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Abstract

We define the BQS-UC model, a variant of the UC model, that deals with protocols
in the bounded quantum storage model. We present a statistically secure commitment
protocol in the BQS-UC model that composes concurrently with other protocols and
an (a-priori) polynomially-bounded number of instances of itself. Our protocol has an
efficient simulator which is important if one wishes to compose our protocol with protocols
that are only computationally secure. Combining our result with prior results, we get a
statistically BQS-UC secure constant-round protocol for general two-party computation
without the need for any setup assumption.
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1 Introduction

Since the inception of quantum key distribution by Bennett and Brassard [BB84], it has been
known that quantum communication permits to achieve protocol tasks that are impossible
given only a classical channel. For example, a quantum key distribution scheme [BB84]
permits to agree on a secret key that is statistically secret, using only an authenticated but not
secret channel. (By statistical security we mean security against computationally unbounded
adversaries, also known as information-theoretical security.) In contrast, when using only
classical communication, it is easy to see that such a secret key can always be extracted
by a computationally sufficiently powerful adversary. In light of this result, one might hope
that quantum cryptography allows to circumvent other classical impossibility results, possibly
even allowing for statistically secure multi-party computation protocols. Yet, Mayers [May97]
showed that also in the quantum setting, even statistically secure commitment schemes are
impossible, let alone general multi-party computation. This is unfortunate, because from
commitments one can build OT (Bennett, Brassard, Crépeau, and Skubiszewska [BBCS91]),
and from OT general multi-party computation (Kilian [Kil88]). A way to work around this
impossibility was found by Damg̊ard, Fehr, Salvail, and Schaffner [DFSS05]. They showed
that if we assume that the quantum memory available to the adversary is bounded (we speak
of bounded quantum storage (BQS)), we can construct statistically secure commitment and
OT schemes. Although such a result is not truly unconditional, it avoids hard-to-justify
complexity-theoretic assumptions. Also, it achieves long-term security: even if the adversary
can surpass the memory bound after the protocol execution, this will not allow him to
retroactively break the protocol.

Yet, we still have not reached the goal of statistically secure multi-party computation.
Although we have protocols for commitment and OT, we cannot simply plug them into the
protocols by Bennett et al. [BBCS91] and by Kilian [Kil88]. The reason is that it is not
clear under which circumstances protocols in the BQS model may be composed. For exam-
ple, Dziembowski and Maurer [DM04] constructed a protocol that is secure in the classical
bounded storage model, but that looses security when composed with a computationally
secure protocol. To overcome this remaining difficulty, works by Wehner and Wullschleger
[WW08] and by Fehr and Schaffner [FS09] give security definitions in the BQS model that
enable secure sequential composition. Both works also present secure OT protocols in their
respective settings. Based on these, we can construct secure multi-party computation proto-
cols in the BQS model. There are, however, a few limitations. First, since only sequential
composition is supported, all instances of the OT protocol used by the multi-party compu-
tation need to be executed one after another, leading to a high round-complexity. Second,
interactive functionalities such as a commitment are difficult to use: the restriction to se-
quential composability requires that we have to commit and immediately open a commitment
before being allowed to execute the next commitment. Third, the security proof of their OT
protocols uses a computationally unlimited simulator. As discussed in [Unr10], a protocol
with an unlimited simulator cannot be composed with a computationally secure protocol.
Fourth, since we have no concurrent composability, it is not clear what happens if the proto-
cols are executed in an environment where we do not have total control about which protocols
are executed at what time.

To overcome the limitations of sequential composition in the classical setting, Canetti
[Can01] introduced the Universal Composability (UC) model. In this model, protocols can
be arbitrarily composed, even concurrently with other protocols and with copies of themselves.
The UC model has been adapted to the quantum setting by Ben-Or and Mayers [BOM04]
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and by Unruh [Unr04, Unr10]. In light of the success of the UC model, it seems natural
to combine the ideas of the UC model with those of the BQS model in order to allow for
concurrent composition.

1.1 Our contribution.

We define the notion of BQS-UC-security, which is an extension of quantum-UC-security
[Unr10]. We have composability in the following sense: If π is a secure realization of a
functionality F , and σF securely realizes G by using one instance of F , then σπ, the result
of replacing F by π, still securely realizes G. In contrast to quantum-UC-security, however,
BQS-UC-security does not allow for concurrent self-composition: if π is secure, this does not
automatically imply that two concurrent instances of π are secure.1

In order to get protocols that even self-compose concurrently, we design a commitment
scheme πCOM such that n concurrent instances of πCOM securely realize n instances of the
commitment functionality in the presence of a-memory bounded adversaries. Here a and n
are arbitrary (polynomially-bounded), but the protocol depends on a and n.

The challenging part in the construction of πCOM is that BQS-UC-security requires the
following: There must be an efficient simulator (which is allowed to have more quantum
memory than the adversary) that can extract the committed value (extractability) or change
it after the commit phase (equivocality). Prior constructions of commitment schemes in the
BQS model required computationally unbounded simulators. Also, the fact that we directly
analyze the concurrent composition of several instances of πCOM requires care: In the proof,
we have hybrid networks in which instances of both πCOM and of the simulator occur. Since
the simulator uses more quantum memory than πCOM tolerates, one needs to ensure that
the simulator cannot be (mis)used by the adversary to break the commitment.

Finally, using the composition theorem and πCOM, for any two-party functionality G, we
get a statistically secure protocol π realizing G in the BQS model.2 The protocol is secure
even when running n concurrent instances of the protocol. (Again, this holds for any n and
any memory bound, but the protocol depends on n and the memory-bound.) The protocol
is constant-round. It does not use any quantum memory or quantum computation and thus
is in the reach of today’s technology.

