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Abstract. Some punishments in rational secret sharing schemes turn
out to be empty threats. In this paper, we first model 2-out-of-2 ratio-
nal secret sharing in an extensive game with imperfect information, and
then provide a strategy for achieving secret recovery in this game. More-
over, we prove that the strategy is a sequential equilibrium which means
after any history of the game no player can benefit from deviations so
long as the other players stick to the strategy. Therefor, by considering
rational secret sharing as an extensive game, we design a scheme which
eliminates empty threats. Except assuming the existence of a simultane-
ous broadcast channel, our scheme can have dealer off-line and extend
to the t-out-of-n rational secret sharing, and also satisfies computational
equilibria in some sense.
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1 Introduction

The well-known t-out-of-n secret sharing problem, first independently studied by
Blakley [2] and Shamir [17] in 1979, is that a dealer holding a secret distributes
shares among n players such that any group of t or more players can recover
the secret from their shares while any group of fewer than t players can not.
Most solutions to this problem are based on an implicit assumption that each
player is either honest or malicious and the honest players will faithfully execute
the protocol. In 2004 Halpern and Teague [8] studied the problem in a game
theoretic sense and proposed rational secret sharing which is to fulfill the task
among rational players. That is, instead of being totally honest or arbitrarily
malicious, rational players only act in their own self-interest. Until now a lot of
work has been devoted to bridging game theory and cryptography [3, 9]. Among
this, rational secret sharing is an important problem.

Defining a utility function for each player, the process of secret sharing is
viewed as a game among n players. But as pointed out in [8] no rational player
would deliver his share in a one-shot recovering process, thus the recovery cannot
be achieved. Like the repeated prisoner’s dilemma [5], this problem can be solved
by repeating the recovering process for many times and introducing punishments
for deviants. Intuitively, punishment rules act like threats that make rational
players would not deviate from the protocol, thus secret recovery can be finally



achieved. But some punishments turn out to be empty threats. For example, in
2-out-of-2 rational secret sharing, if a player punishes the deviant by stoping
cooperating with him right after detecting cheats, then this punishment also
greatly damages the punisher himself, because it makes the punisher forever
lose the opportunity of getting the secret. Obviously, a rational player would
not execute this punishment. A punishment like this is called an empty threat.
Most previous work about rational secret sharing [4, 7, 8, 12, 14] cares little about
empty threats.

In game theory, the problem of empty threats is conquered in the model
of extensive games. Unlike the strategic game which models a one-shot process
where each player chooses his plan of action once and for all, the extensive game
explicitly describes the sequential structure of a game where each player can
consider their plan of action at any point of time when he is required to move.
Thus rationality in extensive games is required to be held after any history of
the game. In this paper, we model rational secret sharing in an extensive game
with imperfect information and provide a strategy for achieving secret recovery
in this game. Moreover, we prove that the strategy is a sequential equilibrium
which means after any history no player can benefit from deviations so long
as the other players stick to the strategy. In particular, whenever a cheat is
detected the corresponding punishment in our scheme will definitely be executed
because of the sequential rationality required. Therefor, by considering rational
secret sharing as an extensive game, we design a scheme which eliminates empty
threats.

1.1 Previous Work and Our Contribution

What kind of rationality should be achieved is a central problem in rational
secret sharing. Halpern and Teague [8] proposed the Nash equilibrium surviving
iterated deletion of weakly dominated strategies which was later pointed out
cannot delete all bad strategies. Kol and Naor proposed the strict Nash equi-
librium [12] and then the computational C-resilient equilibrium [11], but these
concepts are either too strict or not applicable. Allowing mistakes of the other
players, Fuchsbauer et al. [4] proposed computational Nash equilibrium stable
with respect to trembles, but they did not explicitly consider the sequential
structure of the rational secret sharing game. Maleka et al. [14] studied rational
secret sharing in repeated games, but they only discussed the Nash equilibrium
in that game instead of considering the more meaningful equilibria, such as the
subgame perfect equilibrium. On the other side, some properties similar to se-
quential rationality were required in [11], but we did not see strict proofs of the
related issues. Ong et al. [15] discussed the subgame perfect equilibrium but an
honest minority was assumed. Besides, it was written in the conclusion part of
some work [8] or in some surveys [3, 10] that there remains much undone con-
cerning subgame perfect equilibria and other solution concepts, especially in the
computational setting.

Based on the possible solutions to rational secret sharing, we model the pro-
cess in an extensive game with imperfect information and simultaneous moves.



This model provides a more precise description of the problem, and rationality
in this game is usually captured by the concept of sequential equilibria which is
an extension of subgame perfect equilibria. Thus the main contribution of this
work is to study rational secret sharing precisely in an extensive game model
and provide a scheme which is a sequential equilibrium of the game. Compar-
ing with the schemes considered in a strategic game model, our scheme has the
advantage of eliminating empty threats. Related to the scheme, we also provide
some immature viewpoints about k-resilience of the sequential equilibrium and
definitions in the computational setting.

1.2 Organizations

Section 2 introduces preliminaries needed in this paper, including extensive
games and sequential equilibria. Section 3 first builds an extensive game model
for 2-out-of-2 rational secret sharing, and then prove a strategy that achieves
secret recovery is a sequential equilibrium. Thus a 2-out-of-2 rational secret shar-
ing scheme is given. Section 4 improves the scheme by making the dealer off-line
and extends it to the t-out-of-n case. It also discusses issues about simultaneous
broadcast and computational equilibria. Section 5 concludes the paper.

2 Preliminaries

2.1 Rational Secret Sharing

Rational secret sharing is to fulfill the task of secret sharing among n rational
players. Precisely each player, say Pi, has a utility function ui : {0, 1}n → R
over the possible outcomes of the recovery. A vector O = (o1, ..., on) ∈ {0, 1}n

denotes an outcome of the recovery where oi = 1 if and only if Pi finally gets the
secret. For simplicity, we take the widely adopted assumptions about the utility
functions. That is, for 1 ≤ i ≤ n, Pi’s utility function ui satisfies

1. For any O,O′ ∈ {0, 1}n, if oi > o′i then ui(O) > ui(O′).
2. If oi = o′i and

∑n
i=1 oi <

∑n
i=1 o′i, then ui(O) > ui(O′).

