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Abstract. In a recent work, Mangard et al. showed that under certain
assumptions, the (so-called) standard univariate side-channel attacks us-
ing a distance-of-means test, correlation analysis and Gaussian templates
are essentially equivalent. In this paper, we show that in the context
of multivariate attacks against masked implementations, this conclusion
does not hold anymore. While a single distinguisher can be used to com-
pare the susceptibility of different unprotected devices to first-order DPA,
understanding second-order attacks requires to carefully investigate the
information leakages and the adversaries exploiting these leakages, sepa-
rately. Using a framework put forward by Standaert et al. at Eurocrypt
2009, we provide the first analysis that explores these two topics in the
case of a masked implementation exhibiting a Hamming weight leakage
model. Our results lead to refined intuitions regarding the efficiency of
various practically-relevant distinguishers. Further, we also investigate
the case of second- and third-order masking (i.e. using three and four
shares to represent one value). This evaluation confirms that higher-order
masking only leads to significant security improvements if the secret shar-
ing is combined with a sufficient amount of noise. Eventually, we show
that an information theoretic analysis allows determining this necessary
noise level, for different masking schemes and target security levels, with
high accuracy and smaller data complexity than previous methods.

1 Introduction

Masking (as described, e.g. in [2, 7, 19]) is a very frequently considered solution
to thwart side-channel attacks. The basic idea is to randomize all the sensitive
variables during a cryptographic computation by splitting them into d shares.
The value d− 1 is usually denoted as the order of the masking scheme. As most
countermeasures against side-channel attacks, masking does not totally prevent
the leakages but it is expected to increase the difficulty of performing a success-
ful key-recovery. For example, masking can be defeated because of technological
issues such as glitches [9]. Alternatively, an adversary can always perform a
higher-order DPA (e.g. [10, 13, 23]) in which he “combines” the leakages corre-
sponding to the d shares in order to extract key-dependent information. From



a performance point of view, masking a block cipher implies significant perfor-
mance overheads, because it requires to compute the encryption of the different
shares separately. As a result, an important problem is to determine the exact
security level that it provides in function of the order of the scheme d− 1.

In order to solve this problem, Prouff et al. proposed a comprehensive study
of first-order masking (i.e. second-order power analysis) in [17]. In their paper,
the two leakage samples corresponding to the different shares are first mingled
with a combination function. Next, a (key-dependent) leakage model is used to
predict the output of this function. Eventually, the combined physical leakages
are compared with the key-dependent predictions, thanks to Pearson’s correla-
tion coefficient [1]. Different combination functions are analyzed regarding the
efficiency of the resulting attacks, leading to the following conclusions:

1. For every device and combination function, an optimal prediction function
(or model) can be exhibited, that leads to the best attack efficiency.

2. Following an analysis based on Pearson’s coefficient and assuming a “Ham-
ming weight leakage model”, the “normalized product combining function”
(both to be detailed in this paper) is the best available in the literature.

The first observation is in fact quite natural. Since every device is character-
ized by its leakage function, there is one optimal model to predict these leakages
that perfectly captures their probability density function (pdf for short). And
for every optimal model, there is one way to combine the leakage samples that
leads to the best possible correlation. But the idea of optimal combination func-

tion also leads to a number of issues. On the one hand, as acknowledged by
the authors of [17], their analysis is carried out for a fixed (Hamming weight)
leakage function. Therefore, how the observations made in this context would
be affected by a different leakage function is an open question. On the other
hand, their analysis is also performed for a given statistical tool, i.e. Pearson’s
correlation coefficient. Hence, one can wonder about the extent to which this
statistical tool is generic enough for evaluating second-order DPA.

This second question is particularly interesting in view of the recent results
of [12]. This reference shows that in the context of (so-called) standard first-
order DPA and when provided with the same leakage model, the most popular
distinguishers such as using distance-of-means tests [8], correlation analysis and
Gaussian templates [3] require approximately the same number of traces to ex-
tract keys. Differences observed in practice are only due to statistical artifacts. In
addition, it is shown that the correlation coefficient can be related to the concept
of conditional entropy which has been established as a measure for side-channel
leakage in [20]. Therefore, a natural question is to ask if these observations still
hold in the second-order case. For example, can the correlation coefficient be
used to evaluate the information leakage of a masked implementation?

