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New Montgomery-based Semi-systolic
Multiplier for Even-type GNB of GF (2m)

Zhen Wang and Shuqin Fan

Abstract—Efficient finite field multiplication is crucial for implementing public key cryptosystem. Based on new Gaussian normal
basis Montgomery (GNBM) representation, this paper presents a semi-systolic even-type GNBM multiplier. Compared with the
only existing semi-systolic even-type GNB multiplier, the proposed multiplier saves about 57% space complexity and 50% time
complexity.

Index Terms—Finite field multiplication, Gaussian normal basis, elliptic curve cryptosystem, Montgomery, systolic architecture.
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1 INTRODUCTION

F INITE field arithmetic has gained much of at-
tention in cryptography, especially public key

cryptography based on complex arithmetic such as
Elliptic Curve Cryptosystems[1]. The main arithmetic
operation in finite field is multiplication since addition
is done easily and other operations, inversion and
exponentiation, can be done with consecutive multi-
plications. Therefore, efficient implementation of mul-
tiplication is crucial for cryptographic applications.
Binary fields GF (2m) are more attractive compared
with prime field in practical applications, since they
are suitable for hardware implementation.

The basis to represent field element has an im-
portant role in deciding the efficiency of finite field
multiplier. The most commonly used bases include
polynomial basis (PB) or standard basis, dual ba-
sis (DB) and normal basis (NB). As compared to
other two bases, the major advantage of NB is sim-
ple squaring arithmetic by shift operation. Thus NB
multipliers are very effectively applied on inversion
and exponentiation. Various architectures for normal
basis multiplication have been proposed, such as
bit-level style[4],[5], digital-level style[6],[7] and par-
allel style[8],[9],[10],[11],[12]. Among these designs,
bit-parallel systolic architectures are fundamentally
suited to rapid computation and depend on regu-
lar circuity to perform arithmetic. As a special class
of normal basis, Gaussian normal basis (GNB) has
received considerable attention for its low complex-
ity, which has been included by many standards,
such as NIST[2] and IEEE[3]. Kwon[10] proposed
the first novel systolic type-2 GNB multiplier using
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self duality of normal basis. Unlike Kwon, without
using self duality, Bayat-Sarmadi[11] also announced
a semi-systolic type-2 GNB multiplier. However, type-
2 GNBs over GF (2m) take up a small proportion as
shown in [3], about 16% for 2 ≤ m ≤ 1000. Also,
among the five NIST-suggested fields for elliptic curve
digital signature algorithm(ECDSA)[2], the four of
them have GNB of even type t ≥ 4, i.e., type-4 GNB
for GF (2163) and GF (2409), type-6 GNB for GF (2283)
and type-10 GNB for GF (2571). For these reasons, it
is important to study the multiplication using GNB of
general type. However, the only existing bit parallel
systolic multiplier using GNB of general type is that
of Chiou[12].

Montgomery representation was first introduced
by Montgomery[16] for fast modular integer mul-
tiplication to alleviate complex modular reduction.
Generally speaking, since no modular reduction is
required in multiplication using Gaussian normal ba-
sis, no GNB multiplier based on Montgomery rep-
resentation exists. In this work, based on the pro-
posed GNB Montgomery (GNBM) representation, we
present a semi-systolic even-type GNBM multiplier.
Here, adoption of Montgomery representation is to
reduce time and space complexity in a systolic ar-
chitecture. Using this new scheme, a slightly com-
plex representation conversion from GNB to GNBM
is necessary. But the costs of the conversion is not
an important factor in the case where one imple-
ments a cryptosystem. For example, consider scalar
multiplication in ECC implementation, the complex
conversion occurs only once before starting the ECC
operation. The most important is that our multiplier
shows a good performance. Compared with the only
existing semi-systolic even-type GNB multiplier[12],
the proposed multiplier saves about 57% space com-
plexity and 50% time complexity.

The organization of this paper is as follows: In
section 2, a review about Gaussian normal basis is
given and the proposed new GNB Montgomery rep-
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resentation is also addressed. Then a semi-systolic
even-type GNBM multiplier is presented in section
3. In section 4, a comparison is given to evaluate our
multiplier. Conclusions are finally drawn in section 5.

