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Abstract. We present an Identity-Based Encryption (IBE) scheme that is fully
secure without random oracles and has several advantages over previous such
schemes - namely, computational efficiency, shorter public parameters, and sim-
ple assumption. The construction is remarkably simple and the security reduction
is straightforward. We first give our CPA construction based on the decisional
Bilinear Diffie-Hellman (BDH) problem, then archiving the CCA security by
employing secure symmetric-key encryption algorithm. Additionally, we trans-
form the CPA construction into a new signature scheme that is secure under the
computational Diffie-Helleman assumption without random oracles.
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1 Introduction

The concept of IBE was introduced by Shamir [1] in 1984. About twenty years later,
Cocks [2], Boneh and Franklin [3] and Sakai et al. [4] presented three IBE solutions
in 2001. Cock’s scheme is based on the quadratic residuosity problem, which relies on
the hardness of factoring. Both Boneh and Franklin scheme (BF-IBE) and Sakai et al.
solution are based on groups with efficiently computable bilinear maps. The security of
either scheme was only proven in the random oracle model.

Following the breakthough results in 2001, there has been significant progress in
realizing IBE in the standard model. First, Canetti, Halevi, and Katz [5] suggested a
weaker security notion for IBE, known as Selective-ID model, relative to which they
were able to build an inefficient but secure IBE scheme without using random oracles.
Subsquently, Boneh and Boyen [6] presented two very efficient IBE systems (“BB1”
and “BB2”) secure in the Selective-ID model, without random oracles. In Crypto 2004,
the same authors [7] then proposed a coding-theoretic extenstion to their “BB1” scheme
which was proved to be fully secure for adaptive identity without random oracles. How-
ever, their construction is polynomial in all parameters, which make it impractical. It is
mostly viewed as an existense proof of fully secure IBE builting with a polynomially
bounded reduction from the underlying complexity assumption. In EuroCrypto 2005,
Waters [8] greatly simplified the extenstion in [7] and substantially improved the ef-
ficiency. One drawback of Waters scheme [8] is that the public parameters consisted
of n + 4 group elements which grows linear to the security parameter n. In the same



year, Naccache [9] described a variant of Waters scheme which divided the system pa-
rameters by a factor l but at the cost of reducing the security by l bits. Independantly,
Chatterjee and Sarkar [10] addressed the same issue and proposed a generalisation of
Waters scheme, investigated how to find a trade-off between the smallness of parame-
ters and the tightness of security reduction.

In Eurocrypt 2006, Gentry [11] proposed an IBE scheme with short public param-
eters. Although the Gnetry IBE scheme achieved security in the standard model, it did
so at the cost of using a complicated assumption called the decisional q-ABDHE as-
sumption. In addition to the added complexity, the actual assumption used in the proof
is dependent on the number of private key queries the adversary makes. In Crypto 2009,
Waters [12] presented a new methodology named Dual System Encryption which results
in fully secure IBE and HIBE systems under simple assumption and with ciphertexts,
private keys, and public parameters has constant size.

1.1 Our contribution

We present an IBE (HIBE) scheme that is fully secure without random oracles based
on the simple and established decisional Bilinear Diffie-Hellman assumption. Our IBE
scheme has ciphertexts, private keys, and public parameters each consisting of a con-
stant number of group elements, and the security reduction is tighter than previous such
schemes [8]. Additionally, like Waters, our CPA construction can also be easily con-
verted to a signature scheme where the underlying assumption is the computational
Diffie-Helleman problem by applying Naor’s technique.

Another contribution of this paper is our proof technique. We embed an unbalanced
linear combination structure into the generation of public key. This technique enable
us to partition the whole identity space into two orthogonal subspaces and therefore
achieve the full security without random oracles. The intuition of proof technique will
be detailed in Section 4.3.

1.2 Organization

We organize the rest of the paper as follows. In Section 2 we give our security defi-
nitions. In the Section 3 we describe some necessary complexity assumptions. In Sec-
tion 4 and Section 5 we present the CPA construction and CCA construction, respec-
tively. In Section 6 we show how to transform the CPA construction to a signature
scheme. Finally, we conclude in Section 7.

2 Security Definitions

2.1 IBE and HIBE

Following [13] [14], a Hierarchical Identity Based Encryption (HIBE) systems consists
of four algorithms: Setup, KeyGen, Encrypt and Decrypt. In HIBE, identities are vec-
tors; a vector of dimension k represents an identity at depth k. The Setup algorithm
generates system parameters, denoted by params, and a master secret master-key. Note
that, for a HIBE of height ` (henceforth denoted as `-HIBE) any identity ID is a tuple
(I1, . . . , Ik) where 1 ≤ k ≤ `.
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Setup. Takes a security parameter κ and returns params and master-key. Intuitively,
the system parameters params will be publicly known, while the master-key will be
known only to the Private Key Generator (PKG). We refer to the master-key as the
private key at depth 0 and note that an IBE system is a HIBE where all identities are
at depth 1.M is the message space, C is the ciphertext space.

KeyGen. Takes as input an identity ID = (I1, . . . , Ik) at depth k and the private key
dID|(k−1) of the parent identity ID|k−1 = (I1, . . . , Ik−1) at depth k − 1, and then
outputs a private key dID for identity ID.

Encrypt. Takes as input params, ID, and M ∈M. It returns a ciphertext C ∈ C.
Decrypt. Takes as input params, C ∈ C, and a private key dID. It returns M ∈M.