In this paper, we answer this question negatively. We show that second-order
DPA attacks are a typical context in which the two parts of the framework for
the analysis of side-channel key-recovery of Eurocrypt 2009 lead to different in-
tuitions. First, an information theoretic analysis measures the amount of leakage
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provided by the masked implementation. It quantifies its security limits and re-
lates to the success rate of an adversary who can perfectly profile the leakage
pdf. Second, a security analysis measures the efficiency of one particular dis-
tinguisher. By applying this framework, we exhibit refined intuitions regarding
the behavior of different second-order DPA attacks and combination functions.
We then discuss the impact of these observations in profiled and non-profiled
attack scenarios and confirm our theoretical investigations with practical exper-
iments. We note that our results do not contradict [17] but rather emphasize that
a single distinguisher cannot capture all the specificities of a leakage function.
Eventually, we extend our analysis towards higher-order masking. This allows
us to confirm that, from an information theoretic point of view, increasing the
number of shares in a masking scheme only leads to an improved physical se-
curity if a sufficient amount of noise is limiting the quality of the adversary’s
measurements [2]. Higher-order masking also provides a case for the information
theoretic metric introduced in [20]. We show that this metric can be used to
determine the exact amount of shares and noise required to reach a certain se-
curity level (against worst-case template attacks, exploiting intensively profiled
leakage models), with smaller data complexity than previous methods.

Summarizing, first-order side-channel attacks are a quite simple context in
which (under certain conditions) most popular distinguishers behave similarly,
if they are fed with the same leakage models. As a consequence, it can be sound
to use “one distinguisher for all” in this context. By contrast, second-order (or
higher-order) DPA can be confronted with leakage probability distributions that
can take very different forms (mixtures, typically). Hence, given a certain amount
of information leaked by a masked implementation, and even if fed with the same
leakage models (and combination functions), different statistical tools will take
advantage of the key-dependencies in very different manners. In other words, de-
pending on the devices and countermeasures, one or another attack may perform
better, hence suggesting our title “the world is not enough”.

2 Boolean masking and second-order attacks

Many different masking schemes have been proposed in the literature. Although
they can result in significantly different performances, the application of second-
order attacks generally relies on the same principles, independent of the type of
masking. In the following, we decided to focus on the Generalized Look Up Table
(GLUT for short) that is described, e.g. in [16]. Such a scheme is represented
in the lower left part of Figure 1, using the key addition and S-box layer of
a block cipher as a concrete example. It can be explained as follows. For an
input plaintext xi, a random mask ai is first generated within the device. The
value xi ⊕ ai is generally denoted as the masked variable. Then, the encryption
algorithm (here, the key addition and S-box) are applied to the masked variables,
where s denotes a secret key byte (we will use the term subkey in the following).
Concurrently, some correction terms are also computed such that anytime during
the cryptographic computation, the XOR between a masked variable and its
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corresponding mask produces the original variable. In the case of the GLUT
proposal, a precomputed function Sbox’ is used for this purpose. For example in
Figure 1, the masked S-box output Sbox(xi⊕ai⊕s) can be written as Sbox(xi⊕
s)⊕ bi, where bi denotes an output mask produced by Sbox’.
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Fig. 1. Illustrative second-order DPA.

In practice, the GLUT countermeasure can be implemented in different man-
ners. Mainly, the two S-box computations can be performed sequentially (as
typical for software implementations) or in parallel (as typical for hardware im-
plementations). In order to describe the second-order DPA that we investigate in
this paper, we first use the sequential approach (the parallel one will be discussed
in the next section). Also, we rely on the terminology introduced in [20]. Essen-
tially, the idea of second-order DPA is to take advantage of the joint leakage of
two intermediate computations during the encryption process (i.e. the masked
value and its mask). In the software approach, the computation of these interme-
diate variables will typically be performed in two different clock cycles. Hence,
two leakage samples l1i and l2i corresponding to these computations can be found
in the leakage traces, as in the top of Figure 1. Following the standard DPA
described in [12], the adversary will then work in three (plus one optional) steps:

1. For different plaintexts xi and subkey candidates s∗, the adversary predicts
some intermediate values in the target implementation. For example, one
could predict the S-box outputs Sbox(xi ⊕ s) in Figure 1.

2. For each of these predicted values, the adversary models the leakages. Be-
cause of the presence of a mask in the implementation, this prediction can
use a pdf (where the probability is taken over the masks and leakage noise)
or some simpler function e.g. capturing only certain moments of this pdf.
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3. Optionally, the adversary combines the leakage samples into a single variable.

