
How to Tell if Your Cloud Files
Are Vulnerable to Drive Crashes

Kevin D. Bowers
RSA Laboratories

Cambridge, MA, USA
kbowers@rsa.com

Marten van Dijk
RSA Laboratories

Cambridge, MA, USA
marten.vandijk@rsa.com

Ari Juels
RSA Laboratories

Cambridge, MA, USA
ajuels@rsa.com

Alina Oprea
RSA Laboratories

Cambridge, MA, USA
aoprea@rsa.com

Ronald L. Rivest
MIT CSAIL

Cambridge, MA, USA
rivest@mit.edu

ABSTRACT
This paper presents a new challenge—verifying that a remote server
is storing a file in a fault-tolerant manner, i.e., such that it can sur-
vive hard-drive failures. We describe an approach called the Re-
mote Assessment of Fault Tolerance (RAFT). The key technique in
a RAFT is to measure the time taken for a server to respond to a
read request for a collection of file blocks. The larger the num-
ber of hard drives across which a file is distributed, the faster the
read-request response. Erasure codes also play an important role in
our solution. We describe a theoretical framework for RAFTs and
show experimentally that RAFTs can work in practice.

1. INTRODUCTION
Cloud storage offers clients a unified view of a file as a single,

integral object. This abstraction is appealingly simple. In reality,
though, cloud providers generally store files with redundancy or
error correction to protect against data loss. Amazon, for example,
claims that its S3 service stores three replicas of each file. Ad-
ditionally, cloud providers often spread files across multiple stor-
age devices. Such distribution provides resilience against hardware
failures, e.g., drive crashes (and can also lower latency across dis-
parate geographies).

The single-copy file abstraction in cloud storage, however, con-
ceals file-layout information from clients. It therefore deprives
them of insight into the true degree of fault-tolerance their files
enjoy. Even when cloud providers specify a storage policy (e.g.,
even given Amazon’s claim of triplicate storage), clients have no
technical means of verifying that their files aren’t vulnerable, for
instance, to drive crashes. In light of clients’ increasingly critical
reliance on cloud storage for file retention, and the massive cloud-
storage failures that have come to light, e.g., [4], it is our belief that
remote testing of fault tolerance is a vital complement to contrac-
tual assurances and service-level specifications.

In this paper we develop a protocol for remote testing of fault-
tolerance for stored files. We call our approach the Remote Assess-
ment of Fault Tolerance (RAFT). A RAFT enables a client to obtain
proof that a given file F is distributed across physical storage de-
vices to achieve a certain desired level of fault tolerance. We refer
to storage units as drives for concreteness. For protocol parameter
t, our techniques enable a cloud provider to prove to a client that
the file F can be reconstructed from surviving data given failure
of any set of t drives. For example, if Amazon were to prove that
it stores a file F fully in triplicate, i.e., one copy on each of three
distinct drives, this would imply that F is resilient to t = 2 drive

crashes.
At first glance, proving that file data is stored redundantly, and

thus proving fault-tolerance, might seem an impossible task. It is
straightforward for storage service S to prove knowledge of a file
F , and hence that it has stored at least one copy. S can just transmit
F . But how can S prove, for instance, that it has three distinct
copies of F ? Transmitting F three times clearly doesn’t do the
trick! Even proving storage of three copies doesn’t prove fault-
tolerance: the three copies could all be stored on the same disk!

To show that F isn’t vulnerable to drive crashes, it is necessary
to show that it is spread across multiple drives. Our approach, the
Remote Assessment of Fault Tolerance, proves the use of multiple
drives by exploiting drives’ performance constraints—in particular
bounds on the time required for drives to perform challenge tasks.
A RAFT is structured as a timed challenge-response protocol. A
short story and Figures 1 and 2 give the intuition. Here, the aim is
to ensure that a pizza order can tolerate t = 1 oven failures.

A fraternity (“Eeta Pizza Pi”) regularly orders pizza
from a local pizza service, “Cheapskate Pizza.” Re-
cently, however, Cheapskate failed to deliver pizzas
at all for the big pregame party. Cheapskate said that
their only pizza oven had suffered a catastrophic fail-
ure, but that they are replacing it with two new Bake-
sALot ovens, for increased capacity and reliability in
case one should fail.

Aim O’Bese, president of Eeta Pizza Pi, wants to
verify that Cheapskate has indeed installed redundant
pizza ovens, without having to visit the Cheapskate
premises himself. He devises the following clever ap-
proach. Knowing that each BakesALot oven can bake
two pizzas every ten minutes, he places an order for
two dozen pizzas, for delivery to the frat as soon as
possible. Such a large order should take an hour of
oven time in the two ovens, while a single oven would
take two hours. The order includes various unusual
combinations of ingredients, such as pineapple, an-
chovies, and garlic, so that Cheapskate wouldn’t be
able just to deliver warmed up pre-made pizzas.

Cheapskate is only a fifteen minute drive from the
frat. So when Cheapskate delivers the two dozen piz-
zas in an hour and twenty minutes, Aim decides, while
consuming the last slice of pineapple/anchovy/garlic
pizza, that Cheapskate must be telling the truth. He
gives them the frat’s next pregame-party order.

1

t = 1

1 O2

p1 p2
p2p1

Bake(p1,p2)
Order(p1,p2)

EPP CP

time

t = 0

O

Figure 1: Resilient pizza shop with two ovens

time

1

p1

p2
p2p1

Bake(p1,p2)
Order(p1,p2)

EPP CP

t = 0

t = 1

t = 2

O

Figure 2: Failure-prone pizza shop with only one oven

Our RAFT for drive fault-tolerance testing follows the approach
illustrated in this story. The client challenges the server to retrieve
a set of random file blocks from file F . By responding quickly
enough, S proves that it has distributed F across a certain, mini-
mum number of drives. Suppose, for example, that S is challenged
to pull 100 random blocks from F , and that this task takes one sec-
ond on a single drive. If S can respond in only half a second1, it is
clear that it has distributed F across at least two drives.

Again, the goal of a RAFT is for S to prove to a client that F is
recoverable in the face of at least t drive failures for some t. Thus
S must actually do more than prove that F is distributed across a
certain number of drives. It must also prove that F has been stored
with a certain amount of redundancy and that the distribution of F
across drives is well balanced. To ensure these two additional prop-
erties, the client and server agree upon a particular mapping of file
blocks to drives. An underlying erasure code provides redundancy.
By randomly challenging the server to show that blocks of F are
laid out on drives in the agreed-upon mapping, the client can then
verify resilience to t drive failures.

The real-world behavior of drives presents a protocol-design chal-
lenge: The response time of a drive can vary considerably from
read to read. Our protocols rely in particular on timing measure-
ments of disk seeks, the operation of locating randomly accessed
blocks on a drive. Seek times exhibit high variance, with multiple
factors at play (including disk prefetching algorithms, disk internal
buffer sizes, physical layout of accessed blocks, etc.). To smooth
out this variance we craft our RAFTs to sample multiple randomly
selected file blocks per drive. Clients not only check the correct-
ness of the server’s responses, but also measure response times and
accept a proof only if the server replies within a certain time inter-
val. We also empirically explore another real-world complication,
variance in network latencies between remotely located clients and
servers. Despite these design challenges, we propose and experi-
mentally validate a RAFT that can, for example, distinguish sharply
between a five-drive system with fault tolerance t = 1 and a four-
drive system with no fault tolerance in less than 500ms.

RAFTs aim primarily to protect against “economically rational”
service providers / adversaries, which we define formally below.
Our adversarial model is thus a mild one. We envision scenarios
in which a service provider agrees to furnish a certain degree of
fault tolerance, but cuts corners. To reduce operating costs, the

1Of course, S can violate our assumed bounds on drive perfor-
mance by employing unexpectedly high-grade storage devices,
e.g., flash storage instead of rotational disks. As we explain below,
though, our techniques aim to protect against economically rational
adversaries S . Such an S might create substandard fault tolerance
to cut costs, but would not employ more expensive hardware just
to circumvent our protocols. (More expensive drives often mean
higher reliability anyway.)

provider might maintain equipment poorly, resulting in unremedi-
ated data loss, enforce less file redundancy than promised, or use
fewer drives than needed to achieve the promised level of fault tol-
erance. (The provider might even use too few drives accidentally, as
virtualization of devices causes unintended consolidation of phys-
ical drives.) An economically rational service provider, though,
only provides substandard fault tolerance when doing so reduces
costs. The provider does not otherwise, i.e., maliciously, introduce
drive-failure vulnerabilities. We explain later, in fact, why protec-
tion against malicious providers is technically infeasible.

1.1 Related work
Proofs of Data Possession (PDPs) [1] and Proofs of Retrievabil-

ity (PORs) [14, 21, 6, 5] are challenge-response protocols that ver-
ify the integrity and completeness of a remotely stored F . They
share with our work the idea of combining error-coding with ran-
dom sampling to achieve a low-bandwidth proof of storage of a file
F . This technique was first advanced in a theoretical framework in
[18]. A RAFT includes the extra dimension of verifying physical
layout of F and tolerance to a number of drive failures.

Cryptographic challenge-response protocols prove knowledge of
a secret—or, in the case of PDPs and PORs, knowledge of a file.
The idea of timing a response to measure remote physical resources
arises in cryptographic puzzle constructions [7]. For instance, a
challenge-response protocol based on a moderately hard computa-
tional problems can measure the computational resources of clients
submitting service requests and mitigate denial-of-service attacks
by proportionately scaling service fulfilment [13]. Our protocols
here measure not computational resources, but the storage resources
devoted to a file. (Less directly related is physical distance bound-
ing, introduced in a cryptographic setting in [3]. There, packet
time-of-flight gives an upper bound on distance.)

We focus on non-Byzantine, i.e., non-malicious, adversarial mod-
els. We presume that malicious behavior in cloud storage providers
is rare. As we explain, such behavior is largely irremediable any-
way. Instead, we focus on an adversarial model (“cheap-and-lazy”)
that captures the behavior of a basic, cost-cutting or sloppy storage
provider. We also consider an economically rational model for the
provider. Most study of economically rational players in cryptogra-
phy is in the multiplayer setting, but economical rationality is also
implicit in some protocols for storage integrity. For example, [1,
10] verify that a provider has dedicated a certain amount of storage
to a file F , but don’t strongly assure file integrity. We formalize the
concept of self-interested storage providers in our work here.

A RAFT falls under the broad heading of cloud security assur-
ance. There have been many proposals to verify the security char-
acteristics and configuration of cloud systems by means of trusted
hardware, e.g., [9]. Our RAFT approach advantageously avoids
the complexity of trusted hardware. Drives typically don’t carry

2

trusted hardware in any case, and higher layers of a storage subsys-
tem can’t provide the physical-layer assurances we aim at here.

1.2 Organization
Section 2 gives an overview of key ideas and techniques in our

RAFT scheme. We present formal adversarial and system mod-
els in Section 3. In Section 4, we introduce a basic RAFT in a
simple system model. Drawing on experiments, we refine this sys-
tem model in Section 5, resulting in a more sophisticated RAFT
in Section 6. In Section 7, we formalize an economically rational
adversarial model and sketch matching RAFT constructions. We
conclude in Section 8 with discussion of future directions.