Boneh and Franklin [3] [15] define chosen ciphertext security and semantic secu-
rity for IBE (HIBE) schemes under a chosen identity attack using the following game
between an adversary A and a challenger:
Setup. The challenger runs Setup algorithm and gives A the resulting system parame-

ters params, keeping the master-key to itself.
Phase 1. The adversary A issues queries q1, . . . , qm where qi is one of:

– Private key query 〈IDi〉. The challenger responds by running algorithm KeyGen
to generate the private key di corresponding to the public key IDi and sends di
to the adversary.

– Decryption query 〈IDi, Ci〉. The challeger responds by running algorithm KeyGen
to generate the private key di corresponding to IDi. It then runs algorithm Decrypt
to decrypt the ciphertextCi using the private key di and sends the resulting plain-
text to the A.

These queries may be asked adaptively, that is, each query qi may depends on the
replies to q1, . . . , qi−1.

Challenge. Once A decides that Phase 1 is over, it outputs an identity ID∗ and two
equal length plaintexts M0,M1 ∈ M on which it wishes to be challenged. The only
restriction is thatA did not previously issue a private key query for ID∗ or a prefix of
ID∗. The challeger picks a random bit β ∈ {0, 1} and sets the challenge ciphertext to
C = Encrypt(params,Mβ , ID

∗), which is sent to A.
Phase 2. A issues additional queries qm+1, . . . , qn where qi is one of:

– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of ID∗.
– Decryption query 〈Ci〉 6= 〈C〉 for ID∗ or any prefix of ID∗.

In both cases, the challeger responds as in Phase 1. These queries may be adaptive.
Guess. A eventually outputs a bit β′ and wins if β′ = β.
We refer to such an adversaryA as an IND-ID-CCA adversary.A’s advantage is defined
as AdvA(k) = |Pr[β′ = β]− 1/2|. The probability is over the random bits used by the
challenger and the adversary.

Definition 2.1 An IBE or HIBE scheme E is said to be (t, qE , qD, ε)-adaptive iden-
tity, chosen ciphertext secure of for any t-time IND-ID-CCA adversary that makes at
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most qE chosen private key queires and at most qD chosen decryption queries we have
AdvA ≤ ε. As shorthand, we say that E is (t, qE , qD, ε) IND-ID-CCA secure.

Semantic Security. We define adaptive identity, chosen plaintext security for an IBE or
HIBE scheme as in the preceding game, except that the adversary is not allowed to issue
any decryption queries. The adversary can still make adaptive private key extraction
queries.

Definition 2.2 An IBE or HIBE scheme E is said to be (t, qE , ε)-adaptive identity, cho-
sen plaintext secure of for any t-time IND-ID-CPA adversary that makes at most qE
chosen private key queires we have AdvA ≤ ε. As shorthand, we say that E is (t, qE , ε)
IND-ID-CPA secure.

2.2 Symmetric-Key Encryption

A symmetric-key encryption scheme SE consists of two algorithms (Enc,Dec). For
a symmetric key sk, the encryption algorithm Enc encrypts a plaintext M as C ←
Enc(sk,M); The decryption algorithm Dec decrypts a ciphertextC asM = Dec(sk, C).
Moreover, we say that SE is length preserving if |Enc(sk,M)| = |M |.

Definition 2.3 A symmetric-key encryption scheme is secure in the IND-CCA sense if
no PPT adversary A has a non negligible advantage in the following game.

Setup. The challenger randomly chooses a symmetric key sk.
Phase 1. A starts probing the scheme by querying the encryption oracle Enc(sk, ·) and

the decryption oracle Dec(sk, ·).
Challenge. In the challenge phase, A outputs two equal length messages (M0,M1)

that were not submitted to Enc(sk, ·) or obtained from Dec(sk, ·) and gets C =
Enc(sk,Mβ) for a random bit β ∈ {0, 1}.

Phase 2. A issues new queries as in Phase 1 but is disallowed to ask for the decryption
of C and the encryptions of M0 and M1.

Guess. A eventually outputs a guess β′ for β.
A’s advantage is defined by AdvA(k) = |Pr[β′ = β]− 1/2|.

We will use a length preserving IND-CCA secure symmetric-key encryption scheme
in our construction. Such a scheme can be built by applying CMC [16] or EME [17]
mode of operation to a block cipher, if the underlying block cipher is modeled as strong
pseudorandom permutation (for example, AES [18] can be used).

3 Complexity Assumptions

We briefly review the facts about groups with efficiently computable bilinear map. Let
G1 and G2 be two groups of large prime order p, and e : G1×G1 → G2 be the bilinear
map between these two groups. A bilinear map satisfying the following three properties
is said to be an admissible bilinear map.
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1. Bilinearity. The map e : G1 × G1 → G2 is bilinear if e(aP, bQ) = e(P,Q)ab for
all P,Q ∈ G1 and all a, b ∈ Z.

2. Non-degeneracy. The map does not send all pairs in G1 ×G1 to the identity in G2.
3. Computability. There is an efficient algorithm to compute e(P,Q) for any P,Q ∈

G1.

Bilinear Map Parameter Generator. We say that a randomised algorithm G is a Bi-
linear Map parameter generator if (1) G takes a security parameter k ∈ Z+, (2) G runs
in polynomial time in k, and (3) G outputs a k bits prime number p, the description
of two groups G1, G2 of order p, and the description of an admissible bilinear map
e : G1 ×G1 → G2. We denote the output of G by G(1k) = 〈G1,G2, p, e〉.

