
Non-Transferable Proxy Re-Encryption

Yi-Jun He, L.C.K. Hui, and S.M. Yiu

Department of Computer Science, The University of Hong Kong
Chow Yei Ching Building, Pokfulam Road, Hong Kong

{yjhe,hui,smyiu}@cs.hku.hk

Abstract. A proxy re-encryption (PRE) scheme allows a proxy to re-
encrypt a ciphertext for Alice (delegator) to a ciphertext for Bob (del-
egatee) without seeing the underlying plaintext. With the help of the
proxy, Alice can delegate the decryption right to any delegatee. How-
ever, existing PRE schemes generally suffer from one of the followings.
Some schemes fail to provide the non-transferability property in which the
proxy and the delegatee can collude to further delegate the decryption
right to anyone. Other schemes assume the existence of a fully trusted
private key generator (PKG) to generate the re-encryption key to be
used by the proxy for encrypting a given ciphertext for a target dele-
gatee. But this poses two problems in PRE schemes: the PKG in their
schemes may decrypt all ciphertexts (referred as the key escrow problem)
and the PKG can generate re-encryption key for arbitrary delegatees (we
refer it as the PKG despotism problem). In this paper, we provide a more
satisfactory solution to the problems. We follow the idea of using PKG
to generate a re-encryption key to achieve the non-transferability prop-
erty. To tackle the PKG despotisum problem in our scheme, if the PKG
generates a re-encryption key for an unauthorized party, the delegator is
able to retrieve the master secret of the PKG. We also show that with a
tamper-proof hardware device, we can guarantee that the PKG cannot
transfer decryption right to unauthorized delegatee. In addition, we solve
the key escrow problem as well.

Key words: proxy re-encryption, identity based encryption, non-transferability
property

1 Introduction

1.1 Background

In 1998, Blaze, Bleumer and Strauss [1] proposed a novel cryptographic scheme
known as proxy re-encryption scheme (PRE), which allows a third-party (the
proxy) to re-encrypt a ciphertext which has been encrypted for one party without
seeing the underlying plaintext so that it can be decrypted by another. This is
illstrated in Figure 1 where the Sender encrypts a text for Alice; Alice sends
a re-encryption key and the ciphertext to the proxy which performs the re-
encryption and sends Bob the re-encrypted ciphertext which can be decrypted
by Bob without knowing the secret key of Alice. The above scheme aroused much

2 Yi-Jun He et al.

Fig. 1. Proxy Re-Encryption

interest in the encryption community [1,2,4-7,10-14] since it could be exploited in
a number of applications for achieving better information security and privacy,
such as:

• Email forwarding: The proxy can “forward” re-encrypted messages to a del-
egated recipient.
• Encrypted files distribution: The encrypted files are stored in a file server.
Only the content owners can grant the access right of the files to the target
users; even the file server operator has no right to access the files.
• Law-enforcement monitoring: The encrypted communication data are trans-
ferred via an Internet service provider (ISP). The ISP can require the content
owners to provide the access right to the law enforcement officers to let them
monitor the data being transferred to various users; however, the ISP oper-
ator cannot access the data.

1.2 Limitations of Existing Schemes and Our Contributions

However, to the best of our knowledge, existing PRE schemes have the following
problems (details of existing schemes will be given in the next section). Some
schemes suffer from the problem of failing to provide the non-transferability
property which was first addressed in 2005 [2]. A proxy re-encryption scheme is
said to be non-transferable if the proxy and a set of colluding delegatees cannot
re-delegate decryption rights to other parties. One may argue that transferability
may not be preventable (see also Ateniese et al. [2]) since the delegatee can always
decrypt and forward the plaintext to another party, or the delegatee can always
send its secret key to another party. However, in doing so, the delegatee has to
explicitly send the plaintext over or disclose the secret key which increases the
chance of being caught and put itself in a risky situation. Therefore, achieving
a non-transferable PRE scheme, in the sense that the only way for delegatee to
transfer decryption capabilities to another party is to expose his own secret key,
seems to be the main open problem left for PRE.

To resovle this problem, some other identity-based PRE schemes assume the
existence of a fully trusted private key generator (PKG) which helps to generate
the re-encryption key to be used by the proxy for encrypting a given ciphertext
for a target delegatee. Since the re-encryption key is generated using the master
key of the PKG, the proxy and the delegatee(s) cannot further delegate the
decryption right to others without the help of the PKG. However, this creates two

Non-Transferable Proxy Re-Encryption 3

problems in PRE schemes. First, there is another key escrow problem for which
the PKG in their schemes may be able to decrypt all re-encrypted cipertexts. And
the PKG has the power of generating re-encryption key for arbitrary delegatees
(we refer this as the PKG despotism problem). In this paper, we propose a non-
transferable re-encryption scheme which also makes use of a PKG, however, the
design of our scheme exploits the idea of master secret key retrieval mentioned in
[3] so that if the PKG tries to generate a re-encryption key for an unauthorized
delegatee, the original delegator is able to retrieve the master secret of the PKG.
The characteristics of our proposed scheme are summarized as follow.