The above two conditions indicate that Pi always prefers to learn the secret than
to not learn it and secondarily, prefers that the fewer of the other players who
get it, the better. The aim of rational secret sharing is to design a protocol so
that it is in the rational player’s interest to provide his share as indicated in the
recovering phase. Obviously, it suffices to design a secret sharing protocol such
that for every player any deviation from the protocol causes a loss in his utility.

Consider a simple example of 2-out-of-2 rational secret sharing. In the re-
covering phase when Pi (i = 1, 2) is supposed to provide the share, he chooses
one from the two actions: broadcasting share (denoted by B) and keeping silence
(denoted by S). On the assumption that all shares can be publicly authenticated
1, the action of delivering a fake share is identified with the action of keeping
1 This can be realized by associating each share with a signature from the dealer.



silence. For simplicity, we firstly regard the one-shot recovering process in 2-out-
of-2 secret sharing as a two-player strategic game in which each player has two
actions (i.e., ”B” and ”S”). By identifying P1’s actions with the rows and P2’s
with the columns, the game can be represented by the table in Figure 1, where
a, b, c, d ∈ R denote player’s utility under the corresponding action profile.

b, b d, a

a, d c, c

B S

B

S

Fig. 1. A strategic game of 2-out-of-2 secret sharing.

Specifically, the upright pair (d, a) means P1 gets utility d and P2 gets a
under the action profile (B,S) (i.e., P1 takes the action B, and simultaneously
P2 takes S). Obviously, the action profile (B,S) causes an outcome (0, 1) that
means P2 gets the secret but P1 does not. Based on our assumptions on the
utility functions it evidently holds a > b > c > d.

A crucial problem arises in the above strategic game is that for each player
the strategy B is weakly dominated by the strategy S. That is, no matter what
strategy his opponent takes, a player taking the strategy S can get as much as
and sometimes even higher utility than taking the strategy B. Hence a rational
player has no incentive to broadcast his share in the one-shot recovery. The
same problem also arises in the t-out-of-n secret sharing. To cover this problem,
an usual way in rational secret sharing is to design a multi-stage process for
recovering secret and introduce punishments of deviations. Thus we use the
theory of extensive games to study the multi-stage secret-recovering process.

2.2 Extensive Game

Unlike strategic games in which all players simultaneously take actions once and
for all, extensive games give a detailed description of the situations where players
move sequentially. Based on the problem studied in this paper, we focus on the
extensive game with imperfect information and simultaneous moves (or extensive
game, in short).

Definition 1. An extensive game consists of

– A finite set N = {1, 2, ..., |N |}. (the set of players)
– A set H of sequences. (the set of histories)

• For any h = (ak)L
k=1 ∈ H, h is called a history of length L (L might be

∞). Each component ak is an action profile taken by the players whose
turn it is to move at the k-th stage.



• For any (ak)L
k=1 ∈ H and K < L, it holds (ak)K

k=1 ∈ H. In particular,
the empty sequence ∅ ∈ H.

• For any h ∈ H, the set of action profiles available after h is denoted by
A(h) = {a | (h, a) ∈ H}. A history h is called terminal if A(h) = ∅ or
the length of h is ∞. The set of terminal histories is denoted by Z.

– A function P : H\Z → 2N ∪ {c} that assigns to each nonterminal history a
subset of N or the chance c. (the player function)
• Specifically, P (h) = A ⊆ N means players in A simultaneously move

at the stage right after the history h, and P (h) = c means the chance
determines the action taken after h.

– A function fc that associates with every history h for which P (h) = c a
probability measure fc(· | h) on A(h).

– For each player i ∈ N , a partition Ii of {h ∈ H | i ∈ P (h)} with the
property that A(h) = A(h′) whenever h and h′ are in the same member of
the partition. (Ii is the information partition; a set Ii ∈ Ii is an information
set)

– For each player i ∈ N , a utility function Ui on the set of probability distribu-
tions over Z.

Denote an extensive game by the tuple < N, H, P, fc, (Ii), (Ui) >. To illus-
trate components of an extensive game, we give a designed extensive game of 2-
out-of-2 secret sharing in the following example. It can be used as a sub-protocol
of our rational secret sharing scheme described in Section 3.

Example 1. First, with probability p the dealer chooses to share the real secret
s between player 1 and 2, and with probability 1 − p shares an empty symbol
⊥. After receiving shares, any single player has no idea whether s or ⊥ has been
shared. At the recovering phase, player 1 is supposed to move first and player 2
moves after observing 1’s action. As described earlier, each player chooses from
two actions B and S, and his utility may be a, b, c or d, sometimes plus an
additional utility ε > 0 which can be regarded as the win of a good reputation
by honestly broadcasting the share.

Regarding the dealer as the chance c, we model the above process by an
extensive game as represented in Figure 2, where the game is described as a
tree (with a dotted line). Every internal node denotes the chance or the player
(sometimes the subset of players, if move simultaneously) taking actions at that
stage, and each edge denotes an action. Here for simplicity, we use the probability
p and 1−p respectively denote the chance c’s two possible actions sharing s and
sharing ⊥. Every path from the root to a leaf denotes a terminal history and the
pair of numbers labeled below the leaf denotes the corresponding utility profile.

For instance, the path (p,B, S) denotes a history where c first shares s, then
player 1 broadcasts his share, and finally player 2 keeps silence. This is a terminal
history and causes the utility profile (d + ε, a).

