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Abstract

In this paper, we present a framework for efficient, fully-simulatable
h-out-of-n oblivious transfer (OTnh ) with security against nonadap-
tive malicious adversary. The number of communication round of
the framework is six. Compared with existing fully-simulatable OTnh ,
our framework is round-efficient. Conditioning on no trusted common
string is available, our DDH-based instantiation is the most efficient
protocol for OTnh .

Our framework uses three abstract tools, i.e. perfectly binding
commitment, perfectly hiding commitment and our new smooth pro-
jective hash. This allows a simple and intuitive understanding of its
security.

We instantiate the new smooth projective hash under the lat-
tice, decisional Diffie-Hellman, decisional N-th residuosity, decisional
quadratic residuosity assumptions. This indeed shows that the folk-
lore that it is technically difficult to instantiate the projective hash
framework under the lattice assumption is not true. What’s more,
by using this lattice-based instantiation and Brassard’s commitment
scheme, we gain a OTnh instantiation which is secure against any quan-
tum algorithm.
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1 Introduction

1.1 Oblivious transfer

Oblivious transfer (OT), first introduced by [35] and later defined in another
way with equivalent effect [9] by [11], is a fundamental primitive in cryptog-
raphy and a concrete problem in the filed of secure multi-party computation.
Considerable cryptographic protocols can be built from it. Most remark-
able, [17, 20, 23, 41] proves that any secure multi-party computation can be
based on a secure oblivious transfer protocol. In this paper, we concern a vari-
ant of OT, h-out-of-n oblivious transfer (OT nh ). OT nh deals with the following
scenario. A sender holds n private messages m1,m2, . . . ,mn. A receiver holds
t private positive integers i1, i2, . . . , it, where i1 < i2 < . . . < it and it 6 n.
The receiver expects to get the messages mi1 ,mi2 , . . . ,mit without leaking
any information about his private input, i.e. the h positive integers he holds.
The sender expects all new knowledge learned by the receiver from their in-
teraction is only and at most h messages. From this respect, the OT most
literature referred is OT 2

1 and can be view as a special case of OT nh .
Considering a variety of attack we have to confront in real environment,

a OT nh with security against against malicious adversary (who may act in
any arbitrary malicious way to learn as much extra information as possible)
is more desirable than the one with security against semi-honest adversary
(who on one side honestly does everything told by a prescribed protocol,
on one side records the message he see to deduce extra information which
is not supposed to known by him). Using Goldreich’s compiler [15, 17], we
can gain the latter from the corresponding version of the former. However,
the resulting protocols are prohibitive expensive for practical use, because
they are embedded with so much invocation of zero-knowledge for NP. Thus,
directly constructing the protocols based on specific intractable assumptions
seems more feasible.

The first step in this direction is independently made by [30] and [1]
which respectively presents an two-round OT 2

1 protocol based on the deci-
sional Diffie-Hellman (DDH) assumption. Starting from the works of [30]
and [1], [21] abstracts and generalizes the ideas to a framework for OT 2

1 by
smooth projective hashing. Besides DDH assumption, the framework can be
instantiated under the decisional N -th residuosity (DNR) assumption and
decisional quadratic residuosity (DQR) assumption [21].

Unfortunately, these protocols (or framework) are only half-simulatable
not fully-simulatable. So called fully-simulatable, we means that a protocol
can be strictly proven its security under the real/ideal model simulation
paradigm and without turning to random oracle. The paradigm requires
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that for any adversary in real life, there exists a corresponding adversary in
ideal life which can simulate him. Thus, the real adversary can not do more
harm than the corresponding ideal adversary do. Therefore the security level
of the protocol is guaranteed to be no lower than that of ideal life. ”half-
simulation” only provides the simulator for malicious sender.

Considering security, requiring a protocol to be fully-simulatable is nec-
essary. Specifically, a fully-simulatable protocol is secure against all kinds of,
especially future unknown attack taken by the adversary whose the power
is fixed when constructing the protocol (generally, the adversary’s power is
probabilistic polynomial-time) [5, 15], while a not fully-simulatable protocol
isn’t. For example, the protocols proposed by [1, 21, 30] suffer the selective-
failure attacks, in which a malicious sender can induce transfer failures that
are dependent on the message that the receiver requests [31].

Constructing fully-simulatable protocol against malicious adversary nat-
urally becomes the focus of the research community. [4] first presents such
a fully-simulatable OT. In detail, the OT is an adaptive h-out-n oblivious
transfer (denoted by OT nh×1 in related literature) and based on q-Power De-
cisional Diffie-Hellman and q-Strong Diffie-Hellman assumptions. Unfortu-
nately, these two assumptions are not standard assumptions used in cryp-
tography and seem significantly stronger than DDH, DQR and so on. Moti-
vated by basing OT on weaker complexity assumption, [18] presents a OT nh
using a blind identity-based encryption which is based on decisional bilinear
Diffie-Hellman (DBDH) assumption. Using cut-choose technique, [24] later
presents two efficient fully-simulatable protocol OT 2

1 respectively based on
DDH assumption and DNR assumption, which are weaker than DBDH. It is
remarkable that, [24]’s DDH-based protocol is the most efficient one among
such fully-simulatable works.

The protocols mentioned above are proved secure in the plain stand-alone
model which not necessarily allows concurrent composition with other arbi-
trary malicious protocols. [34] further the research in this filed by presenting
a framework for two round efficient, fully-simulatable, universally compos-
able OT 2

1 and three instantiations respectively based on DDH, DQR and
worst-case lattice assumption. Recently, [12], using their novel compiler and
somewhat non-committing encryption, converts the instantiations based on
DDH, DQR to OT 2

1 s with higher security level. In more detail, the resulting
OT 2

1 s are secure against adaptive malicious adversary, which corrupts the
parties dynamically based on his knowledge gathered by far. Note that, the
previous fully-simulatable protocol are only secure against non-adaptive ma-
licious adversary, which only corrupts the parties preset before the running
of the protocol.

Though constructing fully-simulatable, secure against malicious adver-
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sary OT 2
1 has been studied well, constructing such OT nh hasn’t. We note

that there are some works aiming to extend known protocols to OT nh . [28]
shows how to implementation OT nh using log n invocation of OT 2

1 under ”half-
simulation”. A similar implementation for adaptive OT nh can be seen in [29].
What’s more, the same authors of [28,29] propose a way to transform a singe-
server private-information retrieval scheme (PIR) into an oblivious transfer
scheme under ”half-simulation” too [31]. Under the help of random ora-
cle, [19] shows how to extend k oblivious transfers (for some security pa-
rameter k) into many more, without much additional effort. However, the
”half-simulation” and random oracle are undesirable. To our best knowledge,
only [4] and [18] respectively present a fully-simulatable OT nk . However, as
pointed out above, the assumptions the former use are not standard assump-
tions and the latter use is too expensive. Therefore, a well-motivated problem
is to find efficient, fully-simulatable, secure against malicious adversary OT nk
schemes under weaker complexity assumptions.

1.2 Our contribution

In this paper, we present a framework for efficient, fully-simulatable, secure
against non-adaptive malicious adversary OT nh which is proven secure under
stand model. To our best knowledge, this is the first such framework for
OT nh . The framework have the following advantages,

1. Fully-simulatable and secure without using the common reference string.
[21]’s framework for OT 2

1 is half-simulatable. Thought [34]’s framework
for OT 2

1 is fully-simulatable, it doesn’t work without a common refer-
ence string (CRS). What is more, how to install a trusted CRS before
the protocol run is a problem to be solved. The existing possible solu-
tions, such as natural process suggested by [34] , are only conjectures
without formal proofs. The same problem remains in its adaptive in-
stantiation presented by [12]. Therefore, considering practical use, our
framework are better.

2. Efficient. The number of communication round of our framework is six.
Compared with the existing fully-simulatable OT nh protocols, i.e. the
protocols respectively presented by [4], [18] with round number 4 + 4h,
a+h·b (a, b ≥ 2 respectively is the round number of two zero-knowledge
proof used in the protocol), our framework is round-efficient.

The computational overhead of our framework consists of K · n public
key encryption operations and K · h public key decryption operations,
where K is a value such that the possibility of our simulator failing
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is at most 1/2K−1. Setting K to be 40 is secure enough to be used
in practice. Our framework covers [24]’s DDH-based protocol (with
some straightforward modification) as a specific case. Since the price
of DDH-based operations are lower than that of the operations [4] and
[18] use, our DDH-based instantiation are the most efficient protocol
for OT Th , in the sense of defending non-adaptive malicious adversary
without using the CRS.

We also admit that, in the context of a trusted CRS is available and
only OT 2

1 is needed, [34]’s framework is most efficient not only in round
number but also in computational overhead.

3. Abstract and modular. The framework is described using just three
high-level cryptographic tools, i.e. perfectly binding commitment (PBC),
perfectly hiding commitment (PHC) and our new smooth projective
hash denoted by SPWHh,t. This allows a simple and intuitive under-
standing of its security.

4. Generally realizable. The high-level cryptographic tools PBC, PHC
and SPWHh,t can be realizable from a variety of known specific as-
sumption, even future assumption maybe. This makes our framework
generally realizable. In particular, we instantiate SPWHh,t from DDH,
DNR, DQR and lattice assumption. Instantiating PBC or PHC un-
der specific assumptions is beyond the scope of this paper. Please
see [14, 16] for such examples. Generally realizability is vital to make
framework live long, considering the future progress in breaking a spe-
cific intractable problem. In this case, replacing the instantiation based
on broken problem with that based on unbroken problem suffices.

What is more, we fix a folklore [24] that it appears technically difficult
to instantiate the projective hash under lattice assumption by presenting a
lattice-based SPWHh,t instantiation. It is notable that we gain aOT nk instan-
tiation which is secure against any quantum algorithm, using this SPWHh,t

instantiation and [3]’s commitment scheme. Considering that factoring inte-
gers and finding discrete logarithms are easy for quantum algorithms [37–39],
this is a example showing the benefits from generally realizability.

As a independent contribution, we present several lemmas related to the
indistinguishability of possibility ensembles generated by sampling polyno-
mial instances. Such lemmas simplify our security proof very much. We
believe that they are as the same useful in other security proof as in this
paper.
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1.3 Our Approach

We note that the smooth projective hash is a good abstract tool. Using this
tool, [21] in fact presents a framework for half-simulatable OT 2

1 , [13] present
a framework for password-based authenticated key exchange protocols. We
also note that the cut-and-choose is a good technique to make protocol fully-
simulatable. Using this tool, [24] present several fully-simulatable protocol
for OT 2

1 , [25] presents a general fully-simulatable protocol for two-party com-
putation. Indeed, we are inspired by such works. Our basic ideal is to use
cut-and-choose technique and smooth projective hash to get a fully fully-
simulatable framework.

We define a new smooth projective hash called h-smooth t-projective hash
family with witnesses and hard subset membership (SPWHh,t). Loosely
speaking, SPH is a set of operations defined over on two languages L̇ and
L̈, where L̇ ∩ L̈ = ∅. For any projective instance ẋ ∈ L̇, its hash value is
obtainable under the help of its witness ẇ. For any smooth instance ẍ ∈ R̈,
its hash value seems random.

For simplicity, we only compare our SPWHh,t with the version of SPH
presented by [21] and denoted by V SPH, since on the one hand, V SPH is
the most complete version among previous works. On the other hand, the
aim, constructing a framework for half-simulatable OT 2

1 , of [21] is the closest
to ours, constructing a framework for fully-simulatable OT nh .

SPWHh,t’s can be viewed as a generalized version of V SPH to deal
with OT nh . V SPH mostly resembles SPWH1,1 and can be converted into
SPWH1,1 through some straightforward modifications. SPWHh,t extends
V SPH in the following way.

1. Extends the instance-sampler algorithm to generate h ẋs and t ẍs in a
invocation. What is more, we not only require each ẋ to hold a witness
ẇ as previous work do, but also require each ẍ to hold a witness ẅ.

2. Discards the instance test (IT) algorithm and provide a new verifica-
tion (VF) algorithm which is more useful for applying cut-and-choose
technique.

We observe that the V SPH indeed is easy to be extended to deal
with OT n1 , but seems difficult to be extended to deal with the more
general OT nk . The reason is that, on one hand, the ẍ lacks a direct
witness, which result in ẋ and ẍ being generated in a dependent way.
This makes designing IT for OT nh difficult without leaking information
which is conductive to distinguish such ẋs and ẍs. Thus, even con-
structing a framework for OT nh which is half-simulatable as [21] seems
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difficult. On the other hand, to use the technique cut-and-choose, a
direct witness for ẍ indeed is needed. Because the simulator have to
use such witness to extract the receiver’s real input which is encoded
as a permutation of ẋs and ẍs. The difficulties mentioned above can
be overcome by requiring each ẍ to hold a direct witness. What is
more, the implementation of VF became easier than that of its prede-
cessor IT. Because the operated object is pair of the form (x,w) which
is simpler than (x1, . . . , xh+t, w1, . . . , wh) which is the form of operated
object of IT.

3. Extends key generation (KG) algorithm such that there is more infor-
mation available for it. In more details, it can generate hash key and
projective key based on the instance (i.e. ẋ or ẍ). This makes con-
structing hash system easier. In indeed, this makes lattice-based hash
system come true which is thought difficult by [24].

4. Extends ”smoothness” to guarantee that, loosely speaking, for any ~̈x
def
=

(ẍ1, . . . , ẍt) generated by invocations of the operations of hash system in
some given way, given the corresponding projective keys, (c1, c2, . . . , ct)
and (r1, r2, . . . , rt) are computationally indistinguishable, where ci is
the hash value of ẍi and ri is uniformly chosen from all possible hash
values.

5. Extends ”hard subset membership” to guarantee that, loosely speak-
ing, −→xy, π(−→xy) and ~x are computationally indistinguishable , where
−→xy def

= (ẋ1, . . . , ẋh, ẍh+1, . . . , ẍh+t), ~x
def
= (ẋ1, . . . , ẋh+t) are generated by

invocations of the operations of hash system in some given way, π is a
permutation.

Using SPWHh,t we construct the framework described as follows with
high-level.

1. The receiver generates hash parameters and instance vectors, then
sends them to the sender after disorders each vector.

2. The receiver and the sender cooperate to toss coin to decide which
vector to be opened.

3. The receiver opens the chosen instances and encodes his private input
by reordering the unchosen vectors.

4. The sender checks that the chosen vectors are generated in legal way
which guarantees that the receiver learns at most h message, encrypts
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his private input (i.e. the n messages he holds) using the hash system,
sends the ciphertext together with some information (i.e. the projec-
tive hash keys) to the receiver which is conductive to decrypt some
ciphertext.

5. The receiver decrypts the ciphertext and gains the message he expects.

Intuitively speaking, the receiver’s security is implied by the hard sub-
set membership, which guarantee that it is difficult for a malicious sender
to distinguish ẋs and ẍs. The sender’s security is implied by the cut-and-
choose, which guarantees that a malicious receiver’s cheating is catched with
possibility nearly 1. Formally speaking, in case the sender is corrupted, a
simulator can extract the malicious sender’s real input by sending cheatingly
generated sample instance vectors while avoid to be catched by rewinding
the malicious sender to get a appropriate result of tossing coin. In case the
receiver is corrupted, a simulator can extract the malicious receiver’s real
input by rewinding the malicious receiver to open the instance vectors two
times.

