
Certificateless Signcryption without Pairing

Wenjian Xie∗

College of Mathematics and Computer Science
Guangxi University for Nationalities, Nanning 530006, China

Abstract. Certificateless public key cryptography is receiving significant at-
tention because it is a new paradigm that simplifies the traditional PKC and
solves the inherent key escrow problem suffered by ID-PKC. Certificateless
signcryption is one of the most important security primitives in CL-PKC.
However, to the best of our knowledge, all constructions of certificateless
signcryption (CLSC) in the literature are built from bilinear maps which
need costly operations. In the paper, motivated by certificateless encryption
schemes proposed in [2, 19], we proposed the first pairing-free CLSC scheme,
which is more efficient than all previous constructions.

Keywords: Certificateless; Signcryption scheme; Bilinear pairing; Gap
Diffie-Hellman problem; Gap discrete logarithm problem

1 Introduction

In a traditional public key cryptography (PKC), any user of the system who wants to
communicate with others must obtain their authorized public key, that means any public
key should be associated with the owner by a certificate, which is a signature issued by
the trusted Certificate Authority (CA). However this brings a large amount of computation,
communication cost and certificate management problems. In order to solve those prob-
lems, Shamir [18] firstly introduced the concept of identity based cryptography (ID-PKC)
in 1984. A user can use an email address, an IP address or any other information related his
identity, that is publicly know and unique in the whole system, as his public key. The ad-
vantage of an identity based cryptography is that anyone can simply use the user’s identity
to communicate with each other. This can be done even before the user gets its private key
from the Key Generation Center (KGC). However, the user must completely trust KGC,

∗Corresponding author (W. Xie). E-mail: wjxieem@gmail.com.

1

mailto: wjxieem@gmail.com


which can impersonate any user to sign or decrypt of any message. This issue is generally
referred to as key escrow problem in identity based cryptography.

In 2003, Al-Riyami and Paterson [1] introduced the concept of certificateless public
key cryptography (CL-PKC), which eliminate the use of certificates as in the traditional
PKC and solve the key escrow problem that is inherent in identity based cryptography. In
CL-PKC, the KGC is involved to issue a user’s partial key. Then the user independently
generates his public/private key pair (pkID, skID) use the partial key and a secret value
chosen by himself, and publishes pkID.

In 2008, Barbosa and Farshim introduced the notion of certificateless signcryption
(CLSC), which is one of the most important security primitives in CL-PKC, and proposed
the first CLSC scheme [4]. And aimed at designing an efficient CLSC scheme, Wu and
Chen proposed an new CLSC scheme [21], which was found insecure by Sharmila et al.
[17]. Recently, Liu et al. [13] proposed the first CLSC scheme in the standard model from
Waters’s identity-based encryption scheme [20].

Our Contribution. To the best of our knowledge, all concrete constructions of certificate-
less signcryption in the literature are built from bilinear maps. We note that in pairing based
cryptosystems, although numerous papers discuss the complexity of pairings and how to
speed up the pairing computation [5, 7, 10, 11], the computation of the pairing still remains
time-consuming. In this paper, motivated by certificateless encryption scheme proposed in
[2, 19]. we present the first pairing-free certificateless signcryption scheme, which is more
efficient than all previous constructions [4, 13, 21, 22].

Organization. The rest of this paper is organized as follows: In next Section, we describe
some preliminaries, including our complexity assumptions, security definition of signature
and the notion of certificateless signcryption scheme. We describe its security models in
Section 3 and propose our certificateless signcryption scheme in Section 4. In Section 5,
we present its security analysis. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Definitions

Definition 1. The Gap Diffie-Hellman Problem (GDHP) [3] is given, in addition to
(p, q, g, gα, gβ) for unknown α, β ∈ Z∗q, access to a Decisional Diffie-Hellman (DDH) or-
acle ODDH(·, ·, ·, ·), which, on input (g, ga, gb, z), outputs 1 if z = gab and 0 otherwise, and
tries to find the Diffie-Hellman key gαβ.

The advantage of any probabilistic polynomial time algorithmA in solving the GDHP
is defined as

AdvGDHP
A = Pr[A(p, q, g, gα, gβ|ODDH(·, ·, ·, ·)) = gαβ].

The GDH Assumption is that, for any probabilistic polynomial time algorithm A, the ad-
vantage AdvGDHP

A is negligible.

2



Definition 2. The Gap Discrte Logarithm Problem (GDLP) [3] is given, in addition to
(p, q, g, gα) for unknown α ∈ Z∗q, access to a restricted DDH oracle OrDDH(g, gα, ·, ·), which,
on input (gβ, z), outputs 1 if z = gαβ and 0 otherwise, and to compute α.

The advantage of any probabilistic polynomial time algorithm A in solving the GDLP
is defined as

AdvGDLP
A = Pr[A(p, q, g, gα|OrDDH(g, gα, ·, ·)) = α].

The GDL Assumption is that, for any probabilistic polynomial time algorithm A, the ad-
vantage AdvGDLP

A is negligible.

Definition 3(Security of Signature). A signature scheme is (ϵ, t, qh, qs)-secure(existentially
unforgeable under an adaptive chosen message attack [12]) if no t-time adversaryA, mak-
ing at most qh queries to hash function and qs signature queries, has an advantage of at least
ϵ to produce a valid message-signature pair.

2.2 Certificateless Signcryption Scheme

A certificateless signcryption scheme is defined by the following seven algorithms:

Setup: This algorithm takes a security parameter k as input and returns the system
parameters params and a secret master key master-key.

Partial-Key-Extract: This algorithm takes params, master-key and a user’s identity ID
as input. It returns a partial private key dID and a partial public key pID corresponding to
the user.

Set-Secret-Value: Taking params and a user’s identity ID as input, this algorithm
generates a secret value sID.

Set-Public-Key: Taking params, a user’s partial public key pID and his secret value sID

as input, this algorithm generates pkID for the user with identity ID.

Set-Private-Key: It takes params, a user’s partial private key dID and his secret value
sID as input, and returns the user’s full private key skID.

Signcrypt: This algorithm takes as input the sender’s private key skIDS , the receiver’s
identity IDR and public key pkIDR , and a message m, and returns a ciphertext σ. We write
σ = Signcrypt(skIDS , IDR, pkIDR , m).

Unsigncrypt: It takes the sender’s identity IDS and public key pkIDS , the receiver’s
private skIDR and the corresponding ciphertext σ as input, and outputs the message m if the
ciphertext σ is valid, or the symbol ⊥ otherwise. We write ϱ = Unsigncrypt(IDS, pkIDS ,
skIDR , σ), where ϱ is the message m or the symbol ⊥.

params, as an implied inputs to Signcrypt and Unsigncrypt algorithms, is omitted. The
Setup and Partial-Key-Extract algorithms are performed by KGC. Once partial private
key dID and partial public key pID is given to the user via secure channel, the user runs
Set-Secret-Value algorithm and generates his own public/private key pair.