2. OVERVIEW: CRAFTING A RAFT
We now discuss in further detail the practical technical chal-

lenges in crafting a RAFT for hard drives, and the techniques we
use to address them. We view the file F as a sequence of m blocks
of fixed size (e.g., 64KB).
File redundancy / erasure coding. To tolerate drive failures, the
file F must be stored with redundancy. A RAFT thus includes an
initial step that expands F into an n-block erasure-coded represen-
tation G. If the goal is to place file blocks evenly across c drives to
tolerate the failure of any t drives, then we need n = mc/(c − t).
Our adversarial model, though, also allows the server to drop a por-
tion of blocks on a drive or place some blocks on the wrong drives.
We show how to parameterize our erasure coding at a still higher
rate, i.e., choose a larger n, to handle these possibilities.
Challenge structure. (“What order should Eeta Pizza Pie place to
challenge Cheapskate?”) We focus on a “layout specified” RAFT,
one in which the client and server agree upon an exact placement of
the blocks of G on c drives, i.e., a mapping of each block to a given
drive. The client, then, challenges the server with a query Q that
selects exactly one block per drive in the agreed-upon layout. An
honest server can respond by pulling exactly one block per drive
(in one “step”). A cheating server, e.g., one that uses fewer than c
drives, will need at least one drive to service two block requests to
fulfill Q, resulting in a slowdown.
Network latency. (“What if Cheapskate’s delivery truck runs into
traffic congestion?”) The network latency, i.e., roundtrip packet-
travel time, between the client and server, can vary due to changing
network congestion conditions. The client cannot tell how much a
response delay is due to network conditions and how much might
be due to cheating by the server. We examine representative Inter-
net routes experimentally and find that network latency is, for our
purposes, quite stable; it has little impact on RAFT design.
Drive read-time variance. (“What if the BakesALot ovens bake
at inconsistent rates?”) The read-response time for a drive varies
across reads. We perform experiments, though, showing that for
a carefully calibrated file-block size, the response time follows a
probability distribution that is stable across time and physical file
positioning on disk. (We show how to exploit the fact that a drive’s
“seek time” distribution is stable, even though its read bandwidth
isn’t.) We also show how to smooth out read-time variance by con-
structing RAFT queries Q that consist of multiple blocks per drive.
Queries with multiple blocks per drive. (“How can Eeta Pizza
Pie place multiple, unpredictable orders without phoning Cheap-
skate multiple times?”) A naïve way to construct a challenge Q
consisting of multiple blocks per drive (say, q) is simply for the
client to specify cq random blocks in Q. The problem with this
approach is that the server can then schedule the set of cq block ac-
cesses on its drives to reduce total access time (e.g., exploiting drive

efficiencies on sequential-order reads). Alternatively, the client
could issue challenges in q steps, waiting to receive a response be-
fore issuing a next, unpredictable challenge. But this would require
c rounds of interaction.

We instead introduce an approach that we call lock-step chal-
lenge generation. The key idea is for the client to specify query Q
in an initial step consisting of c random challenge blocks (one per
drive). For each subsequent step, the set of c challenge blocks de-
pends on the content of the file blocks accessed in the last step. The
server can proceed to the next step only after fully completing the
last one. Our lock-step technique is a kind of repeated application
of a Fiat-Shamir-like heuristic [8] for generating q independent, un-
predictable sets of challenges non-interactively. (File blocks serve
as a kind of “commitment.”) The server’s response to Q then is
simply the aggregate (hash) of all of the cq file blocks it accesses.

3. FORMAL DEFINITIONS
A Remote Assessment of Fault Tolerance RAFT (t) aims to

enable a service provider to prove to a client that it has stored file
F with tolerance against t drive failures. In our model, the client
first encodes the file by adding some redundancy. Periodically, the
client issues challenges to the server, consisting of a subset of file
block indices. If the server replies correctly and promptly to chal-
lenges (i.e., the answer is consistent with the original file F , and the
timing of the response is within an acceptable interval), the client
is convinced that the server stores the file with tolerance against t
drive failures. The client can also reconstruct the file at any time
from the encoding stored by the server, assuming at most t drive
failures.

3.1 System definition
To define our system more formally, we start by introducing

some notation. A file block is an element in B = GF [2`]. For
convenience we also treat ` as a security parameter. We let fi de-
note the ith block of a file F for i ∈ {1, . . . , |F |}.

The RAFT system comprises these functions:

• Keygen(1`)
R→ κ: A key-generation function that outputs

key κ. We denote a keyless system by κ = φ.

• Encode(κ, F = {fi}m
i=1, t, c) → G = {gi}n

i=1: An encod-
ing function applied by the client to an m-block file F =
{fi}m

i=1; it takes additional inputs fault tolerance t and a
number of c logical disks. It outputs encoded file G =
{gi}n

i=1, where n ≥ m. The function Encode may be keyed,
e.g., encrypting blocks under κ, or unkeyed, e.g., applying an
erasure code or keyless cryptographic operation to F .

• Map(n, t, c) → {Cj}c
j=1: A function computed by both

the client and server that takes the encoded file size n, fault
tolerance t and a number c of logical disks and outputs a log-
ical mapping of file blocks to c disks or ⊥. (A more general
definition might also include G = {gi}n

i=1 as input. Here
we only consider mappings that respect erasure-coding struc-
ture.) The output consists of sets Cj ⊆ {1, 2, . . . , n} denot-
ing the block indices stored on drive j, for j ∈ {1, . . . , c}. If
the output is not ⊥, then the placement is tolerant to t drive
failures.

• Challenge(n, G, t, c) → Q: A (stateful and probabilistic)
function computed by the client that takes as input the en-
coded file size n, encoded file G, fault tolerance t, and the
number of logical drives c and generates a challenge Q con-
sisting of a set of block indices in G. The aim of the chal-
lenge is to verify disk-failure tolerance at least t.

3

• Response(Q) → (R, T): An algorithm that computes a
server’s response R to challenge Q, using the encoded file
blocks stored on the server disks. The timing of the response
T is measured by the client as the time required to receive
the response from the server after sending a challenge.

• Verify(G, Q, R, T) → b ∈ {0, 1}: A verification function
for a server’s response (R, T) to a challenge Q, where 1 de-
notes “accept,” i.e., the client has successfully verified cor-
rect storage by the server. Conversely 0 denotes “reject.” In-
put G is optional in some systems.

• Reconstruct(κ, r, {g∗i }r
i=1) → F ∗ = {f∗i }m

i=1: A recon-
struction function that takes a set of r encoded file blocks and
either reconstructs an m-block file or outputs failure sym-
bol ⊥. We assume that the block indices in the encoded
file are also given to the Reconstruct algorithm, but we omit
them here for simplicity of notation. The function is keyed if
Encode is keyed, and unkeyed otherwise.

Except in the case of Keygen, which is always probabilistic, func-
tions may be probabilistic or deterministic.

We define RAFT (t) = {Keygen, Encode, Map, Challenge,
Response, Verify, Reconstruct}.

3.2 Client model
In some instances of our protocols called keyed protocols, the

client needs to store secret keys used for encoding and reconstruct-
ing the file. Unkeyed protocols do not make use of secret keys for
file encoding, but instead use public transforms.

If the Map function outputs a logical layout {Cj}c
j=1 6=⊥, then

we call the model layout-specified. We denote a layout-free model
one in which the Map function outputs ⊥, i.e., the client does not
know a logical placement of the file on c disks, and the placement
is established entirely by the server. In this paper, we only con-
sider layout-specified protocols, although layout-free protocols are
an interesting point in the RAFT design space worth exploring.

For simplicity in designing the Verify protocol, we assume that
the client keeps a copy of F locally. Our protocols can be extended
easily via standard block-authentication techniques, e.g., [16], to a
model in which the file is maintained only by the provider and the
client deletes the local copy after outsourcing the file.

3.3 Drive and network models
The response time T of the server to a challenge Q as measured

by the client has two components: (1) Drive read-request delays
and (2) Network latency. We model these two protocol-timing com-
ponents as follows.

Modeling drives.
We model a server’s storage resources for F as a collection of

d independent hard drives. Each drive stores a collection of file
blocks. The drives are stateful: The timing of a read-request re-
sponse depends on the query history for the drive, reflecting block-
retrieval delays. For example, a drive’s response time is lower
for sequentially indexed queries than for randomly indexed ones,
which induce seek-time delays [20]. We do not consider other
forms of storage here, e.g., solid-state drives.

We assume that all the drives have the same characteristics (be-
long to the same model), and parameters such as disk latency, seek
time, and access time are known to the client (they could be part of
an SLA between the client and server). We present disk access time
distributions for a particular disk model, and assume that clients
have complete information on the drive model and its complete

specification. We also assume that when retrieving disk blocks for
responding to client queries in the protocol, there is no other work-
load running concurrently on the drive, i.e., the drive has been “re-
served” for the RAFT. (Multiple concurrent workloads could skew
disk-access times in unexpected ways).

Modeling network latency.
We assume in our model that we can accurately estimate the net-

work latency between the client and the server. We will present
some experimental data on network latencies and adapt our proto-
cols to handle observed small variations in time.

3.4 Adversarial model
We now describe our adversarial model, i.e., the range of behav-

iors of S. In our model, the m-block file F is chosen uniformly
at random. This reflects our assumption that file blocks are al-
ready compressed by the client, for storage and transmission ef-
ficiency, and also because our RAFT constructions benefit from
random-looking file blocks. Before sending F to S , the client ap-
plies Encode, yielding an encoded file G of size n.

Both the client and server can compute the logical placement
{Cj}c

j=1 by applying the Map function. The server distributes the
blocks of G across d real disks. The number of actual disks d used
by S might be different than the number of agreed-upon drives c.
The actual file placement {Dj}d

j=1 performed by the server might
also deviate arbitrarily from the placement specified by the Map
function. (As we discuss later, sophisticated adversaries might
even store something other than unmodified blocks of G.)

At the beginning of a protocol execution, we assume that the
high-speed (non-disk) memory of S is empty. Therefore, to re-
spond to a challenge Q, S must query its disks to retrieve file
blocks. The variable T denotes the time required for the client,
after transmitting its challenge, to receive a response R from S.
Time T includes both network latency and drive access time (as
well as any delay introduced by S cheating).

The goal of the client is to establish whether the file placement
implemented by the server is resilient to at least t drive failures.

Cheap-and-lazy server model.
For simplicity and realism, we focus first on a restricted adver-

sary S that we call cheap-and-lazy. The objective of a cheap-
and-lazy adversary is to reduce its resource costs; in that sense it
is “cheap.” It is “lazy” in the sense that it does not modify file
contents. The adversary instead cuts corners by storing files on a
smaller number of disks or mapping file blocks unevenly across
disks, i.e., it may ignore the output of Map. A cheap-and-lazy ad-
versary captures the behavior of a typical cost-cutting or negligent
storage service provider.

To be precise, we specify a cheap-and-lazy server S by the fol-
lowing assumptions on the blocks of file F :

• Block obliviousness: The behavior of S i.e., its choice of
internal file-block placement (d, {Dj}d

j=1) is independent
of the content of blocks in G. Intuitively, this means that
S doesn’t inspect block contents when placing encoded file
blocks on drives.

• Block atomicity: The server handles file blocks as atomic
data elements, i.e., it doesn’t partition blocks across multiple
storage devices.

A cheap-and-lazy server may be viewed as selecting a mapping
from n encoded file blocks to positions on d drives prior to receiv-
ing G. Some of the encoded file blocks might not be stored to drives

4

at all (corresponding to dropping of file blocks), and some might be
duplicated onto multiple drives. When it receives G, server S ap-
plies this mapping to the n constituent blocks.

General adversarial model.
It is also useful to consider a general adversarial model, cast in

an experimental framework. We define the security of our sys-
tem RAFT (t) according to the experiment from Figure 3. We
let O(κ) = {Encode(κ, ·, ·, ·), Map(·, ·, ·), Challenge(·, ·, ·, ·),
Verify(·, ·, ·, ·), Reconstruct(κ, ·, ·)} denote a set of RAFT-function
oracles (some keyed) accessible to S.

Experiment Exp
RAFT (t)
S (m, `, t):

κ ← Keygen(1`);
F = {fi}m

i=1 ←R Bm ;
G = {gi}n

i=1 ← Encode(κ, F, t, c);
(d, {Dj}d

j=1) ← SO(κ)(n, G, t, c, “store file”);
Q ← Challenge(n, G, t, c);
(R, T) ← S{Dj}d

j=1(Q, “compute response”);
if AccS and NotFTS

then output 1,
else output 0

Figure 3: Security experiment

We denote by AccS the event that Verify(G, Q, R, T) = 1 in
a given run of Exp

RAFT (t)
S (m, `, t), i.e., that the client / verifier

accepts the response of S. We denote by NotFTS the event that
there exists {Dij}d−t

j=1 ⊆ {Dj}d
j=1 s.t.

Reconstruct(κ, |{Dij}d−t
j=1|, {Dij}d−t

j=1) 6= F,

i.e., that the allocation of blocks selected by S in the experimental
run is not t-fault tolerant.

