
Secure Code Update for Embedded Devices

via Proofs of Secure Erasure∗

Daniele Perito1 and Gene Tsudik2

1 INRIA Rhône-Alpes, France
2 University of California, Irvine, USA

Abstract. Remote attestation is the process of verifying internal state

of a remote embedded device. It is an important component of many se-

curity protocols and applications. Although techniques assisted by spe-

cialized secure hardware are effective, they not yet viable for low-cost

embedded devices. One notable alternative is software-based attestation

which is both less costly and more efficient. However, recent results iden-

tified weaknesses in some proposed methods, thus showing that security

of remote software attestation remains a challenge.

Inspired by these developments, this paper explores a different approach

that relies neither on secure hardware nor on tight timing constraints.

By taking advantage of the bounded memory/storage model of low-cost

embedded devices and assuming a small amount of read-only memory

(ROM), our uses a new primitive – Proofs of Secure Erasure (PoSE-s).

We show that, even though our PoSE-based approach is effective and

provably secure, it is not cheap. However, it is particularly well-suited

and practical for two other related tasks: secure code update and se-

cure memory/storage erasure. We consider several flavors of PoSE-based

protocols and demonstrate their feasibility in the context of existing com-

modity embedded devices.

1 Introduction

Embedded systems are encountered in many settings, ranging from mundane to
critical. In particular, wireless sensor and actuator networks are used to con-
trol industrial systems as well as various utility distribution networks, such as
electric power, water and fuel [23, 13]. They are also widely utilized in auto-
motive, railroad and other transportation systems. In such environments, it is
often imperative to verify the internal state of embedded devices to assure lack
of spurious, malicious or simply residual code and/or data.

Attacks on individual devices can be perpetrated either physically [1] or
remotely [27, 14, 15]. It is clearly desirable to detect and isolate (or at least
restore) compromised nodes. One way to accomplish this is via device attestation,
a process whereby a trusted entity (e.g., a base station or a sink) verifies that an

2

embedded device is indeed running the expected application code and, hence,
has not been compromised. In recent years, several software-based attestation
protocols have been proposed [25, 26, 28]. The goal of these protocols is to verify
the trustworthiness of resource-constrained systems, without requiring dedicated
tamper-resistant hardware or physical access to the device. Attestation based on
tamper-resistant hardware [12], though effective [17], is not yet viable on low-cost
commodity embedded devices. Furthermore, hardware attestation techniques,
while having stronger security properties, ultimately rely on a per-device TPM
and the availability of a trusted BIOS that begins attestation at boot time.

In contrast, remote software attestation typically involves a challenge-
response interaction, whereby a trusted system, called the verifier, challenges
a remote system, called the prover, to compute a cryptographic checksum of
its internal state, i.e., code memory, registers and program counter. Depending
on the specific scheme, the prover either computes this checksum using a fixed
checksum routine and a nonce [26], or downloads a new routine from the ver-
ifier as part of the protocol [28]. The checksum routine sequentially updates a
checksum value by loading and processing blocks from the memory of the device.
To prevent replay attacks, the checksum routine is usually seeded with a nonce
chosen by the verifier. Since the verifier is assumed to know the exact memory
contents and hardware configuration of the prover, it can compute the expected
value and match it with the prover’s response. If there is a match, the prover is
assumed to be clean; otherwise, either it has been compromised or a fault has
occurred. In either case, appropriate actions can be taken by the verifier.

Recently, several proposed software-based attestation schemes have been
shown to be vulnerable [9] to certain attacks summarized in Section 2. These
results show that software-based attestation remains to be an interesting and
important research challenge.

To summarize, hardware-based attestation techniques are not practical for
current and legacy low-cost embedded systems. Whereas, state-of-the-art in
software-based attestation offers unclear (or, at best, ad hoc) security guaran-
tees. Such reasons motivate us to look for alternative approaches. Specifically,
in this paper we step zoom out of just attestation and consider a broader issue
of secure remote code update. To obtain it, we introduce a new cryptographic
primitive called Proof of Secure Erasure (PoSE). We suggest some simple PoSE
constructs based on equally simple cryptographic building blocks. This allows
us, in contrast to prior software-based attestation techniques, to obtain provable
security guarantees, under reasonable assumptions.

Our approach can be used to obtain several related security properties for
remote embedded devices. The most natural application is secure memory era-
sure. Embedded devices might collect sensitive or valuable data that – after
being uploaded to a sink or a base station – must be securely erased. Also, code
resident on an embedded device might be sensitive or proprietary and may need
to be securely erased by a remote controller. We note that secure erasure may
be used as a prelude to secure code update or attestation. This is because, after

3

secure erasure of all prior state, new (or old) code can be downloaded onto an
embedded device with the assurance that no other code or data is being stored.

The contribution of this paper is three-fold:

1. We suggest a simple, novel and practical approach to secure erasure, code
update and attestation that falls between (secure but costly) hardware-based
and (efficient but uncertain in terms of security) software-based techniques.

2. We show that the problem of secure remote code update can be addressed
using Proofs of Secure Erasure (PoSE-s).

3. We propose several PoSE variants and analyze their security and efficiency
features. We also assess their viability on a commodity sensor platform.

Organization: Section 2 overviews related work. Next, Section 3 describes the en-
visaged network environment and states our assumptions. Section 4 presents our
design rationale, followed by proposed protocols in Section 5. Implementation,
experiments and performance issues are discussed in Section 6. Limitations and
directions for future work are addressed in Section 7. An extension to support
multi-device attestation is developed in Appendix A.

2 Related work

We now summarize related work, which generally falls into either software- or
hardware-based attestation methods. We also summarize some relevant crypto-
graphic constructs.