2 PRELIMINARIES
In this section, a review about Gaussian normal basis
representation is given. Following that, the proposed
new GNB Montgomery representation is also ad-
dressed.

2.1 Gaussian Normal Basis Representation
Normal basis representation has the computational
advantage that squaring can be done by simple shift
operation. Multiplication, on the other hand, can be
cumbersome in general. For this reason, it is common
to specialize to a class of normal basis, called Gaussian
normal basis, for which multiplication is both simple
and efficient. Moreover, it is pointed out that GNBs
exist for GF (2m) whenever m is not divisible by
eight[13].

Definition 1. ([14]) Let p = mt + 1 be a prime number.
A Gauss period of type (m, t) over F2 is defined as β =

γ+γα+· · ·+γαt−1

, where γ and α are primitive mt+1-th,
t-th roots in GF (2p−1) and Fp respectively.

Theorem 1. ([14])Let k denotes the multiplicative order
of 2 module p. If gcd(mt/k,m) = 1, then the set I1 =

{β, β2, · · · , β2m−1} generated by type (m, t) Gaussian pe-
riod β is a normal basis for finite field GF (2m) , called
type-t Gaussian normal basis.

The type value t of a Gaussian normal basis can be
used to measure the complexity of the multiplication.
The smaller the type value, the more efficient the
multiplication. In [3], for each m(2 ≤ m ≤ 1000) not
divisible by eight, the smallest type value t among
Gaussian normal basis for GF (2m) is given. It is
shown that even-type GNBs take up a big proportion,
about 75%. Thus, finite fields GF (2m) with even-type
Gaussian normal basis are studied in this paper.

2.2 Gaussian Normal Basis with Even Type
Consider GNB with even type t for GF (2m), from
Definition 1,

I1={β, β2, · · · , β2m−1

}

={
t−1∑
i=0

γαi

,

t−1∑
i=0

γ2αi

, · · · ,
t−1∑
i=0

γ2m−1αi

}.

Since α is a primitive t-th root and t is an even integer,
then we have αt/2 = −1 and for 1 ≤ j ≤ m − 1,∑t−1

i=0 γ
2jαi

=
∑t/2−1

i=0 (γ2jαi

+ γ−2jαi

). Thus, normal
basis I1 can be extended to an intermediate ‘basis’,
denoted by I2:

I2={γ + γ−1, · · · , γαt/2−1

+ γ−αt/2−1

, · · · ,
γ2m−1

+ γ−2m−1

, · · · , γ2m−1αt/2−1

+ γ−2m−1αt/2−1

}.

TABLE 1
The Coefficients Relationship between A, A2 and A1/2

for Type-4 GNB over GF (27)

A A1 A2 A3 A4 A5 A6 A7

A2 A14 A1 A13 A2 A12 A3 A11

A1/2 A2 A4 A6 A8 A10 A12 A14

A A8 A9 A10 A11 A12 A13 A14

A2 A4 A10 A5 A9 A6 A8 A7

A1/2 A13 A11 A9 A7 A5 A3 A1

Since {2jαi : 0 ≤ j ≤ m − 1, 0 ≤ i ≤ t − 1} and
{i : 1 ≤ i ≤ mt} are the same set in Fp[13] and γp = 1,
the sets {±2jαi : 0 ≤ j ≤ m − 1, 0 ≤ i ≤ t/2 − 1} and
{±i : 1 ≤ i ≤ mt/2} are same. Then the basis I2 can
be converted to the following basis I3:

I3 = {γ + γ−1, γ2 + γ−2, · · · , γmt/2 + γ−mt/2}.

In fact, conversion between I1 and I3 representation,
referred to as palindromic representation[12],[15], is
simple. For 1 ≤ i ≤ mt, denote

< i >=

{
i, 1 ≤ i ≤ mt/2;
mt+ 1− i,mt/2 < i ≤ mt.

If one element A ∈ GF (2m) represented by both I1
and I3, A =

∑m−1
i=0 A

′

iβ
2i =

∑mt/2
j=1 Aj(γ

j + γ−j), then
the relationship between the coefficients is as follows:

Aj=A
′

i(1 ≤ j ≤ mt/2, 0 ≤ i ≤ m− 1)

⇔∃k(0 ≤ k ≤ t− 1), s.t., < 2iαk >= j.

