On the q-Strong Diffie-Hellman Problem

Naoki Tanaka ${ }^{1}$ and Taiichi Saito ${ }^{1}$
Tokyo Denki University
\{tanaka@crypt.,taiichi@\}c.dendai.ac.jp

Abstract

This note is an exposition of reductions among the q strong Diffie-Hellman problem and related problems, and is based on the first author's master thesis.

We discuss reductions among the q-strong Diffie-Hellman (q-SDH) problem [1,2] and related problems. Cheon [3] defined a variant of the q-SDH problem (Cheon's q-SDH problem) and investigated difficulty of it. Mitsunari et al. [4] used another variant, q-weak Diffie-Hellman (q-WDH) problem, to construct a secure traitor tracing scheme.

- The q-SDH problem is to compute $\left(g^{1 /(\alpha+c)}, c\right)$ for given $\left(g, g^{\alpha}, g^{\alpha^{2}}, \ldots, g^{\alpha^{q}}\right)$.
- Cheon's q-SDH problem is to compute $g^{\alpha^{q}}$ for given $\left(g, g^{\alpha}, g^{\alpha^{2}}, \ldots, g^{\alpha^{q}}\right)$.
- The q-WDH problem is to compute $g^{1 / \alpha}$ for given $\left(g, g^{\alpha}, g^{\alpha^{2}}, \ldots, g^{\alpha^{q}}\right)$.
[The q-SDH problem is reduced to the q-WDH problem.] Assume that an instance of the q SDH problem $\left(g, g^{\alpha}, g^{\alpha^{2}}, \ldots, g^{\alpha^{q}}\right)$ is given. For any $c \in \mathbb{Z}_{p}$, we compute $\left(g, g^{\alpha+c}, g^{(\alpha+c)^{2}}, \ldots, g^{(\alpha+c)^{q}}\right)$, input it to the q-WDH problem oracle and obtain $g^{1 /(\alpha+c)}$. Thus we obtain an answer $\left(g^{1 /(\alpha+c)}, c\right)$ for the q-SDH problem.

We see that Cheon's q-SDH problem is equivalent to the q-WDH problem.
[Cheon's q-SDH problem is reduced to the q-WDH problem.] Assume that an instance of Cheon's q-SDH problem $\left(g, g^{\alpha}, g^{\alpha^{2}}, \ldots, g^{\alpha^{q}}\right)$ is given. We let β denote α^{-1} and let $h=g^{\alpha^{q}}, h^{\beta}=$ $g^{\alpha^{q} \beta}=g^{\alpha^{(q-1)}}, h^{\beta^{2}}=g^{\alpha^{q} \beta^{2}}=g^{\alpha^{(q-2)}}, \ldots, h^{\beta^{q}}=g^{\alpha^{q} \beta^{q}}=g$. We input $\left(h, h^{\beta}, h^{\beta^{2}}, \ldots, h^{\beta^{q}}\right)$ to the q-WDH oracle and obtain $h^{1 / \beta}$, which is $g^{\alpha^{q} \beta^{-1}}=g^{\alpha^{(q+1)}}$. Thus we obtain an answer $g^{\alpha^{(q+1)}}$ for Cheon's q-SDH problem.
[The q-WDH problem is reduced to Cheon's q-SDH problem.] Assume that an instance of the q-WDH problem $\left(g, g^{\alpha}, g^{\alpha^{2}}, \ldots, g^{\alpha^{q}}\right)$ is given. We let β denote α^{-1} and let $h=g^{\alpha^{q}}, h^{\beta}=g^{\alpha^{q} \beta}=$ $g^{\alpha^{(q-1)}}, h^{\beta^{2}}=g^{\alpha^{q} \beta^{2}}=g^{\alpha^{(q-2)}}, \ldots, h^{\beta^{q}}=g^{\alpha^{q} \beta^{q}}=g$. We input $\left(h, h^{\beta}, h^{\beta^{2}}, \ldots, h^{\beta^{q}}\right)$ to Cheon's q SDH oracle and obtain $h^{\beta^{q+1}}$, which is equal to $g^{\alpha^{q} \beta^{q+1}}=g^{\alpha^{q} \alpha^{-(q+1)}}=g^{\alpha^{-1}}$. Thus we obtain an answer $g^{\alpha^{-1}}$ for the q-WDH problem.

Consequently, we have
the q-SDH problem \leq the q-WDH problem \equiv Cheon's q-SDH problem.

References

1. D.Boneh and X.Boyen, "Short Signatures Without Random Oracles," Proceedings of Eurocrypt 2004, Lecture Notes on Computer Science 3027, Springer-Verlag (2004), pp.56-73.
2. D.Boneh, X.Boyen and H.Shacham, "Short Group Signatures," Proceedings of Crypto 2004, Lecture Notes on Computer Science 3152, Springer-Verlag (2004), pp.41-55.
3. J. H. Cheon, "Security Analysis of the Strong Diffie-Hellman Problem," Proceedings of Eurocrypt 2006, Lecture Notes on Computer Science 4004, Springer-Verlag (2006), pp.1-11.
4. S.Mitsunari, R.Sakai and M.Kasahara, "A New Traitor Tracing," IEICE Trans.Fundamentals, Vol.E85-A, no. 2 (2002), pp.481-484.