2.1 Hardware attestation

Static Integrity Measures: Secure boot was proposed in [2] to ensure a chain of
trusted integrity checks, that begins at power-on with the BIOS and continues
until the kernel is loaded. The integrity checks compare the computation of a
cryptographic hash function with a signed value associated with the checked
component. If one of the checks fails, the system is rebooted and brought back
to a known saved state.

Trusted Platform Module (TPM) is a secure coprocessor that stores an in-
tegrity measure of a system according to the specifications of the Trusted Com-
puting Group (TCG) [31]. Upon boot, the control is passed to an immutable
code base that computes a cryptographic hash of the BIOS, hash that is then
securely stored in the TPM. Later, control is passed to the BIOS and the same
procedure is applied recursively until the kernel is loaded. In contrast to secure
boot, this approach does not detect integrity violations, instead the task is left
to a remote verifier to check for integrity.

[24] proposed to extend the functionality of the TPM to maintain a chain
of trust up to the application layer and system configuration. In order to do so,
they extend the Linux kernel to include a new system call that measures files

4

and adds the checksum in a list stored by the kernel. The integrity of this list
is then sealed in the TPM. A similar goal is pursued in NGSCB [12], that takes
a more radical approach by partitioning a system in a trusted and an untrusted
part, each running a separate operating system, where only the trusted part is
checked.

Dynamic Integrity Measures: In [21] the use of TPM is extended to provide
system integrity checks of run-time properties with ReDAS (Remote Dynamic
Attestation System). At every system call, a kernel module checks the integrity
of constant properties of dynamic objects, e.g., invariant relations between the
saved frame pointer and the caller’s stack frame. Upon detection of an integrity
violation, the kernel driver seals the information about the violation in the TPM.
A remote verifier can ask the prover to send the sealed integrity measures and
thus verify that no integrity violations occurred. However ReDAS only checks
for violations of a subset of the invariant system properties and nothing prevents
an adversary to succeed in subverting a system without modifying the properties
checked by ReDAS. Extending the set of attested properties is difficult due to
the increased number of false positives generated by this approach, for example
in case of dynamic properties classified as invariants by mistake.

2.2 Software attestation

Most software-based techniques rely on challenge-response protocols that verify
the integrity of the code memory of a remote device: an attestation routine on
the prover computes a checksum of its memory along with a challenge supplied
by the verifier. In practice, memory words are read sequentially and fed into
the attestation function. However, this simple approach does not guarantee that
the attestation routine is computed faithfully by the prover. In other words,
a prover can deviate (via some malicious code) from its expected behavior and
still compute a correct checksum, even in the presence of some malicious memory
content.

Time-based attestation: SWATT [26] is an attestation technique that relies on
response timing to identify compromised code. In SWATT, memory is traversed
using a pseudo-random sequence of indexes generated from a unique seed sent by
the verifier. If a compromised prover wants to pass attestation, it has to redirect
some memory accesses to compute a correct checksum. These redirections are
assumed to induce a remotely measurable delay in the attestation that can be
used by the verifier to decide whether to trust the prover’s response. The same
concept is used in [25] where, the checksum calculation is extended to include also
dynamic properties, e.g., the program counter or the status register. Furthermore
the computation is optimised by having the checksum computed only on the
attestation function itself.

Jakobsson et al. [18] propose an attestation scheme to detect malware on
mobile phones. Their attestation scheme relies both on careful response timing

5

Prover Verifier

Regs PC

Mem

Regs PC

Mem

Regs PC

Mem

Regs PC

Mem

Internal state
Believed

Internal state

Fig. 1: Generic remote attestation.

and memory filling. Timing is not only measured on the computation of attesta-
tion but also on the access to external memory and wireless links. The security
of the solution depends on a number of hardware specific details (e.g., flash
memory access time). Hence, formal guarantees and portability of the solution
to different platforms appear difficult to achieve.

Memory-based attestation: In [32] sensors collaborate to attest the integrity of
their peers. At deployment time, empty node’s memory is filled with randomness,
which is supposed to prevent malicious software from being stored, without
deleting some parts of the original memory. A similar approach is taken in [10],
but, instead of relying on pre-deployed randomness, random values are generated
using a PRF seeded by a challenge sent by the verifier and are used to fill the
prover’s memory. However, this does not assure compliance to the protocol of
a malicious node that could trade computation for memory and still produce a
valid checksum.

Gatzer et al. [16] propose a solution in which random values are sent to a
low-end embedded device (e.g., a SIM card) and then read back by the verifier,
together with the attestation routine itself (called Quine in the paper). Their
construction is valid, but showed to be effective on a 8-bit Motorola MCU with
an extremely simple instruction set. Also, their discussion only refers to RAM
whereas we extend our scheme to verify all memory available to a device.

Attestation based on self-modifying code: [28] proposed to use a distinct attesta-
tion routine for each attestation instance. The routine is transferred right before
the protocol is run and uses self-modifying code and obfuscation techniques to
prevent static analysis. This, combined with timing of responses, makes it dif-
ficult for an adversary to reverse-engineer the attestation routine fast enough
to cheat in the protocol and produce a valid but forged result. However, this
approach relies on obfuscation techniques that are difficult to prove secure. Fur-

6

thermore, some such techniques are difficult to implement on embedded systems
where code is stored in flash memory that can be programmed only by pages.

Attacks: Recently, [9] demonstrated several flaws and attacks against some soft-
ware attestation protocols. Attacks can be summarized as: failure to verify other
memories apart from code memory (exploited through ROP attacks [27]); insuf-
ficient non-linearity in time-based attestation routines, which could be exploited
to generate correct results over forged memory; failure to recognize that legiti-
mate code memory can be compressed and thus save space for malicious code,
while still remaining accessible for attestation. Also, [29] points out that side-
effects, such as cache misses, are not sufficient to check software integrity using
time-based approaches like [20].

