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Abstract. E2 is a 128-bit block cipher which employs a Feistel structure
and 2-round SPN in round function. It is an AES candidate and was
designed by NTT. In the former publications, E2 is supposed no more
than 5-round impossible differential. In this paper, we describe some
6-round impossible differentials of E2. By using the 6-round impossible
differential, we first present an attack on a 9-round reduced version of E2-
256 without IT Function (the initial transformation) and FT-Function
(the final transformation).
Key words: Block cipher, E2, Impossible differential attack, Data com-
plexity, Time complexity

1 Introduction

Impossible differential cryptanalysis, proposed by Biham and Knudsen, was first
applied to the cipher DEAL [8] and later to Skipjack [9]. The main idea is to
specify a differential with probability zero over some rounds of the cipher. Then
one can derive the right keys by discarding the wrong keys which lead to the
impossible differential. Impossible differential cryptanalysis has been applied to
AES, Camellia, MISTY1 and so on with very good results [11–17].

The key step of impossible differential cryptanalysis is to retrieve the longest
impossible differential. The main technique is miss-in-the-middle, namely to find
two differential characteristics with probability 1 from encryption and decryp-
tion, and connect them together when there are some inconsistencies, their com-
bination is the impossible differential that we are looking for. Once the impossi-
ble differential is found, it can be used to distinguish the cipher from a random
permutation. In [10], Kim et al. introduced the U-method to find impossible
differentials of various block ciphers. However, U-method is so general that some
information is often lost during calculating the impossible differentials. Some
longer impossible differentials cannot be found by using the U-method.

E2 [3] is a 128-bit block cipher designed and submitted to AES project by
NTT. Its design criteria are conservative, adopting a Feistel network structure
as a global structure and the 2-round SPN-structure in its round function. All
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operations used in the data randomization phase are byte table lookups and byte
xor’s except 32-bit multiplications in IT and FT, which successfully makes E2 a
fast software cipher independent of target platforms.

A truncated differential cryptanalysis of reduced-round variants of E2 was
presented by Matsui and Tokita in ref.[1]. They found a 7-round byte charac-
teristic, which leads to a possible attack on an 8-round E2 without IT-Function
and FT-Function. In ref.[2], Moriai et al. presented another 7-round truncated
differential and improved the attack complexity of 8-round E2 without IT/FT
functions. Ref.[6] studies the impossible differentials of E2. To search the impos-
sible differentials, the authors applied the Shrinking technique, the miss-in-the-
middle technique and so on. However, no impossible differential is found for E2
without IT/FT functions with more than 5 rounds. They declared that E2 is
secure against cryptanalysis with impossible differential using currently known
techniques.

In this paper, the security of E2 against impossible differential attacks are
investigated. We first find some 6-round impossible differentials which lead to
an attack of E2 reduced to 9 rounds without IT/FT functions. The attack is the
first published attack on 9-round E2 without IT/FT functions. Like most crypt-
analytic attacks on block ciphers, it is theoretical in the sense of the magnitude
of the required data and time complexity and the attack does not have a serious
impact on the full E2, since it has twelve rounds with IT and FT; however our
results show that the security level of the E2 is much lower than the estimation
of the designers.

The paper is organized as follows: Section 2 briefly introduces some notations
and the E2 block cipher. In section 3, we describe some 6-round impossible
differentials. Then the attack are discussed in section 4. Section 5 concludes the
paper and summarizes our results.

2 Preliminaries

2.1 Notations

The following describes the notations which will be used in encryption and at-
tack.

Li(Ri): the left(right) half output of the ith round;
∆Li(∆Ri): the difference of the left(right) half output of the ith round;

K
(1)
i,j : the jth byte of subkey used in the first layer of the ith round function;

K
(2)
i,j : the jth byte of subkey used in the second layer of the ith round function;
⊕: xor(exclusive or);
|: bit string concatenation.

2.2 The E2 Block Cipher

E2 is a 12-round Feistel cipher with 2-round SPN structure in its round func-
tion and the linear layer used is proved to be optimal. The strategy of 2-round
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SPN structure is proposed in ref.[7]. It based on using mn-bit round functions
consisting of four-layers: 1st non-linear transformation layer with n parallel m-
bit s-boxes, 1st linear transformation layer, 2nd non-linear transformation layer
with n parallel m-bit s-boxes, and 2nd linear transformation layer (sometimes
the fourth layer is omitted). Ref.[7] shows that the round function with the 2-
round SPN structure requires one-forth as many rounds as the 1-round SPN
structure to achieve the same differential and linear probabilities.

Besides, E2 has a preprocess, IT-Function, as well as a postprocess, FT-
Function. The decryption process is the same as the encryption process except
for the order of the subkeys. Fig. 1 shows the outline of the E2 encryption
process.