1.2 Preliminaries

General. A nonnegative function µ is called negligible if for all c > 0 and all sufficiently
large k, µ(k) < k−c. µ is called exponentially-small if for some c > 0 and sufficiently large k,
µ(k) < c−k. A nonnegative function f is called overwhelming if f ≥ 1−µ for some negligible
µ. Keywords in typewriter font (e.g., environment) are assumed to be fixed but arbitrary
distinct non-empty words in {0, 1}∗. ε ∈ {0, 1}∗ denotes the empty word. We write ‖ for the
concatenation of bitstrings. Given a bitstring x, we write xI for x restricted to the indices in
the set I. Given a set M , we write M∁ for its complement. A b-block (m,κ, d)-linear code is
a code with alphabet {0, 1}b (that is, each symbol of the code is a b-bit string), codewords

1The reader may wonder how it can be that σ and π may compose in general while π and π do not. Might
not σ and π be the same protocol? The reason lies in the exact conditions of the composition theorem: In
order to compose, σ needs to be secure against adversaries with a higher quantum memory bound than π

tolerates. Thus σ and π cannot be the same protocol.
2We are restricted to two-party functionalities because our construction uses a subprotocol by Wolf and

Wullschleger [WW06, Wul07] to reverse the direction of an OT; this protocol only makes sense in a two-party
setting.
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of length m (i.e., mb bits), size 2bκ, and detecting d− 1 errors (i.e., any non-zero codeword
contains at least d non-zero blocks). The Hamming distance between x and x∗ we denote
ω(x, x∗). (In the case of a block code, this is the number of blocks, not bits, that differ.) We
say a family of (m,κ, d)-linear codes, parametrized by a security parameter k, has efficient
error-correction if for any x, the codeword x∗ with ω(x, x∗) ≤ (d − 1)/2 can be found in
deterministic time polynomial in k (if such an x∗ exists).

Quantum systems. We can only give a terse overview over the formalism used in quantum
computing. For a thorough introduction, we recommend the textbook by Nielsen and Chuang
[NC00, Chap. 1–2]. A (pure) state in a quantum system is described by a vector |ψ〉 in
some Hilbert space H. In this work, we only use Hilbert spaces of the form H = CN for
some countable set N , usually N = {0, 1} for qubits or N = {0, 1}∗ for bitstrings. We
always assume a designated orthonormal basis {|x〉 : x ∈ N} for each Hilbert space, called
the computational basis. The basis states |x〉 represent classical states (i.e., states without
superposition). Given several separate subsystems H1 = CN1 , . . . ,Hn = CNn , we describe
the joint system by the tensor productH1⊗· · ·⊗Hn = CN1×···×Nn . We write 〈Ψ| for the linear
transformation mapping |Φ〉 to the scalar product 〈Ψ|Φ〉. Consequently, |Ψ〉〈Ψ| denotes the
orthogonal projector on |Ψ〉. We set |0〉+ := |0〉, |1〉+ := |1〉, |0〉× := 1√

2
(|0〉 + |1〉), and

|1〉× := 1√
2
(|0〉− |1〉). For x ∈ {0, 1}n and θ ∈ {+,×}n, we define |x〉θ := |x1〉θ1⊗· · ·⊗ |xn〉θn .

Mixed states. If a system is not in a single pure state, but instead is in the pure state
|Ψi〉 ∈ H with probability pi (i.e., it is in a mixed state), we describe the system by a density
operator ρ =

∑

i pi|Ψi〉〈Ψi| over H. This representation contains all physically observable
information about the distribution of states, but some distributions are not distinguishable
by any measurement and thus are represented by the same mixed state. The set of all density
operators is the set of all positive3 operators H with trace 1, and is denoted P(H). Composed
systems are descibed by operators in P(H1 ⊗ · · · ⊗ Hn). In the following, when speaking
about (quantum) states, we always mean mixed states in the density operator representa-
tion. A mapping E : P(H1) → P(H2) represents a physically possible operation (realizable
by a sequence of unitary transformations, measurements, and initializations and removals of
qubits) iff it is a completely positive trace preserving map.4 We call such mappings superop-
erators. The superoperator Em

init on P(H) with H := C{0,1}∗ and m ∈ {0, 1}∗ is defined by
Em
init(ρ) := |m〉〈m| for all ρ.

Composed systems. Given a superoperator E on P(H1), the superoperator E⊗id operates
on P(H1 ⊗H2). Instead of saying “we apply E ⊗ id”, we say “we apply E to H1”. If we say
“we initialize H with m”, we mean “we apply Em

init to H”. Given a state ρ ∈ P(H1 ⊗H2), let
ρx := (|x〉〈x| ⊗ id)ρ(|x〉〈x| ⊗ id). Then the outcome of measuring H1 in the computational
basis is x with probability tr ρx, and after measuring x, the quantum state is ρx

tr ρx
. Since we

will only perform measurements in the computational basis in this work, we will omit the
qualification “in the computational basis”. The terminology in this paragraph generalizes to
systems composed of more than two subsystems.

Classical states. Classical probability distributions P : N → [0, 1] over a countable set N
are represented by density operators ρ ∈ P(CN ) with ρ =

∑

x∈N P (x)|x〉〈x| where {|x〉}
is the computational basis. We call a state classical if it is of this form. We thus have a
canonical isomorphism between the classical states over CN and the probability distributions

3We call an operator positive if it is Hermitean and has only nonnegative Eigenvalues.
4A map E is completely positive iff for all Hilbert spaces H′, and all positive operators ρ on H1 ⊗ H′,

(E ⊗ id)(ρ) is positive.
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over N . We call a superoperator E : P(CN1)→ P(CN2) classical iff if there is a randomized
function F : N1 → N2 such that E(ρ) =

∑

x∈N1
y∈N2

Pr[F (x) = y] · 〈x|ρ|x〉 · |y〉〈y|. Classical

superoperators describe what can be realized with classical computations. An example of
a classical superoperator on P(CN ) is Eclass : ρ 7→

∑

x〈x|ρ|x〉 · |x〉〈x|. Intuitively, Eclass
measures ρ in the computational basis and then discards the outcome, thus removing all
superpositions from ρ.

2 Bounded quantum storage UC

2.1 Review of quantum-UC

Machine model. A machine M is described by an identity idM in {0, 1}∗ and a sequence of

superoperators E
(k)
M (k ∈ N) on Hstate ⊗Hclass ⊗Hquant with Hstate ,Hclass ,Hquant := C{0,1}∗

(the state transition operators). The index k in E
(k)
M denotes the security parameter. The

Hilbert space Hstate represents the state kept by the machine between invocations, and Hclass

and Hquant are used both for incoming and outgoing messages. Any message consists of a
classical part stored in Hclass and a quantum part stored in Hquant . If a machine id sender

wishes to send a message with classical part m and quantum part |Ψ〉 to a machine idrcpt ,
the machine idsender initializes Hclass with (id sender , id rcpt ,m) and Hquant with |Ψ〉. (See
the definition of the network execution below for details.) The separation of messages into a
classical and a quantum part is for clarity only, all information could also be encoded directly
in a single register. If a machine does not wish to send a message, it initializes Hclass and
Hquant with the empty word ε.

