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Abstract

We motivate, define and construct quantum proofs of knowledge, proofs of knowledge
secure against quantum adversaries. Our constructions are based on a new quantum
rewinding technique that allows us to extract witnesses in many classical proofs of
knowledge. We give criteria under which a classical proof of knowledge is a quantum
proof of knowledge. Combining our results with Watrous’ results on quantum zero-
knowledge, we show that there are zero-knowledge quantum proofs of knowledge for
all languages in NP.
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1 Introduction

Cryptographic protocols, with few exceptions, are based on the assumption that certain
problems are computationally hard. Typical examples include specific number-theoretic
problems such as the difficulty of finding discrete logarithms, and general problems such
as inverting one-way functions. It is well-known, however, that many such problems
would become easy in the advent of quantum computers. Shor’s algorithm [Sho94],
e.g., efficiently solves the discrete logarithm problem and allows to factor large integers.
While quantum computers do not exist today, it is not unreasonable to expect quantum
computers to be available in the future. To meet this threat, we need cryptographic
protocols that are secure even in the presence of an adversary with a quantum computer.
We stress that this does not necessarily imply that the protocol itself should make use
of quantum technology; instead, it is preferable that the protocol itself can be easily
implemented on today’s readily-available classical computers.

Finding such quantum-secure protocols, however, is not trivial. Even when we have
found suitable complexity-theoretic assumptions such as the hardness of certain lattice
problems, a classical protocol based on these assumptions may fail to be secure against
quantum computers. The reason for this is that many cryptographic proofs use a tech-
nique called rewinding. This technique requires that it is possible, when simulating some
machine, to make snapshots of the state of that machine and then later to go back to that
snapshot. As first observed by van de Graaf [vdG98], classical rewinding-based proofs do
not carry over to the quantum case. Two features unique to the quantum setting prohibit
(naive) rewinding: The no-cloning theorem [WZ82] states that quantum-information
cannot be copied, so we cannot make snapshots. Furthermore, measurements destroy in-
formation, so interacting with a simulated machine may destroy information that would
be needed later.

This leads to the following observation: Even if a classical protocol is proven secure
based on the hardness of some problem, and even if that problem is hard even for
quantum computers, we have no guarantee that the protocol is secure against quantum
computers. The reduction of the protocol’s security to the problem’s hardness may be
based on inherently classical features such as the possibility of rewinding.

An example of a protocol construction that suffers from this difficulty are zero-
knowledge proofs. Zero-knowledge proofs are interactive proofs with the special property
that the verifier does not learn anything except the validity of the proven statement.
Zero-knowledge proofs are inherently based on rewinding (at least as long as we do not
assume additional trusted setup such as so-called common-reference strings). Yet, zero-
knowledge proofs are one of the most powerful tools available to the cryptographer; a
multitude of protocol constructions use zero-knowledge proofs. These protocol construc-
tions cannot be proven secure without using rewinding. To resolve this issue, Watrous
[Wat09] introduced a quantum rewinding technique. This technique allows to prove the
quantum security of many common zero-knowledge proofs. One should note, however,
that Watrous’ technique is restricted to a specific type of rewinding: If we use Watrous’
technique, whenever some machine rewinds another machine to an earlier point, the
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rewinding machine forgets everything it learned after that point (we call this oblivious
rewinding). That is, we can only use Watrous’ technique to backtrack if the rewinding
machine made a mistake that should be corrected, but it cannot be used to collect and
combine information from different branches of an execution.

Constructing quantum zero-knowledge proofs solves, however, only half of the prob-
lem. In many, if not most, applications of zero-knowledge proofs one needs zero-
knowledge proofs of knowledge. A proof of knowledge [GMR85, BG93] is a proof system
which does not only show the truth of a certain statement, but also that the prover knows
a witness for that statement. This is made clearer by an example: Assume that Alice
wishes to convince Bob that she (the prover) is in possession of a signature issued by
some certification authority. For privacy reasons, Alice does not wish to reveal the signa-
ture itself. If Alice uses a zero-knowledge proof, she can only show the statement “there
exists a signature with respect to the CA’s public key”. This does not, however, achieve
anything: A signature always exists in a mathematical sense, even if it has never been
computed. What Alice wishes to say is: “I know a signature with respect to the CA’s
public key.” To prove such a statement, Alice needs a zero-knowledge proof of knowledge;
a proof of knowledge would convince Bob that Alice indeed knows a witness, i.e., a signa-
ture. Very roughly, the definition of a proof of knowledge is the following: Whenever the
prover can convince the verifier, one can extract the witness from the prover given oracle
access to the prover. Here oracle access means that one can interact with the prover and
rewind him. Thus, we have the same problem as in the case of quantum zero-knowledge
proofs: To get proofs of knowledge that are secure against quantum adversaries, we need
to use quantum rewinding. Unfortunately, Watrous’ oblivious rewinding does not work
here; proofs of knowledge use rewinding to produce two (or more) different protocol
traces and compute the witness by combining the information from both traces. Thus,
we are back to where we started: to make classical cryptographic protocols work in a
quantum setting, we need (in many cases) quantum zero-knowledge proofs of knowledge,
but we only have constructions for quantum zero-knowledge proofs.

Our contribution. We define and construct quantum proofs of knowledge. Our proto-
cols are classical (i.e., honest parties do not use quantum computation or communication)
but secure against quantum adversaries. Our constructions are based on a new quan-
tum rewinding technique (different from Watrous’ technique) that allows us to extract
witnesses in many classical proofs of knowledge. We give criteria under which a classical
proof of knowledge is a quantum proof of knowledge. Combining our results with Wa-
trous’ results on zero-knowledge, we can show that there are zero-knowledge quantum
proofs of knowledge for all languages in NP.

Organization. In Section 1.1, we give an overview over the techniques underlying
our results. In Section 2 we present and discuss the definition of quantum proofs of
knowledge (QPoKs). In Section 3, we give criteria under which a proof system is a
QPoK. In Section 4, we show that zero-knowledge QPoKs exist for all languages in NP.
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1.1 Our techniques

Defining proofs of knowledge. In the classical setting, proofs of knowledge are
defined as follows:1 A proof system consisting of a prover P and a verifier V is a proof
of knowledge (PoK) with knowledge error κ if there is a polynomial-time machine K

(the extractor) such that the following holds: For any prover P∗, if P∗ convinces V

with probability PrV ≥ κ, then KP∗

(the extractor K with rewinding black-box access
to P∗) outputs a witness with probability PrK ≥ 1

p(PrV − κ)d for some polynomial p
and constant d > 0. In order to transfer this definition to the quantum setting, we
need to specify what it means that K has quantum rewinding black-box access to P∗.
We choose the following definition: Let U denote the unitary transformation describing
one activation of P∗. K may invoke U (this corresponds to running P∗), he may invoke
the inverse U † of U (this corresponds to rewinding P∗ by one activation), and he may
read/write a shared register N for exchanging messages with P∗. But K may not make
snapshots of the state of P∗. Allowing K to invoke U † is justified by the fact that
all quantum circuits are reversible; given a circuit for U , we can efficiently apply U †.
Note that previous black-box constructions such as Watrous’ rewinding technique and
Grover’s algorithm [Gro96] make use of this fact. We can now define quantum proofs of
knowledge: (P,V) is a quantum proof of knowledge (QPoK) with knowledge error κ iff
there is a polynomial-time quantum algorithm K such that for all malicious provers P∗,
KP∗

(the extractor K with quantum rewinding black-box access) outputs a witness with
probability PrK ≥ 1

p(PrV − κ)d for some polynomial p and constant d > 0.
We illustrate that QPoKs according to this definition are indeed useful for analyzing

cryptographic protocols. Assume the following toy protocol: In phase 1, a certification
authority (CA) signs the pair (Alice, a) where a is Alice’s age. In phase 2, Alice uses
a zero-knowledge QPoK with negligible knowledge error κ to prove to Bob that she
possesses a signature σ on (Alice, a′) for some a′ ≥ 21. That is, a witness in this QPoK
would consist of an integer a′ ≥ 21 and a signature σ on (Alice, a′) with respect to the
CA’s public key. We can now show that, if Alice is underage, i.e., if a < 21, Bob accepts
the QPoK only with negligible probability: Assume that Bob accepts with non-negligible
probability ν. Then, by the definition of QPoKs, KAlice will, with probability 1

p(ν − κ)d,
output an integer a′ ≥ 21 and a (forged) signature σ on (Alice, a′) with respect to the
CA’s public key (given the information learned in phase 1 as auxiliary input). Notice
that 1

p(ν − κ)d is non-negligible. However, the CA only signed (Alice, a) with a < 21.