3.1 Decisional Bilinear Diffie-Hellman (BDH) Assumption

Suppose G(1k) = 〈G1,G2, p, e〉, the challenger chooses a, b, c, z ∈ Zp at random and
then flips a fair coin β. If β = 1 it outputs the tuple (P, P1 = aP, P2 = bP, P3 =
cP, Z = e(P, P )abc). Otherwise, the challenger outputs the tuple (P, P1 = aP, P2 =
bP, P3 = cP, Z = e(P, P )z). Finally, the adversary outputs a guess β′ for β. An
adversary B has at least an ε advantage in solving the decisional BDH problem if∣∣Pr

[
B
(
P, P1, P2, P3, e(P, P )abc

)
= 1
]
− Pr [B (P, P1, P2, P3, e(P, P )z) = 1]

∣∣ ≥ ε
where the probability is over the randomly chosen a, b, c, z and the random bits con-
sumed by B. We refer to the distribution on the left as PBDH and the distribution on
the right asRBDH .

Definition 3.1 The decisional (t, ε)-BDH assumption holds if no t-time adversary has
at least ε advantage winning the above game.

3.2 Computational Diffie-Hellman (DH) Assumption

The challenger chooses a, b ∈ Zp at random and outputs (P, P1 = aP, P2 = bP ). The
adversary then attempts to output abP . An adversary B has at least an ε advantage if

Pr[B(P, P1, P2) = abP ] ≥ ε

where the probability is over the random a, b and the random bits consumed by B.

Definition 3.2 The computational (t, ε)-DH assumption holds if no t-time adversary
has at least ε advantage winning the above game.

4 Efficient IBE and HIBE Based on decisional BDH Without
Random Oracles

We construct an efficient HIBE scheme that is fully secure without random oracles
based on the decisional BDH assumption. In particular, this implies an efficient fully
secure, chosen ciphertext secure IBE based on decisional BDH without random oracles.
Our construction can be viewed as a variant of “BB1” in [6]. We first present our scheme
then describe its relation to the “BB1”.
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4.1 CPA Construction

For now, we assume identities (IDs)of depth ` are vectors of elements in {0, 1}∗. We
write ID = (I1, . . . , I`). The j-th component corresponding to the identity at level j can
be any arbitrary bitstring over {0, 1}∗. The HIBE system works as follows:
Setup(`): Run G on security parameter κ to generate 〈G,G1, p, e〉. To generate system
parameters for an HIBE of maximum depth `, select a random generator P in G∗, a
random a ∈ Z∗p, and set P1 = aP . Next, pick ` random elements U1, . . . , U` ∈ G∗ and
a random element P2 ∈ G∗. Additionally, choose two collision resistant hash function
H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → Zm. (The choice of m will be determined
later.) Let · denote the group operation in G1. The public parameters params and the
master secret master-key are given by

params = (P, P1, P2, U1, . . . , U`, H1, H2), master-key = aP2

For j = 1, . . . , `, Ij ∈ {0, 1}∗, we define Fj : {0, 1}∗ → G to be the function:

Fj(Ij) = Uj +H1(Ij)P +H2(Ij)P2 = Uj + wjP + ljP2

KeyGen(dID|j−1, ID): To generate the private key dID for an identity ID = (I1, . . . , Ij)
of depth j ≤ `, pick random r1, . . . , rj ∈ Zp and output dID = (d0, d1, . . . , dj), where

d0 = aP2 +
j∑
i=1

riFi(Ii), di = riP for 1 ≤ i ≤ j

Note that the private key for ID can be generated by an entity which processes a private
key for ID|j−1 = (I1, . . . , Ij−1). Indeed, let dID|j−1 = (d′0, . . . , d

′
j−1) be the private key

for ID|j−1. To generate dID pick a random rj ∈ Zp and computes dID = (d0, d1, . . . , dj)
as follows.

d0 = d′0 + rjFj(Ij); di = d′i for 1 ≤ i ≤ j − 1; and dj = rjP

In fact, any prefix of ID as well as the PKG can generate a private key dID for ID.

Encrypt(params, ID,M): To encrypt a message M ∈ G1 under the identity ID =
(I1, . . . , Ij), pick a random c ∈ Zp and output

C = (A,B,C1, . . . , Cj) = (e(P1, P2)c ·M, cP, cF1(I1), . . . , cFj(Ij))

Note that e(P1, P2) can be precomputed once and for all so that encryption does not
require any pairing computations. Alternatively, e(P1, P2) can be included in the system
parameters.

Decrypt(dID, C): Consider an identity ID = (I1, . . . , Ij). To decrypt a given ciphertext
C = (A,B,C1, . . . , Cj) using the private key dID = (d0, d1, . . . , dj), output

M = A ·
∏j
k=1 e(Ck, dk)
e(B, d0)

Indeed, for a valid ciphertext, we have

e(B, d0)∏j
k=1 e(Ck, dk)

=
e(P, P2)ca

∏j
k=1 e(P, Fk(Ik))

crk∏j
k=1 e(Fk(Ik), P )crk

= e(P1, P2)c
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4.2 Security

The HIBE scheme above is reminiscent of Boneh-Boyen HIBE (BB1) [6] which is
only known to be secure in Selective-ID model. Surprisingly, our choice of functions
F1, . . . , F` enables us to prove our scheme fully secure without random oracles. We
prove security of our HIBE scheme under decisional BDH assumption in groups gen-
erated by G.

