
1

A Framework For Fully-Simulatable h-Out-Of-n
Oblivious Transfer

Zeng Bing, Tang Xueming, and Chingfang Hsu

F

Abstract—We present an efficient framework for fully-simulatable h-
out-of-n oblivious transfer (OTn

h ) with security against non-adaptive
malicious adversaries. Compared with the known protocols for fully-
simulatable oblivious transfer that works without resorting to a trusted
common reference string or a random oracle, the instantiation based
on the decisional Diffie-Hellman assumption of the framework costs the
minimum communication rounds and costs the minimum computational
overhead.

Our framework uses three abstract tools, i.e., perfectly binding com-
mitment, perfectly hiding commitment and our new smooth projective
hash. This allows a simple and intuitive understanding of its security.

We instantiate the new smooth projective hash under the lattice
assumption, the decisional Diffie-Hellman assumption, the decisional N -
th residuosity assumption, the decisional quadratic residuosity assump-
tion. This indeed shows that the folklore that it is technically difficult to
instantiate the projective hash framework under the lattice assumption
is not true. What’s more, by using this lattice-based hash and Brassard’s
commitment scheme, we gain a concrete protocol for OTn

h which is
secure against quantum algorithms.

Index Terms—oblivious transfer (OT) protocols.

1 INTRODUCTION

1.1 Oblivious transfer

O BLIVIOUS transfer (OT), first introduced by [44] and
later defined in another way with equivalent effect

[16] by [18], is a fundamental primitive in cryptography
and a concrete problem in the filed of secure multi-party
computation. Considerable cryptographic protocols can
be built from it. Most remarkable, [25], [28], [31], [51]
proves that any secure multi-party computation can be
based on a secure oblivious transfer protocol. In this
paper, we concern a variant of OT, h-out-of-n oblivious
transfer (OTnh ). OTnh deals with the following scenario.
A sender holds n private messages m1,m2, . . . ,mn. A
receiver holds h private positive integers i1, i2, . . . , ih,
where i1 < i2 < . . . < ih 6 n. The receiver expects to
get the messages mi1 ,mi2 , . . . ,mih without leaking any
information about his private input, i.e., the h positive
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integers he holds. The sender expects all new knowledge
learned by the receiver from their interaction is at most
h messages. Obviously, the OT most literature refer to is
OT 2

1 and can be viewed as a special case of OTnh .
Considering a variety of attack we have to confront

in real environment, a protocol for OTnh with security
against malicious adversaries (a malicious adversary
may act in any arbitrary malicious way to learn as much
extra information as possible) is more desirable than
the one with security against semi-honest adversaries
(a semi-honest adversary, on one side, honestly does
everything told by a prescribed protocol; on one side,
records the messages he sees to deduce extra information
which is not supposed to be known to he). Using Goldre-
ich’s compiler [23], [25], we can gain the former version
from the corresponding latter version. However, the
resulting protocol is prohibitive expensive for practical
use, because it is embedded with so many invocations
of zero-knowledge for NP. Thus, directly constructing
the protocol based on specific intractability assumptions
seems more feasible.

The first step in this direction is independently made
by [39] and [1] which respectively presents a two-
round efficient protocol for OT 2

1 based on the decisional
Diffie-Hellman (DDH) assumption. Starting from these
works and using the tool smooth projective hashing,
[29] abstracts and generalizes the ideas of [1], [39] to
a framework for OT 2

1 . Besides DDH assumption, the
framework can be instantiated under the decisional N -th
residuosity (DNR) assumption and decisional quadratic
residuosity (DQR) assumption [29].

Unfortunately, these protocols (or frameworks) are
only half-simulatable not fully-simulatable. By saying a
protocol is fully-simulatable, we means that the protocol
can be strictly proven its security under the real/ideal
model simulation paradigm. The paradigm requires that
for any adversary in the real world, there exists a corre-
sponding adversary simulating him in the ideal world.
Thus, the real adversary can not do more harm than
the corresponding ideal adversary does. Therefore the
security level of the protocol is guaranteed not to be
lower than that of the ideal world. Undesirably, a half-
simulatable protocol for OT 2

1 only provides a simulator
in the case the receiver is corrupted such as [1], [39] or
in the case the sender is corrupted such as [29].
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Considering security, requiring a protocol to be fully-
simulatable is necessary. Specifically, a fully-simulatable
protocol provides security against all kinds of attacks,
especially the future unknown attacks taken by any
adversary whose computational resource is fixed when
constructing the protocol (generally, it is assumed that
the adversaries run arbitrary probabilistic polynomial-
time) [7], [23], while a not fully-simulatable protocol
doesn’t. For example, the protocols proposed by [1],
[29], [39] suffer the selective-failure attacks, in which a
malicious sender can induce transfer failures that are
dependent on the messages that the receiver requests
[40].

Constructing fully-simulatable protocols for OT with
security against malicious adversaries naturally becomes
the focus of the research community. [6] first presents
such a fully-simulatable protocol. In detail, the OT is an
adaptive h-out-n oblivious transfer (denoted by OTnh×1

in related literature) and based on q-Power Decisional
Diffie-Hellman and q-Strong Diffie-Hellman assump-
tions. Unfortunately, these two assumptions are not stan-
dard assumptions used in cryptography and seem signif-
icantly stronger than DDH, DQR and so on. Motivated
by basing OT on weaker complexity assumption, [26]
presents a protocol for OTnh using a blind identity-based
encryption which is based on decisional bilinear Diffie-
Hellman (DBDH) assumption. Using cut-choose tech-
nique, [33] later presents two efficient protocols for fully-
simulatable OT 2

1 respectively based on DDH assumption
and DNR assumption, where the DDH-based protocol
is the most efficient one among these fully-simulatable
works.

The protocols mentioned above are proved their se-
curities in the plain stand-alone model which not nec-
essarily allows concurrent composition with other arbi-
trary malicious protocols. [43] overcomes this weakness
and further the research by presenting a framework
under common reference string (CRS) model for fully-
simulatable, universally composable OT 2

1 and instan-
tiating the framework respectively under DDH, DQR
and worst-case lattice assumption. It is notable that
conditioning on a trusted CRS is available, the DDH-
based instantiation of the framework is the most efficient
protocol for OT 2

1 no matter seen from the number of
communication rounds or the computational overhead.
Recently, [20], using a novel compiler and somewhat
non-committing encryption they present, convert [43]’s
instantiations based on DDH, DQR to the corresponding
protocols with higher security level. In more detail, the
resulting protocols for OT 2

1 are secure against adaptive
malicious adversaries, which corrupts the parties dy-
namically based on his knowledge gathered so far. Note
that, the fully-simulatable protocols for OT 2

1 mentioned
so far except the one presented by [6] are only secure
against non-adaptive malicious adversaries, which only
corrupts the parties preset before the running of the
protocol.

Though constructing protocols for fully-simulatable

OT 2
1 with security against malicious adversaries has

been studied well, constructing protocols for such OTnh
hasn’t. We note that there are some works aiming to ex-
tend known cryptographic protocols to OTnh . [37] shows
how to implementation OTnh using log n invocation of
OT 2

1 under half-simulation. A similar implementation
for adaptive OTnh can be seen in [38]. What’s more, the
same authors of [37], [38] propose a way to transform a
singe-server private-information retrieval scheme (PIR)
into an oblivious transfer scheme under half-simulation
too [40]. With the help of a random oracle, [27] shows
how to extend k oblivious transfers (for some security
parameter k) into many more, without much additional
effort. However, the Random Oracle Model is risky.
First, [10] shows that a scheme is secure in the Random
Oracle Model does not necessarily imply that a particular
implementation of it (in the real world) is secure, or even
that this scheme does not have any ”structural flaws”.
Second, [10] shows efficient implementing the random
oracle is impossible. Later, [32] finds that the random-
oracle instantiations proposed by Bellare and Rogaway
from 1993 and 1996, and the ones implicit in IEEE
P1363 and PKCS standards are weaker than a random
oracle. What is worse, [32] shows that how the hash
function defects deadly damages the securities of the
cryptographic schemes presented in [3], [4]. Therefore, in
this paper, we only consider the schemes which are fully-
simulatable and without turning to a random oracle.
To our best knowledge, only [6] and [26] respectively
present such fully-simulatable protocols for OTnh . How-
ever, the assumptions the former uses are not standard
and the latter uses is too expensive. Therefore, a well-
motivated problem is to find a protocol or framework
for efficient, fully-simulatable, secure against malicious
adversaries OTnh under weaker complexity assumptions.

1.2 Our Contribution

In this paper, we present a framework for efficient,
fully-simulatable, secure against non-adaptive malicious
adversaries OTnh whose security is proven under stand
model (i.e., without turning to a random oracle). To our
best knowledge, this is the first framework for such OTnh .
The framework have the following features,

1) Fully-simulatable and secure against malicious ad-
versaries without using a CRS. [29]’s framework for
OT 2

1 is half-simulatable. Thought [43]’s framework
for OT 2

1 is fully-simulatable, it doesn’t work with-
out a CRS. What is more, how to provide a trusted
CRS before the protocol run still is a unsolved
problem. The existing possible solutions, such as
natural process suggested by [43], are only con-
jectures without formal proofs. The same problem
remains in its adaptive version presented by [20].
What is worse, [9], [11] show that even given a
authenticated communication channel, implement-
ing a universal composable protocol providing
useful trusted CRS in the presence of malicious
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adversaries is impossible. Therefore, considering
practical use, our framework are better.

2) Efficient. Compared with the existing protocols for
fully-simulatable OT that without resorting to a
CRS or a random oracle, i.e., the protocols pre-
sented by [6], [26], [33], the DDH-based instantia-
tion of our framework costs the minimum number
of communication rounds and costs the minimum
computational overhead. Please see Section 4.4 and
Section 4.5 for the detailed comparisons.
We admit that, in the context of a trusted CRS is
available and only OT 2

1 is needed, the DDH-based
instantiation of [43] is the most efficient one.

3) Abstract and modular. The framework is described
using just three high-level cryptographic tools, i.e.,
perfectly binding commitment (PBC), perfectly hid-
ing commitment (PHC) and our new smooth pro-
jective hash (denoted by SPHDHCt,h for simplic-
ity). This allows a simple and intuitive understand-
ing of its security.

4) Generally realizable. The high-level cryptographic
tools PBC, PHC and SPHDHCt,h are realizable
from a variety of known specific assumptions,
even future assumptions maybe. This makes our
framework generally realizable. In particular, we
instantiate SPHDHCt,h from the DDH assump-
tion, the DNR assumption, the DQR assumption
and the lattice assumption. Instantiating PBC or
PHC under specific assumptions is beyond the
scope of this paper. Please see [22], [24] for such
examples. Generally realizability is vital to make
the framework live long, considering the future
progress in breaking a specific intractable prob-
lem. If this case happen, replacing the instantiation
based on the broken problem with that based on a
unbroken problem suffices.

What is more, we fix a folklore [33] that it appears
technically difficult to instantiate the projective hash
under lattice assumption by presenting a lattice-based
SPHDHCt,h instantiation. It is notable that we gain
an OTnh instantiation which is secure against quantum
algorithms, using this lattice-based SPHDHCt,h instan-
tiation and [5]’s commitment scheme. Considering that
factoring integers and finding discrete logarithms are
efficiently feasible for quantum algorithms [47]–[49], this
is an example showing the benefits from the generally
realizability of the framework.

As an independent contribution, we present several
propositions/lemmas related to the indistinguishability
of probability ensembles defined by sampling polyno-
mial instances. Such propositions/lemmas simplify our
security proof very much. We believe that they are as
useful in security proof somewhere else as in this paper.

1.3 Our Approach
We note that the smooth projective hash is a good
abstract tool. Using this tool, [29] in fact presents a frame-
work for half-simulatable OT 2

1 , [21] present a framework

for password-based authenticated key exchange proto-
cols. We also note that the cut-and-choose is a good
technique to make protocol fully-simulatable. Using this
tool, [33] present several fully-simulatable protocol for
OT 2

1 , [34] presents a general fully-simulatable protocol
for two-party computation. Indeed, we are inspired by
such works. Our basic ideal is to use cut-and-choose
technique and smooth projective hash to get a fully-
simulatable framework.

Loosely speaking, a smooth projective hash (SPH) is a
set of operations defined over two languages L̇ and L̈,
where L̇ ∩ L̈ = ∅. For any projective instance ẋ ∈ L̇,
there are two ways to obtain its hash value, i.e., the
way using its hash key or the way using its projective
key and its witness ẇ. For any smooth instance ẍ ∈ L̈,
there is only one way to obtain its hash value, i.e., the
way using its hash key. The version of SPH presented
by [29] (denoted by V SPHH for simplicity) holds a
property called verifiable smoothness that can judge
whether at least one of arbitrary two instances is smooth.
Another property V SPHH holds, called hard subset
membership, makes sure ẍ and ẋ are computationally
indistinguishable.

We observe that the V SPHH indeed is easy to be
extended to deal with OTn1 , but seems difficult to be
extended to deal with the general OTnh . The reason
is that, to hold verifiable smoothness, ẋs and ẍs have
to be generated in a dependent way. This makes the
verifiable smoothness for multiple ẋs and multiple ẍs
(i.e., judge whether at least n−h of arbitrary n instances
are smooth) difficult to hold without leaking information
which is conductive to distinguish such ẋs and ẍs. We
also observe that, there is no way to construct a fully-
simulatable framework using V SPHH , because there is
no way to extract the real input of the adversary in the
case that the receiver is corrupted.

We define a new smooth projective hash called t-
smooth h-projective hash family that holds proper-
ties distinguishability, hard subset membership, feasible
cheating (denoted by SPHDHCt,h for simplicity). The
key solution in SPHDHCt,h to the mentioned problems
is that requiring each ẍ to hold a witness too. This solu-
tion enables us to generate ẋs and ẍs in a independent
way. Correspondingly, the verifiable smoothness is not
needed any more and replaced by a property called
distinguishability, which provides a way to distinguish
ẋs and ẍs if their witnesses are given.

Since the receiver encodes his input as a permutation
of ẋs and ẍs, a simulator can the extract the real input of
the adversary in the case that the receiver is corrupted if
their witnesses are available. Combining the application
of the technique cut-and-choose, a simulator can see such
witnesses by rewinding the adversary. To extract the
real input of the adversary in the case that the sender
is corrupted, the property feasible cheating provides
way to cheat out of the real input of the adversary.
Naturally, all the properties and the correlated algorithm
in SPHDHCt,h are extended to deal with n instances
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rather than only 2 instances. Please see Section 3.2 for a
detailed comparison this new hash with previous hash
systems.

We show that constructing SPHDHCt,h can be re-
duced to constructing considerably simpler hash sys-
tems. Our lattice-based SPHDHCt,h instantiation is
builded on the lattice-based cryptosystem presented by
[33]. It is noticeable that it appears difficult to get lattice-
based instantiation for SPH [33]. Our solution is to let
the instance x (x ∈ L̇ ∪ L̈) be available to the algorithm
that is responsible for generating pair of the hash key
and the projective key. The other three intractability-
assumption-based SPHDHCt,h instantiations can be ul-
timately built from known SPH schemes such as that
presented by [29] with necessary modifications.

Using SPHDHCt,h we construct the framework de-
scribed with high-level as follows .

1) The receiver generates hash parameters and appro-
priate many instance vectors, then sends them to
the sender after disordering each vector.

2) The receiver and the sender cooperate to toss coin
to decide which vector to be opened.

3) The receiver opens the chosen instances, encodes
his private input by reordering each unchosen vec-
tor and sends the resulting code, which in fact is a
sequence of permutations, to the sender.

4) The sender checks that the chosen vectors are
generated in the legal way which guarantees that
the receiver learns at most h message. If the check
pass, the sender encrypts his private input (i.e.,
the n messages he holds) using the hash values
of the instances of the unchosen vectors in the way
indicated by the code of receiver’s private input,
and sends the ciphertexts together with some auxil-
iary information (i.e., the projective hash keys) that
is conductive to decrypt some ciphertexts to the
receiver.

5) The receiver decrypts the ciphertexts with the help
of the auxiliary information and gains the messages
he expects.

Intuitively speaking, the receiver’s security is im-
plied by the property hard subset membership of
SPHDHCt,h. This property guarantees that the receiver
can securely encode his private input by reordering each
unchosen instance vector. The sender’s security is im-
plied by the cut-and-choose technique, which guarantees
that the probability that the adversaries controlling a cor-
rupted receiver learns extra new knowledge is negligible.

1.4 Organization
In Section 2, we describe the notations used in this
paper, the security definition of OTnh , the definition of
commitment scheme. In Section 3, we define our new
hash system, i.e., SPHDHCt,h. In Section 4, we con-
struct our framework. In Section 5, we prove the security
of the framework. In Section 6, we reduce constructing
SPHDHCt,h to constructing considerably simpler hash

systems. In Section 7, we instantiate SPHDHCt,h under
the lattice, DDH, DNR, DQR assumptions, respectively.

2 PRELIMINARIES

Most notations and concepts mentioned in this section
originate from [7], [22], [23] which are basic literature
in the filed of secure multi-party computation (SMPC).
We tailor them to the need of dealing with OTnh .