This implies that KAlice can produce with non-negligible probability a valid signature
of a message that has never been signed by the CA. This contradicts the security of the
signature scheme (assuming, e.g., existential unforgeability [GMR88]). This shows the
security of our toy protocol.

Amplification. Our toy example shows that QPoKs with negligible knowledge error can
be used to show the security of protocols. But what about QPoKs with non-negligible
knowledge error? In the classical case, we know that the knowledge error of a PoK can

1This is one of different possible definitions, loosely following [HM98]. It permits us to avoid the use
of expected polynomial-time. We discuss alternatives in Section 2.2.
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be made exponentially small by sequential repetition. Fortunately, this result carries
over to the quantum case; its proof follows the same lines.

Elementary constructions. In order to understand our constructions of QPoKs, let us
first revisit a common method for constructing classical PoKs. Assume a protocol that
consists of three messages: the commitment (sent by the prover), the challenge (picked
from a set C and sent by the verifier), and the response (sent by prover). Assume that
there is an efficient algorithm K0 that computes a witness given two conversations with
the same commitment but different challenges; this property is called special soundness.
Then we can construct the following (classical) extractor K: KP∗

runs P∗ using a random
challenge ch. Then KP∗

rewinds P∗ to the point after it produced the commitment, and
then KP∗

runs P∗ with a random challenge ch ′. If both executions lead to an accepting
conversation, and ch 6= ch ′, K0 can compute a witness. The probability of getting two
accepting conversations can be shown to be Pr2

V
, where PrV is the probability of the

verifier accepting P∗’s proof. From this, a simple calculation shows that the knowledge
error of the protocol is 1/#C.

If we directly translate this approach to the quantum setting, we end up with the
following extractor: K runs one step of P∗, measures the commitment com , provides a
random challenge ch, runs the second step of P∗, measures the response, runs the inverse
of the second step of P∗, provides a random challenge ch ′, runs the second step of P∗, and
measures the response resp ′. If ch 6= ch ′, and both (com , ch, resp) and (com , ch ′, resp ′)
are accepting conversations, then we get a witness using K0. We call this extractor the
canonical extractor. The problem is to bound the probability F of getting two accepting
conversations. In the classical setting, one uses that the two conversations are essentially
independent (given a fixed commitment), and each of them is, from the point of view
of P∗, the same as an interaction with the honest verifier V. In the quantum setting,
this is not the case. Measuring resp disturbs the state of P∗; we hence cannot make any
statement about the probability that the second conversation is accepting.

How can we solve this problem? Note that we cannot use Watrous’ oblivious rewind-
ing since we need to remember both responses resp and resp ′ from two different execution
paths of P∗. Instead, we observe that, the more information we measure in the first con-
versation (i.e., the longer resp is), the more we destroy the state of P∗ used in the second
conversation. Conversely, if would measure only one bit, the disturbance of P∗’s state
would be small enough to still get a sufficiently high success probability. But if resp
would contain only one bit, it would clearly be too short to be of any use for K0. Yet, it
turns out that this conflict can be resolved: In order not to disturb P∗’s state, we only
need that the resp information-theoretically contains little information. For K0, however,
even an information-theoretically determined resp is still useful; it might, for example,
reveal a value which P∗ was already committed to. To make use of this observation,
we introduce an additional condition on our proof systems, strict soundness. A proof
system has strict soundness if for any commitment and challenge, there is at most one
response that makes the conversation accepting. Given a proof system with special and
strict soundness, we can show that measuring resp does not disturb P∗’s state too much;
the canonical extractor is successful with probability approximately Pr3

V
. A precise cal-
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culation shows that a proof system with special and strict soundness has knowledge error
1/
√

#C.

QPoKs for all languages in NP. Blum [Blu86] presents a classical zero-knowledge
PoK for showing the knowledge of a Hamiltonian cycle. Using a suitable commitment
scheme (it should have the property that the opening information is uniquely determined
by the commitment), the proof system is easily seen to have special and strict soundness,
thus it is a QPoK. By sequential repetition, we get a QPoK for Hamiltonian cycles.
Using the Watrous’ results, we get that the QPoK is also zero-knowledge. Using the fact
that the Hamiltonian cycle problem is NP-complete, we get zero-knowledge QPoKs for
all languages in NP.

1.2 Preliminaries

General. A non-negative function µ is called negligible if for all c > 0 and all sufficiently
large k, µ(k) < k−c. A non-negative function µ is non-negligible if it is not negligible. ⊕
denotes the XOR operation on bitstrings. E[X] denotes the expected value of X. #C is
the cardinality of the set C.

Quantum systems. We can only give a terse overview over the formalism used in quan-
tum computing. For a thorough introduction, we recommend the textbook by Nielsen
and Chuang [NC00, Chap. 1–2]. A (pure) state in a quantum system is described by a
unit vector |Φ〉 in some Hilbert space H. We always assume a designated orthonormal
basis for each Hilbert space, called the computational basis. The tensor product of sev-
eral states (describing a joint system) is written |Φ〉 ⊗ |Ψ〉. We write 〈Ψ| for the linear
transformation mapping |Φ〉 to the scalar product 〈Ψ|Φ〉. The norm ‖|Φ〉‖ is defined as
√

〈Φ|Φ〉. A unit vector is a vector with ‖|Φ〉‖ = 1. The Hermitean transpose of a linear
operator A is written A†. A is called positive if A = A† and 〈Φ|A|Φ〉 ≥ 0 for all |Φ〉.
The operator norm of A is |||A||| := sup|Φ〉‖A|Φ〉‖ with |Φ〉 ranging over unit vectors; we
call A bounded if |||A||| exists.

2 Quantum Proofs of Knowledge

2.1 Definitions

Interactive machines. Intuitively, an interactive quantum machine M (machine, for
short) is a machine that maintains two quantum registers, a register S for the internal
state of M, and a register N for sending and receiving messages (the network register).
Upon each activation, M expects some message in N , and the state of the preceding
invocation in S. After the activation, S contains the new state of M, and N contains the
message that M sends. A machine M can get both a classical input x and a quantum
input |Φ〉. For simplicity, we assume that the number of messages a machine sends and
receives is determined by the classical input. The quantum input is initially stored in
S. More formally, a quantum machine is described by a family of quantum circuits
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(Mx)x∈{0,1}∗ and a family of integers (rMx )x∈{0,1}∗ . Mx determines the unitary operation

that is performed on the quantum registers S and N , and rMx determines the number of
messages. Note that all our machines perform only unitary operations. This does not,
however, constitute a restriction since a machine with measurements can be transformed
into a unitary machine by a standard purification argument. We call a machine M

polynomial-time if the circuit Mx has polynomial-size in |x|, rMx is polynomially-bounded
in |x|, and the circuit’s description can be computed in deterministic polynomial time
given x.

