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Abstract. Norway has started to implement e-voting (over the Internet, and by using voters’
own computers) within the next few years. The vulnerability of voter’s computers was identified
as a serious threat to e-voting. Therefore, in this paper, we study the vote integrity of e-voting
when the voter computers cannot be trusted. For this, we first make a number of assumptions—
that arose from the discussion with the representatives of Norwegian government, and have been
approved by them—about the available infrastructure. In particular, we assume the existence of
two out-of-band channels that do not depend on the voter computers. The first channel is used
to transmit integrity check codes to the voters prior the election, and the second channel is used
to transmit a check code, that corresponds to her vote, back to a voter just after his or her e-vote
vast cast. For this we also introduce a new cryptographic protocol. We present the new protocol
with enough details to facilitate an implementation, and also present the timings of an actual
implementation.
Keywords. Implementation, integrity, malicious voter computers, nationwide e-voting, proxy
oblivious transfer, zero-knowledge proofs.

1 Introduction

The first e-voting pilot (that is, voting over the Internet by using voters’ own computers)
pilot in Norway is currently scheduled for 20111, with plans to have nation-wide e-voting
by 2017. As it should be in all democratic countries, Norway aims the electronic elections
to be both as accessible/usable and as secure as possible. It is not always easy to reach a
sensible compromise. In this paper, we describe our e-voting solution that was proposed
to the Norwegian election officials in Summer of 2009. We emphasize that the proposed
e-voting protocol tries to find a good compromise between various security and usability.
While there is no ideal compromise, we hope our solution at least comes close.

A nationwide implementation of e-voting has to be secure against as many attacks
as possible, and in presence of as many malicious parties as possible without seriously
hurting usability or the ease of verifiably correct implementation. Abundant research
has been done on the security of e-voting in the presence of malicious voting servers,
see [CFSY96,CGS97,FS01,Nef01,Gro03,Fur04,GL07] or the overview [Lip05b]. Therefore,
this part of e-voting can be considered to be solved to at least certain degree, and thus in this
paper, we will not focus on this aspect of e-voting. (The real e-voting will implement addi-
tional means to guarantee security against malicious voting servers.)

On the other hand, it is even more difficult to guarantee security in the case when voter
computers cannot be trusted. The seeming impossibility of guaranteeing vote privacy and in-
tegrity in the presence of malicious voter computers has been one of the main obstacles that

1 See http://www.regjeringen.no/en/dep/krd/kampanjer/election portal/electronicvoting.html?id=437385 for
more information.
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has delayed the real-world implementation of e-voting.2 Moreover, achieving vote privacy
in the case of malicious voter computers seems to hurt usability [AHL+09], since the value
input by a voter to the computer should not reveal voter’s preferred candidate. In practice,
this amounts to inputing a pseudorandom code (or something similar), unknown to the voter
computer but yet securely delivered to the voter himself or herself. Due to both the impos-
sibility of implementing secure yet guaranteed code delivery and to the usability concerns,
solutions where a voter is required to enter a random code to the computer are definitely out
of the question3. In Norway, solutions where the voter could obtain the used random values,
and then use her own program to verify the correctness of ciphertexts [Adi08] were not even
considered.
Our Contributions. We show that it is possible to guarantee e-vote integrity in the presence
of malicious voter computers without drastically changing the user experience, and without
the necessity of 100% delivery of random codes (or say, secure hardware tokens). More
precisely, we construct a cryptographic protocol at the end of which, after she has entered
her vote to the computer, the voter obtains a relatively short integrity check code. Given this
check code (and/or the absence or presence of the message itself), the voter can verify the
integrity of her vote. This easy verification is the only change in her voting experience as
compared to a similar non-secure system: she is not required to enter long codes, nor has the
user interface to be particularly clunky. Moreover, in our case, the delivery of the check codes
and the subsequent verification is not obligatory: voters who are paranoid enough or just have
a reason not to trust either the idea of e-voting, or the security of their own computers, can
take additional measures to first obtain the codes and then to perform verification.

We first introduce some organizational assumptions that seem to be necessary and yet
practical enough to be implemented. We emphasize that these assumptions (“the necessary
evil”) have been approved by the Norwegian e-voting project officials.

First, Norway has an ongoing parallel process to implement a national public-key infras-
tructure. This infrastructure will make it possible for the e-voting project to use eID-cards
for the authentication of the voters, but most probably not yet for signing the ballots digitally
by 2011. This means that for authentication, the same scheme as the one used on the eID-
card has to be used, but otherwise, the pilot project is free to use non-standard public-key
cryptosystems. It has to be mentioned though that there are some commercial alternatives
available that offer digital signature functionality, but it is unclear whether the public will be
willing to trust commercial vendors to sign their ballots.

Second, we require the existence of two secure and authenticated channels prechannel
and postchannel. Briefly, before the elections, every voter v gets a list of candidates cnd
together with integrity check codes Codev[cnd], where the voter-dependent codes are ran-
dom and independent. The codes are transfered to all voters over a secure and authenticated
prechannel that is unlikely to be controlled by the same attacker that controls her computer.
This is not restrictive in Norway, where voter registration cards are mailed to all voters in
advance (and people trust the postal system). Once more, the delivery of check codes to all
voters is not necessary: we just assume that a large majority of voters have access to the

2 We stress once more that we are interested in voting over the Internet by using voters’ own computers. There
are many solutions that involve e-voting in special voting booths, like [RS06], but this will not be the case in
Norway.

3 This is partially because in Norwegian elections, one has a wide choice of options, and can vote for a relatively
large number of candidates. Entering many long pseudorandom codes is definitely not user-friendly.
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prechannel by default, and other voters (who are still sufficiently interested in e-voting secu-
rity) must take a special action to obtain the codes.4 In principle, there are several alternative
ways to build prechannel, but the important requirement is that the check codes should not be
known by the voter’s computer. Alternatives include using secure Web pages (available only
when accessed by using say a smartphone for which the real e-voting client is not available),
or SMSs from a fixed mobile number.

Moreover, a real-time channel postchannel (say, SMS, or a Web page that can be checked
by using a smartphone) is used to inform the voter about the success of her actions. More pre-
cisely, every time she has voted, an integrity check code is sent to her by using postchannel.
Note that in Norway, virtually every voter has a mobile phone with the mobile number known
to the government—namely, they are extensively used for tax payment—, and thus there ex-
ists an efficient postchannel. Those voters whose mobiles have not been registered yet, but
who are interested in e-voting security, have to take additional action. However, voters can
choose not to do it. Also, a message from postchannel makes sense even if the voter has not
received the original codes from the prechannel: in this case, she at least knows that her vote
has

In addition, the Norwegian e-voting procedure will allow the voters to revote either
electronically—such that later e-vote takes precedence over an earlier e-vote—or by (later)
participating in conventional paper voting (p-voting), which will take precedence over e-
votes. This will provide at least some (though not complete) protection against vote buying
and coercion: if either of these has happened, the voter can choose to revote later by using
either an e-vote or a p-vote. Clearly, if the voter can be both physically coerced (to the extent
where she cannot go and participate in p-voting) and she cannot trust her computer, then she
cannot be completely protected against all frauds. However, the revoting procedure, which is
already implemented in Estonian national e-voting procedure, offers at least some protection
against vote buying and coercion. Moreover, due to the existence of the postchannel, a voter
will get a timely notification when her vote was altered by her computer. In this case, she
can use a different computer to revote, or when necessary, participate in p-voting. Therefore,
the combination of a quick-response postchannel and revoting not only guarantees fraud
detection but also allows the voters to act on it.