• The proposed scheme has the non-transferability property. The re-encryption
key is generated by a private key generator (PKG); thus delegatee and proxy
cannot collude to re-delegate decryption rights since they do not have knowl-
edge of PKG’s master secret.
• With the cooperation of proxy, the delegator can retrieve the master secret
of PKG if it generates a re-encryption key to grant the access right of a
ciphertext to an unauthorized party. Therefore, the proposed scheme could
deter PKG from delegating access rights to other parties without approval
from the legitimate delegator, thus tackling the PKG despotisum problem.
• With the introduction of a tamper-proof hardware device to the proposed
scheme, PKG can no longer transfer decryption right to unauthorized parties
and completely resolve the PKG despotism problem.
• In our scheme, the PKG cannot decrypt the re-encrypted ciphertexts, thus
solving the key escrow problem.

2 Related Work

Blaze, Bleumer and Strauss [1] proposed the first proxy re-encryption scheme,
which is based on ELGamal encryption. But this scheme is bi-directional, that
is, when the proxy is allowed to re-encrypt Alice’s messages under Bob’s key,
it can also re-encrypt Bob’s messages under Alice’s key. Bob may not like this.
Another weakness is that if the proxy colludes with Alice, they can easily learn
Bob’s secret key SKB. Likewise, the proxy and Bob may collude to learn Alice’s
secret key. Furthermore, in order to compute the re-encryption key from A to
B, denoted as rkA−>B , one party must share his or her secret key with the
other or they must rely on a trusted third party. The other drawback is that the
scheme is transitive in the following sense. Suppose that the proxy is allowed
to generate two re-encryption keys rkA−>B and rkB−>C ; then the proxy can
derive an additional re-encryption key rkA−>C for delegation from A to C.

Later, Ivan and Dodis [4] proposed three unidirectional proxy re-encryption
schemes based on ElGamal, RSA, and IBE (ID-based encryption) respectively.
Their main contribution is that they solved (i) the bi-directional problem and
(ii) the transitive problem in [1]. But in their schemes, Alice’s private key is
split into two parts DK1 and DK2, with DK1 distributed to proxy and DK2

distributed to Bob. Thus when the proxy colludes with Bob, they can derive
Alice’s private key.

4 Yi-Jun He et al.

In 2005, Ateniese et al. [2] presented three proxy re-encryption schemes which
are considered to be more secure than other approaches. Their major advantages
are the following. The schemes are unidirectional and the delegator’s private key
is protected from being disclosed by the collusion of proxy and a delegatee. They
implemented one of their proposed schemes in a secure distributed file system
to show that the scheme can work efficiently in practice. They summarized nine
important properties of proxy re-encryption schemes, which include the non-
transferability property. Lacking the non-transferable property in all existing
schemes was considered an open problem of the contemporary PRE schemes.

This open problem was first addressed in 2008 by Libert and Vergnaud [5].
They indicated that it is quite difficult to prevent the proxy and delegatees
from colluding to do re-delegation and that discouraging collusion rather than
preventing illegitimate re-delegation is an easier approach. Thus, they proposed,
instead of preventing the collusion of proxy and delegatee, tracing the malicious
proxy after its collusion with one or more delegatees. It is the first attempt to
address the open problem. However, it still cannot prevent re-delegation from
happening.

Matsuo’s PRE schemes [6] use the PKG to help generating re-encryption
key for the delegator and the delegatee. Based on this approach, they proposed
two PRE schemes: one for the decryption right delegation from a user of PKI-
based public key encryption system to IBE system users, and the other for the
delegation among IBE system users. This is the first set of schemes that use PKG
to generate re-encryption key. However, the PKG in the schemes can decrypt
all re-encrypted ciphertexts; so, there is a potential security problem as long as
PKG is untrusted or malicious.

In 2008, Wang et al.[7] extended the idea of Matsuo’s scheme by allowing
PKG to generate re-encryption keys based on its master secret key. They pro-
posed several proxy re-encryption schemes:(i) PRE from IBE to Certificate Based
Public Key Encryption; (ii) PRE based on a variant of the first system of Selec-
tive identity secure IBE [8]; (iii) PRE based on the second system of Selective
identity secure IBE [8];and (iv) PRE based on Sakai-Kasahara IBE scheme [9].
Based on this work, Wang et al. proposed five other schemes [10-14] to address
different problems of proxy re-encryption schemes. However, there are still some
issues not yet addressed in each one of them. In [10], the proxy can re-encrypt
on its own the ciphertext for the delegator into ciphertext for any delegatee;
this is not a desired property of PRE. In [11], it seems that they solved the
open problem related to the non-transferability issue, since proxy and delegate
cannot collude to re-delegate decryption right; however, in the scheme, the PKG
can delegate arbitrarily to anyone as it can generate a re-encryption key for any
delegatee. In [12,14], the PKG can also delegate arbitrarily as what it could
do in [11]. Among the five schemes, [11] seems to be the best in solving the
non-transferability issue, we will compare our scheme with [11] in Section 5.2.

Non-Transferable Proxy Re-Encryption 5

3 Preliminaries

3.1 Bilinear Map

LetG andGT be multiplicative cyclic groups of prime order p, and g be generator
of G. We say that GT has an admissible bilinear map e: G × G → GT , if the
following conditions hold.

– e(ga, gb) = e(g, g)ab for all a, b.
– e(g, g) �= 1.
– There is an efficient algorithm to compute e(ga, gb) for all a, b and g.

3.2 Assumption

The security of our concrete construction is based on a complexity assumption,
called “Truncated Decision Augmented Bilinear Diffie-Hellman Exponent As-
sumption (Truncated q-ABDHE)”proposed in [15].

