean functions, the correlation immunity was
ignored by tu-deng function.

In this paper, we propose an infinite class of boolean functions when the number of
variables n is even, which seems to satisfy all the main cryptographic criteria: 1-resilient,
algebraic degree optimal, high nonlinearity, and based on the conjecture in [4], the algebraic
immunity is at least suboptimal.

2 Preliminaries

Let n be a positive integer. A Boolean function on n variables is a mapping from Fn
2

into F2, which is the finite field with two elements. We denote Bn the set of all nonzero
n-variable boolean functions.

Every Boolean function f in Bn has a unique representation as a multivariate polyno-
mials over F2

f(x1, x2, ..., xn) =
∑

I⊆{1,...,n}
aI

∏

i∈I

xi

where the aI ’s are in F2, such kind of representation is called the algebraic normal form
(ANF). The algebraic degree deg(f) of f is defined to be the maximum degree of those
monomials with nonzero coefficients in its algebraic normal form. A Boolean function f is
called affine if deg(f) 6 1, we denote An the set of all affine functions in Bn. The support
of f is defined as supp(f) = {x ∈ Fn

2 : f(x) = 1}, and the wt(f) is the number of vectors
which lie in supp(f). For two functions f and g in Bn, the Hamming distance d(f, g)
between f and g is defined as wt(f + g). The nonlinearity nl(f) of a Boolean function
f is defined as the minimum Hamming distance between f and all affine functions, i.e.
nl(f) = Ming∈And(f, g).

For any a ∈ Fn
2 , the value

Wf (a) =
∑

x∈Fn
2

(−1)f(x)+<x,a>

is called the Walsh spectrum of f at a, where < x, a > denotes the inner product between
x and a i.e.< x, a >= x1a1 + . . . + xnan. If Wf (a) = 0 for 1 6 wt(a) 6 m, then f is
called m-th order correlation immune, this is the famous Xiao-Massey characterization of
correlation immune functions. Moreover, if f is also balanced, we call f is m-th order
resilient. The nonlinearity of a Boolean function f can be expressed via its Walsh spectra
by the next formula

nl(f) = 2n−1 − 1
2
Maxa∈Fn

2
|Wf (a)|.

It is well-known the nonlinearity satisfies the following inequality

nl(f) 6 2n−1 − 2
n
2
−1

when n is even, the above upper bound can be attained, and such Boolean functions are
called bent [7]. Bent function has several equivalent definitions, for instance, a function f
is bent is equivalent to say that supp(f) is a (2n, 2n−1 ± 2

n
2
−1, 2n−2 ± 2

n
2
−1)-difference set

in the additive group of Fn
2 .
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Definition 2.1. [6] The algebraic immunity AIn(f) of a n-variable Boolean function
f ∈ Bn is defined to be the lowest degree of nonzero functions g such that fg = 0 or
(f + 1)g = 0.

3 Main Results

In this section, we give our construction which originates from Dillon’s partial spread
function in [8] and discuss its main cryptographic properties.

Construction 3.1. Let n = 2k and F2k be a finite field, α is primitive in F2k . Let

0 6 s 6 2k − 2 and A = {0, 1, α, α2, · · ·, α2k−1−1}, we define a n-variable function f :
F2k × F2k → F2, whose support supp(f) is constituted by the following four parts:

• {(x, y) : y = αix, x ∈ F∗
2k , i = s + 1, s + 2, · · ·, s + 2k−1 − 1}

• {(x, y) : y = αsx, x ∈ A}
• {(x, 0) : x ∈ F2k \A}
• {(0, y) : y ∈ F2k \ αsA}

Proposition 3.2. Let function f be defined as in 3.1, then f is 1-resilient.

Proof. The balanced-ness of f is trivial, we need to verify that Wf (a) = 0 for each a
satisfying wt(a) = 1. When a, b are not all zeros, we have

Wf (a, b) =
∑

(x,y)∈F
2k

(−1)f(x,y)+tr(ax+by)

= −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

we can see

∑

(x,y)∈supp(f)

(−1)tr(ax+by) =
t+2k−1−1∑

i=t+1

∑

x∈F∗
2k

(−1)tr((a+bαi)x) +
∑

x∈A

(−1)tr((a+bαt)x)

+
∑

x∈F
2k\A

(−1)tr(ax) +
∑

y∈F
2k\αsA

(−1)tr(by)

We consider Walsh spectra of two kinds of points:

1. a 6= 0,b = 0, then

∑

(x,y)∈supp(f)

(−1)tr(ax+by) = 1− 2k−1 + 2k − |A|

+
∑

x∈F
2k\A

(−1)tr(ax) +
∑

x∈A

(−1)tr(ax)
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2. b 6= 0,a = 0, then

∑

x,y∈supp(f)

(−1)tr(ax+by) = 1− 2k−1 + 2k − |A|

+
∑

y∈F
2k\αsA

(−1)tr(by) +
∑

y∈αsA

(−1)tr(by)

Combining with the cardinality |A| = 2k−1+1, then it is obvious to see that f is 1-resilient.