On the flip side, every voter can completely legally use the same PC to vote many times
for (not necessarily) different candidates. This limits the choice of postchannel in our case
significantly. In particular, it is not secure to use the (possibly malicious) PC itself as the
postchannel. Namely, assume that the voter votes for candidate A, then is coerced to vote
for B, and then votes again for A. The PC, already knowing the integrity check codes of A
and B, can submit a vote for B but display the integrity check code for A. 5

Given those organizational assumptions, we consider the next setting, see Fig. 1. Voter’s
ballot (vote) is encrypted and signed (possibly by the attacker), and then sent to the vote
collector. (Without loss of generality, in this paper we will assume that there is a single
vote collector. In practice, there will be more, but all our protocols will naturally generalize.
We will not mention this important point anymore.) The vote collector computes, given an

4 This can say organized by delivering voter cards 3 weeks in advance, and if an interested voter has not received
it by then, she will contact corresponding authorities.

5 There are other, rather theoretical, ways of achieving coercion-resistance, like the use secure hardware or
anonymous channels [JCJ05]. All such means were seen to limit accessibility seriously, and therefore dis-
carded, by the Norwegian government officials.
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Fig. 1. Parties and channels in the proposed setting

encrypted and signed vote, a ciphertext of the integrity check code Codev[cnd] and sends it
to another server (called the messenger). The messenger decrypts the code, and then sends
an SMS alert of the type “You, [name], voted at [time], the check code is Codev[cnd] ” to
the voter over postchannel. The voter verifies the correctness: she complains when she got
a wrong message over postchannel (which say contains a wrong check code), or did not
get it all when she voted (in particular when her computer tells her that the vote collector
is unavailable), or gets a message when she did not vote. Here, we need that the messenger,
who can be behind a firewall, is unaware of the correspondence between the candidates and
the corresponding check codes. I.e., a malicious messenger should not collaborate with a
malicious vote collector.

In Sect. 4, we propose a cryptographic protocol by which the messenger obtains
Codev[cnd]. The basic idea of the protocol is as follows. Voter’s computer sends to the
vote collector two ciphertexts that “encrypt” cnd, one with tallier’s public key, and another
one with messenger’s public key. This is accompanied by a non-interactive zero-knowledge
(NIZK) proof of knowledge that the two encrypted values are equal and belong to the correct
range (i.e., correspond to a valid candidate). The corresponding full NIZK proof of knowl-
edge is presented in Sect. 3.2, and its full security proof is given in an appendix. When the
NIZK proof of knowledge is correct, the vote collector cryptocomputes, based on the second
ciphertext, a ciphertext of Codev[cnd] that is encrypted by messenger’s public key. This is
done by using a “proxy oblivious transfer” protocol [NPS99] with the additional requirement
that the proxy should not get to know the index used by the chooser even when he knows the
whole unordered database. The vote collector then sends an encryption of cnd (under tallier’s
public key) to the tallier, and an encryption of Codev[cnd] (under messenger’s public key) to
the messenger. In Sect. 4, the new protocol is presented in sufficient details to facilitate an
implementation.

We then give an informal security assessment of the full integrity check protocol, and
explain our choice of underlying cryptographic primitives and protocols. Note that in this
paper we are not going to discuss the operation of tallier since there is a decent amount
of literature on this part of the e-voting process. However, we stress that the full e-voting
solution in Norway will use additional cryptographic protocols to guarantee better security
against malicious voting servers.
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We finish the paper by describing an implementation of the new integrity check protocol,
and by giving the timings in the case where there is both a small and a large number of voters
and candidates. For example, if there are 80 candidates, the vote collector’s throughput is
likely to be around 2 000 votes per hour on our test machine. The throughput can be increased
dramatically by using several vote collectors, better (faster and multicore) CPUs, or even
hardware acceleration. In particular, our next task consists of implementing the described
protocol in a commercial Hardware Security Module.
Risk Assessment: Avoided Attacks Versus New Attacks. Without the use of the new proto-
col (or something similar), the voters will not be informed at all whether their e-votes reached
the voting servers. Thus, a malicious entity (say some foreign government, or a terrorist or-
ganization) can mount a full-scale attack (by writing malicious software that covertly takes
over many of voter computers) on the e-voting process and stay undetected. Alternatively,
they may reveal themselves after the end of the elections and prove that they in fact manip-
ulated the elections — even that case would be quite devastating. If the integrity protocol of
this paper is implemented, such attacks will all be at least detected—given that sufficiently
many voters verify the codes—, and the voters can also react on by revoting on paper if
necessary.

The new protocol also creates some genuinely new attacks. For example, an attacker can
take over the prechannel (for example, by distributing fake voter registration cards) or the
postchannel (by massively distributing fake SMSs). Both attacks are arguably much more
difficult to perform without detection than the takeover of voter computers, since they at
least require some physical presence. Attacks on only the postchannel basically amount to
the voters receiving bogus messages with (very high probability) wrong check codes. In
this case the voters will be alerted, and can revote. Even if both channels are successfully
attacked (and this is arguably very difficult), there is no more harm done than by attacking
voter computers: the attacker can then both break correctness (by just reordering codes sent
by the prechannel) and anonymity, but both can done trivially by just a malicious computer.

Finally, there are some genuinely new attacks which more hinge on human psychology
than cryptography or computer security in general. As an example, voters can falsely claim
that they received wrong codes, and thus cause alarm and distrust in elections. Here we
emphasize, that the new protocol makes it possible for voters to detect attacks (so that they
can revote) but in most of the cases, not to prove their presence. (With some exceptions,
like when they have badly formated SMSs from the correct mobile number.) In our own
opinion, due to this attack, voter complaints should thus always taken with a grain of salt: if
such a complaint occurs, then clearly either there was an attack by an outsider or the voter
herself. This should be explained to the voters before the e-voting. Moreover, without such
a protocol, any voter can (legitimately) claim that she does not trust e-voting since she may
have a virus — and that the government has done nothing to protect her in such a case. We
think that the latter complaint is much more valid.6

Real-World Status of Proposed Protocol. The new protocol was proposed primarily to an-
swer to the concerns of the relevant government institutions—together with voiced criticism
in academia—that Norway is not ready to implement e-voting, in particular because of the
seeming threat posed by potentially malicious voter computers. Our work in this direction

6 As a side note, due to this issue the voters should not get a possibility to obtain codes from a prechannel after
the voting: if they do, they will not be able to revote but can only complain. As we just explained, this would
not be a desirable situation.
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has appeased our client, who in particular has verified (with the help of cryptographers from
Norwegian universities) the correctness of the proposed protocol, though there is still work
to be done to make the protocol more efficient. The infrastructural assumptions of this paper
(like the existence of two out-of-the-band channels) have been accepted by the government
institutions and will be a part of the real e-voting procedure. In fact, the government institu-
tions use the same assumptions as the ones in this paper in their own presentations about the
progress of the e-voting project in Norway [Bul09], and have cited our work to show that they
know how to protect against malicious voter computers. Criticism from the local academia
has also decreased considerably [Gjø10]. However, we (together with other researchers) are
still working on constructing more efficient underlying cryptographic protocols.
Notation. All logarithms are on basis 2. k is the security parameter, for the sake of concrete-
ness we assume that k = 80. x ← X denotes assignment; if X is a set or a randomized
algorithm, then x ← X denotes a random selection of x from the set or from the possible
outputs of X as specified by the algorithm. In the case of integer operations, we will ex-
plicitly mention the modulus, like in z ← a + b mod q. On the other hand, we will omit
modular reduction in the case of group operations (like h← gr), since in this case depending
on the group, reduction may or may not make sense.