2.1 Basic Notations
We denote an unspecified positive polynomial by poly(.).
We denote the set consists of all natural numbers by N.
For any i ∈ N, [i]

def
= {1, 2, . . . , i}. We denote the set

consists of all prime numbers by P.
We denote security parameter used to measure secu-

rity and complexity by k. A function µ(.) is negligible
in k, if there exists a positive constant integer n0, for
any poly(.) and any k which is greater than n0 (for
simplicity, we later call such k sufficiently large k), it
holds that µ(k) < 1/poly(k). A probability ensemble
X

def
= {X(1k, a)}k∈N,a∈{0,1}∗ is an infinite sequence of

random variables indexed by (k, a), where a represents
various types of inputs used to sample the instances
according to the distribution of the random variable
X(1k, a). Probability ensemble X is polynomial-time
constructible, if there exists a probabilistic polynomial-
time (PPT) sample algorithm SX(.) such that for any a,
any k, the random variables SX(1k, a) and X(1k, a) are
identically distributed. We denote sampling an instance
according to X(1k, a) by α← SX(1k, a).

Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
=

{Y (1k, a)}k∈N,a∈{0,1}∗ be two probability ensembles.
They are computationally indistinguishable, denoted
X

c
= Y , if for any non-uniform PPT algorithm D with

an infinite auxiliary information sequence z = (zk)k∈N
(where each zk ∈ {0, 1}∗), there exists a negligible
function µ(.) such that for any sufficiently large k, any
a, it holds that

|Pr(D(1k, X(1k, a), a, zk) = 1)−
Pr(D(1k, Y (1k, a), a, zk) = 1)| 6 µ(k)

They are same, denoted X = Y , if for any sufficiently
large k, any a, X(1k, a) and Y (1k, a) are defined in the
same way. They are equal, denoted X ≡ Y , if for any
sufficiently large k, any a, the distributions of X(1k, a)
and Y (1k, a) are identical. Obviously, if X = Y then X ≡
Y ; If X ≡ Y then X

c
= Y .

Let ~x be a vector (note that arbitrary binary string can
be viewed as a vector). We denote its i-th element by
~x〈i〉, denote its dimensionality by #~x, denote its length
in bits by |~x|. For any positive integers set I , any vector
~x, ~x〈I〉 def= (~x〈i〉)i∈I,i≤#~x.

Let M be a probabilistic (interactive) Turing machine.
By Mr(.) we denote M ’s output generated at the end of
an execution using randomness r.
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Let f : D → R. Let D′ ⊆ {0, 1}∗. Then f(D′)
def
=

{f(x)|x ∈ D′ ∩D}, Range(f)
def
= f(D).

Let x ∈χ Y denotes sampling an instance x from do-
main Y according to the distribution law (or probability
density function ) χ. Specifically, let x ∈U Y denotes
uniformly sampling an instance x from domain Y .

2.2 Security Definition Of A Protocol For OTnh
2.2.1 Functionality Of OTnh
OTnh involves two parties, party P1 (i.e., the sender)
and party P2 (i.e., the receiver). OTnh ’s functionality is
formally defined as follows

f : N× {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗

f(1k, ~m,H) = (λ, ~m〈H〉)

where
• k is the public security parameter.
• ~m ∈ ({0, 1}∗)n is P1’s private input, and each |~m〈i〉|

is the same.
• H ∈ Ψ

def
= {B|B ⊆ [n], #B = h} is P2’s private

input.
• λ denotes a empty string and is supposed to be got

by P1. That is, P1 is supposed to get nothing.
• ~m〈H〉 is supposed to be got by P2.

Note that, the length of all parties’ private input have
to be identical in SMPC (please see [23] for the reason
and related discussion). This means that |~m| = |H| is
required. Without loss of generality, in this paper, we
assume |~m| = |H| always holds, because padding can be
easily used to meet such requirement.

Intuitively speaking, the security of OTnh requires that
P1 can’t learn any new knowledge — typically, P2’s
private input, from the interaction at all, and P2 can’t
learn more than h messages held by P1. To capture the
security in a formal way, the concepts such as adver-
sary, trusted third party, ideal world, real world were
introduced. Note that the security target in this paper is
to be secure against non-adaptive malicious adversaries,
so only concepts related to this case is referred to in the
following.

2.2.2 Non-Adaptive Malicious Adversary
Before running OTnh , the adversary A has to corrupt all
parties listed in I ⊆ [2]. In the case that U ∈ {P1, P2}
is not corrupted, U will strictly follow the prescribed
protocol as an honest party. In the case that party U is
corrupted, U will be fully controlled by A as a corrupted
party. In this case, U will have to pass all his knowledge
to A before the protocol runs and follows A’s instructions
from then on — so there is a probability that U arbitrarily
deviates from prescribed protocol. In fact, after A finishes
corrupting, A and all corrupted parties have formed a
coalition led by A to learn as much extra knowledge,
e.g. the honest parties’ private inputs, as possible. From
then on, they share knowledge with each other and
coordinate their behavior. Without loss of generality,

we can view this coalition as follows. All corrupted
parties are dummy. A receives messages addressed to the
members of the coalition and sends messages on behalf
of the members.

Loosely speaking, we say OTnh is secure, if and only if,
for any malicious adversary A, the knowledge A learns
in the real world is not more than that he learns in the
ideal world. In other words, if and only if, for any mali-
cious adversary A, what harm A can do in real world is
not more than what harm he can do in the ideal world.
In the ideal world, there is an incorruptible trusted third
party (TTP). All parties hand their private inputs to TTP.
TTP computes f and sends back f(.)〈i〉 to Pi. In the real
world, there is no TTP, and the computation of f(.) is
finished by A and all parties’ interactions.

2.2.3 OTnh In The Ideal World

In the ideal world, an execution of OTnh proceeds as
follows.

Initial Inputs. All entities know the public security
parameter k. P1 holds a private input ~m ∈ ({0, 1}∗)n.
Party P2 holds a private input H ∈ Ψ. Adversary A
holds a name list I ⊆ [2], a randomness rA ∈ {0, 1}∗ and
an infinite auxiliary input sequence z = (zk)k∈N, where
zk ∈ {0, 1}∗. Before proceeds to next stage, A corrupts
parties listed in I and learns ~x〈I〉, where ~x

def
= (~m,H).

Submitting inputs to TTP. Each honest party Pi always
submits its private input ~x〈i〉 unchanged to TTP. A
submits arbitrary string based on his knowledge to TTP
for the corrupted parties. The string TTP receives is a
two-dimensional vector ~y which is formally described
as follows.

~y〈i〉 =

{
~x〈i〉 if i /∈ I ,
α if i ∈ I

where α ∈ {~x〈i〉} ∪ {0, 1}|~x〈i〉| ∪ {aborti} and α ←
A(1k, I, rA, zk, ~x〈I〉). Obviously, there is a probability
that ~x 6= ~y.

TTP computing f . TTP checks that ~y is a valid input to
f , i.e., no entry of ~y is of the form aborti. If ~y passes the
check, then TTP computes f and sets ~w to be f(1k, ~y).
Otherwise, TTP sets ~w to be (aborti, aborti). Finally, for
each i ∈ [n] TTP hands ~w〈i〉 to each Pi respectively and
halts.

Outputs. Each honest party Pi always outputs the
message ~w〈i〉 it obtains from the TTP. Each corrupted
party Pi outputs nothing (i.e., λ). The adversary outputs
something generated by executing arbitrary function of
the information he gathers so far. Without loss of gener-
ality, this can be assumed to be (1k, I, rA, zk, ~x〈I〉, ~w〈I〉).

The output of the whole execution in the ideal world,
denoted by Idealf,I,A(zk)(1

k, ~m,H), is defined by the out-
puts of all parties and that of the adversary as follows.

Idealf,A(z),I(1
k, ~x, rA)〈i〉
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def
=


A’s output, i.e., (1k, I, rA,
zk, ~x〈I〉, ~w〈I〉),

i = 0;

Pi’s output, i.e., λ, i ∈ I;

Pi’s output, i.e., ~w〈i〉, i ∈ [n]− I.

Obviously, Idealf,A(z),I(1
k, ~x) is a random variable

whose randomness is rA.

2.2.4 OTnh In The Real World
In the real world, there is no TTP. A execution of OTnh
proceeds as follows.

Initial Inputs. Initial input each entity holds in the real
world is the same as in the ideal world but there are
some difference as follows. A randomness ri is held by
each party Pi. After finishes corrupting, in addition to
the knowledge A learns in ideal world, the corrupted
parties’ randomness ~r〈I〉 is also learn by A, where ~r

def
=

(r1, r2).
Computing f . In the real world, computing f is

finished by all entities’ interaction. Each honest party
strictly follows the prescribed protocol (i.e., the concrete
protocol, usually denoted π , for OTnh ). The corrupted
parties have to follow A’s instructions and may arbitrar-
ily deviate from prescribed protocol.

Outputs. Each honest party Pi always outputs what
the prescribed protocol instructs. Each corrupted party
Pi outputs nothing. The adversary outputs something
generated by executing arbitrary function of the in-
formation he gathers so far. Without loss of general-
ity, this can be assumed to be a string consisting of
1k, I, rA, ~r〈I〉, zk, ~x〈I〉 and messages addressed to the
corrupted parties.

The output of the whole execution in the real world,
denoted by Realπ,I,A(zk)(1

k, ~m,H, rA, ~r), is defined by
the outputs of all parties and that of the adversary as
follows.

Realπ,I,A(zk)(1
k, ~m,H, rA, ~r)〈i〉

def
=


A′s output, i.e., (1k, I, rA,
~r〈I〉, zk, ~x〈I〉,msgI),

i = 0;

P ′is output, i.e., λ, i ∈ I;

P ′is output, i.e., what
instructed by π,

i ∈ [n]− I.

Obviously, Realπ,I,A(zk)(1
k, ~m,H) is a random variable

whose randomnesses are rA and ~r.

2.2.5 Security Definition
The security of a protocol for OTnh is formally captured
by the following definition.

Definition 1 (The security of a protocol for OTnh ). Let
f denotes the functionality of OTnh and let π be a concrete
protocol for OTnh . We say π securely computes f , if and only if
for any non-uniform probabilistic polynomial-time adversary
A with an infinite sequence z = (zk)k∈N in the real world,
there exists a non-uniform probabilistic expected polynomial-
time adversary A′ with the same sequence in the ideal world
such that, for any I ⊆ [2], it holds that

{Realπ,I,A(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealf,I,A′(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗
(1)

where the parameters input to the two probability ensembles
are same and each ~m〈i〉 is of the same length. The adversary
A’ in the ideal world is called a simulator of the adversary A
in the real world.

The concept, non-uniform probabilistic expected
polynomial-time, mentioned in Definition 1 is formu-
lated in distinct way in distinct literature such as [8],
[22]. We prefer to the following definition [30], because
it is clearer in formulation and more closely related to
our issue.

Definition 2 (M1 runs in expected polynomial–
time with respect to M2). Let M1,M2 be two in-
teractive Turing machines running a protocol. By <
M1(x1, r1, z1),M2(x2, r2, z2) > (1k), we denote a running
which starts with Mi holding a private input xi, a randomness
ri, an auxiliary input zi, the public security parameter k. By
IDNM1

(< M1(x1, r1, z1),M2(x2, r2, z2) > (1k)), we denote
the number of total direct deduction steps M1 takes in the
whole running. We say M1 runs in expected polynomial-time
with respect to M2, if and only if there exists a polynomial
poly(.) such that for every k ∈ N, it holds that

max({ER1,R2
(IDNM1

(< M1(x1, R1, z1),

M2(x2, R2, z2) > (1k)))|
|x1| = |x2| = k, z1, z2 ∈ {0, 1}∗}) ≤ poly(k)

where R1, R2 are random variables with uniform distribution
over {0, 1}∗.

For Definition 1, it in fact requires that adversary A’s
simulator A′ should run in expected polynomial-time
with respect to TTP who computes OTnh ’s functionality
f .

We point out that the security definition presented in
[7], [22], [23] requires the simulator A′ to run in strictly
polynomial-time, but the one presented in [8], [33], [34]
allow A′ to run in expected polynomial-time. Definition
1 follows the latter. We argue that this is justified, since
[2] shows that there is no (non-trivial) constant-round
zero-knowledge proof or argument having a strictly
polynomial-time black-box simulator, which means al-
lowing simulator to run in expected polynomial-time
is essential for achieving constant-round protocols. See
[30] for further discussion.

2.3 Commitment Scheme
In this section, we briefly introduce commitment scheme
[22], [24] which will be used in our framework. Loosely
speaking, commitment scheme is a two-party protocol
involving two phases. In the first phase, a sender U1

sends a commitment, which hides his private input (i.e.,
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the value he wants to commit to), to a receiver U2. In
the second phase, U1 reveals its commitment to U2, and
U2 knows the value U1 commits to.

Definition 3 (Commitment Scheme). A commitment
scheme is defined as follows.
• Initial Inputs. At the beginning, all parties know the

public security parameter k. The sender U1 holds a
randomness r1 ∈ {0, 1}∗, a value m ∈ {0, 1}poly(k) to
be committed to, where the polynomial poly(.) is public.
The receiver U2 holds a randomness r2 ∈ {0, 1}∗.

• Commit Phase. U1 computes a commitment, denoted α,
based on his knowledge, i.e., α ← U1(1k,m, r1), then
U1 send α to U2.

The security for U1 is implied by the commitment
scheme’s property hiding, which guarantees that for any
PPT malicious Ũ2, the probability that he derives the
knowledge of m from information he have gathered so far
is negligible. More formally, for any PPT Ũ2, for any
string m′ ∈ {0, 1}poly(k), it holds that,

{V iewCPŨ2
(< U1(m), Ũ2 > (1k))}
c
= {V iewCPŨ2

(< U1(m′), Ũ2 > (1k))}

where V iewCPŨ2
(.) denotes Ũ2’s view at the end of

commit phase.
• Reveal Phase. U1 computes and sends a de-commitment,

which typically consists of m, r1, to U2 to let U2 know
m. Receiving de-commitment, U2 checks its validity.
Typically U2 checks that α = U1(1k,m, r1) holds. If
de-commitment pass the check, U2 knows and accepts
m.

The security for U2 is implied by the commitment
scheme’s property binding, which guarantees that for
any PPT malicious Ũ1, the probability that Ũ1 cheats
to interpret α as a commitment to a value which is
different from m without being caught is negligible. More
formally, for any PPT Ũ1, any m, Ũ1 do the following
experiment,
experiment: α ← Ũ1(1k,m), r1 ← Ũ1(1k,m),
(m′, r′1)← Ũ1(1k,m) and m 6= m′.
it holds that

Pr(V iewCPU2
(< Ũ1(m), U2 > (1k)) =

V iewCPU2(< Ũ1(m′), U2 > (1k))∧
α = U1(1k,m, r1)∧

α = U1(1k,m′, r′1)) = µ(k)

We are to use two stronger versions of commit-
ment scheme to construct the framework for OTnh . One,
called perfectly hiding commitment scheme (PHC), pro-
vides security for a sender against computationally un-
bound malicious receivers. The other, called perfectly
binding commitment scheme (PBC), provides security
for a receiver against computationally unbound mali-
cious sender. For notational simplicity, we let PHCr(m)

(PBCr(m)) denote a commitment to m which generated
by using PHC (PBC) scheme and randomness r.

3 A NEW SMOOTH PROJECTIVE HASH -
SPHDHCt,h

3.1 The Definition Of SPHDHCt,h
In this section, we define a new smooth projective hash
— t-smooth h-projective hash family that holds proper-
ties distinguishability, hard subset membership, feasible
cheating, denoted SPHDHCt,h for simplicity, which will
be used to construct our framework for OTnh . In section
7, we instantiate SPHDHCt,h respectively under four
distinct intractability assumptions.

Let us recall some related works before defining
SPHDHCt,h. [12], [50] present the classic notation
of ”universal hashing”. Based on ”universal hashing”,
[15] first introduces the concept of universal projective
hashing, smooth projective hashing and hard subset
membership problem in terms of languages and sets.
In order to construct a framework for password-based
authenticated key exchange, [21] modifies such defini-
tion to some extent. That is, smoothness is defined over
every instance of a language rather than a randomly
chosen instance. [29] refines the modified version in
terms of the procedures used to implement it. What is
more, a new requirement called verifiable smoothness is
added to the hashing so as to construct a framework for
OT 2

1 . The resulting hashing is called verifiablely-smooth
projective hash family that has hard subset membership
property (denoted by V SPHH for simplicity). Note
that, the framework presented by [29] is not fully-
simulatable. The difference between SPHDHCt,h and
the works mentioned above will be under a detailed
discussion after we define SPHDHCt,h.

For clarity in presentation, we assume n = h + t
always holds and introduce additional notations. Let
R = {(x,w)|x,w ∈ {0, 1}∗} be a relation, then LR

def
=

{x|x ∈ {0, 1}∗,∃w((x,w) ∈ R)}, R(x)
def
= {w|(x,w) ∈ R}.