A network N is a set of machines with pairwise distinct identities containing a machine Z
with idZ = environment. We write idsN for the set of the identities of the machines in N.

We call a machine M quantum-polynomial-time if there is a uniform5 sequence of quan-

tum circuits Ck such that for all k, the circuit Ck implements the superoperator E
(k)
M .

Network execution. The state space HN of a network N is defined as HN := Hclass ⊗
Hquant ⊗

⊗

id∈idsN
Hstate

id with Hstate
id ,Hclass ,Hquant := C{0,1}∗ . Here Hstate

id represents the

local state of the machine with identity id and Hclass and Hquant represent the state spaces
used for communication. (Hclass and Hquant are shared between all machines. Since only one
machine is active at a time, no conflicts occur.)

A step in the execution of N is defined by a superoperator E := E
(k)
N

operating on HN.
This superoperator performs the following steps: First, E measures Hclass in the computa-
tional basis and parses the outcome as (id sender , id rcpt ,m). Let M be the machine in N with

identity idrcpt . Then E applies E
(k)
M to Hstate

idrcpt
⊗ Hclass ⊗ Hquant . Then E measures Hclass

and parses the outcome as (id ′
sender , id

′
rcpt ,m

′). If the outcome could not be parsed, or if

id ′
sender 6= id rcpt , initialize Hclass with (ε, environment, ε) and Hquant with ε. (This ensures

that the environment is activated if a machine sends no or an ill-formed message.)
The output of the network N on input z and security parameter k is described by the

following algorithm: Let ρ ∈ P(HN) be the state that is initialized to (ε, environment, z) in
Hclass , and to the empty word ε in all other registers. Then repeat the following indefinitely:

Apply E
(k)
N

to ρ. Measure Hclass . If the outcome is of the form (environment, ε, out), return

5A sequence of circuits Ck is uniform if a deterministic Turing machine can output the description of Ck

in time polynomial in k.

5



out and terminate. Otherwise, continue the loop. The probability distribution of the return
value out is denoted by ExecN(k, z).

Corruptions. To model corruptions, we introduce corruption parties, special machines that
follow the instructions given by the adversary. When invoked, the corruption party PC

id with
identity id measures Hclass and parses the outcome as (id sender , id rcpt ,m). If id sender =
adversary, Hclass is initialized with m. (In this case, m specifies both the message and the
sender/recipient. Thus the adversary can instruct a corruption party to send to arbitrary
recipients.) Otherwise, Hclass is initialized with (id , adversary, (id sender , id rcpt ,m)). (The
message is forwarded to the adversary.) Note that, since PC

id does not touch the Hquant , the
quantum part of the message is forwarded.

Given a network N, and a set of identities C, we write NC for the set resulting from
replacing each machine M ∈ N with identity id ∈ C by PC

id .

Security model. A protocol π is a set of machines with environment, adversary /∈ ids(π).
We assume a set of identities partiesπ ⊆ ids(π) to be associated with π. partiesπ denotes
which of the machines in the protocol are actually protocol parties (as opposed to incorrupt-
ible entities such as ideal functionalities).

An environment is a machine with identity environment, an adversary or a simulator is
a machine with identity adversary (there is no formal distinction between adversaries and
simulators, the two terms refer to different intended roles of a machine).

In the following we call two networks ε-indistinguishable if for all z ∈ {0, 1}∗ and k ∈ N,
|Pr[ExecN (k, z) = 1] − Pr[ExecM (k, z) = 1]| ≤ ε(k). We call two networks indistinguishable
if they are ε-indistinguishable for negligible ε. We speak of perfect indistinguishability if
ε = 0.

Without assuming a memory bound, this leads to the following definition of quantum-
UC-security:6

Definition 1 (Quantum-UC-security [Unr10]) Let protocols π and ρ be given. We say
π quantum-UC-emulates ρ iff for every set C ⊆ partiesπ and for every adversary Adv there
is a simulator Sim such that for every environment Z, the networks πC∪{Adv,Z} (called the
real model) and ρC ∪{Sim,Z} (called the ideal model) are indistinguishable. We furthermore
require that if Adv is quantum-polynomial-time, so is Sim.

2.2 The BQS-UC model

In order to define BQS-UC, we first need a definition of a memory-bounded machine. We
call a machine M b-memory bounded if the machine never stores more than b qubits between
invocations. We stress that we do not impose any bound on the classical memory.

Definition 2 (Memory bounded machines) Let a be a function in the security param-
eter k. We call a machine M a-memory bounded if for every k, we can decompose
Hstate as Hstate,q ⊗ Hstate,c with Hstate,q := C{0,1}a(k)

and Hstate,c := C{0,1}∗ such that
E

(k)
M = (Eclass ⊗ id) ◦ E

(k)
M . We write QM(M) for the smallest a such that M is a-memory

bounded.

We can now formulate BQS-UC-security. Intuitively, a protocol is BQS-UC-secure if
it is UC-secure for memory-bounded adversaries. To formulate this, we need to explicitly
parametrize the definition over a memory bound a. Then we require that the total quantum

6In [Unr10], this notion is called statistical quantum-UC-security. Since we do not consider computational
security in this paper, we omit the qualifier statistical from all definitions.
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memory used by environment and adversary is bounded by a. The reason why we include
the environment’s memory is that the latter can be involved in the actual attack: If only the
adversary’s memory was bounded, the adversary could use the environment as an external
storage to perform the attack.7

It remains to decide whether the simulator should be memory bounded. If we allow
the simulator to be unbounded, composition becomes difficult: In some cases, the simulator
of one protocol plays the role of the adversary of a second protocol. Thus, if simulators
where not memory bounded, the second protocol would have to be secure against unbounded
adversaries. However, if we require the simulator to be a-memory bounded, we will not be
able to construct nontrivial protocols: In order to perform a simulation, the simulator needs
to have some advantage over an honest protocol participant (in the computational UC setting,
e.g., this is usually the knowledge of some trapdoor). In our setting, the advantage of the
simulator will be that he has more quantum memory than the adversary. Thus we introduce
a second parameter s which specifies the amount of quantum memory the simulator may
use for the simulation. More precisely, we allow the simulator to use s + QM(Adv) qubits
because the simulator will usually internally simulate the adversary Adv as a black-box and
therefore have to additionally reserve sufficient quantum memory to store the adversary’s
state.