3



3 Security Model for Signcryption

In [4], Barbosa and Farshim defined the formal security notions for certificateless sign-
cryption schemes. These notions are natural adaptations from the security notions of
identity-based signcryption [8, 9] by considering two different type adversaries, a Type
I adversary AI and a Type II adversary AII , and include the indistinguishability against
adaptive chosen ciphertext attacks and the existential unforgeability against adaptive cho-
sen message attacks. The adversaryAI represents a normal third party attacker against the
CLSC scheme. That is,AI is not allowed to access to the master-key butAI may requests
public key and replaces public keys with values of its choice. The adversaryAII represents
a malicious KGC who generates partial private key of users. The adversaryAII is allowed
to have access to the master-key but not replace a public key. Note that, as in [4, 8, 9], we
do not consider attacks targeting ciphertext where the sender and receiver identities are the
same. In particular we disallow such queries to relevant oracles and do not accept this type
of ciphertext as a valid forgery.

3.1 Confidentiality Model for Certificateless Signcryption

The confidentiality property (indistinguishability of encryptions under adaptively cho-
sen ciphertext attacks (IND-CCA2)) required for certificateless signcryption is captured by
the following two games againstAI andAII .

Game IND-CCA2-I. Now we illustrate the first game performed between a challenger
C and a Type I adversaryAI for a certificateless signcryption scheme.

Initialization: C runs the algorithm Setup on input a security parameter k, and obtains
master-key and params, and sends params toAI .

Find stage: The adversary AI performs a polynomially bounded number of queries.
These queries may be made adaptively, i.e. each query may depend on the answers to the
previous queries.

− Hash Queries: AI can request the hash values of any input.
− Partial Key Extraction: AI is able to ask for the partial private key dID and partial

public key pID for any ID. C computes the partial private key dID and partial public
key pID corresponding to the identity ID and returns them toAI .

− Public Key Extraction: On receiving a public key extraction for any identity ID, C
computes the corresponding public key pkID and sends it toAI .

− Private Key Extraction: For any ID, C computes the private key skID corresponding
to the identity ID and sends skID toAI . Here, AI is not allowed to query this oracle
on any identity for which the corresponding public key has been replaced. This re-
striction is imposed due to the fact that it is unreasonable to expect that the challenger
is able to provide a full private key for a user for which it does not know the secret
value.

− Public Key Replacement: For any identity ID,AI can can replace the public key for
any identity with any value of its choice. The current value of an entity’s public key

4



is used by the challenger in any computation or response to the adversary’s requests.
− Signcrypt Queries: AI produces a sender’s identity IDS, a receiver’s identity IDR

and a message m. C returns ciphertext σ=Signcrypt(skIDS , IDR, pkIDR , m) to AI as
the response of signcryption oracle’s answer. Note that, it is possible that the public
key pkIDS has been replaced earlier by AI , In this case, to correctness of the sign-
cryption oracle’s answer, we assume thatAI additionally submits the corresponding
secret value to C. And we disallow queries where IDS = IDR.

− Unsigncrypt Queries: AI produces a sender’s identity IDS, a receiver’s identity IDR
and a ciphertext σ. C sends the result of Unsigncrypt(IDS, pkIDS , skIDR , σ) to AI .
Note that, it is possible that the public key pkIDR has been replaced earlier byAI . In
this case, to correctness of the unsigncryption oracle’s answer, we assume that AI

additionally submits the corresponding secret value to C. Again, we disallow queries
where IDS = IDR.

Challenge: At the end of Find stage, AI returns two distinct messages m0 and
m1 (assumed of equal length), a sender identity ID∗S and a receiver identity ID∗R, on
which it wishes to be challenged. The adversary must have made no partial key extrac-
tion and private key extraction on ID∗R. C picks randomly a bit δ ∈ {0, 1}, computes
σ∗=Signcrypt(skID∗

S
, ID∗R, pkID∗R

, mδ) and returns it toAI .

Guess stage: AI asks a polynomial number of queries adaptively again as in the Find
stage. It is not allowed to extract the partial key and private key corresponding to ID∗R and
it is not allowed to make an unsigncrypt query on σ∗ with sender ID∗S and receiver ID∗R
unless the public key pkID∗

S
of the sender or that of the receiver pkID∗R has been replaced

after the challenge was issued.

Eventually,AI outputs a bit δ′ and wins the game if δ=δ′.

AI’s advantage is defined as AdvIND−CCA2−I
AI

= 2Pr[δ = δ′] − 1.

Game IND-CCA2-II. This is the second game where C interacts with adversary AII

as follows:

Initialization: C runs the algorithm Setup on input a security parameter k to generate
master-key and params, and sends master-key and params toAII .

Find stage: In this stage, AII may adaptively make a polynomially bounded number
of queries as in Game IND-CCA2-I. The only constraint is that AII can not replace any
public keys. Obviously, AII can compute the partial private key of any identities by itself
with the master-key and can get the partial public key of any identities by extract the
corresponding public key.

Challenge: At the end of Find stage, AII returns two distinct messages m0 and m1

(assumed of equal length), a sender identity ID∗S and a receiver identity ID∗R, on which
it wishes to be challenged. The adversary must have made no private key extraction on
ID∗R. C picks randomly a bit δ ∈ {0, 1}, computes σ∗=Signcrypt(skID∗

S
, ID∗R, pkID∗R

, mδ) and
returns it toAII .

Guess stage: AII asks a polynomial number of queries adaptively again as in the Find
stage. It is not allowed to extract the private key corresponding to ID∗R and it is not allowed

5



to make an unsigncrypt query on σ∗ with sender ID∗S and receiver ID∗R.

Eventually,AII outputs a bit δ′ and wins the game if δ=δ′.

AII’s advantage is defined as AdvIND−CCA2−II
AII

= 2Pr[δ = δ′] − 1.

Note that the security models described above deals with insider security since the
adversary is assumed to have access to the private key of the sender of ciphertext σ∗. This
means that the confidentiality is preserved even if a sender’s private key is compromised.

Definition 5 (IND-CCA2). An CLSC scheme is said to be IND-CCA2 secure if no poly-
nomially bounded adversaryA ∈ {AI ,AII} has a non-negligible advantage wins the games
described above(Game IND-CCA2-I, Game IND-CCA-II).

3.2 Unforgeability Model for Certificateless Signcryption

The authenticity property (existential unforgeability against chosen message attacks
(EUF-CMA)) for certificateless signcryption is captured by the following two games
againstAI andAII , respectively.