4. For each subkey candidate s∗, the adversary finally compares the modeled
leakages with actual measurements, produced with the same plaintexts xi

and a secret subkey s. In a second-order DPA, each model is compared
with two samples in the traces. This comparison is independent of all other
points. Consequently, these attacks are referred to as bivariate. In practice,
this comparison is applied to many pairs of points in the leakage traces and
the subkey candidate that performs best is selected by the adversary.

As for the analysis of first-order attacks, comparing different distinguishers re-
quires to provide them with the same leakage samples. However, contrary to the
first-order case and as will be discussed in the following sections, the best pair of
leakage samples is not necessarily the same for all distinguishers. This is because
different distinguishers can take advantage of different leakage pdf with different
efficiencies in this case. In practice, this requires to test all pairs of samples in
the traces (but this means N(N − 1)/2 statistical tests to perform if the traces
have N samples). In this paper, we will generally assume that this best pair of
samples is provided to the attacks we perform (which can be done easily when
simulating experiments and requires significant - but tractable - computational
power when performing attacks based on real measurements).

Finally, we will use the following notations:

– xq = [x1, x2, . . . , xq]: a vector of plaintext bytes.

– aq = [a1, a2, . . . , aq]: a vector of random input mask bytes.

– bq = [b1, b2, . . . , bq]: a vector of random output mask bytes.

– v1i = Sbox(xi ⊕ s)⊕ bi: an intermediate value in the encryption of xi.

– v2i = bi: another intermediate value in the encryption of xi.

– l1q = [l11, l
1
2, . . . , l

1
q ]: a vector of leakage samples corresponding to the first

intermediate values v1i during the encryption process.

– l2q = [l21, l
2
2, . . . , l

2
q ]: a vector of leakage samples corresponding to the second

intermediate values v2i during the encryption process.

– ms∗

q = [ms∗

1
,ms∗

2
, . . . ,ms∗

q ]: a vector containing leakage models (i.e. predic-
tions) corresponding to a subkey candidate s∗ and the plaintexts xq.

In the rest of the paper, these notations (in small caps) will represent sampled
values, while their counterpart in capital letters will represent random variables.

3 Second-order attacks with Pearson’s coefficient

In theory, second-order DPA is possible if the joint probability distributions
Pr[L1

q,L
2

q|Xq, s] are different for different subkey values s. This can be illustrated,
e.g. for a Hamming weight leakage function which is frequently considered in the
practice of side-channel attacks [11] and has been the running example in [17].
It means assuming that the leakage samples l1i and l2i can be written as:
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l1i = WH(v
1

i ) + n1

i , (1)

l2i = WH(v
2

i ) + n2

i , (2)

where WH is the Hamming weight function and n1

i , n
2

i are normally distributed
noise values with mean 0 and standard deviation σn. In the context of an 8-bit S-
box (e.g. the AES one), it leads to 9 possible leakage distributions, corresponding
to the 9 Hamming weight values of a secret stateΣi = Sbox(xi⊕s), as observed in
[21]. The left parts of Figures 11, 12 and 13 in Appendix A show the joint leakage
distributions in this setting and clearly illustrate that they are key-dependent. As
detailed in the previous section, taking advantage of these dependencies requires
a comparison tool. In their statistical evaluation of second-order DPA, Prouff
et al. use Pearson’s correlation coefficient. In the context of first-order attacks
exploiting a single leakage sample li, it implies computing:

ρ̂(Ms∗

q ,Lq) =
Ê
(

(

li − Ê(Lq)
)

·
(

ms∗

i − Ê(Ms∗

q )
)

)

σ̂(Lq) · σ̂(M
s∗

q )
,

where Ê and σ̂ denote the sample means and standard deviations of a random
variable, respectively. In order to extend this tool towards the second-order case,
the classical approach is to first combine the two leakage samples l1i and l2i with a
combination function C. For example, Chari et al. proposed to take the product
of two centered samples [2]: C(l1i , l

2

i ) = (l1i − Ê(L1

q)) · (l
2

i − Ê(L2

q)) and Messerges
used the absolute difference between them [13]: C(l1i , l

2

i ) = |l1i − l2i |. As illustrated
in the right parts of Figures 11, 12 and 13, those combining functions also lead
to key-dependencies. In addition to these standard examples, we finally plotted
the distribution of the sum combining function C(l1i , l

2

i ) = l1i + l2i because it can
be used to emulate the behavior of the GLUT masking in a hardware setting,
where the two S-boxes of Figure 1 are computed in parallel.