2.3 Provable Data Possession and Proofs of Retrievability

The problem at hand bears some resemblance to Provable Data Possession
(PDP) [3, 4] and Proof of Retrievability (POR) schemes [19]. However, this re-
semblance is superficial. In settings envisaged by POR and PDP schemes, a
resource-poor client outsources a large amount of data to a server with an un-
limited storage capacity. The main challenge is how a client can efficiently and
repeatedly verify that the server indeed stores all of the client’s data. This is
markedly different from attestation where the prover (sensor) must not only
prove that it has the correct code, but that it also stores nothing else. Another
major distinction is that, in POR and PDP, the verifier (client) is assumed not
to keep a copy of its outsourced data. Whereas, in our setting, the verifier (base
station) obviously keeps a copy of any code (and/or data) that embedded devices
must store.

2.4 Memory-Bounded Adversary

Cryptographic research literature includes a set of results on security in the pres-
ence of a memory-bounded adversary [8]. Our setting also features a potential ad-
versary in the guise of a memory-limited prover. However, the memory-bounded
adversary model involves two or more honest parties that aim to perform some
secure computation. Whereas, in our case, the only honest party is the verifier
and no secrets are being computed as part of the attestation process.

3 Assumptions and Adversary Model

Secure code update involves a verifier V and a prover P. Internal state of P
is represented by the tuple S = (M,RG, pc) where M denotes P’s memory of
size n (in bits), RG = rg1, ..., rgm is the set of registers and pc is the program
counter. We refer to SP as the real internal state of the prover and SV the

7

Table 1: Notation Summary.

X ←− Y : Z Y sends message Z to X

X1, ..., Xt ⇐= Y : Z Y multicasts message Z to X1, ..., Xt

V Verifier

P Prover

ADV Adversary

M Prover’s contiguous memory

M [i] i-th bit in M (0 ≤ i < n)

n Bit-size of M

RG Prover’s registers rg1, ..., rgm

pc Prover’s program counter

SP = (M,R, pc) Prover’s internal state

SV Verifier’ view of Prover’s internal state

R1...Rn Verifier’s n-bit random challenge

C1...Cn n-bit program code (see below)

k Security parameter

K MAC key

internal state of the prover, as viewed by the verifier. Secure code update can be
seen as a means to ensure that SV = SP . Our notation is reflected in Table 1.

The prover is assumed to be a generic embedded device – such as a sensor,
an actuator or a computer peripheral – with limited memory and other forms
of storage. For the ease of exposition, we assume that all of the device’s stor-
age is homogeneous and contiguous. (This assumption can be easily relaxed,
as discussed in section 6.2) From here on, the term “memory” is used to de-
note all writable storage on the device. The verifier is a comparatively powerful
computing device, e.g., a laptop-class machine.

The aim of our protocol is to ascertain the internal state of the prover. The
adversary will typically be a program running on the prover’s memory, such
as a malware or a virus. Since the adversary executes on the prover, it will be
bounded by the computational capabilities of the prover, i.e., its memory size n.

We assume that the adversary cannot modify the hardware configuration of
the prover1, i.e., all anticipated attacks are software-based. The adversary has
complete read/write access to prover’s memory, including all cryptographic keys
and code. However, in order to achieve provable security, our protocol relies
on the availability of a small amount of Read-Only Memory (ROM) that the
adversary can read but not modify. Finally, the adversary can perform both
passive (such as eavesdropping) and active (such as replaying packets) attacks.
An attack succeeds if the compromised device passes the attestation protocol
despite the presence of malicious code or data.

1In fact, one could easily prove that software attestation is in general impossible to

achieve against hardware modifications.

8

We note that the presence of ROM is not unusual in commodity embedded
systems. For example, the Atmel ATMEGA128 micro-controller allows a small
portion of its flash memory to be designated as read-only. Writing to this memory
portion via software becomes impossible and can only be enabled by physically
accessing the micro-controller with an external debugger.

4 Design Rationale

Our design rationale is simple and based on three premises:

– First, we broaden our scope beyond attestation, to cover both secure mem-
ory erasure and secure code update. In the event that the updated code is
the same as the prior code, secure code update yields secure code attesta-
tion. We thus consider secure code update to be a more general primitive
than attestation.

– Second, we consider two ways of obtaining secure code update: (1) download
new code to the device and then perform code attestation, or, (2) securely
erase everything on the device and then download new code. The former
brings us right back to the problematic software-based attestation, while the
latter translates into a simpler problem of secure memory erasure, followed
by the download of the new code. We naturally choose the latter.
Correctness of this approach is intuitive: since the prover’s memory is strictly
limited, its secure erasure implies that no prior data or code is resident on the
prover; except for a small amount of code in ROM, which is immutable. Be-
cause the adversary is assumed to be passive during code update, download
of new code always succeeds, barring any communication errors.

– Third, based on the above, we do not aim to detect the presence of any
malicious code or extraneous data on the prover. Instead, our goal is to
make sure that, after erasure or secure code update, no malicious code or
extraneous data remains.

Because our approach entails secure erasure of all memory, followed by the code
download, it might appear to be very inefficient. However, as discussed in sub-
sequent sections, we use the aforementioned approach as a base case that offers
unconditional security. Thereafter, we consider ways of improving and optimizing
this base case to obtain appreciably more practical solutions.

5 Secure Code Update

The base case for our secure code update approach is depicted in Figure 3. It is
essentially a four-round protocol, where:

– Rounds one and two comprise secure erasure of all writable memory contents.
– Rounds three and four represent code update.