Game EUF-CMA-I. This is the game where AI interacts with its Challenger C as
follows:

Initialization: C runs the algorithm Setup on input a security parameter k to generate
master-key and params, and sends params toAI .

Queries: The adversaryAI performs a polynomially bounded number of queries adap-
tively as in Game IND-CCA2-I game.

Output: Finally, AI produces a new triple (ID∗S, ID∗R, σ
∗) (i.e. a triple that was not

produced by the signcryption oracle) where the partial key and the private key of ID∗S was
not extract and wins the game if the result of Unsigncrypt(ID∗S, pkID∗

S
, skID∗R

, σ∗) is not the
⊥ symbol.

The adversaryAI’s advantage is its probability of victory.

Game EUF-CMA-II. This is the game where AII interacts with its Challenger C as
follow:

Initialization: C runs the algorithm Setup on input a security parameter k to generate
master-key and params, and sends params and master-key toAI .

Queries: The adversaryAII performs a polynomially bounded number of queries adap-
tively as in Game IND-CCA2-II game.

Output: Finally, AI produces a new triple (ID∗S, ID∗R, σ
∗) (i.e. a triple that was not

produced by the signcryption oracle) where the private key of ID∗S was not extract and wins
the game if the result of Unsigncrypt(ID∗S, pkID∗

S
, skID∗R

, σ∗) is not the ⊥ symbol.

The adversaryAII’s advantage is its probability of victory.

Note that this definition allows the adversary have access to the secret key of the receiver
of the forgery, which guarantees the insider security.

6



Definition 6 (UF-CMA). An CLSC scheme is said to be EUF-CMA secure if no polyno-
mially bounded adversary A ∈ {AI ,AII} has a non-negligible advantage wins the games
described above(Game EUF-CMA-I, Game EUF-CMA-II).

4 A CLSC without Pairing

Our scheme is motivated by certificateless encryption scheme proposed in [2, 19].

Setup: This algorithm takes as input a security parameter k to generate two primes p, q
such that q > 2k and q|(p − 1). It then performs the following:

− Pick an element g from Z∗p with order q.
− Randomly select x ∈R Z

∗
q, as master-key, and compute y = gx.

− Choose cryptographic hash functions H1 : {0, 1}∗ × Z∗p → Z∗q, H2 : {0, 1}∗ × (Z∗p)2 →
Z∗q, H3 : {0, 1}n × (Z∗p)7 → Z∗q, H4 : {0, 1}n × (Z∗p)7 → Z∗q and H5 : Z∗p × Z∗p → {0, 1}n,
where n is the length of message to be signcrypted.

− The system parameters are params =< p, q, n, g, y,H1,H2,H3,H4,H5 > and publish
params.

Partial-Key-Extract: Given params, master-key and an identity ID ∈ {0, 1}∗, this al-
gorithm works as follows: selects rID, r′ID ∈ Z∗q Computes ωID = grID , dID = rID +

xH1(ID, ωID), νID = gr′ID , σID = r′ID + xH2(ID, ωID, νID), and returns the partial private
key dID and the partial public key pID = (ωID, νID, σID).

Set-Secret-Value: This algorithm takes as input params and a user’s identity ID. It picks
a random value z ∈R Z

∗
q and outputs the secret value sID = z.

Set-Private-Key: Taking params, dID and sID as input, this algorithm returns the private
key skID = (dID, sID).

Set-Public-Key: Taking params, pID and sID as input, this algorithm computes µID = gsID

and returns the public key pkID = (µID, ωID, νID, σID).

Signcrypt: To send a message m ∈ {0, 1}n to Bob with identity B and public key pkB, Alice
with private key skA works as follow:

− Check whether gσB = νByH2(B,ωB,νB). If not, output ⊥ and abort signcryption.
− Randomly select r ∈R Z

∗
q, and computes t = gr and c = H5(µr

B, ω
r
ByH1(B,ωB)r) ⊕ m.

− Compute h = H3(m, t, µr
B, ω

r
ByH1(B,ωB)r, µA, ωA, µB, ωB), h′ = H4(m, t, µr

B, ω
r
ByH1(B,ωB)r,

µA, ωA, µB, ωB) and s = r − hdA − h′sA.
− Set ciphertext σ = (c, s, t).

Unsigncrypt: To unsigncrypt a ciphertext σ = (c, s, t) from Alice with identity A and public
key pkA, Bob with private key skB acts as follows:

− Check whether gσA = νAyH2(A,ωA,νA). If not, output ⊥ and abort unsigncryption.
− Compute m = c ⊕ H5(tsB , tdB).
− Set h = H3(m, t, tsB , tdB , µA, ωA, µB, ωB) and h′ = H4(m, t, tsB , tdB , µA, ωA, µB, ωB).
− Accept m if and only if t = gsωh

AyH1(A,ωA)hµh′
A hold, return ⊥ otherwise.

7



Consistency: The correctness of the proposed scheme can be easily verified with follow-
ing:

µr
B = gsBr = grsB = tsB ,

ωr
ByH1(B,ωB)r = grBrgxH1(B,ωB)r = gr(rB+xH1(B,ωB)) = grdB = tdB

and
gsωh

AyH1(A,ωA)hµh′
A = gr−hdA−h′sAgrAhgxH1(A,ωA)hgsAh′ = gr = t.

5 Security Analysis of the Proposed Scheme

In this section, we will provide two formal proofs that our scheme is IND-CCA2 secure
under the GDH Assumption and UF-CMA secure under the GDL Assumption. We now
present the security analysis of the proposed scheme in the random oracle model [6].

Theorem 1. Under the GDH Assumption, the proposed CLSC scheme is IND-CCA2 se-
cure in the random oracle model.

This theorem follows from Lemmas 1 and 2.

Lemma 1. Let us assume that there exists an IND-CCA2-I adversaryAI has non-negligible
advantage ϵ against our scheme when running in time T , asking qi queries to random
oracles Hi (i = 1, 2, · · · , 5), qpak partial key queries, qsk private key queries, qpk public key
requests, qpkr public key replacement queries, qs signcryption queries and qu unsigncryption
queries. Assume that the Schnorr signature [15, 16] is (ϵ′,T , q2, qpak)-secure. Then there
is an algorithm C to solve the GDHP with probability

ϵ′′ ≥ ϵ

q3 + q5 + qs

(1 − ϵ′)qpkr

qpk
(1 − qs

2q3 + q4 + q5 + 3qs

2k )(1 − qu

2k )

within a time T ′ < T + (q1 + q2)O(1) + (q3 + q4 + q5)(O(1) + qsTDDH) + (qpk + qs)(O(1) +
5Texp) + qpkr(O(1) + 2Texp) + qu(O(1) + 3Texp + (q3 + qs)(O(1) + TDDH + 3Texp)) where
TDDH and Texp are respectively the costs of using ODDH(·, ·, ·, ·) to decision Diffie-Hellman
problem and computing exponentiation in Z∗p.