We define Adv
RAFT (t)
S (m, `, t) = Pr[Exp

RAFT (t)
S (m, `, t) = 1]

= Pr[AccS and NotFTS].
We define the completeness ofRAFT (t) as CompRAFT (t)(m, `,

t) = Pr[AccS and ¬NotFTS] over executions of honest S (a server
that always respects the protocol specification) in Exp

RAFT (t)
S (m, `, t).

Our general definition here is, in fact, a little too general for prac-
tical purposes. As we now explain, there is no good RAFT for a
fully malicious S. That is why we restrict our attention to cheap-
and-lazy S, and later, in Section 7, briefly consider a “rational” S .

Why we exclude malicious servers.
A malicious or fully Byzantine server S is one that may expend

arbitrarily large resources and manipulate and store G in an arbi-
trary manner. Its goal is to achieve ≤ t − 1 fault tolerance for F
while convincing the client with high probability that F enjoys full
t fault tolerance.

We do not consider malicious servers because there is no effi-
cient protocol to detect them. A malicious server can convert any
t-fault-tolerant file placement into a 0-fault-tolerant file placement
very simply. The server randomly selects an encryption key λ, and
encrypts every stored file block under λ. S then adds a new drive
and stores λ on it. To reply to a challenge, S retrieves λ and de-
crypts any file blocks in its response. If the drive containing λ fails,
of course, the file F will be lost. There is no efficient protocol
that distinguishes between the two file placements, as they result in
nearly equivalent block read times.2

2The need to pull λ from the additional drive may slightly skew the
response time of S when first challenged by the client. This skew

3.5 Problem Instances
A RAFT problem instance comprises a client model, an adver-

sarial model, and drive and network models. In what follows, we
propose RAFT designs in an incremental manner, starting with a
very simple problem instance—a cheap-and-lazy adversarial model
and simplistic drive and network models. After experimentally
exploring more realistic network and drive models, we propose a
more complex RAFT. We then consider a more powerful (“ratio-
nal”) adversary and further refinements to our RAFT scheme.

4. THE BASIC RAFT PROTOCOL
In this section, we construct a simple RAFT system resilient

against the cheap-and-lazy adversary. We consider very simple disk
and network models. While the protocol presented in this section
is mostly of theoretical interest, it offers a conceptual framework
for later, more sophisticated RAFTs.

We consider the following problem instance:

Client model: Unkeyed and layout-specified.

Adversarial model: The server is cheap-and-lazy.

Drive model: Time to read a block of fixed length ` from disk is
constant and denoted by τ`.

Network model: The latency between client and server (denoted
L) is constant in time and network bandwidth is unlimited.

4.1 Scheme Description
To review: Our RAFT construction encodes the entire m-block

file F with an erasure code that tolerates a certain fraction of block
losses. The client then spreads the encoded file blocks evenly on c
drives and specifies the layout. To determine that the server respects
the layout, the client requests c blocks of the file in a challenge, one
from each drive. The server should be able to access the blocks in
parallel from c drives, and respond to a query in time close to τ`+L.

If the server answers most queries correctly and promptly, then
blocks are spread out on disks almost evenly. A rigorous formal-
ization of this idea leads to a bound on the fraction of file blocks
that are stored on any t server drives. If the parameters of the era-
sure code are chosen to tolerate that amount of data loss, then the
scheme is resilient against t drive failures.

To give a formal definition of the construction, we use a max-
imum distance separable (MDS), i.e., optimal erasure code with
encoding and decoding algorithms (ECEnc, ECDec) and expan-
sion rate 1 + α. ECEnc encodes m-block messages into n-block
codewords, with n = m(1 + α). ECDec can recover the original
message given any αm erasures in the codeword.

The scheme is the following:

• Keygen(1`) outputs φ.

• Encode(κ, F = {fi}m
i=1, t, c) outputs G = {gi}n

i=1 with n
a multiple of c and G = ECEnc(F).

• Map(n, t, c) outputs a balanced placement {Cj}c
j=1, with

|Cj | = n/c. In addition ∪c
j=1Cj = {1, . . . , n}, so conse-

quently Ci ∩ Cj = φ, ∀i 6= j.

• Challenge(n, G, t, c) outputs Q = {i1, . . . , ic} consisting
of c block indices, each ij chosen uniformly at random from
Cj , for j ∈ {1, . . . , c}.

• Response(Q) outputs the response R consisting of the c file
blocks specified by Q, and the timing T measured by the
client.

is modest in realistic settings. And once read, λ is available for any
additional challenges.

5

• Verify(G, Q, R, T) performs two checks. First, it checks
correctness of blocks returned in R using the file stored lo-
cally by the client. Second, the client also checks the prompt-
ness of the reply. If the server replies within an interval
τ` + L, the client outputs 1.

• Reconstruct(κ, r, {g∗i }r
i=1) outputs the decoding of the file

blocks retained by S (after a possible drive failure) under the
erasure code: ECDec({g∗i }r

i=1) for r ≥ m, and⊥ if r < m.

4.2 Security Analysis
We start by computing Pr[AccS] and Pr[NotFTS] for an honest

server. Then we turn our attention to bounding the advantage of a
cheap-and-lazy server.

LEMMA 1. For an honest server, Pr[AccS] = 1.

PROOF. An honest server respects the layout specified by the
client, and can answer all queries in time τ` + L.

LEMMA 2. If α ≥ t/(c − t), then Pr[NotFTS] = 0 for an
honest server.

PROOF. An honest server stores the file blocks to disks deter-
ministically, as specified by the protocol. Then any set of t drives
stores tn/c blocks. From the restriction on α, it follows that any t
drives store at most αm blocks, and thus the file can be recovered
from the remaining c− t drives.

LEMMA 3. Denote by εS the "double-read" probability that the
cheap-and-lazy server S cannot answer a c-block challenge by per-
forming single block reads across all its drives. For fixed c, t and
α with α ≥ t/(c− t), if

εS ≤ B(c, t, α) =
α(c− t)− t

(1 + α)(c− t)
,

then Pr[NotFTS] = 0.

Our timing assumptions (constant network latency and constant
block read time) imply that εS is equal to the probability that the
server does not answer c-block challenges correctly and promptly,
i.e., εS = 1− Pr[AccS].

PROOF. The server might use a different placement than the one
specified by Map; the placement can be unbalanced, and encoded
file blocks can be duplicated or not stored at all. Our goal is to
show that the server stores a sufficient number of blocks on any
d − t drives. Let X be a fixed set of t out of the d server drives.
Let Y be the remaining d − t drives and denote by δ the fraction
of encoded file blocks stored on drives in Y . We compute a lower
bound on δ.

For a query Q consisting of c encoded file block indices, let δQ

denote the fraction of encoded file blocks indexed by Q stored on
drives in Y . Let Q be the query space consisting of queries com-
puted by Challenge. Since every block index is covered an equal
number of times by queries in Q, if we consider δQ a random vari-
able with all queries in Q equally likely, it follows that E[δQ] = δ.

Consider a query Q randomly chosen from Q. With probability
1− εS , the server can correctly answer query Q by performing sin-
gle reads across all its drives. Since S satisfies the block oblivious-
ness and block atomicity assumptions, S does not computationally
process read blocks. This means that at most t out of the c blocks
indexed by Q are stored on drives in X . Or, equivalently, at least
c − t encoded file blocks indexed by Q are stored on drives in Y .

We can infer that for queries that succeed, δQ ≥ (c − t)/c. This
yields the lower bound δ = E[δQ] ≥ (1− εS)(c− t)/c.

From the bound on εS assumed in the statement, we obtain that
δn ≥ m. From the block obliviousness and block atomicity as-
sumptions for S , it follows that drives in Y store at least m encoded
file blocks. We can now easily infer t-fault tolerance: if drives in
X fail, file F can be reconstructed from blocks stored on drives in
Y , for any such Y via ECDec.

Based on the above lemmas, we prove the theorem:

THEOREM 1. For fixed system parameters c, t and α such that
α ≥ t/(c − t) and for constant network latency and constant
block read time, the protocol satisfies the following properties for a
cheap-and-lazy server S:
1. The protocol is complete: CompRAFT (t)(m, `, t) = 1.
2. If S uses d < c drives, Adv

RAFT (t)
S (m, `, t) = 0.

3. If S uses d ≥ c drives, Adv
RAFT (t)
S (m, `, t) ≤ 1−B(c, t, α).

PROOF. 1. Completeness follows from Lemmas 1 and 2.
2. If d < c, assume that S needs to answer query Q consisting

of c blocks. Then S has to read at least two blocks in Q from
the same drive. This results in a timing of the response of at least
2τ` + L. Thus, S is not able to pass the verification algorithm and
its advantage is 0.

3. Lemma 3 states that S satisfies 1 − Pr[AccS] = εS >
B(c, t, α) or Pr[NotFTS] = 0. So, the server’s advantage, which
is defined as Pr[AccS and NotFTS], is at most the minimum
min{Pr[AccS], Pr[NotFTS]} ≤ 1−B(c, t, α).

Multiple-step protocols.
We can make use of standard probability amplification techniques

to further reduce the advantage of a server. For example, we run
multiple steps of the protocol. A step for the client involves send-
ing a c-block challenge, and receiving and verifying the server re-
sponse. We need to ensure that queried blocks are different in all
steps, so that the server cannot reuse the result of a previous step in
successfully answering a query.

We define two queries Q and Q′ to be non-overlapping if Q ∩
Q′ = ∅. To ensure that queries are non-overlapping, the client
running an instance of a multiple-step protocol maintains state and
issues only queries with block indices not used in previous query
steps. We can easily extend the proof of Theorem 1 (3) to show that
a q-step protocol with non-overlapping queries satisfies

Adv
RAFT (t)
S (m, `, t) ≤ (1−B(c, t, α))q

for a server S using d ≥ c drives.

5. NETWORK AND DRIVE TIMING MODEL
In the simple model of Section 4, we assume constant network

latency between the client and server and a constant block-read
time. Consequently, for a given query Q, the response time of the
server (whether honest or adversarial) is deterministic. In prac-
tice, though, network latencies and block read times are variable.
In this section, we present experiments and protocol-design tech-
niques that let us effectively treat network latency as constant and
block-read time as a fixed probability distribution. We also show
how to cast our RAFT protocol as a statistical hypothesis testing
problem, a view that aids analysis of our practical protocol con-
struction in the next section.

6

Figure 4: Ping times between Boston, MA and Santa Clara, CA (left), and between Boston, MA and Shanghai, China (right)

5.1 Network model
We present some experimental data on network latency between

hosts in different geographical locations, and conclude that it ex-
hibits fairly limited variance over time. We discuss approaches to
factoring this variance out of our protocol design. We also show
how to reduce the communication complexity of our protocol—
thereby eliminating network-timing variance due to fluctuations in
network bandwidth.

Network latency model.
To measure network latency over time, we ping two hosts (one

in Santa Clara, MA, USA and one in Shanghai, China) from our
Boston, MA, USA location during a one week interval in March
2010. Figure 4 shows the ping times for the one week interval, as
well as cutoffs for various percentages of the data. The y-axis is
presented in log-scale.

The ping times to Santa Clara during the week in question ranged
from 86 ms to 463 ms. While only 0.1% of measured ping times
come in at the minimum, 65.4% of the readings were 87 ms, and
93.4% of readings were 88 ms or less. The ping-time distribution is
clearly heavy tailed, with 99% of ping times ranging within 10% of
the average. Moreover, spikes in ping times are correlated in time,
and are most likely due to temporary network congestion.

Ping times to Shanghai exhibit more variability across the larger
geographical distance. Round-trip ping times range between 262
ms and 724 ms. The ping time distribution is also heavy tailed,
however, with spikes correlated in time. While daily spikes in la-
tency raise the average slightly, 90% of readings are still less than
278 ms. These spikes materially lengthen the tail of the distribu-
tion, however, as the 99% (433 ms) and 99.9% (530 ms) thresholds
are no longer grouped near the 90% mark, but are instead much
more spread out.