Theorem 4.1 Our HIBE system is IND-ID-CPA assuming the decisional BDH problem
is hard in groups generated by G. Concretely, suppose there is an IND-ID-CPA adver-
sary A that has advantage ε against the scheme. If A makes at most qE > 0 private
key extraction queries. Then there is an algorithm B that solves the decisional BDH
generated by G with advantage at least:

AdvB ≥
ε

e · q`E

Proof. SupposeA has advantage ε in attacking the HIBE system. We show how to build
an adversary B that uses adversary A against decisional BDH problem. Algorithm B
is given as input a random 5-tuple (P, aP, bP, cP, Z) that either sampled from PBDH
(where Z = e(P, P )abc) or from RBDH (where Z is uniform and independent in G1).
Algorithm B’s goal is to output 1 if Z = e(P, P )abc and 0 otherwise. Set P1 = aP ,
P2 = bP , P3 = cP . Algorithm B works by interacting withA in an IND-ID-CPA game
as follows.
Setup. To generate the system parameters, B randomly picks si ∈ Zp and ti ∈ Zm at
random for i = 1, . . . , `, and assigns Ui = siP −tiP2. (si and ti are kept internal to B.)
It givesA the system parameters params = (P, P1, P2, U1, . . . , U`). Note that the cor-
responding master-key, which is unknown to B, is aP2 = abP ∈ G. From the perspec-
tive of the adversaryA the distribution of the public parameters (P, P1, P2, U1, . . . , U`)
are identical to the real construction.

Phase 1 - Private key queries.A issues up to qE private key queries. Consider a query
for the private key corresponding to ID = (I1, . . . , Iu) where u ≤ `. To respond to this
query, B first computes H1(Ii) = wi and H2(Ii) = li for 1 ≤ i ≤ u, then compute Fi
functions taking Ii as inputs:

Fi(Ii) = Ui +H1(Ii)P +H2(Ii)P2 = siP − tiP2 + wiP + liP2

If li = ti the simulator aborts and randomly choose its guess β′ of the challenge’s
value β. Otherwise, the simulator B picks ri, . . . , ru ∈ Zp at random and constructs the
private key d = (d0, d1, . . . , du) as follows:

d0 =
u∑
i=1

(
ri(si + wi)P + ri(li − ti)P2 −

si + wi
u(li − ti)

P1

)
di = riP −

1
u(li − ti)

P1( for 1 ≤ i ≤ u)
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Observe that

d0 =
u∑
i=1

(
ri(si + wi)P + ri(li − ti)P2 −

si + wi
u(li − ti)

P1

)

= aP2 +
u∑
i=1

(
ri(si + wi)P + ri(li − ti)P2 −

si + wi
u(li − ti)

aP − a

u
P2

)

= aP2 +
u∑
i=1

(
ri −

a

u(li − ti)

)
((si + wi)P + (li − ti)P2)

= aP2 +
u∑
i=1

(
ri −

a

u(li − ti)

)
(Ui + wiP + liP2)

= aP2 +
u∑
i=1

r̃iFi(Ii)

di = riP −
1

u(li − ti)
P1 =

(
ri −

a

u(li − ti)

)
P = r̃iP

We conclude that d = (d0, d1, . . . , du) is a valid private key for ID with the underlying
random number r̃i = ri− a

u(li−ti) . The simulator B is always able to perform this kind
of construction iff (li − ti) 6= 0 for all 1 ≤ i ≤ u.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈
G1 and a target identity ID∗ = (I∗1, . . . , I

∗
k) (1 ≤ k ≤ `) on which it wishes to be

challenged. The only constraint is that ID∗ is not a prefix of any identity has been
asked for private key in Phase 1. B first computes H1(I∗i ) = w∗i and H2(I∗i ) = l∗i
for 1 ≤ i ≤ k. If l∗i 6= ti the simulator aborts and submits a random guess for β′.
Otherwise, B computes F ∗i (I∗i ) = Ui + w∗i P + l∗i P2 = (si + w∗i )P , then flips a fair
coin β and responds the ciphertext

C = (A,B,C1, . . . , Ck)

where A = Z ·Mβ , B = P3 = cP , and Ci = (si + w∗i )P3. Note that Ci = (si +
w∗i )P3 = c(siP−tiP2+w∗i P+k∗i P2) = cF ∗i (I∗i ), so we claimed that (A,B,C1, . . . , Cl)
is a valid ciphertext when Z = e(P1, P2)c = e(P, P )abc. It is easy to see that C is a
valid encryption of Mβ under ID∗. Otherwise, when Z is uniform and independent
in G1 (when the input 5-tuple is sampled from RBDH ) then C is independent of the
simulator’s choice β in adversary’s view.

Phase 2 - Private key queries. A continues to issue queries. B responds as Phase 1.

Guess. Finally, A outputs a guess β′ ∈ {0, 1}. B ends its own game by outputting a
guess as follows. If β = β′ then B outputs 1 meaning Z = e(P, P )abc. Otherwise, it
outputs 0 meaning Z 6= e(P, P )abc.