Proof. Suppose that there exists an adversary AI can attack our scheme. We want to
build an algorithm C that runs AI as a subroutine to solve GDHP. Assume that C is given
(p, q, g, gα, gβ|ODDH(·, ·, ·, ·)) as an instance of the GDHP. And its goal is to compute gαβ by
interacting with adversaryAI.

Without loss of generality, we assume that any query involving an identity ID comes
after a Public Key Extraction query on ID. To maintain consistency between queries made
by AI , C keeps the following lists: Li for i = 1, 2, · · · , 5 of data for query/response pairs
to random oracle Hi, Lsk of data for query/response pairs to Private Key Extraction oracle,
Lpk of data for query/response pairs to Public Key Extraction oracle. Then, C randomly
picks η ∈R {1, 2, · · · , qpk} and runsAI on input of < p, q, n, g, y,H1,H2,H3,H4,H5 > where
y = gα and n is the length of message to be signcrypted, and answers various oracle queries
as follows:

8



H1 Queries: For each query (ID, ωID), C returns the previously assigned value if it exists
and a random e1 ∈R Z

∗
q otherwise. In the latter case, C adds < (ID, ωID), e1 > to L1, which

is which is initially empty.

H2 Queries: For each query (ID, ωID, νID), C returns the previously assigned value if it
exists and a random e2 ∈R Z

∗
q otherwise. In the latter case, C adds < (ID, ωID, νID), e2 > to

L2, which is which is initially empty.

H3 Queries: For each query (m, k1, k2, · · · , k7), C proceeds as follows:

− If < (m, k1, k2, · · · , k7), c, e3 >∈ L3 for some (c, e3), return e3.
− C go through the list L3 with entries < (m, k1,⊥, k3, · · · , k7), c, e3 >(those en-

tries are added in answer AI’s signcrypt query), for some (c, e3), such that
ODDH(g, k1, k6, k2) = 1. If such a tuple exist, return e3 and replace the symbol ⊥
with k2.

− If C reach this point of query, return a random e3 ∈ Z∗q. Then, set h5 = H5(k2, k3) and
update the list L3 with input < (m, k1, k2, · · · , k7), c = m ⊕ h5, e3 >.

H4 Queries: For each query (m, l1, l2, · · · , l7), C proceeds as follows:

− If < (m, l1, l2, · · · , l7), e4 >∈ L4 for some e4, return e4.
− C go through the list L4 with entries < (m, l1,⊥, l3, · · · , l7), e4 >(those entries are

added in answer AI’s signcrypt query), for some e4, such that ODDH(g, l1, l6, l2) = 1.
If such a tuple exist, return e4 and replace the symbol ⊥ with l2.

− If C reach this point of query, return a random e4 ∈ Z∗q and update the list L4 with
input < (m, l1, l2, · · · , l7), e4 >.

H5 Queries: For each query (u1, u2), C proceeds as follows:

− If < (u1, u2), u3, u4, e5 >∈ L5 for some (u3, u4, e5), return e5.
− C go through the list L5 with entries < (⊥, u2), u3, u4, e5 >(those entries are added in

answerAI’s signcrypt query), for some (u3, u4, e5), such that ODDH(g, u3, u4, u1) = 1.
If such a tuple exist, return e5 and replace the symbol ⊥ with u1.

− If C reach this point of query, return a random e5 ∈ {0, 1}n and update the list L5 with
input < (u1, u2),⊥,⊥, e5 >∈ L5.

Public Key Extraction: On the j-th non-repeat query ID j(from this point on we denote the
j-th non-repeat identity query to this oracle with ID j), C proceeds as follows:

− If there is a tuple < ID j, (µID j , ωID j , νID j , σID j) > exists in Lpk, return pkID j =

(µID j , ωID j , νID j , σID j) as answer.
− Otherwise, do the following:

∗ if j , η, pick dID j , σID j , z1, z2, sID j ∈R Z
∗
q at random and compute µID j =

gsID j , ωID j = gdID j y−z1 and νID j = gσID j y−z2 . Add < (ID j, ωID j), z1 > and
< (ID j, ωID j , νID j), z2 > to L1 and L2 respectively (re-choose dID j , σID j , z1, z2

if H1 or H2 is already defined in the corresponding value). Return pkID j =

(µID j , ωID j , νID j , σID j) as answer and add < ID j, (µID j , ωID j , νID j , σID j) > and
< ID j, (dID j , sID j) > to Lpk and Lsk respectively.
∗ Otherwise, pick rIDη , σIDη , z1, z2, sIDη ∈R Z

∗
q at random and compute µIDη =

gsIDη , ωIDη = grIDη and νIDη = gσIDηy−z2 . Add < (IDη, ωIDη), z1 > and

9



< (IDη, ωIDη , νIDη), z2 > to L1 and L2 respectively (re-choose rIDη , σIDη , z1, z2

if H1 or H2 is already defined in the corresponding value). Return pkIDη =

(µIDη , ωIDη , νIDη , σIDη) as answer and add < IDη, (µIDη , ωIDη , νIDη , σIDη) > and
< IDη, (rIDη , sIDη) > to Lpk and Lsk respectively.

Partial Key Extraction: For each query ID j, C proceeds as follows:

− If j , η, find < ID j, (dID j , sID j) > and < ID j, (µID j , ωID j , νID j , σID j) > in Lsk and Lpk

respectively, and return dID j and pID j = (ωID j , νID j , σID j) as answer.
− Otherwise, C aborts the simulation.

Private Key Extraction: For each query ID j, C proceeds as follows:

− If j = η, C aborts the simulation.
− Otherwise, find < ID j, (dID j , sID j) > in Lsk and return skID j = (dID j , sID j) as answer.

Public Key Replacement: For each query < ID j, (µ′ID j
, ω′ID j

, ν′ID j
, σ′ID j

) >, C finds <
ID j, (µID j , ωID j , νID j , σID j) >∈ Lpk, if (ω′ID j

, ν′ID j
, σ′ID j

) , (ωID j , νID j , σID j) satisfying

g
σ′ID j = ν′ID j

y
H2(ID j,ω

′
ID j
,ν′ID j

)(meaning that AI produces a valid Schnorr signature on ω′ID j

without master-key), C aborts the simulation. Otherwise, C sets µID j = µ
′
ID j

, finds < ID j,
(dID j , sID j) > in Lsk and sets sID j =⊥.