Motivated by making instantiating SPWHh,t easier and making use of
the existing works as much as possible, we proves some lemmas which essen-
tially guarantees that the existing SPH instantiations can be converted into
SPWHh,t instantiations with some modification. The key idea is generating
ẋs and ẍs in independent way.

Our lattice-based SPWHh,t instantiation is builded on the lattice-based
cryptosystem presented by [24]. It is noticeable that it appears difficult to
get lattice-based instantiation for SPH [24]. Our solution is to let instance
x (x ∈ L̇ ∪ L̈) available for KG.

1.4 Organization

In Section 2, we describe the notations used in this paper, the security defi-
nition of OT nh , the definition of commitment scheme. In Section 3, we define
our new hash system, i.e. SPWHh,t. In Section 4, we construct our frame-
work. In Section 5, we prove the security of the framework. In Section 6,
we instantiate SPWHh,t under the lattice, DDH, DNR, DQR assumptions,
respectively.

2 Preliminaries

Most notations and concepts mentioned in this section originate from [5,14,
15] which are basic literature in the filed of secure multi-party computation
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(SMPC). We tailor them to the need of dealing with OT nh .

2.1 Basic Notations

We denote an unspecified positive polynomial by poly(.). We denote the set

consists of all natural numbers by N. For any i ∈ N, [i]
def
= {1, 2, . . . , i}.

We denote security parameter used to measure security and complexity
by k. A function µ(.) is negligible in k, if there exists a positive constant
integer n0, for any poly(.) and any k greater than n0 (for simplicity, we
later call such k sufficiently large k), it holds that µ(k) < 1/poly(k). A

probability ensemble X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ is an infinite sequence of

random variables indexed by (k, a), where a represents various types of inputs
used to sample the instances according to the distribution of random variable
X(1k, a). Probability ensemble X is polynomial-time-constructible, if there
exists a probabilistic polynomial-time sample algorithm SX(.) such that for
any a, any k, the random variables SX(1k, a) and X(1k, a) are identically
distributed. We denote sampling an instance according to X(1k, a) by α ←
SX(1k, a).

Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
= {Y (1k, a)}k∈N,a∈{0,1}∗ be two

probability ensembles. They are computationally indistinguishable, denoted
X

c
= Y , if for any non-uniform probabilistic polynomial-time algorithm D

with an infinite auxiliary information sequence z = (zk)k∈N, there exists a
negligible function µ(.) such that for any sufficiently large k, any a, it holds
that

|Pr(D(1k, X(1k, a), a, zk) = 1)− Pr(D(1k, Y (1k, a), a, zk) = 1)| 6 µ(k)

They are the same, denoted X = Y , if for any sufficiently large k, any a,
X(1k, a) and Y (1k, a) are defined in the same way. They are equal, denoted
X ≡ Y , if for any sufficiently large k, any a, the distributions of X(1k, a)
and Y (1k, a) are identical. Obviously, if X = Y then X ≡ Y ; If X ≡ Y then
X

c
= Y .
Let ~x be a vector (note that arbitrary binary string can be viewed as a

vector). We denote its i-th element by ~x〈i〉, denote its dimensionality by #~x,
denote its length in bits by |~x|. For any positive integers set I, any vector ~x,

~x〈C〉 def= (~x〈i〉)i∈I,i≤#~x.
Let M be a probabilistic (interactive) Turing machine. By Mr(.) we

denote M ’s output generated at the end of an execution using randomness
r.

Let f : D → R. Let D′ ⊆ {0, 1}∗. Then Range(f)
def
= D, f(D′)

def
=

{f(x)|x ∈ D′ ∩D}.
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2.2 Security Definition

functionality of OT nh OT nh involves two parties, party P1(i.e. the sender)
and party P2 (i.e. the receiver). OT nh ’s functionality is formally defined as a
function

f : N× {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗

f(1k, ~m,H) = (λ, ~m〈H〉)

where

• k is the public security parameter.

• ~m ∈ ({0, 1}∗)n is P1’s private input, and each |~m〈i〉| is the same.

• H ∈ Ψ
def
= {B|B ⊆ [n], #B = h} is P2’s private input.

• λ denotes a empty string and is supposed to be got by P1. That is, P1

is supposed to get nothing.

• ~m〈H〉 is supposed to be got by P2.

Note that, the length of all parties’ private input have to be identical in
SMPC (please see [15] for the reason and related discussion). This means
that |~m| = |S| is required. Without loss of generality, in this paper, we
assume |~m| = |S| always holds, because padding can be easily used to meet
such requirement.

Intuitively speaking, the security of OT nh requires that P1 can’t learn
any new knowledge — typically, P2’s private input, from the interaction at
all, and P2 can’t learn more than h of messages held by P1. To capture
the security in formal way, the concepts such as adversary, trusted third
party (TTP), ideal world, real world were introduced. Note that the security
target in this paper is to be secure against static malicious adversary, so only
concepts related to this case is referred to in the following.

Static malicious adversary Before running OT nh , the adversary A has to
corrupt all parties listed in I ⊆ [2]. In case U ∈ {P1, P2} is not corrupted,
he will strictly follow the prescribed protocol as an honest party. In case
party U is corrupted, U will be fully controlled by A as a cheating party.
In this case, U will have to pass all his knowledge to A before protocol run
and follows A’s instruction from then on — so there is a probability that
U arbitrarily deviates from prescribed protocol. In fact, after A finishes
corrupting, A and all cheating parties have formed a coalition led by A
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to learn as much extra knowledge, e.g. honest parties’ private inputs, as
possible. From then on, they share knowledge with each other and coordinate
their behavior. Without loss of generality, we can view this coalition as
follows. All cheating parties are dummy. A receives messages addressed to
members of the coalition and sends messages supposed to be sent by the
members.

Loosely speaking, we say OT nh is secure, if and only if, for any malicious
adversary A, the knowledge A learns in the real world is not more than that
he learns in the ideal world. In other words, if and only if, for any malicious
adversary A, what harm A can do in real world is not more than what harm
he can do in the ideal world. In the ideal world, there is an incorruptible
trusted third party (TTP). All parties hand their private inputs to TTP. TTP
computes f and sends back f(.)〈i〉 to Pi. In the real world, there is no TTP,
and the computation of f(.) is finished by A and all parties’s interaction.

OT nh in the ideal world In the ideal world, an execution of OT nh proceeds
as follows.

Initial Inputs All entities know the public security parameter k. P1

holds a private input ~m ∈ ({0, 1}∗)n. Party P2 holds a private input H ∈ Ψ.
Adversary A holds a name list I ⊆ [2], a randomness rA ∈ {0, 1}∗ and an
infinite auxiliary input sequence z = (zk)k∈N, where zk ∈ {0, 1}∗. Before
proceeds to next stage, A corrupts parties listed in I and learns ~x〈I〉, where

~x
def
= (~m,H).

Submitting inputs to TTP Each honest party Pi always submits its
private input ~x〈i〉 unchanged to TTP. A submits arbitrary string based on
his knowledge to TTP for cheating parties. The string TTP receives is a
two-dimensional vector ~y which is formally defined in the following way.

~y〈i〉 =

{
~x〈i〉 if i ∈ I ,
α if i /∈ I

where α ∈ {~x〈i〉, aborti, {0, 1}|~x〈i〉|} and α is generated in the way of α ←
A(1k, I, rA, zk, ~x〈I〉). Obviously, there is a probability that ~x 6= ~y.

TTP computing f TTP checks that ~y is a valid input to f , i.e. no
entry of ~y is aborti. If ~y passes the check, then TTP computes f and sets ~w
to be f(1k, ~y). Otherwise, TTP sets ~w to be (aborti, aborti). Finally, TTP
hands ~w〈i〉 to Pi respectively and halts.
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Outputs Each honest party Pi always outputs the message ~w〈i〉 it ob-
tains from the TTP. Each cheating party Pi outputs nothing (i.e. λ). The
adversary outputs something generated by executing arbitrary function of
the information he gathers by far. Without loss of generality, this can be
assumed to be string consisting of 1k, I, rA, zk, ~x〈I〉, ~w〈I〉.

The output, denoted Idealf,I,A(zk)(1
k, ~m, S), of the protocol OT nh in the

ideal world is a three-dimensional vector orderly consisting of the outputs
of A,P1, P2. Obviously, Idealf,I,A(zk)(1

k, ~m, S) is a random variable whose
randomness is rA.

OT nh in the real world In the real world, there is no TTP. A execution
of OT nh proceeds as follows.

Initial Inputs Initial input each entity holds in the real world is the
same as in the ideal world but there are some difference as follows. A ran-
domness ri is held by each party Pi. After finishes corrupting, in addition to
the knowledge A learns in ideal world, cheating parties’ randomness ~r〈I〉 is

also learn by A, where ~r
def
= (r1, r2).

Computing f In the real world, computing f is finished by all entities’
interaction. Each honest party strictly follows the prescribed protocol (i.e.
the concrete protocol, usually denoted π , for OT nh ). The cheating parties
have to follow A’s instructions and may arbitrarily deviate from prescribed
protocol.

Outputs Each honest party Pi always outputs what the prescribed pro-
tocol instructs. Each cheating party Pi outputs nothing (i.e. λ). The ad-
versary outputs something generated by executing arbitrary function of the
information he gathers by far. Without loss of generality, this can be assumed
to be string consisting of 1k, I, rA, ~r〈I〉, zk, ~x〈I〉 and messages addressed to
the cheating parties.

The output, denoted Realπ,I,A(zk)(1
k, ~m, S), of OT nh in the real world is a

three-dimensional vector orderly consisting of the outputs of A,P1, P2. Ob-
viously, Realf,I,A(zk)(1

k, ~m, S) is a random variable whose randomness are rA
and ~r.

Security definition The security of OT nh is formally captured by the fol-
lowing definition.
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Definition 1 (Security of OT nh ). Let f denotes the functionality of OT nh and
let π be a concrete protocol for OT nh . We say π securely evaluates f , if and
only if for any non-uniform probabilistic polynomial-time adversary A with
an infinite sequence z = (zk)k∈N in the real world, there exists a non-uniform
probabilistic expected polynomial-time adversary A

′
with the same sequence

in the ideal world such that, for any I ⊆ [2], it holds that

{Realπ,I,A(zk)(1
k, ~m,H)}k∈N, ~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealf,I,A′ (zk)(1
k, ~m,H)}k∈N, ~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗
(1)

where the parameters input to the two probability ensembles are the same and
each ~m〈i〉 is of the same length.

The concept, non-uniform probabilistic expected polynomial-time, men-
tioned in Definition 1 is formulated in distinct way in distinct literature such
as [6, 14]. We prefer to the following definition [22], because it is clearer in
formulation and more closely related to our issue.

Definition 2 (M1 runs in expected polynomial time with respect to M2).
Let M1,M2 be two interactive Turing machines running a protocol. By <
M1(x1, r1, z1),M2(x2, r2, z2) > (1k), we denote a running which starts with Mi

holding a private input xi, a randomness ri, a auxiliary input zi, the common
security parameter k. By IDNM1(< M1(x1, r1, z1),M2(x2, r2, z2) > (1k)),
we denote the number of total direct deduction steps M1 takes in the whole
running. We say M1 runs in expected polynomial time with respect to M2,
if and only if there exists a polynomial poly(.) such that for every k ∈ N, it
holds that

max({ER1,R2(IDNM1(< M1(x1, R1, z1),M2(x2, R2, z2) > (1k)))

||x1| = |x2| = k, z1, z2 ∈ {0, 1}∗}) ≤ poly(k)

where R1, R2 are random variables with uniform distribution over {0, 1}∗.

As to Definition 1, it in fact requires that adversary A’s simulator A
′

should run in expected polynomial time with respect to TTP who computes
OT nh ’s functionality f .

We point out that security definition presented in [5, 14, 15] requires
simulator A

′
to run in strict polynomial-time, but the one presented in [24,25]

allows simulator to run in expected polynomial-time. Definition 1 is taken
from the latter. We argue that this is justified, since [2] shows that there is
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no (non-trivial) constant-round zero-knowledge proof or argument having a
strict polynomial-time black-box simulator, which means allowing simulator
to run in expected polynomial-time is essential for achieving constant-round
protocols. See [22] for further discussion.

2.3 Commitment Scheme

In this section, we briefly introduce commitment scheme [14, 16] which will
be used in our framework. Loosely speaking, commitment scheme is a two-
party protocol involving two phases. In the first phase, a sender U1 sends a
commitment, which hides his private input (i.e. the value he wants to commit
to), to a receiver U2. In the second phase, U1 releases its commitment to U2,
and U2 knows the value U1 commits to.

Definition 3 (Commitment Scheme). A commitment scheme is defined as
follows.

• Initial Inputs. At the beginning, all parties know the public security
parameter k. The sender U1 holds a randomness r1 ∈ {0, 1}∗, a value
m ∈ {0, 1}poly(k) to be committed to, where the polynomial poly(k) is
public. The receiver U2 a holds randomness r2 ∈ {0, 1}∗.

• Commit Phase. U1 computes a commitment, denoted α, based on his
knowledge, ie α← U1(1k,m, r1), then U1 send α to U2.

The security for U1 is implied by the commitment scheme’s hiding,
which is supposed to guarantee that for any probabilistic polynomial
time (PPT) malicious Ũ2, the probability that he deduces the knowledge
of m from information he have gathered by far is negligible. More
formally, for any PPT Ũ2, for any string m, ∈ {0, 1}poly(k), it holds
that,

{V iewCPŨ2
(< U1(m), Ũ2 > (1k))} c

= {V iewCPŨ2
(< U1(m,), Ũ2 > (1k))}

where V iewCPŨ2
(.) denotes Ũ2’s view at the end of commit phase.

• Reveal Phase. U1 computes and sends a de-commitment, which Typi-
cally consists of m, r1, to U2 to let U2 know m. Receiving de-commitment,
U2 checks its validity. Typically U2 checks that α = U1(1k,m, r1) holds.
If de-commitment pass the check, U2 knows and accepts m.
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The security for U2 is implied by the commitment scheme’s binding,
which is supposed to guarantee that for any PPT malicious Ũ1, the
probability that Ũ1 interprets α as a commitment to a value which is
different from m is negligible. More formally, for any TTP Ũ1, any m,
Ũ1 do the following experiment,

experiment α← Ũ1(1k,m), r1 ← Ũ1(1k,m), (m
′
, r
′
1)← Ũ1(1k,m)

it holds that

Pr(V iewCPU2(< Ũ1(m), U2 > (1k)) = V iewCPU2(< Ũ1(m
′
), U2 > (1k))∧

α = U1(1k,m, r1)∧
α = U1(1k,m

′
, r
′
1)) = µ(k)

We are to use two stronger version of commitment schemes to construct
the framework. One, called perfectly hiding commitment scheme (PHC),
provides security for sender against computationally unbound malicious re-
ceivers. The other, called perfectly binding commitment scheme (PBC), pro-
vides security for receiver against computationally unbound malicious sender.
For notational simplicity, we let PHCr(m) (PBCr(m)) denote a commitment
to m which generated by using PHC (PBC) scheme and randomness r.

3 A New Smooth Projective Hash — SPWHh,t

In this section, we define a new smooth projective hash — h-smooth t-
projective hash family with witnesses and hard subset membership, denoted
SPWHh,t, which will be used to construct our framework. In section 6, we
instantiate SPWHh,t respectively under four distinct intractable problems.