The dotted line connecting two nodes labeled by 1 means the two histories2

(p) and (1 − p) are in the same information set of player 1. That is, when
2 In general, all paths starting from the root and ending at the same dotted line are in

the same information set belonging to the player by which the dotted line is labeled.
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Fig. 2. An extensive game of 2-out-of-2 secret sharing.

the information set I1 = {(p), (1 − p)} is reached, player 1 has no idea which
history actually happened. For this reason, the extensive game is called the one
with imperfect information. To illustrate, we give a complete description of the
players’ information partition:

I1 = {{(p), (1− p)}}, I2 = {{(p,B)}, {(1− p,B)}} . (1)

Note that player 1 has one information set and player 2 has two information
sets. Moreover, whenever player 2 is supposed to move, he always knows exactly
which history has occurred because each of his information set contains only one
history.

2.3 Sequential Equilibrium in Extensive Games

To describe players’ strategy profiles in an extensive game, we need the concept
of assessment defined below.

Definition 2. An assessment in an extensive game is a pair (β, µ), where

• β = (βi)i∈N is a profile of behavior strategies. Precisely, βi = (βi(Ii))Ii∈Ii and
βi(Ii) is a probability distribution over the set of actions available for player
i right after the information set Ii being reached.

• µ = (µi)i∈N is a belief system. Precisely, µi = (µi(Ii))Ii∈Ii
and µ(Ii) is a

probability distribution over the histories in Ii.

Still see Example 1, we denote I1 = {I1} and I2 = {I21, I22} corresponding
to Eq.(1). Define an assessment (β, µ) as follows:

– β1(I1) = (B : 1; S : 0), denoted as β1(I1) = B for simplicity, i.e. player 1
chooses to take action B at reaching his information set I1.

– β2(I21) = S, i.e. player 2 takes action S at reaching I21 = {(p,B)}.
– β2(I22) = B, i.e. player 2 takes action B at reaching I22 = {(1− p,B)}.
– µ1(I1) = (p, 1 − p), meaning player 1 believes that the dealer shares s with

probability p and shares ⊥ with probability 1− p.



– µ2 is defined trivially.

A main object of game theory is to suggest the most possible outcomes that
emerge in classes of games, or equivalently, to provide each player the most rea-
sonable strategies. In strategic games, reasonable strategies are usually referred
to as Nash Equilibria, correlated Equilibria, etc. In extensive games, a widely
used candidate of reasonable strategies is the sequential equilibrium which is
an extension of the subgame perfect equilibrium to the games with imperfect
information.

Definition 3. An assessment (β, µ) is a sequential equilibrium of an exten-
sive game < N,H, P, fc, (Ii), (Ui) >, if it satisfies the following two conditions:

1. (β, µ) is sequentially rational: For every player i ∈ N and every information
set Ii ∈ Ii, it holds

Ui(β, µ | Ii) ≥ Ui((β−i, β
′
i), µ | Ii) for every strategy β′i of player i ,

where (β−i, β
′
i) is a strategy profile that all players stick to the strategy β

except that player i turns to the strategy β′i, and Ui((β−i, β
′
i), µ | Ii) de-

notes player i’s utility induced by this strategy profile and the belief system
µ conditional on Ii being reached.

2. (β, µ) is consistent: There exists a sequence ((βn, µn))∞n=1 of assessments
that converges to (β, µ) in Euclidian space3 and has the properties that each
strategy profile βn is completely mixed and that each belief system µn is
derived from βn using Bayes’ rule.

Since the second condition is trivially satisfied in our problem (see Appendix
A), we skip this condition here and refer to book chapters (e.g. Chapter 12
of [16]) for its detailed explanations. The first condition is an extension of the
requirement in a subgame perfect equilibrium that no player can benefit from
deviations after any history. As an illustration, let’s see Example 1 and the
assessment (β, µ) given after Definition 2, i.e. β1(I1) = B, β2(I21) = S, β2(I22) =
B and µ1(I1) = (p, 1− p). For player 1,

U1(β, µ | I1) = U1((B, β2), µ | I1) = (d + ε)p + (c + ε)(1− p) ,

U1((S, β2), µ | I1) = cp + c(1− p) = c .

It is easy to see if (d + ε)p + (c + ε)(1 − p) ≥ c, i.e. ε ≥ p(c − d), then the
assessment is sequentially rational for player 1. Sequential rationality for player
2 is straightforward. Since the condition of consistency is trivially satisfied, thus
(β, µ) is a sequential equilibrium of the extensive game.

3 Assume each player’s action set is finite and each information set contains finite
number of histories, β and µ are probability distributions over finite sets and therefor
can be seemed as tuples of nonnegative real numbers.



3 Extensive Game of 2-out-of-2 Rational Secret Sharing

In this section we design an extensive game for 2-out-of-2 rational secret sharing,
and then prove a strategy that achieves secret recovery is a sequential equilibrium
of this game under the mean payoff criterion.

3.1 The Game Model

Denote the player set by N = {1, 2} and assume that the dealer is always
honest. Our game model for 2-out-of-2 rational secret sharing consists of three
kinds of subgames: Norm(k), Puni(1, t) and Puni(2, t), where the parameters k, t
are positive integers. These subgames are explained below.

Subgame Norm(k), i.e. invocation of the normal recovery process in the k-th
subgame, goes along the following steps:

N.1 With probability p the dealer chooses to share the real secret s between
players 1 and 2, and with probability 1− p shares an empty symbol ⊥.
Note: A verifiable 2-out-of-2 secret sharing scheme can be used here. For
simplicity, let the dealer secretly selects two random strings s1, s2 ∈ {0, 1}|s|
such that s1 ⊕ s2 = s with probability p and s1 ⊕ s2 = ⊥ 4 with probability
1−p. Then the dealer secretly sends to player i the share (si,Sig(si)), where
Sig(si) is the dealer’s signature on si which is unforgeable.