9

Prover

read-and-sendPoSE Code

Fresh
Randomness

R
O

M read-and-sendPoSE Code

R
A

M
Original Code

Malicious Code

read-and-sendPoSE Code

Updated Code

Time

Before PoSE During the protocol
(proof of possession

of randomness)

End of PoSE

R
O

M
R

A
M

R
O

M
R

A
M

Fig. 2: Prover’s Memory during Protocol Execution

[1] P ←− V : R1, ..., Rn

[2] P −→ V : R1, ..., Rn

[3] P ←− V : C1, ..., Cn

[4] P −→ V : ACK or H(C1, ..., Cn)

Fig. 3: Base Case Protocol

Note that there is absolutely no interleaving between any adjacent rounds. The
“evolution” of prover’s memory during the protocol is shown in Figure 2.

As mentioned earlier, we assume a small ROM on the prover. In the base
case, ROM houses two functions: read-and-send and receive-and-write. During
round one, receive-and-write is used to receive a random bit Ri and write it in
location M [i], for 0 ≤ i < n. At round two, read-and-send reads a bit from
location M [i] and sends it to the prover, for 0 ≤ i < n. (In reality, read and
write involve words and not individual bits. However, this makes no difference
to our description.)

If we assume that the V↔ P communication channel is lossless and error-
free, it suffices for round four to be a simple acknowledgement. Otherwise, round
four must be a checksum of the code downloaded in round three. In this case, the
checksum routine must reside in ROM; denoted by H() in round four of Figure
3. In the event of an error, the entire procedure is repeated.

5.1 Efficient Proof of Secure Erasure

As shown in Figure 3, secure erasure is achieved by filling prover’s memory with
verifier-selected randomness, followed by the prover returning the very same

10

randomness to the verifier. On the prover, these two tasks are executed by the
ROM-resident read-and-send and receive-and-write functions, respectively.

It is easy to see that, given our assumptions of: i) adversary’s software only
attacks, ii) prover’s fixed-size memory M , iii) no hardware modification of com-
promised provers, and iv) source of true randomness on the verifier, the proof
of secure erasure holds. In fact, the security of erasure is unconditional, due to
lack of any computational assumptions.

Unfortunately, this simple approach is woefully inefficient as it requires a
resource-challenged P to send and receive n bits. This immediately prompts us
to consider whether secure erasure can be achieved by either (1) sending fewer
than n bits to P in round one, or (2) having P respond with fewer than n bits
in round two. We defer (1) to future work. However, if we sacrifice unconditional
security, bandwidth in round two can be reduced significantly.

One way to reduce bandwidth is by having the prover return a fixed-sized
function of the entire randomness received in round one. However, the choice of
a function is not entirely obvious; for example, simply using a cryptographically
suitable hash function yields an insecure protocol. Suppose we replace round two
with CHK = H(R1, ..., Rn) where H() is a hash function, e.g., SHA. Then, a
malicious P can start computing CHK in real time, while receiving R1, ..., Rn

during round one, without storing these random values.
An alternative is for P to compute a MAC (Message Authentication Code)

using the last k bits of randomness (received from V in round one) as the key.
(Where k is sufficiently large, i.e., at least 128 bits.) A MAC function can be
instantiated using constructs, such as AES CBC-based MAC [7], AES CMAC or
HMAC [6] However, the minimum code size varies, as discussed in Section 6. In
this version of the protocol, the MAC function must be stored in ROM. Clearly,
a function with the lowest memory utilization is preferable in order to minimize
the amount of working memory that P needs to reserve to compute a MAC.
Claim: Assuming a cryptographically strong source of randomness on V and a

cryptographically strong MAC function, the following 2-round protocol achieves
secure erasure of all writable memory M on P:

[1] P ←− V : R1, ..., Rn where K = Rn−k+1...Rn

[2] P −→ V : MACK(R1, ..., Rn−k)

where k is the security parameter (bit-size of the MAC key) and K is the k-bit
string Rn−k+1, ..., Rn.
Proof (Sketch): Suppose that malicious code MC occupies b > 0 bits and

persists in M after completion of the secure code update protocol. Then, during
round one, either: (1) some MAC pre-computation was performed and certain
bits (at least b) of R1, ..., Rn−k were not stored in M , or (2) the bit-string
R1, ..., Rn−k was compressed into a smaller x-bit string (x < n − k − b). How-
ever, (1) is infeasible since the key K is only communicated to P at the very
end of round one, which precludes any MAC pre-computation. Also, (2) is in-

11

feasible since R1, ..., Rn−k is originates from a cryptographically strong source
of randomness and its entropy rules out any compression. �

Despite its security and greatly reduced bandwidth overhead, this approach
is still computationally costly considering that it requires a MAC computed
over the entire n-bit memory M . One way to alleviate computational cost is
by borrowing a technique from [4] which is designed to obtain a probabilistic
proof of possession in a Provable Data Possession (PDP) setting discussed in
Section 2.3. The PDP scheme in [4] assumes that the data outsourced by the
verifier (client) to a prover (server) is partitioned into fixed-size m-bit blocks.
The verifier generates a sequence of t block indices and a one-time key K which
are sent to the prover. The prover is then asked to compute and return a MAC
(using K) of the t index blocks. In fact, the t indices are not explicitly transferred
to the prover; instead the verifier supplies a random seed from which the prover
(e.g., using a hash function or a PRF) generates a sequence of indices.

As shown in [4], this technique achieves detection probability: P = 1−(1−m
d)t

where m is the number of blocks that the verifier did not store (i.e., these are
the blocks where malicious code resides), d is the total number of blocks and t
is the number of blocks being checked.