When the input 5-tuple is sampled from PBDH (where Z = e(P, P )abc) then A’s
view is identical to its view in a real attack and therefore we have |Pr [β = β′]− 1/2| ≥
ε. On the other hand, when the input 5-tuple is sampled from RBDH (where Z is uni-
form in G1) then Pr [β = β′] = 1/2. Therefore, with P , Ui uniform in G∗, a, b, c uni-
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form in Zp, Z uniform in G1, we have that∣∣Pr[B(P, P1, P2, P3, e(P, P )abc) = 1]− Pr[B(P, P1, P2, P3, Z) = 1]
∣∣

≥
∣∣∣∣(1

2
± ε
)
− 1

2

∣∣∣∣ = ε

To complete the proof of Theorem 4.1 it remains to calculate the probability that B
aborts during the simulation. B may aborts simulation due to the two following events.

1. Event E1:
∨u
i=1 li = ti for any query in Phase 1 and Phase 2 when answering the

private key extraction queries.
2. Event E2:

∨k
i=1 l

∗
i 6= ti during the challenge phase.

H2(·) is a collision resistant hash function, its outputs uniformly distribute in Zm,
thus the probability of Pr[li = ti] is 1/m. For any private key extraction query related
to a depth u identity ID = (I1, . . . , Iu) (1 ≤ u ≤ `), the probability that B can generate
the corresponding private key is

Pr

[
u∧
i=1

li 6= ti

]
=
(

1− 1
m

)u
≥
(

1− 1
m

)`
Suppose the maximum number of private key queries is qE , then we have

Pr[¬E1] ≥
(

1− 1
m

)`qE

According to the definition of event E2, it is easy to see that

Pr[¬E2|¬E1] =
(

1
m

)k
≥
(

1
m

)`
Therefore

Pr[B does not aborts] = Pr[¬E2|¬E1]Pr[¬E1] ≥
(

1
m

)`(
1− 1

m

)`qE

A common estimate used here is qE = 230 (suggested by Bellare and Rogaway [19]).
We can optimize the probability by settingmopt = 1+qE (as we did in the simulation).
Using mopt, we have

Pr[B does not aborts] =
1
q`E

(
1− 1

1 + qE

)(1+qE)·`

≈ 1
e · q`E

If the adversary makes less queries the probability of not aborting can only be
greater. This shows that B’s advantage is at least ε/(e · q`E) as required. �
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Remark 1. At first glance, there is an apparent paradox in the proof since it seems that
the simulator algorithm could simply answer the challenge ciphertext itself by creating
a private key for ID∗. In fact, for an arbitrary identity, the simulator cannot generate
a private key and a valid ciphertext simultaneously. If the simulator can create a valid
ciphertext for the challenge identity, which means

∨k
i l
∗
i = ti). Then it cannot extract

the corresponding private key.

Remark 2. Note that it is impossible for an adversary to generate a valid private key as
the simulator does in simulation, because the structure of Ui is unknown to the adver-
sary. One has a chance to generate a valid private key only when it can express Ui in an
explicit form siP + wiP2, where si ∈ Zp, wi ∈ Zm. This again is a hard problem.

4.3 Proof Technique

The proof technique we use is actually the “partitioning strategy” summarized by Wa-
ters in [12]. We reduce the security of our scheme to the underlying complexity assump-
tion by building an algorithm B that partitions the identity space V into two subspaces:
1) V1: identities of which it can create private keys; and 2) V2: identities that it can use
in the challenge phase. (It can embed the underlying complexity assumption instance
into a valid ciphertext for the challenge identity.) We remark that the two subspaces are
orthogonal, i.e. V1 ⊥ V2, V = V1 ⊕ V2.

In order to achieve tight partition, we expect V2 to be larger. This inspires us to
embed an unbalanced structure to the public parameters and public key. Remember that
Fj function can be viewed as a map to point function which maps an arbitrary identity
to its underlying public key in G:

Fj(Ij) = Uj +Qj , where Qj = H1(Ij)P +H2(Ij)P2

The public key consists of two parts, public parameter Uj and the element Qj of Ij .
Both Uj and Qj have the same structure, the linear combination based on 2-tuple gen-
erators (P, P2): x1P ± x2P2, where x1 ∈ Zp, x2 ∈ Zm. Note that compared to first
coefficient x1, the second coefficient x2 is chosen from a smaller space, so we refer
to this combination as unbalanced structure. The partitioning is thus determined by
implicitly assigning the unbalanced structure into public parameters Uj and explicitly
embedding the unbalanced structure into Qj .

As to implicitly assigning the unbalanced structure to Uj when the simulator run
the Setup algorithm:

– Choosing the first coefficient sj randomly from a large set Zp enables Uj to be
uniformly distributed in G. If we drop the first term, then Uj does not uniformly
distribute in G anymore.

– Choosing the second coefficient tj from a small set Zm enables the security re-
duction to be valid. If we drop the second term, alternatively means the second
coefficient is 0. Then the adversary can always make the reduction invalid, i.e, issu-
ing the private key query of whichH2(Ii) = 0 and submitting the challenge identity
of which H2(I∗i ) 6= 0.

As to explicitly embedding the unbalanced structure into Qj
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– Choosing the first coefficient wj (H1(Ij)) randomly from a large set Zp enables
every identity could be well encoded into G. (Introducing the first term makes every
identity to be mapped to an unique element in G. If we drop the first term, then the
whole identity space will be mapped into a small set. In this case, it is easy for an
adversary to find a collision.)