N.2 When it is time for recovery, player 1 and 2 simultaneously broadcast the
share. Then,
– if neither of the broadcast shares passes verification of the signature,

then reset the clock and turn to Step N.2.
– if only player i’s broadcast share passes verification of the signature, then

i broadcasts a complaint that “j cheats”.
– if both shares pass the verification, then both players compute XOR of

the shares.
• If the XOR is an empty symbol ⊥, then broadcast a requirement

“once again”.
• Otherwise, regard the XOR as the secret and broadcast the message

“quit”.

Subgame Puni(1, t), i.e. punishing player 1 for the t-th time, goes along the
following steps:

P.1 With probability p the dealer chooses to share the real secret s and with
probability 1− p shares an empty symbol ⊥, same as Step N.1.

P.2 When it is time for recovery, player 1 firstly broadcasts his share.
– If player 1’s broadcast share does not pass verification, then reset the

clock and go to Step P.2.
4 The empty symbol ⊥ can be regarded as strings in special forms. For example,

assume that the secret is started with 1, then all strings started with 0 are identify
with ⊥.



P.3 If player 1’s broadcast share passes verification, then player 2 broadcasts
his share.
– If player 2 ’s broadcast share does not pass verification, then player 1

broadcasts a complaint “2 cheats”.
– Otherwise, both players compute XOR of the shares.

• If the XOR is an empty symbol ⊥, then broadcast a requirement
“once again”.

• Otherwise, regard the XOR as the secret and broadcast the message
“quit”.

Subgame Puni(2, t), i.e. punishing player 2 for the t-th time, is the same as
Puni(1, t) except interchanging player 1 with player 2.

Note that in any of the three subgames, the dealer is involved only once,
and the subgame ends with one of the four broadcast messages “1 cheats”, “2
cheats”, “once again” and “quit”. Specifically, we require that the subgame ends
only when at least one player’s broadcast share passes the verification, otherwise
it keeps asking the player or players broadcast share (i.e. reset the clock and go
to Step P.2 or N.2).

The extensive game of 2-out-of-2 rational secret sharing, denoted as EG-
(2, 2)RSS, consists of sequential invocations of the three subgames described
above with a designed transition rule. It begins with repeated invocations of the
subgame Norm(·) where the players are required to simultaneously broadcast
the share. Once a player i is complained for cheating, the game immediately
turns to L repetitions of the subgame Puni(i, ·), where L is an positive integer
to be determined later. During the L-period punishment, if no player deviates
in Puni(i, ·), then after L repetitions the game returns to Norm(·); otherwise, the
game immediately turns to the L-period punishment of the deviant. Precisely,
the game EG-(2, 2)RSS is described as follows.

Game EG-(2, 2)RSS

E.1 Set k ← 1.
E.2 Execute subgame Norm(k).

– If end with “1 cheats”, then set k ← k + 1, t ← 1, and go to E.3.
– If end with “2 cheats”, then set k ← k + 1, t ← 1, and go to E.4.
– If end with “once again”, set k ← k + 1 and go to E.2.
– If end with “quit”, then the game halts.

E.3 Execute subgame Puni(1, t).
– If end with “2 cheats”, then set k ← k + 1, t ← 1, and go to E.4.
– If end with “once again”,

• When t < L, set k ← k + 1, t ← t + 1, and go to E.3.
• When t = L, set k ← k + 1 and go to E.2.

E.4 Execute subgame Puni(2, t).
– If end with “1 cheats”, then set k ← k + 1, t ← 1, and go to E.3.
– If end with “once again”,

• When t < L, set k ← k + 1, t ← t + 1, and go to E.4.
• When t = L, set k ← k + 1 and go to E.2.



The game halts as soon as some player quits.

Figure 3 displays a tree representing the extensive game EG-(2, 2)RSS, where
the nodes c, c1 and c2 respectively represent the dealer in the subgames Norm(·),
Puni(1, ·) and Puni(2, ·). Since the game may have infinite length, it cannot be
completely represented by a tree with finite length. Therefor, the hollow dots la-
beled by “c”, “c1” and “c2” at the leaves correspond to transition to the subgame
Norm(·), Puni(1, ·) and Puni(2, ·) respectively. When the hollow dot is labeled by
“c or c1” (resp. “c or c2”), it means whether it turns to Norm(·) or Puni(1, ·)
(resp. Norm(·) or Puni(2, ·)) depends on the punishment has been repeated for L
periods or not. The hollow dots connected with its ancestor by an arc correspond
to the cycles inside the subgames (i.e. players are required to reset the clock and
broadcast shares again). The dark nodes at the leaves denote termination of the
game.

For simplicity, we make the idleness-avoiding assumption about players:
Idleness-Avoiding Assumption. Assume that each player quits the game

as soon as he gets the secret.
This assumption explains the dark dots at the leaves which denote termina-

tion of the game.
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• •

◦◦• •
c

••◦•
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◦
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2

Fig. 3. Extensive game of 2-out-of-2 secret sharing.

According to Definition 1 of an extensive game < N,H, P, fc, (Ii), (Ui) >, the
above descriptions have defined N, H, P, fc and (Ii) for the game EG-(2, 2)RSS.
In particular, the player function P is defined by the transition rule among the
three kinds of subgames. Now it is left to define the utility function (Ui). Given
a probability distribution Prob(·) over the set of terminal histories Z, we define

Ui =
∑

z∈Z

ui(z)Prob(z) , (2)

where ui(z) denotes player i’s utility along the terminal history z. To define ui(z)
precisely, we adopt the methods used in repeated games. Details are as follows.



For any terminal history z ∈ Z of the game EG-(2, 2)RSS, let k(z) denote
the number of times that one of the three subgames Norm(·), Puni(1, ·) and
Puni(2, ·) is invoked. Without confusion we call each invocation as a subgame.
For 1 ≤ l ≤ k(z), let u l

i (z) denote player i’s utility obtained in the l-th subgame.
Refer to the utility values used in Section 2.1, we define

– u l
i (z) = a if only player i gets the secret in the l-th subgame.