Fact 1. Let A =
∑mt/2

j=1 Aj(γ
j + γ−j)=(A1, A2, · · · ,

Amt/2) be an element of GF (2m) in I3 representation, then
squaring and square root of A can be obtained by simple
permutation as follows, where i = ⌊mt

4 ⌋,

A2 =

{
(Amt

2
, A1, Amt

2
−1, A2, · · · , Amt

2
−i+1, Ai, Ai+1),if 4 ̸ |mt;

(Amt
2
, A1, Amt

2
−1, A2, · · · , Amt

2
−i+1, Ai), otherwise.

A1/2 = (A2, A4, · · · , A2i, A<2i+1>, · · · , A3, A1).

To illustrate Fact 1, a type-4 GNB over GF (27) is
used for an example and shown in Table 1, where
A =

∑14
j=1 Aj(γ

j + γ−j) = (A1, A2, · · · , A14).

2.3 New GNB Montgomery Representation
Montgomery multiplication (MM) algorithm has been
proposed in [16] for fast modular integer multiplica-
tion. By employing a suitable factor R, the multipli-
cand a is represented by aR−1. In our paper, the aim
of using Montgomery representation is to save space
and time complexity and the Montgomery factor is
chosen as R = γ + γ−1. Let B =

∑mt/2
j=1 Bjβj be an

element of GF (2m) with respect to I3 representation
and the corresponding Montgomery representation is
BM = Bβ−1

1 =
∑mt/2

j=1 bjβj , where βj = γj + γ−j , 1 ≤
j ≤ mt/2. The conversion between I3 representation
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and Montgomery representation can be given as fol-
lows.

B=BMβ1 = β1

∑mt/2
j=1 bjβj

=b2β1 + (b1 + b3)β2 + (b2 + b4)β3 + · · ·
+(bi−1 + bi+1)βi + · · ·+ (bmt

2 −2 + bmt
2
)βmt

2 −1

+(bmt
2 −1 + bmt

2
)βmt

2

=B1β1 +B2β2 +B3β3 + · · ·+Biβi

+ · · ·+Bmt
2 −1βmt

2 −1 +Bmt
2
βmt

2
.

(1)

Observing the above formula, a recurrence relation
between bi and Bj can be given:

b<2> = B<1>,
b<4> = B<3> + b<2>,
· · · ,
b<2i> = B<2i−1> + b<2i−2>,
· · · ,
b<mt> = B<mt−1> + b<mt−2>.

Example 1. Let B = (b1, b2, b3, b4, b5) be an element in
GNB Montgomery representation over GF (25), where a
type-2 GNB exists. By multiplying Montgomery factor β1,
I3 representation of B can be obtained, B = (b2, b1 +
b3, b2 + b4, b3 + b5, b4 + b5). Therefore, the coefficients
relationship can be given, b2 = B1, b4 = B3 + b2, b5 =
b<6> = B5 + b4, b3 = b<8> = B<7> + b<6> =
B4 + b5, b1 = b<10> = B<9> + b<8> = B2 + b3.

According to the illustration above, the conversion
from I3 representation to Montgomery representation
requires mt − 1 XOR gates and mt − 1 TXOR delays.
Conversely, conversion from Montgomery represen-
tation to I3 representation needs mt/2− 1 XOR gates
and only one TXOR delay. As aforementioned, in the
environment of cryptosystem implementation which
requires many multiplications, the costs of the initial
representation conversion can be neglected.

3 NEW SEMI-SYSTOLIC EVEN-TYPE GNBM
MULTIPLIER

Based on the proposed GNB Montgomery (GNBM)
representation, a semi-systolic GNBM multiplier is
developed in this section.