From Siegenthaler’s inequality[22], we know that for a n-variable, m-th order resilient
boolean function g, it should be satisfied that m + deg(g) 6 n − 1. Concerning to our
construction, we will see that f in 3.1 is algebraic degree optimal.

Proposition 3.3. Let function f be defined as in 3.1, then deg(f) = n− 2.

Proof. Note that f is a ps−-like function. Let g, h : F2k × F2k → F2, we define g by
supp(g) = {(x, y) : y = αix, x ∈ F∗

2k , i = s, s + 1, · · ·, s + 2k−1 − 1} and h by supp(h) =
{(0, 0)} ∪ {(x, y) : y = αsx, x /∈ A} ∪ {(x, 0) : x /∈ A} ∪ {(0, y) : y /∈ αsA}, then f = g + h,
and g ∈ ps−, we know deg(g) = k from [7], to prove deg(f) = n−2, we only need to prove
deg(h) = n− 2. By Lagrange’s interpolation formula, we have

h(x, y) = (x2k−1 + 1)(y2k−1 + 1) +
∑

a/∈A

((x + a)2
k−1 + 1)((y + αsa)2

k−1 + 1)

+
∑

a/∈A

((x + a)2
k−1 + 1)(y2k−1 + 1) +

∑

b/∈αsA

(x2k−1 + 1)((y + b)2
k−1 + 1)

by collection of like terms, then

h(x, y) = x2k−1y2k−1+
∑

a/∈A

(x+a)2
k−1(y+αsa)2

k−1+x2k−1(y+αsa)2
k−1+(x+a)2

k−1y2k−1

Since |A| = 2k−1 + 1, then the coefficient of x2k−1y2k−1 is zero, and then

h(x, y) =
∑

a/∈A

2k−1∑

j=1

(
2k − 1

j

)
x2k−1−j(y + αsa)2

k−1 +
∑

a/∈A

2k−1∑

j=1

(
2k − 1

j

)
x2k−1−jy2k−1

=
∑

a/∈A

2k−1∑

j=1

(
2k − 1

j

)
x2k−1−j

2k−1∑

l=0

(
2k − 1

l

)
y2k−1−l(αsa)l

+
∑

a/∈A

2k−1∑

j=1

(
2k − 1

j

)
x2k−1−jy2k−1

=
∑

a/∈A

2k−1∑

j=1

2k−1∑

l=1

(
2k − 1

j

)(
2k − 1

l

)
x2k−1−jy2k−1−laj(αsa)l
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It is easy to see deg(h) 6 n− 2. Now consider the coefficient of x2k−1−1y2k−1−1

∑

a/∈A

αsa2 = αs(
∑

a/∈A

a)2 = αs(
1 + α2k−1

1 + α
)2

which is apparently nonzero in F2k , then deg(h) = n− 2.

Owning to the similarity with Dillon’s ps− function, f must have high nonlinearity, in
fact, we can give a lower bound easily on nonlinearity from result in[10].

Proposition 3.4. Let function f be defined as in 3.1, then nl(f) > 2n−1 − 2k−1 − 3 · k ·
2

k
2 ln2− 7.

Proof. From the above proof we only need to consider

K(a,b) =
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

for (a, b) with a · b 6= 0. By Carlet and K.Feng in [10], we know

|
∑

x∈A

(−1)tr(λx)| 6 k · 2 k
2 ln2 + 2

then we can obtain an upper bound for |K(a,b)| easily:

1. a + bαs = 0, then

|K(a,b)| 6 (2k−1 − 1)(−1) + 2k−1 + 2 · (k · 2 k
2 ln2 + 2)

2. a + bαi = 0 for some i, s < i < s + 2k−1, then

|K(a,b)| 6 2k−1 + 1 + 3 · (k · 2 k
2 ln2 + 2)

3. otherwise
|K(a,b)| 6 −2k−1 + 1 + 3 · (k · 2 k

2 ln2 + 2)

Finally we get

nl(f) > 2n−1 − 2k−1 − 3 · k · 2 k
2 ln2− 7

In fact, we can improve this lower bound according to the method in [23]. From the
following table we can see the nonlinearity of f is satisfying:

n 2n−1 − 2
n
2
−1 nl(f)

4 6 4
6 28 24
8 120 112
10 496 484
12 2016 1996
14 8128 8100
16 32640 32588
18 130816 130760
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Maitra and Pasalic constructed a 8-variable, 1-resilient function with nonlinearity 116
in [20], which was maximal for 1-resilient functions. According the table, when n = 8 our f
has nonlinearity 112, there is a minor difference, while from the conjecture proposed by Tu
and Deng in [4], we discover that the algebraic immunity of our function is also satisfying.
As a cornerstone of the tu-deng function, the conjecture attract many people’s attention,
some papers [12][13] try to attack this problem theoretically and some advances have been
obtained, however, the complete proof remains to be mysterious. Here we briefly describe
this conjecture:

Conjecture 3.5. assume k ∈ Z, k > 1, for every x ∈ Z, we expand x as a binary
string of length k, and denote the number of one’s in the string by w(x), for any t ∈ Z,
0 < t < 2k − 1, let

St = {(a, b)|a, b ∈ Z2k−1, a + b = t mod 2k − 1, w(a) + w(b) 6 k − 1}

then |St| 6 2k−1.