2 Cryptographic Preliminaries

Hash Functions and Random Oracle Model. A function H : A→ B is a hash function if
|B| < |A|. Within this paper, we usually need to assume that H is a random oracle [BR93].
I.e., the value of H(x) is completely unpredictable if one has not seen H(x) before. Ran-
dom oracles are useful in many cryptographic applications, by making it possible to design
efficient cryptographic protocols. In practice, one would instantiate H with a strong crypto-
graphic hash function like SHA2 or the future winner of the SHA3 competition. While there
exist schemes which are secure in the random oracle model but which are insecure given any
“real” function [CGH98], all such known examples are quite contrived.
Key Derivation Functions. A key derivation function Kdf : A→ B takes a random element
from set A and outputs a pseudorandom element in set B. If |B| < |A| then Kdf is a pseu-
dorandom function, but if |B| ≥ |A| then Kdf can be constructed without any cryptographic
assumptions. See, e.g., [CFGP06]. For the sake of simplicity, we think of Kdf as a random
oracle.
Signature Schemes. A signature scheme SC = (Gensc, Sign,Ver) is a triple of efficient al-
gorithms, where Gensc is a randomized key generation function, Sign is a (possibly random-
ized) signing algorithm and Ver is a verification algorithm. A signature scheme is EUF-CMA
(existentially unforgeable against chosen message attacks) secure, if it is computationally in-
feasible to generate a new signature (i.e., a signature to a message that was not queried from
the oracle), given an access to an oracle who signs messages chosen by the adversary. For the
purpose of this paper, any of the well-known EUF-CMA secure signature schemes can be
used. However, since e-voting is most probably going to use the existing PKI infrastructure
of the relevant country, the most prudent approach is to rely on whatever signature scheme
has been implemented in the corresponding ID-cards. As an example, one can use either the
NIST standard (DSA, [FIP09]) or the PKCS ]2.1 standard (RSA-PSS [BR96], also specified
in RFC 3447) signature scheme, depending on the country.
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Public-Key Cryptosystems. Let PKC = (Genpkc,Enc,Dec) be a public-key cryptosys-
tem, where Genpkc is a randomized key generation algorithm that on input (1k; r), for
some random string r, outputs a new secret/public key pair (sk, pk) ← Genpkc(1k; r),
Enc is a randomized encryption algorithm with c = Encpk(m; r′), and Dec is a de-
cryption algorithm with Decsk(c) = m′. It is required that if (sk, pk) ← Genpkc(1k; r)
then Decsk(Encpk(m; r′)) = m for all valid m, r and r′. We denote Encpk(m; r) (resp.,
Genpkc(1k; r)) for a randomly chosen r also just as Encpk(m) (resp., Genpkc(1k)).

In the case of the Elgamal cryptosystem [Elg85], one fixes a cyclic group G of a prime
order 22k+1 > q > 22k, together with a generator g of G. Then, Genpkc(1k) generates a
random sk ← Zq, and sets pk ← gsk. On input m ∈ G, the encryption algorithm generates
a new random r ← Zq, and sets Encpk(m; r) := (m · pkr, gr). On input c = (c1, c2) ∈ G2,
the decryption algorithm outputs m′ ← c1/c

sk
2 . Elgamal is multiplicatively homomorphic.

I.e., Decsk(Encpk(m1; r1) · Encpk(m2; r2)) = m1 · m2 for (sk, pk) ∈ Genpkc(1k). Here,
the product of ciphertexts is defined coordinate-wise, (m1 · pkr1 , gr1) · (m2 · pkr2 , gr2) =
(m1m2 · pkr1+r2 , gr1+r2).

One can implement Elgamal on top of several different group families, like order-q sub-
groups of Zp where p is a large prime (say p > 21024). How to choose p’s and q’s in this case
is probably the best explained in the standard FIPS 186-3 [FIP09]. In this case, one generates
g by first choosing a random element h← Z∗p \ {1}, and then sets g ← h(p−1)/q. Moreover,
all group operations are done modulo p, while operations in exponents are done modulo q
(like c← gr+r

′ mod q mod p though in this case the reduction modulo q is implicitly done
for us). However, we will not mention reduction modulo p explicitly since one could use
other groups. In particular, the most efficient known implementation of Elgamal cryptosys-
tem uses elliptic-curve groups over finite fields that are recommended in [FIP09]. In this
case, the group elements can be represented by ≤ 256 bits and thus Elgamal ciphertext can
be represented by≤ 512 bits. In any case, we assume that the underlying group G is uniquely
described by some short string descr(G). For example, in the first case, descr(G) = (p, q).

Non-Interactive Zero-Knowledge Proof of Knowledge. Let L be an arbitrary NP-
language, and let R = {(x, y)} where x ∈ L and y is the corresponding NP-witness. A
Σ-protocol (P1, V1, P2, V2) for a relation R is a three-message protocol between a prover
and a verifier (both stateful), such that (1) the prover and verifier have a common input x,
and the prover has a private input y, (2) the prover sends the first (P1) and the third (P2) mes-
sage, and the verifier sends the second message V1, after which the verifier either rejects or
accepts (by using V2), (3) the protocol is public-coin: i.e., the verifier chooses her response V1
completely randomly from some predefined set, (4) the protocol satisfies the security proper-
ties of correctness, special honest-verifier zero-knowledge (SHVZK), and special soundness.
We identify a protocol run with the tuple (x; i, c, r) where (i, c, r) are the three messages of
this protocol. A protocol run is accepting, if an honest verifier accepts this run, i.e., on having
input x and seeing the messages i, c, and r. See App. A for security definitions.

Based on an arbitrary Σ-protocol, one can build a non-interactive zero-knowledge
(NIZK) proof of knowledge in the random oracle model, by using the Fiat-Shamir heuris-
tic [FS86]. I.e., given (x, y) ∈ R and a random oracle H [BR93], the corresponding NIZK
proof of knowledge π consists of (i, c, r), where i ← P1(x, y), c ← H(param, x, i), and
r ← P2(x, y, c), where param is the set of public parameters (like the description of the
underlying group, etc). See [CDS94].
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We use the next common notation. A NIZK proof of knowledge PK(R(. . . )) is for
relation R, where the prover has to prove the knowledge of variables denoted by Greek
letters. All other variables are known to both the prover and the verifier. For example,
PK(y = Encpk(µ; ρ) ∧ µ ∈ {0, 1}) denotes a NIZK proof of knowledge that the prover
knows a Boolean µ and some ρ such that y = Encpk(µ; ρ).
NIZK Proof of Equality of Plaintexts. Let PKC = (Genpkc,Enc,Dec) be the Elgamal cryp-
tosystem. Fix G, g, and two key pairs (sk1, pk1) ∈ Genpkc(1k) and (sk2, pk2) ∈ Genpkc(1k).
Let H be a random oracle. The next NIZK proof of knowledge PK(e1 = Encpk1(g

µ; ρ1) ∧
e2 = Encpk2(g

µ; ρ2)), that e1 and e2 encrypt the same plaintext under a different key, is
standard (with history going back at least to [Sch91]): generate random µ′, ρ′1, ρ

′
2 ← Zq.

Set i1 ← Encpk1(g
µ′ ; ρ′1), i2 ← Encpk2(g

µ′ ; ρ′2), c ← H(descr(G), g, e1, e2, i1, i2),
µ′′ ← µ′ + µ · c mod q, ρ′′1 ← ρ′1 + ρ1 · c mod q, ρ′′2 ← ρ′2 + ρ2 · c mod q. The
NIZK proof of knowledge is equal to the tuple (i1, i2; c;µ

′′, ρ′′1, ρ
′′
2). The verifier accepts

its correctness iff Encpk1(g
µ′′ ; ρ′′1) = i1 · ec1 and Encpk2(g

µ′′ ; ρ′′2) = i2 · ec2. Alterna-
tively, one can define the NIZK proof of knowledge just to be the tuple (c;µ′′, ρ′′1, ρ

′′
2),

where i1, i2, c, µ
′′, ρ′′1, ρ

′′
2 are computed as earlier. In this case, one just verifies that c =

H(descr(G), g, e1, e2,Encpk1(g
µ′′ ; ρ′′1) · e

−c
1 ,Encpk2(g

µ′′ ; ρ′′2) · e
−c
2 ).