Let C be the product of A and B, where A, B
and C ∈ GF (2m) are given in I3 representation.
And, the corresponding GNBM representation are
AM , BM and CM , i.e., AM = Aβ−1

1 =
∑mt/2

i=1 aiβi,
BM = Bβ−1

1 =
∑mt/2

i=1 biβi and CM = β1AMBM . Then
the computation of CM can be given by

CM=β1AMBM

=β1(AM1 +AM2)BM

=BM (β1AM1) +BAM2. (2)

where AM1, AM2 are sums of βi with the subscript i
odd and even respectively, i.e.,

AM1 =

{
a1β1 + a3β3 + · · ·+ amt

2
βmt

2
, if 4 ̸ |mt;

a1β1 + a3β3 + · · ·+ amt
2 −1βmt

2 −1, otherwise.

AM2 =

{
a2β2 + a4β4 + · · ·+ amt

2 −1βmt
2 −1, if 4 ̸ |mt;

a2β2 + a4β4 + · · ·+ amt
2
βmt

2
, otherwise.

It is easy to check that

β1AM1 =


(a1 + a3)β2 + (a3 + a5)β4 + · · ·+
(amt

2
−2 + amt

2
)βmt

2
−1 + amt

2
βmt

2
+1, if 4 ̸ |mt;

(a1 + a3)β2 + (a3 + a5)β4 + · · ·+
(amt

2
−2 + amt

2
)βmt

2
−2 + amt

2
−1βmt

2
, otherwise.

(3)

That is to say both β1AM1 and AM2 in Equation
(2) are composed of βi with the subscript i an even
number. It is should be noted that (2) can be computed
by another way

CM=(B
1
2

M (β1AM1)
1
2 +B

1
2A

1
2

M2)
2 = (C1 + C2)

2, (4)

where C1 = B
1
2

M (β1AM1)
1
2 and C2 = B

1
2A

1
2

M2.

From Fact 1, B
1
2

M and B
1
2 can be obtained by simple

permutation by taking square root of BM and B

respectively. Also, (β1AM1)
1
2 and A

1
2

M2 can be got
without computation since they are both composed
of βi with the subscript i an even number, that is

(β1AM1)
1
2 =


(a1 + a3)β1 + (a3 + a5)β2 + · · ·+ (amt

2
−2

+amt
2
)β(mt

2
−1)/2 + amt

2
β(mt

2
+1)/2, if 4 ̸ |mt;

(a1 + a3)β1 + (a3 + a5)β2 + · · ·+ (amt
2

−2

+amt
2
)β(mt

2
−2)/2 + amt

2
−1β(mt

2
)/2, otherwise.

(5)

and

A
1
2
M2 =


a2β1 + a4β2 + · · ·+ amt

2
−1β(mt

2
−1)/2

+0β(mt
2

+1)/2, if 4 ̸ |mt;

a2β1 + a4β2 + · · ·+ amt
2
βmt

2
/2, otherwise.

(6)

According to (5) and (6), denote D =
∑mt/2

i=1 diβi,
E =

∑n
j=1 ejβj , where n = ⌈mt

4 ⌉. Then we find that
both C1 and C2 in (4) have the following similar
formulation,

F = DE = (

mt/2∑
i=1

diβi)(

n∑
j=1

ejβj). (7)

Suppose that an efficient multiplier for computing F
can be designed, then from Equation (4) we can easily
see that CM can be obtained by two computation
rounds. Now we focus on it. Rewrite

F =
n∑

j=1

ejD
(j), D(j) = D(γj + γ−j). (8)

For 1 ≤ j ≤ mt/2, since γj and γ−j of D(j) always
have the same coefficient, so we can only consider
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the former. In fact,

D(j)=D(γj + γ−j)

=γj

mt/2∑
i=1

di(γ
i + γ−i) + γ−j

mt∑
i=1

d<i>γ
i

=(dj−1 + d<j+1>)γ + · · ·+ (dj−s + d<s+j>)γ
s +

· · ·+ (d0 + d<2j>)γ
j + · · ·+ (dk−j + d<k+j>)γ

k

+ · · ·+ (dmt/2−j + d<mt/2+j>)γ
mt/2 + Part[γ−i]

=

mt/2∑
l=1

(d|l−j| + d<l+j>)(γ
l + γ−l),

where | · | denotes the absolute value of ·, d0 = 0 and
Part[γ−i] indicates the γ−i part of D(j) with the same
coefficients as γi. Thus we have

F=DE =

n∑
j=1

ejD
(j)

=

mt/2∑
l=1

n∑
j=1

ej(d|l−j| + d<l+j>)(γ
l + γ−l). (9)

Therefore each coefficient of F can be given by

fl =
n∑

j=1

ej(d|l−j| + d<l+j>), 1 ≤ l ≤ mt/2.