Execution of interactive machines. Given a pair of machines M and M′, a pair of
quantum states |Φ〉 and |Φ′〉, and a pair of classical bitstrings x, x′ ∈ {0, 1}∗, we define the
execution 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 by the following process: Initialize quantum registers
S, S′, N with |Φ〉, |Φ′〉, |0〉, respectively. Alternatingly, apply the circuit Mx to S,N and
the circuit M′

x′ to S′, N . Stop applying Mx after rMx applications and stop applying
Mx′ after rM

′

x′ applications.2 Then measure S′ in the computational basis. The random
variable 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 denotes the result of that measurement. In other words,
〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 is the classical output of M′ in an interaction where M is activated
first. Often, we will omit the quantum input |Φ〉 or |Φ′〉. In this case, we assume the
input |0〉.
Oracle algorithms with rewinding. An quantum oracle algorithm A is an algorithm
that has access to a quantum interactive machine that is given as an oracle. Besides its
own (classical) input x, the algorithm gets access to an interactive quantum machine M

running on classical input x′ and quantum input |Φ〉. We allow A to provide messages
to and read messages from Mx′ and to execute the (unitary) quantum circuit Mx′ that
describes M. Furthermore, A may execute the inverse of Mx′ , this corresponds to the
classical notion of rewinding the machine M. We also allow that A is in a superposition
between executing Mx′ and not executing it. Formally, a quantum oracle algorithm A

is described by a family of circuits (Ax)x∈{0,1}∗ operating on three quantum registers
SA, N and SM. (SA and SM contain the states of A and M, respectively. N is used for
communication between A and M.) The circuit Ax may contain normal gates (from some
fixed universal set of gates) operating on SA and N , as well as two special gates � and �

†.
(These represent an application of the oracle given to A.) Both operate on one qubit of
SA (the control qubit) and on the whole ofN , SM. We define an execution AM(x′,|Φ〉)(x) as
follows: Initialize SA, N, SM with |0〉, |0〉, |Φ〉. Execute the circuit Ax. When the gate � is
to be applied on C,N, SM where C is a qubit in SA, apply the unitary transformation U
defined by U(|0〉⊗|ψ〉⊗|ϕ〉) := |0〉⊗|ψ〉⊗|ϕ〉 and U(|1〉⊗|ψ〉⊗|ϕ〉) := |1〉⊗Mx′(|ψ〉⊗|ϕ〉)
where Mx′ is the unitary transformation describing one activation of M. (Intuitively, Mx′

is applied if C contains |1〉.) The gate �
† is treated analogously, except that we use

M
†
x′ instead of Mx′ . Finally, we measure SA in the computational basis. The random

variable AM(x′,|Φ〉)(x) describes the outcome of that measurement. We call an algorithm
A polynomial-time if the circuit Ax has polynomial-size in |x| and its description can be

2If rM

x and rM
′

x′ do not match, it may happen that the circuit of one machine is executed several times
in a row after the other machine already stopped.
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computed in deterministic polynomial time given x.

Proof systems. A quantum proof system for a relation R is a pair of two machines
(P,V). We call P the prover and V the verifier. The prover expects a classical input
(x,w) with (x,w) ∈ R, the verifier expects only the input x. We call (P,V) com-
plete if there is a negligible function µ such that for all (x,w) ∈ R, we have that
Pr[〈P(x,w),V(x)〉 = 1] ≥ 1 − µ(|x|). (Remember that, if we do not explicitly spec-
ify a quantum input, we assume the quantum input |0〉.) Although we allow P and V

to be quantum machines, and in particular to send and receive quantum messages, we
will not need this property in the following; all protocols constructed in this paper will
consist of classical machines. We call a (P,V) sound with soundness error s iff for all
malicious prover P∗, all auxiliary inputs |Φ〉, and all x with ∄w : (x,w) ∈ R, we have
Pr[〈P∗(x, |Φ〉),V(x)〉 = 1] ≤ s(|x|). A proof system is computational zero-knowledge iff
for all polynomial-time verifiers V∗ there is a polynomial-time machine S (the simulator)
such that for all auxiliary inputs |Φ〉, and all (x,w) ∈ R, we have that the quantum state
of V∗ after an interaction 〈P(x,w),V∗(x, |Φ〉)〉 is computationally indistinguishable from
the output of S(x, |Φ〉); we refer to [Wat09] for details.

Quantum Proofs of Knowledge. We can now define quantum proofs of knowledge
(QPoKs). Roughly, a quantum proof system (P,V) is a QPoK if there is a quantum oracle
algorithm K (the extractor) that achieves the following: Whenever some malicious prover
P∗ convinces V that a certain statement holds, the extractor KP∗

with oracle access to
P∗ is able to return a witness. Here, we allow a certain knowledge error κ; if P∗ convinces
V with a probability smaller than κ, we do not require anything. Furthermore, we also
do not require that the success probability of KP

∗

is as high as the success probability
of P∗; instead, we only require that it is polynomially related. Finally, to facilitate the
use of QPoKs as subprotocols, we give the malicious prover an auxiliary input |Φ〉. We
get the following definition:

Definition 1 (Quantum Proofs of Knowledge) We call a proof system (P,V) for a
relation R quantum extractable with knowledge error κ if there exists a constant d > 0,
a polynomially-bounded function p > 0, and a polynomial-time quantum oracle machine
K such that for any interactive quantum machine P∗, any state |ψ〉, and any x ∈ {0, 1}∗,
we have that

Pr[〈P∗(x, |ψ〉),V(x)〉 = 1] ≥ κ(|x|) =⇒

Pr[(x,w) ∈ R : w ← K
P
∗(x,|ψ〉)(x)] ≥ 1

p(|x|)

(

Pr
[

〈P∗(x, |ψ〉),V(x)〉 = 1
]

− κ(|x|)
)d
.

A quantum proof of knowledge for R with knowledge error κ (QPoK, for short) is a
complete quantum extractable proof system for R with knowledge error κ.

Note that extractability with knowledge error κ implies soundness with soundness error κ.
We thus do not need to explicitly require soundness in Definition 1. The knowledge error
κ can be made exponentially small by sequential repetition:
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2.2 Discussion

In this section, we motivate various design choices made in the definition of QPoKs.

Unitary provers. We only require security against unitary malicious provers, that
is, against provers that do not perform any measurements. This is because it is not
clear how rewinding could even be defined (let alone used) in a setting where provers
are allowed to perform measurements. Given a non-unitary prover, we cannot apply
the inverse of the operation that models a single step of the prover (since the prover
does not perform a reversible computation), but we also cannot make snapshots of the
execution (since the prover maintains a quantum state). We stress, however, that any
non-unitary prover can be transformed into a unitary one by purification before applying
the definition of QPoKs. Thus allowing only unitary malicious provers does not seem to
be a restriction.

On the success probability of the extractor. We require the extractor to run in
polynomial-time and to succeed with probability 1

p(PrV−κ)d where PrV is the probability
that the prover convinces the verifier. (We call this an A-style definition.) In classical
PoKs, a more common definition is to require the extractor to have expected runtime

p
PrV−κ and to succeed with probability 1. (We call this a B-style definition.) This
definition is known to be equivalent to the definition in which the extract runs in expected
polynomial-time and succeeds with probability 1

p(PrV − κ). (We call this a C-style
definition.) The advantage of an A-style definition (which follows [HM98]) is that we can
consider polynomial-time extractors (instead of expected polynomial-time extractors).
To get extractors for B-style and C-style definitions, one has to increase the success
probability of an extractor by repeatedly invoking it until it outputs a correct witness.
In the quantum case, however, this does not work directly: If the invoked extractor fails
once, the auxiliary input of the prover is destroyed. The oblivious rewinding technique by
Watrous’ would seem to help here, but when trying to apply that technique one gets the
requirement that the invoked extractors’ success probability must be independent of the
auxiliary input. This condition is not necessarily fulfilled. To summarize, all three styles
of definitions have their advantages, but it is not clear how one could fulfil B- and C-
style definitions in the quantum case. This is why we chose an A-style definition. There
are, however, applications that would benefit from a proof system fulfilling a C-style
definition. For example, general multi-party computation protocols such as [GMW87] use
extractors as part of the construction of the simulator for the multi-party computation;
these extractors must then succeed with probability close to 1. Another example of a
protocol needing C-style extractors is the proof for graph-non-isomorphism [GMW91],
see the discussion in [HM98]. We leave the construction of C-style QPoKs as an open
problem.