Let us recall some related works before defining SPWHh,t. [7,40] present
the classic notation of ”universal hashing”. Based on ”universal hashing”,
[8] first introduces the concept of universal projective hashing, smooth pro-
jective hashing and hard subset membership problem in terms of languages
and sets. In order to construct a framework for password-based authenti-
cated key exchange, [13] modifys such definition to some extent. That is,
smoothness is defined over every instance of a language rather than a ran-
domly chosen instance. [21] refines the modified version in terms of the
procedures used to implement it. What is more, a new requirement called
verifiable smoothness is added to the hashing so as to construct a framework
for OT 2

1 . The resulting hashing is called verifiablely-smooth projective hash
family that has hard subset membership property. A corresponding univer-
sal version also is presented by [21]. Note that, the framework presented
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by [21] is not fully-simulatable. Our SPWHh,t is an ameliorated version
of [8, 13, 21]. The difference between SPWHh,t and the works mentioned
above will be under a detailed discussion after we define SPWHh,t. Usually
constructing a hashing with property universality is the first step to gain a
hashing with property smoothness. The definition of this property will be
given in section 6.1.1 where we deal with how to gain smoothness for a hash.

For clarity in presentation, we assume n = h + t always holds and in-
troduce additional notations. Let R = {(x,w)|x,w ∈ {0, 1}∗} be a relation,

then LR
def
= {x|x ∈ {0, 1}∗,∃w((x,w) ∈ R)}, R(x)

def
= {y|(x,w) ∈ R}.

Π
def
= {π|π : [n]→ [n], π is a permutation}. Let π ∈ Π (to comply with other

literature, we also use π somewhere to denote a protocol without bringing
any confusion). Let ~x be an arbitrary vector. By π(~x), we denote a vector
resulted from applying π to ~x. That is, ~y = π(~x), if and only if ∀i(i ∈ [d]→
~x〈i〉 = ~y〈π(i)〉)∧ ∀i(i /∈ [d]→ ~x〈i〉 = ~y〈i〉) hold, where d

def
= min(#~x, n). Let

I be an arbitrary positive integer set. π(I)
def
= {π(i)|i ∈ I ∩ [n]}.

Definition 4 (h-Smooth t-Projective Hash Family With Witnesses And
Hard Subset Membership). H = (PG, IS, V F,KG,Hash, pHash) is an h-
smooth t-projective hash family with witnesses and hard subset membership
(SPWHh,t), if and only if H is specified as follows

• The parameter-generator PG is a PPT algorithm that takes a secu-
rity parameter k as input and outputs a family parameter Λ, ie Λ ←
PG(1k). Λ will be used as a parameter to define three relations RΛ, ṘΛ and R̈Λ,
where RΛ = ṘΛ ∪ R̈Λ and ṘΛ ∩ R̈Λ = ∅ are supposed to hold.

• The instance-sampler IS is a PPT algorithm that takes a security pa-
rameter k, a family parameter Λ as input and outputs a vector ~a ∈
(ṘΛ)h ∗ (R̈Λ)t, ie ~a← IS(1k,Λ).

Let ~a
def
= ((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . , (ẍn, ẅn))T be a vector

generated by IS. We call each ẋi or ẍi an instance of LRΛ
. For each

pair (ẋi, ẇi) ((ẍi, ẅi)), ẇi (ẅi) is called a witness of ẋi ∈ LṘΛ
( ẍi ∈

LR̈Λ
).

For simplicity in formulation later, we introduce some additional nota-

tions here. ~x~a
def
= (ẋ1, . . . , ẋh, ẍh+1, . . . , ẍn)T , where ~x~a〈i〉 = ~a〈i〉〈1〉 for

each i. ~w~a
def
= (ẇ1, . . . , ẇh, ẅh+1, . . . , ẅn)T , where ~w~a〈i〉 = ~a〈i〉〈2〉 for

each i. What is more, we abuse notation ∈ to some extent. We write
~x ∈ range(IS(1k,Λ)) if and only if there exists a vector ~x~a such that
~x~a = ~x and ~a ∈ Range(IS(1k,Λ)). We write x ∈ Range(IS(1k,Λ)) if
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and only if there exists a vector ~x such that ~x ∈ Range(IS(1k,Λ)) and
x is an entry of ~x.

• The verifier VF is a PPT algorithm that computes the following func-
tion

ζ : N× ({0, 1}∗)3 → {0, 1}

ζ(1k,Λ, x, w) =


0 if (x,w) ∈ ṘΛ,

1 if (x,w) ∈ R̈Λ,

undefined otherwise .

VF takes a security parameter k, a family parameter Λ and a pair
strings (x,w) as input and outputs an indicator bit b, ie b← V F (1k,Λ, x, w).

• The hash-key generator KG is a PPT algorithm that takes a security
parameter k, a family parameter Λ and an instance x as input and
outputs a hash key and a projection key, ie (hk, pk)← KG(1k,Λ, x).

• The hash Hash is a PPT algorithm that takes a security parameter k,
a family parameter Λ, an instance x and a hash key hk as input and
outputs a value y, ie y ← Hash(1k,Λ, x, hk).

• The projection pHash is a PPT algorithm that takes a security param-
eter k, a family parameter Λ, an instance x and a projection key pk as
input and outputs a value y, ie y ← Hash(1k,Λ, x, pk).

and H has the following properties

1. Projection. H is projective on every string pair (Λ, ẋ), where ẋ ∈ LṘΛ
.

That is, for any sufficiently large k, any Λ ∈ Range(PG(1k)), any
(ẋ, ẇ) ∈ ṘΛ, any (hk, pk) ∈ Range(KG(1k)), it holds that

Hash(1k,Λ, ẋ) = pHash(1k,Λ, ẋ, ẇ)

2. Smoothness. Loosely speaking, it requires that for any string pair (Λ, ~̈x),
where ~̈x ∈ Lt

R̈Λ
, the hash values of ~̈x are random. That is, for any

π ∈ Π, the two probability ensembles Sm1
def
= {Sm1(1k)}k∈N and

Sm2
def
= {Sm2(1k)}k∈N defined as follows, are computationally indis-

tinguishable, ie Sm1
c
= Sm2.

Smi(1
k): (Λ,

−−→
xpky) ← SmGeni(1

k),
−̃−→
xpky ← π(

−−→
xpky), finally outputs

(Λ,
−̃−→
xpky).
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SmGen1(1k): Λ ← PG(1k), ~a ← IS(1k,Λ), ~x ← ~x~a, for each j ∈ [n],

(hkj, pkj)← HG(1k,Λ, ~x〈j〉), yj ← Hash(1k,Λ, ~x〈j〉, hkj),
−−→
xpky〈j〉 ←

(~x〈j〉, pkj, yj). Finally outputs (Λ,
−−→
xpky).

SmGen2(1k): compared with SmGen1(1k), the only difference is that
yj ∈U Range(Hash(1k,Λ, ~x〈j〉, .)) for each j ∈ [n]− [h].

3. Hard Subset Membership. Loosely speaking, it requires that the in-
stances of LṘΛ

and that of LR̈Λ
are computational indistinguishable.

To be more precise, it requires H to meet the following conditions.

(a) For any π ∈ Π, the two possibility ensembles HSM1
def
= {HSM1(1k)}k∈N

and HSM2
def
= {HSM2(1k)}k∈N are computationally indistinguish-

able, i.e. HSM1
c
= HSM2.

HSM1(1k): Λ← PG(1k), ~a← IS(1k,Λ), finally outputs (Λ, ~x~a).
HSM2(1k): Operates in the same way as HSM1(1k), but finally
outputs (Λ, π(~x~a)).

(b) For any π ∈ Π, for any π
′ ∈ Π, the two possibility ensembles

HSM2 and HSM3
def
= {HSM3(1k)}k∈N are computationally in-

distinguishable, i.e. HSM2
c
= HSM3, where HSM2 is defined

above and HSM3 is defined as follows.
HSM3(1k):(Λ,~b)← Cheat(1k), finally outputs (Λ, π

′
(~b)).

Cheat(1k): Generates n instances of LṘΛ
in the following way.

Λ ← PG(1k), e ← xn/hy, r ← n mod h, ~ai ← IS(1k,Λ) for

each i ∈ [e + 1], ~b〈(i − 1)h + j〉 ← ~ai〈j〉 for each i ∈ [e] and

j ∈ [h], ~b〈eh+ j〉 ← ~ae+1〈j〉 for each j ∈ [r], finally outputs (Λ,~b).

Remark 5 (The Witnesses Of The Instances). The main use of the witnesses
of an instance ẋ ∈ LṘΛ

is to project and gain the Hash value of x rather
than to service as a proof of x ∈ LṘΛ

. However, with respect to an instance
ẍ ∈ LR̈Λ

, it is on the contrary. For OT nh , this means that the receiver use
the witnesses of ẍ to persuade the sender to believe that he gain nothing but
random (or nearly random) values by using ẍ.

Remark 6 (Hard Subset Membership). The property 3a guarantees that for
any ~x ∈ Range(IS(1k,Λ)), any π ∈ Π, any PPT adversary A, the advantage
of A identifying an entry of π(~x) falling into LṘΛ

(LR̈Λ
) with probability over

h/n ( t/n )is negligible. That is, seen from A, every entry of π(~x) seems
the same. With respect to OT nh , this means that the receiver can encode his
private input into a permutation of a vector ~x ∈ LnRΛ

without leaking any
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information. For example, if the receiver expects to gain ~m〈H〉, then he
may generates a ~x and randomly chooses a permutation π ∈ Ψ such that
π(~x)〈i〉 ∈ LR̈Λ

for each i ∈ H. Any PPT adversary can know nothing about
H if only given π(~x).

The property 3b guarantees that one can cheat to generate a ~x which is
supposed to fall into Lh

ṘΛ
∗ Lt

R̈Λ
but actually Ln

ṘΛ
, while the probability of

being catched is negligible. Note that, for OT nh , this property is a key for the
simulator to extract the real input of the corrupted sender and conductive to
construct a fully-simulatable OT nh .

The difference between our SPWHh,t and previous works For sim-
plicity, we only compare our SPWHh,t with the hash presented by [21] and
denoted by V SPH. We argue that this is justified, on the one hand, the
version of [21] is the most complete version among previous works. On the
other hand, the aim of [21] is the closest to ours. The former aims to con-
struct a framework for OT 2

1 which actually is half-simulatable, but we aim
to establish framework for fully-simulatable OT nh .

Loosely speaking, our SPWHh,t can be viewed as a generalized version of
V SPH. Indeed, V SPH mostly resembles SPWH1,1 and can be converted
into SPWH1,1 through some straightforward modifications. The essential
differences are listed as follows.

1. To deal with OT nh , SPWHh,t extends the IS algorithm to generate h
ẋs and t ẍs in a invocation. What is more, besides each ẋ should hold
a witness ẇ, SPWHh,t also require each ẍ to hold a witness ẅ.

2. SPWHh,t discards V SPH’s the instance test algorithm and provide
a new verification (VF) algorithm which is more useful for applying
cut-and-choose technique.

We observe that the V SPH indeed is easy to be extended to deal
with OT n1 , but seems difficult to be extended to deal with the more
general OT nk . The reason is that, on one hand, the ẍ lacks a direct
witness, which result in ẋ and ẍ being generated in a dependent way.
This makes designing IT for OT nh difficult without leaking information
which is conductive to distinguish such ẋs and ẍs. Thus, even con-
structing a framework for OT nh which is half-simulatable as [21] seems
difficult. On the other hand, to use the technique cut-and-choose, a
direct witness for ẍ indeed is needed. Because the simulator have to
use such witness to extract the receiver’s real input which is encoded
as a permutation of ẋs and ẍs. The difficulties mentioned above can
be overcome by requiring each ẍ to hold a direct witness. What is
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more, the implementation of VF became easier than that of its prede-
cessor IT. Because the operated object is pair of the form (x,w) which
is simpler than (x1, . . . , xh+t, w1, . . . , wh) which is the form of operated
object of IT.

3. SPWHh,t extends KG algorithm such that the information of the in-
stance available for it. This makes constructing hash system easier.
In indeed, this makes lattice-based hash system come true which is
thought difficult by [24].

4 Constructing A Framework For Fully-simulatable

OT nh
In this section, we construct a framework for OT nh . In the framework, we

will use a PPT algorithm, denoted Γ , that receiving B1, B2 ∈ Ψ
def
= {B|B ⊆

[n], #B = h}, outputs a uniformly chosen a permutation π ∈U Π s.t.
π(B1) = B2, i.e. π ← Γ(B1, B2). We give an example implementation of
Γ as follows.

Γ(B1, B2): First, E ← ∅. Second, for each t ∈ B2, then i ∈U B1, B1 ←
B1 − {i}, E ← E ∪ {t 
 i}. Third, C ← [n] − B1,D ← [n] − B2, for each
t ∈ D, then i ∈U C, C ← C − {i}, U ← E ∪ {t 
 i}. Fourth, define π as
π(i) = t if and only if t
 i ∈ E. Finally, outputs π.

The framework for OT nh

• Common inputs: All entities know a public security parameter k, an
positive polynomial polys(.), a SPWHh,t (where n = h + t) hash sys-
tem H, a perfectly hiding commitment scheme, a perfectly binding
commitment scheme.

• Private Inputs: Party P1 (i.e. the sender) holds a private input ~m ∈
({0, 1}∗)n and a randomness r1 ∈ {0, 1}∗. Party P2( i.e. the receiver)
holds a private input H ∈ Ψ and a randomness r2 ∈ {0, 1}∗, where
#~m = #H. The adversary A holds a name list I ⊆ [2] and a random-
ness rA ∈ {0, 1}∗.

• Auxiliary Inputs: The adversary A holds an infinite auxiliary input
sequence z = (zk)k∈N, zk ∈ {0, 1}∗.

The protocol works as follow. For clarity, we omit some trivial error-
handlings such as P1 refusing to send P2 something which is supposed to be
sent. Handling such errors is easy. P2 halting and outputting abort1 suffices.
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• Receiver’s step (R1): P2 generates hash parameters and samples in-
stances.

1. P2 samples polys(k) instance vectors: K
def
= polys(k), for each i ∈

[K], Λi ← PG(1k), ~ai ← IS(1k,Λi). Without loss of generality,
we assume ~ai = ((ẋ1, ẇ1), . . . , (ẋh, ẇ1), (ẍh+1, ẅ1), . . . , (ẍn, ẇn))T .

2. P2 disorders each instance vector. For each i ∈ [K], P2 uniformly
chooses a permutation π1

i ∈R Π, then ~̃ai ← π1
i (~ai).

3. P2 sends the instances and the corresponding hash parameters, i.e.

((Λ1, ~̃x1), . . . , (Λn, ~̃xn)), to P1, where ~̃xi
def
= ~x~̃ai (correspondingly,

~̃wi
def
= ~w~̃ai).

• Receiver’s step (R2-R3)/Sender’s step (S1-S2): P1 and P2 cooperate to
toss coin to choose instance vectors to open.

1. P1: s ∈U {0, 1}K , sends PHC(s) to P2.

2. P2: s
′ ∈U {0, 1}K , sends PBC(s

′
) to P1.

