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Abstract

We provide an analytical framework for analyzing basic integrity properties of file systems,
namely the binding of files to filenames and writing capabilities. A salient feature of our modeling
and analysis is that it is composable: In spite of the fact that we analyze the filesystem in
isolation, security is guaranteed even when the file system operates as a component within
an arbitrary, and potentially adversarial system. Such secure composability properties seem
essential when trying to assert the security of large systems.

Our results are obtained by adapting the Universally Composable (UC) security framework
to the analysis of software systems. Originally developed for cryptographic protocols, the UC
framework allows the analysis of simple components in isolation, and provides assurance that
these components maintain their behavior when combined in a large system, potentially under
adversarial conditions.

1 Introduction

Contemporary software systems are complex, consisting of many millions of lines of code, spread
across a myriad of components and sub-components. A natural approach for analyzing such large
systems is by analyzing each component separately, and “hoping” to use the component-wise anal-
ysis to analyze the entire system. Unfortunately, applying this approach to security analysis is
problematic. Even if a component is simple enough to analyze separately, its interaction with other
components can yield unexpected results. Often, a component will be used in environments differ-
ent from what its designers initially had in mind, alongside other components that perhaps did not
even exist when the original component was analyzed, potentially violating some assumptions that
were made in the analysis.

Ideally, we would like to analyze the behavior of a component in isolation, and have the assurance
that this behavior remains intact even when that component is embedded in a new environment.
Within the realm of cryptography, the frameworks of Reactive Simulatability [18, 1] and Universal
Composability (UC) [4, 5] ensure just that. These frameworks are aimed at capturing the security
of cryptographic primitives and protocols, ranging from authentication and key exchange, to public-
key encryption and signatures, zero-knowledge, and more (see [5] for many examples.) However,
many of the features of these frameworks appear at first to be specific to the realm of cryptographic
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protocols. A natural question is whether the “composable security” approach sketched above can
be carried out in a meaningful way even outside the limited domain of cryptography. In particular:

Can we obtain meaningful composable security in the context of general software sys-
tems?

A positive answer could significantly reduce the overhead in analyzing the security of large
systems, while at the same time provide better overall security guarantees.

In this work we demonstrate that this can indeed be done, in the context of guaranteeing some
basic integrity properties of filesystems. For this purpose we adapt the UC framework to software
systems by establishing new conventions for modeling process management and scheduling. The
current work is one of just a few attempts to apply the UC formalism to a large and complex
software system, and we believe that it will enable further application of the UC formalism to other
software systems.

Analysis in the UC framework proceeds by defining an idealized specification model and an
implementation, and then proving that the implementation realizes the idealized specification. Our
main contribution is a very simple filesystem specification model, called SimpFS, that captures
many integrity concerns in contemporary filesystems, together with an implementation over existing
POSIX filesystems [19] and a proof that the implementation realizes the specification model.

The composability properties of our analysis imply that any software system that uses
our implementation over POSIX behaves essentially the same as if it were using the
simple, idealized specification system SimpFS.

This is a very strong security guarantee. In particular, it allows analyzing software systems
without worrying about how the filesystem is implemented, and without worrying about potential
bad interactions between the analyzed system and the filesystem implementation.

Our filesystem model is geared toward ensuring integrity of files and their names, and in particu-
lar preventing filename manipulation attacks. In such attacks, a victim program expects a particular
filename to have certain semantics. (E.g., a mail program may expect the file /var/mail/root to
be the mail file for the super-user.) In the attack, the adversary creates a link by the same name in
the filesystem, pointing to another file (e.g., /var/mail/root -> /etc/passwd), thereby “trick-
ing” the victim program into accessing an unexpected file. (In the mail example, such a link may
cause a naive mail program to write incoming email into the system’s password file.) Such attacks
were quite common in UNIX systems: Since creating links to files often takes lower permissions
than accessing these files, this form of attack sometimes allows an attacker to leverage the permis-
sions of a privileged victim program to read or write files that the attacker cannot access on its
own.

Our implementation builds on the ideas presented in Chari et al. [6], who address the problem of
privilege escalation attacks via filename manipulation. To counter these attacks, Chari et al. present
a “safe” name resolution procedure, and deploy this system-wide on popular POSIX systems. The
SimpFS interfaces are designed to tightly bind files with their names: files can be accessed only via
the names they were created with, which means that filename manipulation attacks are impossible
in our model. Our proof — showing that implementation based on [6] realizes the model — implies
in particular that it indeed eliminates these filename manipulation attacks.

SimpFS offers a simple interface that captures enough filesystem primitives for application
developers to build meaningful applications. The simplicity of SimpFS is due to its very narrow
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interface (only four commands) and the fact that it does not have directories. We argue that
the murky relation between files and their names in plain POSIX systems stem to a large extent
from the fact that pathnames consist of many directories, each with its own permissions, which are
combined in a non-obvious manner to yield the effective permissions for the entire name. In contrast,
a filename in SimpFS is just a single entity with explicitly specified permissions. Thus SimpFS
provide applications with radically simplified semantics, making it easier to use the filesystem
without falling into traps. At the same time, we argue that the vast majority of contemporary
applications in POSIX systems do not really need directories, and can be implemented over the
simple SimpFS interface without loss of functionality.

1.1 Related Work

Triggered by Joshi and Holzmann’s mini-challenge [12], there is a lot of recent work on formalization
and verifications of file systems. Most notably, Freitas et al [9] specify and prove a POSIX file store
in Z/Eves. This body of work focuses mostly on the correctness aspects and does not address in
depth the security and access control aspects of filesystems.

In the broader perspective of (secure) operating systems, there is a long history of formalization
and verification, from PSOS [15] to the recent seL4 [13]. While they make considerable progress
toward high-assurance OS, these works are not based on frameworks that allow easy composition
of components to form larger systems. Additionally, the focus in many of these works is on manda-
tory access control whereas we cover a discretionary control. (We stress that although our model
addresses integrity concerns, these are very different from the Biba integrity model [3].)

An abstract model of another large standard systems, the browser, suitable for proofs of cryp-
tographic protocols exists in [11]. It includes a model of information-flow properties under attack.
However, the federated identity protocols built on top of it have only been proven secure with
respect to specific security properties, not in a real-world / ideal-world setting [11].

Protocol Composition Logic (PCL) [7] is a comparable general approach on reasoning about
(cryptographic) network protocols in a composable fashion. Recently, PCL was applied to analyze
systems [8], more specifically integrity properties provided by TPM. The symbolic and axiomatic
nature of PCL leads to a more axiomatic specification of security rather than the declarative form
in UC. Furthermore, the composition theorems in PCL are weaker than in the UC framework.

A noteworthy contribution to secure composition of large systems is the CHATS project [16],
that identifies architectural principles to guide the structuring and decomposition of trustworthy
systems. That work is largely orthogonal to ours, as it does not focus on formal modeling or proofs.

There have been many more attempts to leverage well-established formalisms such as logic, typ-
ing or process calculi to model composability of certain system security properties, e.g., McLean [14]
for non-interference properties or Bengtson et al [2] for cryptographic protocols and access control
mechanisms. Many of them provide tool support; but they do not provide the same composition
guarantees as in the UC framework.

2 The Universal Composability Framework

We briefly describe the relevant aspects of the framework of universally composable (UC) security.
The reader is referred to [4] for more details. The framework describes two probabilistic games:
The real world that captures the protocol flows and the capabilities of an attacker, and the ideal
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world that captures what we think of as a secure system. The notion of security asserts that these
two worlds are essentially equivalent.
The real-world model. The players in the real-world model are all the entities of interest
in the system (e.g., the nodes in a network, the processes in a software system, etc.), as well as
the adversary A and the environment Z. All these players are modeled as efficient, probabilistic,
message-driven programs (formally, they are all interactive Turing machines).