Range Proof in Exponents. In the following we need a range proof in exponents, i.e., a
NIZK proof of knowledge PK(e = Encpk(g

µ; ρ)∧µ ∈ [0,CC]) for some positive integer CC.
In the discrete logarithm setting the most efficient known range proof in exponents was pro-
posed in [LAN02]. (Another range proof in exponents that is comparably communication-
efficient, was recently proposed in [CCS08]. However, the latter proof uses pairings and is
thus computationally less efficient.) The communication complexity of the range proof in
exponents from [LAN02] is logarithmic in CC. In the general case (when assuming stronger
assumptions), there exist range proofs in exponents with communication that is essentially
independent of CC [Bou00,Lip03]. However, if the value of CC is relatively small, the latter
proofs actually are less efficient than the proof of [LAN02]. See Sect. B for a full description
of the range proof of [LAN02].

We specify this proof fully in Sect. 3.1, where we present a NIZK proof of knowledge
that uses this range proof in exponents as a subproof.

3 Cryptographic Tools

3.1 Strong Proxy Oblivious Transfer

Syntax. In a 1-out-of-n proxy oblivious transfer protocol, (n, 1)-POT [NPS99], for `-bit
strings, the chooser has an index x ∈ {0, . . . , n− 1} and a public key pk, the sender has pk
and a database f = (f0, . . . , fn−1) with fi ∈ {0, 1}`, and the proxy has a decryption key.
At the end of the protocol, the proxy obtains fx. More precisely, a two-message (n, 1)-POT
protocol Γ = (Gcpir,Query,Reply,Answer) is a quadruple of polynomial-time algorithms,
with Gcpir and Query being randomized, such that for any r, (sk, pk) ← Gcpir(1k; r), x, f
and r′, Answersk(x,Replypk(f,Querypk(x; r

′))) = fx. As before, we denote Gcpir(1k) :=

Gcpir(1k; r) and Querypk(x) := Querypk(x; r
′) for a randomly chosen r and r′. Here, the

proxy generates the key pair (sk, pk) and sends pk to the chooser and to the sender. The
chooser then sends Querypk(x) to the sender, who sends Replypk(f,Querypk(x)) to the
proxy. The proxy finally obtains fx by applying Answersk.
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Semisimulatable Privacy for Strong Proxy Oblivious Transfer. Let Γ =
(Gcpir,Query,Reply,Answer) be a 2-message (n, 1)-POT protocol. Within this work
we use the convention of many previous papers [NP99] on oblivious transfer protocols to
only require (semisimulatable) privacy in the malicious model. I.e., chooser’s privacy is
guaranteed in the sense of indistinguishability (CPA-security), while sender’s privacy is
guaranteed in the sense of simulatability. We note that POT’s privacy definition is a simple
modification of the standard OT’s semisimulatable privacy definition.

We now give an informal definition of semisimulatable privacy. For the CPA-security
(i.e., the privacy) of the chooser, (1) no malicious nonuniform probabilistic polynomial-time
sender should be able to distinguish, with non-negligible probability, between the distri-
butions (pk,Querypk(x0)) and (pk,Querypk(x1)) that correspond to any two of chooser’s
inputs x0 and x1 that are chosen by the sender, and (2) no malicious nonuniform probabilis-
tic polynomial-time proxy should be able to distinguish, with non-negligible probability,
between the distributions

({f}, sk, pk,Replypk(f,Querypk(x0)))

and
({f}, sk, pk,Replypk(f,Querypk(x1)))

that correspond to any two of chooser’s inputs x0 and x1 that are chosen by the sender. (Here,
{f} denotes an unordered version of f .) For sender-privacy, we require the existence of an
unbounded simulator that, given pk, chooser’s message Q∗pk and proxy’s legitimate output
corresponding to this message, generates sender’s message that is statistically indistinguish-
able from honest sender’s message Replypk in the real protocol; hereQ∗pk does not have to be
correctly computed. Here, as in earlier papers that use semisimulatable privacy [NP99], un-
boundedness is required mostly so that the simulator could “decrypt” chooser’s first message.
A protocol is private if it is both chooser-private and sender-private.
Instantiation. In the proposed e-voting protocol, the database size n corresponds to the num-
ber of candidates, and therefore it is usually small (say n ≤ 64). This means that it is suffi-
cient to use a POT protocol with linear-in-n communication. (In the case when n is larger,
one could consider relying on an underlying oblivious transfer protocol with small polylog-
arithmic communication like those of [Lip05a,GR05].) On the other hand, it is important to
minimize sender’s computation. Given those considerations, we base the new POT protocol
on the AIR oblivious transfer protocol [AIR01]. The result has (in the case of a small n) good
communication and computation, is based on a well-known security assumption (Decisional
Diffie-Hellman), and allows one to construct efficient NIZK proofs of knowledge.

Let PKC = (Genpkc,Enc,Dec) be the Elgamal cryptosystem, and let g ∈ G be a fixed
generator of the plaintext group. Chooser’s private input is x ∈ {0, . . . , n− 1}, and sender’s
private input is f = (f0, . . . , fn−1) for fi ∈ {0, 1}` with (relatively) small `. The new
(n, 1)-strong POT protocol consists of the next steps:

1. The proxy sets (sk, pk)← Genpkc(1k), and sends pk to the chooser and the sender.
2. For ρ ← Zq, the chooser sets e ← Encpk(g

x; ρ), and sends Querypk(x) ← e to the
sender.

3. The sender does on input pk and Querypk(x) = e:
(a) For every i ∈ {0, . . . , n− 1}: generate new random values ri, r′i ← Zq, set

ei ← (Encpk(g
i; 1)/e)ri · Encpk(gfi ; r′i) .
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(b) Send Reply = Replypk(f, (pk, e)) ← {e0, . . . , en−1} to the proxy, where the set
elements in Reply are given in a random order.

4. For all elements e′ in the set Reply, the proxy computes y ← Decsk(e
′). He finds

an y, such that the discrete logarithm z of y on basis g is small. He outputs z as
Answersk(x,Reply).

Note that the sender can precompute the values Encpk(gi; 1) and Encpk(g
fi ; 1), and therefore

her online computation is dominated by 2n exponentiations in G.
Computing discrete logarithm is efficient when all database elements are small, say

` ≤ 5, and can be just done by table-lookup by comparing all values y with values gi

for small i. (Discrete logarithm step could be avoided by using an additively homomor-
phic cryptosystem like [Pai99]. However, known additively homomorphic cryptosystems are
otherwise considerably less efficient than Elgamal.) Moreover, with an overwhelming prob-
ability, there is exactly one element ej such that the discrete logarithm of Decsk(ej) is small.
Thus, the proxy can just decrypt all values e′, and then check them against a precomputed
table lookup of gi for small values of i; the comparison step will takeΘ(n · log n) elementary
operations. Since n is very small, this part is considerably faster than decrypting n different
ciphertexts. When using say Lipmaa’s [Lip05a] oblivious transfer-protocol based POT, the
messenger will only have to decrypt a single element and then make Θ(log n) comparisons
by using binary search. However, the cost of computing Answer will be higher. Our choice
is supported by implementation timings (Sect. 7) that show that proxy’s time load is much
smaller than that of sender. Finally, note that the messenger has to decrypt in average 50%
of the elements, and thus his online cost is dominated by ≈ n/2 exponentiations.

This protocol is clearly both correct and private, given that Elgamal is CPA-
secure [AIR01]. See App. C
Weak POT for Large Database Elements. We also need to use proxy oblivious transfer in a
situation, where the database elements are significantly longer, such that computing discrete
logarithm (as in the proposed strong POT protocol) will not anymore possible. However,
in our application, the proxy is allowed to know an unordered version {f} of the database
f . More precisely, the proxy knows an unordered tuple F := {gf0 , . . . , gfn−1}, and for
efficiency reasons, we assume that this tuple is sorted. After the end of the POT protocol, he
obtains gfx for some unknown x, and he can verify whether gfx is equal to some element of
F by using binary search, in time Θ(log n). However, that does not help him in determining
x since F does not contain any information about indexes. We call this protocol a weak
oblivious transfer protocol.

