On the q-Strong Diffie-Hellman Problem

Naoki Tanaka¹ and Taiichi Saito¹

Tokyo Denki University {tanaka@crypt.,taiichi@}c.dendai.ac.jp

Abstract. This note is an exposition of reductions among the q-strong Diffie-Hellman problem and related problems ¹.

1 The q-Strong Diffie-Hellman Problem

We discuss reductions among the q-strong Diffie-Hellman (q-SDH) problem [1,3] and related problems. We use the followin notation:

1. \mathbb{G}_1 and \mathbb{G}_2 are two cyclic groups of prime order p.

2. g_1 is a generater of \mathbb{G}_1 and g_2 is a generater of \mathbb{G}_2 .

3. ψ is an isomorphism from \mathbb{G}_2 to \mathbb{G}_1 , with $\psi(g_2) = g_1$.

1.1 The q-Strong Diffie-Hellman Problem over two groups

Boneh and Boyen defined the q-strong Diffie-Hellman (q-sDH) problem in the Eurocrypt 2004 paper [1] as follows:

Definition 1 (q-strong Diffie-Hellman Problem). Assume that ψ is efficiently computable. For an randomly chosen element $x \in \mathbb{Z}_p$ and a random generator $g_2 \in \mathbb{G}_2$, the q-strong Diffie-Hellman Problem is, given $(g_1, g_2, g_2^x, g_2^{x^2}, \dots, g_2^{x^q}) \in \mathbb{G}_1 \times \mathbb{G}_2^{q+1}$, to compute a pair $(g_1^{1/(x+c)}, c) \in \mathbb{G}_1 \times \mathbb{Z}_p$.

This q-sDH problem is defined based on two groups \mathbb{G}_1 and \mathbb{G}_2 .

They defined a variant of the q-sDH problem in the Journal of Cryptology paper [2] as follows:

Definition 2 (q-strong Diffie-Hellman Problem (Journal of Cryptology version)). For an randomly chosen element $x \in \mathbb{Z}_p$ and random generators $g_1 \in \mathbb{G}_1, g_2 \in \mathbb{G}_2$, the q-strong Diffie-Hellman Problem is, given $(g_1, g_1^x, g_1^{x^2}, \ldots, g_1^{x^q}, g_2, g_2^x) \in \mathbb{G}_1^{q+1} \times \mathbb{G}_2^2$, to compute a pair $(g_1^{1/(x+c)}, c) \in \mathbb{G}_1 \times \mathbb{Z}_p$.

They said that this Journal of Cryptology version q-sDH problem is harder than the Eurocrypt 2004 version problem, as ψ is the former no longer requires the existence of efficiently computable isomorphism ψ . We easily see that the Eurocrypt 2004 version problem is reducible to the Journal of Cryptology version problem as follows: for a given $(g_1, g_2, g_2^x, g_2^{x^2}, \ldots, g_2^{x^q})$, we compute $g_1^{x^i} = \psi(g_2^{x^i})$ for $i(1 \leq i \leq q)$ to obtain $(g_1, g_1^x, g_1^{x^2}, \ldots, g_1^{x^q}, g_2, g_2^x)$, input it to the oracle of the Journal of Cryptology version problem, and finally obtain $(g_1^{1/(x+c)}, c)$.

They [2] also said that when $\mathbb{G}_1 = \mathbb{G}_2$, the pair (g_2, g_2^x) is redundant. Actually, in this case, the Journal of Cryptology version q-sDH problem is equivalent to the following problem:

Definition 3 (one-generater q-strong Diffie-Hellman Problem). For an randomly chosen element $x \in \mathbb{Z}_p$ and a random generators $g_1 \in \mathbb{G}_1$, the one-generater q-strong Diffie-Hellman Problem is, given $(g_1, g_1^x, g_1^{x^2}, \ldots, g_1^{x^q}) \in \mathbb{G}_1^{q+1}$, to compute a pair $(g_1^{1/(x+c)}, c) \in \mathbb{G}_1 \times \mathbb{Z}_p$.