Consider a concrete example of a Mica Mote with 128 Kbytes of processor
RAM and further 512 Kbytes of data memory, totaling 640 Kbytes. Suppose that
block size is 128 bytes and there are thus 5, 120 blocks. If m

d = 1%, i.e., m = 51
blocks, with t = 512, the detection probability amounts to about 99.94%. This
represents an acceptable trade-off for applications where the advantage of MAC-
ing 1

10 -th of verifier memory outweighs the 0.06% chance of residual malicious
code and/or data. Figure 4 plots the probability t for different values of m.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 300 400 500 600 700 800 900 1000

De
tec

tio
n p

rob
ab

ility

Number of blocks checked

m=51
m=80

Fig. 4: Probability of detecting memory modifications for # of checked blocks varying

between 256 (5%) and 1024 (20%)

12

5.2 Optimizing Code Update

In the base case of our approach shown in Figure 3, round three corresponds to
code update. Although, in practice, code size is likely to be less than n, receiving
and storing the entire code is a costly step. This motivates the need for shortcuts.
Fortunately, there is one such effective and obvious shortcut. The main idea is to
replace a random (n−k)-bit string with the same-length encryption of new code
under some key K ′. This way, after round two (whether as in the base case or
optimized as in the previous section), the verifier sends K ′ to the prover which
uses K ′ to decrypt the code. The resulting protocol is shown in Figure 5.

[1] P ←− V : R1, ..., Rn

[2] P −→ V : MACK(R1, ..., Rn−k)

[3.1] P ←− V : K′

[3.2] P : C1, ..., Cn−k = DK′(R1, ..., Rn−k),

where D() is decryption and C1, ..., Cn−k is new code

[4] P −→ V : ACK

Fig. 5: Optimized Protocol

We note again that, since we assume no communication interference and no
packet loss or communication errors, the last round is just an acknowledgement,
i.e., not a function of decrypted code or K ′. This optimization does not affect
the security of our scheme if a secure block cipher is used, since encryption of
code [C1, ..., Cn−k] with key K ′ is random and unpredictable to the prover before
key K ′ is disclosed. Hence, the proof in Section 5.1 also holds for this optimized
version of the protocol.

6 Implementation and Performance Considerations

In order to estimate performance and power requirements of PoSE, we imple-
mented the scheme on the ATMEGA128 micro-controller mounted on a MicaZ
sensor. Amongst the characteristics of this sensor [11], the ones that are relevant
to our scheme are: 648KB total programmable memory; 250kbps data rate for
the wireless communication channel. The total memory is divided into: 128KB of
internal flash; 4KB of internal SRAM; 4KB of configuration EEPROM; 512KB
of external flash memory. The application was implemented on TinyOS.

6.1 Performance Evaluation

Three main metrics affect the performance of our scheme and for this reason will
be evaluated separately: communication speed; read/write memory access time;
computation speed of the message authentication code.

13

Communication channel throughput The maximum claimed throughput of
TI-CC2420 radio chip, as reported in the specifications, is 250kbps, which trans-
lates to 31, 250 bytes/sec. This upper-bound is unfortunately quite unattainable
and our tests show that, in a realistic scenario, throughput hovers around 11, 000
bytes/sec. The total memory available on a MicaZ is 644KB, including external
and internal flash and EEPROM. Our efficient proof of erasure only requires
randomness to be sent once, from the verifier to the prover. Then a realistic
estimate for the transmission time of the randomness amounts to approximately
59 seconds, as was indeed witnessed in our experimental setup.

Memory Access Another important factor in the performance of PoSE is
memory access and write time. Write speed on the internal and external flash
memory is 60KB/sec according to specifications. This estimate has also been
confirmed by our experiments. Therefore, memory access accounts for only a
small fraction of the total run-time.

MAC Computation We evaluated the performance of three different MAC
constructs: HMAC-MD5, HMAC-SHA1 and SkipJack in CBC-MAC. Note that,
even though there are well-known attacks on MD5 that find chosen-prefix col-
lisions [30], the short-lived nature of the integrity check needed in our protocol
rules out attacks that require 250 calls to the underlying compression function.
Table 2(a) shows the results: in each case we timed MAC computation over
644KB of memory on MicaZ.

The fact that MD5 is the fastest is not surprising, given that, in our im-
plementation, the code is heavily in-lined, which reduces the number of context
switches for function calls while also resulting in increased code size.

6.2 Memory Usage

In this Section we are interested in estimating both the code and the volatile
memory needed to run our protocol. An estimation of the code memory needed
to run our protocol is necessary to understand ROM size requirements. Fur-
thermore, estimating the required amount of volatile memory is critical for the
security of the protocol. In fact, in order to correctly follow the protocol, the
prover needs a minimal amount of working memory. This working memory needs
not to be filled with randomness and hence could be used to store arbitrary val-
ues by the prover. However, by keeping the amount of volatile memory to a
minimum we can guarantee that the prover cannot store both arbitrary values
and carry on the necessary computation to succeed in the protocol.

Since assuring that the amount of volatile memory used in a specific imple-
mentation is difficult, another way to minimize the effects of volatile memory is
to include it in the computation of the keyed MAC or when the randomness is
sent back to the verifier. Even though the values in volatile memory are dynamic,

14

they are entirely depended on the inputs from the verifier, hence deterministic.
In this case, the verifier would also need to either simulate or run the attestation
routine on a trusted device to compute what the correct values should be.

Table 2: MAC constructions on MicaZ.