We offer several possible strategies to factor the variability in
network latency out of our protocol design. A simple approach is to
abort the protocol in the few cases where the response time of S ex-
ceeds 110% of the average response time (or another predetermined
threshold). The protocol could be restarted at a later, unpredictable
time. A different approach exploits the temporal and geographical
correlation of ping times. The idea is to estimate network latency
to a particular host by pinging a trusted machine located nearby
geographically. Such measurement of network congestion would
determine whether the route in question is in a stable interval or
an interval of ping-time spiking. To test this idea, we performed

an experiment over the course of a week in April 2010, pinging
two machines in Santa Clara, and two machines in Shanghai simul-
taneously from our Boston machine. We observed that, with rare
exceptions (which we believe to be machine dependent), response
times of machines in the same location (Santa Clara or Shanghai)
exhibited nearly identical ping times.

A more general and robust approach, given a trusted measure-
ment of the network latency over time between two hosts, is to
consider a response valid if it arrives within the maximum charac-
terized network latency. We could then adopt the bounding assump-
tion that the difference between minimum and maximum network
latency (377 ms for Santa Clara, and 462ms for Shanghai) is “free”
time for an adversarial server. That is, during a period of low la-
tency, the adversary might simulate high latency, using the delay to
cheat by prefetching file blocks from disk into cache. This strat-
egy would help the server respond to subsequent protocol queries
faster, and help conceal poor file-block placement. We quantify the
effect of such file-block prefetching in Appendix A.

Limited network bandwidth.
In the basic protocol from Section 4, challenged blocks are re-

turned to the client as part of the server’s response. To minimize
the bandwidth used in the protocol, the server can simply apply a
cryptographically strong hash to its response blocks together with
a nonce supplied by the client, and return the resulting digest. The
client can still verify the response, by recomputing the hash value
locally and comparing it with the response received from the server.

5.2 Drive model
We now look to build a model for the timing characteristics of

magnetic hard drives. While block read times exhibit high variabil-
ity due to both physical factors and prefetching mechanisms, we
show that for a judicious choice of block size (64KB on a typical
drive), read times adhere to a stable probability distribution. This
observation yields a practical drive model for RAFT.

Drive characteristics.
Magnetic hard drives are complex mechanical devices consisting

of multiple platters rotating on a central spindle at speeds of up to
15000 RPM for high-end drives today. The data is written and read
from each platter with the help of a disk head sensing magnetic
flux variation on the platter’s surface. Each platter stores data in
a series of concentric circles, called tracks, divided further into a

7

 0

 150

 300

 450

 600

 750

 900

51
2B

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

1M
B

T
im

e
(m

s)

Block Size

Time to Read 50 Random Samples

Figure 5: Read time for 50 random blocks

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

99% 99.9% 99.99%

P
ro

ba
bi

lit
y

Time (ms)

Read Time Distribution

Figure 6: Read time distribution for 64KB blocks

set of fixed-size (512 byte) sectors. Outer tracks store more sectors
than inner tracks, and have higher associated data transfer rates.

To read or write to a particular disk sector, the drive must first
perform a seek, meaning that it positions the head on the right track
and sector within the track. Disk manufacturers report average seek
times on the order of 2 ms to 15 ms in today’s drives. Actual
seek times, however, are highly dependent on patterns of disk head
movement. For instance, to read file blocks laid out in sequence on
disk, only one seek is required: That for the sector associated with
the first block; subsequent reads involve minimal head movement.
In constrast, random block accesses incur a highly variable seek
time, a fact we exploit for our RAFT construction.

After the head is positioned on the desired sector, the actual data
transfer is performed. The data transfer rate (or throughput) de-
pends on several factors, but is on the order of 100MB per second
for high-end drives today. The disk controller maintains an inter-
nal cache and implements some complex caching and prefetching
policies. As drive manufacturers give no clear specifications of
these policies, it is difficult to build general data access models for
drives [20].

The numbers we present in this paper are derived from exper-
iments performed on a Seagate Cheetah 15K.5 SAS drive, model
ST3146855SS, with Red Hat Enterprise Linux WS v5.3 x86_64 as
the operating system. The drive rotates at 15,000 RPMs and has
an average read seek time of 3.5 ms, with an expected 6.8 ms full
stroke read time. The manufacturer reports sustainable throughput
ranging from 73MB/s to 125 MB/s. The drive has a 16MB buffer
which holds recent data pulled from disk, as well as buffered data
to be written to the drive. We consistently purge both this buffer
and system memory between tests.

Our experimental results are valid for this particular drive model,
but we expect that similar hard drives exhibit similar characteris-
tics. As we note, however, use of our RAFT in practice would re-
quire the cloud provider to make available a complete specification
of its drives, perhaps as part of its SLA.

Modeling disk-access time.
Our basic RAFT protocol is designed for blocks of fixed-size,

and assumes that block read time is constant. In reality, though
block read times are highly variable, and depend on both physical
file layout and drive-read history. Two complications are particu-
larly salient: (1) Throughput is highly dependent on the absolute
physical position of file blocks on disk; in fact, outer tracks exhibit
up to 30% higher transfer rates than inner tracks [19] and (2) The
transfer rate for a series of file blocks depends upon their relative

position; reading of sequentially positioned file blocks requires no
seek, and is hence much faster than for scattered blocks.

We are able, however, to eliminate both of these sources of read-
time variation from our RAFT protocol. The key idea is to render
seek time the dominant factor in a block access time. We accom-
plish this in two ways: (1) We read small blocks, so that seek time
dominates read time and (2) We access a random pattern of file
blocks, to force the drive to perform a seek of comparable diffi-
culty for each block.

The minimum block size supported by our drive (and most drives)
is 512 bytes, the size of a disk sector. However, as Figure 5 shows,
the time to sample a fixed number of random blocks (50 in the
graph) from a 2GB file is roughly constant for blocks ranging from
512 bytes to 64KB. Figure 5 shows the total time to access 50 ran-
dom blocks from a 2GB file, averaged over 100 runs. The graph
also represents observed minimum and maximum values for the
100 runs. We suspect that this behavior is due to prefetching at
both the OS and hard drive level. Riedel et al. also observe in their
study [19] that the OS issues requests to disks for blocks of logical
size 64KB, and there is no noticeable difference in the time to read
blocks up to 64KB.

For our purposes, therefore, a remote server can read 64KB ran-
dom block at about the same speed as 512 byte blocks. If we were
to sample blocks smaller than 64KB in our RAFT protocol, we
would give an advantage to the server, in that it could prefetch
some additional file blocks essentially for free. For this reason, we
choose to use 64KB blocks in our practical protocol instantiation.

Figure 6 depicts the read time distribution for a random 64KB
block chosen from a 2GB file. To generate this distribution, 250
random samples were taken from a 2GB file. The read time for
each request was recorded. This was repeated across 5 different
2GB files, after which the system memory and drive buffer were
cleaned. The entire process was repeated 100 times. Outliers (runs
which exceed 125% of average and contain several sequential reads
an order of magnitude larger than average, likely due to drive con-
tention) were then removed.

Read times for blocks of this size are dominated by seek time
and not affected by physical placement on disk. We confirmed this
experimentally by sampling from many files at different locations
on disk. Average read times between files at different locations
differed by less than 10%.

While the seek time average for a single block is around 7 ms, the
distribution exhibits a very long tail, with values as large as 51 ms.
(We truncate the graph at 30 ms for legibility.) Later, in Section 6,
we modify our RAFT to smooth out seek-time variance. The idea

8

is to sample (seek) many blocks in succession.

5.3 Statistical framework
The nub of our RAFT is that the client tries, by measuring the

timing of a response, to distinguish between an honest server and
a cheap-and-lazy adversary who may not be t fault-tolerant. It is
helpful to model this measurement as a statistical hypothesis testing
problem for the client. The client sends a challenge Q and measures
the timing of the server’s response T .

Let Ds be a random variable denoting the time for the server to
answer a query by performing single block reads across its drives.
Let Dd be the time for the server to answer a query by performing a
double block read on at least one drive. Let 1− ε be the probability
that the server can answer a query with only single block reads on
its drives. Then D(ε) = (1 − ε)Ds + εDd is the random variable
representing the disk access time to answer a random query.

For constant network latency L, the timing of a response follows
a distribution T (ε) = D(ε) + L. For an honest server the timing
is distributed according to T (ε = 0). Let B = B(c, t, α) be the
bound on ε in Lemma 3; only for ε ≤ B is a cheap-and-lazy server
guaranteed to be t fault-tolerant. So, the client needs to distinguish
whether the timing of the server’s response is an instance of T (ε =
0) (honest server) or T (ε > B) (a cheap-and-lazy server who may
not be t fault-tolerant).

In this statistical hypothesis-testing view, a false positive occurs
when the client labels an honest server as adversarial; the com-
pleteness of the protocol is the probability that this misclassifica-
tion doesn’t take place. A false negative occurs when the client
fails to detect an adversarial server who is not t fault-tolerant; this
probability is the adversarial advantage.

In the practical RAFT protocol we consider below, we craft a
query Q such that the server must read multiple blocks in succes-
sion in order to return its response. Thus, the response time T is an
aggregate across many reads, i.e., the sum of multiple, independent
instances of D(ε) (plus L). The effect of summing independent,
identically distributed random variables in this way is to lower the
variance of T . Reducing the variance of T helps the client separate
the timing distribution of an honest server from that of a cheap-and-
lazy server who may not be t fault-tolerant.

Remark: If the network latency L is variable, then an adversary may
feign a high network latency LA in order to fetch additional blocks.
In this regime, we have a new bound BA(c, t, α); see Appendix
A. The client then needs to distinguish T (ε = 0) from TA(ε >
BA) = D(ε > BA) + LA.

6. PRACTICAL RAFT PROTOCOL
In this section, we propose a practical variant of the basic RAFT

protocol from Section 4. As discussed in Section 5 the main chal-
lenge in practical settings is the high variability in drive seek time.
(While network latency also exhibits some variability, recall that
in Section 5.1 we proposed a few approaches to handle occasional
spikes.) The key idea in our practical RAFT here is to smooth out
the block access-time variability by requiring the server to access
multiple blocks per drive to respond to a challenge.

In particular, we structure queries here in multiple steps, where
a step consists of a set of file blocks arranged such that an (honest)
server must fetch one block from each drive. We propose in this
section what we call a lock-step protocol for disk-block scheduling.
This lock-step protocol is a non-interactive, multiple-step variant of
the basic RAFT protocol from Section 4. We show experimentally
that with enough steps, the client can with high probability distin-
guish between a correct server and an adversarial one in our statis-

tical framework of Section 5.3. We also discuss practical parameter
settings and erasure-coding choices.

6.1 The lock-step protocol
A naïve approach to implementing a multiple-step protocol with

q steps would be for the client to generate q (non-overlapping) chal-
lenges, each consisting of c block indices, and send all qc distinct
block indices to the server. The problem with this approach is that
it immediately reveals complete information to the server about all
queries. By analogy with job-shop scheduling [17], the server can
then map blocks to drives to shave down its response time. In par-
ticular, it can take advantage of drive efficiencies on reads ordered
by increasing logical block address [23]. Our lock-step technique
reveals query structure incrementally, and thus avoids giving the
server an advantage in read scheduling. Another possible approach
to creating a multi-step query would be for the client to specify
steps interactively, i.e., specify the blocks in step i + 1 when the
server has responded to step i. That would create high round com-
plexity, though. The benefit of our lock-step approach is that it
generates steps unpredictably, but non-interactively.

The lock-step approach works as follows. The client sends an
initial one-step challenge consisting of c blocks, as in the basic
RAFT protocol. As mentioned above, to generate subsequent steps
non-interactively, we use a Fiat-Shamir-like heuristic [8] for signa-
ture schemes: The block indices challenged in the next step depend
on all the block contents retrieved in the current step (a “commit-
ment”). To ensure that block indices retrieved in next step are un-
predictable to the server, we compute them by applying a crypto-
graphically strong hash function to all block contents retrieved in
the current step. The server only sends back to the client the fi-
nal result of the protocol (computed as a cryptographic hash of all
challenged blocks) once the q steps of the protocol are completed.

The lock-step protocol has Keygen, Encode, Map, and Reconstruct
algorithms similar to our basic RAFT. Assume for simplicity that
the logical placement generated by Map in the basic RAFT proto-
col is Cj = {jn/c, jn/c + 1, . . . , jn/c + n/c − 1}. We use c
collision-resistant hash functions that output indices in Cj : hj ∈
{0, 1}∗ → Cj . Let h be a cryptographically secure hash function
with fixed output (e.g., from the SHA family).