3.2 New NIZK Proof of Knowledge

We need a NIZK proof of knowledge PK(e = Encpkt(g
µ; ρ) ∧ e′ = Querypkm(µ; ρ

′) ∧ µ ∈
[0,CC]), where we use the Elgamal cryptosystem and the new proxy oblivious transfer pro-
tocol. Since in the new POT protocol, the first message is just Encpkt(gµ), we need to prove
an AND of two statements, that e and e′ “encrypt” the same value gµ (under different keys),
and that e′ encrypts a value gµ where µ ∈ [0,CC]. We already presented both proofs sepa-
rately. To “and” the two NIZK POKs, one uses the standard technique from [CDS94]. For
the sake of completeness, the full interactive version of this zero-knowledge proof is given in
Prot. 1. We need actually a NIZK proof of knowledge version of it, which is presented later
as Prot. 2.
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System parameters: G, q, g.
Common inputs: CC and λ := blog2 CCc, pkt, pkm, e′.
Prover’s input: µ, ρ′.

1. Prover does:
(a) Compute the values µj ∈ {0, 1} such that µ =

∑λ
j=0 µjCCj with CCj ← b(CC+ 2j)/2j+1c.

(b) For j ∈ {0, . . . , λ} do:
i. Generate random ρj , ρ

′
j ← Zq , set ej ← Encpkt(g

µj ; ρj).
ii. If µj = 0 then: Set i0,j ← Encpkt(1; ρ

′
j), c1,j ← Z2k , r1,j ← Zq , i1,j ← Encpkt(1; r1,j) ·

(Encpkt(g; 0)/ej)
c1,j .

iii. Else if µj = 1 then: Set i1,j ← Encpkt(1; ρ
′
j), c0,j ← Z2k , r0,j ← Zq , i0,j ←

Encpkt(1; r0,j)/e
c0,j
j .

(c) Generate random µand, ρand,1, ρand,2 ← Zq . Set i2,1 ← Encpkt(g
µand ; ρand,1), i2,2 ←

Encpkm(g
µand ; ρand,2).

Send i← (e0, . . . , eλ, (i0,0, i1,0), . . . , (i0,λ, i1,λ), i2,1, i2,2) to the verifier.
2. Verifier does: Set c← Z2k , send c to the prover.
3. Prover does for j ∈ {0, . . . , λ}:

(a) If µj = 0 then: Set c0,j ← c− c1,j mod 2k, r0,j ← ρ′j + c0,j · ρj mod q.
(b) Else if µj = 1 then: Set c1,j ← c− c0,j mod 2k, r1,j ← ρ′j + c1,j · ρj mod q.
Let ρ′ ←

∑
ρjCCj mod q (i.e., e← Encpkt(g

µ; ρ′)). Set r3 ← µand+ c ·µ mod q, r4,1 ← ρand,1+ c ·ρ
mod q, r4,2 ← ρand,2 + c · ρ′ mod q. Send r← (c0,0, . . . , c0,λ, (r0,0, r1,0), . . . , (r0,λ, r1,λ), r3, r4,1, r4,2)
to the verifier.

4. Verifier does:
(a) Let e←

∏λ
j=0 e

CCj

j .
(b) For j ∈ {0, . . . , λ}:

i. Set c1,j ← c− c0,j (mod 2k).
ii. If Encpkt(1; r0,j) 6= i0,j · e

c0,j
j or Encpkt(1; r1,j) 6= i1,j · (ej/Encpkt(g; 0))c1,j then: reject.

(c) If Encpkt(gr3 ; r4,1) 6= i2,1 · ec or Encpkm(gr3 ; r4,2) 6= i2,2 · (e′)c then: reject.
Otherwise: accept.

Protocol 1: Interactive version of the required zero-knowledge proof
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1. Prover has inputs (descr(G), g,CC, pkt, pkm, e′). He computes i as in Prot. 1, but then he sets c ←
H(descr(G), g,CC, pkt, pkm, e′, i), and computes r that corresponds to this value of c. The NIZK proof of
knowledge is equal to π ← (e0, . . . , eλ, c, r).

2. Verifier has inputs (descr(G), g,CC, pkt, pkm, e′, π). On input π, she computes the missing elements
of i exactly as in the proof of the SHVZK property of Prot. 1. Verifier accepts if and only if c =
H(descr(G), g,CC, pkt, pkm, e′, i).

Protocol 2: NIZK proof of knowledge version of Prot. 1

Complexity. In Prot. 1, prover’s computation is dominated by (at most) 3λ + 4 public-key
encryptions and λ exponentiations. Since Elgamal is used, if necessary most of the prover’s
computation can be done beforehand. However, this should not be necessary in our appli-
cation, where it is perfectly fine that it takes a minute for the voter’s computer to finish
computation. Verifier’s computation is dominated by 2λ + 3 encryptions, λ of which can
be precomputed, and 2λ + 2 exponentiations. In real-world voting, we can in most cases
assume that λ ≤ 6, thus verifier’s computation is dominated by ≤ 15 encryptions and ≤ 14
exponentiations.
Security. The security of Prot. 1 is a straightforward corollary of known results. However,
for the sake of completeness we provide a complete proof.

Theorem 1. Prot. 1 is a correct, specially sound and SHVZK proof of knowledge for
PK(e = Encpkt(g

µ; ρ) ∧ e′ = Encpkm(g
µ; ρ′) ∧ µ ∈ [0,CC]).

Full proof of this theorem is given in App. D.
NIZK Proof of Knowledge Version. Since Prot. 1 is correct, specially sound and SHVZK,
we can now use the Fiat-Shamir heuristic to construct a secure NIZK proof of knowledge.
This version is depicted by Prot. 2. Note that when Elgamal in the subgroups of Zp is used
then descr(G) = (p, q) and thus c← H(p, q, g, . . . ).

4 Cryptographic Protocol for E-Vote Integrity

Setting. The voting process consists of a number of voters V , their PCs, one or more mes-
sengers (Messenger), one or more vote collectors (VC) and one or more talliers (Tallier).
A voter enters her preferred candidate number—by using a user-friendly GUI—to her PC,
that then runs a vote registration protocol with the vote collectors. Vote collectors collect the
votes, and send their collection to the talliers after the voting period has finished. Within this
paper, we are not going to specify most of the internal working of the vote collectors or the
vote talliers since there exists already an extensive literature on that.