2.3 Amplification

In some cases, elementary constructions only yield QPoKs with constant knowledge error
κ. Yet, in most cases we need QPoKs with negligible knowledge error. One possibility
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to construct these is to sequentially iterate a QPoK with constant knowledge error, the
knowledge error of the resulting QPoK then becomes exponentially small. This result is
well-known in the classical case [BG93]; the proof in the quantum case follows the same
lines.

Theorem 2 Let n be a polynomially bounded and efficiently computable function. Let
(P,V) be extractable with knowledge error κ. Let (P′,V′) be the proof system consisting
of n-sequential executions of (P,V). Then (P′,V′) is extractable with knowledge error κn.

Proof. We call (P,V) the atomic proof and (P′,V′) the composed proof. Fix a malicious
prover P∗ (that is supposed to interact with V ′), a statement x, and an auxiliary input
|Φ〉 for P∗. In the execution of the composed proof with prover P∗, we call each execution
of the atomic proof a round. Without loss of generality, we can assume that P∗ consists of
n sequentially executed provers P∗

i such that P∗
i executes the i-th round of the composed

proof. For i ≥ 2, P∗
i expects as quantum input the state that was output by P∗

i−1.
Let K be the knowledge extractor for the atomic proof. We construct a knowledge
extractor K′ for the composed proof as follows: First, K′ picks a random i ∈ {1, . . . , n}.
Then K′ internally simulates the first i− 1 rounds of the composed proof (with provers
P∗

1, . . . ,P
∗
i−1). Let |Φ′〉 denote the state output by P∗

i−1. (And |Φ′〉 := |Φ〉 if i = 1.) Then

K′ runs w ← KP
∗

i (x,|Φ′〉)(x) and outputs w.3

We fix the following notation: ai is the probability that the first i rounds of the
composed proof succeed (with prover P∗). We stress that ai−1 is also the probability
that in an execution of K′, the internal simulation of the first i−1 rounds succeeds. Let ci
denote the probability that the i-th round of the composed proof succeeds, conditioned
on the event that the first i − 1 rounds succeed. We have a0 = 1 and ai = ciai−1 for
i = 1, . . . , n.

Let PrK′ denote the probability that K′ succeeds (i.e., returns a witness), and let PrV′

denote the probability that the composed proof succeeds. Fix some i. Let Pr
(i)
K′ denote

the probability that K′ succeeds, conditioned on the fact that K′ chooses that i. Then, by

construction of K′, we have that PrK′ =
∑n

i=1
1
n Pr

(i)
K′ ≥ maxi

1
n Pr

(i)
K′ . We will show that

there exists an i (dependent on P∗, |Φ〉, and x), as well as a polynomially-bounded p > 0

and an integer d > 0 (independent of i, P∗, |Φ〉, and x) such that Pr
(i)
K′ ≥ 1

p(PrV′ −κn)d.
This implies that PrK′ ≥ 1

pn(PrV′ −κn)d. Thus (P′,V′) has knowledge error κ.

We proceed to bound Pr
(i)
K ′ in terms of ai−1 and ci. Let Di−1 denote the probability

distribution of the output state of P∗
i−1 conditioned on the event that the first i−1 rounds

of the composed proof succeed. Let Pr
(i)
K

(|Φ′〉) denote the probability that KP
∗(x,|Φ′〉)(x)

succeeds (outputs a witness), and Pr
(i)
V (|Φ′〉) the probability that the atomic proof with

prover P∗ and auxiliary input |Φ′〉 succeeds. Then, the probability that K′ succeeds,

conditioned on the event that the first i− 1 rounds succeed, is E[Pr
(i)
K

(|Φ′〉)] where |Φ′〉
3Note that K as defined and analyzed here is not a unitary algorithm, but instead performs random

choices and measurement. Since any such K can be converted into a unitary one by purification, we can
use a non-unitary K without loss of generality.

10



is distributed according to Di−1. Hence Pr
(i)
K′ = ai−1 E[Pr

(i)
K

(|Φ′〉)]. Since the atomic
proof has knowledge error κ, there are a polynomially-bounded p > 0 and an integer

d > 0 such that Pr
(i)
K

(|Φ′〉) ≥ 1
p

(

Pr
(i)
V

(|Φ′〉)− κ
)d

for all |Φ′〉. We stress that p and d are
independent of i, P∗, |Φ〉, and x. It follows that

Pr
(i)
K′ = ai−1 E

[

Pr
(i)
K

(|Φ′〉)
]

≥ ai−1 E
[

1
p

(

Pr
(i)
V

(|Φ′〉)− κ
)d]

(∗)

≥ ai−1
1
p

(

E[Pr
(i)
V

(|Φ′〉)]− κ
)d

= ai−1
1
p

(

ci − κ
)d
.

Here (∗) uses Jensen’s inequality [Jen06].

Summarizing, at this point we know that PrK′ ≥ maxi
1
n Pr

(i)
K′ ≥ maxi

ai−1

pn

(

ci − κ
)d

,
that ai = ciai−1 for all i, and that PrV′ = an.

Let δ := PrV′ −κn. Assume that δ > 0, otherwise nothing need to be shown. Since
a0 = 1 and an = PrV′ , we have that for some i ∈ {1, . . . , n}, ai−1 < κi−1 + (i−1)δ

n and

ai ≥ κi + iδ
n . For that i, we have

ai−1(ci − κ) = ai − ai−1κ ≥ (κi + iδ
n )− (κi + (i−1)δ

n ) = δ
n

and hence

PrK′ ≥ max
i

ai−1

pn

(

ci − κ
)d ≥ max

i

1

pn
adi−1

(

ci − κ
)d ≥ max

i

1

pn
( δn)d =

1

pnd+1
(PrV′ −κn)d.

Since pnd+1 is polynomially-bounded, it follows that the composed proof (P′,V′) has
knowledge error κn. �

3 Elementary constructions

In this section, we show that under certain conditions, a classical PoK is also a QPoK
(i.e., secure against malicious quantum provers). The first condition refers to the outer
form of the protocol; we require that the proof systems is a protocol with three messages
(commitment, challenge, and response) with a public-coin verifier. Such protocols are
called Σ-protocols. Furthermore, we require that the proof system has special soundness.
This means that given two accepting conversations between prover and verifier that have
the same commitment but different challenges, we can efficiently compute a witness. Σ-
protocols with special soundness are well-studied in the classical case; many efficient
classical protocols with these properties exist. The third condition (strict soundness) is
non-standard. We require that given the commitment and the challenge of a conversation,
there is at most one response that would make the verifier accept. We require strict
soundness to ensure that the response given by the prover does not contain too much
information; measuring it will then not disturb the state of the prover too much. Not
all known protocols have strict soundness (the proof for graph isomorphism [GMW91] is
an example). Fortunately, many protocols do satisfy strict soundness; a slight variation
of the proof for Hamiltonian cycles [Blu86] is an example (see Section 4).
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Definition 3 (Σ-protocol) A proof system (P,V) is called a Σ-protocol if P and V

are classical, the interaction consists of three messages com , ch, resp (sent by P, V, and
P, respectively, and called commitment, challenge, and response), and ch is uniformly
chosen from some set Cx (the challenge space) that may only depend on the statement x.
Furthermore, the verifier decides whether to accept or not by a deterministic polynomial-
time computation on x, com , ch, resp. (We call (com , ch, resp) an accepting conversation
for x if the verifier would accept it.) We also require that it is possible in polynomial
time to sample uniformly from Cx, and that membership in Cx should be decidable in
polynomial time.

Definition 4 (Special soundness) We say a Σ-protocol (P,V) for a relation R has
special soundness if there is a deterministic polynomial-time algorithm K0 (the spe-
cial extractor) such that the following holds: For any two accepting conversations
(com , ch, resp) and (com , ch ′, resp ′) for x such that ch 6= ch ′ and ch, ch ′ ∈ Cx, we
have that w := K0(x, com , ch, resp, ch ′, resp ′) satisfies (x,w) ∈ R.