Definition 3 (BQS-UC-security) Fix protocols π and ρ. Let a, s ∈ N0 ∪ {∞} (pos-
sibly depending on the security parameter). We say π (a, s)-BQS-UC-emulates8 ρ iff
for every set C ⊆ partiesπ and for every adversary Adv there is a simulator Sim with
QM(Sim) ≤ s+ QM(Adv) such that for every environment Z with QM(Z) + QM(Adv) ≤ a,
the networks πC ∪{Adv,Z} (called the real model) and ρC ∪{Sim,Z} (called the ideal model)
are indistinguishable. We furthermore require that if Adv is quantum-polynomial-time, so
is Sim.

We first state a few useful properties of BQS-UC.

Lemma 4 Let π, ρ, σ be protocols.
(i) Reflexivity: π (∞, 0)-BQS-UC-emulates π.
(ii) Transitivity: If π (a, s)-BQS-UC emulates ρ and ρ (a+s, s′)-BQS-UC emulates σ, then

π (a, s+ s′)-BQS-UC-emulates σ.
(iii) Monotonicity: If a′ ≤ a and s′ ≥ s and π (a, s)-BQS-UC emulates ρ, then π (a′, s′)-

BQS-UC emulates ρ.
(iv) Relation to quantum-UC: π quantum-UC emulates ρ iff there is a polynomial s such

that π (∞, s)-BQS-UC emulates ρ.

Proof. Reflexivity and monotonicity follow directly from Definition 3.
To show transitivity, assume that π (a, s)-BQS-UC emulates ρ and ρ (a+ s, s′)-BQS-UC

emulates σ. Fix an adversary Adv and an environment Z with QM(Z) + QM(Adv) ≤ a. To
show that π (a, s + s′)-BQS-UC-emulates σ we need to show that there exists a simulator
Sim that is independent of Z and that satisfies QM(Sim) ≤ s+ s′ + QM(Adv).

Since π (a, s)-BQS-UC emulates ρ, there exists a simulator Sim′ (independent of Z) with
QM(Sim′) ≤ s + QM(Adv) ≤ a + s such that π ∪ {Adv,Z} and ρ ∪ {Sim′,Z} are indistin-
guishable. Let Adv′ := Sim′. Since ρ (a + s, s′)-BQS-UC emulates σ, there exists a simula-
tor Sim (independent of Z) with QM(Sim) ≤ s′ + QM(Adv′) such that ρ ∪ {Adv′,Z} and

7This is captured more formally by the completeness of the so-called dummy-adversary (see Section 2.4),
which shows that one can even shift the complete attack into the environment.

8Since we only consider statistical security in this work, we omit the qualifier “statistical”. Similarly, when
we speak about classical-UC-security and quantum-UC-security, we mean the statistical variant of that notion.
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σ∪{Sim,Z} are indistinguishable. Then π∪{Adv,Z} and σ∪{Sim,Z} are indistinguishable.
And QM(Sim) ≤ s′+QM(Adv′) ≤ s+s′+QM(Adv). Thus π (a, s+s′)-BQS-UC-emulates σ.

The proof of (iv) depends on the concept of the dummy-adversary introduced in the next
section; we defer the proof until Section 2.4. (Note that the proofs in the next section do
not use (iv).) �

2.3 Ideal functionalities

In most cases, the behavior of the ideal model is described by a single machine F , the so-
called ideal functionality. We can think of this functionality as a trusted third party that
perfectly implements the desired protocol behavior. For example, the functionality FOT

for oblivious transfer would take as input from Alice two bitstrings m0,m1, and from Bob
a bit c, and send to Bob the bitstring mc. Obviously, such a functionality constitutes a
secure oblivious transfer. We can thus define a protocol π to be a secure OT protocol if π
quantum-UC-emulates FOT where FOT denotes the protocol consisting only of one machine,
the functionality FOT itself. There is, however, one technical difficulty here. In the real
protocol π, the bitstring mc is sent to the environment Z by Bob, while in the ideal model,
mc is sent by the functionality. Since every message is tagged with the sender of that message,
Z can distinguish between the real and the ideal model merely by looking at the sender of
mc. To solve this issue, we need to ensure that F sends the message mc in the name of Bob
(and for analogous reasons, that F receives messages sent by Z to Alice or Bob). To achieve
this, we use so-called dummy-parties [Can01] in the ideal model. These are parties with the
identities of Alice and Bob that just forward messages between the functionality and the
environment.

Definition 5 (Dummy-party) Let a machine P and a functionality F be given. The
dummy-party P̃ for P and F is a machine that has the same identity as P and has the
following state transition operator: Let idF be the identity of F . When activated, measure
Hclass . If the outcome of the measurement is of the form (environment, idP ,m), initialize
Hclass with (idP , idF ,m). If the outcome is of the form (idF , idP ,m), initialize Hclass with
(idP , environment,m). In all cases, the quantum communication register is not modified
(i.e., the message in that register is forwarded).

Note the strong analogy to the corruption parties (page 2.1).
Thus, if we write π quantum-UC-emulates F , we mean that π quantum-UC-emulates ρF

where ρF consists of the functionality F and the dummy-parties corresponding to the parties
in π. More precisely:

Definition 6 Let π be a protocol and F be a functionality. We say that π quantum-UC-
emulates F if π quantum-UC-emulates ρF where ρF := {P̃ : P ∈ partiesπ} ∪ {F}.

2.4 Dummy-adversary

In the definition of UC-security, we have three entities interacting with the protocol: the
adversary, the simulator, and the environment. Both the adversary and the environment are
all-quantified, hence we would expect that they do, in some sense, work together. This intu-
ition is backed by the following fact which was first noted by Canetti [Can01]: Without loss
of generality, we can assume an adversary that is completely controlled by the environment.
This so-called dummy-adversary only forwards messages between the environment and the
protocol. The actual attack is then executed by the environment.
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Figure 1: Completeness of the dummy-adversary: proof steps

Definition 7 (Dummy-adversary Advdummy) When activated, the dummy-adversary
Advdummy measures Hclass ; call the outcome m. If m is of the form (environment,
adversary,m′), initialize Hclass with m′. Otherwise initialize Hclass with (adversary,
environment,m). In all cases, the quantum communication register is not modified (i.e.,
the message in that register is forwarded).