– u l
i (z) = b if both players get the secret.

– u l
i (z) = c if neither players gets the secret.

– u l
i (z) = d if only player i does not get the secret.

Concerning mixed strategies that players may take, u l
i (z) is a convex combina-

tion of a, b, c, d, i.e. u l
i (z) ∈ {λ1a + λ2b + λ3c + λ4d | λi ∈ R≥0,

∑4
i=1 λi = 1}.

By using the mean utility criterion, we define

ui(z) =
∑k(z)

l=1 u l
i (z)

k(z)
, for any z ∈ Z . (3)

Combining Equation (2) and Equation (3), it gives a definition for the utility
function in the game EG-(2, 2)RSS.

3.2 A Sequential Equilibrium in EG-(2, 2)RSS

Next we are to evaluate rationality of a strategy with respect to the concept of
sequential equilibrium. According to Definition 3, it needs to compute the utility
Ui(β, µ | Ii) for any assessment (β, µ) and information set Ii. From Figure 3 it
is easy to see that any information set contains at most two histories. Moreover,
the two histories in the same information set go through the same sequence of
subgames. Thus for any information set Ii, let k(Ii) denote the the number of
finished subgames along any history in Ii. Thus k(Ii) equals the current value
of the parameter k minus 1 since the last subgame is unfinished at reaching Ii.
Additionally, we always adopt the trivial belief system µ that at each information
set containing two histories (denoted by the dotted lines in Figure 3) the player
(or players) believes s was shared with probability p and ⊥ was shared with
probability 1− p. Obviously, this trivial belief system is independent of players’
strategies and is fixed in some sense. Therefor we omit the belief system in many
places without confusion. In particular, denote Ui(β | Ii) = Ui(β, µ | Ii).

Lemma 1. Under the mean utility criterion, for any strategy β and information
set Ii in the game EG-(2, 2)RSS,

Ui(β | Ii) ∈ [
∞∑

l=1

(l + k(Ii)− 1)c + d

l + k(Ii)
(1−p)l−1,

∞∑

l=1

(l + k(Ii)− 1)c + a

l + k(Ii)
(1−p)l−1] .



Proof. Conditional on Ii being reached, we only need to consider the terminal
histories that contain a history in Ii as a sub-history. Denote such terminal
histories by z : z 3 Ii. From Equality (2) and (3), it has

Ui(β | Ii) =
∑

z:z3Ii

ui(z)Probβ(z|Ii) =
∑

z:z3Ii

∑k(z)
l=1 u l

i (z)
k(z)

Probβ(z|Ii) ,

where Probβ(z|Ii) is the conditional probability of z induced by the strategy β.
For any terminal history z : z 3 Ii, it holds k(z) ∈ (k(Ii),∞). Firstly consider

the case k(z) < ∞. Because of the idleness-avoiding assumption we can conclude
that neither player gets the secret in the former k(z)−1 subgames. Furthermore,
since each subgame ends only when at least one broadcast share passes the
verification which means at least one player can recover the value shared by the
dealer at that subgame, it must be the case that the dealer shares the empty
symbol ⊥ in the former k(z) − 1 subgames and u l

i (z) = c for 1 ≤ l < k(z). In
the last subgame, both the case that s is shared and the case that ⊥ is shared
could happen. For example, if ⊥ is shared, the game may also terminate if some
player always chooses the action S taking the last subgame into an infinite cycle.
In any case it is a trivial fact that u

k(z)
i (z) ∈ [d, a].

For all the terminal histories z : z 3 Ii with k(z) < ∞, we classify them
according to the value of k(z). Specifically, for 1 + k(Ii) ≤ l < ∞, denote zl =
{z ∈ Z | Ii ∈ z, k(z) = l}. From analyze in the last paragraph, it follows that
for any z ∈ zl, ui(z) ∈ [ (l−1)c+d

l , (l−1)c+a
l ] and Probβ(zl|Ii) = (1 − p)l−k(Ii)−1.

When k(z) = ∞, it still has ui(z) ∈ [d, a], and Probβ(z|Ii) = (1 − p)∞ = 0.
Hence,

Ui(β | Ii) =
∑

z:z3Ii

ui(z)Probβ(z|Ii) =
∞∑

l=1+k(Ii)

ui(zl)Probβ(zl|Ii) ,

and the lemma follows immediately.

Proposition 1. (The one deviation property) In the game EG-(2, 2)RSS, an as-
sessment (β, µ) is a sequential equilibrium if and only if it satisfies the one
deviation property, that is, for any i ∈ N and any information set Ii ∈ Ii,
Ui(β′i, β−i | Ii) ≤ Ui(βi, β−i | Ii) for any β′i which is a one-period deviation from
βi at Ii, i.e. β′i(Ii) 6= βi(Ii) and β′i(I

′
i) = βi(I ′i) for any I ′i 6= Ii.

Proof. The necessity is straightforward from Definition 3. Now we prove the
sufficiency. Suppose that (β, µ) satisfies the one deviation property. On the con-
trary, assume that (β, µ) is not a sequential equilibrium. Since the consistency
condition is trivially satisfied (see Appendix A), it implies that (β, µ) is not
sequentially rational, i.e. there exists a player i and an information set Ii such
that

Ui(β′i, β−i | Ii) > Ui(βi, β−i | Ii) for some β′i 6= βi .

By Lemma 1, Ui(β′i, β−i | Ii) ∈ [
∑∞

l=1
(l+k(Ii)−1)c+d

l+k(Ii)
(1−p)l−1,

∑∞
l=1

(l+k(Ii)−1)c+a
l+k(Ii)

(1−
p)l−1]. Because both (l+k(Ii)−1)c+d

l+k(Ii)
(1 − p)l−1 and (l+k(Ii)−1)c+a

l+k(Ii)
(1 − p)l−1 con-

verge to 0 as l grows to∞, it follows that when k(z) is sufficiently large the utility



ui(z) that comes along the history z does not influence the utility Ui(β′i, β−i | Ii)
too much. Specifically, for any ε > 0, there exists a positive integer T . Define a
strategy β′′i as follows

{
β′′i (I ′i) = β′i(I

′
i) for any I ′i with k(I ′i) ≤ T

β′′i (I ′i) = βi(I ′i) for any I ′i with k(I ′i) > T .