The actions in this game should capture all the interfaces that the various participants can
utilize in an actual deployment of this component in the real world. In particular, the capabilities
of A should capture all the interfaces that a real-life attacker can utilize in an attack on the system.
(For example, A can typically see and modify network traffic.) The environment Z is responsible
for providing all the inputs to the players and getting all the outputs back from them. Also, Z
is in general allowed to communicate with the adversary A. (This captures potential interactions
where higher-level protocols may leak things to the adversary, etc.)
The ideal-world model. Security in the UC framework is specified via an “ideal functionality”
(usually denoted F), which is thought of as a piece of code to be run by a completely trusted entity
in the ideal world. The specification of F codifies the security properties of the component at hand.
Formally, the ideal-world model has the same environment as the real-world model, but we pretend
that there is a completely trusted party (called “the functionality”), which is performing all the
tasks that are required of the protocol. In the ideal world, participants just give their inputs to
the functionality F , which produces the correct outputs (based on the specification) and hands
them back to the participants. F may interact with an adversary, but only to the extent that
the intended security allows. (E.g., it can “leak” to the adversary things that should be publicly
available, such as public keys.)

Specifying the code of F is typically a non-trivial task. It is important that F satisfies all the
desired security properties, but also that F does not impose unnecessary constraints: It is only too
easy to write a functionality that describes “what we intuitively want”, but is not realizable by any
implementation.1 Another crucial concern is the simplicity of the functionality F , since we want F
to capture the important security concerns, not the mundane implementation details.
UC-Security and the Composition Theorem. An implementation π securely realizes an
ideal functionality F if no external environment can distinguish between running the protocol π in
the real world and interacting with the trusted entity running the ideal functionality F in the ideal
world. That is, for every adversary A in the real world, there should exist an adversary A′ in the
ideal world, such that no environment Z can distinguish between interacting with A and π in the
real world and interacting with A′ and F in the ideal world.

The striking feature of the UC framework is its ability to handle composition. Specifically, the
composition theorem from [4] asserts the following: Let ρ be an arbitrary system that runs in the
ideal world and uses (perhaps multiple copies of) the functionality F . Next, consider the system
ρ′ in the real world, that is the same as ρ except that in ρ′ each call to the ideal functionality F is
replaced by executing the implementation π. Then, if π securely realizes F it is guaranteed that
system ρ′ behaves essentially the same as system ρ. In particular, all the security properties of ρ
are inherited by protocol ρ′. This guarantee is the basis for the composable security guarantees
provided by the UC framework.

1For example, to realize an abstract time-synchronization functionality that always returns the exact time, one
needs to devise a protocol for perfect clock synchronization, which is impossible to achieve in our physical world due
to the Heisenberg uncertainty principle.
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2.1 Conventions for Software systems

We briefly describe some technicalities that must be resolved when attempting to apply the UC
framework to software system, and the conventions that we use to address them.

The “entities of interest” in our work are processes, which differ somewhat from the interactive
Turing machines (ITMs) in common cryptographic models. One aspect relates to side-channels:
whereas an ITM can only influence other ITMs by sending messages, a process shares some physical
resources with other processes on the same machine, so it could influence them via side channels
such as timing and concurrency. In this work we ignore that aspect, i.e. we do not have any side
channels in our formal model. (This does not matter for our current SimpFS model, since we do
not model any secrecy requirements.) We thus just let the adversary learn “whatever it needs,” so
it has no use for side channels.

A more important difference is preemptive multitasking: common crypto models postulate a
sequential scheduling model, where an active ITM keeps the control until it sends a message, at
which point the recipient becomes active. On the other hand, processes in contemporary OSes
can be made to yield control involuntarily. Resolving this discrepancy is not as hard as it may
seem, since (side-channels aside) an active entity has no effect on its surroundings until it sends a
message, which means that influencing the surroundings only comes with losing the control. We
use the standard sequential scheduling of the UC framework, but ensure that the adversary gets
the control after every message is sent, and can decide when this message will be delivered. (This
is somewhat similar to the “buffer scheduler” from [1].) Hence the adversary in our formal model is
able to simulate the actions that would have happened in the actual deployed system, delay delivery
messages until the simulation arrives at the point where they were delivered. We thus argue that
the formal adversary in our model is able to induce any behavior that can happen in the actual
deployed system.

Another difference is that some processing in real systems is done not by the processes them-
selves, but by the kernel on their behalf. Hence also in our model we postulate the existence of
a “kernel component” that can do things on behalf of processes. In our filesystem example, this
kernel component is only responsible for maintaining the process privileges: Whenever a process
calls a filesystem function, the kernel adds the process-id and roles of the calling process to the
list of arguments, and forwards everything to the filesystem. (The kernel component gets these
roles from the environment.) We note that although we do not use it in our filesystem example, in
general we could have several such “kernel components” in a system, representing several physical
machines.

3 SimpFS: A Simple Idealized File-System

This section describes SimpFS, our simple filesystem model. SimpFS has a minimalistic interface
with simple semantics, having only basic primitives to create, read, write and delete files. Still, we
believe that the this file-system functionality is sufficient for most applications. (Other aspects —
such as locking — can be implemented on top of our interface.) The SimpFS model includes file
write permissions, hence capturing properties of filesystem integrity. We currently do not model
read permissions, but we expect that this work can be extended to include read permissions without
too much change.

An important feature of SimpFS is that it does not have any directories, only files and their
names. As we mention in the introduction, we believe that directories have “inherently cumbersome
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semantics”, hence decided to do away with them in order to keep the semantics as simple as possible.
We stress that the model supports names that include ‘/’ (so applications can still store their
temporary data in files with names that begin with “/tmp/”). But a name such as “/a/b/foo” is
viewed as just one entity, and its existence does not imply the existence of an object with name
“/a/b.” Of course, our implementation over POSIX still interprets ‘/’ as a directory separator,
and name creation induces the right associations between names and paths, in spite of symlinks,
adversarial write permissions etc. While directories are a useful and convenient way to manage
and organize systems, we argue that directory permissions are very rarely needed in applications
(if ever), and most applications can therefore directly use the SimpFS interface.

A key security property of SimpFS is that it rules out filename manipulation attacks. Our focus
on this property is motivated by the large number of privilege escalation attacks due to unsafe
pathname resolution that were discovered in POSIX systems over the years. A classical example
of this type of attacks is local mail delivery, where /var/mail may be world-writable, allowing an
adversary to create a link from /var/mail/root to (say) /etc/passwd, thereby “tricking” a naive
mail-delivery program (running as root) to write the content of incoming mail into /etc/passwd.
Such attacks arise due to the opaque mapping of names to files in POSIX. SimpFS explicitly models
a very tight binding between files and their names: a file can be manipulated only with the names
it was created with.

We describe an implementation of SimpFS over contemporary POSIX filesystems and rigor-
ously prove that this implementation realizes SimpFS, using the UC framework. The proof implies
in particular that processes that use our implementation will be protected against pathname ma-
nipulation attacks such as above even if adversarial processes use the same POSIX filesystem in
arbitrary ways.

3.1 A formal model of SimpFS

SimpFS consists of files and their names. A newly created file is given some names, and thereafter
the file can be accessed by any of these names. Existing names can be deleted, but one cannot add
names to existing files. When deleting names, a file can end up with zero names, in which case it
is not reachable anymore so we can consider it as deleted. We associate permissions with both the
file names and the files themselves:

• Every file has a list of roles that can write in it, called the Writers list. A process can write
to a file if it holds a role in the Writers list of the file.

• File names have a set of Manipulators, listing all the roles that have permission to delete that
name.

In the current version we do not have read permissions, which means that SimpFS allows every
process to read every file.