Contrarily, in this paper we focus on the case when the voter’s PC is dishonest. Clearly,
if voters would only have access to their PCs, no security could be achieved at all. Therefore,
in addition we need the presence of some independent channels accessible by the voters.
As an example, in many countries, before any elections the voters will anyway receive a
paper voter registration card. We can make use of this channel (prechannel), by adding extra
information on this acknowledgment. In addition, most of the voters have access to more
than one connected device. The second device (postchannel) may be something simple, like
a mobile phone, even if it cannot perform any complex cryptographic operations, but can
still guarantee real-time reception of messages.
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Description of Protocol. Assume that we have CC+ 1 > 0 candidates, and every candidate
has been assigned a number cnd ∈ {0, . . . ,CC}. Since CC is small, we are going to use the
AIR-based proxy oblivious transfer protocol (Gcpir,Query,Reply,Answer) and the Elgamal
cryptosystem (Genpkc,Enc,Dec). In particular since Elgamal is multiplicatively homomor-
phic, instead of the candidate cnd we encrypt gcnd, where g is a fixed generator of Elgamal’s
plaintext group. (If an additively homomorphic cryptosystem were used, one could instead
just encrypt cnd. However, such cryptosystems tend to be less efficient in practice.) The
protocol is depicted by Prot. 3.
Complexity. Vote collector’s computation is dominated by the verification of the NIZK proof
of knowledge (which takes at most 2λ + 3 encryptions and 2λ + 2 exponentiations), and
by the execution of the sender’s part in the POT protocol that is dominated by 2(CC + 1)
encryptions (CC + 1 of which can be precomputed) and CC + 1 exponentiations. On top
of that, the vote collector has to verify a signature, and sign her message to the messenger.
Given say CC + 1 = 63 candidates (then λ = 5), her computation is thus dominated by
2λ+ 3 + 2(CC+ 1) = 139 encryptions and 2λ+ 2 + CC+ 1 = 75 exponentiations, some
of which can be precomputed. Note that the bulk of vote collector’s computation goes to
computing her part of the POT protocol. This seems to be inevitable since most of the known
oblivious transfer protocols (the only exception is [Lip09]) requite linear computation. On
the other hand, while the description of the NIZK proof of knowledge is seemingly more
complex, it is considerably more efficient than the POT protocol.
Discussion. IfRv[cnd] is long (say≥ 20 bits) then computing Answer requires the computa-
tion of discrete logarithm with time complexity of≥ 210 steps by using Pollard’s ρ algorithm.
Our solution to this is that instead ofRv[cnd], the check code is Codev[cnd] = Kdf(gRv [cnd]).
This means that the values Codev[cnd] will be sent over prechannel, too. On the other hand,
this step is done by client’s computer only once in a while and thus is not a bottleneck, and
it may even be desirable to prevent DDoS attacks, by forcing client’s computer to perform
some work per every cast vote. Also, note that the tallier obtains a ciphertext of gcnd. Here,
computing of discrete logarithm is again simple since cnd is small (it can be done by using
table-lookup).

5 Security of Integrity Protocol

We now state the security of the e-voting process, given the new integrity protocol. We will
give informal security arguments, leaving formal proofs for further work. In all following
paragraphs, we consider the case when one party is dishonest, but all other parties are honest.
This assumption is not necessary when one additionally implements protocols that guarantee
security against malicious servers. For example, one can use standard mixnets, but as said,
this is not the topic of the current paper. Note that all parties can blindly refuse accept votes,
claiming to have troubles with connection, but this is unavoidable.
Security against Voter Computer. There are no privacy guarantees against malicious
voter’s PC. However, by doing proper checks, a voter can clearly verify that the voter’s
PC has not voted for a wrong candidate, or did not vote at all.
Security against Vote Collector. Vote collector only sees encrypted data, and thus here
privacy is guaranteed. She cannot change votes (since they are signed).
Security against Messenger. Messenger only sees the codes, and which code the voter is
voting for right now, but nothing else. Thus, privacy is covered except in the next sense: the
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System parameters: G, g, q,H .
Voter’s inputs: encryption keys of tallier, messenger, her own private signature key, voter collector’s signature
verification key.
Vote collector’s inputs: encryption key of messenger, his own private signature key, voters’ signature verification
keys.
Tallier’s inputs: his own private decryption key, vote collector’s signature verification key.
Common inputs: CC+ 1 candidates c ∈ [0,CC], λ := blog2 CCc.

1. Before elections:
(a) (G, q, g) and H are fixed and published by a trusted server.
(b) Some server (be it vote collector or a separate server) generates for every voter-candidate pair (v, cnd)

a uniformly random string Rv[cnd] ← Zq , and sets Codev[cnd] ← Kdf(gRv [cnd]) where Kdf is a key
derivation function. It sends signed codes Codev[cnd] to corresponding voters (by using prechannel)
and to the messengers (in numerically sorted order), and signed values Rv[cnd] to the vote collectors.
// In practice, only the first few, say 25 bits of Codev[cnd] are sent.

2. When voter v enters a candidate number cnd to voter’s PC:
(a) Voter’s PC does:

i. He generates the first message e′ ← Querypkm(cnd) of the new weak proxy oblivious transfer
protocol.

ii. He generates a non-interactive zero-knowledge proof π = PK(e = Encpkt(g
µ; ρ) ∧ e′ =

Querypkm(µ; ρ
′) ∧ µ ∈ [0,CC]) that both e and e′ correspond to the same valid candidate (see

Prot. 2).
iii. He signs (e′, π) by using his secret signing key skv , s← Signskv (e, e

′, π).
iv. He then sends (e′, π, s) to the vote collector. (Note that π contains the list (e0, . . . , eλ) with

ej = Encpkt(g
µj ) and µj ∈ {0, 1}.)

(b) After receiving a ballot from the PC, the vote collector does:
i. He verifies both the signature and the zero-knowledge proof (as specified in Prot. 2). If both veri-

fications are fine, it computes the second message r ← Replypkm(e
′,Codev) of the POT protocol.

Recall here that r consists of a number of randomly-reordered ciphertexts.
ii. He sends to the voter’s PC a signed message accept or reject.

iii. He signs r and sends it to the messenger.
(c) After receiving a message from the VC, the messenger does:

– She verifies the signature on r. She complains when it does not verify.
– Otherwise, she “decrypts” gRv [cnd] ← Answerskm(cnd,Reply), where skm is messenger’s secret

key, and obtains Codev[cnd] ← Kdf(gRv [cnd]). (The procedure for this is specified in Sect. 3.1.)
It also alerts the voter by using postchannel with the value of Codev[cnd].

(d) When receiving a message from postchannel, the voter checks that Codev[cnd] is correct, as in Step
5 if the ideal-world vote registration protocol. The voter also checks that her legitimate voting acts are
accompanied by a postchannel message, and that she receives no spurious messages.

3. After the election period has ended, the vote collector sends all values e =
∏
e
CCj

j , signed with his own
private key, to the tallier. The tallier operates by using a suitable e-voting procedure to deduce the winner.

Protocol 3: The new protocol between a voter, her computer, vote collector, and messenger
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messenger can test, in the case of a revote, whether this time the voter is voting for a new
or an old candidate. The messenger can also not send a postchannel message based on such
tests. The messenger can also send back a message that corresponds to an earlier vote by the
same candidate, but this will be detected by the voter.
Security against Tallier. Tallier only obtains a list of all encrypted ballots, signed by
the vote collector. The tallier cannot thus breach the privacy. To guarantee some robust-
ness/integrity while tallying, one can use some well-known cryptographic protocols (for ex-
ample, mixnets).

6 Discussion

While choosing the underlying primitives and protocols, we considered efficiency to be the
most important factor, closely followed by the simplicity of implementation and standardness
of security assumptions. Next we will try to motivate our choices.
Public-key Cryptosystem. While Elgamal is only multiplicatively homomorphic, it is sev-
eral times more efficient than the known additively homomorphic cryptosystems like [Pai99],
especially in decryption. In addition, NIZK proofs of knowledge based on known additively
homomorphic cryptosystems tend to be less efficient. Slower encryption, decryption and
NIZK verifications would make vote collector’s computations much more costly. On the
other hand, by using standard tricks, we were able to minimize the drawbacks of Elgamal
public-key cryptosystem, i.e., the need to compute discrete logarithms. Moreover, Elgamal
encryption (and in particular, Elgamal encryption based on elliptic curves) is implemented
by several commercially available Hardware Security Modules, which cannot be said about
the known additively homomorphic cryptosystems.
Proxy Oblivious Transfer. Due to the lack of space, this discussion can be found in App. E.
Voter Education. For the added two channels and the new protocol to be useful in practice,
the voters must be educated. They must be told that they should never enter the check codes
to their computer, and that they should actively react to the messages (or their absence) on
the postchannel. This will add extra costs, but the costs will be hopefully amortized over sev-
eral elections. Moreover, the Internet and computers are ubiquitous in the developed world
already now, with average people performing much more complex operations in a daily ba-
sis. Thus, after some years we can reasonably expect the voters to know how to guarantee
their own vote privacy (and security in general case).