Then it holds that |Ui(β′′i , β−i | Ii)−Ui(β′i, β−i | Ii)| < ε. By choosing ε properly,
we can have

Ui(β′′i , β−i | Ii) > Ui(βi, β−i | Ii) .

Thus β′′i is also a profitable deviation from βi and it differs from βi only before
the (T + 2)-th subgame. Thus β′′i (I ′i) 6= βi(I ′i) for finitely many I ′is. Let β′′i be
such profitable deviation that differs from βi at the minimal number of I ′is. Let
I ′′i be the information set such that β′′i (I ′′i ) 6= βi(I ′′i ) while β′′i (I ′i) = βi(I ′i) for
any I ′i with k(I ′i) > k(I ′′i ). We claim that

Ui(β′′i , β−i | I ′′i ) > Ui(βi, β−i | I ′′i ) .

Otherwise we can modify β′′i at the information set I ′′i and get a profitable
deviation which differs from βi at fewer information sets than β′′i does. This
contradicts the selection of β′′i .

Finally, since it already has that β′′i (I ′′i ) 6= βi(I ′′i ) and β′′i (I ′i) = βi(I ′i) for any
I ′i with k(I ′i) > k(I ′′i ), we construct a strategy β̃i such that β̃i(I ′′i ) = β′′i (I ′′i ) and
β̃i(I ′i) = βi(I ′i) for any I ′i 6= I ′′i . It follows that

Ui(β′′i , β−i | I ′′i ) = Ui(β̃i, β−i | I ′′i )

because the utility conditional on I ′′i being reached is independent of the actions
taken at the information set I ′i 6= I ′′i with k(I ′i) ≤ k(I ′′i ), and for I ′i with k(I ′i) >
k(I ′′i ) it holds β̃i(I ′i) = βi(I ′i) = β′′i (I ′i).

Evidently β̃i is a profitable one-period deviation from βi at the information
set I ′′i , which contradicts the hypothesis that (β, µ) satisfies the one deviation
property. Hence the assumption is not true and (β, µ) is a sequential equilibrium.

Proposition 1 provides an easy way to check the sequential rationality of
a strategy in the game EG-(2, 2)RSS. In the following, we describe a strategy
(denoted as Strategy A) for the game and then prove it is a sequential equilibrium
along with the trivial belief system µ.

Strategy A For i ∈ N = {1, 2},
– whenever player i is supposed to move in a subgame Norm(·), he always takes

the action “B”.
– whenever player i is supposed to move in a subgame Puni(i, ·), he always

takes the action “B”.
– whenever player i is supposed to move in a subgame Puni(j, ·), he first com-

putes the XOR of his share and the share broadcasted by player j that has
passed the verification,



• if the XOR is ⊥, then player i takes the action “B”.
• otherwise, player i takes the action “S”.

Proposition 2. For sufficiently large L and sufficiently small p, Strategy A
along with the trivial belief system µ is a sequential equilibrium of the game
EG-(2, 2)RSS under the mean utility criterion.

Proof. By Proposition 1, we only need to prove that Strategy A satisfies the one
deviation property. Denote Strategy A by β. For any i ∈ N and any information
set Ii ∈ Ii, conditional on Ii being reached, k(Ii) subgames have been finished
with no one getting the secret. The proof is given according to the kind of the
(k(Ii) + 1)-th subgame.

(1) The (k(Ii) + 1)-th subgame is Norm(k(Ii) + 1).
Suppose that player i sticks to βi and the other player sticks to β−i, then

implementation of the game will continue with Norm(k(Ii) + 1), Norm(k(Ii) +
2),..., and terminate as soon as the dealer shares the real secret at some subgame.
In each of these subgames player i gets utility c except that in the last subgame
i gets b. By Lemma 1, we have

Ui(βi, β−i | Ii) =
∞∑

l=1

(k(Ii) + l − 1)c + b

k(Ii) + l
(1− p)l−1p .

suppose that player i turns to a one-period deviation strategy β′i at Ii while
the other player sticks to β−i. Without loss of generality, we may assume that
β′i(Ii) = S and β′i(I

′
i) = βi(I ′i) for any I ′i 6= Ii. That is, we only need to con-

sider the one-period deviation to the pure strategy. Because utilities under mixed
strategies are probability distributions over utilities under pure strategies, and
there are only two pure strategies in our game, thus proofs for the mixed strate-
gies can be easily derived from this proof for the pure strategies. By taking the
strategy (β′i, β−i), implementation of the game will continue with Norm(k(Ii)+1),
Puni(i, 1),...,Puni(i, L), Norm(k(Ii)+L+2),Norm(k(Ii)+L+3),..., and terminate
as soon as the dealer shares the real secret at some subgame. If Norm(k(Ii) + 1)
is the termination, i gets a higher utility a in this subgame. If Puni(i, ·) is the
termination, i gets a lower utility d. More precisely, we have

Ui(β′i, β−i | Ii) =
k(Ii)c + a

k(Ii) + 1
p +

L+1∑

l=2

(k(Ii) + l − 1)c + d

k(Ii) + l
(1− p)l−1p

+
∞∑

l=L+2

(k(Ii) + l − 1)c + b

k(Ii) + l
(1− p)l−1p . (4)

For consistency, we write

Ui(βi, β−i | Ii) =
k(Ii)c + b

k(Ii) + 1
p +

L+1∑

l=2

(k(Ii) + l − 1)c + b

k(Ii) + l
(1− p)l−1p

+
∞∑

l=L+2

(k(Ii) + l − 1)c + b

k(Ii) + l
(1− p)l−1p . (5)



In order to make β satisfy sequential rationality at Ii, it requires

Ui(β′i, β−i | Ii) ≤ Ui(βi, β−i | Ii) (6)

By Equality (4) and (5), it is equivalent to require

a− b

b− d
≤

L∑

k=1

(1− p)k

k
1+k(Ii)

+ 1
.