Π
def
= {π|π : [n]→ [n], π is a permutation}. Let π ∈ Π (to

comply with other literature, we also use π somewhere
to denote a protocol without bringing any confusion).
Let ~x be an arbitrary vector. By π(~x), we denote a vector
resulted from applying π to ~x. That is, ~y = π(~x), if and
only if ∀i(i ∈ [d] → ~x〈i〉 = ~y〈π(i)〉) ∧ ∀i(i /∈ [d] → ~x〈i〉 =

~y〈i〉) holds, where d
def
= min(#~x, n).

Definition 4 (t-smooth h-projective hash family
that holds properties distinguishability, hard
subset membership and feasible cheating).
H = (PG, IS,DI,KG,Hash, pHash,Cheat) is an
t-smooth h-projective hash family that holds properties
distinguishability, hard subset membership and feasible
cheating (SPHDHCt,h), if and only if H is specified as
follows
• The parameter-generator PG is a PPT algorithm that

takes a security parameter k as input and outputs a
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family parameter Λ, i.e., Λ ← PG(1k). Λ will be used
as a parameter to define three relations RΛ, ṘΛ and R̈Λ,
where RΛ = ṘΛ ∪ R̈Λ. Moreover, ṘΛ ∩ R̈Λ = ∅ are
supposed to hold.

• The instance-sampler IS is a PPT algorithm that takes a
security parameter k, a family parameter Λ as input and
outputs a vector ~a, i.e., ~a← IS(1k,Λ).
Let ~a = ((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . ,
(ẍn, ẅn))T be a vector generated by IS. We call each ẋi
or ẍi an instance of LRΛ

. For each pair (ẋi, ẇi) (resp.,
(ẍi, ẅi)), ẇi (resp., ẅi) is called a witness of ẋi ∈ LṘΛ

(resp., ẍi ∈ LR̈Λ
). Note that, by this way we indeed

have defined the relationship RΛ, ṘΛ and R̈Λ here. The
properties smoothness and projection we will mention
later make sure ṘΛ ∩ R̈Λ = ∅ holds.
For simplicity in formulation later, we introduce
some additional notations here. For ~a mentioned
above, ~x~a

def
= (ẋ1, . . . , ẋh, ẍh+1, . . . , ẍn)T ,

~w~a
def
= (ẇ1, . . . , ẇh, ẅh+1, . . . , ẅn)T . What is more,

we abuse notation ∈ to some extent. We write
~x ∈ Range(IS(1k,Λ)) if and only if there exists a
vector ~x~a such that ~x~a = ~x and ~a ∈ Range(IS(1k,Λ)).
We write x ∈ Range(IS(1k,Λ)) if and only if there
exists a vector ~x such that ~x ∈ Range(IS(1k,Λ)) and
x is an entry of ~x.

• The distinguisher DI is a PPT algorithm that takes a
security parameter k, a family parameter Λ and a pair
strings (x,w) as input and outputs an indicator bit b,
i.e., b← DI(1k,Λ, x, w).

• The key generator KG is a PPT algorithm that takes
a security parameter k, a family parameter Λ and an
instance x as input and outputs a hash key and a
projection key, i.e., (hk, pk)← KG(1k,Λ, x).

• The hash Hash is a PPT algorithm that takes a security
parameter k, a family parameter Λ, an instance x and a
hash key hk as input and outputs a value y, i.e., y ←
Hash(1k,Λ, x, hk).

• The projection pHash is a PPT algorithm that takes a
security parameter k, a family parameter Λ, an instance
x, a witness w of x and a projection key pk as input and
outputs a value y, i.e., y ← pHash(1k,Λ, x, pk, w).

• The cheat Cheat is a PPT algorithm that takes a se-
curity parameter k, a family parameter Λ as input and
outputs n elements of ṘΛ, i.e., ((ẋ1, ẇ1), . . . (ẋn, ẇn))←
Cheat(1k,Λ).

and H has the following properties
1) Projection. Intuitively speaking, it requires that for any

instance ẋ ∈ LṘΛ
, the hash value of ẋ is obtainable with

the help of its witness ẇ. That is, for any sufficiently
large k, any Λ ∈ Range(PG(1k)), any (ẋ, ẇ) generated
by IS(1k,Λ), any (hk, pk) ∈ Range(KG(1k,Λ, ẋ)), it
holds that

Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ)

2) Smoothness. Intuitively speaking, it requires that for any
instance vector ~̈x ∈ Lt

R̈Λ
, the hash values of ~̈x are ran-

dom and unobtainable unless their hash keys are known.

That is, for any π ∈ Π, the two probability ensembles
Sm1

def
= {Sm1(1k)}k∈N and Sm2

def
= {Sm2(1k)}k∈N,

defined as follows, are computationally indistinguish-
able, i.e., Sm1

c
= Sm2.

SmGen1(1k): Λ← PG(1k), ~a← IS(1k,Λ), ~x← ~x~a,
for each j ∈ [n] operates as follows: (hkj , pkj) ←
KG(1k,Λ, ~x〈j〉), yj ← Hash(1k,Λ, ~x〈j〉, hkj),−−−→
xpky〈j〉 ← (~x〈j〉, pkj , yj). Finally outputs (Λ,

−−−→
xpky).

SmGen2(1k): compared with SmGen1(1k), the only
difference is that for each j ∈ [n] − [h], yj ∈U
Range(Hash(1k,Λ, ~x〈j〉, .)).

Smi(1
k): (Λ,

−−−→
xpky) ← SmGeni(1

k),
−̃−−→
xpky ←

π(
−−−→
xpky), finally outputs (Λ,

−̃−−→
xpky).

3) Distinguishability. Intuitively speaking, it requires that
the DI can distinguish the projective instances and
smooth instances with the help of their witnesses. That
is, it requires that the DI correctly computes the follow-
ing function.

ζ : N× ({0, 1}∗)3 → {0, 1}

ζ(1k,Λ, x, w) =


0 if (x,w) ∈ ṘΛ,

1 if (x,w) ∈ R̈Λ,

undefined otherwise .

4) Hard Subset Membership. Intuitively speaking, it re-
quires that for any ~x ∈ Range(IS(1k,Λ)), ~x can
be disordered without being detected. That is, for any
π ∈ Π, the two probability ensembles HSM1

def
=

{HSM1(1k)}k∈N and HSM2
def
= {HSM2(1k)}k∈N,

specified as follows, are computationally indistinguish-
able, i.e., HSM1

c
= HSM2.

HSM1(1k): Λ ← PG(1k), ~a ← IS(1k,Λ), finally
outputs (Λ, ~x~a).
HSM2(1k): Operates as same as HSM1(1k) with an
exception that finally outputs (Λ, π(~x~a)).

5) Feasible Cheating. Intuitively speaking, it requires that
there is a way to cheat to generate a ~x which is supposed
to fall into Lh

ṘΛ
× Lt

R̈Λ
but actually falls into Ln

ṘΛ

without being caught. That is, for any π ∈ Π, for
any π′ ∈ Π, the two probability ensembles HSM2

and HSM3
def
= {HSM3(1k)}k∈N are computationally

indistinguishable, i.e., HSM2
c
= HSM3, where HSM2

is defined above and HSM3 is defined as follows.
HSM3(1k):Λ ← PG(1k), ~a ← Cheat(1k), finally
outputs (Λ, π′(~x~a)).

Remark 5 (The Witnesses Of The Instances). The main
use of the witnesses of an instance ẋ ∈ LṘΛ

is to project
and gain the hash value of x. In contrast, with respect to an
instance ẍ ∈ LR̈Λ

, it services as a proof of ẍ ∈ LR̈Λ
. The

property distinguishability guarantees that given the needed
witness, the projective instances and the smooth instances are
distinguishable. For OTnh , this means that a receiver can use
the witnesses of ẍ to persuade a sender to believe that the
receiver is unable to gain the hash value of ẍ.
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Remark 6 (Hard Subset Membership). The property
hard subset membership guarantees that for any ~x ∈
Range(IS(1k,Λ)), any π ∈ Π, any PPT adversary A, the
advantage of A identifying an entry of π(~x) falling into LṘΛ

(resp., LR̈Λ
) with probability over prior knowledge h/n (resp.,

t/n) is negligible. That is, seen from A, every entry of π(~x)
seems the same.

With respect to OTnh , this means that the receiver can
encode his private input into a permutation of a vector
~x ∈ LnRΛ

without leaking any information. For example, if
the receiver expects to gain ~m〈H〉, then he may generates
a ~x and randomly chooses a permutation π ∈ Π such that
π(~x)〈i〉 ∈ LṘΛ

for each i ∈ H . Any PPT adversary knows
no new knowledge about H if only given π(~x).

However, if the witnesses of the instances of ~x are available
(the simulator can gain the witnesses by rewinding the adver-
sary), then the receiver’s input is known. Therefore, there is
way for the simulator to extract the real input of the adversary
controlling the corrupted receiver.

Remark 7 (Feasible Cheating). In our framework for OTnh ,
the sender uses the hash values of the instances generated by
the receiver to encrypt its private inputs. The property feasible
cheating makes cheating out of the sender’s all private inputs
feasible. Note that, this is a key for the simulator to extract the
real inputs of the adversary controlling the corrupted sender.
Therefore, it is conductive to construct a fully-simulatable
protocol for OTnh .

3.2 The Difference Between SPHDHCt,h And Re-
lated Hash Systems

Now we discuss the difference between our
SPHDHCt,h and related hash systems previous
works present or use. For simplicity, we only compare
our SPHDHCt,h with the hash system V SPHH which
is presented by [29]. We argue that this is justified,
on the one hand, the version of [29] is the version
holding most properties among previous works. On
the other hand, the aim of [29] is the closest to ours.
They aim to construct a framework for OT 2

1 which
actually is half-simulatable, while we aim to establish a
fully-simulatable framework for OTnh .

Loosely speaking, our SPHDHCt,h can be viewed
as a generalized version of V SPHH . Indeed, V SPHH
resembles SPHDHC1,1 very much and can be converted
into SPHDHC1,1 though some modification is needed.
The essential differences are listed as follows.

1) The key difference is that, besides each projective
instance ẋ holding a witness ẇ, SPHDHCt,h also
requires each smooth instance ẍ to hold a witness
ẅ.

2) To deal with OTnh , SPHDHCt,h extends the IS
algorithm to generate h ẋs and t ẍs in a invoca-
tion. As a natural result, SPHDHCt,h extends the
property smoothness to hold with respect to t ẍs,
and extends the property hard subset membership
to hold with respect to h ẋs and t ẍs.

3) In V SPHH there exists a instance test IT algo-
rithm that takes two instances as input and outputs
a bit indicating whether at least one of the two in-
stances is smooth, i.e., b← IT (x1, x2). SPHDHCt,h
discards this verifiability of smoothness and the
correlated IT , and instead provides a distinguisher
DI algorithm which is conducive to apply the
technique cut-and-choose.

4) SPHDHCt,h requires a additional property feasi-
ble cheating and the necessary algorithm Cheat.
This property provides a simulator with a way to
extract the real inputs of the adversary in the case
that the sender is corrupted.

5) SPHDHCt,h extends KG algorithm such that the
information of the instance is available to it. This
makes constructing hash system easier. In indeed,
this makes lattice-based hash system come true
which is thought difficult by [33].

We observe that the V SPHH indeed is easy to be
extended to deal with OTn1 , but seems difficult to be
extended to deal with the general OTnh . The reason is
that, to hold verifiable smoothness, ẋs and ẍs have to
be generated in a dependent way. This makes designing
IT dealing with n instances without leaking informa-
tion which is conductive to distinguish such ẋs and ẍs
difficult. Therefore, even constructing a framework for
OTnh that is half-simulatable as [29] seems impossible.
We also observe that, there is no way to construct a fully-
simulatable framework using V SPHH , because there is
no way to extract the real input of the adversary in the
case that the receiver is corrupted.

The difficulties mentioned above can be overcame by
requiring each ẍ to hold a witness too. Since the receiver
encodes his input as a permutation of ẋs and ẍs, a
simulator can the extract the real input of the adversary
in the case that the receiver is corrupted if their witnesses
are available. Combining the application of the technique
cut-and-choose, a simulator can see such witnesses by
rewinding the adversary. What is more, the implemen-
tation of DI is easier than that of its predecessor IT .
Because the operated object essentially is a pair of the
form (x,w) which is simpler than (x1, . . . , xn) which is
the general form of the objects operated by IT .

4 CONSTRUCTING A FRAMEWORK FOR
FULLY-SIMULATABLE OT n

h

In this section, we construct a framework for OTnh . In
the framework, we will use a PPT algorithm, denoted Γ
, that receiving B1, B2 ∈ Ψ, outputs a uniformly chosen
permutation π ∈U Π such that π(B1) = B2, i.e., π ←
Γ(B1, B2). We give an example implementation of Γ as
follows.

Γ(B1, B2): First, E ← ∅, C ← [n]−B1. Second, for each
j ∈ B2, then i ∈U B1, B1 ← B1 − {i}, E ← E ∪ {j 
 i}.
Third, D ← [n] − B2, for each j ∈ D, then i ∈U C, C ←
C −{i}, E ← E ∪{j 
 i}. Fourth, define π as π(i) = j if
and only if j 
 i ∈ E. Finally, outputs π.
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4.1 The Framework For OTnh
• Common inputs: All entities know the public se-

curity parameter k, an positive polynomial polys(.),
a SPHDHCt,h (where n = h + t) hash system H,
a perfectly hiding commitment scheme, a perfectly
binding commitment scheme.

• Private Inputs: Party P1 (i.e., the sender) holds a
private input ~m ∈ ({0, 1}∗)n and a randomness
r1 ∈ {0, 1}∗. Party P2 ( i.e., the receiver) holds a
private input H ∈ Ψ and a randomness r2 ∈ {0, 1}∗.
The adversary A holds a name list I ⊆ [2] and a
randomness rA ∈ {0, 1}∗.

• Auxiliary Inputs: The adversary A holds an infinite
auxiliary input sequence z = (zk)k∈N, zk ∈ {0, 1}∗.

The protocol works as follow. For clarity, we omit
some trivial error-handlings such as P1 refusing to send
P2 something which is supposed to be sent. Handling
such errors is easy. P2 halting and outputting abort1
suffices.
• Receiver’s step (R1): P2 generates hash parameters

and samples instances.
1) P2 samples polys(k) instance vectors. Let

K
def
= polys(k). P2 does: Λ ← PG(1k);

for each i ∈ [K], ~ai ← IS(1k,Λ). With-
out loss of generality, we assume ~ai =
((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . ,
(ẍn, ẅn))T .

2) P2 disorders each instance vector.
For each i ∈ [K], P2 uniformly chooses a
permutation π1

i ∈U Π, then ~̃ai ← π1
i (~ai).

3) P2 sends the instances and the corresponding
hash parameters, i.e., (Λ, ~̃x1, ~̃x2, . . . , ~̃xK), to P1,
where ~̃xi

def
= ~x~̃ai (correspondingly, ~̃wi

def
= ~w~̃ai ).

• Receiver’s step (R2-R3)/Sender’s step (S1-S2): P1

and P2 cooperate to toss coin to choose instance
vectors to open.

1) P1: s ∈U {0, 1}K , sends PHC(s) to P2.
2) P2: s′ ∈U {0, 1}K , sends PBC(s′) to P1.
3) P1 and P2 respectively sends each other the de-

commitments to PHC(s) or PBC(s′), and re-
spectively checks the received de-commitments
are valid. If the check fails, P1 (P2 respectively)
halts and outputs abort2 (abort1 respectively).
If no check fails, then they proceed to next step.

4) P1 and P2 share a common randomness r =
s⊕s′. The instance vectors whose index fall into
CS

def
= {i|r〈i〉 = 1, i ∈ [K]} (correspondingly,

CS
def
= [K]− CS) are chosen to open.

• Receiver’s step (R4): P2 opens the chosen instances
to P1, encodes and sends his private input to P1.

1) P2 opens the chosen instances to prove that the
instances he generates are legal.
P2 sends ((i, j, ~̃wi〈j〉))i∈CS,j∈Ji to P1, where
Ji

def
= {j|~̃xi〈j〉 ∈ LR̈Λ

, j ∈ [n]}.
2) P2 encodes his private input and sends the

resulting code to P1.

Let Gi
def
= {j|~̃xi〈j〉 ∈ LṘΛ

, i ∈ CS}. For each
i ∈ CS, P2 does π2

i ← Γ(Gi, H), sends (π2
i )i∈CS

to P1. That is, P2 encode his private input into
sequences such as π2

i (~̃xi) where i ∈ CS.
Note that P2 can send ((i, j, ~̃wi〈j〉))i∈CS,j∈Ji and
(π2
i )i∈CS in one step.

• Sender’s step (S3): P1 checks the chosen instances,
encrypts and sends his private input to P2.

1) P1 verifies that each chosen instance vectors is
legal, i.e., the number of the entries belonging
to LṘΛ

is not more than h.
P1 checks that, for each i ∈ CS, #Ji ≥ n − h,
and for each j ∈ Ji, V F (1k,Λ, ~̃xi〈j〉, ~̃wi〈j〉) is 1.
If the check fails, P1 halts and outputs abort2,
otherwise P1 proceeds to next step.