In more details, our ideal SimpFS maintains an array of files and an associative array of names:
files[] is an array of files (indexed by integers). Each entry is a file, consisting of an array of bytes
(i.e., a data blob) and a list of roles (specifying the Writers of this file). names[] is an associative
array (indexed by strings). We refer to the index of an entry as a file-name, and each entry consists
of a pointer to a file (i.e., an integer) and a list of roles (specifying the Manipulators of this name).
The interface below constrains the Manipulator lists, making sure that all the names of the same
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CreateFile(Writers, Manipulators, Names, pid, Roles)

{

// Allow the adversary to fail the operation and decide the error code

var retCode = AdversaryAction("CreateFile",Writers,Manipulators,Names,pid,Roles);

if (retCode != OKAY) return retCode;

var codes[] = empty; // a local list of return codes, one per name

var f = index of next available entry in the files[] array;

files[f].data=empty, files[f].Writers=Writers;

// Allow the adversary to decide whether to create each name

for each fName in Names {

var code = AdversaryAction("CreateOneName", fName);

if (code!=OKAY) codes[i]=code;

else {

if (names[fName] already exists) codes[i] = FILE_EXISTS;

else {

names[fName].file=f, names[fName].Manipulators=Manipulators;

codes[i]=OKAY;

} } }

call AdversaryAction("Done CreateFile") and then return codes;

}

DeleteName(fName, pid, Roles)

{

// Allow the adversary to fail the operation and decide the error code

var retCode = AdversaryAction("DeleteName",fName,pid,Roles);

if (retCode != OKAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;

if (Roles intersect names[fName].Manipulators = emptyset) return NO_PERMISSION;

delete names[fName]; // Note: no point deleting the file, even if not reachable

call AdversaryAction("Done DeleteName") and then return OKAY;

}

Write(fName, atAddr, data, pid, Roles)

{

// Allow the adversary to fail the operation

var retCode = AdversaryAction("OpenWrite",fName,pid,Roles);

if (retCode != OKAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;

var f = names[fName].file; // f serves as a "handle" to the file

if (Roles intersect files[f].Writers = emptyset) return NO_PERMISSION;

var numBytes = AdversaryAction("Write",fName,atAddr,data,pid,Roles);

if (numBytes < length(data)) truncate data to numBytes bytes; // only partial write

var nBytes = length(data);

if (atAddr < 0) atAddr = length(files[f].data); // append

else if (atAddr > length(files[f].data)) {

prepend (atAddr-length(files[f].data)) zero bytes to data;

atAddr = length(files[f].data);

}

write data to files[f].data starting at position atAddr;

call AdversaryAction("Done Write") and then return [OKAY,nBytes];

}

Read(fName, fromAddr, nBytes, pid, Roles)

{

// Allow the adversary to fail the operation or read less bytes

var [retCode,numBytes] = AdversaryAction("Read",fName,fromAddr,nBytes,pid,Roles);

if (retCode != OKAY) return retCode;

if (numBytes < nBytes) nBytes = numBytes;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;

var f = names[fName].file;

if (fromAddr < 0) fromAddr = 0;

else if (fromAddr > length(files[f].data)) {

fromAddr = length(files[f].data);

nBytes = 0;

}

if (nBytes < 0) // read to end-of-file

nBytes = length(files[f].data) - fromAddr;

data = content of files[f].data from fromAddr for nBytes;

call AdversaryAction("Done Read") and then return [OKAY,nBytes,data];

}

Figure 1: The SimpFS commands.
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file have the same set of Manipulators. (This choice is not very important, it is done mostly to
simplify the presentation.)

In the initial state, the file-system is empty, with no files and no names (i.e., both arrays are
empty). There are only four operations that are supported in SimpFS: CreateFile creates a new
file with some names, DeleteName deletes an existing name, Read reads data from a file (specified
by some name), and Write writes data to a file (specified by some name).

The semantics of these operations is described by the pseudo-code in Figure 1. As is the case
with every formal UC functionality, the pseudo-code includes not only the intended functionality
as seen by the legitimate users of the system, but also all the interfaces that an adversary can
utilize to attack it. This is codified by an AdversaryAction call, in which SimpFS “leaks” to the
adversary the details of its operation, and also lets the adversary influence these operations.

A key feature of SimpFS is that a file can be accessed only using one of the names that
were specified when the file was created, thus eliminating filename-manipulation attacks such as
described above. Hence proving that an implementation realizes SimpFS implies in particular that
such attacks cannot be successfully mounted against the implementation.

We make no liveness guarantees in SimpFS, so at the beginning of every operation the adversary
is given the option to abort the operation and determine the error code. (This does not mean that
an implementation of SimpFS cannot ensure some liveness properties, but it means that a proof
that an implementation realizes SimpFS carries no such guarantees within itself.)

The pseudo-code includes with every call also the process-id and permissions (Roles) of the
caller, which in our system model are filled by the kernel component, cf. Figure 2. (Formally there
is also an implicit “invocation id” for each call of one of the four main operations, allowing SimpFS
to handle messages received from the ideal-world adversary for different invocations.) Note also
that the AdversaryAction at the beginning and end of every operation comply with our convention
that the adversary gets the control before any message is delivered. Finally, we note that all the
variables in the code in Figure 1 are local to that invocation, except for the global files[] and
names[].

Process corruption. Following the standard conventions of the UC framework, SimpFS has a
special procedure to handle the case where the adversary corrupts a process. For our purposes it
is more convenient to let the environment decide when a process is corrupted (as opposed to the
adversary, which is the more common convention in UC-model works).

When the environment corrupts a process, this process makes a call IamCorrupted(pid,Roles),
to inform SimpFS that “it belongs to the adversary” now. SimpFS informs the adversary of this
call, and it remembers that this process and all its roles are now bad. Thereafter, the adversary is
allowed to make all the usual calls to SimpFS (CreateFile,DeleteName,Read, Write) on behalf of
that process. SimpFS will process these calls just as if it was the corrupted process that made the
call, but will return the result to the adversary rather than to the environment.

Every call from the corrupted process (not via the adversary) will be routed directly to the
adversary, and the adversary can always instruct SimpFS to send anything to the corrupted process
(which will then be forwarded to the environment). Also, if the roles of the corrupted players change
then the kernel component will notify SimpFS of this change. SimpFS will add any new role that
a corrupted process acquires to its list of bad roles, but it will not remove any roles from that list,
even if the corrupted process loses some of its roles. (This last aspect represents the fact that the
corrupted process may already have used this role to introduce artifacts into the filesystem, that
will remain even after the process no longer has this role.)
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Atomicity of the SimpFS operations. The operations DeleteName and Read are atomic,
whereas CreateFile and Write are not: In DeleteName and Read, once the adversary allows the
operation to go through (by returning OKAY), SimpFS holds onto the control-flow throughout the
name lookup and the operation itself, and only then it yields control back to the adversary.

In Write, on the other hand, the control is returned to the adversary after the file lookup (via
the call AdversaryAction("Write", ...)), and only then is the operation carried out. Similarly
in CreateFile, the adversary gets the control before the creation of any name. This choice was
made so that we would be able to realize SimpFS over the POSIX interface that requires to open
the file and then write in it. The real-world read can be made atomic by checking after the fact
that the file did not change since it was opened, but for write such a check is meaningless since the
file was already written. (See also the attack in Section 4.5.2 for another reason for the check after
read.)
Mapping Unix permissions to roles. The interfaces of SimpFS above are defined with “generic
roles” that encode permissions, with access control being a simple role inclusion. Our implemen-
tation over POSIX, of course, uses userids and groups, which are particular types of roles. The
mapping is quite straightforward, roughly there is a different role for each userid and group in the
system, and a process gets the role corresponding to its effective-uid and all the roles corresponding
to its groups. There is also one role for “others”, that every process has. Some care must be
taken since POSIX permissions do not exactly follow role inclusion. (For example, if a file is not
owner-readable then the owner cannot read it, even if the file is readable by “others”.) Adjusting
the mapping to this technicality is quite straightforward, and is omitted here.