3.1 Choice of a model and leakage-dependency of C

Given the above descriptions and assuming that the adversary knows a good
leakage model for the samples l1i and l2i , it remains to determine which model

to use when computing ρ̂(Ms∗

q ,C(L1

q ,L
2

q)). That is, we do not need to predict
the leakage samples separately, but their combination. In addition and contrary
to the first-order case, there is an additional variable (i.e. the mask) that is
unknown to the adversary. But given a model for the separate samples, it is
possible to derive one for their combination. For example, assuming a Hamming
weight model that perfectly corresponds to the leakages of Equations (1) and
(2), we can use the mean of the combination function, taken over the masks. For
each subkey candidate s∗, the model is is then given by:

ms∗

i = E
bi

(

C
(

WH(Σ
∗

i ⊕ bi),WH(bi)
)

)

.
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This is in fact similar to what is proposed in [17], where the mean is addition-
ally taken over the leakage noise (which is more general, but implies additional
profiling, i.e. a sufficiently precise knowledge of the noise distribution). As an
illustration, Figure 2 shows the leakage models corresponding to the absolute
difference and normalized product combination functions. They again only de-
pend on the 9 Hamming weight values of the secret state, as opposed to the ones
of a sum combining function for which the mean value (over the masks) is con-
stant for all secret states. Hence, as already observed in [11], this sum combining
function will not lead to successful second-order correlation attacks.
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Fig. 2. Leakage models for second-order DPA using the correlation coefficient.

The figure intuitively confirms the previous theoretical analysis of Prouff et

al. where it is demonstrated that the normalized product combining function
leads to the most efficient second-order side-channel attacks when using Pear-
son’s coefficient and assuming a Hamming weight leakage model for the separate
samples. Indeed, this particular setting gives rise to nicely linear dependencies
of the models ms

i in the Hamming weight of the secret states WH(Σi). Also,
and contrary to the absolute difference combining function, all the 9 possible
Hamming weights correspond to a different model ms

i in this particular case.

Interestingly, the efficiency of the normalized product combining function can
be simply explained when looking at the equations since it computes:

ρ̂(Ms∗

q ,C(L1

q,L
2

q)) =
Ê
(

(

C(l1i , l
2

i )− Ê(C(L1

q,L
2

q))
)

·
(

ms∗

i − Ê(Ms∗

q )
)

)

σ̂(C(L1

q ,L
2

q)) · σ̂(M
s∗

q )
.

As the product is normalized, we have that Ê(C(L1

q,L
2

q)) = 0, which leads to:

ρ̂(Ms∗

q ,C(L1

q,L
2

q)) =
Ê
(

(

l1i − Ê(L1

q)
)

·
(

l2i − Ê(L2

q)
)

·
(

ms∗

i − Ê(Ms∗

q )
)

)

σ̂(C(L1

q ,L
2

q)) · σ̂(M
s∗

q )
. (3)
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And this formula is in fact very close to the straightforward generalization of
Pearson’s correlation coefficient to the case of three random variables:

ρ̂(Ms∗

q ,L1

q,L
2

q) =
Ê
(

(

l1i − Ê(L1

q)
)

·
(

l2i − Ê(L2

q)
)

·
(

ms∗

i − Ê(Ms∗

q )
)

)

σ̂(L1

q) · σ̂(L
2

q) · σ̂(M
s∗

q )
. (4)

The only difference between Equations (3) and (4) is in the leakage samples’
standard deviation terms, which are key-independent. Hence, when applied to
the same pair of samples, attacks using Equations (3) or (4) are equivalent. Intu-
itively, these equations provide a simple explanation of the normalized product
combining function. That is, such a combining function will efficiently take ad-
vantage of pairs of leakage samples that are linearly correlated conditioned on
the key. As illustrated in Figures 11, 12 and 13, this is nicely achieved in the
case of a Hamming weight leakage function for the two samples l1i and l2i .