2) P1 reorders the entries of each unchosen in-
stance vector in the way told by P2.
For each i ∈ CS, P1 does ˜̃

~xi ← π2
i (~̃xi).

3) P1 encrypts and sends his private input to P2

together with some auxiliary messages.
For each i ∈ CS, j ∈ [n], P1 does: (hkij , pkij)←
KG(1k,Λ,

˜̃
~xi〈j〉), βij ← Hash(1k,Λ,

˜̃
~xi〈j〉, hkij),

~βi
def
= (βi1, βi2, . . . , βin)T ,~c ← ~m ⊕ (⊕i∈CS ~βi),

−→
pki

def
= (pki1, pki2, . . . , pkin)T , sends ~c and

(
−→
pki)i∈CS to P2.

• Receiver’s step (R5): P2 decrypts the ciphertext ~c
and gains the message he want.
For each i ∈ CS, j ∈ H , P2 operates: β′ij ←
pHash(1k,Λ,

˜̃
~xi〈j〉,

−→
pki〈j〉, ˜̃

~wi〈j〉), m′j ← ~c〈j〉 ⊕
(⊕i∈CSβ′ij). Finally, P2 gains the messages (m′j)j∈H .

4.2 The Correctness Of The Framework
Now let us check the correctness of the framework, i.e.,
the framework works in the case that P1 and P2 are
honest. For each i ∈ CS, j ∈ H , we know

~c〈j〉 = ~m〈j〉 ⊕ (⊕i∈CS ~βi〈j〉)
m′j = ~c〈j〉 ⊕ (⊕i∈CSβ

′
ij)

Because of the projection of H, we know

~βi〈j〉 = β′ij

So we have
~m〈j〉 = m′j

This means what P2 gets is ~m〈H〉 that indeed is P2

wants.

4.3 The Security Of The Framework
With respect to the security of the framework, we have
the following theorem.

Theorem 8 (The protocol is secure against the malicious
adversaries). Assume that H is an t-smooth h-projective
hash family with witnesses and hard subset membership,
PHC is a perfectly hiding commitment, PBC is a perfectly
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binding commitment. Then, the protocol securely computes the
oblivious transfer functionality in the presence of non-adaptive
malicious adversaries.

We defer the strick proof of Theorem 8 to section 5 and
first give an intuitive analysis here as a warm-up. For the
security of P1, the framework should prevent P2 from
gaining more than h messages. Using cut and choose
technique, P1 makes sure with some probability that
each instance vector contains no more than h projective
instance, which leads to P2 learning extra messages is
difficult. The following theorem guarantees that this
probability is overwhelming.

Theorem 9. In case P1 is honest and P2 is corrupted, the
probability that P2 cheats to obtain more than h messages is
at most 1/2polys(k).

Proof: According to the framework, there are two
necessary conditions for P2’s success in the cheating.

1) P2 has to generate at least one illegal ~xi which
contains more than h entries belonging to LṘΛ

. If
not, P2 cann’t correctly decrypt more than h entries
of ~c, because of the smoothness of H. Without loss
of generality, we assume the illegal instance vectors
are ~xl1 , ~xl2 , . . . , ~xld .

2) All illegal instance vectors are lucky not to be
chosen and all the instance vectors unchosen
just are the illegal instance vectors, i.e., CS =
{l1, l2, . . . , ld}. We prove this claim in two case.

a) In the case that CS 6= {l1, l2, . . . , ld} and CS−
{l1, l2, . . . , ld} = ∅, there exists j(j ∈ [d] ∧ lj ∈
CS). So P1 can detect P2’s cheating and P2

will gain nothing.
b) In the case that CS 6= {l1, l2, . . . , ld} and

CS − {l1, l2, . . . , ld} 6= ∅, there exists j(j ∈
CS ∧ ~xj is legal). Because of the smoothness
of H, P2 cannot correctly decrypt more than h
entries of ~c.

Now, let us estimate the probability that the second
necessary condition is met. Note that, PHC(s) is a
perfectly hiding commitment and P1 is honest, so the
shared randomness r is uniformly distributed. We have

Pr(CS = {l1, l2, . . . , ld}) = (1/2)d(1/2)polys(k)−d

= 1/2polys(k)

This means that the probability that P2 cheats to obtain
more than h messages is at most 1/2polys(k).

For the security of P2, the framework first should
prevent P1 from learning P2’s private input. There is
a potential risk in Step R4 where P2 encodes his pri-
vate input. From Remark 6, we know that hard subset
membership guarantees that for any PPT malicious P1,
without being given π1

i , the probability that P1 learns
any new knowledge is negligible. Thus P2’s encod-
ing is safe. Besides cheating P2 of private input, it
seems there is another obvious attack that malicious P1

sends invalid messages, e.g. pkij which (hkij , pkij) /∈

Range(KG(1k,Λ, xij)), to P2. This attack in fact doesn’t
matter. Its effect is equal to that of P1’s altering his real
input, which is allowed in the ideal world too.

4.4 The Communication Rounds
Step R1 and Step R2 can be taken in one round. Step R5
is taken without communication. Each of other steps is
taken in one round. Therefore, the total number of the
communication rounds is six.

Compared with existing fully-simulatable protocols
for oblivious transfer that without resorting to a random
oracle or a trusted common reference string (CRS), our
protocol is the most efficient one. On counting the total
communication rounds of a protocol, we count that
of the modified version. In the modified version, the
consecutive communications of the same direction are
combined into one round. The protocol for OTnh×1 of
[6] costs one, two zero-knowledge proofs of knowledge
respectively in initialization and in transfer a message,
where each zero-knowledge proofs of knowledge is per-
formed in four rounds. The whole protocol costs at least
ten rounds. The protocol for OTnh of [26] costs one zero-
knowledge proof of knowledge in initialization which
is performed in three rounds at least, one protocol to
extract a secret key corresponding to the identity of a
message which is performed in four rounds, one zero-
knowledge proof of knowledge in transfer a message
which is performed in three rounds at least. We point out
that the interactive proof of knowledge of a discrete log-
arithm modulo a prime, presented by [46] and taken as a
zero-knowledge proof of knowledge protocol in [26], to
our best knowledge, is not known to be zero-knowledge.
However, turning to the techniques of Σ-protocol, [14]
make it zero-knowledge at cost of increment of three
rounds in communication, which in turn induces the
increment in communication rounds of the protocol of
[26]. Taking all into consideration, this protocol costs at
least ten rounds. The protocol for OT 2

1 of [33] costs six
rounds.

4.5 The Computational Overhead
We measure the computational overhead of the frame-
work in terms of the number of public key operations
(i.e., operations based on trapdoor functions, or similar
operations) , because the overhead of public key op-
erations, which depends on the length of their inputs,
is greater than that of symmetric key operations (i.e.,
operations based on one-way functions) by orders of
magnitude. Please see [35] to know which cryptographic
operation is public key operation or private key opera-
tion.

As to the framework, the public key operations are
Hash(.) and pHash(.), and the symmetric key operations
are PHC(.) and PBC(.). In Step S3, P1 takes n · #CS
invocations of Hash(.) to encrypt his private input. In
Step R5, P2 takes h · #CS invocations of pHash(.) to
decrypt the messages he want. The value of #CS is
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polys(k), polys(k)/2, respectively, in the worst case and
in the average case. Thus, fixing the problem we tackle
(i.e., fixing the values of n and h), the efficiency only
depends on the value of polys(k). In Section 5 where we
strictly prove the security of the framework, we’ll see the
probability that the simulator fails is at most 1/2polys(k)−1

in the case that P2 is corrupted. Thus, conditioning on
the cryptographic primitives without being broken, the
real world and the ideal world can be distinguished at
most 1/2polys(k)−2. Setting polys(k) to be 40, we obtains
such a probability 3.6×10−12, which is secure enough to
be used in practice. In the worst case the computational
overhead mainly consists of 40n invocations of Hash()
taken by P1 and 40h invocations of pHash() taken by
P2; in the worst case the computational overhead mainly
consists of 20n invocations of Hash() taken by P1 and
20h invocations of pHash() taken by P2.

We point out that, our simulator also may fail (with
negligible probability) in the case that P1 is corrupted,
but the probability of this event arising depends on the
computational hiding of PBC and on the computational
binding of PHC rather than the value of polys(k) and
has no effect on computational overhead. So we don’t
need to take this case into consideration here.

Compared with existing fully-simulatable protocols
for oblivious transfer that without resorting to a random
oracle or a trusted CRS, our DDH-based instantiation
that will be presented in Section 7.1 is the most efficient
one in computational overhead. The operations of the
protocol in [6] are based on the non-standard assump-
tions, i.e., q-Power Decisional Diffie-Hellman and q-
Strong Diffie-Hellman (q-SDH) assumptions, which both
are associated with bilinear groups. [13] indicates that q-
SDH-based operations are more expensive that standard-
assumption-based operations. The operations of the pro-
tocol in [26] are based on Decisional Bilinear Diffie-
Hellman (DBDH) assumption. Since bilinear curves are
considerably more expensive than regular Elliptic curves
[19] and DDH is obtainable from Elliptic curves, the
operations in [6], [26] are considerably more expensive
than that DDH-based operations. Therefore, our DDH-
based instantiation are more efficient than the protocols
presented by [6], [26]. The DDH-based protocol for OT 2

1

presented by [33] also are very efficient. However, it can
be viewed as a specific case of our framework, thought
some modification of the protocol is needed.

We have to admit that, in the context of a trusted CRS
is available and only OT 2

1 is needed, [43]’s DDH-based
instantiation, which is two-round efficient and of two
public key encryption operations and one public key
decryption operation, is the most efficient one, no matter
seen from the number of communication rounds or the
computational overhead.

5 A SECURITY PROOF OF THE FRAMEWORK
We prove Theorem 8 holds in this section. For notational
clarity, we denote the entities, the parties and the ad-
versary in the real world by P1, P2, A, and denote the

corresponding entities in the ideal world by P ′1, P ′2, A′.
In the light of the parties being corrupted, there are four
cases to be considered and we prove Theorem 8 holds
in each case.

We don’t know how to construct a strictly polynomial-
time simulator for the adversary in the real world, in the
case that only P1 or P2 is corrupted. Instead, expected
polynomial-time simulators are constructed (see section
2.2 for the justification), which results in a failure of
standard black-box reduction technique. Fortunately, the
problem and its derived problems can be solved using
the technique given by [24].

5.1 In the case that P1 Is Corrupted

In the case that P1 is corrupted, A takes the full control
of P1 in the real world. Correspondingly, A’s simulator,
A′, takes the full control of P ′1 in the ideal world, where
A′ is constructed as follow.
• Initial input: A′ holds the same k, I

def
= {1}, z =

(zk)k∈N, as A. What is more, A′ holds a uniform
distributed randomness rA′ ∈ {0, 1}∗. The parties P ′1
and P1, whom A′ and A respectively is to corrupt,
hold the same ~m.

• A′ works as follows.
– Step Sm1: A′ corrupts P ′1 and learns P ′1’s private

input ~m. Let Ā be a copy of A, i.e., Ā = A. A′

use Ā as a subroutine. A′ fixes the initial inputs
of Ā to be identical to his except that fixes the
randomness of Ā to be a uniformly distributed
value. A′ activates Ā, and supplies Ā with ~m
before Ā engages in the protocol for OTnh .
In the following steps, A′ builds an environment
for Ā which simulates the real world. That is, A′

disguises himself as P1 and P2 at the same time
to interact with Ā.

– Step Sm2: A′ uniformly chooses a randomness
r ∈U {0, 1}K (K

def
= polys(k)) as the shared

randomness. Let CS and CS be the sets decided
by r. For each i ∈ CS, A′ honestly generates
the hash parameters and instance vectors. For
each i ∈ CS, A′ calls Cheat(1k) to generate such
parameters and vectors. A′ sends these hash
parameters and instance vectors to Ā.
Remark 10. From the remark 6, we know that each
entry of the instance vector generated by Cheat(1k)
is projective. If such instance vectors are not chosen
to be open, then the probability of Ā detecting this
fact is negligible, and A′ can extract the real input
of Ā, which is we want.

– Step Sm3: A′ plays the role of P2 and executes
Step R2-R3 of the framework to cooperate with
Ā to toss coin. When tossing coin is completed
successfully, A′ learns and records the value s
Ā commits to.
Remark 11. The aim of doing this tossing coin is
to know the randomness s Ā choses. What A′ will
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do next is to take PBC(r ⊕ s) as his commitment
to redo tossing coin.

– Step Sm4: A′ repeats the following proce-
dure, denoted Υ, until Ā correctly reveals the
recorded value s.
Υ: A′ rewinds Ā to the end of Step S1 of the
framework. Then, taking PBCγ(r ⊕ s) as his
commitment, A′ executes Step R2 and R3 of
the framework, where γ is a fresh randomness
uniformly chosen.

– Step Sm5: Now A′ and Ā shares the common
randomness r. A′ executes Step R4 of the frame-
work as the honest P2 do. On receiving ~c and
(
−→
pki)i∈CS , A′ correctly decrypts all entries of ~c

and gains Ā’s full real private input ~m. Then A′

sends ~m to the TTP .
– Step Sim6: When Ā halts, A′ halts with out-

putting what Ā outputs.
Without considering Step Sim4, A′ is polynomial-time.

However, taking Step Sim4 into consideration, this is
not true any more. Let q(α), p(α) respectively denotes
the probability that Ā correctly reveals his commit-
ment in Step Sim3 and in Procedure Υ, where α

def
=

(1k, zk, I, ~m, rĀ). Then, the expected times of repeating
Υ in Step Sim4 is q(α)/p(α). Since the view Ā holds
before revealing his commitment in Step Sim3 is different
from that in procedure Υ, q(α), p(α) are distinct. What
the computational secrecy of PBC guarantees and only
guarantees is |q(α) − p(α)| = µ(.). However, there is a
risk that q(α)/p(α) is not bound by a polynomial. For
example, q(α) = 1/2k, p(α) = 1/22k, which result in
q(α)/p(α) = 2k. This is a big problem and gives rise
to many other difficulties we will encounter later.

Fortunately, [24] encounters and solves the same prob-
lem and its derived problem as ours. In a little more
details, [24] presents a protocol, in which P1, P2 re-
spectively sends a perfectly hiding commitment, a per-
fectly binding commitment, and the corresponding de-
commitments to each other as the situation of tossing
coin of our framework. To prove the security in the case
that P1 is corrupted, [24] constructs a simulator in the
same way as ours and encounters the same problem as
ours.

Using the idea of [24], we can overcome such problem
too. Specifically, an expected polynomial-time simula-
tor can be obtained by replacing Step Sim4 with Step
Sim4.1, Sim4.2 given as follow.
• Step Sim4.1: A′ estimates the value of q(α). A′

repeats the following procedure, denoted Φ, until
the number of the time of Ā correctly revealing his
commitment is up to poly(k), where poly(.) is a big
enough polynomial.
Φ: A′ rewinds Ā to the end of Step S1 of the
framework and A′ honestly executes Step R2 and
R3 of the framework to interact with it.
Denote the number of times that Φ is repeated by
d, then q(α) is estimated as q̃(α)

def
= poly(k)/d.

• Step Sim4.2: A′ repeats the procedure Υ. In case Ā
correctly reveals the recorded value s, A′ proceeds
to the next step. In case Ā correctly reveals a value
which is different from s, A′ outputs ambiguity1 and
halts. In case the number of the time of repeating
Υ exceeds the value of poly(k)/q̃(α), A′ outputs
timeout and halts.

Proposition 12. The simulator A′ is expected polynomial-
time.

Proof: Conditioning on Step Sim4.1 is executed, the
expected value of d is poly(k)/q(α). Choosing a big
enough poly(.), q̃(α) is within a constant factor of q(α)
with probability 1 − 2poly(k). Therefore, the expected
running time of A′,

ExpT imeA′ ≤ TimeSim1 + TimeSim2 + TimeSim3

+ q(α) · (TimeΦ · poly(k)/q(α)+

TimeΥ · poly(k)/q̃(α))

+ TimeSim5 + TimeSim6

, is bounded by a polynomial.
What is more, we have
1) The probability that A′ outputs timeout is negligi-

ble.
2) The probability that A′ outputs ambiguity1 is neg-

ligible.
3) The output of A′ in the ideal world and the output

of A in the real world are computationally indis-
tinguishable, i.e.,

{Idealf,{1},A′(zk)(1
k, ~m,H)〈1〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Realπ,{1},A(zk)(1
k, ~m,H)〈1〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗
(2)

Since the propositions above can be proven in the
same way as [24], we don’t iterate such details here.

Proposition 13. In the case that P1 was corrupted, i.e., I =
{1}, the equation (1) required by Definition 1 holds.

Proof: First let us focus on the real world. A’s real
input can be formulated as γ ← A(1k, ~m, zk, rA, r1). Note
that in this case, P2’s output is a determinate function of
A’s real input. Since A’s real input is in its view, with-
out loss of generality, we assume A’s output, denoted
α, constains its real input. Therefore, P2’s output is a
determinate function of A’s output, where the function
is

g(α) =

{
abort1 if γ = abort1,

γ〈H〉 otherwise.