4 Implementing SimpFS over POSIX

We describe simpfs, which is a concrete implementation of the SimpFS functionality over the POSIX
filesystem interface [19]. The presentation below focuses on a user-space implementation, where
each simpfs operation runs with the effective uid of its caller, but we point out that the same
procedures can also be implemented in the kernel. (See Figures 2 and 3 for illustrations of the
system model in both cases.)

Our implementation relies on the “safe pathname resolution” procedure of Chari et al. [6], that
protects processes from opening adversarial links. While resolving paths this procedure ensures
that an adversary can not manipulate the resolution to result in opening unintended components.
In simpfs, very roughly speaking, each operation consists of first using that procedure to open the
corresponding file and then performing the actual operation.

Before describing this implementation, we first introduce concepts that are used in the rest
of the paper and describe some assumptions that we make on the POSIX filesystems underlying
our implementation. Then in Section 4.2 we describe the safeDirOpen procedure, which is the
heart of our implementation and builds on [6], and then in Section 4.3 we describe the rest of the
implementation.

4.1 Concepts and Properties of POSIX

We assume that the reader is familiar with basic concepts of POSIX such as directories, pathnames,
users and groups, hardlinks and symlinks, etc.
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Definition 1 (Pathname Manipulators) Let /dir1/.../dirn/foo be an absolute pathname.
The manipulators of this pathname are all the roles (users and groups) that own, or have write
permissions in, any directory visited during the resolution of this pathname.

Note that the definition applies even when a pathname does not resolve, and that root is a
manipulator of every pathname.

Definition 2 (Safe Names) A pathname is system safe if its only manipulator is root. A path-
name is safe for U (where U is a user-id) if its only manipulators are root and U . Otherwise, the
pathname is unsafe for U .

For example, in a typical UNIX system the pathname /etc/passwd is system safe, the pathname
/home/joe/mbox is safe for user joe, and the pathname /var/spool/mail/jane is unsafe for
everyone (as /var/spool/mail may be world- or group-writable).

Definition 3 (Simple Pathnames) A pathname is simple if it is an absolute path that resolves
to a regular file, its elements are only hard links (i.e., not symbolic links), no elements are named
‘.’ or ‘..’, and the pathname contains no repeated slashes ‘//’.

Assumptions. We now list some properties that we assume on the underlying POSIX system, and
use in our proof of security. Most of these assumptions are justified either by the fact that they are
part of the POSIX specification itself, or by the fact that many contemporary POSIX filesystems
seem to satisfy them.

Assumption 1 The underlying filesystem does not contain multiple mount points to the same
filesystem, and each directory has only one parent (i.e., one hard link with a name other than ‘.’
or ‘..’).

Justification. Assumption 1 is justified by the fact that nearly all contemporary POSIX implemen-
tations either do not allow processes to create additional hard links to directories (e.g., FreeBSD,
Linux) or restrict this operation to the super-user (e.g., Solaris, HP-UX). A notable exception is
MacOS.

We observe that given Assumption 1, for every reachable hard link to a regular file there is a
unique simple name that ends with that hard link. Moreover a resolution of any absolute name
that ends with that hard link will visit all the directories in this unique simple pathname.

Assumption 2 (Permissions) 1. If an operation by a process affects the content of a file, then
the process must have write permission for that file. 2. Let P be an absolute pathname. If an
operation by a process affects the resolution of P or changes the permissions or ownership of any of
the directories visited during its resolution, then that process must have a role which is a manipulator
of P .

Justification. The only operations that affect pathname resolution are creating, removing, or re-
naming pathname components, and they all require write permission in the containing directory.
Also, note that only the owner of a directory (or root) can change the permissions of that directory,
and in most systems only root can change ownership.

10



Corollary 3 Let P be some pathname, denote by M(P ) the set of manipulators for P (user-ids
and groups), and let B be a set of roles such that M(P ) ∩ B 6= ∅. Then changing the manipulator
set for P so that M(P ) ∩ B = ∅ requires an operation by a process with some role outside of B.

Proof: The only operations that change the manipulator-set of a pathname are changing the
permissions or ownership of some visited directory, or moving, renaming, or removing some visited
directory, symlink, or the last hardlink.

Denote by op the first system call after which the manipulator-set of of P is disjoint from B.
Denote by M′(P ), M′′(P ) the manipulator set of P just before and just after the system call op,
respectively, so M′(P ) ∩ B 6= M′′(P ) ∩ B = ∅. Since op changes the manipulator set of P , it must
have succeeded, hence the calling process must have had some role R∗ with sufficient privileges for
performing op.

Assume toward contradiction that the calling process has only roles in B, and thus R∗ ∈ B. Since
R∗ has sufficient privileges for one of the manipulator-changing operations then by Assumption 2
R∗ ∈ M′(P ). We now have three cases: either op is chown (so R∗ is root hence it remains a
manipulator), or op is chmod (so R∗ is the owner of the directory so it remains the owner), or op
is any other manipulator-changing operation so R∗ is a writer in the containing directory and it
remains so after the operation. In each case R∗ remains a manipulator, R∗ ∈ M′′(P ) ∩ B, hence
M′′(P ) ∩ B 6= ∅. ¤

Assumption 4 The hardlink to a directory in its parent directory can only be removed when the
child directory is empty. Moreover, after the hardlink is removed from the parent directory, no
further entries can be created in the child directory, even if some process still holds a handle to it.

Justification. The last part of Assumption 4 is justified by the fact that rmdir implementations
remove the entries ‘.’ and ‘..’ from the child directory before removing the hard link in the parent
directory, and no new entries can be created in directories without ‘.’ and ‘..’ .

Corollary 5 If a system call for creating an entry in a directory returns successfully, then the hard
link for this directory in its parent directory could not have been removed before that system call,
or removed after the call but before the newly-created entry is removed.

4.2 The safeDirOpen procedure

Underlying our simpfs implementation is a procedure for safe name resolution, which is adapted
from the work of Chari et al. [6]. Our safeDirOpen procedure takes an absolute pathname, resolves
it “in a safe manner” and returns a handle to the directory containing the final hard link to the
actual file, the name of that hard link, and additional information as discussed below. The top-level
operations of simpfs first call safeDirOpen and then perform the requested operation on the final
hard link.

safeDirOpen resolves a pathname one atom at a time, each time opening the next atom (or
reading it, if it is a symlink), while keeping track of the owners and writers of the visited directories.
(Below we identify the time that a directory was visited as the time when it was opened, and the
time that a symlink was visited with the time that it was read.)

The procedure can be in one of three states: system-safe, safe-for-uid, or unsafe. When invoked
(by a process with effective uid U), the procedure begins in a system-safe state, switching to safe-
for-uid state upon visiting a directory where U is an owner or writer, and switching to unsafe state
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upon visiting a directory with any writer or owner other than root or U . Once in unsafe state it
stays in that state for the duration of the current name resolution. Likewise, there is no transition
from safe-for-uid to the system-safe state.

When safeDirOpen enters the unsafe state, it does not follow symlinks for the remainder of the
current name resolution. Also, for technical reasons the procedure never accepts pathnames that
contain multiple slashes ‘//’ or have components named ‘.’ or ‘..’, and it refuses to visit any
directory whose name begins with the special prefix SimpFS ephemeral . In any of these cases,
the procedure returns an error code.

Once safeDirOpen arrives at the final atom (and verifies that it is indeed the final atom and not
a symlink), it ends successfully, returning a handle to the directory containing this last hard link,
as well as the name of the hard link. In addition, safeDirOpen returns its current state (system-
safe, safe-for-uid, or unsafe), the set of owners and writers of the directories that it visited, and an
array of (handle,name) pairs, containing handles to all visited directories, and the names that were
looked-up in those directories. (These names could belong to either a directory, a symlink, or the
final hard link.)