3. P1 and P2 respectively sends each other the decommitments to
PHC(s) and PBC(s

′
), and respectively checks the received de-

commitments are valid. If check fails, P1 (P2 respectively) halts
and outputs abort2 (abort1 respectively). If no check fails, then
they continue.

4. P1 and P2 share a common randomness r = s⊕ s′ . The instance

vectors whose index fall into CS
def
= {i|r〈i〉 = 1, i ∈ [K]} (corre-

spondingly, CS
def
= [K]− CS) are chosen to be opened.

• Receiver’s step (R4): P2 opens the chosen instances to P1, encodes and
sends his private input to P1.

1. P2 opens the chosen instances to prove that the instances he
generates are legal. P2 sends ((i, j, ~̃wi〈j〉))i∈CS,j∈Ji to P1, where

Ji
def
= {j| ~̃wi〈j〉 ∈ LR̈Λi

, j ∈ [n]}.

2. P2 encodes his private input and sends the resulting code to P1.

Let Gi
def
= {j|~̃xi〈j〉 ∈ LṘΛ

, i ∈ CS}. For each i ∈ CS, P2 does
π2
i ← Γ(Gi, H), sends (π2

i )i∈CS to P2. That is, P2 encode his

private input into sequences such as π2
i (~̃xi) where i ∈ CS.

Note that P2 can send ((i, j, ~̃wi〈j〉))i∈CS,j∈Ji and (π2
i )i∈CS in one time.
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• Sender’s step (S3): P1 checks the chosen instances, encrypts and sends
his private input to P2.

1. P1 verifies that each chosen instance vectors is legal, i.e. the
number of the entries belonging to LṘΛi

is not more than h. P1

checks that, for each i ∈ CS, #Ji ≥ n − h, and for each j ∈ Ji,
V F (1k,Λi, ~̃xi〈j〉, ~̃wi〈j〉) is 1. If check fails, P1 halts and outputs
cheat2, otherwise P1 proceeds.

2. P1 reorders the entries of each unchosen instance vector in the way

told by P2. For each i ∈ CS, P1 does
˜̃
~xi ← π2

i (~̃xi).

3. P1 encrypts and sends his private input to P2 together with some
auxiliary messages. For each i ∈ CS, j ∈ [n], P1 does: (hkij, pkij)←
KG(1k,Λi,

˜̃
~xi〈j〉), βij ← Hash(1k,Λi, hkij,

˜̃
~xi〈j〉), ~βi

def
= (βi1, βi2, . . . , βin)T ,~c←

~m⊕(⊕i∈CS ~βi),
−→
pki

def
= (pki1, pki2, . . . , pkin)T , sends ~c and (

−→
pki)i∈CS

to P2.

• Receiver’s step (R5): P2 decrypts the ciphertext ~c and gains the mes-
sage he want.

For each i ∈ CS, j ∈ H, P2 operates: β
′
ij ← pHash(1k,Λi,

˜̃
~xi〈j〉, ˜̃

~wi〈j〉,
−→
pki〈j〉),

m
′
j ← ~c〈j〉 ⊕ (⊕i∈CSβ

′
ij). Finally, P2 gains the messages (m

′
j)j∈H .

The correctness of the protocol Now let us check the correctness of
the protocol, i.e. the protocol works in case P1 and P2 are honest. For each
i ∈ CS, j ∈ H, we know

~c〈j〉 = ~m〈j〉 ⊕ (⊕i∈CS ~βi〈j〉)
m
′

j = ~c〈j〉 ⊕ (⊕i∈CSβ
′

ij)

Because of the projection of H, we know

~βi〈j〉 = β
′

ij

So we have
~m〈j〉 = m

′

j

This means what P2 gets is ~m〈H〉 what P2 wants.

The security of the protocol With respect to the security of the proto-
col, we have the following theorem.

24



Theorem 7 (The protocol is secure against the malicious adversary). As-
sume that H is an h-smooth t-projective hash family with witnesses and hard
subset membership, PHC is a perfectly hiding commitment, PBC is a per-
fectly binding commitment. Then, the protocol securely computes the oblivi-
ous transfer functionality in the presence of the malicious adversary.

We defer the strick proof of Theorem 7 to section 5 and first give an
intuitive analysis here as a warm-up. For the security of P1, the protocol
should prevent P2 from gaining more than h messages. Using cut and choose
technique, P1 makes sure with some probability that each instance vector
contains no more than h projective instance. The following theorem guaran-
tees that this probability is overwhelming. In other words, the probability
P2 cheats to learn extra messages is negligible.

Theorem 8. In case P1 is honest and P2 is corrupted, the probability that
P2 cheats to obtain more than h messages is at most 1/2polys(k).

Proof. According to the protocol, there are two necessary conditions for P2’s
success in the cheating.

1. P2 has to generate at least one illegal ~xi which contains more than h
entries belonging to LṘΛi

. If not, P2 cannot correctly decrypt more

than h entries of ~c, because of the smoothness of H. Without loss of
generality, we assume the illegal instance vectors are ~xl1 , ~xl2 , . . . , ~xld .

2. The illegal instance vectors are lucky not to be chosen, i.e. CS =
{l1, l2, . . . , ld}. We prove this claim in two case.

(a) In case CS 6= {l1, l2, . . . , ld} and CS − {l1, l2, . . . , ld} = ∅, there
exists j(j ∈ [d] ∧ lj ∈ CS). so P1 can detect P2’s cheating and P2

will gain nothing.

(b) In case CS 6= {l1, l2, . . . , ld} and CS − {l1, l2, . . . , ld} 6= ∅, there
exists j(j ∈ [n]∧j ∈ CS∧~xj is illegal). Because of the smoothness
of H, P2 cannot correctly decrypt more than h entries of ~c.

Note that, PHC(s) is a perfectly hiding commitment and P2 is honest, so
the shared randomness is uniformly distributed. We have

Pr(CS = {l1, l2, . . . , ld}) = (1/2)d(1/2)polys(k)−d

= 1/2polys(k)

This means that the probability that P2 cheats to obtain more than h mes-
sages is at most 1/2polys(k).
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For the security of P2, the protocol first should prevent P1 from learn-
ing P2’s private input. There is potential risk Step R4 where P2 encodes
his private input. From Remark 6, we know that hard subset membership
guarantees that for any PPT malicious P1, without being given π1

i , the prob-
ability that P1 learns any new knowledge is negligible. Thus P2’s encod-
ing is safe. Besides cheating P2 of private input, it seems there is another
obvious attack that malicious P1 sends invalid messages, e.g. pkij which
(hkij, pkij) /∈ Range(KG(1k,Λi, xij)), to P2. This attack in fact doesn’t
matter. Its effect is equal to that of P1’s altering his real input, which is
allowed in the ideal world too.

The communication complexity of the protocol Step R1 and Step
R2 are taken in one round. Step R5 is taken without communication. Each
of other steps is taken in one round. The total number of the communication
rounds is six.

Compared with existing protocols for OT nh which are fully-simulatable
without restore to random oracle, our protocol is round-efficient. The round
number of [4]’s OT nh×1 is 4+4h. The round number of [18]’s OT nh is a+h ·b,
where a, b ≥ 2 respectively is the round number of two zero-knowledge proof
of knowledge protocol used in their protocol.

The computation overhead of the protocol We measure the computa-
tion overhead of the protocol in terms of the number of public key operations
(i.e. operations based on trapdoor functions, or similar operations) , because
the overhead of public key operations, which depends on the length of their
inputs, is greater than that of symmetric key operations (i.e. operations
based on one-way functions) by orders of magnitude. Please see [26] to know
which cryptographic operation is public key operation or private key opera-
tion. As to the protocol, the public key operations are Hash(.) and pHash(.),
and the symmetric key operations are PHC(.) and PBC(.). In Step S3, P1

takes n ·polys(k) Hash(.)s to encrypt his private input. In Step R5, P2 takes
h·polys(k) pHash(.)s to decrypt the messages he want. Thus, fixing the prob-
lem we tackle, the efficiency only depends on the value of polys(k). In Section
where we strictly prove the security of the protocol, we’ll see the probability
that the simulator fails is at most 1/2polys(k)−1 in case P2 is corrupted. Thus,
conditioning on the cryptographic primitives without being broken, the real
world and the ideal word can be distinguished at most 1/2polys(k)−2. Setting
polys(k) to be 40, we obtains such a probability 3.6× 10−12, which is secure
enough to be used in practice. By the way, our simulator also may fail (with
negligible probability), but the probability of this event arising depends on
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the computational hiding of PBC and on the computational binding of PHC
not polys(k). So we don’t need to take this case into consideration here.

Note that the operations, based on the non-standard assumptions and
used by [4], ie q-Power Decisional Diffie-Hellman and q-Strong Diffie-Hellman
assumptions, are very expensive. What is more, the operations, based on
decisional bilinear Diffie-Hellman and used by [18], is also more expensive
than that based on DDH. Thus DDH-based instantiation of our framework
is the most efficient protocol for OT nh .

We have to admit that, in the context of a trusted CRS is available
and only OT 2

1 is needed, [34]’s DDH-based instantiation, which is two-round
efficient and of 2 public key encryption operations and 1 public key decryption
operations, is most efficient not only in round number but also in computation
overhead.

5 A Security Proof Of The Framework

We prove theorem 7 in this section. For notational clarity, we denote the
entities, the parties and the adversary, in the real world by P1, P2, A, and
denote the corresponding entities in the ideal world by P

′
1, P

′
2, A

′
, TTP . In

the light of the parties being corrupted, there are four cases to be considered
and we prove theorem 7 holds in each case.

We don’t know how to construct a strictly polynomial-time simulator for
the adversary in the real world, in case only P1 or P2 is corrupted. However,
a expected polynomial-time simulator instead, which results in a failure of
standard black-box reduction technique. Fortunately, the problem and its
derived problems can be solved in the way of [16].

5.1 In Case P1 Is Corrupted

In case P1 is corrupted, A takes the full control of P1 in the real world.
Correspondingly, the simulator of A, A

′
, takes the full control of P

′
1 in the

ideal world, where A
′

is constructed as follow.

• Initial input: Without considering the randomness they holds, the ini-
tial input A

′
holds is the same as that A holds. That is, A

′
holds the

same k, I
def
= {1}, z = (zk)k∈N, as A, and holds a uniform distributed

randomness rA′ ∈ {0, 1}∗. What is more, the parties P
′
1 and P1, whom

A
′

and A respectively is to corrupt, hold the same ~m.

• A′ works as follows.
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– Step Sm1: A
′

corrupts P
′
1 and learns P

′
1’s private input ~m. Let Ā

be a copy of A, i.e. Ā = A. A
′

use Ā as a subroutine. A
′

fixes
the initial inputs of Ā to be identical to his except that fixes the
randomness of Ā to be a uniformly distributed value. A

′
activates

Ā, and supplies Ā with ~m before Ā engages in the protocol OT nh .

In the following steps, A
′

builds an environment for Ā which sim-
ulates the real world. That is, A

′
disguises himself as P1 and P2

at the same time to interact with Ā.

– Step Sm2: A
′
uniformly chooses a randomness r ∈U {0, 1}K (K

def
=

polys(k)) as the shared randomness, and defines the sets CS and
CS decided by r. For each i ∈ CS, A

′
honestly generates the

hash parameters and instance vectors. For each i ∈ CS, A
′

calls
Cheat(1k) which is defined in Definition 4 to generate these thing.
A
′

sends these hash parameters and instance vectors to Ā.

Remark 9. From the remark 6, we know that each entry of the
instance vector generated by Cheat(1k) is projective. If such in-
stance vectors are not chosen to be open, then the probability of Ā
detecting this fact is negligible, and A

′
can extract the real input

of Ā, which is we want.

– Step Sm3: A
′

plays the role of P2 and executes Step R2-R3 of
the protocol to cooperate with Ā to toss coin. When tossing coin
is completed successfully, A

′
learns and records the value s Ā

commits to.

Remark 10. The aim of doing this tossing coin is to know the
randomness s Ā choses. What A

′
will do next is to take PBC(r⊕

s) as his commitment to redo tossing coin.

– Step Sm4: A
′

repeats the following procedure, denoted Υ, until Ā
correctly reveals the recorded value s.

Υ: A
′
rewinds Ā to the end of Step S1 of the protocol. Then taking

PBCγ(r ⊕ s) as his commitment, where γ is a fresh randomness
uniformly chosen, A

′
executes Step R2 and R2 of the protocol.

– Step Sm5: Now A
′

and Ā shares the common randomness r. A
′

executes Step R4 of the protocol as the honest P2 do. On receiving

~c and (
−→
pki)i∈CS, A

′
correctly decrypts the all entries of ~c′ and gains

full Ā’s real private input ~m
′
. Then A

′
sends ~m

′
to the TTP .

– Step Sim6: When Ā halts, A
′

outputs what Ā outputs and halts.

Without considering Step Sim4, the running time of A
′

is polynomial-
time. However, taking Step Sim4 into consideration, this is not true any
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more. Let q(α), p(α) respectively denotes the probability that Ā correctly

reveals his commitment in Step Sim3 and in Procedure Υ, where α
def
=

(1k, zk, I, ~m, rA′ ). Then, the expected times of repeating Υ in Step Sim4
is q(α)/p(α). Since the view Ā holds before revealing his commitment in
Step Sim3 is different from that in procedure Υ, q(α), p(α) are distinct.
What the computational secrecy of PBC guarantees and only guarantees is
|q(α) − p(α)| = µ(.). However, there is a risk that q(α)/p(α) is not bound
by a polynomial. For example, q(α) = 1/2k, p(α) = 1/22k, which result in
q(α)/p(α) = 2k. This is a big problem and gives rise to many other difficulties
we will encounter later.

Fortunately, [16] encounters and solves the same problem and its derived
problem as ours. In a little more details, [16] presents a protocol, in which
P1, P2 respectively sends a perfectly hiding commitment, a perfectly binding
commitment, and the corresponding de-commitments to each other as the
situation of tossing coin of our protocol. To prove the security in case P1 is
corrupted, [16] constructs a simulator in the same way as ours and encounters
the same problem as ours.

Using the idea of [16], we can overcome such problem too. Specifically, a
expected polynomial-time simulator can be obtained by replacing Step Sim4
with Step Sim4.1, Sim4.2 given as follow.

• Step Sim4.1: A
′

estimates the value of q(α). A
′

repeats the following
procedure, denoted Φ, until the number of the time of Ā correctly
revealing his commitment is up to poly(k), where poly(.) is a big enough
polynomial.

Φ: A
′

rewinds Ā to the end of Step S1 of the protocol and A
′

honestly
executes Step R2 and R2 of the protocol to interact with it.

Denote the number of times that Φ is repeated by d, then q(α) is

estimated as q̃(α)
def
= poly(k)/d.

• Step Sim4.2: A
′

repeats the procedure Υ. In case Ā correctly reveals
the recorded value s, A

′
proceeds to the next step. In case Ā correctly

reveals a value which is different from s, A
′

outputs ambiguity1 and
halts. In case the number of the time of repeating Υ exceeds the value
of a big polynomial poly(.), A

′
outputs timeout and halts.

Proposition 11. The simulator A
′

is expected polynomial-time.