Let h(α)
def
= (α, λ, g(α)). Then we have

Realπ,{1},A(zk)(1
k, ~m,H) ≡

h(Realπ,{1},A(zk)(1
k, ~m,H)〈0〉)
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Similarly, in the ideal world, we have

Idealf,{1},A′(zk)(1
k, ~m,H)

c
=

h(Idealf,{1},A′(zk)(1
k, ~m,H)〈0〉)

We use c
= not ≡ here because there is a negligible

probability that A′ outputs timeout or ambiguity1, which
makes h(.) undefined.

Let X(1k, ~m,H, zk, {1})
def
=

Realπ,{1},A(zk)(1
k, ~m,H)〈0〉, Y (1k, ~m,H, zk, {1})

def
=

Idealf,{1},A′(zk)(1
k, ~m,H)〈0〉. Following equation (2),

X
c
= Y . Let F

def
= (h)k∈N. What is more, assume

that A′ runs in a strictly polynomial-time. According
to Proposition 20 we will present in Section 7, the
proposition holds.

In fact, A′ doesn’t run in strictly polynomial-time,
which results in a failure of above standard reduction.
Fortunately, this difficulty can be overcome by truncating
the rare executions of A′ which are too long, then
applying standard reduction techniques. Since the details
is the same as [24], we don’t give them here and please
see [24] for them.

5.2 In the case that P2 Is Corrupted
In the case that P2 is corrupted, A takes the full control
of P2 in the real world. Correspondingly, A′ takes the
full control of P ′2 in the ideal world. We construct A′ as
follows.
• Initial input: A′ holds the same k, I

def
= {2}, z =

(zk)k∈N as A, and holds a uniformly distributed
randomness rA′ ∈ {0, 1}∗. The parties P ′2 and P2

hold the same private input H .
• A′ works as follows.

– Step Sim1: A′ corrupts P ′2 and learns P ′2’s pri-
vate input H . A′ takes A’s copy Ā as a subrou-
tine, fixes Ā’s initial input, activates Ā, supplies
Ā with H , builds an environment for Ā in the
same way as A′ does in the case that P1 is
corrupted.

– Step Sim2: Playing the role of P1, A′ honestly ex-
ecutes the sender’s steps until reaches Step S3.3.
If Step S3.3 is reached, A′ records the shared
randomness r and the messages, denoted msg,
which he sends to Ā. Then A′ proceeds to next
step. Otherwise, A′ sends abort2 to TTP, outputs
what Ā outputs and halts.

– Step Sim3: A′ repeats the following procedure,
denoted Ξ, until the hash parameters and the
instance vectors Ā sends in Step R1 passes the
check. A′ records the shared randomness r̃, the
messages Ā sends to open the chosen instance
vectors.
Ξ: A′ rewinds Ā to the beginning of Step R2, and
honestly follows sender’s steps until reaches
Step S3.3 to interact with Ā.
Note that, in each repeating Ξ, the value A′ com-
mits to and the randomness used to generate the

commitment in Step S1 are fresh and uniformly
chosen.

– Step Sim4:
1) In case r = r̃, A′ outputs failure and halts;
2) In case r 6= r̃ ∧ ∀i(r〈i〉 6= r̃〈i〉 → r〈i〉 = 1 ∧

r̃〈i〉 = 0), A′ runs from scratch;
3) Otherwise, i.e., in case r 6= r̃ ∧ ∃i(r〈i〉 = 0 ∧

r̃〈i〉 = 1), A′ records the first one, denoted e,
of these is and proceeds to next step.

Remark 14. The aim of Step Sim3 and Sim4 is to
prepare to extract the real input of Ā. If the third
case happens, then A′ knows each entry of ~̃xe he
sees in Step Sim2 belong to LṘΛe

or LR̈Λe
. What

is more, ~̃xe is indeed a legal instance vector. This is
because ~̃xe passes the check executed by A′ in Step
Sim3. Combing π2

e received in Step Sim2, A′ knows
the real input of Ā.
Note that, Ā’s initial input is fixed by A′ in Step
Sim1. So receiving the same messages, Ā responds
in the same way. Therefore, rewinding Ā to the
beginning of Step R2, sending the message sent in
Step Sim2, A′ can reproduce the same scenario as he
meets in Step Sim2.

– Step Sim5: A′ rewinds Ā to the beginning of
Step R2 of the framework, and sends msg pre-
viously recorded to Ā in order. According to the
analysis of Remark 14, A′ can extract Ā’s real
input H ′. A′ does so and sends H ′ to TTP and
receives message ~m〈H ′〉.

– Step Sim6: A′ constructs ~m′ as follows. For each
i ∈ H ′, ~m′〈i〉 ← ~m〈i〉. For each i /∈ H ′, ~m′〈i〉 ∈U
{0, 1}∗. Playing the role of P1 and taking ~m′ as
his real input, A′ follows Step S3.3 to complete
the interaction with Ā.

– Step Sim6: When Ā halts, A′ halts with out-
putting what Ā outputs..

Proposition 15. The simulator A′ is expected polynomial-
time.

Proof: First, let us focus on Step Sim3. In each repeti-
tion of Ξ, because of the perfectly hiding of PHC(.), and
the uniform distribution of the value A′ commits to, the
chosen instance vectors are uniformly distributed. This
lead to the probability that Ā passes the check in each
repetition is the same. Denote this probability by p. The
expected time of Step Sim3 is

ExpT imeSim3 = (1/p) · TimeΞ

Under the same analysis, the probability that Ā passes
the check in Step Sim2 is p too. Then, the expected time
that A′ runs once from Step Sim1 to the beginning of
Step Sim4 is

OncExpT imeSim1→Sim4 ≤ TimeSim1 + TimeSim2

+ p · ExpT imeSim3

= TimeSim1 + TimeSim2

+ TimeΞ
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Second, let us focus on Step Sim4, especially the case
that A′ needs to run from scratch. Note that the initial
inputs A′ holds is the same in each trial. Thus the
probability that A′ runs from scratch in each trial is
the same. We denote this probability by 1 − q. Then
the expected time that A′ runs from Step Sim1 to the
beginning of Step Sim5 is

ExpT imeSim1→Sim5 ≤ (1 + 1/q)

· (OncExpT imeSim1→Sim4

+ TimeSim4)

= (1 + 1/q) · (TimeSim1+

TimeSim2 + TimeΞ + TimeSim4)

The reason there is 1 here is that A′ has to run from
scratch at least one time in any case.

The expected running time of A′ in a whole execution
is

ExpT imeA′ ≤ ExpT imeSim1→Sim5 + TimeSim5

+ TimeSim6

= (1 + 1/q) · (TimeSim1 + TimeSim2

+ TimeΞ + TimeSim4)

+ TimeSim5 + TimeSim6

(3)

Third, let us estimate the value of q, which is the
probability that A′ does not run from scratch in a trial.
We denote this event by C. It’s easy to see that event
C happens, if and only if one of the following events
happens.

1) Event B happens, where B denotes the even that
A′ halts before reaching Step Sim3.

2) Event B̄ happens and R = R̃, where R and R̃
respectively denotes the random variable which is
defined as the shared randomness A′ gets in Step
Sim2 and Step Sim3.

3) Event B̄ happens and there exists i such that R〈i〉 =
0 ∧ R̃〈i〉 = 1 .

So

q =Pr(C)

=Pr(B) + Pr(B̄ ∩R = R̃)

+ Pr(B̄ ∩ ∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1))

=Pr(B) + Pr(B̄) · (Pr(R = R̃|B̄)

+ Pr(∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1)|B̄))

(4)

Let S1
def
= {(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r = r̃}, S2

def
=

{(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r 6= r̃,∀i(r〈i〉 6= r̃〈i〉 → r〈i〉 =

1 ∧ r̃〈i〉 = 0)}, S3
def
= {(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r 6=

r̃,∃i(i ∈ [K] ∧ r〈i〉 = 0 ∧ r̃〈i〉 = 1)}. It is easy to see that
S1, S2, S3 constitute a complete partition of ({0, 1}K)2

and #S1 = 2K , #S2 = #S3 = (2K · 2K − 2K)/2.
Because of the perfectly hiding of PHC(.), and the

uniform distribution of the value A′ commits to, R and
R̃ are all uniformly distributed. We have

Pr(R = R̃|B̄) = #S1/#({0, 1}K)2 = 1/2K (5)

and

Pr(∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1)|B̄) = #S3/#({0, 1}K)2

= 1/2− 1/2K+1
(6)

Combining equation (4), (5) and (6), we have

q = Pr(B) + Pr(B̄)(1/2 + 1/2K+1)

= 1/2 + 1/2K+1 + (1/2− 1/2K+1)Pr(B)

> 1/2

(7)

Combining equation (3) and (7), we have

ExpT imeA′ < 3(TimeSim1 + TimeSim2

+ TimeΞ + TimeSim4)

+ TimeSim5 + TimeSim6

which means the expected running time of A′ is bound
by a polynomial.

Lemma 16. The probability that A′ outputs failure is less
than 1/2K−1.

Proof: Let X be a random variable defined as the
number of the trials in a whole execution. From the proof
of Proposition 15, we know two facts. First, Pr(X = i) =
(1 − q)i−1q < 1/2i−1. Second, in each trial the event A′

outputs failure is the combined event of B̄ and R = R̃,
where the combined event happens with the following
probability.

Pr(B̄ ∩R = R̃) = Pr(B̄)Pr(R = R̃|B̄) ≤ Pr(R = R̃|B̄)

Combining equation (5), this probability is not more than
1/2K . Therefore, the probability that A′ outputs failure
in a whole execution is

∞∑
i=1

Pr(X = i)Pr(B̄ ∩R = R̃) < (1/2K) ·
∞∑
i=1

1/2i−1

= 1/2K−1

Lemma 17. The output of the adversary A in the real
world and that of the simulator A′ in the ideal world are
computationally indistinguishable, i.e.,

{Realπ,{2},A(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealf,{2},A′(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

Proof: First, we claim that the outputs of A′ and Ā
are computationally indistinguishable. The only point
that the output of A′ is different from that of Ā is A′

may outputs failure. Since the probability that this point
arises is negligible, our claim holds.

Second, we claim that the outputs of A and Ā are
computationally indistinguishable. The only point that
the view of Ā is different from that of A is that the
ciphertext Ā receives is generated by encrypting ~m′

not ~m. Fortunately, SPHDHCt,h’s property smoothness
guarantees that the ciphertext generated in the two
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way are computationally indistinguishable. Therefore,
our claim holds.

Combining the two claims, the proposition holds.

Proposition 18. In the case that P2 was corrupted, i.e., I =
{2}, the equation (1) required by Definition 1 holds.

Proof: Note that the honest parties P1 and P ′1 end
up with outputting nothing. Thus, the fact that the out-
puts of A′ and A are computationally indistinguishable,
which is supported by Lemma 17, directly prove this
proposition holds.

5.3 Other Cases
In the case that both P1 and P2 are corrupted, A takes
the full control of the two corrupted parties. In the ideal
world, a similar situation also holds with respect to A′,
P ′1 and P ′2. Liking in previous cases, A′ uses A’s copy,
Ā, as a subroutine and builds a simulated environment
for Ā. A′ provids Ā with P ′1 and P ′2’s initial inputs
before Ā engages in the protocol. When Ā halts, A′ halts
with outputting what Ā outputs. Obviously, A′ runs in
strictly polynomial-time and the equation (1) required
by Definition 1 holds in this case.

In the case that none of P1 and P2 is corrupted. The
simulator A′ is constructed as follows. A′ uses Ā, P̄1,
P̄2 as subroutines, where Ā, P̄1, P̄2, respectively, is the
copy of A, P1 and P2. A′ fixes Ā’s initial inputs in the
same way as in previous cases. A′ chooses an arbitrary
~̄m ∈ ({0, 1}∗)n and a uniformly distributed random-
ness r̄1 as P̄1’s initial inputs. A′ chooses an arbitrary
H̄ ∈ Ψ and a uniformly distributed randomness r̄2

as P̄2’s initial inputs. A′ actives these subroutines and
make the communication between P̄1 and P̄2 available
to Ā. Note that, in the case that none of P1 and P2 is
corrupted, what adversaries can see in real life only is the
communication between honest parties. When Ā halts,
A′ halts with outputting what Ā outputs. Obviously, A′

runs in strictly polynomial-time and the equation (1)
required by Definition 1 holds in this case.

6 HOW TO CONSTRUCT SPHDHCt,h EASILY
SPHDHCt,h holds so many properties that constructing
it from scratch is not always easy. In this section, we
reduce constructing SPHDHCt,h to constructing seem-
ingly simpler hash systems. A idea naturally arising is
that generating the instances independently in essence
to obtain the required properties. We keep this idea in
mind to proceed to construct SPHDHCt,h.

6.1 Smoothness
In this section, we describe how to obtain smoothness for
a hash family. First, we introduce a lemma from [23].

Lemma 19 ( [23]). Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗

and Y
def
= {Y (1k, a)}k∈N,a∈{0,1}∗ be two polynomial-time

constructible probability ensembles, and X c
= Y , then

~X
c
= ~Y

where ~X
def
= { ~X(1k, a)} k∈N

a∈{0,1}∗
, ~X(1k, a)

def
=

(Xi(1
k, a))i∈[poly(k)], each Xi(1

k, a) = X(1k, a),
~Y
def
= {~Y (1k, a)} k∈N

a∈{0,1}∗
, ~Y (1k, a)

def
= (Yi(1

k, a))i∈[poly(k)],

each Yi(1
k, a) = Y (1k, a), and all Xi(1

k, a), Yi(1k, a) are
independent.

Proposition 20. Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and

Y
def
= {Y (1k, a)}k∈N,a∈{0,1}∗ be two polynomial-time con-

structible probability ensembles, X c
= Y , F def

= (fk)k∈N,
fk : {0, 1}∗ → {0, 1}∗ is polynomial-time computable, then

F (X)
c
= F (Y )

where F (X)
def
= {fk(X(1k, a))}k∈N,a∈{0,1}∗ ,F (Y )

def
=

{fk(Y (1k, a))}k∈N,a∈{0,1}∗ .

Proof: Assume the proposition is false, then there ex-
ists a non-uniform PPT distinguisher D with an infinite
sequence z = (zk)k∈N, a polynomial poly(.), an infinite
positive integer set G ⊆ N such that, for each k ∈ G, it
holds that

|Pr(D(1k, zk, a, fk(X(1k, a))) = 1)−
Pr(D(1k, zk, a, fk(Y (1k, a))) = 1)| ≥ 1/poly(k)

We construct a distinguisher D′ with an infinite se-
quence z = (zk)k∈N for the ensembles X and Y as
follows.
D′(1k, zk, a, γ): δ ← fk(γ), finally outputs

D(1k, zk, a, δ).
Obviously, D′(1k, zk, a,X(1k, a)) =

D(1k, zk, a, fk(X(1k, a)), D′(1k, zk, a, Y (1k, a)) =
D(1k, zk, a, fk(Y (1k, a)). So we have

|Pr(D′(1k, zk, a,X(1k, a)) = 1)−
Pr(D′(1k, zk, a, Y (1k, a)) = 1)| ≥ 1/poly(k)

This contradicts the fact X c
= Y .

Lemma 21. LetH = (PG, IS,DI,KG,Hash, pHash,Cheat)

be a Hash Family. n
def
= h + t. For each i ∈ [2]

and j ∈ [n], Smj
i

def
= {Smj

i (1
k)}k∈N

def
=

{(SmGeni(1k)〈1〉, SmGeni(1k)〈2〉〈j〉)}k∈N, where
SmGeni(1

k) is defined in Definition 4. If H meets the
following three conditions

1) All random variables SmGeni(1k)〈2〉〈j〉 are indepen-
dent, where i ∈ [2],j ∈ [n]− [h].

2) Smh+1
1 = . . . = Smn

1 , and Smh+1
2 = . . . = Smn

2 .
3) Smh+1

1
c
= Smh+1

2 .
then H has property smoothness.

Proof: Following Lemma 19,

{(Smh+1
1 (1k), . . . , Smn

1 (1k))}k∈N
c
= {(Smh+1

2 (1k), . . . , Smn
2 (1k))}k∈N
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holds. Let ~X
def
= {(Sm1

1(1k), . . . , Smn
1 (1k))}k∈N, and

~Y
def
= {(Sm1

2(1k), . . . , Smn
2 (1k))}k∈N. From the defini-

tion of SmGeni(1k), we notice that, for each j ∈ [h]
Smj

1(1k) = Smj
2(1k). So it holds that

~X
c
= ~Y

Since each Smj
i (1

k) is polynomial-time constructible,
thus both ~X and ~Y are polynomial-time constructible. Let
F

def
= (π)k∈N, where π ∈ Π. Following Proposition 20, we

have F ( ~X)
c
= F (~Y ), i.e.,

{π(Sm1
1(1k), . . . , Smn

1 (1k))}k∈N
c
= {π(Sm1

2(1k), . . . , Smn
2 (1k))}k∈N

Notice that SmGen1(1k)〈1〉 = SmGen2(1k)〈1〉, we
have

{(SmGen1(1k)〈1〉, π(SmGen1(1k)〈2〉))}k∈N
c
= {(SmGen2(1k)〈1〉, π(SmGen2(1k)〈2〉))}k∈N

That is
Sm1

c
= Sm2

, which meets the requirement of the smoothness.
Loosely speaking, following Lemma 21, given a hash

family H, if each ẍ was sampled in an independent way
and its projective key is useless to obtain the value of
Hash(1k,Λ, ẍ, .), then H is smooth.