Upon failure, safeDirOpen returns an error code, a handle to the last directory pathname compo-
nent that was successfully resolved, the state (system-safe, etc.) and manipulators of that directory,
and the unresolved remainder of the pathname. For example, when called to resolve /a/b/c, if it
encountered an error after visiting /a but before visiting /a/b, then it will return a handle to di-
rectory /a, the state and manipulators of /a, and the remainder of the pathname argument “b/c”.
(Note that this will be the return value even if /a/b happens to be a symlink and the procedure
visited more directories after /a, but could not completely resolve /a/b.)

4.3 Implementing the simpfs commands

createFile(Writers,Manipulators,Names). When called by a process with effective-uid U , the pro-
cedure begins by checking that U belongs to the set of manipulators specified by the Manipulators
parameter. Then it creates a new file with an ephemeral name that begins with the special prefix
SimpFS ephemeral . This ephemeral name is created so that it is safe for U , thus ensuring that
no other users can remove or rename it.2

Now createFile attempts to set the write permissions of the new file as specified in the Writers
parameter. If this is successful, it proceeds to create the names, one at a time, by calling the
subroutine createOneName for each name in Names. After all the calls to createOneName, the
procedure createFile removes the ephemeral name that it created for the new file, and returns the
vector of return codes that it received from all the calls to createOneName.

The subroutine createOneName(fName) begins by checking that the new name is an absolute
name, and that it does not contain ‘//’ or elements named ‘.’ or ‘..’, or elements that begin
with SimpFS ephemeral . Then it calls safeDirOpen(fName) thus obtaining a handle to the last
successfully resolved directory on this pathname and the corresponding set of manipulators. If all
the directories were resolved successfully, then createOneName checks that the set of manipulators
equals the Manipulators parameter, and aborts if they differ.

If some directories were not resolved, createOneName verifies that the manipulator set of the
prefix is not too large (i.e., it must be contained in the Manipulators parameter), aborting other-
wise. Then createOneName attempts to create the remaining directories, one at the time, initially

2See Section 4.5.4 for a short discussion of this point.

12



creating each one so that it is only writable by owner U with an ephemeral name that begins with
SimpFS ephemeral . Upon success, it tries to set the write permissions of the last directory so
that the resulting set of manipulators will match the Manipulators parameter. Then it goes over
all the newly created directories, top to bottom, renaming each one to the name that it is supposed
to have according to fName.

Once all the directories exist and have the right set of manipulators and the right names, the
procedure createOneName makes a linkat system call to create a hard link in the last directory,
pointing to the new file. createOneName then returns whatever code was returned from the linkat
system call.

If any operation fails, then createOneName attempts to clean-up after itself, trying to remove
all the directories that still have names that begin with SimpFS ephemeral . However, after a
directory was renamed to its “permanent name”, createOneName does not remove it.

In the proof of security in Section 5 we rely on the following properties of our implementation of
createFile:

• The initial ephemeral name for the new file is safe for the effective-uid of the calling process.

• The procedure never creates symlinks, only directories and hard links.

• The procedure only changes permissions and/or removes pathname components if these com-
ponents begin with the special prefix SimpFS ephemeral .

• A name fName is created if and only if the linkat system call at the end of the subroutine
createOneName(fName) is successful.

deleteName(fName). When called with effective-uid U , deleteName calls safeDirOpen(fName) and
aborts if that function fails. Else deleteName has an array of pairs (handle,name), and the state
with which safeDirOpen arrived at the final directory (system-safe, safe-for-uid, or unsafe). If the
state is not system-safe, then deleteName checks that the final directory is either world-writable,
or owner-writable and owned by U , and it aborts otherwise.3 Also, if the state is unsafe then
deleteName checks that the file that the hard link points to has only a single hard link, aborting
otherwise.

Then deleteName attempts to delete the final hard link, followed by attempts to delete the
directories higher-up on the path. deleteName returns when any system call to remove a name fails,
or when any of these names resolves to a symlink, or when it is done deleting all the names in the
array. The return code from deleteName is whatever was returned from the first unlink system
call (i.e., the one that deleted the hard link at the end of fName).

We note that barring a race condition, this implementation of deleteName does not delete
symlinks. In the proof in Section 5 we show that the only cases where these race conditions are
possible are when the adversary already has permissions to delete these symlinks by itself.
read(fName,...). When called with effective-uid U , read calls safeDirOpen(fName) to get a handle for
the final directory, the name of the hard link pointing to the actual file, and the state at which it
arrived in this last directory: system-safe, safe-for-uid, or unsafe. Then read uses openat, lstatat
and fstat to open the file and verify that it is still the same file (and not a symlink). In addition,

3This check is intended to protect against privilege-escalation attacks on setgid programs, cf. Section 4.5.1.
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if the state is not system-safe, then read checks that the file is either world-readable, or owner-
readable and owned by U , and it aborts otherwise. Also, if the state is unsafe then read checks
that the file has only a single hard link, aborting otherwise.

Then the procedure uses the read system call to read the file, and before closing the file it
makes yet another lstatat system call to check that the hard link still points to the same inode
as it did when it was opened. (See Section 4.5.2 for the reason for this last test.) If all these checks
pass, then read returns the result from the read system call.
write(fName,...). The procedure write is almost identical to read except that it adds a write-
permission check on the actual file, and it does not do the final check after writing to verify
that the hard link still points to the same inode. (Indeed, such check is useless since the file was
already written to.)

4.4 Consistency properties of the implementation

In the proof of security in Section 5, it is important to consider what changes may happen in the
filesystem between the time that the safeDirOpen pathname resolver visits some directory and the
time that the procedure that called safeDirOpen returns. An important technical observation is
that if the procedure that called safeDirOpen was successful then none of those visited directories
could have been removed during this time.

Lemma 1 Consider an execution of one of the procedures createOneName, deleteName, read, or
write on argument fName, and assume that the procedure succeeds (i.e., does not return an error
code). Assume further that no symlink that was read during name resolution was later deleted or
renamed during the execution of this procedure, and no directory was renamed after it was opened
by this procedure. Then also none of these directories was deleted after it was opened and before
the time that the procedure issued the system call (respectively, linkat, unlinkat or openat) for
the final hard link in fName.

Moreover, for the procedures createOneName, read, and write, as long as no symlinks are deleted
or renamed, no directories are renamed, and the final hard link in fName exists in its original
containing directory, then also none of these directories is deleted even after the operation returns.

Proof: Assume not, and consider the first directory that was deleted after it was opened. There
are two cases to consider: this directory was deleted either before or after name resolution visited
the next pathname component (i.e., symlink read, directory or file opened).

By Assumption 4, the directory could not have been deleted before the next component was
accessed, else the subsequent access would have failed. But it also could not have been deleted after
the next pathname component was visited, since the directory must have been non-empty: If the
next pathname component is a symlink then this follows from our assumption that symlinks were
not removed or renamed, if it is a directory then it follows from our assumption that directories
were not renamed and the fact that we consider the first directory to be removed, and if it is the
final hard link then it follows from our assumption that it still exists in its containing directory. ¤

Jumping ahead, we use Lemma 1 in the proof by noting that our SimpFS implementation never
renames or removes symlinks, or renames directories, and hence no uncorrupted process will do
any of these things. If in addition we know that no corrupted process has write permissions in
any of the directories visited then also corrupted processes could not rename or remove symlinks
or rename directories. Thus, we can apply Lemma 1 and conclude that all the directories stay put
throughout the execution of createOneName, deleteName, read, or write.
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4.5 Rationale and Discussion

Before proceeding to the formal proof of security, we discuss here some of the rationale for our
implementation, including some specific attacks that the implementation was designed to foil.

4.5.1 Privilege-escalation attacks on setgid programs

Our implementation of safeDirOpen only considers the effective-uid for the purpose of determining
the safety of a directory, and thus we must consider the possibility of privilege-escalation attacks
between processes with the same effective-uid. In contemporary UNIX systems, two processes with
the same effective-uid can have different filesystem privileges only if one of them has a group-
privilege that the other does not,4 as would happen when one of these processes runs a setgid
program.