Using the same proof techniques, we can prove that f defined in 3.1 is at least algebraic
immunity suboptimal, first we introduce a simple lemma:

Lemma 3.6. For every 0 < t < 2k−1 , the modular equation a+b = t mod 2k−1, w(a)+
w(b) = k − 1 has at least one pair of solution.

Proof. At first we observe that, if t and t′ belong to a same cyclotomic coset mod 2k −
1, then the modular equations for t and t′ have exactly the same number of solutions.
Without loss of generality we suppose t have following forms:

t = 11 · · · 1︸ ︷︷ ︸
n1

00 · · · 0︸ ︷︷ ︸
n2

1 · · · 1︸ ︷︷ ︸
n3

0 · · · 0︸ ︷︷ ︸
n4

· · · · · · 1 · · · 1︸ ︷︷ ︸
n2r−1

0 · · · 0︸ ︷︷ ︸
n2r

In order to prove the lemma, we only need to construct a pair of a, b to be a solution. If
0 6 a, b < 2k − 1 satisfy a + b = t mod 2k − 1, then w(a) + w(b) = w(t) + s, in which s
represents the number of carry when doing the modular addition. Using this relation we
can construct a pair (a, b) satisfying conditions, let

a = · · ·︸︷︷︸
n1−1

0 1 · · · 1︸ ︷︷ ︸
n2

· · ·︸︷︷︸
n3−1

0 1 · · · 1︸ ︷︷ ︸
n4

· · · · · · · · ·︸︷︷︸
n2r−1−1

0 0 · · · 1︸ ︷︷ ︸
n2r

0

b = · · ·︸︷︷︸
n1−1

0 0 · · · 1︸ ︷︷ ︸
n2

· · ·︸︷︷︸
n3−1

0 0 · · · 1︸ ︷︷ ︸
n4

· · · · · · · · ·︸︷︷︸
n2r−1−1

0 0 · · · 1︸ ︷︷ ︸
n2r

0

It’s not difficult to verify that (a, b) is a solution.

Proposition 3.7. Let n = 2k, then the algebraic immunity of function f in 3.1 is at least
suboptimal i.e AIn(f) > k − 1.

Proof. We need to prove that both f, f + 1 have no annihilators with degrees 6 k − 2.
Let a non-zero Boolean function h(x, y) : F2k ×F2k → F2 satisfy deg(h) < k and f ·h = 0.
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We will prove h = 0. Observe that h can be written as a polynomial of two variables on
F k

2 as

h(x, y) =
∑

i,j

hi,jx
iyj

By deg(h) 6 k − 2 we have hi,j = 0 w(i) + w(j) > k − 1.

h(x, γx) =
∑

i,j

hi,jx
i(γx)j =

2k−1∑

t=0

ht(γ)xt

in which
ht(γ) =

∑

i+j=tmod2k−1

hi,jγ
j , w(i) + w(j) 6 k − 2

Since h(x, y) annihilates f , then ht(γ) = 0 for γ = αi,s + 1 6 i 6 s + 2k−1 − 1, in
other words, ht(γ) has consecutively 2k−1 − 1 roots, by BCH theorem[9], the number of
nonzero coefficients in ht(γ) should be larger than or equal to 2k−1. While according to
the conjecture in [4] and lemma 3.6, if let

S′t = {(a, b)|a, b ∈ Z2k−1, a + b = t mod 2k − 1, w(a) + w(b) 6 k − 2}

then |S′t| 6 2k−1 − 1, a contradiction happens, then h(x, y) = 0. A proof for f + 1 is
completely similar. Then AIn(f) > k − 1.

Remark 3.8. Although we only prove the algebraic immunity of f is suboptimal, by com-
puter investigation we discover that when the number of variables n equals to 6, 8, 10, 12,
the algebraic immunity of f is always optimal. We have tried to prove it, unfortunately
we don’t succeed, we will leave it as an open problem.

4 Conclusion

In this paper, we construct an infinite class of boolean functions when the number of vari-
ables n is even, which seems to meet all the main criteria for designing boolean functions:
1-resilient, algebraic degree optimal, having high nonlinearity and at least suboptimal al-
gebraic immunity under the assumption of conjecture in [4]. We believe that this class of
functions are of both theoretical and practical importance.
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