Let e : G ×G → GT be a bilinear map, where G and GT are cyclic groups
of large prime order p. Given a vector of q+3 elements:

(g′, g′(α
q+2), g, gα, . . . , g(α

q)) ∈ Gq+3

and an element Z ∈ GT as input, output 0 if Z = e(g(α
q+1), g′) and output 1

otherwise.
An algorithm B has advantage ε in solving the truncated q-ABDHE if:

|Pr[B(g′, g′(α
q+2), g, gα, . . . , g(α

q), e(g(α
q+1), g′)) = 0]

−Pr[B(g′, g′(α
q+2), g, gα, . . . , g(α

q), Z) = 0]| ≥ ε

where the probability is over the random choice of generators g, g′ in G, the
random choice of α in Zp, the random choice of Z ∈ GT , and the random bits
consumed by B.

Definition 1 [15].We say that the truncated (decision) (t, ε, q)-ABDHE as-
sumption holds in G if no t-time algorithm has advantage at least ε in solving
the truncated (decision) q-ABDHE problem in G.

4 Framework of Our Non-Transferable PRE Scheme and
Security Model

4.1 Non-Transferable PRE Model

Our Non-Transferable PRE scheme is composed of nine algorithms:

– Setup. On input a security parameter 1k, the public parameters mpk and
master secret key msk are generated. A value T is generated and can be
verified by anyone.

6 Yi-Jun He et al.

– Key Generation. On input a user’s identity ID, msk, algorithm generates
public key and one part of private key for user. Combining this part of the
private key, user generates the whole private key for himself.

– Correctness-Check. Algorithm checks the correctness of the private key.
– Encryption. The encryption algorithm takes public key pki of delegator i

and message m as input, outputs a ciphertext Ci encrypted under pki.
– Decryption(delegator). The decryption algorithm takes secret key ski of del-

egator i and ciphertext Ci as input, outputs message m. This algorithm
actually is not necessary for PRE scheme. We put it here just for indicating
that delegator has the ability to decrypt ciphertext Ci.

– Re-Encryption Key Generation. Algorithm verifies the delegator i ’s signa-
ture, and extracts delegatee j ’s ID from signature. The re-encryption key
generation algorithm outputs a re-encryption key rki→j and other relational
values.

– Re-Encryption. The re-encryption algorithm takes re-encryption key rki→j

and ciphertext Ci as input, outputs a re-encrypted ciphertext Cj under pkj .
– Decryption(delegatee). The decryption algorithm takes secret key skj of del-

egatee j and ciphertext Cj as input, outputs message m.
– Retrieve master secret key. If PKG cheating, delegator i can retrieve PKG’s

master secret key.

4.2 Security Model for Non-Transferable PRE Scheme

We define a new property called retrievability of Non-Transferable PRE Scheme
in the paper. This property is for PRE, thus it is different from the one men-
tioned in [3].

Retrievability of Non-Transferable PRE Scheme: If the adversary is able to come
up with two re-encryption keys for delegation from one party to two different par-
ties without delegator’s approval, the delegator can retrieve the master secret key
of adversary.

The following retrievability game considers a malicious PKG which tries to
generate two re-encryption keys for one party, and its master secret key cannot
be retrieved.

Retrievability Game: On input a security parameter 1k, k ∈ N , a simulator
S invokes an adversary A on 1k. A returns a master public key mpk, two
re-encryption keys, one is rk for delegation from A to B, the other one is

rk’ for delegation from A to C, and six values
(
h1

rAg−r′A
)y

,
(
h1

rAg−r′A
)k

,

hi
aiy, hi

aik, (h1
rBg−r′B)aiy/(α−idB), (h1

rCg−r′C)aik/(α−idC), A’s partial private
key h′

A = (Rg−r′A)1/(α−idA), B’s partial private key h′
B = (Rg−r′B)1/(α−idB), C’s

partial private key h′
C = (Rg−r′C)1/(α−idC). A wins if

1. 1 ← verification(rk,
(
h1

rAg−r′A
)y

, h′
A, ai);

Non-Transferable Proxy Re-Encryption 7

2. 1 ← verification(rk’,
(
h1

rAg−r′A
)k

, h′
A, ai);

3. 1 ← Verification((h1
rBg−r′B)aiy/(α−idB),hi

aiy,h′
B);

4. 1 ← Verification((h1
rCg−r′C)aik/(α−idC),hi

aik,h′
C);

5. ⊥ ← Retrieve(mpk, idB, idC , rk, rk’,hi
aiy, hi

aik);

The advantage of A in this game is defined as Pr[A wins].

5 Our Non-Transferable PRE Scheme

We construct the Non-Transferable PRE scheme based on the basic crypto sys-
tem proposed in [16]. Our PRE scheme can successfully solve the transferable
problem in existing PRE schemes. The main ideas of the scheme are as fol-
low: Before delegation, delegator will send delegatee’s identity to PKG. PKG
is responsible for generating the re-encryption key, and sending this key to del-
egator. Delegator checks the correctness of the key, and then sends it to the
proxy. The proxy re-encrypts the original ciphertext from delegator, and sends
the re-encrypted ciphertext to delegatee. The delegatee can decrypt the cipher-
text using his private key. If PKG generates a re-encryption key to transfer
decryption rights without delegator’s approval, PKG’s master secret would be
retrieved by delegator.