To see the problem, consider two processes running with effective-uid of joe, one having the
additional group privilege of mail while the other is compromised by an attacker (e.g., due to
a buffer-overflow vulnerability). Ideally, we would like to argue that files which have read/write
permissions for the mail group (but not user joe) are still protected against the compromised
process.

Assume that the non-compromised process with mail group privileges needs to delete a file
/home/joe/dir/foo. The compromised process can create a symlink /home/joe/dir -> /var/mail,
“tricking” the other process into deleting /var/mail/foo (assuming that /var/mail/ is writable
by group mail). Embedding this attack in our formal model, we have a name /var/mail/foo for
which joe is not a manipulator, and a good process that attempts to delete an unrelated name
/home/joe/dir/foo, and yet by some action of a compromised process with joe privileges, this
results in the deletion of /var/mail/foo.

We fix this problem by adding a check to the operations deleteName, read, and write, aborting
if the name is not system-safe and group privileges are needed to perform the operation. Very
roughly, this defense works because it prevents the use of group privileges after following symlinks
that were created by non-root processes. (We note that we do not need this extra precaution in
createOneName. This is because the SimpFS functionality restricts deletion of existing names, but
puts no restrictions on the creation of names that do not exist.)

4.5.2 An attack on open-then-read programs

To understand the need for another check of the final hard link after a read system call in a
read operation, we describe the following potential attack: Consider the three programs sshd that
needs to read the file /etc/passwd, passwd that replaces the file /etc/passwd by a new file upon
successful edit, and the MTA local delivery that needs to write into /var/mail/root. The passwd
program runs with root privileges, because it is a setuid-root program, and the MTA local delivery
runs with root privileges in order to append to the /var/mail/root mailbox file. Also, assume
that the directory /var/mail is world writable and that initially /var/mail/root does not exist.
The attack consists of the following sequence of steps:

1. The attacker creates a hard link /var/mail/root, pointing to the same file as /etc/passwd.
4We ignore the fsuid of Linux here.
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2. The attacker opens a new ssh connection, causing sshd to open the file /etc/password for
read. (Note that since /etc/passwd is a system-safe name, the open will succeed even if there
are multiple hard links.) At this point the attack relies on the sshd process to be switched
out and remain inactive until Step 5 below.

3. The attacker then uses the passwd command to change its password, thereby causing the old
/etc/passwd file to be replaced by a new file. (Note that the hard link /var/mail/root is
now the only hard link still pointing to the old /etc/passwd file, and that the sshd process
still holds a handle to that file.)

4. The attacker sends email to root@localhost, causing the MTA local delivery to append the
content of that message to /var/mail/root.

5. The sshd process is now switched in again and reads from its handle to the old /etc/passwd
file, thereby reading also the data that was written there by the MTA delivery agent.

To thwart this attack, we added the lstatat check between reading and closing the file, verifying
that the hard link still points to the same file. We stress that it is possible to switch the link back and
forth to foil this extra test, but it is sufficient for the purpose of our simpfs implementation. Non-
adversarial processes will never attempt such a back-and-forth switch, and adversarial processes
either do not have the privileges needed to foil the test, or else they have sufficient privileges to
manipulate the file directly. (Our proof relies on this extra test in the analysis of the read operation
on Page 23.)

4.5.3 Our treatment of symbolic links

Our proof of security in Section 5 relies in places on the assumption that good processes do not
create symlinks. This is consistent with our simpfs implementation (that indeed does not create
symlinks), but it begs the question why we allow safeDirOpen to follow symlinks at all.

The reason is that the implementation of simpfs is useful also in situations where the filesystem
includes non-adversarial symlinks. A close inspection of our proof shows that the arguments remain
valid also in the presence of non-adversarial symlinks, as long as the files that have non-adversarial
symlinks in their names remain static (i.e., they are not deleted, removed, or moved). It is even
possible to modify the semantics of SimpFS to accommodate non-adversarial symlinks in a dynamic
filesystem, but the new semantics will not be as simple anymore.

4.5.4 Using the sticky bit

Recall that the initial ephemeral name for a new file must be safe for the effective-uid of the calling
process (denoted U). Such a name can perhaps be created in U ’s home directory, but not all uid’s
have one. A simple way of achieving the same result in contemporary UNIX systems is creating
this ephemeral name in /tmp, relying on the fact that /tmp is owned by root and has the sticky
bit on. This does not quite fit into our definition of “safe for U” (since /tmp is world-writable), but
it suffices for the purpose of our proof of security. Specifically, what we need is to ensure that as
long as the calling process holds a handle to the new file, only U or root can change the resolution
of the ephemeral name.
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Figure 2: The real and ideal worlds for a user-level implementation of simpfs. The kernel compo-
nents that keep track of privileges are formally considered to be parts of the implementation and
the ideal functionality.

Figure 3: The real and ideal worlds for a kernel implementation of simpfs. In this setting, process
privileges are handled by the environment.

5 Proof of Security

We next prove that our simpfs implementation realizes the SimpFS functionality over POSIX,
given our assumptions from Section 4. The proof refers to a system model where simpfs is im-
plemented in user-level code and relies on an incorruptible kernel component that handles process
permissions; see Figure 2. Essentially the same proof shows that the simpfs procedures realize the
SimpFS functionality when implemented in the kernel (in which case permissions are handled by
the environment, cf. Figure 3).

Theorem 1 Our simpfs implementation realizes the SimpFS functionality over the POSIX inter-
face, provided that the underlying POSIX system satisfies Assumptions 1 through 4.

To prove Theorem 1 we show that there exists an ideal-world simulator S such that for every
real-world adversary A, no environment Z can distinguish the behavior of the real world with A
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from that of the ideal world with S and A. We first define a few concepts that will be important
in the proof, then define the simulator S, and finally prove the indistinguishability.

5.1 Useful Concepts

The simulated real world. As usual, our simulator S interacts with the adversary A, and
it needs to simulate a complete picture of the real world as would be seen by this A and the
environment Z. Note that S knows all the calls made by A to the underlying POSIX system.
Also, the simulator knows the details of all the calls made by the legitimate players to the SimpFS
functionality (by virtue of the AdversaryAction calls made by SimpFS). Hence S can simulate
the corresponding real-world implementation for these calls, keeping a complete picture of the real-
world POSIX system as it would exist in the real world at any point in time. Below we call this
POSIX system that the simulator keeps the simulated real world.
Bad roles. Recall that the association between processes and roles (such as userid and groups)
is not one-to-one. This raises the possibility that some roles are held by both corrupted and
uncorrupted processes at the same time, and similarly a process can have both “good” and “bad”
roles.5 To handle these cases we introduce the following definition.

Definition 4 (Bad roles) At any point in a run of the system, the set B of bad roles contains all
the roles that were held by a corrupt process since the start of this run. The other roles are called
good roles.

Clearly, the set B is monotonically growing throughout the run of the system. The simulator
can make calls to SimpFS using any role in B, as per our process corruption interface.
Protected names and files. Throughout the simulation, some of the names in the simulated
real world also exist in the SimpFS functionality, while the others exist for the most part only
“in the simulator’s head.” Intuitively, the former are the protected names while the latter are
unprotected. The formal notions of protected names (and also files) are defined next.

Definition 5 (Protected Names) An absolute pathname fName that resolves to a regular file in
the simulated real world at a given point in time is protected if no bad role in B is a manipulator
for fName. Pathnames that resolve to regular files but are not protected are called unprotected.

Definition 6 (Protected Files) A file that exists in the simulated real world is protected if no
bad role in B has permission to write in it. Otherwise it is unprotected.

Unprotected names and files can exist only after some processes were corrupted. Also, a system-
safe pathname is protected if and only if no root process was corrupted, and a pathname which is
safe for U is protected if and only if no root or U processes were corrupted.