7 Implementation Data

We have implemented a sandbox version of the new e-voting protocol. We tested
it thoroughly, and measured its efficiency by using a personal computer that runs
Linux 2.6.18-6-686, has a Pentium 4 CPU that runs at 2.80GHz and has 512 KB of
cache, and has 2 GB of main memory. The code was compiled by using gcc 4.1.2 with
the option -O2. For generating the Elgamal parameters, we used the openssl 0.9.8c
library, while other number-theoretic operations were implemented by using Victor Shoup’s
NTL 5.5.1 library. Our current code is only slightly optimized.

We measured the time that was spent during the election setup, and during the election
itself. In the tallying, one can use any of the standard mixnet-based solutions, and thus we
did not measure this part. For the time measurement, we used the standard Unix command
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time, and took the average over 100 different runs. The results are summarized in the next
two tables, for v = {100, 1000, 10 000} voters, and c ∈ {8, 32, 80} candidates. In all cases,
|p| = 1024, |q| = 160, and k = 80. We used SHA2-256 as the hash function. The first
table contains the one-time election setup cost (codecard generation and Elgamal system
parameter value generation) which depends linearly on the product v · c. More precisely, it is
dominated by v · c random number generations and exponentiations modulo p.

v = 100 v = 1000 v = 10 000

c = 8 c = 32 c = 80 c = 8 c = 32 c = 80 c = 8 c = 32 c = 80

Election setup 3.875s 15.40s 38.48s 38.58s 2m 34s 6m 25s 6m 25s 25m 38s 1h 4m 20s

The next table summarizes the online computation time of voter’s PC, vote collector and
messenger, both with and without the zero-knowledge proofs. The costs are given per one
vote, and do not significantly depend on the number of the voters. The total row is the sum of
the time spent by voter’s PC, vote collector and messenger, and gives a (loose) lower bound
on time that must elapse before the voter receives back a message on the postchannel.

With ZK Without ZK
c = 8 c = 32 c = 80 c = 8 c = 32 c = 80

Voter’s PC 0.21s 0.30s 0.34s 0.02s 0.02s 0.02s
Vote collector 0.40s 1.07s 2.27s 0.20s 0.78s 1.95s
Messenger 0.02s 0.08s 0.22s 0.02s 0.08s 0.20s
Total 0.63s 1.45s 2.83s 0.24s 0.88s 2.17s

We also note that a single exponentiation on this machine took about 0.0048s. Moreover,
the timings of the parties include also the precomputation time. In particular, vote collector’s
online computation in the POT protocol requires twice less time than her total computation
in POT.

As seen from these tables, the computation time of the voter’s PC and messenger is quite
insignificant even in the case of 80 candidates. On the other hand, if there are 80 candidates,
then the vote collector spends (on average) 2.27 seconds per vote and cannot process more
than about 1 500 votes per hour even under ideal conditions. Assuming that the vote collector
precomputes in the POT protocol, the throughput increases to 3 000 votes per hour. In the
case of real e-voting, the cryptographic protocol is obviously only a part of what the vote
collector is busy with, and thus the maximum throughput is probably around 2 000 votes per
hour. In smaller countries, this is sufficient under normal conditions, but not during the first
or the last few hours of the e-voting.7 However, this can be alleviated by using either fast (and
multicore) processors, parallel processing by many vote collectors, or even by using hard-
ware acceleration. (In particular, we are currently considering a Hardware Security Module
implementation based on elliptic curves.) The use of such (more expensive) alternatives is
reasonable, given the importance of elections in a democratic society. Moreover, in the case
of most elections, the number of candidates is not larger than 10.

7 As an example, in the most recent Estonian e-voting in October 2009, more than 104 thou-
sand e-votes were given in total, peaking with 4500 e-votes during the last hour. See
http://vvv.vvk.ee/public/pics/EP09kokkuakt.jpg for the distribution of voters per hour during the vot-
ing period.
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A Security Definitions of Σ-Protocols

A Σ-protocol is correct if for any (x, y) ∈ R, an honest verifier accepts all runs with an
honest prover. A Σ-protocol has the property of special soundness, if one can construct
an efficient simulator that, given any two accepting runs (x; i, c1, r1) and (x; i, c2, r2) with
c1 6= c2, outputs a y such that (x, y) ∈ R. A Σ-protocol has the property of SHVZK if there
exists an efficient simulator that, given as input an arbitrary x ∈ L (without corresponding y),
can construct accepting runs (x; i∗, c∗, r∗) such that (a) the simulator starts by choosing uni-
formly random c∗ and r∗, and only then computes i∗, and (b) the distribution (x; i∗, c∗, r∗) is
computationally indistinguishable from the distribution (x; i, c, r) of runs between an honest
prover and an honest verifier.

B Range Proof from [LAN02]

We now briefly recall the range proof in exponents from [LAN02]. (Note that the original
description in [LAN02] was given for a different cryptosystem, but it clearly works also in
the case of Elgamal.) For any CC > 0, denote λ := blog2 CCc and CCj := b(CC+2j)/2j+1c
for j ∈ {0, . . . , λ}. As stated in [LAN02], µ ∈ [0,CC] if and only if there exist µj ∈ {0, 1},
such that µ =

∑λ
j=0 µjCCj . Here, the values µj can be computed by using a simple greedy

algorithm. As an example, when CC = 12, then CC0 = 6, CC1 = 3, CC2 = 2, CC3 = 1, and
thus µ ∈ [0, 12] iff for some µj ∈ {0, 1}, µ = 6µ0+3µ1+2µ2+µ3. E.g., 2 = 0+0+2+0,
9 = 6 + 3 + 0 + 0, and 12 = 6 + 3 + 2 + 1. Thus, to prove that µ ∈ [0,CC], one can
separately encrypt (by using a multiplicatively homomorphic cryptosystem like Elgamal) all
values gµj , ej ← Encpk(g

µj ), and then prove that each value ej encrypts either 0 or 1 (by
using standard techniques [CDS94]). Finally, one obtains an encryption of gµ by computing
e←

∏
e
CCj
j = Encpk(

∏
gµjCCj ) = Encpk(g

∑
µjCCj ) = Encpk(g

µ).

C Security of the New POT Protocol

For a short proof of correctness and sender’s privacy, note that ei = Encpk(g
ri(i−x); ri(1 −

ρ)) · Encpk(gfi ; r′i) = Encpk(g
ri(i−x)+fi ; ri(1 − ρ) + r′i). Denote r′′i ← ri(1 − ρ) + r′i,

note that r′′i is uniformly random in Zq. Clearly, if i = x then ei = Encpk(g
fi ; r′′i ), and

thus proxy obtains the correct value, with y = gfx . However, if i 6= x, then ri(i − x) + fi
is a completely random element of Zq and thus the proxy obtains a random encryption of
a random group element. For a short proof of chooser’s privacy, note that the sender only
sees an Elgamal encryption of client’s index. On the other hand, even if the proxy gets back
the value fx, and has an unordered copy of f , he does not know the value x. Moreover,
sender’s computation is dominated by 2n encryptions (n of which can be precomputed)
and n exponentiations. Proxy’s computation is dominated by n decryption operations and n
discrete logarithm computations.