Definition 5 (Strict soundness) We say a Σ-protocol (P,V) has strict soundness if
for any two accepting conversations (com , ch, resp) and (com , ch, resp ′) for x, we have
that resp = resp′.

Canonical extractor. Let (P,V) be a Σ-protocol with special soundness and strict
soundness. Let K0 be the special extractor for that protocol. We define the canonical
extractor K for (P,V). K will use measurements, even though our definition of quantum
oracle algorithms only allows for unitary operations. This is only for the sake of presenta-
tion; by purifying K one can derive a unitary algorithm with the same properties. Given
a malicious prover P∗, KP

∗(x,|Φ〉)(x) operates on two quantum registers N,SP∗ . N is used
for communication with P∗, and SP∗ is used for the state of P∗. As described in the
definition of quantum oracle machines, the registers N,SP∗ are initialized with |0〉, |Φ〉.
Let P∗

x denote the unitary transformation describing a single activation of P. First, K

applies P∗
x to N,SP∗ . (This can be done using the special gate �.) This corresponds

to running the first step of P∗; in particular, N should now contain the commitment.
Then K measures N in the computational basis; call the result com. Then K initializes
N with |0〉. Then K chooses uniformly random values ch, ch ′ ∈ Cx. Let Uch denote the
unitary transformation operating on N such that Uch |x〉 = |x ⊕ ch〉. Then K applies
P∗
xUch . (Now N is expected to contain the response for challenge ch.) Then K measures
N in the computational basis; call the result resp. Then K applies (P∗

xUch)† (we rewind
the prover). Then P∗

xUch
′ is applied. (Now N is expected to contain the response for

challenge ch ′.) Then N is measured in the computational basis; call the result resp ′.
Then (P∗

xUch
′)† is applied. Finally, K outputs w := K0(x, com , ch, resp, ch ′, resp ′).

In the following, we will need the following theorem from [Kit97, Theorem 3]:4

4In [Kit97], this theorem has been states for so-called Q-norms ‖·‖Q and for operators Ai in the norm
ideal associated with ‖·‖Q. But, as pointed out in [Kit97], the operator norm (called the usual operator
norm there) is a Q-norm, and the norm ideal associated with the operator norm is the set of all bounded
operators.

12



Theorem 6 If A1, . . . , An are bounded positive operators, then |||∑n
i=1Ai|||

2 ≤
∑n

i,j=1|||A
1/2
i A

1/2
j |||

2.

Analysis of the canonical extractor. In order to analyze the canonical extractor
(Theorem 12 below), we first need a lemma that bounds the probability that two consec-
utive binary measurements Pch and Pch′ with random ch 6= ch ′ succeed in terms of the
probability that a single such measurement succeeds. In a classical setting (or in the case
of commuting measurements), the answer is simple: the outcomes of the measurements
are independent; thus the probability that two measurements succeed is the square of
the probability that a single measurement succeeds. In the quantum case, however, the
first measurement may disturb the state; this makes the analysis considerably more in-
volved. To derive our bound, we prove a sequence of lemmas (Lemmas 7–10), each being
a strengthening of the previous one.

Lemma 7 Let C be a set with #C = c and H a Hilbert space. Let |Ψi〉 ∈ H be a
unit vector and Pi := |Ψi〉〈Ψi| for all i ∈ C. Let |Φ〉 ∈ H be a unit vector. Let

V :=
∑

i∈C
1
c‖Pi|Φ〉‖2 and F :=

∑

i,j∈C
1
c2
‖PiPj |Φ〉‖2. Then F ≥ V 3

27 .

Proof. Let βi := |〈Φ|Ψi〉|2 and γij := |〈Ψi|Ψj〉|2. For α ∈ [0, 1], let Iα := {i : βi ≥ α}
and ∂α := #Iα/c. Let G :=

∑

i,j∈Iα
1
c2
γij .

We have

F =
∑

i,j∈C

1

c2
‖PiPj |Φ〉‖2 =

∑

i,j∈C

1

c2
|〈Φ|Ψj〉〈Ψj |Ψi〉〈Ψi|Ψi〉〈Ψi|Ψj〉〈Ψj|Φ〉|

=
∑

i,j∈C

1

c2
βjγij ≥

∑

i,j∈Iα

1

c2
βjγij ≥

∑

i,j∈Iα

α

c2
γij = αG (1)

Furthermore, by definition of |||·|||, we have that

|||PiPj |||2 = max
|ξ〉
‖|Ψi〉〈Ψi|Ψj〉〈Ψi|ξ〉‖2 = max

|ξ〉
γij |〈Ψi|ξ〉|2

(∗)
= γij |〈Ψi|Ψi〉|2 = γij (2)

where the maximum goes over all unit vectors |ξ〉. (∗) uses the fact that |ξ〉 := |Ψi〉
maximizes |〈Ψi|ξ〉|.

Thus

G
(2)
=

1

c2

∑

i,j∈Iα
|||PiPj |||2

(∗)
=

1

c2

∑

i,j∈Iα
|||P 1/2

i P
1/2
j |||

2
(∗∗)

≥ 1

c2
|||

∑

i∈Iα
Pi|||2 (3)

Here (∗) uses that P 2
i = Pi and hence P

1/2
i = Pi. (∗∗) uses Theorem 6 and the fact that

orthogonal projectors are bounded and positive.
Moreover

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈Iα
Pi

∣

∣

∣

∣

∣

∣

∣

∣

∣
≥

∥

∥

∥

(

∑

i∈Iα
Pi

)

|Φ〉
∥

∥

∥
≥

∣

∣

∣
〈Φ|

(

∑

i∈Iα
Pi

)

|Φ〉
∣

∣

∣

=
∣

∣

∣

∑

i∈Iα
〈Φ|Ψi〉〈Ψi|Φ〉

∣

∣

∣
=

∣

∣

∣

∑

i∈Iα
βi

∣

∣

∣
≥ #Iαα
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With (1) and (3), we get that F ≥ α3#I2
α/c

2 = α3δ2α. Since this holds for any α ∈ [0, 1],
F ≥ supα∈[0,1] α

3δ2α =: D.

Let δ
(i)
α := 1 if βi ≥ α and δ

(i)
α := 0 otherwise. We have

∑

i∈C
1
c δ

(i)
α = δα and hence

V =
∑

i∈C

1
c‖Pi|Φ〉‖

2 =
∑

i∈C

1
c |〈Φ|Ψi〉〈Ψi|Φ〉|2 =

∑

i∈C

1
cβi =

∑

i∈C

1
c

∫ 1

0
δ(i)α dα =

∫ 1

0
δα dα.

By definition of D, we have that for all α ∈ [0, 1], D ≥ α3δ2α and thus δα ≤ D1/2α−3/2.
We also have by definition that δα ≤ 1. Notice that these two bounds coincide for
α = D1/3. We have

V ≤
∫ D1/3

0
1 dα +

∫ 1

D1/3

D1/2α−3/2 dα = D1/3 +
[

−2D1/2α−1/2
]1

α=D1/3

= D1/3 − 2D1/2 + 2D1/3 ≤ 3D1/3

Hence D ≥ V 3/27. Since F ≥ D, we have F ≥ V 3/27. �

Lemma 8 Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors on a
Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑

i∈C
1
c‖Pi|Φ〉‖2 and F :=

∑

i,j∈C
1
c2
‖PiPj |Φ〉‖2. Then F ≥ V 3

27 .