The Challenge, Response, and Verify algorithms of the lock-step
protocol with q steps are the following:

- In Challenge(n, G, t, c), the client sends initial challenge Q =
(i11, . . . , i

1
c) with each i1j selected randomly from Cj , for j ∈ {1, . . . , c}.

- Algorithm Response(Q) consists of the following steps:
1. S reads file blocks fi11

, . . . , fi1c
in Q.

2. In each step r = 2, . . . , q, S computes irj ← hj(i
r−1
1 || . . . ||

ir−1
c ||f

ir−1
1

|| . . . ||f
ir−1
c

). If any of the block indices irj have been
challenged in previous steps, S increments irj by one (in a circular
fashion in Cj) until it finds a block index that has not yet been re-
trieved. S schedules blocks fir

j
for retrieval, for all j ∈ {1, . . . , c}.

3. S sends to the client response R = h(fi11
|| . . . ||fi1c

|| . . . ||fi
q
1

|| . . . ||fi
q
c
) and the client measures time T from the moment when

challenge Q was sent.
- In Verify(G, Q, R, T), the client checks first correctness of R

by recomputing the hash of all challenged blocks, and comparing
the result with R. The client also checks the timing of the reply
T , and accepts the response to be prompt if it falls within some
specified time interval (experimental choice of time intervals within
which a response is valid is dependent on drive characteristics and
is discussed in Section 6.2 below).
Security of lock-step protocol. We omit a formal analysis. Briefly,

9

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16 18 20

S
te

ps

Number of Honest Server Drives (c)

Minimum Steps to Ensure Timing Separation

1 ms.
100 ms.
200 ms.
300 ms.
400 ms.

Figure 7: Effect of drives and steps on separation

derivation of challenge values from (assumed random) block con-
tent ensures the unpredictability of challenge elements across steps
in Q. S computes the final challenge result as a cryptographic hash
of all qc file blocks retrieved in all steps. The collision-resistance
of h implies that if this digest is correct, then intermediate results
for all query steps are correct with overwhelming probability.

6.2 Experiments for the lock-step protocol
In this section, we perform experiments to determine the number

of steps needed in the lock-step protocol to distinguish an honest
server using c drives from an adversarial server employing d ≤
c − 1 drives. We show results for a number of drives c ranging
from 2 to 20, as well as detailed experimental data on disk access
distribution for honest and adversarial servers for c = 5 drives.

As described in Section 5.2, we collected over 100,000 samples
of 64KB block reads randomly chosen from a 2GB file stored on
one drive to generate the distribution in Figure 6. From this data,
we now simulate experiments on multiple drives.

In our tests, read time is primarily affected by the distance the
read head has to move. Our test files are all 2GB in size (relatively
small compared to the drive’s capacity), and thus there is limited
head movement between random samples. The first read in any
test, however, results in a potentially large read-head move as the
head may be positioned anywhere on the disk. We account for this
in all our tests by having separate distributions for first reads and all
subsequent reads, both pulled from actual experiments performed
on our test system. Figure 6 is a combination of both distributions,
with 1 in 250 samples being a first read. Due to the larger head
movement, first reads are on average slower than subsequent reads,
but they do not account for a significant portion of the long tail.

Number of steps to ensure timing separation.
The first question we attempted to answer with our simulation

is if we are able to distinguish an honest server from an adversarial
one employing fewer drives based only on disk access time. Is there
a range where this can be done, and how many steps in the lock-step
protocol must we enforce to achieve clear separation? Intuitively,
the necessity for an adversarial server employing d ≤ c− 1 drives
to read at least two blocks from a single drive in each step forces the
adversary to increase its response time when the number of steps
performed in the lock-step protocol increases.

Figure 7 shows, for different separation thresholds (given in mil-
liseconds), the number of steps required in order to ensure that the
honest server’s maximum read time and an adversary’s minimum
read time differ by at least that threshold. The maximum read time

for the honest server using c drives and the minimum time for the
adversarial server using c − 1 drives are computed over 500 sim-
ulated runs. The honest server stores a 2GB file fragment on each
of its c drives, while the adversarial server stores the file on only
c−1 drives, using a balanced allocation across its drives optimized
given the adversary’s knowledge of Map.

The graph shows that the number of steps that need to be per-
formed for a particular separation threshold increases linearly with
the number of drives c used by the honest server. In addition, the
number of steps for a fixed number of drives also increases with
larger separation intervals. To distinguish between an honest server
using 3 drives and an adversarial one with 2 drives at a threshold
of 100ms, the lock-step protocol needs to use less than 50 steps.
On the other hand, for a 400ms separation threshold, the number of
steps increases to 110.

Figure 7 also demonstrates that the protocol scales with the num-
ber of drives, at the expense of performing more steps. For instance,
it is possible to tolerate 400 ms separation (the maximum network
variability we have observed in our experiments from Section 5.1)
and still perfectly distinguish an honest server using 20 drives from
one using only 19 drives in 250 steps.

Detailed experiments for c = 5 drives.
In practice, files are not typically distributed on a large number

of drives (since this would make meta-data management difficult).
In the remaining part of this section, we focus on the practical case
of c = 5 drives and provide more detailed experimental data on
read time distributions for both honest and adversarial servers. As-
suming the storage of a 10GB encoded file, an honest server stores
2GB per drive, while a server using only 4 drives and a balanced al-
location stores 2.5GB per drive. We simulate the adversarial server
from an experimental distribution of read times of 64KB blocks
randomly selected from a 2.5GB file. Again, we collected over
100,000 samples, and removed outliers due to disk contention.

For this case, it is worth further analyzing the effect of the num-
ber of steps in the protocol on the separation achieved between the
honest and adversarial server. Figure 8 shows the difference be-
tween the minimum adversarial read time and the maximum hon-
est server read time (computed over 500 runs). Where the time in
the graph is negative, the adversary using fewer than 5 drives could
potentially convince the client that he is using 5 drives. The aver-
age adversarial read time is always higher than the average honest
read time, but there does exist some overlap in the read access dis-
tributions where false positives are possible for protocols shorter
than 17 steps. Above that point, the two distributions do not over-
lap at all, and in fact using only 50 steps we are able to achieve a
separation of 87ms between the honest server’s worst case, and the
adversary’s best case.

We plot in Figure 9 the actual read time distributions for both
honest and adversarial servers for 50 steps in the lock-step proto-
col. We notice that the average response time for the honest server
is at around 450ms, while the average response time for the adver-
sarial server increases at 650ms. Both distributions can be fitted to
Gaussian distributions with standard deviations of roughly 25ms.

More powerful adversaries.
In the experiments done so far we have considered an “expected”

adversary, one that uses d = c − 1 drives, but allocates file blocks
on disks evenly. Such an adversary still needs to perform a double
read on at least one drive in each step of the protocol. For this
adversary, we have naturally assumed that the block that is a double
read in each step is stored equally likely on each of the c− 1 server
drives, and is at a random position in the file. As such, our expected

10

-25

 0

 25

 50

 75

 100

1 10 20 30 40 50

87 ms.

17
T

im
e

(m
s)

Steps

Difference Between Honest Max and Adversary Min Read Times

+0.1 ms.

Figure 8: Separation as number of steps increases

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

400 450 500 550 600 650 700 750

P
ro

ba
bi

lit
y

Time (ms)

50 Step Response Time Distribution
Honest Max Adversary Min

87 ms.

Honest (5 Drives)
Adversary (4 Drives)

Figure 9: Distribution of 500 simulated 50-step random reads

adversary has limited ability to select the drive performing a double
read, or the location of the double read on the drive.

One could imagine a more powerful (or perhaps just lucky) ad-
versary that has some control over the drive performing a double
read, and the location of the double-read block on the drive. As
block read times are variable, the adversary would ideally like to
perform the double read on the drive that completes the first block
read fastest (in order to minimize its total response time). Another
advantageous scenario for the adversary is one in which the second
block that constitutes a double read is sequentially located after the
block read previously on the same disk. This may enable the adver-
sary to take advantage of some pre-fetching done by the drive and
OS and read the second block much faster.

We show in Figure 10 average response times for an honest server
with c = 5 drives, as well as four adversarial servers using d =
4 drives. The adversaries from right to left in the graph exhibit
the following behaviors: the expected adversary; an adversary for
which double-reads always take place on the drive that first com-
pletes the first block read in each step of the protocol; an adversary
for which the double-read block is always located sequentially after
the first block; and the “luckiest” adversary, for which the double
read always occurs on the fastest drive sequentially following the
first read. Here the bars are the average read times for 250 steps,
with error bars indicating the maximum and minimum total read
times taken over 100 simulations. To simulate the last two adver-
saries, we recorded the time to read the 64KB block sequentially
following a random 64KB block read from a 2.5GB file and sam-
ple from that distribution to model an adversary who can enforce
double reads to be sequential.

Figure 10 shows that even if an adversarial S is lucky in every
round of the protocol (i.e., is able to read two blocks in sequence
from the drive that returns the first block fastest), it is still distin-
guishable from an honest S in a 250-step protocol. Note that for
the expected adversary, the second read will occur on the fastest
drive 1/4 of the time. Sequentiality in block access is nonetheless
very unlikely: It would require that a file block in the next chal-
lenge step be located on disk in very close proximity to the current
drive head position. (An adversarial server would need a very high
degree of block redundancy to achieve such sequential block access
with non-negligible probability.)

6.3 Parameters for detecting more powerful
adversaries

As we have seen in the previous section, the client can efficiently
distinguish between an honest server and an adversarial server us-

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

Honest Worst Case Expected Case

T
im

e
(m

s)

Distinguishing Any Adversary in 250 Steps

Honest
(5 Drives)

Adversarial
(4 Drives)

Double Read Always Occurs on Fastest Drive
% Double Read Is Always Sequential

#,% % #

Figure 10: Comparing several adversarial classes at 250 steps.

ing d ≤ c−1 drives (for instance, for c = 5, the lock-step protocol
needs about 50 steps, taking on average 450ms in disk access time).
Here we discuss the additional protocol cost incurred for detecting
more sophisticated adversaries, in particular adversaries that use
d ≥ c drives, but are not fault-tolerant (by employing an uneven
placement, for instance).

Figure 9 shows that, for c = 5, the aggregate response time of 50
steps of single reads across each drive is distributed with mean ≈
450ms and standard deviation≈ 25ms, and the aggregate response
time of 50 steps of at least one drive performing a double read is
distributed with mean ≈ 650ms and standard deviation ≈ 25ms.
So, for double-read probability ε, the aggregate response time of 50
steps, denoted by random variable T50(ε), has mean E[T50(ε)] ≈
(1−ε)·450+ε·650 = 450+ε·200 and deviation σ(T50(ε)) ≈ 25.

Suppose that we want to tolerate t = 1 drive failures, and sup-
pose that we allow an expansion rate 1 + α = 1.75. For these
parameters the bound in Lemma 3 yields B(5, 1, 0.75) = 2/7. As
explained in Section 5.3, we want to distinguish whether ε = 0
or ε ≥ 2/7 in order to determine if the server is 1 fault-tolerant.
Suppose we use q = 50 · s steps in our lock-step protocol. Then
E[T50s(ε)] ≈ (450 + 200ε) · s and σ(T50s(ε)) ≈ 25

√
s. In order

to separate T50s(ε = 0) from T50s(ε = 2/7), we could separate
their means by 4 standard deviations such that their tails cross at
about 2 standard deviations from each mean. By the law of large
numbers, the aggregate response time of 50 · s steps is approxi-
mated by a normal distribution. Since the cumulative probability

11

of a normal distributed tail starting at 2σ has probability ≈ 0.022,
both the false positive and false negative rates are ≈ 2.2%.

Requiring 4 standard deviations separation yields the inequality
200 · 2/7 · s ≥ 4 · 25

√
s, that is s ≥ 3.06. We need q = 154

steps, which take about 1.47 seconds disk access time. Given c,
t, and bounds on the false positive and negative rates, the example
shows a tradeoff between the number of steps (q) in the challenge-
response protocol and additional storage overhead (α); the lock-
step protocol is faster for an erasure code with higher rate.