D Proof of Theorem 1

Proof. Completeness: assume that both prover and verifier are honest, and in particular
that e′ = Encpkm(g

µ; ρ2) and µ ∈ [0,CC]. Then µ =
∑λ

j=0 µjCCj for some µj ∈
{0, 1} [LAN02]. We check that verification (on Step 4(b)ii) succeeds for every j and for
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both µj = 0 and µj = 1, and then that the verifications on Step 4c succeed. First, fix some
j. If µj = 0, then

i0,j · e
c0,j
j = Encpkt(1; ρ

′
j) · Encpkt(gµj ; ρj)c0,j = Encpkt(1; ρ

′
j + c0,j · ρj)

= Encpkt(1; r0,j),

i1,j · (ej/Encpkt(g; 0))c1,j = Encpkt(1; r1,j) · (Encpkt(g; 0)/ej)c1,j · (ej/Encpkt(g; 0))c1,j

= Encpkt(1; r1,j) ,

as needed. If µj = 1, then

i0,j · e
c0,j
j = Encpkt(1; r0,j)/e

c0,j
j · ec0,jj = Encpkt(1; r0,j),

i1,j · (ej/Encpkt(g; 0))c1,j = Encpkt(1; ρ
′
j) · Encpkt(1; ρj)c1,j

= Encpkt(1; ρ
′
j + c1,j · ρj) = Encpkt(1; r1,j)

as needed. Second,

i2,1 · ec = Encpkt(g
µand ; ρand,1) · Encpkt(gµ; ρ′)c = Encpkt(g

µand+c·µ; ρand,1 + c · ρ′)
= Encpkt(g

r3 ; r4,1) ,

i2,2 · (e′)c = Encpkm(g
µand ; ρand,2) · Encpkm(gµ; ρ′)c = Encpkm(g

µand+c·µ; ρand,2 + c · ρ′)
= Encpkm(g

r3 ; r4,2) .

Special Soundness. Assume that i is defined as in Prot. 1, c 6= ĉ, and r and r̂ are two
different third round messages that an honest verifier accepts. Then, according to the verifi-
cation equations on Step 4c,

Encpkt(g
r3 ; r4,1) = i2,1 · ec , Encpkt(g

r̂3 ; r̂4,1) = i2,1 · êc .

Dividing the first equality with the second, we get ec−ĉ = Encpkt(g
r3−r̂3 ; r4,1 − r̂4,1), or

equivalently, e = Encpkt(g
µ; ρ) for µ ← (r3 − r̂3)/(c − ĉ), and ρ ← (r4,1 − r̂4,1)/(c − ĉ).

Analogously, (e′)c−ĉ = Encpkm(g
r3−r̂3 ; r4,2 − r̂4,2), or equivalently, e′ = Encpkm(g

µ; ρ′)
for ρ′ ← (r4,2 − r̂4,2)/(c − ĉ). Thus, from here the simulator can extract µ, ρ, ρ′ such that
e = Encpkt(g

µ; ρ) and e′ = Encpkm(g
µ; ρ′).

Now, let us consider the verifications on Step 4(b)ii. Fix some j. Note that since c 6= ĉ,
and we fix the first step, then c1−µj ,j 6= ĉ1−µj ,j while cµj ,j 6= ĉµj ,j .

Thus, if c0j 6= ĉ0j , then

Encpkt(1; r0,j) = i0,j · e
c0,j
j , Encpkt(1; ẑ0,j) = i0,j · e

ĉ0,j
j .

Thus, ec0,j−ĉ0,jj = Encpkt(1; r0,j − ẑ0,j), or equivalently, ej = Encpkt(g
µj ; ρj) for µj = 0

and ρj = (r0,j − ẑ0,j)/(r0,j − ẑ0,j).
On the other hand, if c1j 6= ĉ1j , then

Encpkt(1; r1,j) = i1,j · (ej/Encpkt(g; 0))c1,j , Encpkt(1; ẑ1,j) = i1,j · (ej/Encpkt(g; 0))ĉ1,j .

Thus, e
c1j−ĉ1,j
j Encpkt(g

ĉ1,j−c1j ; 0) = Encpkt(1; r1,j − ẑ1,j), or e
c1j−ĉ1,j
j =

Encpkt(g
c1j−ĉ1,j ; r1,j − ẑ1,j), or equivalently, ej = Encpkt(g; ρj) for µj = 1 and
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ρj = (r1,j − ẑ1,j)/(c1j − ĉ1,j). Thus, the simulator can extract values µk, ρj , such that
ej = Encpkt(µj ; ρj).

The rest is now easy. The simulator knows that both e and e′ encrypt µ =
∑
µj · CCj ,

and since µj ∈ {0, 1} then µ ∈ [0,CC].
SHVZK. A simulator can work as follows. Assume that the simulator gets

(G, q, g, pkt, pkm, e0, . . . , eλ, e
′)

as input. First, generate random c ← Z2k , and compute random ci,j ← Z2k such that
c = c0,j + c1,j mod 2k. Generate random r0,j , r2,j , r3, r4,1, r4,2 ← Zq. Now define
i0,j , i1,j , i2,1, i2,2 such that the verifications on Steps 4(b)ii and 4c would succeed, i.e., i0,j ←
Encpkt(1; r0,j)/e

c0,j
j , i1,j ← Encpkt(1; r1,j) ·(Encpkt(g; 0)/ej)c1j , i2,1 ← Encpkt(g

r3 ; r4,1)/e
c

and i2,2 ← Encpkm(g
r3 ; r4,2)/(e

′)c. Clearly the resulting view (i, c, r), where i and r are de-
fined as in Prot. 1, is both accepting and has exactly the same distribution as accepting views
between honest prover and verifier.

This completes the proof. ut

E Discussion: Proxy Oblivious Transfer

Since in our case, the databases are small (say ≤ 64 elements), the communication com-
plexity of the used POT protocol does not matter, while its computation complexity is the
bottleneck. Another bottleneck is the need for the messenger to perform ≈ n · log2 n com-
parisons, but as mentioned before, this is strongly dominated by the cost of doing Θ(n)
public-key operations. Thus, even in this case, it is more efficient to use AIR based on El-
gamal than the version of AIR based on the Paillier cryptosystem [LL07]: while in the latter
case, the number of comparisons would drop, the cost of public-key operations will increase.

In most of the existing OT protocols, sender’s online computational complexity is dom-
inated by Θ(n) public-key operations. The only exception is the OT protocol proposed
in [Lip09] which reduces this computation to Θ(n/ log n), but the cost of public-key op-
erations in that protocol is increased significantly, which is important when n is so small.
Moreover, the underlying assumption of [Lip09], the Decisional Composite Residuosity as-
sumption (first proposed in [Pai99]) is much less known than the Decisional Diffie-Hellman
assumption and thus arguably not yet ready to be used in an application of such an impor-
tance.

In [NP01, Sect. 3.1], Naor and Pinkas proposed an OT protocol where the sender’s on-
line computational complexity is dominated by 1 exponentiation and n multiplications/hash
function computations. However, their protocol is secure only in the random oracle model.
While we use random oracles in our protocol, it is a good design principle to limit their usage
as much as possible. (Removing random oracles from the NIZK protocol requires currently
the use of pairing-based NIZK protocols [Gro06], which are considerably slower than the
presented protocols. Moreover, there does not seem to be yet enough confidence in pairing
assumptions.) Moreover, it is not immediately clear how to modify their OT protocol to a
strong POT protocol since there the proxy needs to use the correct public key to decrypt, and
thus will obtain information about the client’s input.

Another interesting case is the Gentry-Ramzan oblivious transfer protocol [GR05] that
has server’s online computational complexity dominated by Θ(n) multiplications. While the
Gentry-Ramzan oblivious transfer protocol is very efficient by itself, it is not clear how to
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base a POT on it. Briefly, in the Gentry-Ramzan protocol, the client generates a modulus N
such that for some x ∈ {0, . . . , n − 1}, a previously fixed prime power px divides ϕ(N).
While decoding the answer, the client who knows the factorization ofN can efficiently obtain
the value of fx. In the case of the POT, the proxy (who is doing the decoding) does not and
should not know the value of x. Construction of an efficient strong POT protocol based on
the Gentry-Ramzan oblivious transfer protocol is thus an interesting open question. Note
also that the underlying security assumption behind the Gentry-Ramzan protocol, the Phi-
Hiding assumption [CMS99], is even less studied than the Decisional Composite Residuosity
assumption.