Signcrypt Queries: For each query (IDa, IDb,m), where a, b ∈ {1, 2, · · · , qpk}. We observe
that, if a , η , C knows the sender’s private key skIDa = (dIDa , sIDa) and can answer the query
according to the specification of Signcrypt algorithm. We thus assume a = η and hence
b , η by the irreflexivity assumption. C randomly secrets s, h, h′ ∈R Z

∗
q and h5 ∈R {0, 1}n and

sets t = gsωh
IDa

yH1(IDa,ωIDa )hµh′
IDa

and c = m ⊕ h5. Observe that C knows the receiver’s partial
private key dIDb by construction. Then, C adds < (m, t,⊥, tdIDb , µIDa , ωIDa , µIDb , ωIDb), c, h >
to L3, < (m, t,⊥, tdIDb , µIDa , ωIDa , µIDb , ωIDb), h

′ > to L4 and < (⊥, tdIDb ), t, µIDb , h5 > to L5.(C
fails if one of those hash functions is already defined in the corresponding value but this
only happens with probability small than (2q3 + q4 + q5 + 3qs)/p), and returns ciphertext
σ = (c, s, t).

Unsigncrypt Queries: For each query (IDa, IDb, σ = (c, s, t)), where a, b ∈ {1, 2, · · · , qpk}.
we assume that b = η (and hence a , η by the irreflexivity assumption), because oth-
erwise C knows the receiver’s private key skIDb and can answer the query according to
the specification of Unsigncrypt algorithm. C finds < IDa, (µIDa , ωIDa , νIDa , σIDa) > and
< IDb, (µIDb , ωIDb , νIDb , σIDb) > in Lpk, and searches through list L3 for entries of the form
< mi, t, tsIDb , k3,i, µIDa , ωIDa , µIDb , ωIDb , c, e3,i > (Here, we needn’t to consider the entries in
L3 with k2 =⊥, because of a , η) such that ODDH(g, t, ωIDby

H1(IDb,ωIDb ), k3,i) = 1 indexed by
i ∈ {1, 2, · · · , q3 + qs}, where sIDb is the secret value of the IDb (if pkIDb has been replaced
byAI , C gets it fromAI). If none is found, σ is invalid, returns ⊥. Otherwise, each one of
them is further examined: for the corresponding indexes, C chicks if

t = gsω
e3,i
IDa

yH1(IDa,ωIDa )e3,iµh′
IDa

(1)

where h′ = H4(mi, t, tsIDb , k3,i, µIDa , ωIDa , µIDb , ωIDb). Note that, if (1) is satisfied, means that
σ = (c, s, t) is a valid ciphertext from IDa to IDb. If the unique i ∈ {1, 2, · · · , q3 + qs}
satisfying (1) is detected, the matching mi is returned. Overall, an inappropriate rejection
occurs with probability smaller than qu/p across the whole game.

10



At the end of Find stage, AI outputs two distinct messages m0 and m1 (assumed of
equal length), a sender identity ID∗S and a receiver identity ID∗R, on which it wishes to
be challenged. If ID∗R , IDη, C aborts. Otherwise, it randomly picks c∗ ∈R {0, 1}n and
s∗ ∈R Z

∗
q, sets t∗ = gβ and σ∗ = (c∗, s∗, t∗), and sends σ∗ toAI as the challenge ciphertext.

At the end of Guess stage,AI outputs its guess. Note that,AI cannot recognize that is
not a proper ciphertext unless it queries H5 on (gβsIDη , gβdIDη ). Along the guess stage, AI’s
view is simulated as before and its eventual output is ignored. Standard arguments can
show that a successful AI is very likely to query H5 on (gβsIDη , gβdIDη ) if the simulation is
indistinguishable from a real attack environment.

To produce a result C fetches a random entry < (u1, u2), u3, u4, e5 > from L5. With
probability 1/(q3 + q5 + qs) (as L5 contains no more than q3 + q5 + qs records by con-
struction), the chosen entry will contain the right element u2 = gβdIDη = gβ(rIDη+αe1), where
e1 = H1(IDη, ωIDη) and rIDη can be find in Lsk. Then, C returns

gαβ =
[

u2

(gβ)rIDη

]e−1
1

as the solution of GDHP.

In an analysis of C’s advantage, we note that it only fails in providing a consistent
simulation because one of the following independent events:

E1 : AI does not choose to be challenged on IDη.
E2 : A Partial Key Extraction or Private Key Extraction query is made on IDη.
E3 : C aborts in a Public Key Replacement query because AI outputs a valid Schnorr

signature on ω′IDη without master-key.
E4 : C aborts in answerAI’s Signcrypt query because of a collision on H3, H4 or H5.
E5 : C rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/qpk, Pr[¬E3] ≥ (1 − ϵ′)qpkr and we know that ¬E1 implies
¬E2. We also already observed that Pr[E4] ≤ qs(2q3+q4+q5+3qs)/2k and Pr[E5] ≤ qu/2k.
We thus find that

Pr[¬E1 ∧ ¬E3 ∧ ¬E4 ∧ ¬E5] ≥ (1 − ϵ′)qpkr

qpk
(1 − qs

2q3 + q4 + q5 + 3qs

2k )(1 − qu

2k ).

We obtain the announced bound by noting that C selects the correct element from L5 with
probability 1/(q3 + q5 + qs).

The running time of the GDH attacker C is bound by T ′ < T + (q1 + q2)O(1) + (q3 +

q4 + q5)(O(1)+ qsTDDH)+ (qpk + qs)(O(1)+ 5Texp)+ qpkr(O(1)+ 2Texp)+ qu(O(1)+ 3Texp +

(q3 + qs)(O(1) + TDDH + 3Texp)) where TDDH and Texp are respectively the costs of using
ODDH(·, ·, ·, ·) to decision Diffie-Hellman problem and computing exponentiation in Z∗p.

Lemma 2. Assume that an IND-CCA2-II adversary AII has non-negligible advantage
ϵ against our scheme when running in time T , asking qi queries to random oracles Hi

(i = 1, 2, · · · , 5), qsk private key queries, qpk public key requests, qs signcryption queries
and qu unsigncryption queries. Then there is an algorithm C to solve the GDHP with

11



probability

ϵ′ ≥ ϵ

(q3 + q5 + qs)qpk
(1 − qs

2q3 + q4 + q5 + 3qs

2k )(1 − qu

2k )

within a time T ′ < T + (q1+q2+q3+q4+q5)O(1)+qpk(O(1)+3Texp)+qs(O(1)+6Texp)+
qu(O(1) + 2Texp + (q3 + qs)(O(1) + TDDH + 3Texp)) where TDDH and Texp denote the same
quantities as in Lemma 1.

Proof. The proof of this lemma is very similar to the proof of Lemma 1 and we omit the
details. We just point out that for the attacker AII , C uses gα to generate the public key
associated with the challenge identity and sets gβ as a part of the challenge ciphertext. The
KGC’s public key is set up as gx where C knows random x ∈R Z

∗
q. This way, C can give the

master-key of the KGC toAII .