Proof. On condition that Step Sim4.1 is executed, the expected value of d
is poly(k)/q(α). Choosing a big enough poly(k), q̃(α) is within a constant
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factor of q(α) with probability 1− 2poly(k). Therefore, the expected running
time of A

′
,

ExpT imeA′ ≤ TimeSim1 + TimeSim2 + TimeSim3

+ q(α) · (poly(k)/q(α) · TimeΦ + poly(k)/q̃(α) · TimeΥ)

+ TimeSim5 + TimeSim6

, is bounded by a polynomial.

What is more, we have

1. The probability that A
′

outputs timeout is negligible.

2. The probability that A
′

outputs ambiguity1 is negligible.

3. The output of A
′

in the ideal world and the output of A in the real
world are computationally indistinguishable, ie

{Idealf,{1},A′ (zk)(1
k, ~m,H)〈1〉}k∈N, ~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Realπ,{1},A(zk)(1
k, ~m,H)〈1〉}k∈N, ~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

Since the propositions above can be proven in the same way as [16], we
don’t iterate such details here.

Proposition 12. In case P1 was corrupted, i.e. I = {1}, the equation (1)
holds.

Proof. First let us focus on the real world. A’s real input can be formulated as
γ ← A(1k, ~m, zk, rA, r1). Note that in this case, P2’s output is a determinate
function of A’s real input, where the function is

g(γ) =

{
abort1 if γ = abort1,

γ〈H〉 others.

Let h(x)
def
= (x, g(x)), then we have

Realπ,I,A(zk)(1
k, ~m,H) ≡ h(Realπ,I,A(zk)(1

k, ~m,H)〈1〉)

Similarly, in the ideal world, we have

Idealf,{1},A′ (zk)(1
k, ~m,H)

c
= h(Idealf,{1},A′ (zk)(1

k, ~m,H)〈1〉)
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We use
c
= not ≡ here because of considering the events of A

′
outputting

timeout and outputting ambiguity1.

LetX(1k, ~m,H, zk, {1})
def
= Realπ,{1},A(zk)(1

k, ~m,H)〈1〉, Y (1k, ~m,H, zk, {1})
def
=

Idealf,{1},A′ (zk)(1
k, ~m,H)〈1〉, F def

= (h)k∈N. What is more, assume that A
′

runs in a strict polynomial time. According to proposition 19 presented in
section 6, the proposition holds.

In fact, A
′

doesn’t runs in a strict polynomial time, which results in a
failure of the standard reduction above. Fortunately, this difficulty can be
overcame by truncating the rare executions of A

′
which are too long. Since

the details is the same as [16], we don’t give them here and please see [16]
for them.

5.2 In Case P2 Is Corrupted

In case P2 is corrupted, A takes the full control of P2 in the real world. Cor-
respondingly, A

′
takes the full control of P

′
2 in the ideal world. We construct

A as follows.

• Initial input: A
′

holds the same k, I
def
= {2}, z = (zk)k∈N as A, and

holds a uniform distributed randomness rA′ ∈ {0, 1}∗. The parties P
′
2

and P2 hold the same private input H.

• A′ works as follows.

– Step Sim1: A
′

corrupts P
′
2 and learns P

′
2’s private input H. A

′

takes A’s copy Ā as a subroutine, fixes Ā’s initial input, activates
Ā, supplies Ā with H, builds an environment for Ā in the same
way as A

′
does in case P1 is corrupted.

– Step Sim2: Playing the role of P1, A
′
honestly executes the sender’s

steps until reaches Step S3.3. If Step S3.3 is reached, A
′

records
the shared randomness r and the messages, denoted msg, he sends
to Ā. Then A

′
proceeds to the next. Otherwise, A

′
sends abort2

to TTP, outputs what Ā outputs and halts.

– Step Sim3: A
′

repeats the following procedure, denoted Ξ, until
the hash parameters and the instance vectors Ā sends in Step
R1 passes the check. A

′
records the shared randomness r̃, the

information Ā sends to open the chosen instance vectors.

Ξ: A
′
rewinds Ā to the beginning of Step R2, and honestly follows

sender’s steps until reaches Step S3.3 to interact with Ā. Note
that, the value A

′
commits to and the randomness used to generate

the commitment in Step S1 are fresh and uniformly chosen.
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– Step Sim4:

1. In case r = r̃, A
′

outputs failure and halts;

2. In case r 6= r̃ ∧ ∀i(r〈i〉 6= r̃〈i〉 → r〈i〉 = 1 ∧ r̃〈i〉 = 0), A
′

runs
from scratch;

3. Otherwise, i.e. in case r 6= r̃ ∧ ∃i(r〈i〉 = 0 ∧ r̃〈i〉 = 1), A
′

records the first one, denoted e, of these is and proceeds to
the following.

Remark 13. The aim of Step Sim3 and Sim4 is to prepare to
extract the real input of Ā. If the third case happens, then A

′

knows each entry of ~̃xe he sees in Step Sim2 belong to LṘΛe
or

LR̈Λe
. What is more, ~̃xe is indeed a legal instance vector. This is

because ~̃xe passes the check executed by A
′

in Step Sim3. Combing
π2
e received in Step Sim2, A

′
knows the real input of Ā.

Note that, Ā’s initial input is fixed by A
′

in Step Sim1. So receiv-
ing the same messages, Ā responds in the same way. Therefore,
rewinding Ā to the beginning of Step R2, sending the message sent
in Step Sim2, A

′
can reproduce the same scenario as he meets in

Step Sim2.

– Step Sim5: A
′
rewinds Ā to the beginning of Step R2 of the proto-

col, and sends msg previously recorded to Ā in order. According
to the analysis of remark 13, A

′
extracts Ā’s real input H

′
. A

′

sends H
′

to TTP and receives message ~m〈H ′〉.
– Step Sim6: A

′
constructs ~m

′
as follow. For each i ∈ H ′ , ~m′〈i〉 ←

~m〈i〉. For each i /∈ H ′ , ~m′ ∈U {0, 1}∗. Playing the role of P1 and
taking ~m

′
as his real input, A

′
follows Step S3.3 to complete the

interaction with Ā.

– Step Sim6: A
′

outputs what Ā outputs and halts.

Proposition 14. The simulator A
′

is expected polynomial-time.

Proof. First, let us focus on Step Sim3. In each repetition of Ξ, because of
the perfectly hiding of PHC(.), and the uniform distribution of the value A

′

commits to, the chosen instance vectors are uniformly distributed. This lead
to the probability that Ā passes the check in each repetition is the same.
Denote this probability by p. The expected time of Step Sim3 is

ExpT imeSim3 = (1/p) · TimeΞ
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Under the same analysis, the probability that Ā passes the check in Step
Sim2 is p too. Then, the expected time that A

′
from Step Sim1 to the

beginning of Step Sim4 once is

OncExpT imeSim1→Sim4 ≤ TimeSim1 + TimeSim2 + p · ExpT imeSim3

= TimeSim1 + TimeSim2 + TimeΞ

Second, let us focus on Step Sim4, especially the case that A
′

needs to
run from scratch. Note that the initial inputs A

′
holds is the same in each

such trial. Thus the probability that A
′

runs from scratch in each trial is the
same. We denote this probability by 1− q. Then the expected time that A

′

from Step Sim1 to the beginning of Step Sim5 is

ExpT imeSim1→Sim5 ≤ (1 + 1/q) · (OncExpT imeSim1→Sim4 + TimeSim4)

= (1 + 1/q) · (TimeSim1 + TimeSim2 + TimeΞ + TimeSim4)

The reason there is 1 here is that A
′

has to run from scratch at least one
time whatever happens.

The expected running time of A
′

in a whole execution is

ExpT imeA′ ≤ ExpT imeSim1→Sim5 + TimeSim5 + TimeSim6

= (1 + 1/q) · (TimeSim1 + TimeSim2 + TimeΞ + TimeSim4)

+ TimeSim5 + TimeSim6

(2)

Third, let us estimate the value of q, which is the probability that A
′
does

not run from scratch in a trial. We denote this event by C. It’s easy to see
that event C happens, if and only if one of the following events happens.

1. Event B happens, where B denotes the even that A
′
halts before reach-

ing Step Sim3.

2. Event B̄ happens and R = R̃, where R and R̃ respectively denotes the
random variable which is defined as the shared randomness A

′
gets in

Step Sim2 and Step Sim3.

3. Event B̄ happens and there exists i such that R〈i〉 = 0 ∧ R̃〈i〉 = 1 .

So

q = Pr(C)

= Pr(B) + Pr(B̄ ∩R = R̃) + Pr(B̄ ∩ ∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1))

= Pr(B) + Pr(B̄)(Pr(R = R̃|B̄) + Pr(∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1)|B̄))

(3)
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Let S1
def
= {(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r = r̃}, S2

def
= {(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r 6=

r̃, ∀i(r〈i〉 6= r̃〈i〉 → r〈i〉 = 1∧ r̃〈i〉 = 0)}, S3
def
= {(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r 6=

r̃, ∃i(i ∈ [K] ∧ r〈i〉 = 0 ∧ r̃〈i〉 = 1)}. It is easy to see that S1, S2, S3 con-
stitute a complete partition of ({0, 1}K)2 and #S1 = 2K , #S2 = #S3 =
(2K · 2K − 2K)/2.

Recalling that the values of R and R̃ are all uniformly distributed, we
have

Pr(R = R̃|B̄) = #S1/#({0, 1}K)2 = 1/2K (4)

and

Pr(∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1)|B̄) = #H3/#({0, 1}K)2 = 1/2− 1/2K+1 (5)

Combining equation (3), (4) and (5), we have

q = Pr(B) + Pr(B̄)(1/2 + 1/2K+1)

= 1/2 + 1/2K+1 + (1/2)Pr(B) + (1/2K+1)Pr(B̄)

> 1/2

(6)

Combining equation (2) and (6), we have

ExpT imeA′ < 3(TimeSim1 + TimeSim2 + TimeΞ + TimeSim4)

+ TimeSim5 + TimeSim6

which means the expected running time of A
′

is bound by a polynomial.

Proposition 15. The probability that A
′

outputs failure is less than 1/2K−1.

Proof. From the proof of proposition 14, we know two fact. First, Pr(X =
i) ≤ 1/2i−1, where X is a random variable defined as the number of the trials
in a whole execution. Second, in each trial the event A

′
outputs failure is

the combined event of B̄ and R = R̃, and this event happens with probability

Pr(B̄ ∩R = R̃) = Pr(B̄)Pr(R = R̃|B̄) ≤ Pr(R = R̃|B̄)

Combining equation (4), this probability is less than 1/2K . Therefore, the
probability that A

′
outputs failure in a whole execution is

∞∑
i=1

Pr(X = i)Pr(B̄ ∩R = R̃) < (1/2K) ·
∞∑
i=1

1/2i−1 = 1/2K−1
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Proposition 16. The output of the adversary A in the real world and that
of the simulator A

′
in the ideal world are computationally indistinguishable,

ie

{Realπ,{2},A(zk)(1
k, ~m,H)〈2〉}k∈N, ~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealf,{2},A′ (zk)(1
k, ~m,H)〈2〉}k∈N, ~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

Proof. First, we claim that the outputs of A
′

and Ā are computationally
indistinguishable. The only point that the output of A

′
is different from that

of Ā is A
′

may outputs failure. Since the probability that this point arises
is negligible, our claim holds.

Second, we claim that the outputs of A and Ā are computationally in-
distinguishable. The only point that the view of Ā is different from that
of A is that the ciphertext Ā receives is generated by encrypting ~m

′
not ~m.

Fortunately, SPWHh,t’s property smoothness guarantees that the ciphertext
generated in the two way are computational indistinguishable. Therefore, our
claim holds.

Combining the two claims, the proposition holds.

Proposition 17. In case P2 was corrupted, i.e. I = {2}, the equation (1)
holds.

Proof. Note that the honest parties P1 and P
′
1 end up with nothing. Thus,

the fact that the outputs of A
′

and A are computational indistinguishable,
which is supported by Proposition 16, suffices to prove this proposition.

5.3 Other Cases

In case both P1 and P2 are corrupted, A takes the full control over the two
corrupted parties. In the ideal world, a similar situation also holds with
respect to A′, P ′1 and P ′2. Liking in the previous cases, A′ uses A’s copy, Ā,
as a subroutine and builds a simulated environment for Ā. In the end, A′

outputs what Ā output. Since there is no need for A′ to extract the real
input of Ā, the detailed construction of the simulator and the proof of the
equation (1) holding in this case are very trivial. So we omit them here.

In case none of P1 and P2 is corrupted, we can construct the simulator of
A in similar way. We omit the detailed construction and the proof for similar
reason.
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6 Constructing SPWHh,t

6.1 How To Make Constructing SPWHh,t Easier

It is not always easy to construct SPWHh,t from scratch. In this section, we
reduce the task of constructing SPWHh,t to that of constructing a hashing
which seems easier.

6.1.1 Smoothness

In this section, we deal with how to obtain smoothness for a hash family.
First, we introduce a lemma from [15].

Lemma 18 ( [15]). Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
= {Y (1k, a)}k∈N,a∈{0,1}∗

be two polynomial time constructible probability ensembles, and X
c
= Y , then

~X
c
= ~Y

where

~X
def
= { ~X(1k, a)} k∈N

a∈{0,1}∗
def
= {(X1(1k, a), X2(1k, a), . . . , Xpoly(k)(1

k, a))} k∈N
a∈{0,1}∗

X1(1k, a) = . . . = Xpoly(k)(1
k, a) = X(1k, a)

~Y
def
= {~Y (1k, a)} k∈N

a∈{0,1}∗
def
= {(Y1(1k, a), Y2(1k, a), . . . , Ypoly(k)(1

k, a))} k∈N
a∈{0,1}∗

Y1(1k, a) = ldots = Ypoly(k)(1
k, a) = Y (1k, a)

and X1(1k, a), . . . , Xpoly(k)(1
k, a), Y1(1k, a), . . . , Ypoly(k)(1

k, a) are independent
random variables.

Proposition 19. Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
= {Y (1k, a)}k∈N,a∈{0,1}∗

be two polynomial time constructible probability ensembles, X
c
= Y , F

def
=

(fk)k∈N, fk : {0, 1}∗ → {0, 1}∗ is polynomial time computable, then

F (X)
c
= F (Y )

where F (X)
def
= {fk(X(1k, a))}k∈N,a∈{0,1}∗,F (Y )

def
= {fk(Y (1k, a))}k∈N,a∈{0,1}∗.

Proof. Assume the proposition is false, then there exists a non-uniform prob-
abilistic polynomial-time distinguisherD with an infinite sequence z = (zk)k∈N,
a polynomial poly(.), an infinite positive integer set G ⊆ N such that, for
each k ∈ G, it holds that

|Pr(D(1k, zk, a, fk(X(1k, a))) = 1)−Pr(D(1k, zk, a, fk(X(1k, a))) = 1)| ≥ 1/poly(k)
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We constructs a distinguisher D
′

with an infinite sequence z
′

= (z
′

k)k∈N for
the ensembles X and Y as follows.

D
′
(1k, z

′

k, a, γ): δ ← fk(γ), finally outputs D(1k, zk, a, δ).
Obviously, D

′
(1k, zk, a,X(1k, a)) = D(1k, zk, a, fk(X(1k, a)), D

′
(1k, zk, a, Y (1k, a)) =

D(1k, zk, a, fk(Y (1k, a)). So we have

|Pr(D′(1k, zk, a, (X(1k, a))) = 1)−Pr(D′(1k, zk, a, Y (1k, a)) = 1)| ≥ 1/poly(k)

This contradicts the fact X
c
= Y .