MAC Time (sec) Energy (µJ/byte)

HMAC-MD5 28.3 1

HMAC-SHA1 95 3.5

Skipjack CBC-MAC 88 3.1

(a) Energy consumption and time

MAC ROM (bytes) RAM (bytes)

HMAC-MD5 9,728 110

HMAC-SHA1 4,646 124

Skipjack CBC-MAC 2,590 106

(b) Code and working memory required

Code Size In order to estimate code size for our PoSE technique, we imple-
mented the base case PoSE protocol in TinyOS. It transmits and receives over
the wireless channel using Active Messages. The entire application takes 11, 314
bytes of code memory and 200 bytes of RAM. RAM is needed to hold the nec-
essary data structures along with the stack. In our implementation, we used
regular TinyOS libraries and compiler. Careful optimization would most likely
reduce memory consumption.

In the optimized version of PoSE, we also need a MAC housed in ROM.
Table 2(b) shows the amount of additional memory necessary to store code and
data for various MAC constructions. Finally, Table 3 shows the size of both code
and working memory for all presented above.

The reason for MD5 having a larger memory footprint is because, as discussed
above, the implementation we used is highly inlined. While this leads to better
performance (faster code) it also results in a bigger code size.

Table 3: Code and volatile memory size.

Protocol ROM (bytes) RAM (bytes)

PoSE(Base Case) 11,314 200

PoSE-MD5 21,042 264

PoSE-SHA1 15,960 274

PoSE-SkipJack 13,904 260

15

Memory Mapping In the previous discussion, we have abstracted away from
specific architectures by considering a system with uniformly addressable mem-
ory space M . However, in formulating this generalization extra care must be
taken: in real systems, memory is not uniform, since there can be regions as-
signed to specific functions, such as memory-mapped registers or I/O buffers. In
the former case, changing these memory locations can result in modified regis-
ters which, in turn, might cause unintended side effects. In the latter, memory
content of I/O buffers might change due to asynchronous and non-deterministic
events, such as reception of a packet from a wireless link. When we refer to prover
memory M , we always exclude these special regions of memory. Hence both the
verifier and the prover have to know a mapping from the virtual memory M to
the real memory. However, this mapping can be very simple, thus not requiring a
memory management unit. For example on the Atmel ATMEGA128, as used in
the MicaZ, the first 96 bytes of internal SRAM are reserved for memory-mapped
register and I/O memory.

6.3 Read-Only Memory

PoSE needs a sufficient amount of read-only memory (ROM) to store the routines
(read-and-send, receive-and-write and, in its optimized version, MAC) needed
to run the protocol. While the use of mask ROM has always been prominent
in embedded devices, recently, due to easier configuration, flash memory has
supplanted cheaper mask ROM.

However, there are other means to obtain read-only memory using different
and widely available technologies. For example, ATMEGA128 [5] allows a portion
of its flash memory to be locked in order to prevent overwriting. Even though
the size of this lockable portion of memory is limited to 4KB, this feature shows
the feasibility of such an approach on current embedded devices. Note that,
once locked, the memory portion cannot be unlocked unless an external JTAG
debugger is attached to unset the lock bit.

Moreover, ATMEGA128 has so-called fuse bits that, once set, cannot be
restored without unpacking the MCU and restoring the fuse. This clearly il-
lustrates that the functionalities needed to have secure read-only memory are
already present in commodity hardware.

Another way to achieve the same goal would be to use one-time pro-
grammable (OTP) memory. Although this memory is less expensive than flash,
it still offers some flexibility over conventional ROM.

7 Limitations and Challenges

In this paper, our design was guided mainly by the need to obtain clear secu-
rity guarantees and not to maximize efficiency and performance. Specifically,
we aimed to explore whether remote attestation without secure hardware is

16

possible at all. Hence, PoSE-based protocols (even the optimized ones) have cer-
tain performance drawbacks. In particular, the first protocol round is the most
resource-consuming part of all proposed protocols. The need to transmit, re-
ceive and write n bits is quite expensive. It remains to be investigated whether
achieving the same security guarantees with a more efficient design is possible.

In terms of provable security, our discussion of Proofs-of-Secure-Erasure
(PoSE-s) has been rather light-weight. A more formal treatment of the PoSE
primitive needs to be undertaken. (The same holds for the multi-prover exten-
sion described in Appendix A).

Another direction towards improving our approach is giving the adversary the
capability of attacking our protocol with another device, other than the prover.
This device would try to aid the prover in computing the correct responses in
the protocol and pass the PoSE. Assuming wireless communication, one way
for verifier to prevent the prover from communicating with another malicious
device is is by actively jamming the prover. Jamming can be used selectively to
allow the prover to complete the protocol, while preventing it from communi-
cating with any other party. Any attempt to circumvent jamming by increasing
transmission power can be limited by using readily available hardware. For ex-
ample, the CC2420 radio, present on the MicaZ, supports transmission power
control. Thresholds can be set for the Received Signal Strength (RSS), RSSmin

and RSSmax, such that only frames with RSS ∈ [RSSmin, RSSmax] are ac-
cepted and processed. This is enforced in hardware by the radio chip. Hence, if
the verifier wants to make sure that the prover does not communicate, it can
simply emit a signal with RSS > RSSmax. This approach is similar to the one
employed in [22], albeit, in a different setting.

8 Conclusions

We considered the problems of secure erasure, secure code update and remote
attestation in the context of embedded devices. Having examined prior attes-
tation approaches (both hardware- and software-based), we concluded that the
former is too expensive, while the latter – too uncertain. We therefore explored
an alternative approach that generalized the attestation problem to remote code
update and secure erasure. Our approach, based on Proofs-of-Secure-Erasure
relies neither on secure hardware nor on tight timing constraints. Moreover, al-
though not particularly efficient, it is viable, secure and offers some promise for
the future. We also assess the feasibility of the proposed method in the context
of commodity sensors.