Theorem 2. Under the GDL Assumption, the proposed CLSC scheme is EUF-CMA secure
in the random oracle model.

This theorem follows from Lemmas 3 and 4.

Lemma 3. Let us assume that there exists an EUF-CMA-I adversary AI that makes qi

queries to random oracles Hi (i = 1, 2, · · · , 5), qpak partial key queries, qsk private key
queries, qpk public key requests, qpkr public key replacement queries, qs signcryption
queries and qu unsigncryption queries and that within time T , AI produces a forgery with
probability ϵ ≥ 10(qs + 1)(qs + q3)/2k. Assume also that the Schnorr signature [15, 16] is
(ϵ′,T , q2, qpak)-secure. Then, there is an algorithm C to solve the GDLP with probability

ϵ′ ≥ 1
9qpk

(1 − ϵ′)qpkr

in expected time T ′ ≤ 23q3[T + (q1 + q2)O(1)+ (q3 + q4 + q5)[O(1)+ qs(TDDH + 2Texp)]+
qpk(O(1)+3Texp)+qpkr(O(1)+2Texp)+qs(O(1)+5Texp)+qu(O(1)+3Texp+ (q3+qs)(O(1)+
TDDH + 4Texp))][ϵ(1− qu/2k)(1− qs(q3 + q4 + q5 + 2qs)/2k)]−1 +Texp where TDDH and Texp

are respectively the costs of using OrDDH(g, gα, ·, ·) to decision Diffie-Hellman problem and
computing exponentiation in Z∗p.

Proof. Suppose that there exists an adversaryAI can attack our scheme. We want to build
an algorithm C that runs AI as a subroutine to solve GDLP. Assume that C gets a random
instance of GDLP as follows: Given (p, q, g, gα|OrDDH(g, gα, ·, ·)) for unknown α ∈ Z∗q. And
its goal is to compute α by interacting with adversaryAI .

Without loss of generality, we assume that any query involving an identity ID comes
after a Public Key Extraction query on ID. To maintain consistency between queries made
by AI , C keeps the following lists: Li for i = 1, 2, · · · , 5, Lsk and Lpk as in the proof of
Lemma 1. C randomly picks x ∈R Z

∗
p as the master-key, computes y = gx. Then, C ran-

domly picks η ∈R {1, 2, · · · , qpk} and runsAI on input of < p, q, n, g, y,H1,H2,H3,H4,H5 >
where n is the length of message to be signcrypted, and answers various oracle queries as
follows:

H1 Queries: For each query (ID, ωID), C returns the previously assigned value if it exists
and a random e1 ∈R Z

∗
q otherwise. In the latter case, C adds < (ID, ωID), e1 > to L1, which

is which is initially empty.

12



H2 Queries: For each query (ID, ωID, νID), C returns the previously assigned value if it
exists and a random e2 ∈R Z

∗
q otherwise. In the latter case, C adds < (ID, ωID, νID), e2 > to

L2, which is which is initially empty.

H3 Queries: For each query (m, k1, k2, · · · , k7), C proceeds as follows:

− If < (m, k1, k2, · · · , k7), c, e3, k8 >∈ L3 for some (c, e3, k8), return e3.
− C go through the list L3 with entries < (m, k1,⊥, k3, · · · , k7), c, e3, k8 >(those en-

tries are added in answer AI’s signcrypt query), for some (c, e3, k8), such that
OrDDH(g, gα, k6, [k2/(k

k8
6 )]e−1

3 ) = 1. If such a tuple exist, return e3 and replace the
symbol ⊥ with k2.

− If C reach this point of query, return a random e3 ∈ Z∗q. Then, set h5 = H5(k2, k3) and
update the list L3 with input < (m, k1, k2, · · · , k7), c = m ⊕ h5, e3,⊥>.

H4 Queries: For each query (m, l1, l2, · · · , l7), C proceeds as follows:

− If < (m, l1, l2, · · · , l7), e4, l8, l9 >∈ L4 for some (e4, l8, l9), return e4.
− C go through the list L4 with entries < (m, l1,⊥, l3, · · · , l7), e4, l8, l9 >(those

entries are added in answer AI’s signcrypt query), for some e4, such that
OrDDH(g, gα, l6, [l2/(l

l8
6 )]l−1

9 ) = 1. If such a tuple exist, return e4 and replace the symbol
⊥ with l2.

− If C reach this point of query, return a random e4 ∈ Z∗q and update the list L4 with
input < (m, l1, l2, · · · , l7), e4,⊥,⊥>.

H5 Queries: For each query (u1, u2), C proceeds as follows:

− If < (u1, u2), u3, e5, u4, u5 >∈ L5 for some (u3, e5, u4, u5), return e5.
− C go through the list L5 with entries < (⊥, u2), u3, e5, u4, u5 >(those entries

are added in answer AI’s signcrypt query), for some (u3, e5, u4, u5), such that
OrDDH(g, gα, u3, [u1/(u

u4
3 )]u−1

5 ) = 1. If such a tuple exist, return e5 and replace the
symbol ⊥ with u1.

− If C reach this point of query, return a random e5 ∈R {0, 1}n and update the list L5

with input < (u1, u2),⊥, e5,⊥,⊥>∈ L5.

Public Key Extraction: On the j-th non-repeat query ID j(from this point on we denote the
j-th non-repeat identity query to this oracle with ID j), C proceeds as follows:

− If there is a tuple < ID j, (µID j , ωID j , νID j , σID j) > exists in Lpk, return pkID j =

(µID j , ωID j , νID j , σID j) as answer.
− Otherwise, do the following:

∗ if j , η, pick rID j , r
′
ID j
, z1, z2, sID j ∈R Z

∗
q at random and compute µID j =

gsID j , ωID j = grID j , dID j = rID j + xz1, νID j = g
r′ID j and σID j = r′ID j

+ xz2.
Add < (ID j, ωID j), z1 > and < (ID j, ωID j , νID j), z2 > to L1 and L2 respec-
tively (re-choose rID j , r

′
ID j
, z1, z2 if H1 or H2 is already defined in the corre-

sponding value). Return pkID j = (µID j , ωID j , νID j , σID j) as answer and add
< ID j, (µID j , ωID j , νID j , σID j) > and < ID j, (dID j , sID j) > to Lpk and Lsk respec-
tively.
∗ Otherwise, pick r′IDη , z2, sIDη ∈R Z

∗
q at random and compute µIDη = gsIDη , νIDη =

gr′IDη and σIDη = r′IDη + xz2. Add < (IDη, gα, νIDη), z2 > to L2 (re-choose r′IDη , z2 if

13



H2 is already defined in the corresponding value). Return pkIDη = (µIDη , ωIDη =

gα, νIDη , σIDη) as answer and add < IDη, (µIDη , ωIDη , νIDη , σIDη) > and < IDη,
(⊥, sIDη) > to Lpk and Lsk respectively.