Theorem 20. Let H = (PG, IS, V F,HG,Hash, pHash) be a Hash Fam-

ily. n
def
= h + t. For each i ∈ [2] and j ∈ [n], Smj

i

def
= {Smj

i (1
k)}k∈N

def
=

{(SmGeni(1k)〈1〉, SmGeni(1k)〈2〉〈j〉)}k∈N, where SmGeni(1
k) is defined in

Definition 4. If H meets the following three conditions

1. All random variables SmGeni(1
k)〈2〉〈j〉 are independent, where i ∈

[2],j ∈ [n]− [h].

2. Smh+1
1 = . . . = Smn

1 , and Smh+1
2 = . . . = Smn

2 .

3. Smh+1
1

c
= Smh+1

2 .

then H has property smoothness.

Proof. Following Lemma 18, {(Smh+1
1 (1k), . . . , Smn

1 (1k))}k∈N
c
= {(Smh+1

2 (1k), . . . , Smn
2 (1k))}k∈N

holds. Let ~X
def
= {(Sm1

1(1k), . . . , Smn
1 (1k))}k∈N, and ~Y

def
= {(Sm1

2(1k), . . . , Smn
2 (1k))}k∈N.

Notice that for each j ∈ [h] Smj
1(1k) = Smj

2(1k), so it holds that

~X
c
= ~Y

Since each Smj
i (1

k) is polynomial-time constructible, thus both ~X and ~Y are

polynomial-time constructible. Let F
def
= (π)k∈N, where π ∈ Π. Following

Proposition 19, we have F ( ~X)
c
= F (~Y ), i.e.

{π(Sm1
1(1k), . . . , Smn

1 (1k))}k∈N
c
= {π(Sm1

2(1k), . . . , Smn
2 (1k))}k∈N

Notice that SmGen1(1k)〈1〉 = SmGen2(1k)〈1〉, we have

{(SmGen1(1k)〈1〉, π(SmGen1(1k)〈2〉))}k∈N
c
= {(SmGen2(1k)〈1〉, π(SmGen2(1k)〈2〉))}k∈N

That is
Sm1

c
= Sm2
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Loosely speaking, following Theorem 20, given a hash family H, if each
ẍ was sampled in an independent way and the value of hash(1k,Λ, ẍ, pk) is
(or nearly) random, then H is smooth.

Sometimes it is not easy that constructing the hash family H in such a
way to gain smoothness. In this case we have to begin with constructing the
hash family defined as follows, which seems easier to be implemented.

Definition 21 (ε-h-Universal t-Projective Hash Family With Witnesses And
Hard Subset Membership, ε-UPWHh,t). The definition of ε-UPWHh,t is ob-
tained by relaxing the definition of SPWHh,t (i.e. Definition 4) in the way
that replacing the smoothness with a new property, called ε-universality. A
hash family is ε-universal, if for any sufficiently large k, any Λ ∈ Range(PG(1k)),
any ẍ ∈ LR̈Λ

, any pk ∈ Range(KG(1k,Λ, ẍ)〈2〉), any y ∈ {0, 1}∗, it holds
that

Pr(Hash(1k,Λ, ẍ, HK) = y|PK = pk) ≤ ε

where (HK,PK) is uniformly chosen from Range(KG(1k,Λ, ẍ)), i.e. (HK,PK)←
KGR(1k,Λ, ẍ), where R is random variable defined over {0, 1}∗ with a uni-
form distribution.

Definition 21 relaxes the requirement of the randomness of the hash value
of ẍ. Instead, ε-UPHh,t requires that, given ẍ, pk, the probability of guessing
the value of Hash(1k, ẍ, hk) is at most ε. Assume ε < 1, as [8, 21], we can
efficiently gain a SPWHh,t from a ε-UPWHh,t.

Theorem 22. There exists an efficient algorithm that receiving a ε-UPWHh,t

H, where ε < 1, it output a SPWHh,t H
′
.

The way to prove this theorem is to construct such an algorithm, which
can be done by a simply application of the Leftover Hash Lemma (please
see [27] for this lemma). The detailed construction is the same as [8] except
some straightforward modification. Considering the space, we don’t iterate
it here.

Theorem 22 implies that to construct a SPWHh,t, what we need to do is
only to construct a ε-UPWHh,t, where ε < 1.

6.1.2 Hard Subset Membership

In this section, we deal with how to obtain hard subset membership for a
hash family.

Proposition 23. Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
= {Y (1k, a)}k∈N,a∈{0,1}∗

be two polynomial time constructible probability ensembles, and X
c
= Y . Then

−−→
XY

c
= Φ(

−−→
X̃Y )
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where
−−→
XY and Φ(

−−→
X̃Y ) are two probability ensembles defined as follows.

•
−−→
XY

def
= {
−−→
XY (1k, a)}k∈N,a∈{0,1}∗,

−−→
XY (1k, a)

def
= (X1(1k, a), . . . , Xpoly1(k)(1

k, a),
Ypoly1(k)+1(1k, a), . . . , Ypoly(k)(1

k, a)), each Xi(1
k, a) = X(1k, a), each Yi(1

k, a) =
Y (1k, a), poly1(.) ≤ poly(.), all Xi(1

k, a) and Yi(1
k, a) are independent;

• Φ(
−−→
X̃Y )

def
= {Φk(

−−→
X̃Y (1k, a))}k∈N,a∈{0,1}∗,

−−→
X̃Y =

−−→
XY , Φ

def
= (Φk)k∈N,

each Φk : [poly(k)]→ [poly(k)] is a permutation.

Proof. In case Φk([poly1(k)]) ⊆ [poly1(k)], it obviously holds. We proceed to
prove it also holds in case Φk([poly1(k)]) * [poly1(k)]. Assume it does not
hold, then there exists a non-uniform probabilistic polynomial-time distin-
guisher D with an infinite sequence z = (zk)k∈N, a polynomial poly2(.), a
infinite positive integer set G ⊆ N such that, for each k ∈ G,

|Pr(D(1k, zk, a,
−−→
XY (1k, a)) = 1)− Pr(D(1k, zk, a,Φk(

−−→
X̃Y (1k, a)) = 1)|
≥ 1/poly2(k) (7)

F
def
= {i|i ∈ [poly1(k)],Φk(i) ∈ [poly(k)]− [poly1(k)]}. We order the elements

of F as i1 < ... < ij... < i#F . Let Fj
def
= {i1, . . . , ij}. We define the following

permutations over [poly(k)].

Φ0
′

k (i) = i i ∈ [poly(k)]

Φ0
k(i) =

{
i i ∈ F ∪ Φk(F )

Φk(i) i ∈ [poly(k)]− F − Φk(F )

Φj
k(i) =

{
i i ∈ (F − Fj) ∪ Φk(F − Fj)
Φk(i) i ∈ [poly(k)]− (F − Fj)− Φk(F − Fj)

j ∈ [#F ]

It is easy to see that
−−→
X̃Y (1k, a) = Φ0

′

k (
−−→
X̃Y (1k, a)) ≡ Φ0

k(
−−→
X̃Y (1k, a)), and

Φk = Φ#F
k . Since

−−→
XY (1k, a) =

−−→
X̃Y (1k, a), so we have

|Pr(D(1k, zk, a,
−−→
XY (1k, a)) = 1)− Pr(D(1k, zk, a,Φk(

−−→
X̃Y (1k, a))) = 1)|

= |Pr(D(1k, zk, a,Φ
0
k(
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,Φ

#F
k (
−−→
X̃Y (1k, a))) = 1)|

(8)
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Following triangle inequality, we have

|Pr(D(1k, zk, a,Φ
0
k(
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,Φ

#F
k (
−−→
X̃Y (1k, a))) = 1)| ≤

#F∑
j=1

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,Φ

j
k(
−−→
X̃Y (1k, a))) = 1)|

(9)

Combining equation (7) (8) (9), we have

#F∑
j=1

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,Φ

j
k(
−−→
X̃Y (1k, a))) = 1)|

≥ 1/poly2(k)

So there exists j ∈ [#F ] such that

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,Φ

j
k(
−−→
X̃Y (1k, a))) = 1)|

≥ 1/(#F · poly2(k)) (10)

According to the definition of Φj−1
k ,Φj

k, the differences between them are the

values of points ij,Φk(ij). Similarly, the only differences between Φj−1
k (
−−→
X̃Y (1k, a))

and Φj
k(
−−→
X̃Y (1k, a)) are the ij-th and Φk(ij)-th entries, i.e. Φj−1

k (
−−→
X̃Y (1k, a))〈ij〉 =

X(1k, a), Φj−1
k (
−−→
X̃Y (1k, a))〈Φk(ij)〉 = Y (1k, a), Φj

k(
−−→
X̃Y (1k, a))〈ij〉 = Y (1k, a),

Φj
k(
−−→
X̃Y (1k, a))〈Φk(ij)〉 = X(1k, a).

Let
−−−−→
MXY

def
= {
−−−−→
MXY (1k, a)}k∈N,a∈{0,1}∗ , where

−−−−→
MXY (1k, a) is defined as

follows. For each d ∈ [poly(k)],

−−−−→
MXY (1k, a)〈d〉 =

{
Φj−1
k (
−−→
X̃Y (1k, a))〈d〉 ∀d(d 6= Φk(ij))

X(1k, a) d = Φk(ij)

The difference between
−−−−→
MXY (1k, a) and Φj−1

k (
−−→
X̃Y (1k, a)) is that

−−−−→
MXY (1k, a)〈Φk(ij)〉 =

X(1k, a), Φj−1
k (
−−→
X̃Y (1k, a))〈Φk(ij)〉 = Y (1k, a). The difference between

−−−−→
MXY (1k, a)

and Φj
k(
−−→
X̃Y (1k, a)) is that

−−−−→
MXY (1k, a)〈ij〉 = X(1k, a), Φj

k(
−−→
X̃Y (1k, a))〈ij〉 =
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Y (1k, a). Following triangle inequality, we have

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,

−−−−→
MXY (1k, a)) = 1)|+

|Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)− Pr(D(1k, zk, a,Φ

j
k(
−−→
X̃Y (1k, a))) = 1)|

≥ |Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,Φ

j
k(
−−→
X̃Y (1k, a))) = 1)|

(11)

Combining (10) (11), we know that

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−Pr(D(1k, zk, a,

−−−−→
MXY (1k, a)) = 1)|

≥ 1/(2#F · poly2(k)) (12)

or

|Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)− Pr(D(1k, zk, a,Φ

j
k(
−−→
X̃Y (1k, a))) = 1)|

≥ 1/(2#F · poly2(k)) (13)

holds. Without loss of generality, we assume equation (12) holds (in case
equation (13), the proof can be done in the similar way). We can construct
a distinguisher D

′
with an infinite sequence z

′
= (z

′

k)k∈N for the probability
ensembles X and Y as follows.

D
′
(1k, z

′

k, a, γ): −→xy〈Φc−1
k (i)〉 ← SX(1k, a) ∀i ∈ [poly1(k)], −→xy〈Φc−1

k (i)〉 ←
SY (1k, a) ∀i ∈ [poly(k)] − [poly1(k)] − {Φk(ic)}, −→xy〈Φk(ic)〉 ← γ, finally
outputs D(1k, z

′

k, a,
−→xy).

Obviously, if γ is sampled from Y (1k, a), then−→xy is sampled from Φc−1
k (
−−→
X̃Y (1k, a));

if γ is sampled from X(1k, a), then −→xy is sampled from
−−−−→
MXY (1k, a). So we

have

|Pr(D′(1k, zk, a,X(1k, a)) = 1)− Pr(D′(1k, zk, a, Y (1k, a)) = 1)| =

|Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)−Pr(D(1k, zk, a,Φ

c−1
k (
−−→
X̃Y (1k, a))) = 1)|

(14)

Combining (12) (14), we have

|Pr(D′(1k, zk, a,X(1k, a)) = 1)− Pr(D′(1k, zk, a, Y (1k, a)) = 1)|
≥ 1/(2#F · poly2(k))

This contradicts the fact X
c
= Y .
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Proposition 24. Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
= {Y (1k, a)}k∈N,a∈{0,1}∗

be two polynomial time constructible probability ensembles, and X
c
= Y . Then

−→
X

c
=
−−→
XY

where
−→
Y is defined in lemma 18 and

−−→
XY is defined in proposition 23. All

random variables
−→
X (1k, a)〈i〉 and

−−→
XY (1k, a)〈i〉 are independent.

Proof. Assume the proposition is false, then there exists a non-uniform prob-
abilistic polynomial-time distinguisherD with an infinite sequence z = (zk)k∈N,
a polynomial poly2(.), an infinite positive integer set G ⊆ N such that, for
each k ∈ G,

|Pr(D(1k, zk, a,
−→
Y (1k, a)) = 1)− Pr(D(1k, zk, a,

−−→
XY (1k, a)) = 1)|

≥ 1/poly2(k) (15)

LetHybirdj
def
= {Hybirdj(1k, a)}k∈N,a∈{0,1}∗ , Hybirdj(1k, a)

def
= (X1(1k, a), . . . ,

Xpoly1(k)+j(1
k, a), Ypoly1(k)+j+1(1k, a), . . . , Ypoly(k)(1

k, a)). Let d
def
= poly(k) −

poly1(k). Obviously, Hybird0(1k, a) =
−−→
XY (1k, a), Hybirdd(1

k, a) =
−→
X (1k, a),

so we have

|Pr(D(1k, zk, a,
−→
Y (1k, a)) = 1)− Pr(D(1k, zk, a,

−−→
XY (1k, a)) = 1)| =

|Pr(D(1k, zk, a,Hybird0(1k, a)) = 1)−Pr(D(1k, zk, a,Hybirdd(1
k, a)) = 1)|

(16)

Following triangle inequality, we have

d∑
j=1

|Pr(D(1k, zk, a,Hybirdj−1(1k, a)) = 1)−Pr(D(1k, zk, a,Hybirdj(1
k, a)) = 1)| ≥

|Pr(D(1k, zk, a,Hybird0(1k, a)) = 1)−Pr(D(1k, zk, a,Hybirdd(1
k, a)) = 1)|

(17)

Combining (15) (16) (17), we know that there exists a constant j ∈ [d] such
that

|Pr(D(1k, zk, a,Hybirdj−1(1k, a)) = 1)−Pr(D(1k, zk, a,Hybirdj(1
k, a)) = 1)|

≥ 1/(d · poly2(k)) (18)

The difference betweenHybirdj−1(1k, a) andHybirdj−1(1k, a) is the poly1(k)+
j-th entry, i.e. Hybirdj−1(1k, a)〈poly1(k)+j〉 = Y (1k, a), Hybirdj(1

k, a)〈poly1(k)+

42



j〉 = X(1k, a). We can construct a distinguisher D
′

with an infinite sequence
z
′
= (z

′

k)k∈N for the probability ensembles X and Y as follows.
D
′
(1k, z

′

k, a, γ): −→xy〈i〉 ← SX(1k, a) ∀i ∈ [poly1(k) + j − 1], −→xy〈i〉 ←
SX(1k, a) i = poly1(k) + j, −→xy〈i〉 ← SY (1k, a) ∀i ∈ [poly(k)]− [poly1(k) + j].