Proof. Let νi := ‖Pi|Φ〉‖, let Ĉ := {i ∈ C : νi 6= 0}, and let ĉ := #Ĉ. For i ∈
Ĉ, let |Ψi〉 := ν−1

i Pi|Φ〉 and P ∗
i := |Ψi〉〈Ψi|. Let V ∗ :=

∑

i∈Ĉ
1
ĉ‖P ∗

i |φ〉‖2 and F ∗ :=
∑

i,j∈Ĉ
1
ĉ2
‖P ∗

i P
∗
j |φ〉‖2. For i ∈ Ĉ we have

P ∗
i |Φ〉 = |Ψi〉〈Ψi|Φ〉 =

Pi|Φ〉〈Φ|P †
i |Φ〉

‖Pi|Φ〉‖2
(∗)
= Pi|Φ〉

〈Φ|P †
i Pi|Φ〉

‖Pi|Φ〉‖2
= Pi|Φ〉

‖Pi|Φ〉‖2
‖Pi|Φ〉‖2

= Pi|Φ〉.
(4)

In (∗), we have P †
i = P †

i Pi because Pi is an orthogonal projection. Thus V =
∑

i∈C
1
c‖Pi|Φ〉‖2 =

∑

i∈Ĉ
1
c‖Pi|Φ〉‖2 =

∑

i∈Ĉ
1
c‖P ∗

i |Φ〉‖2 = ĉ
cV

∗. Furthermore, for

i, j ∈ Ĉ, we have Pi − P ∗
i = Pi1Pi − Pi|Φ〉〈Φ|Pi/ν2

i = Pi(1− |Φ〉〈Φ|/ν2
i )Pi and hence

‖PiPj |Φ〉‖2 − ‖P ∗
i P

∗
j |Φ〉‖2 = 〈Φ|PjPiPj |Φ〉 − 〈Φ|P ∗

j P
∗
i P

∗
j |Φ〉

(4)
= 〈Φ|PjPiPj |Φ〉 − 〈Φ|PjP ∗

i Pj |Φ〉 = 〈Φ|PjPi (1− |Φ〉〈Φ|/ν2
i )PiPj |Φ〉

(∗)

≥ 0.

Here (∗) uses the fact that (1 − |Φ〉〈Φ|/ν2
i ) is positive. Thus we get F ≥

∑

i,j∈Ĉ
1
c2
‖PiPj |Φ〉‖2 ≥

∑

i,j∈Ĉ
1
c2
‖P ∗

i P
∗
j |Φ〉‖2 = ĉ2

c2
F ∗. From Lemma 7, we get F ∗ ≥

V ∗3/27. Thus F ≥ ĉ2

c2
F ∗ ≥ ĉ3

c3
F ∗ ≥ ĉ3

c3
V ∗3/27 = V 3/27. �

Lemma 9 Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors on a
Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑

i∈C
1
c‖Pi|Φ〉‖2 and F :=

∑

i,j∈C
1
c2
‖PiPj |Φ〉‖2. Then F ≥ V 3.
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Proof. Fix some n ∈ N. Let C ′ := Cn, c′ := cn, and |Φ′〉 := |Φ〉 ⊗ · · · ⊗ |Φ〉
(n factors). Let P ′

i := Pi1 ⊗ · · · ⊗ Pin for i ∈ C ′. Let V ′ :=
∑

i∈C′

1
c′ ‖P ′

i |Φ′〉‖2
and F ′ :=

∑

i,j∈C′

1
c′2
‖P ′

iP
′
j|Φ′〉‖2. We have ‖P ′

iP
′
j|Φ′〉‖ = ‖Pi1Pj1|Φ〉 ⊗ · · · ⊗

PinPjn |Φ〉‖ = ‖Pi1Pj1 |Φ〉‖ · . . . · ‖PinPjn |Φ〉‖ and thus F ′ = (
∑

i1,j1∈C
1
c2
‖Pi1Pj1 |Φ〉‖2) ·

. . . ·(∑in,jn∈C
1
c2
‖PinPjn |Φ〉‖2) = Fn. Similarly, V ′ = V n. By Lemma 8, F ′ ≥ V ′3

27 . Thus

Fn ≥ V 3n

27 and hence F ≥ V 3

271/n . Since this holds for all n, and V 3

271/n → V 3 for n → ∞,

we have F ≥ V 3. �

Lemma 10 Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors on a
Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑

i∈C
1
c‖Pi|Φ〉‖2 and E :=

∑

i,j∈C,i6=j
1
c2
‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, E ≥ V (V 2 − 1

c ).

Proof. Let F be as in Lemma 9. Then

E =
∑

i,j∈C
i6=j

1

c2
‖PiPj |Φ〉‖2 =

∑

i,j∈C

1

c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1

c2
‖PiPi|Φ〉‖2

(∗)
=

∑

i,j∈C

1

c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1

c2
‖Pi|Φ〉‖2 = F − V

c

(∗∗)

≥ V 3 − V

c
= V (V 2 − 1

c )

Here (∗) uses that Pi = PiPi since Pi is a projection, and (∗∗) uses Lemma 9. �

Lemma 11 Let C be a set with #C = 2. Let (Pi)i∈C be orthogonal projectors on a
Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑

i∈C
1
c‖Pi|Φ〉‖2 and E :=

∑

i,j∈C,i6=j
1
c2‖PiPj |Φ〉‖2. Then, if V ≥ 1

2 , E ≥ 2
9V (V − 1

2)2.

Proof. Without loss of generality, we assume C = {0, 1}. We prove the lemma under the
assumption that P0, P1 have rank 1, i.e., Pi = |Ψi〉〈Ψi| for some unit vectors |Ψi〉. From
this, one can derive the general statement with a proof completely analogous to that of
Lemma 8.

Let |Ψ⊥〉 be a unit vector orthogonal to |Ψ0〉, |Ψ1〉 such that |Φ〉 ∈
span{|Ψ0〉, |Ψ1〉, |Ψ⊥〉}. (Such a vector can be found by projecting |Φ〉 on the orthog-
onal complement of span{|Ψ0〉, |Ψ1〉}.) Then |Φ〉 = α|Ψ0〉 + β|Ψ1〉 + γ|Ψ⊥〉 for some
α, β, γ ∈ C. Let ε := 〈Ψ0|Ψ1〉. (Intuitively, ε tells us how far |Ψ0〉 and |Ψ1〉 are from
being orthogonal.) We further abbreviate η := ᾱβε+αβ̄ε̄. Here x̄ stands for the complex
conjugate of x. Note that η/2 is the real part of ᾱβη and hence η ≤ 2|αβε|.

We have

1 = 〈Φ|Φ〉 = |α|2 + |β|2 + |γ|2 + ᾱβε+ αβ̄ε̄ ≥ |α|2 + |β|2 + η. (5)

Furthermore,

‖P0|Φ〉‖2 = 〈Φ|Ψ0〉〈Ψ0|Ψ0〉〈Ψ0|Φ〉 = 〈Φ|Ψ0〉〈Ψ0|Φ〉
= (ᾱ+ β̄ε̄)(α + βε) = |α|2 + |βε|2 + η.
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Similarly, ‖P1|Φ〉‖2 = 〈Φ|Ψ1〉〈Ψ1|Φ〉 = |β|2 + |αε|2 + η. Thus we have that

2V = ‖P0|Φ〉‖2 + ‖P1|Φ〉‖2 = 〈Φ|Ψ0〉〈Ψ0|Φ〉+ 〈Φ|Ψ1〉〈Ψ1|Φ〉 (6)

and

2V = |α|2 + |β|2 + |ε|2(|α|2 + |β|2) + 2η
(5)

≤ 1 + |ε|2(|α|2 + |β|2) + η.