We call this problem *one-generater q-strong Diffie-Hellman* (one-generater q-sDH) problem.

¹ This note is based on the first author's master thesis.

1.2 The q-Strong Diffie-Hellman Problem over single group

Here we assume that $\mathbb{G}_1 = \mathbb{G}_2$ and discuss reductions among the *q*-sDH problem over single group and its variants. Recall that the one-generater *q*-sDH problem is also defined over single group.

As in the previous section, the original q-sDH (the Eurocrypt 2004 version) problem is also reducible to the Journal of Cryptology version problem in the single group setting $\mathbb{G}_1 = \mathbb{G}_2$, and then is reducible to the one-generater q-sDH problem.

$$\begin{split} [\text{the original } q\text{-s}\mathsf{D}\mathsf{H} \text{ problem}] &\leq [\text{the JoC version problem}] \\ &\equiv [\text{the one-generater } q\text{-s}\mathsf{D}\mathsf{H} \text{ problem}] \end{split}$$

We review other two variants of q-sDH problem defined over single group, q-weak Diffie-Hellman problem and exponent q-strong Diffie-Hellman Problem. Mitsunari et al. [5] defined the q-weak Diffie-Hellman (q-wDH) problem as follows:

Definition 4 (q-weak Diffie-Hellman Problem). For an randomly chosen element $x \in \mathbb{Z}_p$ and a random generators $g_1 \in \mathbb{G}_1$, the q-weak Diffie-Hellman Problem is, given $(g_1, g_1^x, g_1^{x^2}, \ldots, g_1^{x^q}) \in \mathbb{G}_1^{q+1}$, to compute an element $g_1^{1/x} \in \mathbb{G}_1$.

Zhang et al. [7] defined the following variant problem:

Definition 5 (exponent q-strong Diffie-Hellman Problem). For an randomly chosen element $x \in \mathbb{Z}_p$ and a random generators $g_1 \in \mathbb{G}_1$, the exponent q-strong Diffie-Hellman Problem is, given $(g_1, g_1^x, g_1^{x^2}, \ldots, g_1^{x^q}) \in \mathbb{G}_1^{q+1}$, to compute an element $g_1^{x^{q+1}} \in \mathbb{G}_1$.

We call this problem exponent q-strong Diffie-Hellman (exponent q-sDH) problem. This problem is deeply investigated by Cheon [4]. Zhang et al. [7] showed that the q-wDH problem is equivalent to the exponent q-sDH problem.

[the q-wDH problem] \equiv [the exponent q-sDH problem]

Reardon [6] showed that the one-generater q-sDH problem is reducible to the q-wDH problem.

[the one-generater q-sDH problem] \leq [the q-wDH problem]

We summarize the reductions that appears in the subsection:

$$\begin{split} [\text{the original } q\text{-s}\mathsf{D}\mathsf{H} \text{ problem}] &\leq [\text{the JoC version problem}] \\ &\equiv [\text{the one-generater } q\text{-s}\mathsf{D}\mathsf{H} \text{ problem}] \\ &\leq [\text{the } q\text{-w}\mathsf{D}\mathsf{H} \text{ problem}] \\ &\equiv [\text{the exponent } q\text{-s}\mathsf{D}\mathsf{H} \text{ problem}] \end{split}$$

References

- D.Boneh and X.Boyen, "Short Signatures Without Random Oracles," Proceedings of Eurocrypt 2004, Lecture Notes on Computer Science 3027, Springer-Verlag (2004), pp.56-73.
- D.Boneh and X.Boyen, "Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups," *Journal of Cryptology*, Vol.21, No.2, (2008), pp.149-177.
- D.Boneh, X.Boyen and H.Shacham, "Short Group Signatures," Proceedings of Crypto 2004, Lecture Notes on Computer Science 3152, Springer-Verlag (2004), pp.41-55.