Since the inequality (6) is required to hold for any Ii, it is sufficient to require
the above inequality hold for k(Ii) = 0. That is, it requires a−b

b−d ≤
∑L

k=1
(1−p)k

k+1 .

Let L be sufficiently large, it holds
∑L

k=1
(1−p)k

k+1 ≥ ∑∞
k=1

(1−p)k

k+1 − ε for some
ε > 0. Because
∞∑

k=1

(1− p)k

k + 1
=

1
1− p

(
∞∑

k=1

(1− p)k

k
− 1 + p) =

1
1− p

(− ln p− 1 + p) > − ln p− 1.

Thus when − ln p − 1 > a−b
b−d , i.e. p < e−1− a−b

b−d , it has
∑∞

k=1
(1−p)k

k+1 > a−b
b−d . Let

ε =
∑∞

k=1
(1−p)k

k+1 − a−b
b−d and choose L sufficiently large so that

∑L
k=1

(1−p)k

k+1 ≥
∑∞

k=1
(1−p)k

k+1 − ε, the inequality (6) is satisfied.

(2) The (k(Ii) + 1)-th subgame is Puni(i, t) for some 1 ≤ t ≤ L.
If player i deviates from βi and turns to take the action S, then it only

postpones recovering of the secret and cannot increase i’s utility.
(3) The (k(Ii) + 1)-th subgame is Puni(j, t) for some 1 ≤ t ≤ L.
It is obvious that any one-period deviation from βi in this case cannot be

profitable.
In conclusion, for p < e−1− a−b

b−d and L sufficiently large so that
∑L

k=1
(1−p)k

k+1 ≥
∑∞

k=1
(1−p)k

k+1 −(
∑∞

k=1
(1−p)k

k+1 − a−b
b−d ), strategy A (i.e. β) satisfies the one deviation

property and thus is a sequential equilibrium along with the trivial belief system.

It can see that sticking to strategy A makes both players finally get the
secret and the expected running time is a constant. Moreover, it has proved the
strategy is a sequential equilibrium. Thus the game model EG-(2, 2)RSS along
with strategy A turns out to be a 2-out-of-2 rational secret sharing scheme.

4 Some Further Issues

To accomplish this work of rational secret sharing, we need to consider some
further issues. Some immature viewpoints are displayed below.

4.1 Dealer Off-line

In the model of EG-(2, 2)RSS described in Section 3.1, it involves the dealer-
distributing step in every subgame. That is, it needs a online dealer throughout



the game. But in practice the online dealer assumption is usually unrealistic. In
order to make the dealer off-line after the initial phase, we adopt the method
proposed in [4] and use one-way trapdoor permutations as primitives.

More precisely, for i ∈ N = {1, 2}, let fi, gi be one-way trapdoor permuta-
tions with the trapdoor held by player i and the dealer. Thus both the dealer
and player i can invert the one-way functions fi and gi. Let hfi , hgi respectively
be the hard-core predicates (refer to [6] for definitions) of fi, gi. Suppose the
secret s ∈ {0, 1}l and let y be a public element in the domain of fi, gi. Then our
game model EG-(2, 2)RSS is modified as follows.

Add an initial phase where the dealer secretly selects an integer i∗ ∈ {1, 2, ...}
according to a geometric distribution with parameter p 5. Then the dealer dis-
tributes to Pi the share s ⊕ (f−(i∗−1)l−1

j (y), ..., f−(i∗−1)l−l
j (y)) and the index

message (g−(i∗−1)l−1
j (y), ..., g−(i∗−1)l−l

j (y)). Then the dealer leaves the game.
The game still goes along the transition rule among the three kinds of sub-

games Norm(·), Puni(1, ·) and Puni(2, ·), except that in each of the subgame, the
first step involving dealer distributing shares is deleted and in the k-th subgame
player i is required to broadcast the message (f−(k−1)l−1

i (y), ..., f−(k−1)l−l
i (y))

and (g−(k−1)l−1
i (y), ..., g−(k−1)l−l

i (y)). Verification can be easily done since y is
public and the functions fi, gi is publicly computable. If the verification is passed,
then compare the second broadcast message with the index message distributed
at the initial phase. If they are coincide, then i∗ = k and the secret can be recov-
ered from the first broadcast message and the initial share; otherwise, it is like
that the dealer shares ⊥ in the k-th subgame and the game continues according
to the transition rule.

4.2 Simultaneous Broadcast

Like many previous rational secret sharing schemes [8, 7, 1, 13], our model also
relies on the existence of a simultaneous broadcast channel. Because in the sub-
game Norm(·) both players are required to broadcast share simultaneously, and
the player who postpones his broadcast message at this round will be punished
in the next subgame. It can see that our punishment rule relies upon the si-
multaneous broadcast channel. How to build a rational secret sharing scheme in
an extensive game model without the simultaneous broadcast channel deserves
further research.

4.3 Extension to t-out-of-n Rational Secret Sharing

To consider the t-out-of-n rational secret sharing in an extensive game model, we
need first define the k-resilient sequential equilibrium. Intuitively, it requires that
after any history all players stick to the original strategies except that a group

5 That is, let p be the probability that the bit 1 is chosen between 0 and 1 in one
trial. Execute such trial repeatedly and independently, then the bit 1 is chosen in
the i∗-th trial for the first time.



of k players collaborate to deviate, but the utility of any one of the k deviants
cannot be increased. To adapt our game model to the t-out-of-n case, the key
point is how to make a reasonable punishment rule for the case that there are
k > 1 players cheat in a subgame. A possible solution is that the n − k players
jointly determine a random order on the k deviants and in the next round the k
deviants are required to broadcast messages according to this order first. If no
one cheats then the rest n− k players are required to broadcast simultaneously,
otherwise the game turns to the punishment for the new deviants. Also we should
carefully determine the periods L that a punishment lasts for and the probability
p with which every subgame results in a real recovery.