Note also that protected names must be created by uncorrupted processes, since no corrupted
process has the permission to create them. This means that protected names can only be either the
names that were specified as arguments to createFile, or the temporary names with special prefix
SimpFS ephemeral that are used inside the procedure createFile. Below we refer to the latter as
ephemeral :

5For example, we could have a corrupted process with userid jack and group users and an uncorrupted process
with userid jane and group users, so the role corresponding to group users is held by both an corrupted process
and an uncorrupted one. Also the uncorrupted process holds both a “good” role (jane) and a “bad” role (users).
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Definition 7 (Ephemeral Names) A pathname in the simulated real world is called ephemeral
if any of the pathname components begins with the prefix SimpFS ephemeral .

5.2 The Simulator

The simulator’s strategy is to keep in the SimpFS functionality only protected names, while it
simulates the unprotected names internally. When a player tries to access such an unprotected
name, the simulator temporarily creates a file with that name in SimpFS by making a CreateFile
call on behalf of a corrupted process. The simulator then allows the main operation to succeed and
return an answer, and then deletes that temporary name using a DeleteName call on behalf of the
same corrupted process.

In a few more details, when the simulator is informed by SimpFS that some process invoked
an operation (CreateFile, DeleteName, Read, Write), it simulates the corresponding procedure of
the simpfs implementation (including any interleaving events). For DeleteName and Read it returns
OKAY if the procedure succeeds, for CreateFile it returns the first OKAY once the temporary file
is created and set with right permissions and then returns OKAY for each name for which the link
system call succeeded. For Write it returns the first OKAY when the procedure open’s the file,
and then again when the procedure successfully write’s to the file. In all cases, if the procedure
in the simulated real world fails, the simulator returns the same error code.

For DeleteName, Read, and Write, before returning OKAY the simulator ensures that a file
with the corresponding name exists in the SimpFS functionality. If this name is an unprotected,
the simulator first creates a temporary file with this name in SimpFS and writes into it the content
that it has in the simulated real world. The simulator also puts these temporary names in a list of
names to-be-deleted, and deletes them from SimpFS as soon as it gets back the control. Similarly
for CreateFile, if a successful createOneName creates an unprotected name then the simulator
puts that name on its to-be-deleted list and deletes it from SimpFS once it gets back the control.

When receiving a Done Write call from SimpFS, the simulator goes over all the protected file
names, looking for names for which the content of the corresponding file in the simulated real
world differs from that in the SimpFS functionality. If the file is unprotected (i.e., the simulator
has permissions to write in it) then the simulator makes a Write call to set the content of the file
in the SimpFS functionality to match that of the simulated real world.

Process corruption. When the simulator learns from SimpFS that a process is corrupted, it goes
over all the file names that exist in SimpFS, and deletes each name that the newly corrupted process
can delete from SimpFS, using a call on behalf of that process. The simulator also remembers that
this process is now corrupted.

Modifications of files with protected names. When a corrupted process modifies the
content of a file that has a protected name in the simulated real world, the simulator makes a
Write call to the SimpFS functionality on behalf of the same process, setting the content of the
corresponding file inside SimpFS to match that of the simulated real world.

5.3 Proof of correctness

We show that with the simulator defined above, the view of the environment in the ideal and real
worlds is identical. As we noted above, it is sufficient to argue about the simulated real world vs.
the SimpFS functionality. We now prove a sequence of lemmas relating the names that exist in the
simulated real world to those that exist in the SimpFS functionality.
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Lemma 2 Every protected name that exists in the simulated real world is either ephemeral or also
exists in the SimpFS functionality.

Proof: Recall that protected names must be created by uncorrupted processes, since corrupted
processes do not have permission to write in the directories containing them. As per our imple-
mentation, the only names of regular files that are created by uncorrupted processes are either the
names that are specified as parameter in createFile or ephemeral names. As to the former, they are
created via a successful link system call in createOneName, at which point the simulator returns
OKAY to the SimpFS functionality, which in turn then creates the name (if it does not already
exist). ¤

Below we say that the a particular link (hard or symbolic) that exists in the simulated real
world remains unchanged during some time interval if it is not removed or renamed in its containing
directory, and its permissions and ownership remained the same. A pathname remains unchanged if
all the directories, links and filenames that are accessed during resolution of this pathname remain
unchanged.

Lemma 3 Every name fName that exists in the SimpFS functionality and no corrupted process
has permission to delete it, also exists in the simulated real world and is protected. Moreover, fName
remained unchanged since it was last created in the simulated real world.

Proof: Fix any file name fName that satisfies the premise of the lemma. This cannot be temporary
a name on the to-be-deleted list, since those can be deleted by corrupted processes. Thus the last
time when it was created in SimpFS was after a successful link system call in createOneName,
during a CreateFile call by an uncorrupted process. (Also fName is not ephemeral, since our
implementation of createOneName does not create ephemeral names for regular files.)

Let M be the set of manipulators for fName in the SimpFS functionality, so by the premise
of the lemma M∩ B = ∅. Also, M was the manipulator-set specified in the CreateFile call to
SimpFS when fName was created. Recall now that the subroutine createOneName keeps track of
all the owners/writers in all the directories that it visits, and only issues the final link system
call if that set equals M. Denote the directories visited during name resolution (in order) by
dir1,dir2,...,dirn and the final filename by foo. Since M∩B = ∅ then set of writers/owners in
those directories at the time where createOneName visited them was disjoint of B. We next show
that all these directories (and also the final file) remained unchanged since createOneName visited
them, thus completing the proof.

First, we claim that at the time of creation, fName was a simple pathname. That fName does
not include ‘.’ or ‘..’ or ‘//’ follows since createOneName does not create names that include
any of them. Also, uncorrupted processes in our implementation never create symbolic links,
so symbolic links can only be created in directories that are writable by some role in B. This
means that none of the directories diri contained symbolic links when the name-resolution visited
them during createOneName, so in particular all the pathname components visited (or created)
by createOneName (except the final foo) were directories. Once these directories were visited,
they were not moved (since only corrupted processes can move directories but none of them had
permission to do so), hence by Lemma 1 they also not removed before the hard link foo was created.
Hence also at the time that foo was created, the pathname fName was simple.

Next, assume toward contradiction that one of the directories diri (or foo) was modified or
erased since it was visited by createOneName, and consider the first of them that was modified or
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erased. By Assumption 2, the caller owned or had write permission in the parent directory at the
time of the change. Since the set of owners/manipulators is disjoint of B, it means that the process
that first modified/erased that pathname component must have been uncorrupted.

In our implementation, system calls that modify permissions are used by uncorrupted processes
only on ephemeral names, which fName is not. Therefore the first modification had to be a removal
of a pathname component (by an uncorrupted process). Invoking Lemma 1 again, we know that
none of the directories can be removed, thus the first pathname element to be deleted has to be the
hard link foo itself. Note also that hard links to files are only deleted by uncorrupted processes
during a successful DeleteName call to SimpFS.

Denote the pathname argument to the successful DeleteName call that deleted foo by fName2,
and we argue that fName2 must be the same as fName. Clearly, fName2 cannot include ‘.’ or ‘..’ or
‘//’ since safeDirOpen does not allow these. Also, recall that the deleteName procedure was run by
a process that had permissions to delete the hard link foo, so it must have a different effective-uid
from all the corrupted processes. Since only the adversary creates symlinks, then symlinks must
reside in directories that are unsafe for the effective-uid of that process, hence safeDirOpen will not
follow them. Therefore safeDirOpen encountered only hard links (to directories) as it resolved the
name fName2.

We now argue that these directories must have been the same dir1,dir2,...,dirn as in fName,
and moreover at the time of deletion the hard-link must have been called foo (as in fName). For
foo itself, we already established above that the first modification to it since it was created was the
time it was removed. Hence at the time of deletion it must have been called foo and must have
resided at deletion in the same directory in which is was created.