– Choosing the second coefficient lj (H2(Ij)) from a small set Zm enables the secu-
rity reduction to be tight reduced to the underlying problem.

4.4 Comparison to Boneh-Boyen HIBE

Our scheme is quite similar to Boneh-Boyen HIBE [6]. The differences lie at the con-
structions of Fi functions. Let Ij be an identity of depth j, H1 : {0, 1}∗ → Zp and
H2 : {0, 1}∗ → Zm are two collision free hash functions. For j = 1, . . . , `, the func-
tion Fj in Boneh-Boyen HIBE [6] is defined as

Fj(Ij) = Uj +H1(Ij)P1

whereas in our scheme, Fj is defined as

Fj(Ij) = Uj +H1(Ij)P +H2(Ij)P2

Remarkably, this small modification to Fj function enable us to achieve adaptive
identity security (fully secure). The motivation of our design is easy to be understood
from the above security proof.

We provide in Table 1 a comparison between our CPA construction and Waters
scheme [8]. Let P be a pairing operation, Gi, Ei and Ii be a group operation, a group
exponentiation and one group inversion in Gi, respectively. Let ki be the size of an
element in Gi. Reduction cost refers to the multiplicative ratio between the advantage
of the adversary attacking the IBE scheme and the algorithm solving the underlying
problem.

Waters [8] Our scheme
Public parameter size (n + 4)k1 4k1

Ciphertext size 2k1 + k2 2k1 + k2

Encryption
`

n
2

+ 1
´

G1 + 1G2 + 2E1 + 1E2 2G1 + 1G2 + 2E1 + 1E2

Decryption 2P + 1G2 + 1I2 2P + 1G2 + 1I2
Reduction factor 1

32(n+1)qE

1
eqE

1 For security concern, n in [8] is suggested to be at least 128.

Table 1. Comparison with Waters scheme

5 CCA security

One way to achieve CCA security for our scheme is to follow the strategy suggested
in [8]. Results of Canetti et al. [20], further improved upon by Boneh and Katz [21]
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show how to build a CCA secure `-HIBE scheme from a CPA secure (` + 1)-HIBE
scheme. Here, we show it is also possible to obtain CCA security by employing a CCA-
secure symmetric key encryption algorithm.

5.1 CCA construction

Our CCA construction resembles the CPA construction in Section 4. As to Setup al-
gorithm, in order to employing symmetric key encryption, we introduce one more
collision resistant hash function H : G1 → {0, 1}n to change the message space
from G1 to {0, 1}n. Here n is the size of message. KeyGen algorithm remains unal-
tered. To encrypt a message M ∈ {0, 1}n for identity ID = (I1, . . . , Ij) with a ran-
dom number c ∈ Zp, we first derive the symmetric key sk = H(e(P1, P2)c) and
then use sk to encrypt M . The ciphertext is computed as C = (A,B,C1, . . . , Cj) =
(Enc(sk,M), cP, cF1(I1), . . . , cFj(Ij)). To decrypt a given ciphertext, we first obtain
e(P1, P2)c by computing e(B, d0)/

∏j
k=1 e(Ck, dk), then extract the symmetric key

sk = H(e(P1, P2)c) and recover the message M = Dec(sk,A).

5.2 Security Analysis

We prove the security of our CCA construction under the standard decisional BDH
assumption in groups generated by G.

Theorem 5.1 Our CCA construction is IND-ID-CCA assuming the decisional BDH
problem is hard in groups generated by G1. Concretely, suppose there is an IND-ID-CCA
adversary A that has advantage ε against the scheme. If A makes at most qE > 0 pri-
vate key queries and qD > 0 decryption queries, then there is an algorithm B that
solves the decisional BDH generated by G with advantage at least:

AdvB ≥
ε

e(qE + qD)`

Proof. Suppose A has advantage ε in attacking the CCA construction. We show how
to construct an adversary B that uses adversary A against decisional BDH problem.
Algorithm B is given as input a random 5-tuple (P, aP, bP, cP, Z) that either sampled
from PBDH (where Z = e(P, P )abc) or from RBDH (where Z is uniform and inde-
pendent in G1). Algorithm B’s goal is to output 1 if Z = e(P, P )abc and 0 otherwise.
Set P1 = aP , P2 = bP , P3 = cP . Algorithm B works by interacting with A in an
IND-ID-CPA game as follows.
Setup. The same as CPA construction in Section 4.

Phase 1 - Private key queries. The same as CPA construction in Section 4.

Phase 1 - Decryption queries. Let C = (A,B,C1, . . . , Cu) be a decryption query
for identity ID = (I1, . . . , Iu) issued by algorithm A. B intends to generate the pri-
vate key for ID to answer the decryption query. If li = ti holds for any 1 ≤ i ≤ u
, B aborts. (In this case, B cannot generate the private key.) Otherwise, B generates
the private key d = (d0, d1, . . . , du) corresponding to ID and obtains e(P1, P2)c by
computing e(B, d0)/

∏u
i=1 e(Ci, di). Then B returns Dec(sk,A) to A, where sk =

H(e(P1, P2)c).
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Challenge. The adversary A submits two messages M0,M1 ∈ {0, 1}n and an target
identity ID∗ = (I∗1, . . . , I