5.1 The Construction

In the following sections, we let Alice be the delegator, and Bob be the delegatee.
Setup:

Let G and GT be groups of order p such that p is a k -bit prime, and let
e : G×G→ GT be the bilinear map. HI :{0, 1}∗ → Zp, H :{0, 1}∗ → Zp are secure
hash functions. The PKG selects four random generators h1, h2, h3, g ∈ G and
randomly chooses α ∈ Zp. It sets g1 = gα. Define the message spaceM = GT .
The public parameters mpk and master secret key msk are given by

mpk = (g, g1, h1, h2, h3, HI , H,M),msk = (α)

PKG randomly chooses x ∈ Zp. It sets X = e(g, g)x which is published, but
x is kept secure. Let N :=poly(k) for some polynomial poly(·), be a security
parameter. Let HE :{0, 1}∗ → {0, 1}N be a secure hash function. Then PKG
runs the non-interactive verifiable encryption algorithm from [17] to verifiably
encrypt the secret value α under X. This can be done as follows:

1. PKG randomly selects uj ∈ Zp and computes (Tj = guj), for j = 1 to N.
2. For j = 1 to N, PKG computes the following.

– Compute Zj,0 = uj, Zj,1 = uj − α.
– Randomly select vj,0, vj,1 ∈ Zp, compute E0,j,i = Xvj,i ⊕ Zj,i, E1,j,i =

gvj,i for i∈ {0, 1}5.

8 Yi-Jun He et al.

3. PKG computes

L = HE (T1||E0,1,0||E1,1,0||E0,1,1||E1,1,1||...||TN ||E0,N,0||E1,N,0||E0,N,1||E1,N,1)

Let bj be the jth bit of L.
4. Output T = {(Tj, E0,j,0, E1,j,0, E0,j,1, E1,j,1, Zj,b

j
, vj,b

j
)}N

j=1
. N controls

the cheating probability of the verifiable encryption.
5. Verification. Anyone can check if T is a valid encryption of α under X by

computing L from T and checking if the following equations hold:

E0,j,bj

?
=Xvj,bj ⊕ Zj,b

j
, E1,j,b

j

?
= gvj,bj , Tj

?
= g1

bjgZj,bj

where j = 1 to N and bj is the jth bit of L.

Key Generation :
This is a protocol through which a user U with an identity ID can securely

get part of his private key from PKG.

On input the public key/master secret key pair (mpk, msk) and an identity
ID ∈ {0, 1}k of a user U, the PKG computes id=HI(ID) as U ’s public key. If
id = α , it aborts. Otherwise, the protocol proceeds as follow:

1. rID ∈ Zp is a secret value of user U. U sends R = h1
rID to the PKG.

2. U gives PKG the following zero-knowledge proof of knowledge:

PK{rID : R = h1
rID}

3. The PKG randomly selects r′ID, rID,2, rID,3 ∈ Zp and computes

h′
ID = (Rg−r′ID)1/(α−id), hID,2 = (h2g

−rID,2)1/(α−id), hID,3 = (h3g
−rID,3)1/(α−id)

and sends (r′ID, h′
ID, rID,2, hID,2, rID,3, hID,3) to U.

4. U computes

rID,1 = r′ID/rID, hID,1 = (h′
ID)1/rID = (h1g

−rID,1)1/(α−id)

The secret key uskID is (rID, rID,1, hID,1, rID,2, hID,2, rID,3, hID,3).
Therefore, the delegator Alice’s private key can be denoted as

uskA = (rA, rA,1 = r′A/rA, hA,1 = (h1g
−rA,1)1/(α−idA), rA,2, hA,2, rA,3, hA,3)

and the delegatee Bob’s private key is denoted as

uskB = (rB , rB,1 = r′B/rB, hB,1 = (h1g
−rB,1)1/(α−idB), rB,2, hB,2, rB,3, hB,3)

Correctness-Check :
On input (mpk, uskID) and an identity ID ∈ {0, 1}k, user computes id =

HI (ID) and check whether e(hID,i, g1/g
id) = e(h1g

−rID,i ,g) for i=1,2,3. If cor-
rect, output 1. Otherwise, output 0.

Encryption :

Non-Transferable Proxy Re-Encryption 9

To encrypt a message m ∈ GT using public key, delegator Alice generates a
unique randomly-selected secret parameter s ∈ Zp, and computes idA = HI (A).
Finally, delegator outputs the ciphertext C where:

C = (C1, C2, C3, C4) = (g1
sg−sidA , e(g, g)

s
,m · e(g, h1)

−s
, e(g, h2)

se(g, h3)
sβ)

We set β = H(C1, C2, C3).

Decryption(delegator):
To decrypt a ciphertext C = (C1, C2, C3, C4) using secret key uskA, Alice

computes β = H(C1, C2, C3) and test whether

C4 = e(C1, hID,2hID,3
β) · C2

rID,2+rID,3β

If it is not equal, output ⊥. Else output

m = C3 · e
(
C1, hA,1

)
· C2

rA,1

The following Re-Encryption is done through an interactive protocol among
Alice, Bob, PKG and Proxy, which is shown in Figure 2.

PKG

Fig. 2. Proposed Non-Transferable Proxy Re-encryption framework

Re-Encryption Key Generation :

1. The delegator Alice generates a random value ai ∈ Zp for each time period
i, where i ≥ 1. ai will be invalid after the period i. Alice signs Bob’s identity
IDB, and sends the signature σ, IDB , ai to PKG via a secure channel.
Delegator Sign:

– Choose z ∈ Zp, and compute U = gz.
– Compute V = HI (IDB, U).
– Compute W = gαrA+V .
– The signature on IDB is σ = (U,W).