Let f (i)
l =

∑i
j=1 ej(d|l−j| + d<l+j>), then

f
(i)
l = f

(i−1)
l + ei(d|l−i| + d<l+i>), (10)

where 1 ≤ i ≤ n, and f
(0)=0
l .

Observing expression (10), a multiplication algo-
rithm for computing F is addressed as follows.

Algorithm 1
Input: D =

∑mt/2
i=1 diβi, E =

∑n
j=1 ejβj , d0 = 0

Output: F = DE =
∑mt/2

j=1 fjβj .

1. Initialization: f (0)
j = 0, j = 1, 2, · · · ,mt/2.

2. For j = 1 To mt/2

P
(0)
j = d|j−1| + d<j+1>.

3. For k = 1 To n− 1
For j = 1 To mt/2 compute parallel

{f (k)
j = f

(k−1)
j + ekP

(k−1)
j ;

P
(k)
j = d|j−k−1| + d<j+k+1>.}

4. For j = 1 To mt/2

f
(n)
j = f

(n−1)
j + enP

(n−1)
j .

Then final value f
(n)
j = fj , for 1 ≤ j ≤ mt/2.

Following Algorithm 1, a semi-systolic multiplier
for computing F is presented in Fig. 1, where
denotes one bit latch(flip-flop). The details of V , U
and T cell are also given in Fig. 2, where ⊕ and ⊗
denote XOR and AND gate respectively.

Since the multiplier for computing F has been
given, then according to (4) the multiplier can be
adopted to design GNBM multiplier for computing
CM by the following steps:

V1 V2 Vi Vmt/2-1 Vmt/2

U1,1 U1,2 U1,i U1,mt/2-1 U1,mt/2

U2,1 U2,2 U2,i U2,mt/2-1 U2,mt/2

Uj,1 Uj,2 Uj,i Uj,mt/2-1 Uj,mt/2

Un-1,1 Un-1,2 Un-1,i Un-1,mt/2-1 Un-1,mt/2

T1 T2 Ti Tmt/2-1 Tmt/2

0
d

1
d

2
d id /2 1mtd  /2mtd

0 0000

1
e

2
e

je

1ne  

ne

1
f

2
f

if /2 1mtf  /2mtf

F Multiplier 

Fig. 1. The semi-systolic multiplier for computing F
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( )a

d|j-1| d<j+1>

 

d|j-k-1|

ek

( )b

d<j-k+1>

 !

( )c

d|j-n| d<j+n>

en

Fig. 2. (a)V cell (b)U cell (c)T cell of F -Multiplier

Step 1. C1 = F (B
1
2

M , (β1AM1)
1
2 );

Step 2. C2 = F (B
1
2 , A

1
2

M2);

Step 3. CM = (C1 + C2)
2.

The general GNBM architecture is depicted in Fig.
3, where SRP and SP denote simple permutation
of square root and squaring operation, respectively.
Given that squaring root on AM2 and β1AM1 has no
affect on their coefficients, we directly use them as
input for simplicity. As Fig. 3 depicts, to compute
CM , two computation rounds are necessary. C1 is
computed in the first round and then added to C2

which is computed in the second round. After that,
using a simple squaring on the summation, the final
multiplication result CM is achieved. Meantime, C
can also be obtained from CM by multiplying β1.
From (1) and (3), all ×β1 functions in this multiplier
are to be done in one TXOR delay contained in one
cell delay. It is worth mentioning that since both CM

and C have been computed, they can be used for
further computation, e.g., multiple computations in
scalar multiplication in ECC.
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TABLE 2
Comparison of Various Systolic GNB Multipliers

multiplier Kwon[10] Chiou[12] proposed GNBM multiplier(Fig.3)
t(type-t GNB) 2 even even

array type systolic semi-systolic semi-systolic
number of cells m2 mt(mt+ 1)/2 (n+ 1)mt/2