Let P and C be the plaintext and cipertext respectively, Lr−1 and Rr−1 be
the left and the right halves input of the rth round, and Kr be the subkey of the
rth round. Then the encryption process of E2 can be written as:

L0|R0 = IT (P ),
Lr = Rr−1 ⊕ F (Lr−1,Kr) (r = 1, 2 . . . , 12),
Rr = Lr−1,

C = FT (R12|L12).

In this paper, we will consider E2 without IT/FT functions. Fig. 2 outlines
the round function. Round function consists of S-Function, P -Function, and
BRL-Function. Refer to [3] for details of the specification and notations. For
readers’ convenience, we give algebraic description of the variable z

′
i in the round

function in terms of the intermediate values zi as follows:

P : (F8
2)

8 → (F8
2)

8: z1|z2|z3|z4|z5|z6|z7|z8 → z
′
1|z

′
2|z

′
3|z

′
4|z

′
5|z

′
6|z

′
7|z

′
8

z
′
1 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

z
′
2 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

z
′
3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8

z
′
4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8

z
′
5 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6

z
′
6 = z1 ⊕ z2 ⊕ z3 ⊕ z6 ⊕ z7

z
′
7 = z2 ⊕ z3 ⊕ z4 ⊕ z7 ⊕ z8

z
′
8 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z8

3 Some 6-Round Impossible Differentials

In ref.[6], the authors drew the conclusion that there was no impossible differ-
entials for E2 without IT/FT functions with more than 5-round. In this section,
we show one impossible differential of 6-round E2 in Fig. 3.

We assert that the 6-round differential
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(0|0|0|0|a|0|0|0, 0|0|0|0|0|00|0) 6−round−−−−−−→ (0|0|0|0|0|0|0|0, 0|0|0|0|0|h|0|0)

is impossible, where a and h denote any non-zero value.
Consider an input difference (∆L0,∆R0) = (0|0|0|0|a|0|0|0, 0|0|0|0|0|0|0|0),

after passing through the first and the second round, it becomes as follows(where
ci also denote non-zero value):

(∆L1,∆R1) = (0|0|0|0|0|0|0|0, 0|0|0|0|a|0|0|0),
(∆L2,∆R2) = (0|0|0|0|a|0|0|0, 0|c2|c3|c4|0|0|c7|c8).

In the third round, after the first subkey addition and the S layer, ∆R2 be-
comes (0|c∗2|c∗3|c∗4|0|0|c∗7|c∗8), where c∗i is non-zero value. After the linear layer P
it becomes (d1|d2|d3|d4|d5|d6|d7|d8), thus the output difference of the second sub-
key addition and the S layer in the third round has the form of (e1|e2|e3|e4|e5|e6|e7|e8).
Whether the values of dis and eis (i = 1 . . . 8) are zero or not is uncertain. The
BRL-function makes the output difference be (e2|e3|e4|e5|e6|e7|e8|e1). Therefore
the 3-round differential ends with

(∆L3,∆R3) = (0|c2|c3|c4|0|0|c7|c8, e2|e3|e4|e5|e6 ⊕ a|e7|e8|e1).

Consider the other direction now, when rolling back the 6th round differ-
ence (0|0|0|0|0|0|0|0, 0|0|0|0|0|h|0|0) though 3-round transformation, we get the
following differences(fi is non-zero value):

(∆L5,∆R5) = (0|0|0|0|0|h|0|0, 0|0|0|0|0|0|0|0),
(∆L4,∆R4) = (f1|0|f3|f4|f5|0|0|f8, 0|0|0|0|0|h|0|0).

From the Feistel structure of the cipher, we know that ∆L4 = ∆R3, hence,
(f1|0|f3|f4|f5|0|0|f8) is the same as (e2|e3|e4|e5|e6 ⊕ a|e7|e8|e1), So we have
e3 = e7 = e8 = 0, thus d3 = d7 = d8 = 0 since subkey addition and S-boxes
transformations are bijective. di can be expressed as the linear combination of c∗i
according to the linear layer P , which implies the following equations hold(just
d3 = d7 = 0 is used):

c∗2 ⊕ c∗4 ⊕ c∗7 ⊕ c∗8 = 0,

c∗2 ⊕ c∗3 ⊕ c∗4 ⊕ c∗7 ⊕ c∗8 = 0.

From the above equations we know that c∗3 is zero, which contradicts with c3 6= 0
since subkey addition doesn’t change the difference and S-boxes transformations
are bijective.