10 Yi-Jun He et al.

2. PKG verifies Alice to identify the identity of the delegator.
PKG Verify:
– Compute V = HI (IDB, U).
– Accept the signature iff e(h1,W) = e(h1

rA , gα)e(h1, g)
V .

3. If verification passes, PKG generates a unique randomly-selected secret pa-
rameter y ∈ Zp, and computes re-encryption key rk = (α−idB

α−idA
+ aiy) mod p

for Alice. PKG broadcasts a random value hi ∈ G for each time period i ≥ 1,

and sends rk, A1=
(
h1

rAg−r′A
)y

, A2=gxhi
(α
α−idA

)
to Alice.

4. PKG generates B1=
(
h1

rBg−r′B
)aiy/(α−idB)

, B2=hi
aiy and sends them to

the delegatee Bob.
5. Bob checks whether

e(hi, B1) = e(B2, h
′
B)

to ensure B1 is a valid value which will help him for decryption later. If
correct, output 1, otherwise, output 0.

6. Alice checks whether

h′
A
(idA−idB) · A1

ai ·
(
h1

rAg−r′A
)
=
(
h1

rAg−r′A
)rk

to ensure that rk is a re-encryption key generated properly for delegation
from her to Bob.

7. Alice sends the re-encryption key rk to Proxy via an authenticated channel.

Re-Encryption:

Proxy computes C1
′ = C1

rk = gs(α−idA)(
α−idB
α−idA

+aiy)
, and sends (C1

′, C1, C2, C3)
to Bob.

Decryption (delegatee):
Bob computes

C3
e(C1

′,hB,1)C2
rB,1

e(C1,B1
(1/rB))

= m · e(g, h1)
−s e(gs(α−idA)(

α−idB
α−idA

+aiy)
,(h1g

−rB,1)
1

(α−idB))(e(g,g)s)rB,1

e(gs(α−idA),(h1g
−rB,1)

aiy
(α−idB))

= m · e(g, h1)
−se(gs(α−idA)(

α−idB
α−idA

)
, (h1g

−rB,1)
1

(α−idB))e(g, g)s∗rB,1

= m · e(g, h1)
−se(gs(α−idB), (h1g

−rB,1)
1

(α−idB))e(g, g)srB,1

= m

Retrieve master secret key :
In our scheme, PKG is allowed to generate only one re-encryption key for the

same delegator during a time period i. If during the same time period i, PKG
generates another re-encryption key rk′ = (α−idC

α−idA
+ aik) mod p to proxy for

delegation from Alice to another party (for example, Carole), Alice can retrieve
PKG’s master secret. This strategy deters PKG from generating re-encryption
keys arbitrarily.

Non-Transferable Proxy Re-Encryption 11

The retrieving process is like this: Alice gets hi
aik from Carole, B2 from Bob,

and rk’ from proxy. Then, Alice computes

P1 =
A2

hi
rk′ = gxhi

(
idC

α−idA
−aik)

P2 =
A2

hi
rk

= gxhi
(

idB
α−idA

−aiy)

From P1, Alice derives P3 = P1hi
aik = gxhi

(
idC

α−idA
)

From P2, Alice derives P4 = P2B2 = gxhi
(

idB
α−idA

)

From P3 and P4, Alice derives

gx =

(
P3

idB

P4
idC

) 1
idC−idB

and check whether X
?
= e (g, gx).

Once gx is obtained, for any j ∈ {1, ..., N}, one can get (Tj,Zj,bj , E0,j,1−bj ,
E1,j,1−bj) in T (the verifiable encryption in Setup). For simplicity, we omit the
subscript j. That is, one can get (T := gu, Zb, E0,1−b, E1,1−b := gv1−b), such that
b ∈ {0, 1} where

Zb = u− bα

Compute e (E1,1−b, g
x)⊕ E0,1−b to get

Z1−b = u− (1− b)α

From Zb and Z1−b, Alice computes α. Check whether g1
?
= gα. If not, use another

j ∈ {1, ..., N} to compute α.

5.2 Security Analysis

To compare some existing proxy re-encryption schemes with our proposed scheme,
we outline below some important properties defined in [2]. The comparison re-
sults are presented in Table 1.

– Unidirectional : Delegation from A → B does not allow re-encryption from
B → A.

– Non-interactive: Re-encryption keys can be generated by Alice using Bob’s
public key; no trusted third party or interaction is required. In our proposed
scheme, PKG is employed to generate re-encryption keys, so delegator needs
to interact with PKG to generate the keys.

– Proxy transparent : This is an important feature possessed by the original
BBS scheme [1]. The proxy in the BBS scheme is transparent in the sense
that neither the sender of an encrypted message nor any of the delegatees
has to be aware of the existence of the proxy. In BBS scheme, this property

12 Yi-Jun He et al.

is achieved at the price of allowing transitive delegation and recovery of the
master secrets of the delegator. In Ateniese’s scheme, only a weaker form
of proxy transparency, called proxy invisibility can be achieved, because the
sender needs to know the existence of proxy, in order to decide whether to
generate first-level encryption or second-level encryption. In our proposed
scheme, proxy is transparent. Both sender and delegatees do not have to
know the proxy, since there is only one form of encryption.