Partial Key Extraction: For each query ID j, C proceeds as follows:

− If j , η, find < ID j, (dID j , sID j) > and < ID j, (µID j , ωID j , νID j , σID j) > in Lsk and Lpk

respectively, and return dID j and pID j = (ωID j , νID j , σID j) as answer.
− Otherwise, C aborts the simulation.

Private Key Extraction: For each query ID j, C proceeds as follows:

− If j = η, C aborts the simulation.
− Otherwise, find < ID j, (dID j , sID j) > in Lsk and return skID j = (dID j , sID j) as answer.

Public Key Replacement: For each query < ID j, (µ′ID j
, ω′ID j

, ν′ID j
, σ′ID j

) >, C finds <
ID j, (µID j , ωID j , νID j , σID j) >∈ Lpk, if (ω′ID j

, ν′ID j
, σ′ID j

) , (ωID j , νID j , σID j) satisfying

g
σ′ID j = ν′ID j

y
H2(ID j,ω

′
ID j
,ν′ID j

)(meaning that AI produces a valid Schnorr signature on ω′ID j

without master-key), C aborts the simulation. Otherwise, C sets µID j = µ
′
ID j

, finds < ID j,
(dID j , sID j) > in Lsk and sets sID j =⊥.

Signcrypt Queries: For each query (IDa, IDb,m), where a, b ∈ {1, 2, · · · , qpk}. We observe
that, if a , η , C knows the sender’s private key skIDa = (dIDa , sIDa) and can answer the query
according to the specification of Signcrypt algorithm. We thus assume a = η and hence
b , η by the irreflexivity assumption. C randomly secrets s, h, h′ ∈R Z

∗
q and h5 ∈R {0, 1}n

and sets t = gsωh
IDa

yh1hµh′
IDa
= gs+xh1h+sIDa h′gαh and c = m ⊕ h5, where h1 = H1(IDa, ωIDa)

and sIDa is the secret value of the IDa (if pkIDa has been replaced by AI , C gets it
from AI). Observe that C knows the receiver’s partial private key dIDb by construction.
Then, C adds < (m, t,⊥, tdIDb , µIDa , ωIDa , µIDb , ωIDb), c, h, s + xh1h + sIDah

′ > to L3, < (m, t,
⊥, tdIDb , µIDa , ωIDa , µIDb , ωIDb), h

′, s + xh1h + sIDah
′, h > to L4 and < (⊥, tdIDb ), µIDb , h5, s +

xh1h + sIDah
′, h > to L5, and returns ciphertext σ = (c, s, t).

Unsigncrypt Queries: For each query (IDa, IDb, σ = (c, s, t)), where a, b ∈ {1, 2, · · · , qpk}.
we assume that b = η (and hence a , η by the irreflexivity assumption), because oth-
erwise C knows the receiver’s private key skIDb and can answer the query according to
the specification of Unsigncrypt algorithm. C finds < IDa, (µIDa , ωIDa , νIDa , σIDa) > and
< IDb, (µIDb , ωIDb , νIDb , σIDb) > in Lpk, and searches through list L3 for entries of the form
< (mi, t, tsIDb , k3,i, µIDa , ωIDa , µIDb , ωIDb), c, e3,i, k8 > (Here, we needn’t to consider the en-
tries in L3 with k2 =⊥, because of a , η) such that OrDDH(g, gα, t, k3,i/txh1) = 1 indexed by
i ∈ {1, 2, · · · , q3 + qs}, where h1 = H1(IDb, ωIDb) and sIDb is the secret value of the IDb (if
pkIDb has been replaced byAI , C gets it fromAI). If none is found, σ is invalid, returns ⊥.
Otherwise, each one of them is further examined: for the corresponding indexes, C chicks
if

t = gsω
e3,i
IDa

yH1(IDa,ωIDa )e3,iµh′
IDa

(2)

where h′ = H4(mi, t, tsIDb , k3,i, µIDa , ωIDa , µIDb , ωIDb). Note that, if (2) is satisfied, means that
σ = (c, s, t) is a valid ciphertext from IDa to IDb. If the unique i ∈ {1, 2, · · · , q3 + qs}
satisfying (2) is detected, the matching mi is returned. Overall, an inappropriate rejection
occurs with probability smaller than qu/p across the whole game.

14



Eventually, AI outputs a valid ciphertext σ = (c, s, t) from ID∗S to ID∗R. If ID∗S , IDη,
C aborts. Otherwise, having the knowledge of skID∗R , C computes h3 = H3(m∗, t, tsID∗

R , tdID∗
R ,

µIDη , ωIDη , µID∗R , ωID∗R), where m∗ = Unsigncrypt(IDη, pkIDη , skID∗R
, σ) (For simplicity, we

denote σ = (c, s, t, h3) as AI’s outputs). Then, using the oracle replay technique [14], C
generates one more valid ciphertext from σ = (c, s, t, h3) which is named as σ′ = (c, s′, t,
h′3). This is achieved by running the turing machine again with the same random tape but
with the different hash value.

Since σ = (c, s, t, h3) and σ′ = (c, s′, t, h′3) are both valid ciphertext for the same mes-
sage m∗ and randomness r, we obtain the relations

gsωh3
IDη

yH1(IDη,ωIDη )h3µh4
IDη
= t = gs′ω

h′3
IDη

yH1(IDη,ωIDη )h
′
3µh4

IDη
,

where h4 = H4(m∗, t, tsID∗
R , tdID∗

R , µIDη , ωIDη , µID∗R , ωID∗R). Then,we have

gsωh3
IDη

yH1(IDη,ωIDη )h3µh4
IDη
= gs′ω

h′3
IDη

yH1(IDη,ωIDη )h
′
3µh4

IDη
,

gs−s′yH1(IDη,ωIDη )(h3−h′3) = ω
h′3−h3

IDη
,

gs−s′gxH1(IDη,ωIDη )(h3−h′3) = gα(h′3−h3),

g[s−s′+xH1(IDη,ωIDη )(h3−h′3)](h′3−h3)−1
= gα.

Hence, C can compute α = [s − s′ + xH1(IDη, ωIDη)(h3 − h′3)](h′3 − h3)−1 as the solution of
GDLP.

In an analysis of C’s advantage, we note that it only fails because one of the following
independent events:

E1 : AI does not choose to be challenged on IDη.
E2 : A Partial Key Extraction or Private Key Extraction query is made on IDη.
E3 : C aborts in a Public Key Replacement query because AI outputs a valid Schnorr

signature on ω′IDη without master-key.
E4 : C fails in using the oracle replay technique [14] to generate one more valid ciphertext.