∗
k), where 1 ≤ k ≤ `. The only constraint is that ID∗ is not

a prefix of any identity has been asked for private key in Phase 1. B first computes
H1(I∗i ) = w∗i , H2(I∗i ) = l∗i . If l∗i 6= ti the simulator aborts and submits a random guess
for β′. Otherwise, F ∗i (I∗i ) = Ui + w∗i P + k∗i P2 = (si + w∗i )P , B flips a fair coin β,
computes sk = H(Z), and creates the ciphertext as

C = (A,B,C1, . . . , Ck)

where A = Enc(sk,Mβ), B = P3, and Ci = (si + w∗i )P3. Note that Ci = (si +
w∗i )P3 = c(siP−tiP2+w∗i P+l∗i P2) = cF ∗i (I∗i ), so we claimed that (A,B,C1, . . . , Ck)
is a valid ciphertext for ID∗ when Z = e(P1, P2)c = e(P, P )abc. Otherwise, when Z
is a random element of G1, the ciphertext gives no information about the simulator’s
choice of β.

Phase 2. B responds to queries the same way it did in Phase 1.

Guess. Finally, the adversary A outputs a guess β′ ∈ {0, 1} . If β = β′, then B outputs
1 meaning Z = e(P, P )abc. Otherwise, it outputs 0 meaning Z 6= e(P, P )abc.

When the input 5-tuple is sampled from PBDH (where Z = e(P, P )abc) then A’s
view is identical to its view in a real attack and therefore we have |Pr [β = β′]− 1/2| ≥
ε. On the other hand, when the input 5-tuple is sampled from RBDH (where Z is uni-
form in G1) then Pr [β = β′] = 1/2. Therefore, with P , Ui uniform in G∗, a, b, c uni-
form in Zp, Z uniform in G1 and assuming SE is IND-CCA secure, we have that∣∣Pr[B(P, P1, P2, P3, e(P, P )abc) = 1]− Pr[B(P, P1, P2, P3, Z) = 1]

∣∣
≥
∣∣∣∣(1

2
± ε
)
− 1

2

∣∣∣∣ = ε

To complete the proof of Theorem 5.1 it remains to calculate the probability that B
aborts during the simulation. B may aborts simulation due to the two following events.

1. Event E1:
∨u
i=1 li = ti for any query in Phase 1 and Phase 2 when answering the

private key extraction queries or decryption queries.
2. Event E2:

∨k
i=1 l

∗
i 6= ti in the challenge phase.

H2(·) is a collision resistant hash function, its outputs uniformly distribute in Zm,
thus the probability of Pr[ki = ti] is 1/m. For any private key extraction query for a
depth u identity ID = (I1, . . . , Iu), the probability that B can generate the private key is

Pr

[
u∧
i=1

li 6= ti

]
=
(

1− 1
m

)u
≥
(

1− 1
m

)`
Suppose the maximum number of private key extraction queries is qE , the maximum
number of decryption queires is qD, then we have

Pr[¬E1] ≥
(

1− 1
m

)`(qE+qD)
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Accordingly to the definition of event E2, it is easy to see that

Pr[¬E2|¬E1] =
(

1
m

)k
≥
(

1
m

)`
Therefore

Pr[B does not aborts] = Pr[¬E2|¬E1]Pr[¬E1] ≥
(

1
m

)`(
1− 1

m

)`(qE+qD)

Using the same technique in Section 4, we can optimize the probability by setting
mopt = 1 + qE + qD. With mopt, we have

Pr[B does not aborts] =
1

(qE + qD)`

(
1− 1

1 + qE + qD

)(1+qE+qD)·`

≈ 1
e · (qE + qD)`

This shows that B’s advantage is at least ε/(e · (qE + qD)`) as required. �

6 A Signature scheme

Boneh and Franklin [15] described a generic method for converting any IBE scheme
into a signature scheme. The public key of the signature schemes corresponds to the
global parameters of the IBE scheme. The signature on a message M is the IBE de-
cryption key for ID = M . To verify a signature, choose a random value M ′, encrypt
M ′ using the public key ID = M , and then attempt to decrypt using the given signature
on M as the decryption key. We note that this is a randomized verification algorithm.

In the generic transformation the security of the resulting signature scheme reduces
to the security of the IBE scheme. Thus, we immediately have a signature scheme which
is secure assuming the decisional BDH problem. Moreover, we can use the bilinear
map in order to deterministically verify a signature and get a signature scheme from
our level-1 CPA construction in Section 4 that reduces to the weaker assumption: com-
putational Diffie-Hellman assumption.

6.1 Construction

KeyGen. Run G(1κ) → (G,G1, p, e). Pick a random a ∈ Zp and three random el-
ements P, P2, U ∈ G, then compute P1 = aP . Additionally, choose two collision
resistant hash function H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Zm. The public key is
PK = (P, P1, P2, U,H1, H2). The private key is SK = aP2.

Signing. Given a private key aP2, and a message M ∈ {0, 1}∗, compute F (M) =
U +H1(M)P +H2(M)P2 and choose a random r ∈ Zp. The signature is created as
σM = (σ1, σ2) = (aP2 + rF (M), rP ).
Verification. Given a message M ∈ {0, 1}∗, and a signature σ = (σ1, σ2) ∈ G × G,
computeF (M) = U+H1(M)P+H2(M)P2 and verify that if e(σ1, P )/e(σ2, F (M)) =
e(P1, P2) holds. If so, output valid; if not, output invalid.
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The verification works because the following equations:

e(σ1, P )
e(σ2, F (M))

=
e(aP2 + rF (M), P )

e(rP, F (M))
=
e(P1, P2)e(rF (M), P )

e(rP, F (M))
= e(P1, P2)

The verification process can be viewed as a special case of encryption algorithm of the
level-1 CPA construction where the random exponentiation c = 1.