6.2 Hard Subset Membership

In this section, we deal with how to obtain hard subset
membership for a hash family.

Proposition 22. Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and

Y
def
= {Y (1k, a)}k∈N,a∈{0,1}∗ be two polynomial-time con-

structible probability ensembles, and X c
= Y . Then

−−→
XY

c
= Φ(

−−→
X̃Y )

where
−−→
XY and Φ(

−−→
X̃Y ) are two probability ensembles defined

as follows.

•
−−→
XY

def
= {

−−→
XY (1k, a)}k∈N,a∈{0,1}∗ ,

−−→
XY (1k, a)

def
=

(X1(1k, a), . . . , Xpoly1(k)(1
k, a), Ypoly1(k)+1(1k, a), . . . ,

Ypoly(k)(1
k, a)), each Xi(1

k, a) = X(1k, a), each
Yi(1

k, a) = Y (1k, a), poly1(.) ≤ poly(.), all Xi(1
k, a)

and Yi(1k, a) are independent;

• Φ(
−−→
X̃Y )

def
= {Φk(

−−→
X̃Y (1k, a))}k∈N,a∈{0,1}∗ ,−−→

X̃Y (1k, a) =
−−→
XY (1k, a), Φ

def
= (Φk)k∈N, each

Φk is a permutation over [poly(k)].

Proof: In case Φk([poly1(k)]) ⊆ [poly1(k)], it ob-
viously holds. We proceed to prove it also holds in
case Φk([poly1(k)]) * [poly1(k)]. Assume it does not
hold in this case, then there exists a non-uniform PPT
distinguisher D with an infinite sequence z = (zk)k∈N, a

polynomial poly2(.), a infinite positive integer set G ⊆ N
such that, for each k ∈ G,

|Pr(D(1k, zk, a,
−−→
XY (1k, a)) = 1)

− Pr(D(1k, zk, a,Φk(
−−→
X̃Y (1k, a)) = 1)|

≥ 1/poly2(k) (8)

V
def
= {i|i ∈ [poly1(k)],Φk(i) ∈ [poly(k)]− [poly1(k)]}. We

list the elements of V in order as i1 < ... < ij ... < i#V .
Let Vj

def
= {i1, . . . , ij}. We define the following permuta-

tions over [poly(k)].

Φ0′

k (i) = i i ∈ [poly(k)]

Φ0
k(i) =

{
i i ∈ V ∪ Φk(V )

Φk(i) i ∈ [poly(k)]− V − Φk(V )

For j ∈ [#V ],

Φjk(i) =

{
i i ∈ (V − Vj) ∪ Φk(V − Vj),
Φk(i) i ∈ [poly(k)]− (V − Vj)− Φk(V − Vj).

It is easy to see that
−−→
X̃Y (1k, a) = Φ0′

k (
−−→
X̃Y (1k, a)) ≡

Φ0
k(
−−→
X̃Y (1k, a)), and Φk = Φ#V

k . Since
−−→
XY (1k, a) =−−→

X̃Y (1k, a), then
−−→
XY (1k, a)

c
= Φ0

k(
−−→
X̃Y (1k, a)). So we have

|Pr(D(1k, zk, a,
−−→
XY (1k, a)) = 1)−

Pr(D(1k, zk, a,Φk(
−−→
X̃Y (1k, a))) = 1)|

= |Pr(D(1k, zk, a,Φ
0
k(
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,Φ
#V
k (
−−→
X̃Y (1k, a))) = 1)| (9)

Following triangle inequality, we have

|Pr(D(1k, zk, a,Φ
0
k(
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,Φ
#V
k (
−−→
X̃Y (1k, a))) = 1)| ≤

#V∑
j=1

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,Φ
j
k(
−−→
X̃Y (1k, a))) = 1)| (10)

Combining equation (8) (9) (10), we have

#V∑
j=1

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,Φ
j
k(
−−→
X̃Y (1k, a))) = 1)| ≥ 1/poly2(k)

So there exists j ∈ [#V ] such that

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,Φ
j
k(
−−→
X̃Y (1k, a))) = 1)|
≥ 1/(#V · poly2(k)) (11)
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According to the definition of Φj−1
k ,Φjk, the

differences between them are the values of points
ij ,Φk(ij). Similarly, the only differences between

Φj−1
k (
−−→
X̃Y (1k, a)) and Φjk(

−−→
X̃Y (1k, a)) are the ij-th

and Φk(ij)-th entries, i.e., Φj−1
k (
−−→
X̃Y (1k, a))〈ij〉 =

X(1k, a), Φj−1
k (
−−→
X̃Y (1k, a))〈Φk(ij)〉 = Y (1k, a),

Φjk(
−−→
X̃Y (1k, a))〈ij〉 = Y (1k, a), Φjk(

−−→
X̃Y (1k, a))〈Φk(ij)〉 =

X(1k, a).
Let

−−−−→
MXY

def
= {

−−−−→
MXY (1k, a)}k∈N,a∈{0,1}∗ , where

−−−−→
MXY (1k, a) is defined as follows. For each d ∈ [poly(k)],

−−−−→
MXY (1k, a)〈d〉 =

{
Φj−1
k (
−−→
X̃Y (1k, a))〈d〉 d 6= Φk(ij)

X(1k, a) d = Φk(ij)

The difference between
−−−−→
MXY (1k, a) and

Φj−1
k (
−−→
X̃Y (1k, a)) is that

−−−−→
MXY (1k, a)〈Φk(ij)〉 = X(1k, a),

Φj−1
k (
−−→
X̃Y (1k, a))〈Φk(ij)〉 = Y (1k, a). The difference

between
−−−−→
MXY (1k, a) and Φjk(

−−→
X̃Y (1k, a)) is that

−−−−→
MXY (1k, a)〈ij〉 = X(1k, a), Φjk(

−−→
X̃Y (1k, a))〈ij〉 =

Y (1k, a). Following triangle inequality, we have

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)|+

|Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)−

Pr(D(1k, zk, a,Φ
j
k(
−−→
X̃Y (1k, a))) = 1)|

≥ |Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,Φ
j
k(
−−→
X̃Y (1k, a))) = 1)| (12)

Combining (11) (12), we know that

|Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)−

Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)|
≥ 1/(2#V · poly2(k)) (13)

or

|Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)−

Pr(D(1k, zk, a,Φ
j
k(
−−→
X̃Y (1k, a))) = 1)|
≥ 1/(2#V · poly2(k)) (14)

holds. Without loss of generality, we assume equation
(13) holds (in case equation (14) holds, the proof can be
done in similar way). We can construct a distinguisher D′

with an infinite sequence z = (zk)k∈N for the probability
ensembles X and Y as follows.
D′(1k, zk, a, γ): −→xy〈Φj−1

k (i)〉 ← SX(1k, a) ∀i ∈
[poly1(k)], −→xy〈Φj−1

k (i)〉 ← SY (1k, a) ∀i ∈ [poly(k)] −
[poly1(k)] − {Φk(ij)}, −→xy〈Φk(ij)〉 ← γ, finally outputs
D(1k, zk, a,

−→xy).
Obviously, if γ is sampled from Y (1k, a), then −→xy is

an instance of Φj−1
k (
−−→
X̃Y (1k, a)); if γ is sampled from

X(1k, a), then −→xy is an instance of
−−−−→
MXY (1k, a). So we

have

|Pr(D′(1k, zk, a,X(1k, a)) = 1)−
Pr(D′(1k, zk, a, Y (1k, a)) = 1)| =

|Pr(D(1k, zk, a,
−−−−→
MXY (1k, a)) = 1)−

Pr(D(1k, zk, a,Φ
j−1
k (
−−→
X̃Y (1k, a))) = 1)| (15)

Combining (13) (15), we have

|Pr(D′(1k, zk, a,X(1k, a)) = 1)−
Pr(D′(1k, zk, a, Y (1k, a)) = 1)| ≥ 1/(2#V · poly2(k))

This contradicts the fact X c
= Y . Therefore, the propo-

sition also holds in case Φk([poly1(k)]) * [poly1(k)] too.

Lemma 23. LetH = (PG, IS,DI,KG,Hash, pHash,Cheat)

be a hash family. Let n
def
= h + t. For each i ∈ [n],

HSM i def
= {HSM i(1k)}k∈N, HSM i(1k)

def
=

(HSM1(1k)〈1〉, HSM1(1k)〈i + 1〉), where HSM1(1k)
is defined in Definition 4. If H meets the following three
conditions,

1) All variables HSM1(1k)〈i+ 1〉 are independent, where
i ∈ [n].

2) HSM1 = . . . = HSMh, HSMh+1 = . . . = HSMn.
3) HSM1 c

= HSMh+1.
then H has property hard subset membership.

Proof: Let π ∈ Π, X
def
= HSM1, Y

def
= HSMh+1,

Φ = (π)k∈N, poly1(.)
def
= h, poly(.)

def
= n. Following

Proposition 22, we know

−−→
XY

c
= Φ(

−−→
X̃Y )

That is

((HSM1(1k)〈1〉, HSM1(1k)〈2〉), . . .
(HSM1(1k)〈1〉, HSM1(1k)〈n+ 1〉)) c

=

(HSM2(1k)〈1〉, HSM2(1k)〈2〉), . . .
(HSM2(1k)〈1〉, HSM2(1k)〈n+ 1〉))

where HSM1(1k), HSM2(1k) are taken from Definition
4. Note that HSM1(1k)〈1〉 = HSM2(1k)〈1〉, so

(HSM1(1k)〈1〉, HSM1(1k)〈2〉, . . . ,HSM1(1k)〈n+1〉) c
=

(HSM2(1k)〈1〉, HSM2(1k)〈2〉, . . . ,HSM2(1k)〈n+ 1〉)

i.e.,
HSM1

c
= HSM2

, which meets the requirement of the property hard
subset membership.

Loosely speaking, Lemma 23 shows that,
given a hash family H, if random variables
IS(1k,Λ)〈1〉, . . . , IS(1k,Λ)〈n〉 are independent,
IS(1k,Λ)〈1〉, . . . , IS(1k,Λ)〈h〉 sample ẋ from LṘΛ

in the same way , IS(1k,Λ)〈h + 1〉, . . . , IS(1k,Λ)〈n〉
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sample ẍ from LR̈Λ
in the same way, LṘΛ

and LR̈Λ

are computationally indistinguishable, then H has hard
subset membership.

6.3 Feasible Cheating
In this section, we describe how to obtain property
feasible cheating for a hash family.

Lemma 24. Let X def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
=

{Y (1k, a)}k∈N,a∈{0,1}∗ be two polynomial-time constructible
probability ensembles, and X c

= Y . Then
−→
X

c
=
−−→
XY

where
−→
X is defined in Lemma 19 and

−−→
XY is defined in Propo-

sition 22. All random variables
−→
X (1k, a)〈i〉 and

−−→
XY (1k, a)〈i〉

are independent.

Proof: Assume the proposition is false, then there ex-
ists a non-uniform PPT distinguisher D with an infinite
sequence z = (zk)k∈N, a polynomial poly2(.), an infinite
positive integer set G ⊆ N such that, for each k ∈ G,

|Pr(D(1k, zk, a,
−→
X (1k, a)) = 1)−

Pr(D(1k, zk, a,
−−→
XY (1k, a)) = 1)| ≥ 1/poly2(k) (16)

Let Hybirdj
def
= {Hybirdj(1k, a)}k∈N,a∈{0,1}∗ ,

Hybirdj(1
k, a)

def
= (X1(1k, a), . . . , Xpoly1(k)+j(1

k, a),
Ypoly1(k)+j+1(1k, a), . . . , Ypoly(k)(1

k, a)). Let

d
def
= poly(k) − poly1(k). Obviously, Hybird0(1k, a) =−−→

XY (1k, a), Hybirdd(1k, a) =
−→
X (1k, a), so we have

|Pr(D(1k, zk, a,
−→
Y (1k, a)) = 1)−

Pr(D(1k, zk, a,
−−→
XY (1k, a)) = 1)| =

|Pr(D(1k, zk, a,Hybird0(1k, a)) = 1)−
Pr(D(1k, zk, a,Hybirdd(1

k, a)) = 1)| (17)

Following triangle inequality, we have

d∑
j=1

|Pr(D(1k, zk, a,Hybirdj−1(1k, a)) = 1)−

Pr(D(1k, zk, a,Hybirdj(1
k, a)) = 1)| ≥

|Pr(D(1k, zk, a,Hybird0(1k, a)) = 1)−
Pr(D(1k, zk, a,Hybirdd(1

k, a)) = 1)| (18)

Combining (16) (17) (18), we know that there exists a
constant j ∈ [d] such that

|Pr(D(1k, zk, a,Hybirdj−1(1k, a)) = 1)−
Pr(D(1k, zk, a,Hybirdj(1

k, a)) = 1)|
≥ 1/(d · poly2(k)) (19)

The difference between Hybirdj−1(1k, a) and
Hybirdj−1(1k, a) is the poly1(k) + j-th entry,
i.e., Hybirdj−1(1k, a)〈poly1(k) + j〉 = Y (1k, a),
Hybirdj(1

k, a)〈poly1(k) + j〉 = X(1k, a). We can

construct a distinguisher D′ with an infinite sequence
z = (zk)k∈N for the probability ensembles X and Y as
follows.
D′(1k, zk, a, γ): −→xy〈i〉 ← SX(1k, a) ∀i ∈ [poly1(k) + j −

1], −→xy〈i〉 ← γ i = poly1(k) + j, −→xy〈i〉 ← SY (1k, a) ∀i ∈
[poly(k)]− [poly1(k) + j]. Finally outputs D(1k, zk, a,

−→xy).
Obviously,

|Pr(D′(1k, zk, a, Y (1k, a)) = 1)−
Pr(D′(1k, zk, a,X(1k, a))| =

|Pr(D(1k, zk, a,Hybirdj−1(1k, a)) = 1)−
Pr(D(1k, zk, a,Hybirdj(1

k, a)) = 1)| (20)

Combining (19) (20), we have

|Pr(D′(1k, zk, a, Y (1k, a)) = 1)−
Pr(D′(1k, zk, a,X(1k, a))| ≥ 1/(d · poly2(k)

This contradicts the fact X c
= Y .

Lemma 25. Let X def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
=

{Y (1k, a)}k∈N,a∈{0,1}∗ be two polynomial-time constructible
probability ensembles, X c

= Y , F = (fk)k∈N, fk : {0, 1}∗ →
{0, 1}∗ is a polynomial-time computable function, then

F ( ~X)
c
= F (~Y )

where F ( ~X)
def
= {fk( ~X(1k, a))}k∈N,a∈{0,1}∗ ,F (~Y )

def
=

{fk(~Y (1k, a))}k∈N,a∈{0,1}∗ , ~X(1k, a) and ~Y (1k, a) are de-
fined in Lemma 19.

Proof: Following lemma 19, ~X c
= ~Y holds. Since the

probability ensemble X is polynomial-time constructible,
so we can gain a PPT sampling algorithm for the prob-
ability ensemble ~X by invocating SX(.) poly(k) times,
thus ~X also is polynomial-time constructible. We can
prove ~Y is polynomial-time constructible in the same
way. Following Proportion 20, we have F ( ~X)

c
= F (~Y ).

Lemma 26. Let X def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
=

{Y (1k, a)}k∈N,a∈{0,1}∗ be two polynomial-time constructible
probability ensembles, X c

= Y , F = (fk)k∈N, fk : {0, 1}∗ →
{0, 1}∗ is a polynomial-time computable function, then

F ( ~X)
c
= F (

−−→
XY )

where the probability ensemble ~X ,
−−→
XY respectively are defined

in Lemma 19 and Proposition 22. F ( ~X) and F (
−−→
XY ) are

defined similarly to the way F ( ~X) is defined in Proposition
25. All variables F ( ~X(1k, a))〈i〉 and F (

−−→
XY (1k, a))〈i〉 are

independent.

Proof: Following Lemma 24, we know ~X
c
=
−−→
XY . As

in the proof of Lemma 25, we can prove that ~X and
−−→
XY

are polynomial-time constructible. Following Lemma 25,
we have F ( ~X)

c
= F (

−−→
XY ).

Lemma 27. LetH = (PG, IS,DI,KG,Hash, pHash,Cheat)
be a hash family meeting all requirements listed in Lemma 23.
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Then, H can hold property feasible cheating by constructing
Cheat as follows.
Cheat(1k,Λ): generates n projective instances along with

their witnesses by calling IS(1k,Λ) enough times, fill ~a with
these pairs of instance and witness, finally outputs ~a.