4 Evaluating second-order leakage: IT analysis

In general, the evaluation of second-order side-channel attacks is not straight-
forward to capture. More precisely, it is easy to see that an analysis based only
on the correlation coefficient may suffer from certain limitations. For example:

– Given Pearson’s correlation coefficient as a distinguisher and a Hamming
weight leakage function, there exist (trivial) combination functions for the
samples (e.g. the sum) that do not lead to successful key recoveries.

– Given Pearson’s coefficient as a distinguisher and the normalized product
combination function, there exist leakage functions (e.g. with no linear de-
pendencies between the samples) that don’t lead to successful key recoveries.

These observations suggest that the simple situation in the first-order context,
where the correlation coefficient could (under certain physical assumptions de-
tailed in [12]) be used both as a distinguisher and as a measure of side-channel
leakage, does not hold here. In second-order side-channel attacks, this correla-
tion is only a distinguisher. Hence, it is a typical context in which the evaluation
framework of Eurocrypt 2009 is interesting to put into practice:

1. First, an information theoretic analysis is performed, in order to evaluate the
physical leakages, independently of the adversary who exploits them. When
applied to a countermeasure (e.g. masking), this step allows to quantify how
much the security of the device has been improved against an adversary
who can perfectly profile the leakage pdf. In other words, it can be used as
an objective measure of the quality of the countermeasure, in a worst case
scenario (i.e. best adversary, large number of queries - see [20] for the details).

2. Second, a security analysis is performed, in order to evaluate how efficiently
a particular distinguisher (e.g. Pearson’s correlation coefficient with a given
combining function) can exploit the available leakage. This step is useful
to translate the previous information theoretic analysis into a “number of
measurements required to extract the key”, in a given scenario.
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In this section, we tackle the first part of the analysis. For this purpose, and in
order to compare our conclusions with previous works, we use exactly the same
assumptions as [17], i.e. a Hamming weight leakage function for the two samples,
just as described in Section 3. Following the definitions in [20], we compute:

H[S|L1

1
,L2

1
,X1] = −

∑

s

Pr[s]
∑

x1

Pr[x1]
∫

l1
1

∫

l2
1

Pr[l1
1
, l2

1
|s, x1] log2 Pr[s|l

1

1
, l2

1
, x1] dl

1

1
dl2

1
.

Since the leakage samples are assumed to be normally distributed, this can be
quite easily done in function of the noise standard deviation σn. Some simpli-
fications allow to speed up the computations, e.g. by observing that only nine
distributions are possible, corresponding to the nine Hamming weights of the
secret states Σi. Also, in order to evaluate the information loss caused by the
different combination functions, we similarly evaluated H[S|C(L1

1
,L2

1
),X1]. This

implies slightly more complex integrals since, e.g. the product combining gives
rise to mixtures of normal product distributions. Figure 9 in Appendix A il-
lustrates these distributions for two secret states and two σn’s. The mutual
information values corresponding to these different information leakages (i.e.
I(S; (L1

1,L
2

1,X1)) = H[S] − H[S|L1

1,L
2

1,X1]) are then plotted in Figure 3, in
function of the noise variance σ2

n (in log scale). From this figure, we can observe:
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Fig. 3. Information leakage for different combination functions.

1. All combination functions imply a loss of information that can be avoided
by dealing directly with the 2-dimensional joint leakage distribution.

2. The sum and absolute difference combining functions give rise to exactly the
same information leakage. This can be understood from the shape of their
distributions: the distribution of the absolute difference combining can be
seen as the one of the sum combining that has been folded up.

3. For small σ2
n, the normalized product is the least informative combining func-

tion. By contrast, when increasing the noise, the information leakage of the
normalized product combining gets close to the one of the joint distribution.
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4. The respective efficiency of different combining functions varies with the
amount of noise. In particular, after a certain noise threshold, the product
combining carries more information on S than the sum/absolute difference.

Note that the leakage of the sum combining’s output clearly relates to the pre-
vious evaluation of [21] in which masking is analyzed in the hardware setting.

5 Implications for profiled attacks: security analysis (I)

The previous information theoretic analysis provides a new perspective to un-
derstand the relation between a masking scheme, its physical leakages and the
exploitation of this information by a side-channel attack. For example, it ex-
hibits that the sum combining function leads to significant information leakages
(as can also be seen from the different pdf in appendix), although they cannot
be directly exploited with Pearson’s correlation coefficient. Previous works such
as the one of Waddle and Wagner [23] showed how to overcome this limitation of
the correlation coefficient, by squaring the combined samples. But our analysis
raises the question whether these information leakages can be directly exploited
(i.e. without squaring) by other distinguishers. In order to tackle this question,
we apply the second part of the framework in [20], i.e. security analysis. This
section starts with the evaluation of profiled (template) attacks, for which a
strong relation with the previous information theoretic analysis should hold.