6.4 Efficient Erasure Coding
We have discussed parameter choices required for the lock-step

protocol to distinguish honest servers from adversarial ones. Here
we briefly discuss the practicality of the encoding algorithm in our
RAFT protocol. The most practical erasure codes in use today
are Raptor codes [22]. We performed some experiments with a
licensed Raptor code package from Digital Fountain. We observe
encoding speeds on the order of several dozen seconds for a 2GB
file, using a systematic encoding. (Given the absence of officially
published performance figures, we avoid giving precise ones here.)
In constrast, whole-file Reed-Solomon encoding is not practical for
files of that size.

With the current implementation of Raptor codes, there are some
restrictions on symbol sizes and message sizes that can be encoded
at once. For 64KB symbol size, we are able to encode files of
size up to 3.4GB (we have used a 2GB file in our experiments).
The code rate α needs to satisfy α ≥ t/(c − t), from our security
analysis (Theorem 1). For instance, for a placement using c = 5
drives, tolerating t = 1 failures, this implies that the code rate
should be at least 0.25. Raptor codes have the advantage of being
able to generate an arbitrarily large number of parity blocks. We
can generate an encoding with rate 30% at half of the throughput
of generating an encoding with rate 1%.

7. RATIONAL SERVERS
The cheap-and-lazy server model reflects the behavior of an or-

dinary substandard storage provider. As already noted, an efficient
RAFT is not feasible for a fully malicious provider. As we now
explain, though, RAFTs can support an adversarial server model
that is stronger than cheap-and-lazy, but not fully Byzantine. We
call such a server rational. We show some RAFT constructions for
rational servers that are efficient, though not as practical as those
for cheap-and-lazy servers.

A rational server S aims to constrain within some bound the
drive and storage resources it devotes to file F . Refer again to Ex-
periment Exp

RAFT (t)
S (m, `, t) in Figure 3. Let ρ(d, {Dj}d

j=1) be
a cost function on a file placement (d, {Dj}d

j=1) generated by S in
this experiment. This cost function ρ may take into account d, the
total number of allocated drives, and |Dj |, the amount of storage
on drive j. Let R denote an upper bound on ρ. We say that S is
(ρ, R)-constrained if it satisfies ρ(d, {Dj}d

j=1) ≤ R for all block
placements it generates. Roughly speaking, within constraint R, a
rational server S seeks to maximize Pr[AccS]. Subject to maxi-
mized Pr[AccS], S then seeks to maximize the fault-tolerance of
F . Formally, we give the following definition:

DEFINITION 1. Let p be the maximum probability Pr[AccS]
that a (ρ, R)-constrained server S can possibly achieve. A (ρ, R)-
constrained server S is rational if it minimizes Pr[NotFTS] among
all (ρ, R)-constrained servers S ′ with Pr[AccS′] = p.

A rational adversary can perform arbitrary computations over file
blocks. It is more powerful than a cheap-and-lazy adversary. In

fact, a rational adversary can successfully cheat against our RAFT
scheme above. The following, simple example illustrates how a
rational S can exploit erasure-code compression, achieving t = 0,
i.e., no fault-tolerance, but successfully answering all challenges.

EXAMPLE 1. Suppose that S aims to reduce its storage costs,
i.e., minimize ρ(d, {Dj}d

j=1) =
∑

j |Dj |. Consider a RAFT (t)

with (systematic) encoding G, i.e., with {g1, . . . , gm} = {f1, . . . ,
fm} = F and parity blocks gm+1, . . . , gn. S can store {fj}m

j=1

individually across m disks {Dj}m
j=1 and discard all parity blocks.

To reply to an RAFT challenge, S retrieves every block of F (one
per disk) and recomputes parity blocks on the fly as needed.

7.1 Incompressible erasure codes
This example illustrates why, to achieve security against ratio-

nal adversaries, we introduce the concept of incompressible erasure
codes. Intuitively, an incompressible file encoding / codeword G is
such that it is infeasible for a server to compute a compact represen-
tation G′. I.e., S cannot feasibly compute G′ such that |G′| < |G|
and S can compute any block gi ∈ G from G′. Viewed another
way, an incompressible erasure code is one that lacks structure,
e.g., linearity, that S can exploit to save space.3

Suppose that S is trying to create a compressed representation
G′ of G. Let u = |G′| < n = |G| denote the length of G′. Given
a bounded number of drives, a server S that has stored G′ can, in
any given timestep, access only a bounded number of file blocks /
symbols of G′. We capture this resource bound by defining r < n
as the maximum number of symbols in G′ that S can access to
recompute any symbol / block gi of G.

Formally, let IEC = (ECEnc : SK × Bm → Bn, ECDec :
PK×Bn → Bm) be an (n, m)-erasure code over B. Let (sk, pk)
∈ (SK, PK) ← Keygen(1`) be an associated key-generation al-
gorithm with security parameter `. Let A = (A1, A

(r)
2) be a mem-

oryless adversary with running time polynomially bounded in `.
Here r denotes the maximum number of symbols / blocks that A2

can access over G′.

Experiment ExpIEC
A (m, n, `; u, r):

(sk, pk) ← Keygen(1`);
F = {fi}m

i=1
R← Bm ;

G = {gi}n
i=1 ← ECEnc(sk, F);

G′ ∈ Bu ← A1(pk, G);
i

R← Zn;
g ← A

(r)
2 (pk, G′);

if g = gi

then output 1,
else output 0

Figure 11: IEC Security Experiment

Referring to Figure 11, we have the following definition:

DEFINITION 2. Let AdvIEC
A (m, n, `, u, r) = Pr[ExpIEC

A (m,
n, `; u, r) = 1]− u/n. We say that IEC is a (u, r)-incompressible
code (for u < n, r < n) if there exists no A such that AdvIEC

A (m, n,
`; u, r) is non-negligible.

In Appendix B, we prove the following theorem (as a corollary
of a result on arbitrary (u, d)-incompressible IECs). It shows that
with a slightly modified query structure and given an IEC, a variant
RAFT ′(t) of our basic scheme is secure against rational adver-
saries:
3Incompressibility is loosely the inverse of local decodability [15].

12

THEOREM 2. ForRAFT ′(t) using a (n−1, d)-incompressible
IEC, if a (ρ, R)-constrained rational adversary S with d drives has
double-read probability ε ≤ B(c, t, α), then Pr[NotFTS] = 0.

7.2 Incompressible erasure-code constructions
We propose three constructions for incompressible erasure codes,

with various tradeoffs among security, computational efficiency,
and key-management requirements:

Keyed RAFTs Adopting the approach of [11, 14], it is possible
to encrypt the parity blocks of G (for a systematic IEC) or all of
G to conceal the IEC’s structure from A. (In a RAFT, the client
would compute Encode, encrypting blocks individually under a
symmetric key κ—in practice using, e.g., a tweakable cipher mode
[12].) Under standard indistinguishability assumptions between
encrypted and random blocks, this transformation implies (u, r)-
incompressibility for any valid u, r < n. While efficient, this ap-
proach has a drawback: Fault recovery requires use of κ, i.e., client
involvement.

Digital signature with message recoverability A digital signa-
ture σ = Σsk[m] with message recoverability on a message m has
the property that if σ verifies correctly, then m can be extracted
from σ. (See, e.g., [2] for PSS-R, a popular choice based on RSA.)
We conjecture that an IEC such that g′i = Σsk[gi] for a message-
recoverable digital signature scheme implies (u, r)-incompressibility
for any valid u, r < n. (Formal proof of reduction to signature un-
forgeability is an open problem.)

This RAFT construction requires use of private key sk to com-
pute encoding G or to reconstruct G after a data loss. Importantly,
though, it doesn’t require use of sk to construct F itself after a data
loss. In other words, encoding is keyed, but decoding is keyless.

The construction is somewhat subtle. A scheme that appends
signatures that lack message recovery does not yield an incom-
pressible code: A can throw away parity blocks and recompute
them as needed provided that it retains all signatures. Similarly, ap-
plying signatures only to parity blocks doesn’t work: A can throw
away message blocks and recompute them on the fly.4

Keyless PRPs A pseudorandom permutation (PRP) is a crypto-
graphically secure, keyed bijection PRPκ : {0, 1}` → {0, 1}`. It
may be modeled ideally as a random oracle which, for every key κ,
implements a function selected uniformly at random from the full
space of valid bijections on {0, 1}`. PRPs capture the desired prop-
erties of block ciphers. Constructions that extend block ciphers for
operation over wide/multiple blocks are possible, as in, e.g., [12].

We propose the use of a keyless PRP to construct an incompress-
ible code. In a keyless PRP, κ is selected uniformly at random (on a
one-time or per-encoding basis) and published, i.e., revealed to S.

Suppose that G represents an erasure-coding of F . Let PRPκ :
Br+1 → Br+1 be a PRP that operates over r + 1 file blocks.
Let us assume that (r + 1) | (n −m), i.e., parity blocks in G may
be partitioned into clusters of r + 1 blocks. To convert G into an
incompressible encoding G∗, we apply PRPκ to each such cluster.

Observe that in the random oracle model, any query to PRPκ

requires that A input r + 1 file blocks. Hence to compute any
missing block in G∗, it is necessary for A to read at least r + 1
symbols. We conjecture that the resulting erasure code is (u, r)-
incompressible for any u < n.

4Message-recoverable signatures are longer than their associated
messages. An open problem is whether, for random F , there is
some good message-recoverable signature scheme over blocks of G
that has no message expansion. Signatures would be existentially
forgeable, but checkable against the client copy of F .

By choosing r ≥ d for any plausible number of drives d used by
S , i.e., by choosing a PRP larger than the drive parallelism available
to S, we achieve an encoding that S can’t feasibly compress.

Use of a PRP to construct G∗ introduces a brittleness not present
in the erasure code for G: If any block in G∗ is erased, all other
blocks in the same cluster become unrecoverable. Thankfully, drive
failures are burst errors; they constrain the error space. By placing
each cluster of G∗ on a single drive, we ensure that G∗ has the
same fault tolerance as G.

We leave as an intriguing open problem the incompressibility of
MDS erasure codes, is it possible to beat the bound of Appendix C?
We also leave as an open problem the question of incompressibility
for practical erasure codes such as Raptor codes.

8. CONCLUSION
We have shown how to bring a degree of transparency to the

abstraction layer of cloud systems in order to reliably detect drive-
failure vulnerabilities in stored files. Through theory and experi-
mentation, we demonstrated the effectiveness of our Remote As-
sessment of Fault Tolerance (RAFT), a scheme that tests fault tol-
erance by measuring drive response times. With careful parameter-
ization, a RAFT can handle the real-world challenges of network
and drive operation latency for realistic file sizes and drive-cluster
sizes.

With their unusual combination of coding theory, cryptography,
and hardware profiling, we feel that RAFTs offer an intriguing new
slant on system assurance. RAFT design also prompts interest-
ing new research questions, such as the modeling of adversaries in
cloud storage systems, the construction of provable and efficient
incompressible erasure codes, and so forth.

While a RAFT is attractive as a standalone tool or as a com-
ponent in new storage-system designs, we have not explored the
details of its integration into existing storage architectures. Cloud
systems include layers of middleware and hardware controllers that
pose their own delicate issues. Additionally, our RAFT system
works most conveniently for a storage system dedicated to a single
cloud tenant: The need for a brief system interruption to execute a
RAFT could be inconvenient for multi-tenant storage devices. We
leave the challenges of such scenarios to future work.

Acknowledgments
We wish to extend our thanks to Mike Luby and Amin Shokrollahi
for their help in procuring a Raptor Code software package for our
experiments. Thanks as well to Burt Kaliski for his comments on an
early draft of this paper, and to Erik Riedel for clearing up questions
about hard drive operation.

9. REFERENCES
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song. Provable data possession at
untrusted stores. In Proc. ACM CCS, pages 598–609, 2007.

[2] M. Bellare and P. Rogaway. The exact security of digital
signatures: How to sign with RSA and Rabin. In U. Maurer,
editor, Proc. EUROCRYPT ’96, volume 1070 of LNCS,
pages 399–416. Springer-Verlag, 1989.

[3] S. Brands and D. Chaum. Distance-bounding protocols
(extended abstract). In T. Helleseth, editor, Proc.
EUROCRYPT ‘93, pages 344–359. Springer, 1993. LNCS
vol. 765.