– Original-access : Alice can decrypt re-encrypted ciphertexts that were origi-
nally sent to her.

– Key optimal : The size of Bob’s secret storage remains constant, regardless
of how many delegations he accepts. Like Ateniese’s scheme, delegatee is
allowed to decrypt re-encrypted ciphertext during some specific time period
i. Thus information received from PKG for decryption only need to exist
temporarily in delegatee’s side. After a time period i, the information would
be invalid. Delegatee can delete the information immediately. Thus in the
long run, our scheme is still key optimal.

– Collusion-“safe”: Bob and the proxy’s collusion cannot recover Alice’s secret
key. In our proposed scheme, secrecy of Alice’s secret key depends on a
random value rA. It is chosen by Alice, and is not used in re-encryption key.
Although Bob and proxy collude, they cannot recover it.

– Temporary: Bob is only able to decrypt messages intended for Alice that
were authored during some specific time period i. In our scheme, to achieve
temporary proxy re-encryption, for each time period i ≥ 1, Alice generates a
random value ai ∈ Zp, and PKG broadcasts a random value hi ∈ G. Because
ai and hi will be invalid after time period i, the re-encryption key’s life cycle
is also period i. We remark that in all existing schemes including our scheme,
the temporary property is achieved based on the assumption that the proxy
will update the re-encryption key after each period expires.

– Non-transitive: Based on the re-encryption keys, rkA→B and rkB→C , the
proxy cannot produce rkA→C . In our proposed scheme, the re-encryption
key is generated using the master secret key of the PKG, proxy cannot
generate rkA→C without knowing the master secret key. And the delegatee’s
identity is included in the re-encryption key, the proxy is unable to replace
the delegatee with another party. So even with the keys rkA→B and rkB→C ,
the proxy cannot produce rkA→C .

– Non-transferable: The proxy and a set of colluding delegatees cannot re-
delegate decryption rights. For example, from rkA→B, skB and pkC , they
cannot produce rkA→C . The re-encryption key is generated by PKG, thus
even if delegatee colludes with proxy, they are unable to re-delegate their
decryption rights since they do not have knowledge of the master secret.

As to IBE-based PRE, we add two more properties:
– Non-Key-escrow : In IBE system, PKG is responsible for generating private

keys for users. But in IBE-based PRE, PKG should not be allowed to decrypt
all ciphertext for anyone. In our proposed scheme, users’ private keys are
computed from the values provided by PKG, but they do not use directly

Non-Transferable Proxy Re-Encryption 13

the values from PKG as the private keys. Only users themselves can get the
knowledge of their own private keys.

– Non-PKG-despotism: PKG cannot generate re-encryption key arbitrarily
without permission from delegator, otherwise there is some way to pun-
ish PKG by retrieving its master secret key. Moreover, we discussed one
approach related to using a hardware device to prevent completely PKG
despotism (see Section 6).

Table 1. Comparison of existing PRE schemes and our proposed scheme

Property BBS [1] ID [4] Ateniese[2] Wang[11] Our Scheme

Unidirectional No Yes Yes Yes Yes
Non-interactive No Yes Yes No No
Proxy transparent Yes No Yes# Yes Yes
Original-access Yes Yes Yes No Yes
Key optimal Yes No Yes Yes Yes
Collusion-safe No No Yes Yes Yes
Temporary Yes Yes Yes No Yes
Non-transitive No Yes Yes Yes Yes
Non-transferable No No No No* Yes
Non-Key escrow −− No −− No Yes
Non-PKG despotism −− No −− No Yes

(∗) PKG alone can transfer
(#) can only achieve proxy invisibility which is a weaker form of proxy transparent

Theorem 1 . The advantage of an adversary in the IND-ID-CCA game is neg-
ligible for the proposed scheme under the truncated (decision) q-ABDHE as-
sumption in the random oracle model.
Proof: Our proof closely follows the line of the proof of Gentry’s scheme [15].
Assume there is an adversary A that breaks the IND-ID-CCA security of our
scheme. We construct an algorithm B that solves the truncated (decision) q-
ABDHE problem. B takes as input a random truncated decision q-ABDHE
challenge (g′, g′q+2, g, g1, ..., gq, Z), where Z is either e(gq+1, g

′) or a random
element of GT . Algorithm B proceeds as follows.
Setup:
B generates random polynomials fi(x) ∈ Zp[x] of degree q for i ∈ {1, 2, 3}.

It sets hi = gfi
(α)

. It sends the public key (g, g1, h1, h2, h3) to A. Since g, α,
and fi(x) for i ∈ {1, 2, 3} are chosen uniformly at random, h1, h2 and h3 are
uniformly random and the public key has a distribution identical to that in the
actual construction. B randomly generates x ∈ Zp and sets X = e(g, g)

x
. B also

moderates the hash function HI(), H() as random oracle. By controlling the
random oracle, B can simulate the transcript T easily.
Phase 1 :

14 Yi-Jun He et al.

– Secret Key Queries.
Amakes key generation queries. B responds to a query on ID ∈ Zp as follows.
If ID = α, B uses α to solve truncated decision q-ABDHE immediately. Else,

to generate a pair (rID,1, hID,1) such that hID,1 = (h1g
−rID,1)

1/(α−id)
, B

sets rID,1 = f1(ID) and computes hID,1 = gFID(α) = g(f(α)−f(ID))/(α−id) =
(hg−f(ID))1/(α−id). Then we use the same technique in [16] to extract rID
from the user and set r′ID=rIDrID,1. B sends (r′ID, h′

ID,1 = hID,1
rID),

(rID,2,hID,2), (rID,3, hID,3) to U. The user U will compute rID,1 = r′ID/rID,
hID,1 = (h′

ID,1)
1/rID . (rID, rID,1,hID,1, rID,2, hID,2, rID,3, hID,3) are private

keys of user.