Lemma 8 (Completeness of the dummy-adversary) Assume that π (a, s)-BQS-UC-
emulates ρ with respect to the dummy-adversary (i.e., instead of quantifying over all ad-
versaries Adv, we fix Adv := Advdummy ). Then π (a, s)-UC-emulates ρ.

Proof of Lemma 8. In [Unr10], an analogous theorem has been shown for quantum-UC-
security. Our proof is essentially the same, except that we additionally have to check that
the machines we construct satisfy the required memory bounds.

Assume that π (a, s)-BQS-UC-emulates ρ with respect to the dummy-adversary. Fix
an adversary Adv. We have to show that there exists a simulator Sim with QM(Sim) ≤
s + QM(Adv) such that for all environments Z with QM(Z) + QM(Adv) ≤ a we have
that π ∪ {Adv,Z} and ρ ∪ {Sim,Z} are indistinguishable. Furthermore, if Adv is quantum-
polynomial-time, Sim has to be quantum-polynomial-time, too.

For a given environment Z with QM(Z) + QM(Adv) ≤ a, we construct an environment
ZAdv that is supposed to interact with Advdummy and internally simulates Z and Adv, and
that routes all messages sent by the simulated Adv to π through Advdummy and vice versa.
Then π∪{Adv,Z} and π∪{Advdummy ,ZAdv} are perfectly indistinguishable. (Cf. networks
(I) and (II) in Figure 1.)

By definition of Advdummy , we have QM(Advdummy ) = 0. And by construction of
ZAdv, we have QM(ZAdv) = QM(Z) + QM(Adv). Thus QM(Z) + QM(Advdummy ) ≤
QM(Z) + QM(Adv) ≤ a. Since π (a, s)-BQS-UC-emulates ρ with respect to the dummy-
adversary, we have that π ∪ {Advdummy ,ZAdv} and ρ ∪ {Sim′,ZAdv} are indistinguishable
for some Sim′ with QM(Sim′) ≤ s+ QM(Advdummy ) and all Z. (Cf. networks (II) and (III).)
Since Advdummy is quantum-polynomial-time, so is Sim′. We construct a machine Sim that
internally simulates Sim′ and Adv (network (IV)). Then ρ∪{Sim′,ZAdv} and ρ∪{Sim,Z} are
perfectly indistinguishable. Summarizing, π ∪ {Adv,Z} and ρ ∪ {Sim,Z} are indistinguish-
able for all environments Z. Furthermore, since Sim′ is quantum-polynomial-time, we have
that Sim is quantum-polynomial-time if Adv is. And QM(Sim′) = QM(Sim) + QM(Adv) ≤
s+ QM(Advdummy ) + QM(Adv) = s+ QM(Adv). Thus π (a, s)-BQS-UC-emulates ρ. �

Using Lemma 8, we can now prove the deferred Lemma 4 (iv).

Proof of Lemma 4 (iv). If the π (∞, s)-BQS-UC-emulates ρ, then π trivially quantum-UC-
emulates ρ (the condition QM(Z) + QM(Adv) ≤ ∞ is trivially fulfilled).

Assume that π quantum-UC-emulates ρ. Then there is a simulator Sim such that for any
environment Z, π∪{Advdummy ,Z} and ρ∪{Sim,Z} are indistinguishable. Since Advdummy
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(I)

Z

Adv

σ
π1
...
πn

(II)

Z

Adv

σ
Sim′

1
ρ1

...
...

Sim′
n

ρn

Sim

(III)

Z

Adv

σ

π1
...

πi−1

Advdummy πi

Sim′
i+1

ρi+1
...

...
Sim′

n
ρn

Zσ,i

Figure 2: Networks occurring in the proof sketch of Theorem 9. Network (I) represents the
real model, (II) the ideal model, and (III) the hybrid case. To avoid cluttering, in (III), the
connections to πi−1, Sim′

i+1, and ρi+1 have been omitted.

is quantum-polynomial-time, so is Sim. Let s be a polynomial upper-bound on the running
time of Sim. Then QM(Sim) ≤ s. Thus π (∞, s)-BQS-UC-emulates ρ with respect to the
dummy-adversary. By Lemma 8, π (∞, s)-BQS-UC-emulates ρ. �

2.5 Composition

For some protocol σ, and some protocol π, by σπ we denote the protocol where σ invokes (up
to polynomially many) instances of π. That is, in σπ the machines from σ and from π run
together in one network, and the machines from σ access the inputs and outputs of π. (That
is, σ plays the role of the environment from the point of view of π. In particular, Z then talks
only to σ and not to the subprotocol π directly.) A typical situation would be that σF is
some protocol that makes use of some ideal functionality F , say a commitment functionality,
and then σπ would be the protocol resulting from implementing that functionality with some
protocol π, say a commitment protocol. One would hope that such an implementation results
in a secure protocol σπ. That is, we hope that if π BQS-UC-emulates F and σF BQS-UC-
emulates G, then σπ BQS-UC-emulates G. Fortunately, this is the case, as long as we pick
the memory bounds in the right way:

Theorem 9 (Composition Theorem) Let π, ρ, and σ be quantum-polynomial-time pro-
tocols. Assume that σ invokes at most n subprotocol instances (n may depend on the security
parameter). Assume that π (a, s)-BQS-UC-emulates ρ. Then σπ (a−QM(σ)− (n− 1)b, ns)-
BQS-UC-emulates σρ where b := max{QM(π),QM(ρ) + s}.

Proof of Theorem 9. In [Unr10], an analogous theorem has been shown for quantum-UC-
security. Our proof is essentially the same, except that we additionally have to check that
the machines we construct satisfy the required memory bounds.

Since σ is quantum-polynomial-time, σ invokes at most a polynomial number of instances
of its subprotocol π or ρ. We can thus assume that n is polynomially-bounded. Since π (a, s)-
BQS-UC-emulates ρ, there is a quantum-polynomial-time simulator Sim′ with QM(Sim′) ≤ s
such that for all environments Z with QM(Z) = QM(Z)+QM(Advdummy ) ≤ a we have that
π ∪ {Advdummy ,Z} and ρ ∪ {Sim′,Z} are indistinguishable. In the following, we call Sim′

the dummy-simulator.
Let a quantum-polynomial-time adversary Adv be given (that is supposed to attack σπ).