[4] J. Cox. T-Mobile, Microsoft tell Sidekick users we ’continue
to do all we can’ to restore data. Network World, October 13,
2009.

13

[5] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR.PDP:
Multiple-replica provable data possession. In Proc. 28th
IEEE ICDCS, 2008.

[6] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability
via hardness amplification. In Proc. TCC, 2009.

[7] C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In E.F. Brickell, editor, Proc. CRYPTO ‘92, pages
139–147. Springer, 1992. LNCS vol. 740.

[8] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Proc.
CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, 1986.

[9] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for
trusted computing. In SOSP, pages 193–206, 2003.

[10] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives
enforcing communication and storage complexity. In
Financial Cryptography, pages 120–135. Springer, 2002.
LNCS vol. 2357.

[11] P. Gopalan, R. J. Lipton, and Y. Z. Ding. Error correction
against computationally bounded adversaries, October 2004.
Manuscript.

[12] S. Halevi and P. Rogaway. A tweakable enciphering mode. In
D. Boneh, editor, Proc. CRYPTO’03, volume 2729 of LNCS,
pages 482–499. Springer, 2003.

[13] A. Juels and J. Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In
Proc. ISOC NDSS, pages 151–165, 1999.

[14] A. Juels and B. Kaliski. PORs–proofs of retrievability for
large files. In Proc. ACM CCS 2007, pages 584–597. ACM,
2007.

[15] J. Katz and L. Trevisan. On the efficiency of local decoding
procedures for error-correcting codes. In Proc. STOC, pages
80–86, 2000.

[16] R. Merkle. A certified digital signature. In Proc. Crypto
1989, volume 435 of LNCS, pages 218–238.
Springer-Verlag, 1989.

[17] J.F. Muth and G.L. Thompson. Industrial scheduling.
Prentice-Hall, 1963.

[18] M. Naor and G. N. Rothblum. The complexity of online
memory checking. In Proc. 46th IEEE FOCS, pages
573–584, 2005.

[19] E. Riedel, C. Van Ingen, and J. Gray. A performance study of
sequential I/O on Windows NT 4.0. Technical Report
MSR-TR-97-34, Microsoft Research, September 1997.

[20] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–29, 1994.

[21] H. Shacham and B. Waters. Compact proofs of retrievability.
In Josef Pieprzyk, editor, Proc. Asiacrypt 2008, volume 5350
of LNCS, pages 90–107. Springer-Verlag, 2008.

[22] A. Shokrollahi. Raptor codes. IEEE Transactions on
Information Theory, 52(6):2551–2567, 2006.

[23] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling
algorithms for modern disk drives. In Proc. ACM Sigmetrics,
pages 241–251, 1994.

APPENDIX
A. ADDITIONAL FETCHING

We consider adversaries who, due to resource constraints, do not
pre-fetch blocks before the protocol starts. However, we may as-
sume that during the duration of the whole protocol an adversary
may fetch additional file blocks into fast access memory such that
blocks corresponding to indices in a query Q that have already been
additionally fetched can be read in negligible time. The server
could also fetch file blocks if we allow for longer response times
to account for variability in network latency, as discussed in Sec-
tion 5.1.

Let Z denote the indices of the fetched blocks. Notice that blocks
in Z are fetched from idle drives in addition to the blocks that are
needed to answer queries. In our lock-step protocol from Section 6,
queries cannot be predicted ahead of time. For this reason we may
assume that Z is chosen independent from each of the protocol’s
challenge queries.

Let z be defined as the number of pre-fetched blocks in Z that are
at most stored in any subset of t drives. Let U be the set of indices
of encoded file blocks that are stored in a fixed set of d− t out of d
server drives, and let U∗ be the set of indices of encoded file blocks
that are stored in the remaining t drives (notice that U ∩ U∗ may
not be empty if blocks are duplicated across drives). Then, by the
definition of z, |Z \ U | ≤ |Z ∩ U∗| ≤ z.

LEMMA 4 (FETCHING). Let α̂ be defined by the relation n =
(1 + α̂)(m + z). If

εS ≤ B(c, t, α̂) =
α̂(c− t)− t

(1 + α̂)(c− t)
,

then Pr[NotFTS] = 0.

We conclude that additional fetching can be compensated for by
increasing the redundancy of the erasure code to incorporate α̂.

PROOF. As in the proof of Lemma 3, we denote by X a fixed
set of t drives. Let Y be the d − t drives of S not in set X and
let U be the set of indices of file blocks stored on drives in Y . Let
β = |U |/n be the fraction of file blocks that are stored on drives in
Y .

Let γ = |U ∪ Z|/n be the fraction of file blocks in U ∪ Z.
With a similar argument as in Lemma 3, we can lower bound γ ≥
(1− εS)(c− t)/c.

Since |U | = |U ∪ Z| − |Z \ U | ≥ |U ∪ Z| − z, fraction β ≥
γ − (z/n). Together with the lower bound on γ this shows that: if
(1− εS)(c− t)/c ≥ (m + z)/n (which is equivalent to the bound
on εS as stated in the lemma), then β ≥ m/n, that is, file F can
be reconstructed with the aid of the erasure code from the blocks
stored on drives in Y . Since the bound on εS does not depend on
the allocation of the d− t drives, we conclude that Pr[NotFTS] =
0.

The amount of additional fetching is restricted by the expected
amount of (fast sequential) fetching from each of the server’s drives
during the duration of the whole protocol. In the case of an adver-
sary who does not duplicate blocks across drives, only the drive that
stores a given block can fetch that block. Therefore, z is bounded
by the number of blocks that can be read by t drives during the dura-
tion of the protocol. If both the number of reads during the amount
of extra time acquired by pretending a larger network latency as
well as the number of drives and queries are small compared to the
file size, then α̂ ≈ α and the effect of additional fetching can be
neglected.

14

B. REDUCTION OF RATIONAL TO CHEAP-
AND-LAZY ADVERSARY

In the cheap-and-lazy model we assume that the server stores
only unaltered blocks of the encoded file on disk and does not
computationally process blocks read from disk. In this appendix
we consider servers who may computationally process blocks read
from disk in order to answer queries. We will show how properly
constrained rational adversaries can be reduced to cheap-and-lazy
adversaries in a slight variation of the simple scheme.

The new scheme restricts the query space as follows. During
encoding we select n as a multiple of c, and we construct sets of
encoded file block indices

Ci = {(i− 1)n/c + 1, (i− 1)n/c + 2, . . . , in/c}, 1 ≤ i ≤ c.

We restrict query space Q to the n/c queries

{i, n/c + i, . . . , (c− 1)n/c + i}, 1 ≤ i ≤ n/c.

We notice that queries in Q are disjoint and cover each index ex-
actly once. Challenge queries are uniformly distributed over Q. It
is easy to show that the modified scheme satisfies the same com-
pleteness and advantage as the basic RAFT scheme.

Let {Q1, . . . , Qk} ⊆ Q be the set of queries for which the ad-
versary is able to compute correct answers by performing at most
single block reads across all of its drives. Let Di denote the set
of indices of blocks that the adversary will read from its drives in
order to correctly answer query Qi by only using a single block
read for each drive. An index in Di specifies a drive and the lo-
cation on its disk where the block corresponding to the index is
stored. We notice that the stored blocks can be the result of com-
plex manipulations of encoded file blocks. Also notice that answers
are computed by using at most one block from each drive, which
implies |Di| ≤ d, where d is the number of adversarial drives.

We want to construct a mapping from indices of encoded file
blocks to positions on disks such that a cheap-and-lazy adversary
responds to queries in the same way as the rational adversary would
do. We start by defining

D(x) = Di, for x ∈ Qi.

Since all Qi are disjoint, mapping D is well-defined. Let ∆ =
∪k

i=1Qi be the domain of mapping D. Since |Di| ≤ d,

|D(x)| ≤ d, for x ∈ ∆. (1)

The next lemma, which we prove in Appendix B.2, shows the ex-
istence of a mapping from file block indices to positions on disk.

LEMMA 5 (MAPPING). Let D ∈ ∆ → 2∆, i.e., D maps el-
ements x ∈ ∆ to subsets D(x) ⊆ ∆. We may extend mapping D
to D ∈ 2∆ → 2∆ by defining D(X) = ∪x∈XD(x) for subsets
X ⊆ ∆.

There exist sets Θ ⊆ ∆ and Θ∗ = ∆ \ Θ such that there exists
an injective mapping θ ∈ Θ → D(∆) having the property

θ(x) ∈ D(x), for all x ∈ Θ,

and such that there exists a subset K ⊆ Θ having the property
D(Θ∗) ⊆ D(K) = θ(K) (here θ(K) = {θ(x) : x ∈ K}).

We define a cheap-and-lazy adversary by using mapping θ. En-
coded file blocks with indices in Θ∗ are not stored on its disks at
all, and encoded file blocks with indices x in Θ are stored at the po-
sitions indicated by θ(x). Whenever a query Qi ⊆ Θ is processed,
the cheap-and-lazy adversary reads out and returns the encoded file
blocks at positions indicated by θ(x) for x ∈ Qi. According to the

lemma, θ(x) ∈ D(x) = Di. This shows that the cheap-and-lazy
adversary is able to answer queries, that are subsets of Θ, by ac-
cessing its disks in the same way as the rational adversary would
access its disks.

Let 1− ε be the "single-reads" probability of a query inQ which
the adversarial server is able to answer by performing at most single
block reads across all of its drives. If such a query is a subset of Θ,
then the cheap-and-lazy adversary is also able to provide an answer
by using single block reads across its drives. At most |Θ∗| out of
the n/c possible queries in Q are not a subset of Θ and cannot be
answered at all. We obtain that

1− ε− |Θ∗|c/n

is at least the single-reads probability of a query in Q which the
cheap-and-lazy server is able to answer by performing at most sin-
gle block reads across all of its drives.

We want to estimate |Θ∗|. Let G be the set of encoded file blocks
gx. By using Lemma 5, we define the set of blocks

G′ = {gx : x 6∈ ∆ or x ∈ Θ \K} ∪ { blocks stored in D(K)}.
Let x ∈ K∪Θ∗. Since D(Θ∗) ⊆ D(K), the stored blocks indexed
by D(K) contain the blocks indexed by D(x) which are used to
compute the encoded file block indexed by x. From (1) we infer
that each encoded file block in G can be computed by accessing G′

at most d times. Since θ is injective, |D(K)| = |θ(K)| = |K|,
hence, |G′| = n − |∆| + |Θ \K| + |K| = n − |Θ∗|. Therefore,
if the modified scheme uses a (n− u− 1, d)-incompressible IEC,
then n − |Θ∗| ≥ n − u, and the single-reads probability of the
cheap-and-lazy adversary is at least 1− ε− uc/n.

LEMMA 6 (REDUCTION). Let 1−εS be the single-reads prob-
ability of a server S with d drives for the simple scheme using
the slightly modified query space and using a (n − u − 1, d)-
incompressible IEC. Then, there exists a cheap-and-lazy adversary
S ′, who is restricted by the resources of S and has single-reads
probability 1− εS′ ≥ 1− εS − uc/n.

The reduction leads us to the main theorem on rational adver-
saries:

B.1 Main Result
Before stating the main result on the advantage of rational ad-

versaries, we need the following definition and lemma regarding
resource constraints:

DEFINITION 3. Resource constraint (ρ, R) is µ-differentiable
if |ε0 − ε1| > µ for 1 − εb, b ∈ {0, 1}, defined as the maximal
single-reads probability that can possibly be achieved by a (ρ, R)-
constrained server S with Pr[NotFTS] = b.

LEMMA 7. A (ρ, R)-constrained rational server has single-reads
probability 1−min{ε0, ε1}.