Similarly, we can get other 6-round impossible differentials of E2. We define
wi as 8-byte vector, in which only the ith byte is non-zero, for example, w1

denotes (a|0|0|0|0|0|0|0). If (wi, 0) → (0, wj) is an impossible differential, then
(wj , 0) → (0, wi) is also an impossible differential since the encryption and the
decryption are the same for Feistel cipher. The 6-round impossible differentials
of E2 found by the way of Section.3 can be written as follows(for i ≤ j).
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(w1, 0) 6−round−−−−−−→ (0, w1), (w1, 0) 6−round−−−−−−→ (0, w3),
(w1, 0) 6−round−−−−−−→ (0, w5), (w1, 0) 6−round−−−−−−→ (0, w6),
(w1, 0) 6−round−−−−−−→ (0, w8), (w2, 0) 6−round−−−−−−→ (0, w5),
(w2, 0) 6−round−−−−−−→ (0, w6), (w2, 0) 6−round−−−−−−→ (0, w8),
(w3, 0) 6−round−−−−−−→ (0, w5), (w3, 0) 6−round−−−−−−→ (0, w6),
(w3, 0) 6−round−−−−−−→ (0, w8), (w4, 0) 6−round−−−−−−→ (0, w6),
(w4, 0) 6−round−−−−−−→ (0, w8), (w5, 0) 6−round−−−−−−→ (0, w5),
(w5, 0) 6−round−−−−−−→ (0, w6), (w5, 0) 6−round−−−−−−→ (0, w8),
(w6, 0) 6−round−−−−−−→ (0, w6), (w6, 0) 6−round−−−−−−→ (0, w7),
(w7, 0) 6−round−−−−−−→ (0, w8).

4 Impossible Differential Attack on E2 Reduced to 9
Rounds

With the 6-round impossible differential, a 9-round impossible differential attack
on E2 without IT/FT function can be obtained. The attack is based on the above
6-round impossible differentials with additional two rounds at the beginning and
one round at the end as shown in Fig. 4.

F

F

6-round impossible differential

F

0 2 3 4 7 8
(0 | | | | 0 | 0 | | )R u u u u u

1
(0 | 0 | 0 | 0 | | 0 | 0 | 0)R a
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(0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)R

2
(0 | 0 | 0 | 0 | | 0 | 0 | 0)L a

8
(0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)L 8

(0 | 0 | 0 | 0 | 0 | | 0 | 0)R h

9
(0 | 0 | 0 | 0 | 0 | | 0 | 0)L h 9 1 2 3 4 8

( | 0 | | | | 0 | 0 | )R t t t t t

Fig. 4. 9-Round Impossible Differential Attack to E2

The attack procedure is as follows:
Step 1 Precalculation: for S-box, define T (α, β) = {x ∈ F8

2|S(x⊕α)⊕S(x) =
β}, then take all possible values of (α, β), and store T (α, β) in a table.
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Step 2 Choose structure of plaintexts as follows:

L0 = (y1|y2|y3|y4|y5|y6|y7|y8)
R0 = (α1|x2|x3|x4|α5|α6|x7|x8)

where xi(i = 2, 3, 4, 7, 8), yi(1 ≤ i ≤ 8) take all possible values in F8
2, αi(i =

1, 5, 6) and βi(2 ≤ i ≤ 8) are constants in F8
2. For each possible value of

(y1, y2, y3, y4, y5, y6, y7, y8, x2, x3, x4, x7, x8), we can get a unique 128-bit string.
Hence, a structure includes 2104 plaintexts and there are 2104×2/2 = 2207 plain-
text pairs in a structure. So the 217 structures yield a total of 2224 plaintext
pairs.

Step 3 Keep only the pairs whose ciphertexts differential (∆L9,∆R9) satisfy
the following:

∆L9 = (0|0|0|0|0|h|0|0)
∆R9 = (t1|0|t2|t3|t4|0|0|t8)

where ti(i = 1, 2, 3, 4, 8) are unknown non-zero values. The expected number of
remaining pairs is about 2224 × 2−80 = 2144.

Step 4 Guess the 64-bit subkey K
(1)
9 and 5 subkey bytes K

(2)
9,1 , K

(2)
9,2 , K

(2)
9,4 ,

K
(2)
9,5 , K

(2)
9,6 .

Step 4.1 For every remaining pair (L0, R0) and (L∗0, R
∗
0), guess the 64-bit

subkey K
(1)
9 and compute

Z9 = PS(L9 ⊕K
(1)
9 ),

Z∗9 = PS(L∗9 ⊕K
(1)
9 ).

Step 4.2 Guess the 5 bytes of K
(2)
9 and compute

q1 = s(Z9,1 ⊕K
(2)
9,1)⊕ s(Z∗9,1 ⊕K

(2)
9,1)⊕R9,8 ⊕R∗9,8,

q2 = s(Z9,2 ⊕K
(2)
9,2)⊕ s(Z∗9,2 ⊕K

(2)
9,2)⊕R9,1 ⊕R∗9,1,

q3 = s(Z9,4 ⊕K
(2)
9,4)⊕ s(Z∗9,4 ⊕K

(2)
9,4)⊕R9,2 ⊕R∗9,2,

q4 = s(Z9,5 ⊕K
(2)
9,5)⊕ s(Z∗9,5 ⊕K

(2)
9,5)⊕R9,3 ⊕R∗9,3,

q5 = s(Z9,6 ⊕K
(2)
9,6)⊕ s(Z∗9,6 ⊕K

(2)
9,6)⊕R9,4 ⊕R∗9,4.