We construct a simulator Sim that internally simulates the adversary Adv and n instances
Sim′

1, . . . ,Sim′
n of the dummy-simulator Sim′. The simulated adversary Adv is connected to
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the environment and to the protocol σ, but all messages between Adv and the i-th instance πi

of π are routed through the dummy-simulator-instance Sim′
i (which is then supposed to

transform these messages into a form suitable for instances of ρ). The simulator Sim is
depicted by the dashed box in network (II) in Figure 2. We have QM(Sim) ≤ ns.

We have to show that for any environment Z with QM(Z) + QM(Adv) ≤ a−QM(σ)−
(n − 1)b we have that σπ ∪ {Adv,Z} and σρ ∪ {Sim,Z} are indistinguishable (networks (I)
and (II) in Figure 2).

For this, we construct a hybrid environment Zσ,i. (Zσ,i is depicted as the dashed box in
network (III) in Figure 2.) This environment internally simulates the machines Z, Adv, the
protocol σ, instances π1, . . . , πi−1 of the real protocol π, and instances Sim′

i+1, . . . ,Sim′
n and

ρi+1, . . . , ρn of the dummy-simulator Sim′ and the ideal protocol ρ, respectively. The com-
munication between Z, Adv, and σ is directly forwarded by Zσ,i. Communication between
Adv and the j-th protocol instance is forwarded as follows: If j < i, the communication is
simply forwarded to πj. If j > i, the communication is routed through the corresponding
dummy-simulator Sim′

j (which is then supposed to transform these messages into a form suit-
able for ρj). And finally, if j = i, the communication is passed to the adversary/simulator
outside of Zσ,i. Communication between σ and the instances of π or ρ is directly forwarded.

Since Zσ,i internally simulates one copy of Z, one copy of Adv, one copy of σ, i−1 copies
of π, and n− i copies of Sim′ and ρ. Thus

QM(Zσ,i) = QM(Z) + QM(Adv) + QM(σ) + (i− 1)QM(π) + (n− i)(QM(Sim′) + QM(ρ))

≤ a−QM(σ)− (n− 1)b+ QM(σ) + (i− 1)QM(π) + (n− i)(QM(Sim′) + QM(ρ))

≤ a−QM(σ)− (n− 1)b+ QM(σ) + (i− 1)b+ (n − i)b = a.

We will now show that there is a negligible function µ such that
|Pr[Execπ∪{Advdummy ,Zσ,i}(k, z) = 1] − Pr[Execρ∪{Sim′,Zσ,i}(k, z) = 1]| ≤ µ(k) for any
security parameter k and any i = 1, . . . , n. For this, we construct an environment Zσ which
expects as its initial input a pair (i, z), and then runs Zσ,i with input z. Since QM(Zσ,i) ≤ a,
we have QM(Zσ) ≤ a. Since π ∪ {Advdummy ,Z} and ρ ∪ {Sim′,Z} are indistinguishable for
all quantum-polynomial-time environments Z with QM(Z) ≤ a, π ∪ {Advdummy ,Zσ} and
ρ ∪ {Sim′,Zσ} are indistinguishable. Hence there exists a negligible function µ such that
the difference of Pr[Execπ∪{Advdummy ,Zσ,i}(k, z) = 1] = Pr[Execπ∪{Advdummy ,Zσ}(k, (i, z)) = 1]
and Pr[Execρ∪{Sim′,Zσ,i}(k, z) = 1] = Pr[Execρ∪{Sim′,Zσ}(k, (i, z)) = 1] is bounded by µ(k) for
all i, k, z.

The game Execπ∪{Advdummy ,Zσ,i}(k, z) is depicted as network (III) in Figure 2 (except that
we wrote πi instead of π). Observe that Execρ∪{Sim′,Zσ,i+1}(k, z) (note the changed index i+1)
contains the same machines as Execπ∪{Advdummy ,Zσ,i}(k, z) (when unfolding the simulation
performed by Zσ,i into individual machines) except for the difference that the communication
with the i-th instance of π is routed through the dummy-adversary Advdummy . However, the
latter just forwards messages, so π ∪ {Advdummy ,Zσ,i} and ρ ∪ {Sim′,Zσ,i+1} are perfectly
indistinguishable.

Using the triangle inequality, it follows that |Pr[Execπ∪{Advdummy ,Zσ,n}(k, z) = 1] −
Pr[Execρ∪{Sim′,Zσ,1}(k, z) = 1]| is bounded by n · µ(k) which is negligible. Moreover,
Execπ∪{Advdummy ,Zσ,n}(k, z) and Execσπ∪{Adv,Z}(k, z) describe the same game (up to unfold-
ing of simulated submachines and up to one instance of the dummy-adversary). Similarly,
Execρ∪{Sim′,Zσ,1}(k, z) and Execσρ∪{Sim,Z}(k, z) describe the same game (up to unfolding of

simulated submachines). Thus
∣

∣Pr[Execσπ∪{Adv,Z}(k, z) = 1]− Pr[Execσρ∪{Sim,Z}(k, z) = 1]
∣

∣

is negligible and thus σπ ∪ {Adv,Z} and σρ ∪ {Sim,Z} are indistinguishable. Furthermore,
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since Sim′ is quantum-polynomial-time, we have that Sim is quantum-polynomial-time if
Adv is. As mentioned above, QM(Sim) ≤ ns.

Since this holds for all Z with QM(Z) + QM(Adv) ≤ a − QM(σ) − (n − 1)b, and the
construction of Sim does not depend on Z, we have that σπ (a−QM(σ)− (n−1)b, ns)-BQS-
UC-emulates σρ. �

Theorem 10 (Composition Theorem) Let π and σ be quantum-polynomial-time proto-
cols and F and G be quantum-polynomial-time functionalities. Assume that σ invokes at
most one subprotocol instance. Assume that π (a, s)-BQS-UC-emulates F and that σF

(a−QM(σ) + s, s′)-BQS-UC-emulates G. Then σπ (a−QM(σ), s+ s′)-BQS-UC-emulates G.