4.4 Computational Equilibrium

Another important issue is that we should consider computational equilibria in
cryptographic protocols. In our model, verification of the broadcast messages
depends on a signature algorithm Sig(·) and the online dealer is removed by
one-way trapdoor permutations. Because of these it is better for us to consider
computational issues when defining sequential equilibria. Refer to the concepts
of computational equilibria proposed in previous work [4, 11], we can define an
efficient strategy to be sequentially rational in the computational setting if after
any history any efficient deviation of a single player can bring a profit of at
most ε(k), where ε(k) is a negligible function. It can see that Strategy A given
in Section 3.2 in our game model satisfies this requirement. Katz [10] gave a
further consideration for defining subgame perfect equilibrium (or sequential
equilibrium) in the computational setting. He proposed that the probability
a history happens should be considered in this definition instead of requiring
rationality after any history. But the rational world is quite complicated and
the bounded rationality could frequently give rise to unexpected results, thus
defining sequential rationality properly in the computational setting is difficult
and still has a long way to go.

5 Conclusion

This paper studies rational secret sharing in an extensive game model and designs
a scheme which is proven to be a sequential equilibrium of the game. Discussions
of rationality in extensive games are more complicated than that in strategic
games. For simplicity, the scheme in this paper is built assuming existence of a
simultaneous broadcast channel and we just provides loose considerations about
k-resilience and computational equilibria. This is a beginning work in modeling
rational secret sharing precisely in extensive games, and there remains much
work deserving further research.

References

1. I. Abraham, D. Dolev, R. Gonen, J. Halpern : Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computa-



tion. In: 25th ACM Symposium Annual on Principles of Distributed Computing,
pp. 53C62. ACM Press, New York (2006)

2. G.R. Blakley, Safeguarding cryptographic keys, Proceedings of the National
Computer Conference, 1979, American Federation of Information Processing So-
cieties Proceedings 48: 313-317, 1979.

3. Y. Dodis, T. Rabin : Cryptography and game theory. In: Nisan, N., Roughgar-
den, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 181C207.
Cambridge University Press, Cambridge (2007).

4. G. Fuchsbauer, J. Katz, D. Naccache, Efficient Rational Secret Sharing in Stan-
dard Communication Networks. TCC 2010, LNCS 5978, pp. 419C436, 2010.

5. D. Fudenberg, J. Tirole. Game Theory. MIT Press, 1992.

6. O. Goldreich, Foundations of Cryptography I: Basic Tools, Cambridge University
Press, 2001.

7. S.D. Gordon, J. Katz, Rational secret sharing, revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229C241. Springer, Heidelberg (2006)

8. J. Halpern and V. Teague. Rational secret sharing and multiparty computation.
In Proc. of 36th STOC, pages 623–632. ACM Press, 2004.

9. J. Katz : Bridging game theory and cryptography: Recent results and future di-
rections. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251C272. Springer,
Heidelberg (2008)

10. J. Katz: Ruminations on defining rational MPC. Talk given at SSoRC, Bertinoro,
Italy (2008), http://www.daimi.au.dk/ jbn/SSoRC2008/program.

11. G. Kol, M. Naor, Cryptography and game theory: Designing protocols for ex-
changing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
320–339. Springer, Heidelberg (2008)

12. G. Kol, M. Naor, Games for exchanging information. In: STOC 2008, pp.
423C432. ACM, New York.

13. A. Lysyanskaya, N. Triandopoulos: Rationality and adversarial behavior in
multi-party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 180–197. Springer, Heidelberg (2006)

14. S. Maleka, A. Shareef, C. Pandu Rangan, Rational secret sharing with repeated
games, ISPEC 2008, LNCS 4991, pp. 334C346, 2008.

15. S.J. Ong, D.V. Parkes, A. Rosen, A. Vadhan, Fairness with an honest Minority
and a rational majority, TCC 2009, LNCS 5444, pp. 36-53, 2009.

16. M. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge
(2004).

17. A. Shamir, How to share a secret, Communications of the ACM, 22(11), pp.
612-613, 1979.

A Appendix: Consistency

An important condition that a sequential equilibrium must hold is about con-
sistency: i.e. (β, µ) is consistent if

There exists a sequence ((βn, µn))∞n=1 of assessments that converges to (β, µ)
and has the properties that each strategy profile βn is completely mixed and that
each belief system µn is derived from βn using Bayes’ rule.



Specifically, a strategy is completely mixed if it assigns each possible action
a nonzero probability. Bayes’ rule states the relation between posterior proba-
bilities and prior probabilities. Here it defines the consistency between the belief
system and the strategies taken previously.

We claim the consistency condition is trivially hold in the extensive games
of rational secret sharing we discussed in this paper. The reason is that the
nontrivial beliefs are always due to the chance’s actions which are taken with a
fixed and publicly known probability distribution.

To illustrate this, see Example 1 and the assessment (β, µ) given after Def-
inition 2. Let {εn} be a sequence of positive real numbers which converge to 0
as n grows to infinity. Define

– βn
1 (I1) = (B : 1− εn; S : εn).

– βn
2 (I21) = (B : εn; S : 1− εn).

– βn
2 (I22) = (B : 1− εn; S : εn).

– µn = µ.

It is easy to see that the strategy βn is completely mixed and (βn, µn) converges
to (β, µ). Also, βn and µn coincide with Bayes’ rule Because the nontrivial beliefs
(i.e., beliefs on the information set which contains more than one history) of µn

are independent of the strategy βn, and are only caused by the chance’s action
which is determined by the publicly known probability distribution function fc

(see Definition 1).