The results of various template attacks performed against the same masked
AES S-box as in the previous sections are given in Figure 4, for two different
noise standard deviations. We mention that these attacks do not use Gaussian
templates as in [3] but the exact leakage distributions as in the previous in-
formation theoretic analysis (e.g. attacks using the joint distributions exploit
Gaussian mixtures; attacks using the normalized product combining function
exploit normal product distribution mixtures, etc. as plotted in appendix A).
The different success rates are computed over 1000 independent experiments
and nicely confirm the theoretical predictions of Theorem 2 in [20].
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Fig. 4. Success rate of (simulated) profiled attacks against a masked AES S-box.
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First, we see that the sum and absolute difference combining functions lead
to the same attack efficiency in this profiled case (since their outputs lead to the
same information leakages). Second, we see that the point in Figure 3 where the
sum / absolute difference and the normalized product curves intersect is mean-
ingful. Left of the intersection (e.g. for σn = 0.25), the sum / absolute difference
combining functions allow more efficient attacks than the normalized product
one. Right of the intersection (e.g. for σn = 0.75), the opposite conclusion holds.
And as shown in Appendix A, Figure 10, these attacks have a similar efficiency
at the intersection that falls around σn = 0.4 (that is, log

10
(σ2

n) ≈ −0.8).

Of course, these experiments are partially artificial since in practice, an ad-
versary who can profile the leakages will generally use the templates based on
the joint distribution only. At least, this is the best strategy if the adversary
has enough data and time to profile the multivariate leakage pdf. However, our
results confirm that an information theoretic analysis provides an objective eval-
uation of the quality of a countermeasure against the “best-available” template
adversaries in the DPA setting. Hence, they emphasize that such an analysis is
an important part in the evaluation of side-channel countermeasures. Also, these
results lead to the same conclusions as [14], and show that resistance against suf-
ficiently profiled template attacks cannot be achieved by masking only.

6 Implications for non-profiled attacks: security analysis (II)

The previous section showed that for carefully profiled template attacks, there is
a strong connection between the information leakage of a device and the success
rate of the adversary. By contrast, we know that in the non-profiled context of
correlation attacks, this observation does not hold in general. For example, Pear-
son’s coefficient cannot be used to exploit the leakages corresponding to the sum
combining of Section 3.1. Hence, it is natural to check whether there exist other
non-profiled distinguishers that can be successful in this case. We answer this
question positively, using the Mutual Information Analysis (MIA) introduced in
[5]. It can be seen as the counterpart of template attacks, in which the leakage
distributions are estimated “on-the-fly” rather than prior to the attacks.

The success rates of correlation and MIA attacks (here, and in the rest of the
paper, computed over 500 independent experiments), using different combining
functions, are given in Figure 5, again using the (simulated) setting described in
the previous section. In our experiments, MIA estimates the pdf using histograms
with Nb linearly-spaced bins, and Nb corresponding to the number of possible
values for the models, as proposed in [5]. That is, we use 9 bins per leakage sample
and we partition the leakage samples according to the 9 Hamming weights of
the secret state Σi. The following observations can be emphasized:

1. In the low noise scenario, MIA with the sum and absolute difference com-
bining functions works best, as similarly observed for template attacks.

2. By contrast, and contrary to template attacks, MIA without combining func-
tion (i.e. using the joint distribution directly, as in [6, 18]), is not the most
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Fig. 5. Success rate of (simulated) non-profiled attacks - masked AES S-box.

efficient solution in our simulations. This is caused by the need to estimate
two-dimensional distributions, which turns out to require more data.

3. For similar reasons (i.e. also related to the different efficiency of the “on-
the-fly” pdf estimation), when increasing the noise, MIA with the sum and
absolute difference combining functions are not equivalent anymore.

4. Finally, attacks using Pearson’s correlation coefficient perform well, specially
when combined with the normalized product (which is natural since our
simulated leakages perfectly fulfill the requirements of Section 3.1).

Importantly, we note that all these non-profiled distinguishers lead to signifi-
cantly lower efficiencies than the profiled ones in the previous section.