Proof: We reuse all notations in the proof of Lemma
23 here. Let π′ ∈ Π, F = (π′)k∈N. Following Lemma 26,
we have

F ( ~X)
c
= F (

−−→
XY )

That is

((HSM3(1k)〈1〉, HSM3(1k)〈2〉), . . .
(HSM3(1k)〈1〉, HSM3(1k)〈n+ 1〉)) c

=

π′((HSM1(1k)〈1〉, HSM1(1k)〈2〉), . . .
(HSM1(1k)〈1〉, HSM1(1k)〈n+ 1〉))

where HSM3(1k) is taken from Definition 4. Since
HSM3(1k)〈1〉 = HSM1(1k)〈1〉, so

(HSM3(1k)〈1〉, HSM3(1k)〈2〉, . . . ,
HSM3(1k)〈n+ 1〉) c

=

(HSM1(1k)〈1〉, π′(HSM1(1k)〈2〉, . . . ,
HSM1(1k)〈n+ 1〉))

We further have

(HSM3(1k)〈1〉, π′−1
(HSM3(1k)〈2〉, . . . ,

HSM3(1k)〈n+ 1〉))
c
= (HSM1(1k)〈1〉, HSM1(1k)〈2〉, . . . ,

HSM1(1k)〈n+ 1〉) (21)

Because HSM3(1k)〈2〉 = . . . = HSM3(1k)〈1 + n〉, we
have

(HSM3(1k)〈1〉, π′−1
(HSM3(1k)〈2〉, . . . ,

HSM3(1k)〈n+ 1〉))
≡ (HSM3(1k)〈1〉, HSM3(1k)〈2〉, . . . ,

HSM3(1k)〈n+ 1〉) (22)

Combining equation (21) (22), we have

HSM1
c
= HSM3

Since H meets all requirements listed in Lemma 23, so
HSM1

c
= HSM2. Therefore we have

HSM2
c
= HSM3

, which meets the requirement of the property feasible
cheating.

6.4 Reducing To Constructing Considerably Simpler
Hash
In this section, we reduce constructing SPHDHCt,h to
constructing considerably simpler hash.

Definition 28 (smooth projective hash family that holds
properties distinguishability and hard subset member-
ship). H = (PG, IS,DI,KG,Hash, pHash) is a smooth
projective hash family that holds properties distinguishability
and hard subset membership (SPHDH), if and only if H is
specified as follows
• The algorithms PG, DI , KG, Hash, and pHash are

specified as same as in SPHDHCt,h’s definition, i.e.,
Definition 4.

• The instance-sampler IS is a PPT algorithm that takes a
security parameter k, a family parameter Λ, a work mode
δ ∈ {0, 1} as input and outputs a instance along with
its witness (x,w), i.e., (x,w)← IS(1k,Λ, δ).
Correspondingly, we define relations RΛ, ṘΛ, R̈Λ as
follows. ṘΛ

def
= ∪k∈NRang(IS(1k,Λ, 0)), R̈Λ

def
=

∪k∈NRang(IS(1k,Λ, 1)), RΛ
def
= ṘΛ ∪ R̈Λ.

and H has the following properties
1) The properties projection and distinguishability are spec-

ified as same as in SPHDHCt,h’s definition, i.e., Def-
inition 4.

2) Smoothness. Intuitively speaking, it requires that for
any instance ẍ ∈ LR̈Λ

, the hash value of ẍ is un-
obtainable unless its hash key is known. That is, the
two probability ensembles Sm1

def
= {Sm1(1k)}k∈N

and Sm2
def
= {Sm2(1k)}k∈N defined as follows, are

computationally indistinguishable, i.e., Sm1
c
= Sm2.

Sm1(1k): Λ ← PG(1k), (ẍ, ẅ) ← IS(1k,Λ, 1),
(hk, pk) ← KG(1k,Λ, ẍ), y ← Hash(1k,Λ, ẍ, hk).
Finally outputs (Λ, ẍ, pk, y).
Sm2(1k): compared with Sm1(1k), the only difference
is that y ∈U Range(Hash(1k,Λ, ẍ, .)).

3) Hard Subset Membership. Intuitively speaking, it re-
quires that the instances of LṘΛ

and that of LR̈Λ

are computationally indistinguishable. That is, the two
probability ensembles Hm1

def
= {Hm1(1k)}k∈N and

Hm2
def
= {Hm2(1k)}k∈N defined as follows, are com-

putationally indistinguishable, i.e., Hm1
c
= Hm2.

Hm1(1k): Λ← PG(1k), (ẋ, ẇ)← IS(1k,Λ, 0), finally
outputs (Λ, ẋ).
Hm2(1k): Λ← PG(1k), (ẍ, ẅ)← IS(1k,Λ, 1), finally
outputs (Λ, ẍ).

It is easy to see that the projection and smoothness are
two contradictory properties. That is, for any instance x,
it holds at most one of the two. Therefore, ṘΛ ∩ R̈Λ = ∅.

Theorem 29 (reduce constructing SPHDHCt,h to con-
structing SPHDH). Given a SPHDH H, then we can effi-
ciently gain a SPHDHCt,h H.

Proof: Let H = (PG, IS,DI,KG,Hash, pHash).
First, we construct a new hash system H =
(PG, IS,DI,KG,Hash, pHash,Cheat) as follows.
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• The procedures PG, DI , KG, Hash, pHash directly
take the corresponding procedures from H.

• IS(1k,Λ): For each i ∈ [h], ~a〈i〉 ← IS(1k,Λ, 0); for
each i ∈ [n]− [h], ~a〈i〉 ← IS(1k,Λ, 1); finally outputs
~a.

• Cheat(1k,Λ): For each i ∈ [n], ~a〈i〉 ← IS(1k,Λ, 0);
finally outputs ~a.

Second, we prove H is a SPHDHCt,h. From the
construction, we know that it remains to prove that H
holds properties smoothness, hard subset membership
and feasible cheating. However, this fact directly follows
Lemma 21, Lemma 23 and Lemma 27. Therefore, H is a
SPHDHCt,h.

Sometimes it is not easy to gain smoothness for a hash
family. In this case we have to construct a hash family,
defined as follows, as the first step to our goal.

Definition 30 (ε-universal projective hash family that
holds properties distinguishability and hard subset
membership). H = (PG, IS,DI,KG,Hash, pHash) is
a ε-universal projective hash family that holds properties
distinguishability and hard subset membership (ε-UPHDH),
if and only if H is specified as follows.
• All algorithms are specified as same as in SPHDH’s

definition, i.e., Definition 28.
and H has the following properties

1) The properties projection, distinguishability and hard
subset membership are specified as same as in Definition
28.

2) ε-universality. Intuitively speaking, it requires the
probability of guessing the hash value of ẍ is at
most ε. That is, for any sufficiently large k, any
Λ ∈ Range(PG(1k)), any ẍ ∈ Range(IS(1k,Λ, 1)),
any pk ∈ Range(KG(1k,Λ, ẍ)〈2〉), any y ∈
Range(Hash(1k,Λ, ẍ, .)), it holds that

Pr(Hash(1k,Λ, ẍ, HK) = y|PK = pk) ≤ ε

where (HK,PK) is a random variable pair uni-
formly distributed over Range(KG(1k,Λ, ẍ)). That is
(HK,PK) ← KGr(1

k,Λ, ẍ), where r is a uniformly
distributed randomness.

Compared with SPHDH, ε-UPHDH relaxes the upper
bound of the probability of guessing the hash value of
ẍ to a higher value. Assume ε < 1, as [15], [29], we can
efficiently gain a SPHDH from a ε-UPHDH.

Theorem 31. Given a ε-UPHDH H̃, where ε < 1, then we
can efficiently gain a SPHDH H.

The way to prove this theorem is to construct a
required algorithm, which can be gained by a simply
application of the Leftover Hash Lemma (please see [36]
for this lemma). The detailed construction essentially is
the same as [15]. Considering the space, we don’t iterate
it here.

Combining Theorem 29 and Theorem 31, we have the
following corollary.

Corollary 32 (reduce constructing SPHDHCt,h to con-
structing ε-UPHDH). Given a ε-UPHDH H̃, then we can
efficiently gain a SPHDHCt,h H.

7 CONSTRUCTING SPHDHCt,h

In this section, we construct SPHDHCt,h respectively
under the lattice assumption, the decisional Diffie-
Hellman assumption, the decisional N -th residuosity
assumption and the decisional quadratic residuosity as-
sumption. Theorem 29 and Corollary 32 show that, to
construct a SPHDHCt,h, what we need to do is to
construct a SPHDH or construct a ε-UPHDH (ε < 1).

7.1 A Construction Under The Decisional Diffie-
Hellman Assumption

7.1.1 Background

Let Gen(1k) be an algorithm such that randomly chooses
a cyclic group and outputs the group’s description G =<
g, q, ∗ >, where g, q, ∗ respectively is the generator, the
order, the operation of the group.

The DDH problem is how to construct an algorithm
to distinguish the two probability ensembles DDH1

def
=

{DDH1(1k)}k∈N and DDH2
def
= {DDH2(1k)}k∈N which

are formulate as follows.

• DDH1(1k): < g, q, ∗ >← Gen(1k), a ∈U Zq , b ∈U Zq ,
c← ab, finally outputs (< g, q, ∗ >, ga, gb, gc).

• DDH2(1k): Basically operates in the same way as
DDH1(1k) except that c ∈U Zq .

At present, there is no efficient algorithm solving the
problem. Therefore, it is assumed that DDH1

c
= DDH2.

7.1.2 Detailed Construction

We now present our DDH-based instantiation of SPHDH
as follows. For simplicity, as in [43], we only use groups
of prime order. Thus, we also assume the groups gener-
ated by Gen(1k) is of prime order.

• PG(1k): Λ← Gen(1k), finally outputs Λ.
• IS(1k,Λ, δ): (g, q, ∗) ← Λ, a ∈U Zq , b ∈U Zq , ẋ ←

(ga, gb, gab), ẇ ← (a, b), c ∈U Zq , ẍ ← (ga, gb, gc),
ẅ ← (a, b), finally outputs (ẋ, ẇ) if δ = 0, (ẍ, ẅ) if
δ = 1.

• DI(1k,Λ, x, w): (g, q, ∗) ← Λ, (α, β, γ) ← x, (a, b) ←
w, if (α, β, γ) = (ga, gb, gab) holds, then outputs 0; if
(α, β) = (ga, gb) and γ 6= gab holds, then outputs 1.

• KG(1k,Λ, x): (g, q, ∗) ← Λ, (α, β, γ) ← x, u ∈U Zq ,
v ∈U Zq , pk ← αugv , hk ← γuβv , finally outputs
(hk, pk).

• Hash(1k,Λ, x, hk): y ← hk, outputs y.
• pHash(1k,Λ, x, pk, w): (a, b) ← w, y ← pkb, finally

outputs y.

Lemma 33. Assuming DDH is a hard problem, the hash
system holds the property projection.



22

Proof: Let (ẋ, ẇ) ∈ Range(IS(1k,Λ, 0)). Let
(hk, pk) ∈ Range(KG(1k,Λ, ẋ)). Then,

Hash(1k,Λ, ẋ, hk) = Hash(1k,Λ, (ga, gb, gab), (gabugbv))

= gabugbv

pHash(1k,Λ, ẋ, hk, ẇ) = pHash(1k,Λ, (ga, gb, gab),

(gaugv), (a, b))

= gabugbv

That is,

Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ)

Lemma 34. Assuming DDH is a hard problem, the hash
system holds the property smoothness.

Proof: For this system, the probability ensembles
Sm1, Sm2 mentioned in the definition of SPHDH can
be described as follows.
• Sm1(1k): Λ ← PG(1k), (g, q, ∗) ← Λ, a ∈U Zq , b ∈U
Zq , c ∈U Zq , ẍ ← (ga, gb, gc), u ∈U Zq , v ∈U Zq ,
pk ← gau+v , hk ← gcu+bv , y ← hk. Finally outputs
(Λ, ẍ, pk, y).

• Sm2(1k): Operates as same as Sm1(1k) with an
exception that y is generated as follows. d ∈U Zq ,
y ← gd.

Because b, c, u, v are chosen uniformly and q is prime,
both cu and bv are uniformly distributed over Zq . Thus
cu + bv is uniformly distributed over Zq too. Therefore,
Sm1 and Sm2 are identically distributed, which implies
Sm1

c
= Sm2.

Lemma 35. Assuming DDH is a hard problem, the hash
system holds the property distinguishability.

The proof of this lemma is trivial, so we omit it.

Lemma 36. Assuming DDH is a hard problem, the hash
system holds the property hard subset membership.

Proof: For this system, the probability ensembles
Hm1, Hm2 mentioned in the definition of SPHDH can
be described as follows.
• Hm1(1k): Λ← PG(1k), (g, q, ∗)← Λ, a ∈U Zq , b ∈U
Zq , ẋ← (ga, gb, gab). Finally outputs (Λ, ẋ).

• Hm2(1k): Λ← PG(1k), (g, q, ∗)← Λ, a ∈U Zq , b ∈U
Zq , c ∈U Zq , ẍ← (ga, gb, gc). Finally outputs (Λ, ẍ).

Obviously, Hm1
c
= Hm2.

Combining all lemmas above, we have the following
theorem.

Theorem 37. Assuming DDH is a hard problem, the hash
system is a SPHDH.

7.1.3 A Concrete Protocol For OTnh Based On The DDH
Assumption
To gain a concrete protocol for OTnh based on the DDH
assumption, it remains to instantiate PHC and PBC
with the ones builded on DDH. The commitment scheme

[42] presents is an concrete PHC we need. The encryp-
tion scheme [17] presents is directly based on the prob-
lem of discrete log. Since the task of solving the problem
DDH can be reduced to that of solving the problem
discrete log, the encryption scheme is based on DDH
essentially. What is more, this encryption scheme can be
used as an concrete PBC. Therefore, using those two
commitment schemes and our DDH-based SPHDHCt,h,
we gain a concrete protocol for OTnh based on DDH. To
reach the best efficiency, we should use the DDH of the
group which is on elliptic curves.

7.2 A Construction Under Lattice
7.2.1 Background
Learning with errors (LWE) is an average-case problem.
[45] shows that its hardness is implied by the worst-
case hardness of standard lattice problem for quantum
algorithms.

In lattice, the modulo operation is defined as x

mod y
def
= x − xx/yyy. Then we know x mod 1

def
=

x− xxy. Let β be an arbitrary positive real number. Let
Ψβ be a probability density function whose distribution
is over [0, 1) and obtained by sampling from a normal
variable with mean 0 and standard deviation β/

√
2π and

reducing the result modulo 1, more specifically

Ψβ : [0, 1)→ R+

Ψβ(r)
def
=

∞∑
k=−∞

1

β
exp(−π(

r − k
β

)2)

Given an arbitrary integer q ≥ 2, an arbitrary proba-
bility destiny function φ : [0, 1)→ R+, the discretization
of φ over Zq is defined as

φ̄ : Zq → R+

φ̄(i)
def
=

∫ (i+1/2)/q

(i−1/2)/q

φ(x)dx

LWE can be formulated as follows.

Definition 38 (Learning With Errors). Learning with errors
problem (LWEq,χ) is how to construct an efficient algorithm
that receiving q, g,m, χ, (~ai, bi)i∈[m], outputs ~s with nonneg-
ligible probability. The input and the output is specified in the
following way.
q ← q(1k), g ← g(1k), m ← poly(1k), χ ← χ(1k), ~s ∈U

(Zq)
k. For each i ∈ [m], ~ai ∈U (Zq)

k, ei ∈χ Zq , bi ←
~sT · ~ai + ei mod q.

where q, g are positive integers, χ : Zq → R+ is a
probability density function.

With respect to the hardness of LWE, [45] proves
that setting appropriate parameters, we can reduce two
worst-case standard lattice problems to LWE, which
means LWE is a very hard problem.

Lemma 39 ( [45]). Setting security parameter k to be a value
such that q is a prime, β ← β(1k), β ∈ (0, 1), and β · q >
2
√
k. Then the lattice problems SIV P and GapSV P can
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be reduced to LWEq,Ψ̄β . More specifically, if there exists an
efficient (possibly quantum) algorithm that solves LWEq,Ψ̄β ,
then there exists an efficient quantum algorithm solving the
following worst-case lattice problems in the l2 norm.
• SIVP: In any lattice Λ of dimension k, find a set of k

linearly independent lattice vectors of length within at
most Õ(k/β) of optimal.

• GapSVP: In any lattice Λ of dimension m, approximate
the length of a shortest nonzero lattice vector to within
a Õ(k/β) factor.

We emphasize the fact that the reduction of Lemma 39
is quantum, which implies that any algorithm breaking
any cryptographic schemes which only based on LWE
is an algorithm solving at least one of the problems SIVP
and GapSVP.

How to precisely set the parameters as values to gain a
concrete LWE, which is as hard as required in Lemma 39
is beyond the scope of this paper. To see such examples
and more details, we recommend [45] and [43].

The instantiation of SPHDHCt,h, which we will
present soon, needs to use a public key cryptosystem
based on LWE. [45] and [43] respectively presents such
an cryptosystem. Considering the cost, we choose the
one presented by the latter and slightly tailor it to our
need. The LWE-based cryptosystem with message space
Zp is defined as follow, where p ≥ 2 is polynomial in k.
• Setup(1k, p): Generates the public parameters as

follows. q ∈U {q|q ∈ P, q is polynomial in k, q > p},
m ← poly(1k), χ ← χ(1k) and χ is a probability
density function over Zq , para← (q, p,m, χ), finally
outputs para.