PROOF. Let S be a (ρ, R)-constrained rational adversary with
single-reads probability 1 − εS . Given the constraint (ρ, R), S
maximizes

Pr[AccS] = Pr[AccS |NotFTS]Pr[NotFTS] +

Pr[AccS |¬NotFTS]Pr[¬NotFTS]. (2)

If Pr[¬NotFTS] 6= 0, then S induces a new server S ′, who uses S
in Exp

RAFT (t)

S′ (m, `, t) by asking S to generate a file placement
(d, {Dj}d

j=1) until the event ¬NotFTS is generated. This yields
Pr[AccS′] = Pr[AccS |¬NotFTS]. Since S maximizes Pr[AccS],

15

Pr[AccS |¬NotFTS] = Pr[AccS′] ≤ Pr[AccS]. If Pr[NotFTS] 6=
0, then a similar argument yields Pr[AccS |NotFTS] ≤ Pr[AccS].
Both arguments combined with (2) shows that if Pr[¬NotFTS] 6=
0, then Pr[AccS′] = Pr[AccS |¬NotFTS] = Pr[AccS] together
with Pr[¬NotFTS′] = 1, that is, Pr[NotFTS′] = 0. Since S is ra-
tional, it first maximizes Pr[AccS] and next minimizes Pr[NotFTS].
So, if Pr[¬NotFTS] is not equal to 0, then the existence of S ′
proves Pr[NotFTS] = 0. This shows that Pr[NotFTS] ∈ {0, 1}.
Now the lemma follows from the observation that in our scheme
maximizing Pr[AccS] is equivalent to maximizing the single-reads
probability 1− εS .

Differentiability measures into what extend requiring t fault tol-
erance versus not requiring t fault tolerance affects the maximal
possible single-reads probability. If we assume that resource con-
straints are produced by the environment and not by clever design
of a rational adversary, then we conjecture that it is likely that the
amount of differentiability is not restricted to being very small. Our
main result assumes that the differentiability can be at least uc/n,
which is more likely for small u.

THEOREM 3 (MAIN). In the simple scheme using the slightly
modified query space and using a (n − u − 1, d)-incompressible
IEC, if a uc/n-differentiable (ρ, R)-constrained rational adver-
sary S with d drives has single-reads probability 1− εS such that

εS ≤ α(c− t)− t

(1 + α)(c− t)
− uc

n
,

then Pr[NotFTS] = 0.

PROOF. Lemma 6 states that there exists a cheap-and-lazy ad-
versary S ′ with single-reads probability 1− εS′ ≥ 1− εS −uc/n.
By the bound on εS stated in the theorem, application of Lemma 3
proves Pr[NotFTS′] = 0. Therefore ε0 ≤ εS + uc/n (by the def-
inition of εb for b ∈ {0, 1}). Lemma 7 states εS = min{ε0, ε1}.
We conclude |ε0 − min{ε0, ε1}| = ε0 − εS ≤ uc/n. Since the
resource constraint is uc/n-differentiable, |ε0 − ε1| > uc/n. So,
εS = ε0 from which we obtain Pr[NotFTS] = 0.

COROLLARY 1. If in view of a rational adversary S with single-
reads probability 1− εS encoded file blocks are random and inde-
pendent of one another, then εS ≤ B(c, t, α) implies Pr[NotFTS] =
0.

PROOF. To such an adversary the used error correcting code
cannot be compressed at all. So, we may apply the theorem for
u = 0.

Theorem 3 can also be cast in a framework that allows more
relaxed rational adversaries.

DEFINITION 4. A (ρ, R)-constrained server S is µ-rational if:
1) If ε0 > ε1 + µ, then S achieves single-reads probability 1− ε1.
2) If ε0 ≤ ε1 + µ, then S achieves single-reads probability 1− ε0
with Pr[NotFTS] = 0.

Lemma 7 and its proof show that being 0-rational coincides with
being rational as defined in Definition 1. The relaxation towards µ-
rational assumes that first S wants to maximize Pr[AccS]. Second,
if S is able to guarantee Pr[NotFTS] = 0 by achieving a slightly
smaller Pr[AccS] (below the possible maximum), then S will do
so. The adversary is economically motivated to pass the protocol a
little less often in order to guard itself against drive failures (which
increases the probability of being able to retrieve and return file F
when needed).

THEOREM 4. In the simple scheme using the slightly modified
query space and using a (n − u − 1, d)-incompressible IEC, if a
(ρ, R)-constrained uc/n-rational adversary S with d drives has
single-reads probability 1− εS such that

εS ≤ α(c− t)− t

(1 + α)(c− t)
− uc

n
,

then Pr[NotFTS] = 0.

PROOF. See the proof of Theorem 3, ε0 ≤ εS + uc/n ≤ ε1 +
uc/n. By the definition of being uc/n-rational, Pr[NotFTS] =
0.

For completeness, we notice that for d = c, any two sets Di and
Dj , i 6= j, are disjoint: Notice that Di has sufficient information
to reconstruct Qi, so, c = |Qi| ≤ |Di| ≤ c. By using a similar
argument, |Dj | = c. The union Di ∪Dj has sufficient information
to reconstruct Qi ∪Qj . Since Qi and Qj are disjoint, 2c = |Qi|+
|Qj | = |Qi ∪ Qj | ≤ |Di ∪Dj |. Together with |Di| = |Dj | = c
this proves Di ∩Dj = ∅. Now we can easily construct an injective
mapping θ which maps indices in Qi to indices in Di. We obtain:

LEMMA 8. A server S with d = c drives and double-read prob-
ability εS ≤ B(c, t, α) has Pr[NotFTS] = 0.

For d < c, queries can only be answered by reading some disk
at least twice:

LEMMA 9. A server S with d < c drives has double-read prob-
ability εS = 1.

We notice that the results of this appendix are easily generalized
to adversaries who fetch additional blocks as described in Lemma
4.

B.2 Construction of θ

Let W ⊆ ∆. We will answer the question for which W there
exists an injective mapping θ ∈ W → D(∆) such that

θ(x) ∈ D(x), for all x ∈ W. (3)

If W = ∅, then (3) is satisfied and an injective mapping θ exists.
Suppose that there exists an injective mapping θ on W , which

satisfies (3). Let x ∈ ∆ \ W . We will first prove that if x has
a certain to be defined property, then θ can be transformed into
an injective mapping θ′ on W ∪ {x}, which satisfies (3) with W
replaced by W ∪ {x}. The proof is not specific to the choice of
W ⊆ ∆. For this reason, we may conclude that there exists a
mapping θ as stated in the lemma where W is extended to some set
W = Θ such that none of the elements x ∈ ∆ \W = Θ∗ satisfies
the yet to be defined property. The second part of the proof uses
this fact to construct a mapping k ∈ Θ∗ → 2Θ with which we will
construct a subset K ⊆ Θ for which D(Θ∗) ⊆ D(K) = θ(K).

In order to construct an injective mapping θ′ on W ∪ {x}, we
start by introducing some notation. First, we define θ(X) = {θ(x) :
x ∈ X} for subsets X ⊆ W . Second, we define a directed graph
with vertices ∆ ∪ {⊥} and directed edges

y → y′ iff y′ ∈ W and θ(y′) ∈ D(y),

and

y → ⊥ iff D(y) \ θ(W) 6= ∅.
Suppose that there exists a path

x = y1 → y2 → . . . → yH → ⊥. (4)

16

We remind the reader that x = y1 ∈ ∆ \W . From the definition
of our directed graph, we infer that

yh+1 ∈ W and θ(yh+1) ∈ D(yh), for 1 ≤ h ≤ H − 1,

and there exists

y ∈ D(yH) \ θ(W).

We define θ′ as θ, except for the re-assignments:

x = y1 ∈ ∆ \W → θ′(y1) = θ(y2) ∈ D(y1),

y2 ∈ W → θ′(y2) = θ(y3) ∈ D(y2),

. . . ,

yH−1 ∈ W → θ′(yH−1) = θ(yH) ∈ D(yH−1),

yH ∈ W → θ′(yH) = y ∈ D(yH) \ θ(W).

Since θ is injective on W , the re-assignment defines a mapping θ′

which is injective on W ∪ {x}. We also notice that the definition
of θ′ satisfies (3) for W replaced by W ∪ {x}.

As long as there exists an element x in ∆ \ W , we extend W
to W ∪ {x} and we apply the re-assignment procedure to update
θ. Let Θ ⊆ ∆ be a maximal subset of ∆ to which W can be
extended. This results into an injective mapping θ which satisfies
(3) for W = Θ.

Now, we will construct a mapping k ∈ Θ∗ → 2Θ having the
property

D(x) ⊆ D(k(x)) = θ(k(x)), for all x ∈ Θ∗. (5)

We will use k to construct set K.
Let x ∈ ∆ \ Θ = Θ∗. We consider the directed graph defined

for W = Θ. Let X ⊆ ∆ be the set of vertices that can be reached
by x (in particular, x ∈ X). We define

k(x) = Θ ∩X. (6)

We will now prove (5).
Since Θ cannot be extended any further, we know that there does

not exist a path as in (4). So, ⊥ 6∈ X and no y ∈ X can reach ⊥.
In particular, there does not exist an edge y → ⊥, which by the
definition of the directed graph with W = Θ is equivalent to

D(y) ⊆ θ(W) = θ(Θ), for y ∈ X. (7)

Let y ∈ X . Suppose that D(y) \ θ(Θ ∩ X) has an element
z. Since θ is injective on Θ, we infer from (7) that z ∈ D(y) ∩
θ(Θ \ X). That is, there exists a y′ ∈ Θ \ X such that z =
θ(y′) ∈ D(y), or equivalently, there exists an edge y → y′ in the
directed graph defined for W = Θ. Since y can be reached by x,
y′ can be reached by x, that is, y′ ∈ X by the definition of set X .
This contradicts y′ ∈ Θ \X , and we conclude that the assumption
D(y) \ θ(Θ ∩X) 6= ∅ is false. This proves

D(y) ⊆ θ(Θ ∩X) = θ(k(x)), for all y ∈ X. (8)

In particular, D(x) ⊆ θ(Θ ∩X) = θ(k(x)).
Since D(k(x)) is the union of all D(y) for y ∈ k(x) = Θ ∩X ,

(8) proves D(k(x)) ⊆ θ(k(x)). Since k(x) ⊆ Θ, (3) for W = Θ
proves θ(k(x)) ⊆ D(k(x)). We conclude (5), that is, D(x) ⊆
D(k(x)) = θ(k(x)) for x ∈ ∆ \Θ = Θ∗.

We use mapping k to define K = ∪x∈Θ∗k(x) ⊆ Θ. By us-
ing (5), D(Θ∗) = ∪x∈Θ∗D(x) ⊆ ∪x∈Θ∗D(k(x)) = D(K), and
∪x∈Θ∗D(k(x)) = ∪x∈Θ∗θ(k(x)) = θ(K). Chaining the equa-
tions completes the proof of Lemma 5.

C. ON THE COMPRESSIBILITY OF RS CODES
The complement of Definition 2 on incompressibility is:

DEFINITION 5. Let AdvIEC
A (m, n, `, u, r) = Pr[ExpIEC

A (m,
n, `; u, r) = 1] − u/n. We say that IEC is a (u, r)-compressible
code (for u < n, r < n) if there exists an A such that AdvIEC

A (m, n,
`; u, r) is non-negligible.

LEMMA 10. A [n, m, n−m+1] RS code is (n−u, r = d(u+
1)(n− u)/ne)-compressible for u ≤ n−m.

PROOF. Notice that a [n, m, n −m + 1] RS code is a subcode
of a [n, n − u, u + 1] RS code C. Let G be the generator matrix
of C that is used to encode message vectors v. If we show that C
can also be generated by a generator matrix G′ = AG with at most
r non-zero entries in each column for some invertible matrix A,
then any code word symbol in vG can be computed by accessing
at most r entries in vA. This would prove that C and its subcodes
are (n− u, r)-compressible.

Any subset S of n− u code word symbols in C are information
symbols. Hence, for i ∈ S, there exists a code word that has zeroes
in each of the n − u − 1 positions indicated by S \ {i} and has
a non-zero code word symbol in position i. Such a code word has
Hamming weight at most n − (n − u − 1) = u + 1 and Ham-
ming weight at least the minimum distance u + 1. By selecting
appropriate subsets S, we can construct a generator matrix G′ of
n− u such code words each having exactly u + 1 non-zero entries
and such that the collection of all n− u code words distributes the
non-zero entries evenly over the columns. That is, each column in
G′ has at most r = d(u + 1)(n− u)/ne non-zero positions.

17