7 Experimental results

The previous sections evaluated the impact of masking an S-box with respect
to various side-channel distinguishers, based on simulations. But as for most in-
vestigations in physically observable cryptography, it is important to verify that
our conclusions are reasonably confirmed by practical measurements performed
against a real chip. For this purpose, we also carried out a set of attacks against
a masked implementation of the DES in an 8-bit RISC microcontroller from the
Atmel AVR family. Considering the DES (rather than the AES) was motivated
by practical facilities. Since the output of the DES S-box is 4-bit wide, it allows
considering different contexts: in a first (low noise) scenario, the 4 remaining bits
on the bus are kept constant; in a second scenario, these 4 bits are used in order
to produce some additional algorithmic noise, by concatenating (secret) random
strings to the two target values of Figure 1. This is interesting since the noise
level was an important parameter, e.g. in our simulations of Figure 5. Hence,
the different scenarios can be used to adapt the noise level in our experimental
setting as well. The results in Figure 6 bring an interesting complement to our
previous simulations and lead to the following observations:
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Fig. 6. Success rate of various experimental attacks against a masked DES.

1. The excellent efficiency of template attacks1 and the good behavior of cor-
relation attacks using the normalized product combining function are again
exhibited. Interestingly, their respective efficiency gets closer when increas-
ing the amount of algorithmic noise in the measurements, as it is suggested
by the information theoretic analysis of Section 4.

2. MIA using the joint distribution is much more efficient than in the AES
case. This is in fact related to the reduced number of bins that the 4-bit
DES S-box allows in the pdf estimations (i.e. 25 rather than 81).

3. The presence of algorithmic noise (in the right part of Figure 6), affects the
different distinguishers in a very different manner. To give a single example,
MIA with the absolute difference combining function is strongly affected by
this noise addition, compared to its counterpart using Pearson’s coefficient.

Summarizing, these experiments confirm the “world is not enough” nature of
second-order DPA that was already underlined in the previous simulations. The
only strong statement that can be made in this context is that an information
theoretic metric estimated with perfect templates captures the security against
the best possible profiled adversary. As for all the other distinguishers, their effi-
ciency highly depends on the actual shape of the leakage pdf and the engineering
knowledge that can be exploited when mounting an attack. And contrary to the
first-order case discussed in [12], the Gaussian assumption for the leakage sam-
ples does not hold anymore from the adversary’s point of view (e.g. masking
typically imply mixtures of Gaussians - or other - distributions).

8 Generalization to higher-orders

In order to improve the security of masking schemes further, one approach is
to increase their order. For this purpose, this final section analyzes the cost vs.
security tradeoff that can be obtained by generalizing the GLUT countermeasure
in such a way, and details the second- and third-order cases for illustration. That

1 We profiled our templates as described in the template-based DPA of [14].
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is, rather than using one input mask per S-box, we now use two or three masks
per S-box. In terms of cost, this implies using one or two additional tables Sbox′′

and Sbox
′′′, as described, e.g. in [15]. Conveniently, all the tools used in second-

order DPA can be easily generalized to these third- and fourth-order attack
cases. In particular, the information theoretic analysis of Section 4 just requires
to integrate over three or four leakage samples l1i , l

2

i , l
3

i and l4i .

The information leakage of these different masking schemes is represented in
Figure 7, in function of the noise variance. On the same plot, we represented
the average number of queries to the target device required for a perfectly pro-
filed attack (similar to the ones in Section 5) to reach a success rate of 90%.
These figures provide a quantitative insight to the observations in [2], where it is
demonstrated that, given a large enough noise variance, the data complexity of
a side-channel attack increases exponentially with the amount of shares in the
masking scheme. That is, given a noise variance σ2

n in the leakage samples and
k shares, the data complexity required to attack a masking scheme successfully
is proportional to (σ2

n)
k/2. The linear regions of the (log scale) curves that are

observed in the right part of the figure suggest that this expectation is fulfilled
in our experiments. Importantly, it also shows that the impact of (higher-order)
masking can be extremely small in terms of security increases, for small σ2

n’s.
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Fig. 7. Information leakage and success rates for 1st, 2nd and 3rd-order masking.

Note finally that these results give a practical counterpart to the recent the-
oretical analysis of [4], where it is shown that masking schemes based on secret
sharing techniques lead to secure implementations if the number of shares is
adjusted to be large enough with respect to the noise in the measurements.