6.2 Security

We prove the security of our signature scheme against existential forgery under adaptive
chosen message attacks in the standard model. Existential unforgeable under a chosen
message attack [22] for a signature scheme is defined using the following game between
a challenger and an adversary F .
Setup. The challenger runs algorithm KeyGen to obtain a public key PK and private
key SK. The adversary F is given PK.

Signature Queries. Proceeding adaptively, F requests signatures with PK on at most
qs messages on its choice M1, . . . ,Mqs

∈ {0, 1}∗. The challeger responds to each
query with a signature σMi = Sign(SK,Mi).
Forge. Eventually, F outputs a pair (M,σ) and wins the game if

1. M is not any of M1, . . . ,Mqs
.

2. Verify(PK,M, σ) = valid.

We define AdvF = Pr[Verify(PK,M, σ) = valid] to be the probability that F wins in
the above game.

Definition 6.1 A forgerF(t, qs, ε) - breaks a signature scheme ifF runs in time at most
t, F makes at most qs signature queries, and AdvF is at least ε. A signature scheme is
(t, qs, ε)-existentially unforgeable under an adaptive chosen message attack if no forger
(t, qs, ε) - breaks it.

Theorem 6.2 The signature scheme is secure against existential forgery under an adap-
tive chosen message attack assuming the computational Diffie-Helleman assumption
holds. Concretely, if there exists a (t, qs, ε)-forger F using adaptive chosen message
attack for the proposed signature scheme, then there exists an algorithm B solves com-
putational Diffie-Hellman problem generated by G with advantage at least:

AdvB =
ε

e · qs

Proof. Suppose F is a forger algorithm that (t, qs, ε)-breaks the signature scheme. We
show how to construct a t′-time algorithm B that solves computational Diffie-Hellman
problem in G1 with probability at least ε′. Algorithm B is given P, P1 = aP, P2 =
bP, e, note that a, b ∈ Zp are unknown to B. Its goal is to output abP ∈ G1. Algorithm
B simulates the challenger and interacts with forger F as follows.
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Setup. The simulator B randomly picks s ∈ Zp, t ∈ Zm and assigns U = sP − tP2.
B starts by giving F the public key PK = 〈P, P1, P2, U,H1, H2〉. s and t are kept
internal to B.

Signature queries. Let Mi be a signature query issued by F . Algorithm B computes
H1(Mi) = wi, H2(Mi) = li. If li = t, B reports failure and terminates. (The creation
of signature is exactly the generation process of private key. As previous analysis, B is
unable to generate private key when li = t.) Otherwise, B computes Qi = U + wiP +
liP2 and choose a random r ∈ Zp. The signature is create as

σMi
= (σ1i, σ2i) =

(
r(s+ wi)P + r(li − t)P2 −

s+ wi
li − t

P1, rP −
1

li − t
P1

)
Observe that

σ1i = r(s+ wi)P + r(li − t)P2 −
s+ wi
li − t

P1

= aP2 + r(s+ wi)P + r(li − t)P2 −
s+ wi
li − t

aP − aP2

= aP2 +
(
r − a

li − t

)
((s+ wi)P + (li − t)P2)

= aP2 +
(
r − a

li − t

)
(U + wiP + liP2)

= aP2 + r̃Qi

σ2i = rP − 1
li − t

P1 =
(
r − a

li − t

)
P = r̃P

We conclude that σMi is a valid signature on Mi under the public key (P, P1, P2, U)
with the underlying random number r̃ =

(
r − a

li−t

)
.

Forge. At this stage the adversary F produces a pair (M∗, σ∗) such that no signature
query was issued forM∗. Suppose σ∗ is a valid signature onM∗ under the given public
key. B first computes H2(M∗) = l∗. If l∗ 6= t, B reports failure and terminates. Other-
wise, B proceeds on with computing H1(M∗) = w∗, then answers the computational
Diffie-Helleman problem as

σ∗1 − (s+ w∗)σ∗2 = aP2 + r∗(U + w∗P + l∗P2)− (s+ w∗)σ∗2
= aP2 + r∗((s+ w∗)P + (l∗ − t)P2)− (s+ w∗)r∗P
= aP2 = abP

To complete the proof of Theorem 6.2 it remains to calculate the probability that B
aborts during the simulation. Note that the condition under which B aborts the game
is exactly the same under which the simulator aborts the IND-ID-CPA game in Theo-
rem 4.1. The probability of not aborting is exactly the same as the simulation in Sec-
tion 4 for ` = 1, thus B’s advantage is at least ε/(e · qs) as required. �
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7 Conclusion

In this paper, we present a variant of Boneh-Boyen BB1 scheme [6]. By introducing the
unbalanced structure, we prove the security of our scheme to be fully secure based on
the decisional Bilinear Diffie-Hellman problem without random oracles. Additionally,
we showed how to achieve CCA security by employing IND-CCA secure symmetric-
key encryption algorithm. Finally, we convert our level-1 CPA construction to an effi-
cient signature scheme that depends only upon the computational Diffie-Hellman as-
sumption in the standard model.
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