References

1. Anderson, R., and Kuhn, M. Tamper resistance - a cautionary note. In In

Proceedings of the Second Usenix Workshop on Electronic Commerce (1996).

17

2. Arbaugh, W. A., Farber, D. J., and Smith, J. M. A secure and reliable

bootstrap architecture. In SP ’97: Proceedings of the 1997 IEEE Symposium on

Security and Privacy (Washington, DC, USA, 1997), IEEE Computer Society,

p. 65.
3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson,

Z., and Song, D. Provable data possession at untrusted stores. In CCS ’07:

Proceedings of the 14th ACM conference on Computer and communications security

(New York, NY, USA, 2007), ACM, pp. 598–609.
4. Ateniese, G., Di Pietro, R., Mancini, L. V., and Tsudik, G. Scalable and

efficient provable data possession. In SecureComm ’08: Proceedings of the 4th

international conference on Security and privacy in communication networks (New

York, NY, USA, 2008), ACM, pp. 1–10.
5. Atmel Corporation. Atmega128 datasheet. http://www.atmel.com/atmel/

acrobat/doc2467.pdf.
6. Bellare, M., Canetti, R., and Krawczyk, H. Keying hash functions for mes-

sage authentication. In CRYPTO ’96: Proceedings of the 16th Annual International

Cryptology Conference on Advances in Cryptology (London, UK, 1996), Springer-

Verlag, pp. 1–15.
7. Bellare, M., Kilian, J., and Rogaway, P. The security of cipher block chain-

ing. In CRYPTO ’94: Proceedings of the 14th Annual International Cryptol-

ogy Conference on Advances in Cryptology (London, UK, 1994), Springer-Verlag,

pp. 341–358.
8. Cachin, C., and Maurer, U. Unconditional security against memory-bounded

adversaries. In In Advances in Cryptology CRYPTO 97, Lecture Notes in Com-

puter Science (1997), Springer-Verlag, pp. 292–306.
9. Castelluccia, C., Francillon, A., Perito, D., and Soriente, C. On the dif-

ficulty of software-based attestation of embedded devices. In CCS 09: Proceedings

of 16th ACM Conference on Computer and Communications Security (November

2009).
10. Choi, Y.-G., Kang, J., and Nyang, D. Proactive code verification protocol in

wireless sensor network. In ICCSA 07: Proceedings of the International Confer-

ence on Computational Science and Its Applications (2007), O. Gervasi and M. L.

Gavrilova, Eds., vol. 4706 of Lecture Notes in Computer Science, Springer.
11. Crossbow Technology Inc. Micaz datasheet. http://www.xbow.com/

Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf.
12. England, P., Lampson, B., Manferdelli, J., Peinado, M., and Willman,

B. A trusted open platform. IEEE Computer 36, 7 (2003).
13. Flammini, F., Gaglione, A., Mazzocca, N., Moscato, V., and Pragliola,

C. Wireless sensor data fusion for critical infrastructure security. In CISIS 08: Pro-

ceedings of the International Workshop on Computational Intelligence in Security

for Information Systems (October 2008).
14. Francillon, A., and Castelluccia, C. Code injection attacks on Harvard-

architecture devices. In CCS 08: Proceedings of the 15th ACM Conference on Com-

puter and Communications Security (2008), P. Ning, P. F. Syverson, and S. Jha,

Eds., ACM.
15. Goodspeed, T. Exploiting wireless sensor networks over 802.15.4. In Texas In-

struments Developper Conference (2008).
16. Gratzer, V., and Naccache, D. Alien vs. quine. IEEE Security and Privacy 5

(2007), 26–31.

18

17. Hu, W., Corke, P., Shih, W. C., and Overs, L. secfleck: A public key technol-

ogy platform for wireless sensor networks. In EWSN (2009), vol. 5432 of Lecture

Notes in Computer Science, Springer.
18. Jakobsson, M., and Johansson, K.-A. Assured detection of malware with ap-

plications to mobile platforms. Tech. rep., DIMACS, February 2010. available at

http://dimacs.rutgers.edu/TechnicalReports/TechReports/2010/2010-03.pdf.
19. Juels, A., and Kaliski, Jr., B. S. Pors: proofs of retrievability for large files.

In CCS ’07: Proceedings of the 14th ACM conference on Computer and communi-

cations security (New York, NY, USA, 2007), ACM, pp. 584–597.
20. Kennell, R., and Jamieson, L. H. Establishing the genuinity of remote com-

puter systems. In SSYM’03: Proceedings of the 12th conference on USENIX Secu-

rity Symposium (Berkeley, CA, USA, 2003), USENIX Association, pp. 21–21.
21. Kil, C., Sezer, E. C., Azab, A. M., Ning, P., and Zhang, X. Remote attesta-

tion to dynamic system properties: Towards providing complete system integrity

evidence. In DSN 09: Proceedings of the 39th IEEE/IFIP Conference on Depend-

able Systems and Networks (June 2009).
22. Martinovic, I., Pichota, P., and Schmitt, J. B. Jamming for good: a fresh

approach to authentic communication in wsns. In WiSec ’09: Proceedings of the

second ACM conference on Wireless network security (New York, NY, USA, 2009),

ACM, pp. 161–168.
23. Roman, R., Alcaraz, C., and Lopez, J. The role of wireless sensor networks

in the area of critical information infrastructure protection. Inf. Secur. Tech. Rep.