The proof of this theorem is very similar to that in [Unr10], except that we have to keep
track of the quantum memory used by various machines constructed in the proof.
Proof. From Theorem 9, with n = 1, we get that σπ (a − QM(σ), s)-BQS-UC-emulates σF .
By assumption, σF (a−QM(σ)+ s, s′)-BQS-UC-emulates G. By transitivity (Lemma 4 (ii)),
we get that σπ (a−QM(σ), s + s′)-BQS-UC-emulates G. �

Notice that in the composition theorem (Theorem 10), the outer protocol σ is only al-
lowed to invoke one instance of the subprotocol π. This stands in contrast to the univer-
sal composition theorem for classical-UC [Can01] and for quantum-UC [Unr10] where any
polynomially-bounded number of concurrent instances of π is allowed. In fact, this is not just
a limitation of our proof technique.9 For example, assume a protocol πA→B

COM that (a, s)-BQS-
UC-emulates the commitment functionality FA→B

COM with sender A and recipient B. Assume
further that πA→B

COM does not use any functionalities as setup. As we will see later, such a
protocol exists. Now let πB→A

COM be the protocol that results from exchanging the roles of A
and B. Then πB→A

COM (a, s)-BQS-UC-emulates FB→A
COM . Consider the concurrent composition

of πA→B
COM and πB→A

COM . In this protocol, a corrupted Bob may reroute all messages between
the Alice in the first protocol and Alice in the second protocol. Thus, if Alice commits to a
random value v in the first protocol, Bob commits to the same value v in the second protocol
without knowing it. It is easy to see that in a concurrent composition of FA→B

COM and FB→A
COM ,

this is not possible. Thus the composition of πA→B
COM and πB→A

COM does not (a′, s′)-BQS-UC-
emulate the composition of FA→B

COM and FB→A
COM (for any parameters a′, s′). To convert this into

an example of a protocol that does not even compose with itself, just consider the protocol
πA↔B

COM in which Bob may choose whether FA→B
COM or FB→A

COM should be executed. It might be
possible to make πA↔B

COM self-composable by adding suitable tags inside the messages, but the
definition of BQS-UC-security does not enforce this.

Although BQS-UC-security does not guarantee for concurrent self-composability, individ-
ual protocols may have this property. In order to formulate this, we introduce the concept
of the multi-session variant of a protocol. Given a protocol π and a polynomially-bounded
n, we define πn to be the protocol that executes n instances of π concurrently.

Then, from Theorem 10, we immediately get the following corollary:

Corollary 11 Let π and σ be quantum-polynomial-time protocols and F and G be quantum-
polynomial-time functionalities. Assume that σ invokes at most m subprotocol instances.
Assume that πnm (a, s)-BQS-UC-emulates Fnm and that (σF )n (a − nQM(σ) + s, s′)-BQS-
UC-emulates Gn. Then (σπ)n (a− nQM(σ), s + s′)-BQS-UC-emulates Gn.

9In the proof, the difficulty arises from a hybrid argument where the protocol π is executed together in one
network with the protocol ρ and the corresponding simulator. Since the simulator may use more quantum
memory than π is resistant against, we cannot guarantee security of π in this hybrid setting and the proof
cannot proceed.
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2.6 Quantum lifting

In [Unr10], it has been shown that for classical protocols, classical-UC-security implies
quantum-UC-security (quantum lifting theorem). This theorem is very useful when reusing
results from the classical-UC setting: For example, if a classical protocol σF classical-UC-
emulates a functionality G, and a quantum protocol π quantum-UC-emulates F , then the
quantum lifting theorem gives us that σF quantum-UC-emulates G, and then by the compo-
sition theorem σπ quantum-UC-emulates G.

A similar result also holds for BQS-UC:

Theorem 12 (Quantum lifting) If π and ρ are classical protocols and π classical-UC-
emulates ρ, then π (∞, 0)-BQS-UC emulates ρ.

Proof. In [Unr10], an analogous theorem has been shown for quantum-UC-security. Our
proof is essentially the same, except that we additionally have to check that the simulator
Sim we construct has QM(Sim) = 0. However, since Sim is a classical machine, this is trivial.

Given a machine M , let C(M) denote the machine which behaves like M , but measures
incoming messages in the computational basis before processing them, and measures outgoing

messages in the computational basis. More precisely, the superoperator E
(k)
C(M) first invokes

Eclass on Hclass ⊗ Hquant , then invokes E
(k)
M on Hstate ⊗ Hclass ⊗ Hquant , and then again

invokes Eclass on Hclass ⊗Hquant . Since it is possible to simulate quantum Turing machines
on classical Turing machines (with an exponential overhead), for every machine M , there
exists a classical machine M ′ such that C(M) and M ′ are perfectly indistinguishable.10

We define the classical dummy-adversary Advclass
dummy to be the classical machine that is

defined like Advdummy (Definition 7), except that in each invocation, it first measures Hclass ,
Hquant , and Hstate in the computational basis (i.e., it applies Eclass to Hstate⊗Hclass⊗Hquant)
and then proceeds as does Advdummy . Note that Advclass

dummy is probabilistic-polynomial-time.
By Lemma 8, we only need to show that for any set C of corrupted parties, there exists a

quantum-polynomial-time machine Sim with QM(Sim) ≤ 0 + QM(Advdummy ) = 0 such that
for every machine Z, the real model πC ∪{Z,Advdummy} and the ideal model ρC ∪{Z,Sim}
are indistinguishable.

The protocol π is classical, thus πC is classical, too, and thus all messages forwarded
by Advdummy from πC to Z have been measured in the computational basis by πC , and
all messages forwarded by Advdummy from Z to πC will be measured by πC before being
used. Thus, if Adv would additionally measure all messages it forwards in the computa-
tional basis, the view of Z would not be modified. More formally, πC ∪ {Z,Advdummy}
and πC ∪ {Z,Advclass

dummy} are perfectly indistinguishable. Furthermore, since both πC and

Advclass
dummy measure all messages upon sending and receiving, πC ∪ {Z,Advclass

dummy} and

πC ∪{C(Z),Advclass
dummy} are perfectly indistinguishable. Since it is possible to simulate quan-

tum machines on classical machines (with an exponential overhead), there exists a classical
machine Z ′ that is perfectly indistinguishable from C(Z). Then πC ∪{C(Z),Advclass

dummy} and

πC ∪ {Z ′,Advclass
dummy} are perfectly indistinguishable. Since Advclass

dummy and Z ′ are classical

and Advclass
dummy is polynomial-time, there exists a classical probabilistic-polynomial-time sim-

ulator Sim (whose construction is independent of Z ′) such that πC ∪ {Z ′,Advclass
dummy} and

ρC ∪ {Z ′,Sim} are indistinguishable.

10More precisely, for any set of machines N , the networks N ∪ {M} and N ∪ {C(M)} are perfectly indistin-
guishable.
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Then ρC ∪ {Z ′,Sim} and ρC ∪ {C(Z),Sim} are perfectly indistinguishable by construc-
tion of Z ′. And since both ρC and Sim measure all messages they send and receive,
ρC ∪ {C(Z),Sim} and ρC ∪ {Z,Sim} are perfectly indistinguishable.