– Re-encryption Key Queries.
When A queries B for a re-encryption key about IDj → IDk, B returns
rk = (α−idk

α−idj
+ aiy) mod p to A.

– Re-encryption Queries.
Suppose that A queries B the re-encryption ciphertext Ck about (Cj =
(C1, C2, C3, C4), IDj → IDk). B runs Re-encryption Key Queries to get
the re-encryption key rk = (α−idk

α−idj
+ aiy) mod p. Finally, B sets Ck =

(C1
′, C1, C2, C3) = (C1

rk, C1, C2, C3) and returns Ck to A.
– Decryption Queries.

To respond to a decryption query on (IDk, Ck), B generates a private key
for IDk as above. It then decrypts Ck by performing the usual Decrypt
algorithm with this private key.

Challenge:
In this phase, the procedure is as the same as in [15]. A outputs identities

ID0, ID1 and messages M0,M1. If α ∈ {ID0, ID1}, B uses α to solve truncated
decision q-ABDHE immediately. Else, as before, B generates bits b, c∈ {0, 1}.
After computing a private key {(rID, rID,i, hID,i) : i ∈ {1, 2, 3}} for IDb, it

also computes (u, v, w) as u = g′f2(α)−f2(IDb), v = Z·e(g′,
q∏

i=0

gF2,IDb
,iα

i

), w =

Mc/e(u, hIDb
)vrIDb , using the (rIDb,1

, hIDb,1
) portion of the key to compute w.

After setting β = H(u, v, w), B sets y = e(u, hID,2hID,3
β)vrID,2+rID,3β. If Z =

e(gq+1, g
′), then (u, v, w, y) is a valid, appropriately-distributed challenge to A

for essentially the same reason as before.
Phase 2:
A makes key generation, re-encryption and decryption queries, and B re-

sponds as in Phase 1.
Guess:

Finally, adversary A outputs a guess b′ ∈ {0, 1}. If b = b’, B outputs 1 as the
solution to the truncated decision q-ABDHE problem; otherwise, it outputs 0.

If Z = e(gq+1, g
′), then B’s simulation is perfect. Otherwise, if Z is a random

element of GT , then A can’t get any information about M. So, B’s success prob-
ability to solve the given truncated decision q-ABDHE problem is as the same
as A’s, namely ε′ = ε. Thus Theorem 1 is proved.

Non-Transferable Proxy Re-Encryption 15

Theorem 2. The advantage of an adversary in the retrievability game is negli-
gible for the proposed scheme.

Proof: Let the output of A be key mpk, gxhi
(

idC
α−idA

)
, gxhi

(
idB

α−idA
)
, rk = (α−idB

α−idA
+

aiy) mod p, rk′ = (α−idC

α−idA
+ aik) mod p, hi

aiy, hi
aik. A wins implies that condi-

tions 1-5 defined in section 4.2 are all fulfilled.

Condition 1 and 2 imply that rk and rk’ are sound, and rk �= rk′. Condition
3 and 4 imply that hi

aiy and hi
aik are sound. That means computation of P3,

P4, g
x are correct, which have been proved in section 5.1. Condition 5 implies

that either

1.) gxhi
(

idC
α−idA

)
= gxhi

(
idB

α−idA
)
; or

2.) X �= e(g, g)x where gx is computed from P3 and P4; or
3.) g1 �= gα where α is computed from Zb and Z1−b, which have been proved

in section 5.1.

Case 1.) happens with negligible probability, unless idB = idC , which requires
HI(IDB) = HI(IDC). But due to the collision resistance property of the hash
function HI , HI(IDB) �= HI(IDC).

Case 2.) happens with negligible probability, due to the soundness of verifi-
cations which has been proven in section 5.1.

Case 3.) also happens with negligible probability, due to the security of the
verifiable encryption scheme [17]. Combining all cases, the adversary only has
negligible advantage to win the game. Thus Theorem 2 is proved.

6 Discussions

In our proposed scheme, we use PKG to help in generating the re-encryption
key; proxy and delegatee (Bob) cannot collude to re-delegate decryption rights;
therefore the proposed scheme has solved the open problem concerned with non-
transferability.

However, with the introduction of PKG, we need to consider whether the
PKG can carry out any significant attack by illegally generating re-encryption
keys. But now we are going to state that this is impossible. Firstly, even if PKG
had illegally generated a re-encryption key, this key is useless if the proxy does
not carry out re-encryption. Secondly, the PKG will expose his master secret
key as the result of of this illegal behavior (proved in section 5).

As an extension, if we make use of a tamper-resistant device, then we can
modify the scheme so that illegal re-encryption cannot occur. This is to solve
the very unlikely situation that if the PKG collude with the proxy, and the PKG
is willing to risk exposing his master secret.

We suggest the use of a secure tamper-resistant hardware on the PKG side to
be responsible for re-encryption key generation. The system framework is shown
in Figure 3.