12, 1 (2007), 24–31.
24. Sailer, R., Zhang, X., Jaeger, T., and van Doorn, L. Design and implemen-

tation of a tcg-based integrity measurement architecture. In SSYM’04: Proceedings

of the 13th conference on USENIX Security Symposium (Berkeley, CA, USA, 2004),

USENIX Association, pp. 16–16.
25. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., and Khosla, P. SCUBA:

Secure code update by attestation in sensor networks. In WiSe ’06: Proceedings of

the 5th ACM workshop on Wireless security (2006), ACM.
26. Seshadri, A., Perrig, A., van Doorn, L., and Khosla, P. K. SWATT:

SoftWare-based ATTestation for embedded devices. In IEEE Symposium on Secu-

rity and Privacy (2004), IEEE Computer Society.
27. Shacham, H. The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In CCS ’07: Proceedings of the 14th ACM conference

on Computer and Communications Security (2007), ACM.
28. Shaneck, M., Mahadevan, K., Kher, V., and Kim, Y. Remote software-based

attestation for wireless sensors. In ESAS (2005).
29. Shankar, U., Chew, M., and Tygar, J. D. Side effects are not sufficient to

authenticate software. In Proceedings of the 13th USENIX Security Symposium

(August 2004).
30. Stevens, M., Lenstra, A., and Weger, B. Chosen-prefix collisions for md5

and colliding x.509 certificates for different identities. In EUROCRYPT ’07: Pro-

ceedings of the 26th annual international conference on Advances in Cryptology

(Berlin, Heidelberg, 2007), Springer-Verlag, pp. 1–22.
31. Trusted Computing Group. Specifications.
32. Yang, Y., Wang, X., Zhu, S., and Cao, G. Distributed software-based attes-

tation for node compromise detection in sensor networks. In SRDS (2007), IEEE

Computer Society.

19

A: Dealing with Multiple Devices

Thus far, in this paper we assumed one-on-one operation: one prover and one
verifier. However, in practice, embedded devices are often deployed in groups and
in relative proximity (and density) among them, e.g., Wireless Sensor Networks
(WSNs). If the task at hand is to perform code attestation or update of multiple
proximate devices, our approach can be easily extended to support this setting
and, at the same time, obtain a significant efficiency gain. The main observation
is that, if the verifier can communicate with t > 1 devices at the same time
(i.e., via broadcast), download of randomness in the first round of our protocol
– which represents the most time-consuming part of the protocol – can be done
in parallel for all devices within the verifier’s communication range. Of course,
in order to receive replies the verifier has to be within communication range of
all t provers.

At the same time, parallel code update of multiple devices prompts us to
re-examine the adversarial model. In the one-on-one setting, it makes sense to
assume radio silence, i.e., the fact that, during the protocol, the prover device is
not communicating with any party other than the verifier, and no other (third)
device is transmitting any information that can be received by either the prover
or the verifier. Note that the term adversary refers collectively to any compro-
mised devices running malicious code as well as any extraneous devices physically
controlled by the adversary. However, the one-on-one setting does not preclude
the adversary from over-hearing communication between the prover and the ver-
ifier, i.e., eavesdropping on protocol messages. We claim that this has no bearing
on security, since each protocol involves a distinct stream of randomness.

In contrast, when multiple parallel (simultaneous) provers are involved, the
situation changes. In particular, we need to take into account that possibility that
one or more of the t provers is running malicious code. Suppose that a malicious
code-running prover Px. Then, if we näıvely modify our protocol from Figure 5
as shown in Figure 6, the resulting protocol is insecure. The reason for the lack
of security is simple: suppose that Px ignores the message in round 1.0 and does
not store verifier-supplied randomness. Then, in round 2.0, Px over-hears and
records a reply – MACK(R1, ..., Rn−k) – from an honest prover P1. Clearly,
Px can just replay this MAC and thus convince the verifier of having received

and stored the randomness from message 1.0.
The above discussion leads us to amend the adversarial model as follows: the

adversary is allowed to record any portion of the protocol. However, for fear of
being detected, it is not allowed to transmit anything that is not part of the
protocol. In particular, during the protocol, none of the (potentially compro-
mised) t provers can transmit anything that is not part of the protocol. And, no
extraneous entity can transmit anything to any of the t provers.

The modified (and secure) protocol that supports t > 1 provers is shown in
Figure 7. The main difference from the insecure version in Figure 6 is the fact
that random and distinct keys Kj are generated and sent to each prover Pj .

20

Assume reachable provers P1, ..., Pt and 1 < j ≤ t

[1.0] Pj ⇐= V : R1, ..., Rn where K = Rn−k, ..., Rn

[2.0] Pj −→ V : MACK(R1, ..., Rn−k)

[3.1] Pj ⇐= V : k′

[3.2] Pj : C1, ..., Cn−k = DK′(R1, ..., Rn−k)

[4.0] Pj −→ V : ACK

Fig. 6: Insecure Multi-Prover Protocol

Assume reachable provers P1, ..., Pt and 1 < j ≤ t

[1.1] Pj ⇐= V : R1, ..., Rn − k
[1.2] Pj ←− V : Kj where k = |Kj |
[2.0] Pj −→ V : MACKj (R1, ..., Rn−k)

[3.1] Pj ⇐= V : K′

[3.2] Pj : C1, ..., Cn−k = DK′(R1, ..., Rn−k)

[4.0] Pj −→ V : ACK

Fig. 7: Multi-Prover Protocol

This protocol guarantees that, in the context of the modified adversarial
model, each prover has to independently store the randomness sent by the ver-
ifier. Since, the key sent by the verifier is unique to each prover and so is the
MAC computation. This assertion clearly needs to be substantiated via a proof
of security. This issue will be addressed as part of our future work.
Caveat: We acknowledge that, while the multi-prover protocol achieves better
performance through parallelization, it does not improve energy consumption on
each prover. We plan to explore this issue as part of our future work.