Space complexity
2-input AND 2m2 +m mt(mt+ 1)/2 mtn/2
2-input XOR mt(mt+ 1)/2 + 2mt+ 1 (n+ 1)mt+ n− 2
3-input XOR m2 +m

1-bit latch 5m2 + 2m− 2 (mt+ 1)2 + (mt− 2)(mt− 4)/8 2mt(n+ 1) + (n+ 1)(n+ 2)/2
total transistor 64m2 + 34m− 16 15(mt)2 + 28mt+ 22 25mtn+ 4n2 + 22mt+ 18n− 4

counts Type-2: 60m2 + 56m+ 22 ≈ 6.5(mt)2 + 26.5mt− 4
Type-2: 26m2 + 53m− 4

Time complexity
cell delay TA + T3X + TL TA + TX + TL TA + TX + TL

latency m+ 1 mt/2 + 1 n+ 2
total delay (m+ 1)(TA + T3X + TL) (mt/2 + 1)(TA + TX + TL) (n+ 2)(TA + TX + TL)

Type-2: (m+ 1)(TA + TX + TL) ≈ (mt/4 + 2)(TA + TX + TL)
Type-2: (m/2 + 2)(TA + TX + TL)

total delay 44(m+ 1) 32(mt/2 + 1) 32(mt/4 + 2)
(unit:ns) Type-2: 32(m+ 1) Type-2: 16(m+ 4)

throughput 1 1/2 1/2
(unit:1/cycle)

Notes: 1) TA,TX ,T3X ,TL denote the propagation delays of a 2-input AND gate, a 2-input XOR gate, a 3-input XOR
gate and a 1-bit Latch respectively. 2) n = ⌈mt

4
⌉.

F-Multiplier

2MA

M
B

B

1
st
-round

2
nd
-round

 
2
C

1
C

SRP

SP
!

1
"

M
C C

1M
A

!

1
"

Fig. 3. Proposed semi-systolic even-type GNBM mul-
tiplier

4 COMPARISON

In section 3, a new semi-systolic GNBM multiplier is
proposed. To better evaluate our multiplier, a com-
parison, in Table 2, is made between various systolic
GNB multiplier. For space complexity, the following
CMOS VLSI technology is adopted to take count
of transistors: 2-input AND, 2-input XOR and 1-
bit latch are composed of 6, 6 and 8 transistors,

respectively[17]. To compare time complexity, real
circuits are also applied, such as M74HC86 (STMi-
croelectronics, XOR gate, tPD = 12 ns(TYP.))[19],
M74HC08 (STMicroelectronics, AND gate, tPD = 7
ns (TYP.))[18] and M74HC279 (STMicroelectronics, SR
Latch, tPD = 13 ns(TYP.))[20]. As demonstrated,
compared with the only existing semi-systolic even-
type GNB multiplier[12], the proposed GNBM mul-
tiplier saves about 57% space complexity and 50%
time complexity. For the case of type-2 GNB (also
called type-2 ONB), our multiplier saves about 59%
space complexity and 64% time complexity but with
low throughput when compared with Kwon’s systolic
multiplier[10].

5 CONCLUSION

Based on the proposed new Gaussian normal basis
Montgomery (GNBM) representation, this paper de-
velops a semi-systolic even-type GNBM multiplier
over GF (2m). No Montgomery-based Gaussian nor-
mal basis multiplier has been presented in previous
literature as we know. Since our multiplier is designed
for finite fields with GNB of even type (not limited
to type 2), which include the five NIST-suggested
fields for ECDSA, it is expected to find more appli-
cations in practice. Moreover, the proposed GNBM
multiplier outperforms previous related works in both
space and time complexity. Our results show that
about 57% space complexity and 50% time complex-
ity are saved when compared with the only exist-
ing semi-systolic even-type GNB multiplier[12]. Com-
pared with Kwon’s systolic GNB multiplier[10] for the
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case of type 2, our multiplier saves about 59% space
complexity and 64% time complexity. Therefore, the
proposed GNBM multiplier can be used effectively in
Elliptic Curve Cryptosystem.
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