If η ≥ 0, we have |α|2 + |β|2
(5)

≤ 1. From this we get |α|, |β| ≤ 1 and hence η ≤ 2|αβε| ≤
2|ε|. Thus 2V ≤ 1 + |ε|2 + 2|ε|. If η ≤ 0, we have 2V ≤ 1 + |ε|2(|α|2 + |β|2) + η

(∗)

≤
1 + |ε|2(|α|2 + |β|2) + |ε|2η

(5)

≤ 1 + |ε|2. ((∗) uses |ε| ≤ 1 and δ ≤ 0.) Thus in both cases,
V − 1

2 ≤ 1
2 |ε|2 + |ε| ≤ 3

2 |ε| and hence |ε| ≥ 2
3(V − 1

2).
We proceed to bound E:

4E = ‖P1P0|Φ〉‖2 + ‖P0P1|Φ〉‖2
(∗)
= 〈Φ|P0P1P0|Φ〉+ 〈Φ|P1P0P1|Φ〉

= 〈Φ|Ψ0〉〈Ψ0|Ψ1〉〈Ψ1|Ψ0〉〈Ψ0|Φ〉+ 〈Φ|Ψ1〉〈Ψ1|Ψ0〉〈Ψ0|Ψ1〉〈Ψ1|Φ〉
= |ε|2

(

〈Φ|Ψ0〉〈Ψ0|Φ〉+ 〈Φ|Ψ1〉〈Ψ1|Φ〉
) (6)

= |ε|2 · 2V ≥ 8
9V (V − 1

2 )2

Here (∗) uses that Pi are orthogonal projections and hence PiPi = Pi. Thus we have
E ≥ 2

9V (V − 1
2)2 and the lemma follows. �

Theorem 12 A Σ-protocol (P,V) for a relation R with special and strict soundness and
challenge space Cx is extractable with knowledge error 1√

#Cx
. (And with knowledge error

1/2 if #Cx = 2.)

Proof. To show that (P,V) is extractable, we will use the canonical extractor K. Fix
a malicious prover P∗, a statement x, and an auxiliary input |Φ〉. Let PrV denote
the probability that the verifier accepts when interacting with P∗. Let PrK denote
the probability that KP

∗(x,|Φ〉)(x) outputs some w with (x,w) ∈ R. We will show that
PrK ≥ PrV·(Pr2

V
− 1

#Cx
). For PrV ≥ 1√

#Cx
, we have that PrV(Pr2

V
− 1

#Cx
) ≥ (PrV− 1√

#Cx
)3.

Since furthermore K is polynomial-time, this implies that (P,V) is a extractable with
knowledge error 1√

#Cx
. (In the case #Cx = 2, we instead show that PrK ≥ 2

9PrV(PrV −
1
2)2 ≥ 2

9 (PrV − 1
2)3. Then (P,V) is extractable with knowledge error 1

2 .)
In order to show PrK ≥ PrV · (Pr2

V
− 1

#Cx
), we will use a short sequence of games.

Each game will contain an event Succ, and in the first game, we will have Pr[Succ :
Game 1] = PrK. For any two consecutive games, we will have Pr[Succ : Game i] ≥
Pr[Succ : Game i+ 1], and for the final game, we will have Pr[Succ : Game 7] ≥ PrV ·
(Pr2

V
− 1

#Cx
). This will then conclude the proof. The description of each game will only

contain the changes with respect to the preceding game. The same sequence of games
is used for the case #Cx = 2.

Game 1. An execution of KP∗(x,|Φ〉)(x). Succ denotes the event that K outputs a witness
for x. By definition, PrK = Pr[Succ : Game 1].
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Game 2. Succ denotes the event that (com , ch, resp) and (com , ch ′, resp ′) are accepting
conversations for x and ch 6= ch ′. (The variables (com , ch, resp) and (com , ch ′, resp ′) are
as in the definition of the canonical extractor.) Since (P,V) has special soundness, if
Succ occurs, K outputs a witness. Thus Pr[Succ : Game 1] ≥ Pr[Succ : Game 2].

Game 3. Before K measures resp, it first measures whether measuring resp would yield
an accepting conversation. More precisely, it measures N with the orthogonal projector
Pch projecting onto Vch := span{|resp〉 : (com , ch, resp) is accepting}. Analogously for
the measurement of resp′ (using the projector Pch

′ .) Since a complete measurement (of
resp and resp ′, respectively) is performed on N after applying the measurement Pch

and Pch
′ , introducing the additional measurements does not change the outcomes resp

and resp ′ of these complete measurements, nor their post-measurement state. Thus
Pr[Succ : Game 2] = Pr[Succ : Game 3].

Game 4. Succ denotes the event that both measurements Pch and Pch
′ succeed. By

definition of these measurements, this happens iff (com , ch, resp) and (com , ch ′, resp ′)
are accepting conversations. Thus Pr[Succ : Game 3] = Pr[Succ : Game 4].

Game 5. We do not execute K0, i.e., we stop after applying (P∗
xUch

′)†. Since at that
point, Succ has already been determined, Pr[Succ : Game 4] = Pr[Succ : Game 5].

Game 6. We remove the measurements of resp and resp ′. Note that the outcomes of
these measurements are not used any more. Since (P,V) has strict soundness, Vch =
span{|resp0 〉} for a single value resp0 (depending on com and ch, of course). Thus if the
measurement Pch succeeds, the post-measurement state in N is |resp0〉. That is, the state
in N is classical at this point. Thus, measuring N in the computational basis does not
change the state. Hence, the measurement of resp does not change the state. Analogously
for the measurement of resp ′. It follows that Pr[Succ : Game 5] = Pr[Succ : Game 6].

Game 7. First, N and SP∗ are initialized with |0〉 and |Φ〉. Then the unitary transfor-
mation P∗

x is applied. Then com is measured (complete measurement on N), and N is
initialized to |0〉. Random ch, ch ′ ∈ Cx are chosen. Then P∗

xUch is applied. Then the
measurement Pch is performed. Then (P∗

xUch)† is applied. Then P∗
xUch

′ is applied. Then
the measurement Pch

′ is performed. Then (P∗
xUch

′)† is applied. The event Succ holds
if both measurements succeed. Games 6 and 7 are identical; we have just recapitulated
the game for clarity. Thus, Pr[Succ : Game 6] = Pr[Succ : Game 7].

In Game 7, for some value d , let pd denote the probability that com = d is measured.
Let |Φd〉 denote the state of N,SP∗ after measuring com = d and initializing N with
|0〉. (I.e., the state directly before applying P∗

xUch .) Let Kd denote the probability that
starting from state |Φd〉, both measurements Pch and Pch

′ succeed. Let c := #Cx. Then
we have that Pr[Succ : Game 7] =

∑

d pdKd and

Kd =
∑

ch,ch′∈Cx

1

c2
‖(P∗

xUch
′)†Pch

′(P∗
xUch

′)(P∗
xUch)†Pch(P∗

xUch)|Φd〉‖2 =
∑

ch,ch′∈Cx

1

c2
‖P ∗

ch′P ∗
ch
|Φd〉‖2

where P ∗
ch

:= (P∗
xUch)†Pch(P∗

xUch). Since Pch is an orthogonal projector and P∗
xUch is

unitary, P ∗
ch

is an orthogonal projector. Let ϕ(v) := v(v2− 1
c ) for v ∈ [ 1√

c
, 1] and ϕ(v) := 0
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for v ∈ [0, 1√
c
]. Then, by Lemma 10, Kd ≥ ϕ(Vd) for Vd :=

∑

ch∈Cx

1
c‖P ∗

ch
|Φd〉‖2.

Furthermore, by construction of the honest verifier V, we have that

PrV =
∑

d

pd
∑

ch∈Cx

1
c‖PchP

∗
xUch |Φd〉‖2

(∗)
=

∑

d

pd
∑

ch∈Cx

1
c‖(P∗

xUch)†Pch(P∗
xUch)|Φd〉‖2 =

∑

d

pdVd

where (∗) uses that (P∗
xUch)† is unitary. Finally, we have

PrK = Pr[Succ : Game 1] ≥ Pr[Succ : Game 7] =
∑

d

pdKd ≥
∑

d

pdϕ(Vd)
(∗)

≥ ϕ(PrV).

Here (∗) uses Jensen’s inequality [Jen06] and the fact that ϕ is convex on [0, 1]. As
discussed in the beginning of the proof, PrK ≥ ϕ(PrV) = PrV · (Pr2

V
− 1

c ) for PrV ≥ 1√
c

implies that (P,V) is a QPoK with knowledge error 1/
√

#Cx.
For the case #Cx = 2, we define ϕ(v) := 2

9v(v − 1
2)2 for v ∈ [12 , 1] and ϕ(v) := 0 for

v ∈ [0, 1
2 ]. Then use Lemma 11 instead of Lemma 10. We then get Kd ≥ ϕ(Vd) from

which we derive PrK ≥ ϕ(PrV) = 2
9 PrV(PrV − 1

2)2 for PrV ≥ 1
2 which implies that (P,V)

is a QPoK with knowledge error 1
2 . �

4 QPoKs for all languages in NP

In the preceding section, we have seen that complete proof systems with strict and special
soundness are QPoKs. The question that remains to be asked is: do such proof systems,
with the additional property of being zero-knowledge, exist for interesting languages?
In this section, we will show that for any language in NP (more precisely, for any NP-
relation), there is a zero-knowledge QPoK. (Assuming the existence of quantum one-
way permutations.) Here and in the following, by zero-knowledge we mean quantum
computational zero-knowledge.