Obviously,

|Pr(D′(1k, zk, a, Y (1k, a)) = 1)− Pr(D′(1k, zk, a,X(1k, a))| =
|Pr(D(1k, zk, a,Hybirdj−1(1k, a)) = 1)−Pr(D(1k, zk, a,Hybirdj(1

k, a)) = 1)|
(19)

Combining (18) (19), we have

|Pr(D′(1k, zk, a, Y (1k, a)) = 1)− Pr(D′(1k, zk, a,X(1k, a))| ≥ 1/(d · poly2(k)

This contradicts the fact X
c
= Y .

Proposition 25. Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
= {Y (1k, a)}k∈N,a∈{0,1}∗

be two polynomial time constructible probability ensembles, X
c
= Y , F =

(fk)k∈N, fk : {0, 1}∗ → {0, 1}∗ is a polynomial time computable function,
then

F ( ~X)
c
= F (~Y )

where F ( ~X)
def
= {fk( ~X(1k, a))}k∈N,a∈{0,1}∗,F (~Y )

def
= {fk(~Y (1k, a))}k∈N,a∈{0,1}∗,

~X(1k, a) and ~Y (1k, a) are defined as lemma 18.

Proof. Following lemma 18, ~X
c
= ~Y holds. Since the probability ensemble X

is polynomial time constructible, so we can gain a PPT sampling algorithm
for the probability ensemble ~X by invocating SX(.) poly(k) times, thus ~X

also is polynomial time constructible. We can prove ~Y is polynomial time
constructible in the same way. Following proportion 19, we have F ( ~X)

c
=

F (~Y ).

Proposition 26. Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
= {Y (1k, a)}k∈N,a∈{0,1}∗

be two polynomial time constructible probability ensembles, X
c
= Y , F =

(fk)k∈N, fk : {0, 1}∗ → {0, 1}∗ is a polynomial time computable function,
then

F ( ~X)
c
= F (

−−→
XY )

where the probability ensemble F ( ~X) and F (
−−→
XY ) are defined as proposition

25. All variables F ( ~X(1k, a))〈i〉 and F (
−−→
XY (1k, a))〈i〉 are independent.

Proof. Following proposition 24, we know ~X
c
=
−−→
XY . As in the proof of propo-

sition 25, we can prove that ~X and
−−→
XY are polynomial time constructible.

Following proposition 25, we have F ( ~X)
c
= F (

−−→
XY ).
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Theorem 27. Let H = (PG, IS, V F,HG,Hash, pHash) be a hash family.

Let n
def
= h+ t. For each i ∈ [n], HSM i def= {HSM i(1k)}k∈N, HSM i(1k)

def
=

(HSM1(1k)〈1〉, HSM1(1k)〈i+ 1〉), where HSM1(1k) is defined in Definition
4. If H meets the following three conditions,

1. All variables HSM1(1k)〈i+ 1〉 are independent, where i ∈ [n].

2. HSM1 = . . . = HSMh, HSMh+1 = . . . = HSMn.

3. HSM1 c
= HSMh+1.

then H has property hard subset membership.

Proof. First, we prove H has property hard subset membership 3a.

Let π ∈ Π, X
def
= HSM1, Y

def
= HSMh+1, Φ = (π)k∈N, poly1(.)

def
= h,

poly(.)
def
= n. Following proposition 23, we know

−−→
XY

c
= Φ(

−−→
X̃Y )

That is

((HSM1(1k)〈1〉, HSM1(1k)〈2〉), . . . (HSM1(1k)〈1〉, HSM1(1k)〈n+ 1〉)) c
=

(HSM2(1k)〈1〉, HSM2(1k)〈2〉), . . . (HSM2(1k)〈1〉, HSM2(1k)〈n+ 1〉))

whereHSM1(1k), HSM2(1k) are taken from Definition 4. Note thatHSM1(1k)〈1〉 =
HSM2(1k)〈1〉, so

(HSM1(1k)〈1〉, HSM1(1k)〈2〉, . . . , HSM1(1k)〈n+ 1〉) c
=

(HSM2(1k)〈1〉, HSM2(1k)〈2〉, . . . , HSM2(1k)〈n+ 1〉)

i.e.
HSM1

c
= HSM2

Second, we proveH has property hard subset membership 3b. Let π
′ ∈ Π,

F = (π
′
)k∈N. Following proposition 26, we have

F ( ~X)
c
= F (

−−→
XY )

That is

((HSM3(1k)〈1〉, HSM3(1k)〈2〉), . . . (HSM3(1k)〈1〉, HSM3(1k)〈n+ 1〉)) c
=

π
′
((HSM1(1k)〈1〉, HSM1(1k)〈2〉), . . . (HSM1(1k)〈1〉, HSM1(1k)〈n+ 1〉))
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Since HSM3(1k)〈1〉 = HSM1(1k)〈1〉, so

(HSM3(1k)〈1〉, HSM3(1k)〈2〉, . . . , HSM3(1k)〈n+ 1〉) c
=

(HSM1(1k)〈1〉, π′(HSM1(1k)〈2〉, . . . , HSM1(1k)〈n+ 1〉))

We further have

(HSM3(1k)〈1〉, π′−1
(HSM3(1k)〈2〉, . . . , HSM3(1k)〈n+ 1〉)) c

=

(HSM1(1k)〈1〉, HSM1(1k)〈2〉, . . . , HSM1(1k)〈n+ 1〉) (20)

Because HSM3(1k)〈2〉 = . . . = HSM3(1k)〈1 + n〉, we have

(HSM3(1k)〈1〉, π′−1
(HSM3(1k)〈2〉, . . . , HSM3(1k)〈n+ 1〉)) ≡

(HSM3(1k)〈1〉, HSM3(1k)〈2〉, . . . , HSM3(1k)〈n+ 1〉) (21)

Combining equation (20) (21) and recalling the definitions of HSM1 and
HSM2, we have

HSM1
c
= HSM3

Remember that we have proven HSM1
c
= HSM2, so we have

HSM2
c
= HSM3

Loosely speaking, Theorem 27 shows that, given a hash family H, if ran-
dom variables IS(1k,Λ)〈1〉, . . . , IS(1k,Λ)〈n〉 are independent, IS(1k,Λ)〈1〉, . . . ,
IS(1k,Λ)〈h〉 sample ẋ from LṘΛ

in the same way , IS(1k,Λ)〈h+1〉, . . . , IS(1k,Λ)〈n〉
sample ẍ from LR̈Λ

in the same way, LṘΛ
and LR̈Λ

are computationally in-
distinguishable, then H has hard subset membership.

6.2 A Construction Under Lattice

6.2.1 Background

Learning with errors (LWE) is an average-case problem. [36] shows that its
hardness is implied by the worst-case hardness of standard lattice problem
for quantum algorithms.

In lattice, the modulo operation is defined as x mod y
def
= x − xx/yyy.

Then we know x mod 1
def
= x−xxy. Let β be an arbitrary positive real num-

ber. Let Ψβ be a density function whose probability distribution is over [0, 1)
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and obtained by sampling from a normal variable with mean 0 and standard
deviation β/

√
2π and reducing the result modulo 1, more specifically

Ψβ : [0, 1)→ R+

Ψβ(r)
def
=

∞∑
k=−∞

1

β
exp(−π(

r − k
β

)2)

Given an arbitrary integer q ≥ 2, an arbitrary probability destiny function
φ : [0, 1)→ R+, the discretization of φ over Zq is defined as

φ̄ : Zq → R+

φ̄(i)
def
=

∫ (i+1/2)/q

(i−1/2)/q

φ(x)dx

Let x ∈χ Y denotes sampling an instance x from domain Y according
to the distribution law (or probability density function ) χ. Specifically, let
x ∈U Y denotes uniformly sampling an instance x from domain Y . LWE
can be formulated as follows.

Definition 28 (Learning With Errors). Learning with errors problem (LWEq,χ)
is how to construct an efficient algorithm that receiving q, g,m, χ, (~ai, bi)i∈[m],
outputs ~s with nonnegligible probability. The input and the output is specified
in the following way.

q ← q(1k), g ← g(1k), m ← poly(1k), χ ← χ(1k), ~s ∈U (Zq)
k, for each

i ∈ [m], ~ai ∈U (Zq)
k, ei ∈χ Zq, bi ← ~sT · ~ai + ei mod q.

where q, g are positive integers, χ : Zq → R+ is a probability density
function.

With respect to the hardness of LWE, [36] proves that setting appropriate
parameters, we can reduce two worst-case standard lattice problems to LWE,
which means LWE is a very hard problem.

Lemma 29 ( [36]). Setting security parameter k to be a value such that q is
a prime, α← α(1k), and α · q > 2

√
k. Then the lattice problems SIV P and

GapSV P can be reduced to LWEq,Ψ̄α. More specifically, if there exists an
efficient (possibly quantum) algorithm that solves LWEq,Ψ̄α, then there exists
an efficient quantum algorithm for solving the following worst-case lattice
problems in the l2 norm.

• SIVP: In any lattice Λ of dimension k, and a set of k linearly indepen-
dent lattice vectors of length within at most Õ(k/α) of optimal.
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• GapSVP: In any lattice Λ of dimension m, approximate the length of
a shortest nonzero lattice vector to within a Õ(k/α) factor.

We emphasize the fact that the reduction of Lemma 29 is quantum, which
implies that any algorithm breaking any cryptographic schemes which only
based on LWE is an algorithm solving at least one of the problems SIVP
and GapSVP.

How to precisely set the parameters as values to gain a concrete LWE,
which is as hard as required in Lemma 29 is beyond the scope of this paper.
To see more details and examples, we recommend [36] and [34].

To construct a SPWHh,n, we need to use a public key cryptosystem
based on LWE. [36] and [34] respectively presents such an cryptosystem.
Considering the cost, we choose the one presented by the latter and slightly
tailor it to our need. The LWE-based cryptosystem with message space Zp
is defined as follow, where p ≥ 2 is polynomial in k.

• Setup(1k, p): Generates the public parameters as follows. q ∈U {q|
q ∈ , q is polynomial in k, q > p}, m← poly(1k), χ← χ(1k) and χ is a
density function over Zq, para← (q, p,m, χ), finally outputs para.

• KeyGen(1k, para): A ∈U (Zq)
m×k, ~s ∈U (Zq)

k, ~e ∈χ (Zq)
m, ~p← A~s+~e

mod q, pubk ← (A, ~p), sk ← ~s, finally outputs a public-secret key pair
(pubk, sk).

• Enc(.), Dec(.): Since Enc(.), Dec(.) are immaterial to understand this
paper, we omit their detailed procedure here.

6.2.2 Detailed Construction

We now present our construction of a SPWHh,t based on LWE.

• PG(1k): para ← Setup(1k, p), (q, p,m, χ) ← para, A ∈U (Zq)
m×k,

Λ← (p, q,m, k, A, χ), finally outputs Λ.

• IS(1k,Λ): ((p, q,m, k, A, χ) ← Λ, ∀i ∈ [n] ~si ∈U (Zq)
k, ∀i ∈ [n] ~ei ∈χ

(Zq)
m, ∀i ∈ [h] ẋi ← A~si + ~ei mod q, ∀i ∈ [h] ẇi ← ~si, ∀i ∈ [n] − [h]

ẍi ← A~si+~ei+(1, 1, . . . , 1)T mod q, ∀i ∈ [n]− [h] ẅi ← (~si, ~ei), finally
outputs ((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . , (ẍn, ẅn)).

• V F (1k,Λ, x, w): (p, q,m, k, A, χ) ← Λ, (~si, ~ei) ← w, if x = A~si + ~ei +
(1, 1, . . . , 1)T mod q holds, then outputs 1; otherwise outputs 0.

• KG(1k,Λ, x): (p, q,m, k, A, χ)← Λ, a ∈U Zp, ~s ∈U (Zq)
k, ~p← A~s + x

mod q, α← EncA,~p(a), hk ← a, pk ← (~s, α), finally outputs (hk, pk).
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• Hash(1k,Λ, x, hk): (p, q,m, k, A, χ)← Λ, a← hk, finally outputs a.

• pHash(1k,Λ, x, pk, w): (k,m, p, q, χ, A) ← Λ, (~s, α) ← pk, ~u ← ~s + w,
a← Dec~u,A(α), finally outputs a.

We remark that the choice of (1, 1, . . . , 1)T is arbitrary. It is used to
separate Ṙ from R̈. From the proof of the following proposition, we can see
that any constant vector ~c ∈ (Zp)

m − {(0, 0, . . . , 0)} is good too.

Proposition 30. Assume LWE is a hard problem, then V F computes the
function ζ defined in Definition 4.

Proof. It is easy to see that in case (x,w) ∈ R̈Λ V F correctly computes ζ. It
remains to prove that in case (x,w) ∈ ṘΛ V F correctly computes ζ. Assume
that V F outputs 1 in the latter case. Then there exists an efficient adversary
such that on receiving (1k, (k,m, p, q, χ, A), A~si+~ei, ~s) outputs (~s

′
i, ~e
′
i), where

A~si + ~ei mod q = A~s
′
i + ~e

′
i + (1, 1, . . . , 1)T mod q. That is,

A~si + ~ei − (1, 1, . . . , 1)T mod q = A~s
′

i + ~e
′

i mod q

which implies that the adversary is an efficient algorithm breaking LWE.

Proposition 31. Assume LWE is a hard problem, the hash system holds
the property projection.

Proof. Let ẋi ∈ Range(IS(1k,Λ)). Looking at IS(1k,Λ), ẋi in fact is a public
key whose corresponding secret key is ~si. The ciphertext α in KG(1k,Λ, x)
is encrypted using the public key whose corresponding secret key is ~si + ~s.
The value of Hash(1k,Λ, x, hk) is the plaintext of α. Using ~si +~s as a secret
key, pHash(1k,Λ, x, pk, w) correctly outputs α’s plaintext. This means that
for any (ẋ, ẇ,Λ) generated by the hash system, it holds that

Hash(1k,Λ, x, hk) = pHash(1k,Λ, x, pk, w)

Proposition 32. The hash system holds the property smoothness.

Proof. We are to use Theorem 20 to prove this. It is easy to see that this
SPWHh,n meets the first two requirements, so it remains to prove that

SPWHh,n also meets the last requirement, i.e. Smh+1
1

c
= Smh+1

2 . For this
case, Smh+1

1 , Smh+1
2 are

• Smh+1
1 (1k): Λ← PG(1k), (p, q,m, k, A, χ)← Λ, ~sh+1 ∈U (Zq)

k, ~eh+1 ∈χ
(Zq)

m, ẍh+1 ← A~sh+1 + ~eh+1 + (1, 1, . . . , 1)T mod q, a ∈U Zp, ~s ∈U
(Zq)

k, ~p ← A~s + ẍh+1 mod q, α ← EncA,~p(a), hk ← a, pk ← (~s, α).
Finally outputs (Λ, ẍh+1, pk, a).

48



• Smh+1
2 (1k): Outputs (Λ, ẍh+1, pk, y), where (Λ, ẍh+1, pk) is generated

in the same way as Smh+1
1 (1k) and y ∈U Zq.

Obviously, Smh+1
1 (1k) and Smh+1

2 (1k) are identically distributed, which im-
plies that Smh+1

1
c
= Smh+1

2 .

Proposition 33. Assume LWE is a hard problem, then hash system holds
the property hard subset membership.