• KeyGen(1k, para): A ∈U (Zq)
m×k, ~s ∈U (Zq)

k,
~e ∈χ (Zq)

m (with means each entry of ~e are indepen-
dently drawn from Zq according to χ), ~p ← A~s + ~e
mod q, pubk ← (A, ~p), sk ← ~s, finally outputs a
public-secret key pair (pubk, sk).

• Enc(.), Dec(.): Since Enc(.), Dec(.) are immaterial
to understand this paper, we omit their detailed
procedure here.

7.2.2 Detailed Construction

We now present our LWE-based instantiation of SPHDH
as follows.
• PG(1k): para ← Setup(1k, p), (q, p,m, χ) ← para,
A ∈U (Zq)

m×k, Λ ← (p, q,m,A, χ), finally outputs
Λ.

• IS(1k,Λ, b): (p, q,m,A, χ) ← Λ, ~s ∈U (Zq)
k, ~e ∈χ

(Zq)
m, ẋ ← A~s + ~e mod q, ẇ ← (~s,~0), ẍ ← A~s +

~e + (1, 1, . . . , 1)T mod q, ẅ ← (~s,~e), finally outputs
(ẋ, ẇ) if b = 0, (ẍ, ẅ) if b = 1.

• DI(1k,Λ, x, w): (p, q,m,A, χ)← Λ, (~s,~e)← w, if x =
A~s+ ~e+ (1, 1, . . . , 1)T mod q holds, then outputs 1;
otherwise outputs 0.

• KG(1k,Λ, x): (p, q,m,A, χ) ← Λ, a ∈U Zp, ~̃s ∈U
(Zq)

k, ~p ← A~̃s + x mod q, α ← EncA,~p(a), hk ← a,
pk ← (~̃s, α), finally outputs (hk, pk).

• Hash(1k,Λ, x, hk): (p, q,m,A, χ) ← Λ, a ← hk,
finally outputs a.

• pHash(1k,Λ, x, pk, w): (k,m, p, q, χ,A) ← Λ,
(~̃s, α) ← pk, ~u ← ~̃s + w, a ← Dec~u(α), finally
outputs a.

We remark that the choice of (1, 1, . . . , 1)T is arbitrary.
It is used to separate Ṙ from R̈. From the proof of the
following proposition, we can see that other constant
vectors ~c ∈ (Zp)

m − {(0, 0, . . . , 0)m} may be good too.

Lemma 40. Assuming LWE is a hard problem, the hash
system holds the property projection.

Proof: Let ẋ ∈ Range(IS(1k,Λ, 0)). Looking at
IS(1k,Λ, 0), (A, ẋ) in fact is a public key whose corre-
sponding secret key is ~s. The ciphertext α in KG(1k,Λ, x)
is generated by using the public key whose correspond-
ing secret key is ~s + ~̃s. The value of Hash(1k,Λ, x, hk)
is the plaintext of α. Using ~s + ~̃s as a secret key,
pHash(1k,Λ, x, pk, w) correctly outputs α’s plaintext.
This means that for any (ẋ, ẇ,Λ) generated by the hash
system, it holds that

Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ)

Lemma 41. The hash system holds the property smoothness.

Proof: For this system, the probability ensembles
Sm1, Sm2 mentioned in the definition of SPHDH can
be described as follows.
• Sm1(1k): Λ ← PG(1k), (p, q,m, k,A, χ) ← Λ, ~s ∈U

(Zq)
k, ~e ∈χ (Zq)

m, ẍ ← A~s + ~e + (1, 1, . . . , 1)T

mod q, a ∈U Zp, ~̃s ∈U (Zq)
k, ~p ← A~̃s + ẍ mod q,

α ← EncA,~p(a), y ← a, pk ← (~̃s, α). Finally outputs
(Λ, ẍ, pk, y).

• Sm2(1k): Operates as same as Sm1(1k) with an
exception that y ∈U Zp.

Obviously, Sm1(1k) and Sm2(1k) are identically dis-
tributed, which implies that Sm1

c
= Sm2.

Lemma 42. Assuming LWE is a hard problem, the hash
system holds the property distinguishability.

Proof: It is easy to see that in case (x,w) ∈ R̈Λ,
DI correctly computes ζ. It remains to prove that in
case (x,w) ∈ ṘΛ, DI correctly computes ζ. Assume that
DI outputs 1 in the latter case. Then there exists an
efficient adversary such that on receiving (k,m, p, q, χ,A)
outputs (~s,~e,~s′, ~e′) satisfying the following equation.
A~s + ~e mod q = A~s′ + ~e′ + (1, 1, . . . , 1)T mod q. That
is,

A(~s− ~s′) + (~e− ~e′) mod q = (1, 1, . . . , 1)T mod q

This implies that given public key (1, 1, . . . , 1)T , the
adversary deduce the corresponding private key ~s − ~s′,
which is impossible.

Lemma 43. Assuming LWE is a hard problem, the hash
system holds the property hard subset membership.
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Proof: For this system, the probability ensembles
Hm1, Hm2 mentioned in the definition of SPHDH can
be described as follows.

• Hm1(1k): Λ ← PG(1k), (p, q,m, k,A, χ) ← Λ, ~s ∈U
(Zq)

k, ~e ∈χ (Zq)
m, ẋ ← A~s + ~e mod q. Finally

outputs (Λ, ẋ).
• Hm2(1k): Λ ← PG(1k), (p, q,m, k,A, χ) ← Λ, ~s ∈U

(Zq)
k, ~e ∈χ (Zq)

m, ẍ← A~s+~e+(1, 1, . . . , 1)T mod q.
Finally outputs (Λ, ẍ).

Obviously, Hm1 and Hm2 are identically distributed,
which implies that Hm1

c
= Hm2.

Combining Lemma 39 and above lemmas, we have the
following theorem.

Theorem 44. If SIV P or GapSV P is a hard problem, then
the hash system is a SPHDH.

7.2.3 A Concrete Protocol For OTnh With Security
Against Quantum Algorithms

The security proof of the framework guarantees that,
any algorithm breaking the framework is an algorithm
breaking at least one of cryptographic tools used in the
framework. Therefore, to gain an instantiation of our
framework with security against quantum algorithms, it
suffices to adopt instantiations of commitment schemes
and SPHDHCt,h in our framework which are secure
against quantum algorithms.

[45] shows that the problems SIV P and GapSV P
are hard for quantum algorithms at present. Combin-
ing Theorem 44, our LWE-based SPHDHCt,h is secure
against quantum algorithms. It remains to find a PHC
and a PBC with such security level. [5] presents a
commitment scheme, which is provably unbreakable by
both parties with unlimited computation power and
algorithmic sophistication. So we have,

Theorem 45. Assuming that one of the problems SIV P and
GapSV P is hard for quantum algorithms, instantiating the
OTnh framework with our LWE-based SPHDHCt,h and the
commitment scheme presented by [5], the resulting concrete
protocol for OTnh is secure against quantum algorithms.

[45] points out that the problem of LWE and the
problem of decoding random linear code (DRLC) are
essentially the same. This implies that instantiating the
commitment scheme with the PHC and PBC based on
DRLC, Theorem 45 also holds. What is more, [22] shows
that, first, assuming that DRLC is hard, there exists a
one-way function; second, assuming the existence of a
one-way function, then there exists perfectly binding
scheme and perfectly hiding scheme. Therefore, we have

Theorem 46. Assuming that one of the problems SIV P and
GapSV P is hard for quantum algorithms, then there exists a
protocol for OTnh with security against quantum algorithms.

7.3 A Construction Under The Decisional N-th
Residuosity Assumption
7.3.1 Verifiable-ε-universal Projective Hash Family
In this section, we will build a instantiation of ε-
UPHDH (ε < 1) from a instantiation of a hash system
called verifiable-ε-universal projective hash family by
[29]. Therefore, it is necessary to introduce the definition
of this hash system.

Definition 47 (verifiable-ε-universal projective hash fam-
ily, [29]). H = (PG, IS, IT,KG,Hash, pHash) is a ε-
universal projective hash family (ε-VUPH), if and only if H
is specified as follows.
• The algorithms PG, IS, KG, Hash, pHash are speci-

fied as same as in ε-UPHDH’s definition, i.e., Definition
30.

• IS is a PPT algorithm that takes a security parameter k,
a family parameter Λ as input and outputs a tuple, i.e.,
(ẇ, ẋ, ẍ)← IS(1k,Λ).

• IT is a PPT algorithm that takes a security parameter k,
a family parameter Λ, two instances as input and outputs
a bit , i.e., b← IT (1k,Λ, x1, x2).

and H has the following properties
1) The properties projection, ε-universality are specified as

same as that in ε-UPHDH’s definition, i.e., Definition
30.

2) Verifiability. First, for any sufficiently large k, any Λ ∈
Range(PG(1k)), any (ẇ, ẋ, ẍ) ∈ Range(IS(1k,Λ)),
it holds that IT (1k,Λ, ẋ, ẍ) = IT (1k,Λ, ẍ, ẋ) = 1.
Second, for any sufficiently large k, any (Λ, x1, x2) such
that IT (1k,Λ, x1, x2) = 1, at least one of x1, x2 is ε-
universal.

It is easy to see that verifiability guarantees any in-
stance x holds at most one of the properties projec-
tion and universality. Therefore, we have the following
lemma.

Lemma 48. Let H = (PG, IS, IT,KG,Hash, pHash) be a
ε-universal projective hash family, then

L̇ ∩ L̈ = ∅

where L̇ def
= {ẋ|Λ ← PG(1k), (ẇ, ẋ, ẍ) ← IS(1k,Λ)} and

L̈
def
= {ẍ|Λ← PG(1k), (ẇ, ẋ, ẍ)← IS(1k,Λ)}.

7.3.2 Background
Let Gen(1k) be an algorithm that operates as follows.
• Gen(1k): (p, q) ∈U {(p, q)|(p, q) ∈ (P,P), p, q >

2, |p| = |q| = k, gcd(pq, (p− 1)(q − 1)) = 1}, N ← pq,
finally outputs N .

The problem decisional N-th residuosity (DNR), first
presented by [41], is how to construct an algorithm
to distinguish two probability ensembles DNR1

def
=

{DNR1(1k)}k∈N and DNR2
def
= {DNR2(1k)}k∈N which

are formulate as follows.
• DNR1(1k): N ← Gen(1k), a ∈U Z∗N2 , b ← aN

mod N2, finally outputs (N, b).
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• DNR2(1k): N ← Gen(1k), b ∈U Z∗N2 , finally outputs
(N, b).

The DNR assumption is that there is no efficient
algorithm solving the problem. In other words, it is
assumed that DNR1

c
= DNR2.

Our instantiation of ε-UPHDH is build from a DNR-
based instantiation of ε-VUPH (ε < 1) presented by [29].
The instantiation of ε-VUPH is stated as follows.
• PG(1k): N ← Gen(1k), a ∈U Z∗N2 , T ← Np2 logNq,
g ← aN ·T mod N2, Λ← (N, g), finally outputs Λ.

• IS(1k,Λ): (N, g) ← Λ, r, v ∈U Z∗N , w ← r, ẋ ← gr

mod N2, ẍ ← ẋ(1 + vN) mod N2, finally outputs
(w, ẋ, ẍ).

• IT (1k,Λ, ẋ, ẍ): (N, g) ← Λ. Checks that N > 22k,
g, ẋ ∈ Z∗N2 . d← ẍ/ẋ mod N2 and checks N |(d− 1).
v ← (d− 1)/N and checks gcd(v,N) = 1. Outputs 1
if all the test pass and 0 otherwise.

• KG(1k,Λ): (N, g) ← Λ, hk ∈U ZN2 , pk ← ghk

mod N2, finally outputs (hk, pk).
• Hash(1k,Λ, x, hk): (N, g) ← Λ, y ← xhk mod N2,

finally outputs y.
• pHash(1k,Λ, x, pk, w): (N, g) ← Λ, y ← pkw

mod N2, finally outputs y.

7.3.3 Detailed Construction
We now present our DNR-based instantiation of ε-
UPHDH (ε < 1) as follows.
• PG(1k): N ← Gen(1k), a ∈U Z∗N2 , T ← Np2 logNq,
g ← aN ·T mod N2, Λ← (N, g), finally outputs Λ.

• IS(1k,Λ, δ): (N, g)← Λ, r ∈U Z∗N , ẋ← gr mod N2,
ẇ ← (r, 0), v ∈U Z∗N , ẍ ← gr(1 + vN) mod N2,
ẅ ← (r, v), finally outputs (ẋ, ẇ) if δ = 0, (ẍ, ẅ) if
δ = 1.

• DI(1k,Λ, x, w): (N, g)← Λ, (r, v)← w,
1) if v = 0 mod N , operates as follows: checks

that N > 22k, g, x ∈ Z∗N2 , r ∈ Z∗N , x = gr

mod N2. Outputs 0 if all the test pass.
2) if v 6= 0 mod N , operates as follows: checks

that N > 22k, g, x ∈ Z∗N2 , r ∈ Z∗N , x = gr(1+vn)
mod N2. Outputs 1 if all the test pass.

• KG(1k,Λ, x): (N, g) ← Λ, hk ∈U ZN2 , pk ← ghk

mod N2, finally outputs (hk, pk).
• Hash(1k,Λ, x, hk): (N, g) ← Λ, y ← xhk mod N2,

finally outputs y.
• pHash(1k,Λ, x, pk, w): (N, g) ← Λ, y ← pkw

mod N2, finally outputs y.

Theorem 49. Assuming DNR is a hard problem, the hash
system is a ε-UPHDH (ε < 1).

Proof: It is easy to see that the hash system directly
inherits properties ε-universality and projection from the
instantiation of ε-VUPH. Following Lemma 48, the hash
system holds property distinguishability. It remains to
prove that the hash system holds the property hard
subset membership.

For this system, the probability ensembles Hm1, Hm2

mentioned in the definition of ε-UPHDH can be de-
scribed as follows.

• Hm1(1k): Λ ← PG(1k), (N, g) ← Λ, r ∈U Z∗N , ẋ ←
gr mod N2. Finally outputs (Λ, ẋ).

• Hm2(1k): Λ ← PG(1k), (N, g) ← Λ, r, v ∈U Z∗N ,
ẍ← gr(1 + vN) mod N2. Finally outputs (Λ, ẍ).

It is clear that Hm1
c
= Hm2. Therefore, the hash system

holds the property hard subset membership.

7.4 A Construction Under The Decisional Quadratic
Residuosity Assumption
We reuse Gen(1k) defined in section 7.3.2. Let JN be
the subgroup of Z∗N of elements with Jacobi symbol 1.
The problem decisional quadratic residuosity (DQR) is
how to construct an algorithm to distinguish the two
probability ensembles DQR1

def
= {DQR1(1k)}k∈N and

DQR2
def
= {DQR2(1k)}k∈N which are formulated as

follows.
• DQR1(1k): N ← Gen(1k), x ∈U JN , finally outputs

(N, x).
• DQR2(1k): N ← Gen(1k), r ∈U Z∗N , x← r2 mod N ,

finally outputs (N, x).
The DQR assumption is that there is no efficient

algorithm solving the problem. That is, it is assumed
that DQR1

c
= DQR2.

As in section 7.3, the hash system we aim to achieve
is an instantiation of ε-UPHDH. We will build it on
an instantiation of ε-VUPH presented by [29] which is
constructed under DQR assumption. Considering the
space, we do not iterate the instantiation of ε-VUPH
here, and directly present our instantiation of ε-UPHDH
as follows.
• PG(1k): (p, q) ∈U (P,P), where |p| = |q| = k, p <
q < 2p−1, p = q = 3 mod 4, a ∈U Z∗N , T ← 2plogNq,
g ← a2·T mod N , Λ← (N, g), finally outputs Λ.

• IS(1k,Λ, δ): (N, g) ← Λ, r ∈U ZN , ẋ ← gr mod N ,
ẍ ← N − gr mod N , ẅ ← r , finally outputs (ẋ, ẇ)
if δ = 0, (ẍ, ẅ) if δ = 1.

• DI(1k,Λ, x, w): (N, g)← Λ, r ← w; checks that N >
22k, g, x ∈ Z∗N . Outputs 0, if x = gr mod N and all
the test pass. Outputs 1, if x = N − gr mod N and
all the test pass.

• KG(1k,Λ, x): (N, g) ← Λ, hk ∈U ZN , pk ← ghk

mod N , finally outputs (hk, pk).
• Hash(1k,Λ, x, hk): (N, g) ← Λ, y ← xhk mod N ,

finally outputs y.
• pHash(1k,Λ, x, pk, w): (N, g) ← Λ, y ← pkw

mod N , finally outputs y.

Theorem 50. Assuming DQR is a hard problem, the hash
system is a ε-UPHDH, where ε < 1.

This theorem can be proven in a similar way in which
Theorem 49 is proven.
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