- 4. J.H.Cheon, "Security Analysis of the Strong Diffie-Hellman Problem," Proceedings of Eurocrypt 2006, Lecture Notes on Computer Science 4004, Springer-Verlag (2006), pp.1-11.
- 5. S.Mitsunari, R.Sakai and M.Kasahara, "A New Traitor Tracing," IEICE Trans.Fundamentals, Vol.E85-A, no.2 (2002), pp.481-484.
- 6. J. Reardon, "The Strong Diffie Hellman Problem," manuscript, (2007).
- 7. F.Zhang, R.Safavi-naini and W.Susilo, "An efficient signature scheme from bilinear pairings and its applications," Proceedings of PKC 2004, Lecture Notes on Computer Science 2947, Springer-Verlag (2004), pp.277-290.

Α **Reductions.**

We review the reductions among the following problems and prove them based on the first author's master thesis.

- The one-generater q-sDH problem is to compute $(g^{1/(\alpha+c)}, c)$ for given $(g, g^{\alpha}, g^{\alpha^2}, \ldots, g^{\alpha^q})$. The exponent q-sDH problem is to compute $g^{\alpha^{q+1}}$ for given $(g, g^{\alpha}, g^{\alpha^2}, \ldots, g^{\alpha^q})$.
- The q-wDH problem is to compute $q^{1/\alpha}$ for given $(q, q^{\alpha}, q^{\alpha^2}, \dots, q^{\alpha^q})$.

[The one-generater q-SDH problem is reduced to the q-wDH problem.] Assume that an instance of the q-SDH problem $(g, g^{\alpha}, g^{\alpha^2}, \ldots, g^{\alpha^q})$ is given. For any $c \in \mathbb{Z}_p$, we compute $(q, q^{\alpha+c}, q^{(\alpha+c)^2}, \dots, q^{(\alpha+c)^q})$, input it to the q-wDH problem oracle and obtain $q^{1/(\alpha+c)}$. Thus we obtain an answer $(q^{1/(\alpha+c)}, c)$ for the one-generater q-SDH problem.

We see that the exponent q-SDH problem is equivalent to the q-wDH problem.

[The exponent q-SDH problem is reduced to the q-wDH problem.] Assume that an instance of the exponent q-SDH problem $(g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^q})$ is given. We let β denote α^{-1} and let $h = g^{\alpha^q}, h^{\beta} = g^{\alpha^{q\beta}\beta} = g^{\alpha^{(q-1)}}, h^{\beta^2} = g^{\alpha^{q\beta^2}} = g^{\alpha^{(q-2)}}, \dots, h^{\beta^q} = g^{\alpha^{q\beta^q}} = g$. We input $(h, h^{\beta}, h^{\beta^2}, \dots, h^{\beta^q})$ to the q-wDH oracle and obtain $h^{1/\beta}$, which is $g^{\alpha^q\beta^{-1}} = g^{\alpha^{(q+1)}}$. Thus we obtain an answer $q^{\alpha^{(q+1)}}$ for the exponent q-SDH problem.

[The q-wDH problem is reduced to the exponent q-sDH problem.] Assume that an instance of the q-wDH problem $(g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^q})$ is given. We let β denote α^{-1} and let $h = g^{\alpha^q}, h^{\beta} = g^{\alpha^{q\beta^2}} = g^{\alpha^{(q-1)}}, h^{\beta^2} = g^{\alpha^{q\beta^2}} = g^{\alpha^{(q-2)}}, \dots, h^{\beta^q} = g^{\alpha^{q\beta^q}} = g$. We input $(h, h^{\beta}, h^{\beta^2}, \dots, h^{\beta^q})$ to the exponent q-sDH oracle and obtain $h^{\beta^{q+1}}$, which is equal to $g^{\alpha^{q\beta^{q+1}}} = g^{\alpha^{q}\alpha^{-(q+1)}} = g^{\alpha^{-1}}$. Thus we obtain an answer $q^{\alpha^{-1}}$ for the *q*-WDH problem.

Consequently, we have

the one-generater q-sDH problem \leq the q-wDH problem \equiv the exponent q-SDH problem.