16 Yi-Jun He et al.

PKG

Fig. 3. Proxy Re-encryption framework with hardware

In general, the hardware is a token that contains a security system with
tamper-resistant properties (e.g. a secure crypto processor) and is capable of
providing security services (e.g. confidentiality of information in the memory).
Smart cards [18] such as Java Card satisfy these requirements. We model secure
hardware devices as black-boxes with internal memory which can be accessed
only via its I/O interface. Master secret of PKG is generated by this hardware
device, and saved in its memory. As the hardware device is tamper-proof, no one
can break it to get the knowledge of the master secret. We view re-encryption
key generation program as a predefined function saved in hardware device. Once
input Alice’s signature to hardware device, the hardware device will not execute
re-encryption key generation program until it verifies the signature. Finally, the
re-encryption key is the output, and will be sent to Alice. So even PKG cannot
generate the re-encryption key arbitrarily, since it does not have the knowledge
of master secret.

7 Conclusions

In this paper, we attempt to solve the open problem pointed out in 2005, in
proposing a non-transferable proxy re-encryption scheme. With the proposed
PRE scheme, the proxy and a delegatee cannot collude to transfer decryption
rights, and if PKG generates re-encryption key arbitrarily, its master secret could
be retrieved. We also introduced two important properties, namely Non-Key-
escrow and Non-PKG-despotism, into the proposed IBE-based PRE scheme.

The principle behind our solution is that instead of ‘prohibiting’ a party
to propagate information, we punish the party who illegitimately propagates
information by retrieving and exposing the important secrets of the party.

In addition, we discussed how to prevent a malicious PKG from generating
illegitimate re-encryption keys completely with the help of a tamper-resistant
hardware device. One future direction is to explore the possibility of modifying
the proposed scheme so that this hardware assumption can be eliminated.

Non-Transferable Proxy Re-Encryption 17

References

1. M. Blaze, G. Bleumer, and M. Strauss.: Divertible protocols and atomic proxy
cryptography. In: EUROCRYPT 1998, volume 1403 of LNCS, pp. 127-144, (1998)

2. G. Ateniese, K. Fu, M. Green, S. Hohenberger.: Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. In: 12th Annual Network
and Distributed Systems Security Symposium, San Diego, California (2005)

3. Man Ho Au, Q. Huang, Joseph K. Liu, Willy Susilo, Duncan S. Wong and Guomin
Yang.: Traceable and Retrievable Identity-based Encryption. In: 6th International
Conference on Applied Cryptography and Network Security. Lecture Notes in Com-
puter Science 5037, Springer-Verlag, pp. 94 - 110, (2008)

4. A. Ivan and Y. Dodis.: Proxy cryptography revisited. In: 10th Annual Network
and Distributed Systems Security Symposium, (2003)

5. Benoit Libert, Damien Vergnaud.: Tracing Malicious Proxies in Proxy Re-
Encryption. In: 2nd international conference on Pairing-Based Cryptography,
Egham, UK (2008)

6. T. Matsuo.: Proxy Re-encryption Systems for Identity-Based Encryption. In: 1st
International Conference on Pairing-Based Cryptography - Pairing 2007, LNCS
4575, pp. 247-267. Springer-Verlag (2007)

7. X.A. Wang, X.y. Yang, F.G. Li.: On the Role of PKG for Proxy Re-encryption in
Identity Based Setting. In: Cryptology ePrint Archive, Report 2008/410. (2008)

8. D. Boneh, X.Boyen.: Efficient Selective-id Secure Identity Based Encryption with-
out Random Oracles. In: Advances in Cryptology-EUROCRYPT 2004. LNCS 3027,
pp. 223-238. Springer, (2004)

9. R. Sakai, M. Kasahara.: ID based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054. (2003)

10. X.A. Wang, X.y. Yang.: Identity based broadcast encryption based on one to many
identity based proxy re-encryption. In 2nd IEEE International Conference on Com-
puter Science and Information Technology, pp.47-50, (2009)

11. X.A. Wang, X.y. Yang.: Proxy re-encryption scheme based on BB2 identity based
encryption. In: 2nd IEEE International Conference on Computer Science and In-
formation Technology, pp.134-137, (2009)

12. X.A. Wang, X.y. Yang.: Proxy Re-encryption Scheme Based on SK Identity Based
Encryption. In: 5th International Conference on Information Assurance and Secu-
rity. pp.657-660, (2009)

13. K. Niu, X.A. Wang, M.Q. Zhang.: How to Solve Key Escrow Problem in Proxy
Re-encryption from CBE to IBE. In: 1st International Workshop on Database
Technology and Applications. pp.95-98, (2009)

14. X.A. Wang, X.y. Yang, M.Q. Zhang.: Proxy Re-encryption Scheme from IBE to
CBE,” 1st International Workshop on Database Technology and Applications.
pp.99-102, (2009)

15. Gentry, C.: Practical identity-based encryption without random oracles. In: EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 445-464. Springer, Heidelberg (2006)

16. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. CRYPTO 2007. LNCS, vol. 4622, pp. 430-448. Springer, Heidelberg (2007)

17. Camenisch, J., Damgard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto,T. ASIACRYPT 2000. LNCS, vol. 1976, pp. 331-345. Springer, Heidel-
berg(2000)

18. Smart card, http://en.wikipedia.org/wiki/Smart_card