The starting point for our construction will be the Blum’s zero-knowledge PoK for
Hamiltonian cycles [Blu86]. In this Σ-protocol, the prover’s commits to the vertices
of a graph using a perfectly binding commitment scheme. In the prover’s response,
some of these commitments are opened. That is, the response contains the opening
information for some of the commitments. The problem is that standard definitions of
commitment schemes do not guarantee that the opening information is unique; only the
actual content of the commitment has to be determined by the commitment. This means
that the prover’s response is not unique. Thus, with a standard commitment scheme
we do not get strict soundness. Instead we need a commitment scheme such that the
sender of the commitment scheme is committed not only to the actual content of the
commitment, but also to the opening information.

Definition 13 (Strict binding) A commitment scheme COM is a deterministic
polynomial-time function taking two arguments a, y, the opening information a and the
message y. We say COM is strictly binding if for all a, y, a′, y′ with (a, y) 6= (a′, y′), we
have that COM(a, y) 6= COM(a′, y′).
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Inputs: A directed graph x (the statement) with vertices W , and a Hamiltonian cycle
w in x (the witness).
Subprotocols: A strictly binding, quantum computationally concealing commitment
scheme COM.
Protocol:
1. P picks a random permutation π on W . Let A be the adjacency matrix of the graph
π(x). Let H := {(π(i), π(j)) : (i, j) ∈ w}. Using COM, P commits to π, H, and to
each entry Aij of A. P sends the resulting commitments to V.

2. V picks ch ∈ {0, 1} and sends ch to P.
3. If ch = 0, P opens the commitments to π and A. If ch = 1, P opens the commitments

to H and to all Aij with (i, j) ∈ H.
4. If ch = 0, V checks that the commitments are opened correctly, that π is a per-

mutation, and that A is the adjacency matrix of π(x). If ch = 1, V checks that
the commitments are opened correctly, that H is a cycle, that exactly the Aij with
(i, j) ∈ H are opened, and that Aij = 1 for all (i, j) ∈ H. If all checks succeed, V

outputs 1.

Figure 1: A QPoK (P,V) for Hamiltonian cycles.

Furthermore, in order to get the zero-knowledge property, we will need that our com-
mitment schemes are quantum computationally concealing. We refer to [Wat09] for a
precise definition of this property. In [AC02], an unconditionally binding, quantum com-
putationally concealing commitment scheme based on quantum one-way permutations
is presented. Their definitions differ somewhat from those of [Wat09], but as mentioned
in [Wat09], their proof carries over to the definitions from [Wat09]. Furthermore, in the
scheme from [AC02], the commitment contains the image of the opening information
under a quantum one-way permutation. Thus the strict binding property is trivially ful-
filled. Thus strictly binding, quantum computationally concealing commitment schemes
exist under the assumption that quantum one-way permutations exist.

Given such a commitment scheme COM, we construct the proof system (P,V) pre-
sented in Figure 1. Besides using a strictly binding commitment, (P,V) differs in one
other aspect from the proof system in [Blu86]: The prover does not only commit to
the vertices in the graph π(x), but also to the permutation π and the cycle H. Without
these additional commitments, we would not get strict soundness; there might be several
permutations leading to the same graph, or the graph might contain several Hamiltonian
cycles.

Theorem 14 Let (x,w) ∈ R iff w is a Hamiltonian cycles of the graph x. Assume that
COM is a strictly binding, quantum computationally concealing commitment scheme.
Then the proof system (P,V) is a zero-knowledge QPoK for R with knowledge error 1

2 .

Proof. We need to show completeness, extractability (via special and strict soundness),
and zero-knowledge. Completeness is straightforward by inspection of the protocol.
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Special soundness. Let (com , ch, resp) and (com , ch ′, resp ′) be two accepting conver-
sations for x with ch 6= ch ′. Without loss of generality, ch = 0 and ch ′ = 1. Then resp
contains a permutation π and the adjacency matrix A of π(x). And resp ′ contains a
cycle H such that Ãij = 1 for all (i, j) ∈ H where Ãij are the committed values opened
in resp ′. Since ch is strictly binding, 1 = Ãij = Aij for all (i, j) ∈ H, thus H is a
Hamiltonian cycle of π(x). Then w := K0(x, com , ch, resp, ch

′, resp ′) := π−1(H) is a
Hamiltonian of x, i.e., (x,w) ∈ R.

Strict soundness. Fix an accepting conversation (com , ch, resp). If ch = 0, resp
consists only of opening of commitments. Since COM has strict binding, it follows that
resp is uniquely determined by com , ch. If ch = 1, COM consists of an opening of the
commitment to H, and of the commitments to Aij with (i, j) ∈ H. Hence H and its
opening information are uniquely determined since COM has strict binding, and thus
it is also determined which Aij are opened. Again by strict binding, the values Aij
and corresponding opening information are uniquely determined. Thus resp is uniquely
determined by com , ch.

Extractability. Since (P,V) has special and strict soundness, and a challenge space of
size 2, by Theorem 12, we have that (P,V) is extractable with knowledge error 1

2 .

Zero-knowledge. We first describe an intermediate simulator S1. Fix a malicious

verifier V∗, some (x,w) ∈ R, and an auxiliary input |Φ〉. S
V
∗(x,|Φ〉)

1 (x) first picks a
random ch∗ ∈ {0, 1}. If ch∗ = 0, S1 chooses a random permutation π, computes the
adjacency matrix A of π(x), and picks an arbitraryH. If ch∗ = 1, S1 chooses an arbitrary
permutation π, sets A to be the all-one matrix, and lets H be a random cycle. Then S1

sends the commitments to π,A,H to V∗. If V∗ does not answer with the challenge ch∗,
S1 aborts. Otherwise, S1 sends the response as specified in Figure 1 to V∗. Finally, S1

outputs the (quantum) output of V∗.
Furthermore, let S2 be the simulator that additionally gets w as input, and then

behaves like S1 except that it constructs π,A,H honestly (i.e., as specified in Figure 1).
The probability that S2 aborts is 1

2 . Furthermore, the quantum state output by S2, con-
ditioned on not aborting, is the same as the output of V∗ in an interaction with honest P.
Furthermore, since all commitments that are opened are constructed in the same way
in S1 and S2, and since COM is quantum computationally concealing, the outputs of
S1 and S2 are quantum computationally indistinguishable. Thus the probability that S2

aborts is 1
2 ±µ for some negligible µ, and the output of S2, conditioned on not aborting,

is quantum computationally indistinguishable from the output of V∗ in an interaction
with honest P.

Applying [Wat09, Lemma 9] (oblivious rewinding) to S1, we get that there is a
polynomial-time simulator S such that the output S is statistically indistinguishable
from the output of S1 conditioned on not aborting. Thus the output of S is quantum
computationally indistinguishable from the output of V∗ in an interaction with honest P.
�
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Corollary 15 (QPoKs for all languages in NP) Let R be an NP-relation.5 Then
there is a zero-knowledge QPoK for R with negligible knowledge error.

Proof. Using the fact that the Hamiltonian cycle problem is NP-complete, from Theo-
rem 14 it follows that there is a zero-knowledge QPoK for R with knowledge error 1

2 . By
sequential repetition, we get a QPoK for R with negligible knowledge error (Theorem 2).
Sequential repetition preserves the zero-knowledge property (see [Wat09]). �
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