Then check whether qi = 0(1 ≤ i ≤ 5) and keep only the qualified pairs.
Since the probability is about 2−40, the expected number of the remaining pairs
is 2144 × 2−40 = 2104.

Step 5 Guess the 64-bit subkeys K
(1)
1 and K

(2)
1 , for every remaining plaintext

pair (L0, R0) and (L∗0, R
∗
0),

L0 = (y1|y2|y3|y4|y5|y6|y7|y8)
R0 = (α1|x2|x3|x4|α5|α6|x7|x8)
L∗0 = (y∗1 |y∗2 |y∗3 |y∗4 |y∗5 |y∗6 |y∗7 |y∗8)
R∗0 = (α1|x∗2|x∗3|x∗4|α5|α6|x∗7|x∗8)
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Compute (L1, R1) and (L∗1, R
∗
1), choose pairs whose difference satisfy R1⊕R∗1 =

(0|0|0|0|0|h|0|0) where h is not zero. Since the probability is about 2−56, the
expected number of the remaining pairs is 2104 × 2−56 = 248.

Step 6 Guess the 64-bit subkey K
(1)
2 and 5 subkey bytes K

(2)
2,1 , K

(2)
10,2, K

(2)
10,3,

K
(2)
10,4, K

(2)
10,8, perform the following:

Step 6.1 For every remaining pair (L0, R0) and (L∗0, R
∗
0), and the correspond-

ing output of the first round (L1, R1) and (L∗1, R
∗
1), guess K

(1)
2 and compute:

Z2 = PS(R1 ⊕K
(1)
2 ),

Z∗2 = PS(R∗1 ⊕K
(1)
2 ).

Step 6.2 Guess the 5 bytes of K
(2)
2 and compute

q1 = s(Z2,1 ⊕K
(2)
2,1)⊕ s(Z∗2,1 ⊕K

(2)
2,1)⊕R1,8 ⊕R∗1,8,

q2 = s(Z2,2 ⊕K
(2)
2,2)⊕ s(Z∗2,2 ⊕K

(2)
2,2)⊕R1,1 ⊕R∗1,1,

q3 = s(Z2,4 ⊕K
(2)
2,4)⊕ s(Z∗2,4 ⊕K

(2)
2,4)⊕R1,2 ⊕R∗1,2,

q4 = s(Z2,5 ⊕K
(2)
2,5)⊕ s(Z∗2,5 ⊕K

(2)
2,5)⊕R1,3 ⊕R∗1,3,

q5 = s(Z2,6 ⊕K
(2)
2,6)⊕ s(Z∗2,6 ⊕K

(2)
2,6)⊕R1,4 ⊕R∗1,4.

Then check whether qi = 0(5 ≤ i ≤ 1). If yes, discard the candidate value of
(K(1)

1 ,K
(2)
1 ,K

(1)
2 ,K

(2)
2,i ,K

(1)
9 ,K

(2)
9,i )(i = 1, 2, 4, 5, 6).

Since such a difference is impossible, every key that proposes such a difference
is a wrong key. After analyzing 248 ciphertexts pairs, there remain only about
2336(1−2−40)2

48
wrong candidate value of (K(1)

1 ,K
(2)
1 ,K

(1)
2 ,K

(2)
2,i ,K

(1)
9 ,K

(2)
9,i )(i =

1, 2, 4, 5, 6), which is much less than 1.
The time complexity of Step 4.1 requires about 2144 × 264 × 2 = 2209 one

round operations. The precalculation can decrease the complexity of Step 4.2,
one can look up the table T (Z9,k ⊕ Z∗9,k, R9,i ⊕ R9,j) to judge whether the qis

are zero or not. This Step needs about 2144 × 264 × 5 ≈ 2210 table lookups. Step
5 has a time complexity of about 2104 × 2128 × 2 = 2233 one round operations.
Step 6 needs 248 × 264 × 2 = 2113 one round operations and 248 × 264 × 5 ≈ 2114

table lookups respectively.
Consequently, this attack requires about 2121 chosen plaintexts and less than

2230 encryptions of 9-round E2 and 2210 table lookups.

5 Conclusion

The block cipher E2 was proposed as an AES candidate. It employs a Feis-
tel structure and a 2-layer SPN structure in round function. In this paper we
describe some 6-round impossible differentials of E2, and present a 9-round at-
tack on E2 without IT/FT when used with 256 key bits. Cryptanalysis given
in this paper is the first security evaluation of E2 against impossible differential
cryptanalysis.
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