We clearly have Pr[¬E1] = 1/qpk, Pr[¬E3] ≥ (1 − ϵ′)qpkr and we know that ¬E1 implies
¬E2. From Lemma 12 in [14], we know that Pr[¬E4] ≥ 1/9. We obtain the announced
bound by noting that

Pr[¬E1 ∧ ¬E3 ∧ ¬E4] ≥ 1
9qpk

(1 − ϵ′)qpkr .

From the proof of Lemma 12 in [14], we know that the total running time T ′ of solving
the GDLP with probability ϵ′ ≥ 1

9qpk
(1 − ϵ′)qpkr is bound by 23q3[T + (q1 + q2)O(1) + (q3 +

q4 + q5)[O(1) + qs(TDDH + 2Texp)] + qpk(O(1) + 3Texp) + qpkr(O(1) + 2Texp) + qs(O(1) +
5Texp)+qu(O(1)+3Texp+ (q3+qs)(O(1)+TDDH+4Texp))][ϵ(1−qu/2k)(1−qs(q3+q4+q5+

2qs)/2k)]−1 + Texp where the last term accounts for the cost of compute the system public
key in the preparation phase. Thus, this completes the proof.

Lemma 4. Assume that there exists an EUF-CMA-II adversary AII that makes qi queries
to random oracles Hi (i = 1, 2, · · · , 5), qsk private key queries, qpk public key requests, qs

15



signcryption queries and qu unsigncryption queries and that within time T ,AII produces a
forgery with probability ϵ ≥ 10(qs + 1)(qs + q3)/2k. Then, there is an algorithm C to solve
the GDLP with probability

ϵ′ ≥ 1
9qpk

in expected time T ′ ≤ 23q3[T + (q1+q2+q3+q4+q5)O(1)+qpk(O(1)+3Texp)+qs(O(1)+
6Texp) + qu(O(1) + 3Texp + (q3 + qs)(O(1) + TDDH + 4Texp))][ϵ(1 − qu/2k)(1 − qs(q3 + q4 +

q5 + 2qs)/2k)]−1 + Texp where TDDH and Texp denote the same quantities as in Lemma 3.

Proof. The proof of this lemma is very similar to the proof of Lemma 3 and we omit the
details.

6 Conclusion

Certificateless public key cryptography is receiving significant attention because it is
a new paradigm that simplifies the traditional PKC and solves the inherent key escrow
problem suffered by ID-PKC. Certificateless signcryption is one of the most important se-
curity primitives in CL-PKC. In this paper, we proposed the first pairing-free certificateless
signcryption scheme. The security of our scheme is based on the hardness assumptions of
GDHP and GDLP.

References
[1] S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In

Advances in Cryptology-ASIACRYPT 2003, volume 2894 of LNCS , pages 452–473.
Springer-Verlag, 2003.

[2] J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption without
pairing. In Information Security, volume 3650 of LNCS , pages 134–148. Springer-
Verlag, 2005.

[3] J. Baek, R. Steinfeld, and Y. Zheng. Formal proofs for the security of signcryption.
Journal of Cryptology, 20(2):203–235, 2007.

[4] M. Barbosa and P. Farshim. Certificateless signcryption. Cryptology ePrint Archive:
Report 2008/143, Available from: http://eprint.iacr.org/2008/143.

[5] P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of pairing-based
cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.

[6] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for design-
ing efficient protocols. In First ACM Conference on Computer and Communications
Security, pages 62–73. ACM, 1993.

16

http://eprint.iacr.org/2008/143


[7] I. F. Blake, V. Kumar Murty, and G. Xu. Refinements of miller’s algorithm for com-
puting the weil/tate pairing. Journal of Algorithms, 58(2):134–149, 2006.

[8] X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for identity-
based cryptography. In Advances in Cryptology-CRYPTO 2003, volume 2729 of
LNCS , pages 383–399. Springer-Verlag, 2003.

[9] L. Chen and J. Malone-Lee. Improved identity-based signcryption. In Public Key
Cryptography-PKC 2005, volume 3386 of LNCS , pages 362–379. Springer-Verlag,
2005.

[10] I. Duursma and H. Lee. Tate pairing implementation for hyperelliptic curves y2 =

xp − x + d. In Advances in Cryptology-ASIACRYPT 2003, volume 2894 of LNCS ,
pages 111–123. Springer-Verlag, 2003.

[11] S. D. Galbraith, K. Harrison, and D. Soldera. Implementing the tate pairing. In
Algorithmic Number Theory, volume 2369 of LNCS , pages 69–86. Springer-Verlag,
2002.

[12] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[13] Z. Liu, Y. Hu, X. Zhang, and H. Ma. Certificateless signcryption scheme in the
standard model. Information Sciences, 180(3):452–464, 2010.

[14] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology, 13(3):361–396, 2000.

[15] C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology-CRYPTO’89 Proceedings, volume 435 of LNCS , pages 239–252.
Springer-Verlag, 1990.

[16] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[17] S. S. D. Selvi, S. S. Vivek, and C. P. Ragan. On the security of certificateless sign-
cryption schemes. Cryptology ePrint Archive: Report 2009/298, Available from:
http://eprint.iacr.org/2009/298.

[18] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology, volume 196 of LNCS , pages 47–53. Springer-Verlag, 1985.

[19] Y. Sun, F. Zhang, and J. Baek. Strongly secure certificateless public key encryption
without pairing. In Cryptology and Network Security, volume 4856 of LNCS , pages
194–208. Springer-Verlag, 2007.

[20] B. Waters. Efficient identity-based encryption without random oracles. In Advances
in Cryptology-EUROCRYPT 2005, volume 3494 of LNCS , pages 114–127. Springer-
Verlag, 2005.

17

http://eprint.iacr.org/2009/298


[21] C. Wu and Z. Chen. A new efficient certificateless signcryption scheme. In Interna-
tional Symposium on Information Science and Engieering, 2008. ISISE’08., volume 1,
pages 661–664, 2008.

[22] W. Xie and Z. Zhang. Efficient and provably-secure certificateless signcryption from
bilinear maps. Cryptology ePrint Archive: Report 2009/578, Available from: http:
//eprint.iacr.org/2009/578.

18

http://eprint.iacr.org/2009/578
http://eprint.iacr.org/2009/578

	Introduction
	Preliminaries
	Definitions
	Certificateless Signcryption Scheme

	Security Model for Signcryption
	Confidentiality Model for Certificateless Signcryption
	Unforgeability Model for Certificateless Signcryption

	A CLSC without Pairing
	Security Analysis of the Proposed Scheme
	Conclusion