Proof. We are to use Theorem 27 to prove this proposition holds. It is
easy to see that this SPWHh,n meets the first two requirements, so it re-

mains to prove that SPWHh,n also holds the last requirement, i.e. HSM1 c
=

HSMh+1. For this case, HSM1, HSMh+1 are where

• HSM1(1k): Λ ← PG(1k), (p, q,m, k, A, χ) ← Λ, ~s1 ∈U (Zq)
k, ~e1 ∈χ

(Zq)
m, ẋ1 ← A~s1 + ~e1 mod q. Finally outputs (Λ, ẋ1).

• HSMh+1(1k): Λ ← PG(1k), (p, q,m, k, A, χ) ← Λ, (p, q,m, k, A, χ) ←
Λ, ~sh+1 ∈U (Zq)

k, ~eh+1 ∈χ (Zq)
m, ẍh+1 ← A~sh+1 + ~eh+1 + (1, 1, . . . , 1)T

mod q. Finally outputs (Λ, ẍh+1).

Obviously, HSM1 and HSMh+1 are identically distributed, which implies
that HSM1 c

= HSMh+1.

Combining propositions above and Lemma 29, we have the following the-
orem.

Theorem 34. If SIV P or GapSV P is a hard problem, then the hash system
is a SPWHh,t.

6.2.3 An Instantiation of OT nh Against Any Quantum Algorithm

The security proof of the framework guarantees that, any algorithm breaking
the framework is an algorithm breaking at least one of cryptographic tools
used in the framework. Therefore, to gain an instantiation of our framework
against any quantum algorithm, it suffices that adopting the instantiations of
commitment schemes and SPWHh,t, which are secure against any quantum
algorithm, in our framework.

[36] shows that the problems SIV P and GapSV P are hard for quantum
algorithm at present. Combining Theorem 34, our LWE-based SPWHh,t

is secure against any quantum algorithm. It remains to find a PHC and
a PBC with security against any quantum algorithm. [3] presents such a
commitment scheme, which is provably unbreakable by both parties with
unlimited computation power and algorithmic sophistication. So we have,

49



Theorem 35. Assuming that one of the problems SIV P and GapSV P is
hard for any quantum algorithm, instantiating the OT nh framework with our
LWE-based SPWHh,t and the commitment scheme presented by [3], the re-
sulted protocol for OT nh is secure against any quantum algorithm.

[36] points out that the problem of LWE and the problem of decoding
random linear code (DRLC) are essentially the same. This implies that re-
placing the commitment scheme with the PHC and PBC based on DRLC,
Theorem 35 also holds. What is more, [14] shows that, first, assuming that
DRLC is hard, there exists a one-way function; second, assuming the exis-
tence of a one-way function, then there exists perfectly binding scheme and
perfectly hiding scheme. Therefore, we have

Theorem 36. Assuming that one of the problems SIV P and GapSV P is
hard for any quantum algorithm, then there exists a protocol for OT nh with
security against any quantum algorithm.

6.3 A Construction Under The Decisional Diffie-Hellman
Assumption

6.3.1 Background

Let Gen(1k) be an algorithm such that randomly chooses a cyclic group and
outputs the group’s description G =< g, q, ∗ >, where g, q, ∗ respectively
are the generator, the order, the operation of the group.

The DDH problem is how to construct an algorithm to distinguish the two

probability ensemblesDDH1
def
= {DDH1(1k)}k∈N andDDH2

def
= {DDH2(1k)}k∈N

which are formulate as follows.

• DDH1(1k): < g, q, ∗ >← Gen(1k), a ∈U Zq, b ∈U Zq, c ← ab, finally
outputs (< g, q, ∗ >, ga, gb, gc).

• DDH2(1k): Basically operates in the same way as DDH1(1k) except
that c ∈U Zq.

At present, there is no efficient algorithm solving the problem. Therefore,
it is assumed that DDH1

c
= DDH2.

6.3.2 Detailed Construction

We describe our construction of hash system based on DDH as follows.

• PG(1k): Λ← Gen(1k), finally outputs Λ.
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• IS(1k,Λ): (g, q, ∗) ← Λ, ai ∈U Zq ∀ ∈ [n], bi ∈U Zq ∀i ∈ [n], ci ← aibi
∀i ∈ [h], ẋi ← (gai , gbi , gci) ∀i ∈ [h], ẇi ← (ai, bi) ∀i ∈ [h], ci ∈U Zq
∀i ∈ [n]−[h], ẍi ← (gai , gbi , gci) ∀i ∈ [n]−[h], ẅi ← (ai, bi) ∀i ∈ [n]−[h],
finally outputs ((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . , (ẍn, ẅn)).

• V F (1k,Λ, x, w): (g, q, ∗) ← Λ, (α, β, γ) ← x, (a, b) ← w, if (α, β, γ) =
(ga, gb, gab) holds, then outputs 0; if (α, β) = (ga, gb) and γ 6= gab holds,
then outputs 1.

• KG(1k,Λ, x): (g, q, ∗) ← Λ, (α, β, γ) ← x, u ∈U Zq, v ∈U Zq, pk ←
αugv, hk ← γuβv, finally outputs (hk, pk).

• Hash(1k,Λ, x, hk): y ← hk, outputs y.

• pHash(1k,Λ, x, pk, w): (a, b)← w, y ← pkb, finally outputs y.

Theorem 37. Assuming DDH is a hard problem, the hash system is a
SPWHh,t.

The proof of this theorem can be done in the same way as that of Theorem
34. So we don’t iterate here.

To gain a concrete protocol for OT nh based only on DDH, it remains to
instantiate PHC and PBC with the ones builded on DDH. The commitment
scheme [33] presents is an concrete PHC we need. The encryption scheme
[10] presents is directly based on the problem of discrete log. Since the task
of solving the problem DDH can be reduced to that of solving the problem
discrete log, the encryption scheme is based on DDH essentially. What is
more, this encryption scheme can be used as an concrete PBC. Therefore,
using those two commitment schemes and our DDH-based SPWHh,t, we
gain an protocol for OT nh based only on DDH. Considering the efficiency, we
recommend DDH of the group which is on elliptic curves.

6.4 A Construction Under The Decisional N-th Resid-
uosity Assumption

6.4.1 Background

Let Gen(1k) be an algorithm that operates as follows.

• Gen(1k): (p, q) ∈U {(p, q)|(p, q) ∈ (P,P), p, q > 2, |p| = |q| = k, gcd(pq, (p−
1)(q − 1)) = 1}, N ← pq, finally outputs N .
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The problem decisional N-th residuosity (DNR), presented in [32], is how to

construct an algorithm to distinguish the two probability ensemblesDNR1
def
=

{DNR1(1k)}k∈N and DNR2
def
= {DNR2(1k)}k∈N which are formulate as fol-

lows.

• DNR1(1k): N ← Gen(1k), a ∈U Z∗N2 , b ← aN mod N2, finally out-
puts (N, b).

• DNR2(1k): N ← Gen(1k), b ∈U Z∗N2 , finally outputs (N, b).

The DNR assumption is that there is no efficient algorithm solving the
problem. In other words, it is assumed that DNR1

c
= DNR2.

The hash system we will construct is an instantiation of ε-UPHh,t. We
will build it on a DNR-based instantiation, presented by [21], of ε-VUPH. ε-
UPH1,1 is different from ε-VUPH in a similar way that SPWH1,1 is different
from V SPH. Thus, the definition of ε-VUPH is easy to deduced, and we
omit them here. Please see [21] for its detailed definition.

The instantiation of ε-VUPH is stated as follows [21], where ε < 1.

• PG(1k): N ← Gen(1k), a ∈U Z∗N2 , T ← N p2 logNq, g ← aN ·T mod N2,
Λ← (N, g), finally outputs Λ.

• IS(1k,Λ): (N, g) ← Λ, r, v ∈U Z∗N , w ← r, ẋ ← gr mod N2, ẍ ←
ẋ(1 + vN) mod N2, finally outputs (w, ẋ, ẍ).

• IT (1k,Λ, ẋ, ẍ): (N, g) ← Λ. Checks that N > 22k, g, ẋ ∈ Z∗N2 .
d ← ẍ/ẋ mod N2 and checks N |(d − 1). v ← (d − 1)/N and checks
gcd(v,N) = 1. Outputs 1 if all the test pass and 0 otherwise.

• KG(1k,Λ, x): (N, g) ← Λ, hk ∈U ZN2 , pk ← ghk mod N2, finally
outputs (hk, pk).

• Hash(1k,Λ, x, hk): (N, g)← Λ, y ← xhk mod N2, finally outputs y.

• pHash(1k,Λ, x, pk, w): (N, g)← Λ, y ← pkw mod N2, finally outputs
y.

The IT holds a property called verifiability, which is described as follows.

1. For any Λ ∈ Rang(PG(.)), any (w, ẋ, ẍ) ∈ Rang(IS(1k.Λ)), it holds
that IT (Λ, ẋ, ẍ) = IT (Λ, ẍ, ẋ) = 1.

2. For any Λ, ẋ, ẍ such that IT (Λ, ẍ, ẋ) = 1, it holds that the hash system
is either ε(|Λ|)- universal on (Λ, ẋ) or ε(|Λ|)- universal on (Λ, ẍ).

52



Note that in the hash system, ẋ is projective and ẋ is universal. What
is more, the ε-universality, projection are contradictory. Therefore, [21] in-
directly proves the following lemma.

Lemma 38. Let L
def
= {x|(N, g) ← PG(1k), r ∈U Z∗N , w ← r, x ← gw

mod N2} and L′
def
= {x|(N, g)← PG(1k), r, v ∈U Z∗N , w ← r, x← gw(1+vN)

mod N2}. Then
L ∩ L′ = ∅

6.4.2 Detailed Construction

Recalling theorem 22, to gain a SPWHh,n, what we need to do is to construct
a ε-UPWHh,n first, then transform it into a SPWHh,n using the algorithm
guaranteed by the theorem. In this section, we construct an instantiation of
ε-UPWHh,n based on DNR.

We now present our construction of hash system under the DNR assump-
tion as follows.

• PG(1k): N ← Gen(1k), a ∈U Z∗N2 , T ← N p2 logNq, g ← aN ·T mod N2,
Λ← (N, g), finally outputs Λ.

• IS(1k,Λ): (N, g) ← Λ, ri ∈U Z∗N ∀i ∈ [n], ẋi ← gri mod N2 ∀i ∈ [h],
ẇi ← (ri, 0) ∀i ∈ [n] − [h], vi ∈U Z∗N ∀i ∈ [n] − [h], ẍi ← gri(1 + viN)
mod N2 ∀i ∈ [n] − [h], ẅi ← (ri, vi) ∀i ∈ [n] − [h], finally outputs
((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . , (ẍn, ẅn)).

• V F (1k,Λ, x, w): (N, g)← Λ, (r, v)← w,

1. if v = 0 mod N , operates as follows: checks that N > 22k, g, x ∈
Z∗N2 , r ∈ Z∗N , x = gr mod N2. Outputs 0 if all the test pass.

2. if v 6= 0 mod N , operates as follows: checks that N > 22k, g, x ∈
Z∗N2 , r ∈ Z∗N , x = gr(1 + vn) mod N2. Outputs 1 if all the test
pass.

• KG(1k,Λ, x): (N, g) ← Λ, hk ∈U ZN2 , pk ← ghk mod N2, finally
outputs (hk, pk).

• Hash(1k,Λ, x, hk): (N, g)← Λ, y ← xhk mod N2, finally outputs y.

• pHash(1k,Λ, x, pk, w): (N, g)← Λ, y ← pkw mod N2, finally outputs
y.

We now prove that the scheme above is a ε-UPWHh,n, where ε < 1 .
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Proposition 39. Assume that DNR is a hard problem, then V F computes
the function ζ defined in Definition 4.

According to lemma 38, it is easy to see this proposition holds.

Proposition 40. The hash system holds the property projection and ε-universality,
where ε < 1.

These properties holded by the hash system are directly inherited from
the instantiation of ε-UPHh,t.

Proposition 41. Assuming DNR is a hard problem, the hash system holds
the property hard subset membership.

Proof. We are to use Theorem 27 to prove this proposition holds. It is
easy to see that this SPWHh,n meets the first two requirements, so it re-

mains to prove that SPWHh,n also holds the last requirement, i.e. HSM1 c
=

HSMh+1. For this case, HSM1, HSMh+1 are where

• HSM1(1k): Λ ← PG(1k), (N, g) ← Λ, r1 ∈U Z∗N , ẋ1 ← gr1 mod N2.
Finally outputs (Λ, ẋ1).

• HSMh+1(1k): Λ ← PG(1k), (N, g) ← Λ, rh+1, vh+1 ∈U Z∗N , ẍh+1 ←
grh+1(1 + vh+1N) mod N2. Finally outputs (Λ, ẍh+1).

It is clear that HSM1 c
= HSMh+1.

Combining propositions above, we have the following theorem.

Theorem 42. Assuming DNR is a hard problem, the hash system is a ε-
UPWHh,n, where ε < 1.

6.5 A Construction Under The Decisional Quadratic
Residuosity Assumption

We reuse Gen(1k) defined in section 6.4.1. The problem decisional quadratic
residuosity (DQR) is how to construct an algorithm to distinguish the two

probability ensembles QR1
def
= {QR1(1k)}k∈N and QR2

def
= {QR2(1k)}k∈N

which are formulated as follows.

• QR1(1k): N ← Gen(1k), x ∈U Z∗N , finally outputs (N, x).

• QR2(1k): N ← Gen(1k), r ∈U Z∗N , x ← r2 mod N , finally outputs
(N, x).

54



The DQR assumption is that there is no efficient algorithm solving the
problem. That is, it is assumed that DQR1

c
= DQR2.

As in section 6.4, the hash system we aim to achieve is an instantiation of
ε-UPHh,t. We will build it on an instantiation of ε-VUPH presented by [21]
which is constructed under DQR assumption.

Our hash system is described as follows.

• PG(1k): (p, q) ∈U (P,P), where |p| = |q| = k, p < q < 2p−1, p = q = 3
mod 4, a ∈U Z∗N , T ← 2plogNq, g ← a2·T mod N , Λ ← (N, g), finally
outputs Λ.

• IS(1k,Λ): (N, g) ← Λ, ri ∈U ZN ∀i ∈ [n], ẋi ← gri mod N ∀i ∈ [h],
ẇi ← ri ∀i ∈ [n]− [h], ẍi ← N−gri mod N ∀i ∈ [n]− [h], ẅi ← ri ∀i ∈
[n]−[h], finally outputs ((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . , (ẍn, ẅn)).

• V F (1k,Λ, x, w): (N, g) ← Λ, (r, v) ← w; checks that N > 22k, g, x ∈
Z∗N . Outputs 0, if x = gr mod N and all the test pass. Outputs 1, if
x = N − gr mod N and all the test pass.

• KG(1k,Λ, x): (N, g) ← Λ, hk ∈U ZN , pk ← ghk mod N , finally out-
puts (hk, pk).

• Hash(1k,Λ, x, hk): (N, g)← Λ, y ← xhk mod N , finally outputs y.

• pHash(1k,Λ, x, pk, w): (N, g) ← Λ, y ← pkw mod N , finally outputs
y.

The fact that the hash system above is a ε-UPHh,t (ε < 1) can be proven
in a similar way in which Theorem 42 is proven.
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