8.1 A case for the information theoretic metric

Looking at Figure 7, the main question for a designer (or evaluation laboratory)
is to best trade the amount of shares and the amount of noise that he has to add
to his implementation, in order to reach a certain security level. This is essential
since increasing these parameters has a strong impact on the performance of the

14



implementation. Unfortunately, for high security levels, the proper estimation of
the number of traces required to reach a certain success rate becomes intensive
(because of statistical sampling issues). Already in simulations, running 1000
attacks, each of them using 105 queries, is time consuming. And when moving to
the analysis of real traces (taking much more time to be generated and space to
be stored), this limitation becomes even more critical. Interestingly, this is ex-
actly the context where an information theoretic analysis becomes useful. Given
a leakage model, the mutual information I(S;L1

1,L
2

1, . . .) can be estimated with
less data than the success rate of the corresponding template attack. And follow-
ing [20], Theorem 2, it should hold that this mutual information is reasonably
correlated with the number of traces required to reach a certain success rate. In
order to confirm this expectation, we plotted an estimation of this number, based
on the inverse of the mutual information multiplied with a constant factor c. As
illustrated in Figure 8, this approximation holds nearly perfectly, with the same
constant c for all attacks, essentially depending on the success rate to reach (here
90%). Summarizing, these simulations confirm the relevance of an information
theoretic analysis when designing countermeasures against side-channel attacks.
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Fig. 8. Information leakage and success rates for 1st, 2nd and 3rd-order masking.

Before to conclude, we note again that such an information theoretic analysis
only captures the most powerful adversaries for which the profiling of the leakage
distributions is perfect. But in practice, the reduction of the information leakage
is not the only effect that increases the security in masked implementations.
Namely, the pdf estimation of multidimensional distributions may become too
complex for allowing the exploitation of all the information in the traces. And
the number of pairs, triples, etc. of samples to test in the attacks also increases
their time complexity considerably (up to N2, N3, etc.). However, we believe
that the formal analysis of a worst-case scenario as in this paper is an important
step towards a better understanding of the masking countermeasure.
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9 Conclusions

The results in this paper provide a first complete and unifying treatment of
higher-order power analysis. They allow putting forward the strengths and weak-
nesses of various approaches to second-order DPA and provide a sound expla-
nation for them. Our analysis illustrates that in the context of cryptographic
devices protected with masking, it is not sufficient to run a single arbitrary dis-
tinguisher to quantify the security of an implementation. Evaluations should
hold in two steps. First, an information theoretic analysis determines the actual
information leakage (i.e. the impact of the countermeasure, independently of
the adversary). Second, a security analysis determines the efficiency of various
distinguishers in exploiting this leakage. By applying such a methodology to
simulations and practical experiments, we consequently obtain a fair and com-
prehensive evaluation of the security level that a masking scheme can ensure.

While not in contradiction with previous results in the field, these inves-
tigations reshape the understanding of certain assumptions and allow refined
intuitions. First, theoretical analysis and empirical attacks sometimes show a
large gap between the efficiency of profiled attacks that best exploit the infor-
mation from two or more leakage samples and the one of non-profiled attacks
that are most frequently used in practice. This relates to the observation that
the statistics in side-channel attacks are only used to discriminate secret data
(while their natural objective is to allow a good estimation). Hence, the study
of advanced pdf estimation techniques in the context of side-channel attacks is
an interesting direction for further research, as initiated with MIA in [5].

Second, the security improvement obtained when increasing the order of a
masking scheme beyond one is negligible if it is not combined with a sufficient
amount of noise in the leakages. This observation relates to the generally ac-
cepted intuition that side-channel resistance requires the combination of several
countermeasures in order to be effective. We additionally show in this paper
that an information theoretic analysis has very convenient features for evaluat-
ing this noise threshold precisely. As a result, the best combination of masking
with other countermeasures (e.g. dual rail logic styles, time randomization, etc.)
is a second interesting scope for further research. Finally, the relationship be-
tween the mutual information and the success rate of a profiled attack, that is
experimentally exhibited in this paper in the context of second- (and higher-)
order DPA, could be analyzed in order to obtain a more formal justification of
it, e.g. under the assumption of Gaussian noise in the leakages.
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Fig. 9. Leakage probability distributions for the product combining function.
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Fig. 10. Success rate of (simulated) profiled attacks against a masked AES S-box.
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