As for the containing directories, at the time that foo was created none of them was writable or
owned by corrupted players, which implies that none of them was writable or owned by corrupted
player any any point since these directories themselves were created. (This follows from Corollary 5.)
Thus these directories could not have been moved to their containing directory at fName, they must
have been created there with ephemeral names and then renamed to their permanent name, which
remained fixed at least as long as foo existed. By induction on the pathname components of fName
(starting from dirn and going back), we therefore conclude that the deleteName procedure must
have opened each diri using a handle to diri−1 and the same name that diri has in fName. Hence
fName2 and fName are the same.

Summing up, we had an uncorrupted player who made a successful call DeleteName(fName)
to the SimpFS functionality. But this means that fName no longer exists in SimpFS, which is a
contradiction. ¤

Lemma 4 At any point in time, two non-ephemeral protected names resolve to the same file in the
simulated real world if and only if they belong to the same file in the SimpFS functionality.

Proof: Fix any two non-ephemeral protected names that exist at some point in time in the
simulated real world. By Lemma 2 they also exist in the SimpFS functionality. For each name, we
look at the CreateFile call when it was last created in the SimpFS functionality, which was after
the link system call returned successfully in the respective simulated createOneName subroutine.

If both createOneName subroutines were part of the same createFile procedure then they were
created pointing to the same ephemeral filename, and since they are protected then also the
ephemeral name was protected, which means that it was not deleted between the two link system
calls. Hence they were created pointing to the same file. On the other hand, if the two subroutines
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were part of two different runs of createFile then they were created pointing to different files. By
Lemma 3, the two pathnames remained unchanged since they were created. Hence, they still re-
solve to the same file if they were created in the same CreateFile call to the SimpFS functionality
(and hence belong to the same file in SimpFS), and they still resolve to different files if they were
created in two CreateFile calls (and hence belong to different files in SimpFS). ¤

Lemma 5 Consider a call Write(fName,...) from an uncorrupted process that returns OKAY,
and consider the state of the simulated real world at the time when the open system call in the
implementation returns a handle to the final hard link. If at that time fName is unprotected, but
there exists a protected name that resolves to the same file, then the file itself is unprotected (i.e.,
there is some role in B with permission to write in it).

Proof: If any root process is corrupted then all files and names are unprotected and we are done.
Assume from now on that no root process is corrupted. It follows that when the last open system
call returned, the name fName was not system-safe (else it would have been protected), so the Write
procedure did not open fName in a system-safe mode. Let U denote the effective-uid of the calling
process. The same argument as above shows that if no U process was corrupted (when the open
system-call returned), the Write procedure could not have opened fName in a safe-for-U mode.
Hence the only two cases that we need to consider are that some U process was corrupted, or that
safe-open opened fName in unsafe mode.

In the former case, recall that fName was not opened in system-safe mode, so a Write could
only succeed when the file is either world-writable or owned by U (and writable by owner). Either
way the file is not protected (since it can be written by the corrupted U process). It is left to
show that the latter case (where the file was opened in unsafe mode and no U process is corrupted)
cannot happen.

Since the file had a protected name it also had a simple protected name, which we denote fName2
= /dir1/.../dirn/foo. The hard link foo must also be the last hard link in fName, as opening
a file in unsafe mode would fail if the file has multiple hard links. Finally, the resolution of fName
could not have encountered directories unsafe for U before merging into the simple path fName2,
else it would fail. But since no U or root process is corrupted, all these directories were still safe
for U when the open system call returned, hence fName was protected, which is a contradiction. ¤

Lemma 6 The view of the environment is identical in the real and ideal worlds.

Proof: We need to show that the answers that the environment sees when interacting with simpfs
over POSIX and the adversary A are identical to what it sees from the SimpFS functionality with
the simulator S and the same A. Below we will argue about the simulated real world, since it is
an exact replica of the real world.

From the description of the simulator, it is clear than whenever the implementation of some call
returns an error code then the environment will see the same error code in the ideal world (since
this is what the simulator returns to SimpFS). Also, it is clear that the results of all the calls that
have unprotected names as arguments must be the same, since the simulator always creates the
corresponding files in SimpFS on the fly to ensure this.

It is left to show that for operations that have protected names as argument, if they succeed
in the real-world implementation then SimpFS will not return an error, and also that the content
of successful Read operations is the same. We begin with error codes: The cases where the call to
AdversaryAction returns OKAY but SimpFS returns an error are the following:
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• In CreateFile when the filename already exists. By Lemma 3, if a protected filename exists
in SimpFS then it also exists in the simulated real world, hence the link system call would
fail and the simulator would not return OKAY.

• In DeleteName/Read/Write where the name does not exist, or the calling process does not
have permission to delete the name or read/write the file.

Recall that if a name does not exist but the operation in the real world succeeds, then
the simulator creates the corresponding name with the right permissions in the SimpFS
functionality before returning OKAY. So the only case that needs to be examined is when the
name does exist (and does not have corrupted manipulators) but the calling process does not
have the permissions to delete, read, or write. By Lemma 3, such names exist also in the
simulated real world, and they remained unchanged since they were created. Moreover the
createFile procedure ensures that the name and file have the same sets of manipulators/writers
in the simulated real world as in the SimpFS functionality. Hence, if the calling process does
not have permission to delete/read/write then the simulated procedure will also fail, and the
simulator will not return OKAY.

Next we consider the content of files with protected names. By Lemma 3 this name also exists
in the SimpFS functionality. We observe that the last time fName was created in the SimpFS
functionality (prior to the successful read system call) could not have been between the open and
read system calls, since otherwise the final lstat check would have failed and the Read would not
have been successful. Hence the name (and the file) were created before the open system call.

We now examine the content of the file corresponding to fName since the last time it was created
in the simulated real world. (This was when the temporary name for this file was created.) For
each successful write system call for this file, we designate the beginning of the next successful
read or write system call (for the same file) as “the point where the write operation ended.”
We prove by induction that at the time each write ended, the content of the file in SimpFS was
identical to its content in the simulated real world.

We have two cases to consider: either the file is unprotected (i.e., one of the bad roles in B
belongs to the Writers set), or it is protected. If the file is unprotected then the simulator would
always make sure to adjust its content in the SimpFS functionality to whatever it would be in the
simulated real world. We now claim that the last remaining case — where the file is protected but
the name that was used to write in it is not — cannot happen.

If the open system call for the Write operation happened after the name fName was created in
the simulated real world then we meet the conditions of Lemma 5, namely a successful Write to an
unprotected name where the same file also has a protected name (the protected name is fName).
If the open system call happened before the name fName was created then the temporary name
for that file must have still existed at the time, which was itself protected, and again we meet the
conditions of Lemma 5. In either case the file cannot be protected.

We have shown that the content of the file is identical at the end of every write operation. Since
the open call for the Read happened after the file was created then the subsequent read system call
returns the content of this file (specifically, the content after the last write system call), which is
the same as the content that SimpFS has for that file. This completes the proof of Lemma 6 and
also Theorem 1. ¤
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6 Conclusion

In this work we adapted the Universal Composability (UC) framework to the modeling of large
software systems. We focused on modeling filesystem interfaces, such as POSIX, in contemporary
operating systems. We described SimpFS, a simple filesystem abstraction intended to capture
filesystem integrity concerns, e.g., it allows access to files only through the names they were created
with. We describe an implementation of this abstraction over real POSIX filesystems and rigorously
prove that the implementation realizes the SimpFS abstraction in the UC sense. SimpFS is a simple
but useful interface and with a few small enhancements is sufficient to build real applications.

Our work demonstrates that formal security frameworks such as Universal Composability can be
used also beyond the niche of cryptographic protocols. Our modeling of POSIX-based file systems
is the first example of this scale. Our proof implies that it is possible for applications to enjoy
the security assurances of an idealized system interface even when running over a large complex
interface (and even though potential attackers can use the entire larger interface).
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