Summarizing, we have that πC ∪{Z,Advdummy} and ρC ∪{Z,Sim} are indistinguishable
for all environments Z. Furthermore, Sim is classical probabilistic-polynomial-time and
hence quantum-polynomial-time and its construction does not depend on the choice of Z.
And since Sim is classical, QM(Sim) = 0. Thus π (∞, 0)-BQS-UC-emulates ρ. �

3 Commitments

3.1 Extractable commitments

In this section, we present the notion of online-extractable commitments in the BQS model.
These will be used as a building block for constructing BQS-UC commitments in the next
section.

Definition 13 ((ε, a)-BQS-hiding) Given a commitment protocol π with sender Alice and
recipient Bob, and an adversary B′ corrupting Bob, we denote with 〈A(m), B′〉B′ the output
of B′ in an interaction between Alice and B′ where Alice commits to m.

We call π (ε, a)-BQS-hiding iff for all a-memory bounded B′ and all m1,m2 ∈ M , we
have that

∣

∣Pr[〈A(m1), B
′〉B′ = 1]−Pr[〈A(m2), B

′〉B′ = 1]
∣

∣ ≤ ε. Here M is the message space
of the commitment scheme.

Instead of the binding property, we will need a stronger property: online-extractability. This
property guarantees that there is a machine (the extractor) that, when running as the recipi-
ent of the commit protocol, is able to output the committed value V already after the commit
phase. This extractor should be indistinguishable from an honest recipient. Note that this
does not contradict (ε, a)-BQS-hiding since we allow the extractor’s quantum memory to
contain more than a qubits. For our purposes, we will only need a definition of online-
extractability that does not impose a memory bound on the adversary. We do, however,
make the memory bound s of the extractor explicit.

Definition 14 ((ε, s)-online-extractable) Given a commitment protocol π with sender Al-
ice and recipient Bob, an extractor is a machine BS that, after the commit phase, gives an
output V ′ and then executes the (honest) code of Bob for the open phase and outputs a value
V (the accepted value). (In particular, BS needs to provide an initial state for the program
of the open phase of Bob that matches the interaction so far.) We write V = ⊥ if the open
phase fails.

For an adversary A′, we denote with 〈A′, B〉A′ (〈A′, BS〉A′) the output of A′ in an inter-
action between A′ and Bob (BS) where A′ is given V after Bob (BS) terminates.

We call π (ε, s)-online-extractable iff there exists an s-memory bounded quantum-
polynomial-time extractor BS such that for all adversaries A′, we have that

∣

∣Pr[〈A′, B〉A′ =
1]−Pr[〈A′, BS〉A′ = 1]

∣

∣ ≤ ε and in an interaction of A′ and BS, we have Pr[V /∈ {V ′,⊥}] ≤ ε.

Constructing online-extractable commitments. König, Wehner, and Wullschleger
[KWW09] present a commitment scheme in a generalization of the bounded quantum storage
model. Although they only show that it is hiding and binding, their scheme turns out to be
also online-extractable. Their construction proceeds in two steps. First, they give a protocol
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Parameters: Integer n (the length of the exchanged string). The parameters may depend
on the security parameter k.
Parties: The sender Alice A and the recipient Bob B.
Inputs: None.
Protocol:
1. Alice picks a random x ∈ {0, 1}n and θ ∈ {+,×}n. Then she encodes and sends each bit
xi in the basis θi, i.e., she sends |Ψ〉 := |x〉θ to Bob.

2. Bob picks a random θ̃ ∈ {0, 1}n and measures the i-th qubit of |Ψ〉 in basis θi. Call the
outcomes x̃i.

3. Both parties wait until the quantum memory bound becomes effective.11

4. Alice sends θ to Bob and outputs x.
5. Bob computes I := {i : θi = θ̃i} and outputs (I, x̃I).

Figure 3: Weak string exchange protocol πWSE from [KWW09].

for what they call a weak string exchange (WSE). A WSE is a protocol between Alice and
Bob after which Alice outputs a bitstring X and Bob outputs a set of indices I and the bit-
string XI consisting of X restricted to the indices I. The properties guaranteed by a weak
string exchange are – informally – that Bob does not learn too much about XI∁ , and that
Alice has no information about I. From a WSE, we can construct a commitment scheme
as follows: If Alice wishes to commit to a string m, Alice and Bob perform a WSE. Then
Alice sends m⊕F (X) to Bob where F is a universal hash function with suitable parameters.
Furthermore, Alice sends S(X), the syndrome of X under a suitable linear code. Since Bob
only learns XI , S(X), and little about XI∁ , the string X has high min-entropy from Bob’s
point of view. Thus F (X) looks random to Bob and the commitment is hiding. To open the
commitment, Alice sends X. Since she does not know I, Alice will be detected if she sends
an X̂ that is substantially different from X. If Alice sends an X̂ that differs from X only at
a few indices, the syndromes S(X) and S(X̂) will not match. Thus Alice is forced to send
X̂ = X; the commitment is binding. The precise protocols are given in Figures 3 and 4.

The hiding property of πKWW has already been proven in [KWW09], we only need to
specialize their result to the BQS model.

Lemma 15 Fix constants δ, ν > 0 with δ + ν < 1
2 . Fix some integer a (the adversary’s

memory bound; dependent on the security parameter k). Assume that a ≤ νn and n ≥ k.
Assume that ℓ ≤ 1

2n − δn − νn − (n − κ) − k. (n, κ, ℓ refer to the parameters in Figure 4.)
Then there is an exponentially-small ε > 0 such that πKWW is (ε, a)-BQS-hiding.

Proof. In [KWW09], the notion of an (n, λ, ε′)-WSE protocol is introduced. Here n is the
length of the exchanged string, and λn lower bounds the knowledge that Bob has about the
string (in terms of min-entropy, and up to an error probability ε′). The precise definition
is given in [KWW09]; for the present proof we will not need any details. Their definition is
parametrized by an operator F that describes the evolution of the quantum state in Bob’s
memory. To model the special case of the BQS model in which the adversary’s memory
has a qubits, we have to choose F to be the identity on a-qubit states. Let PF

succ(n
′) :=

max(Dx)x,(ρx)x

1
2n′

∑

x∈{0,1}n′ tr
(

DxF(ρx)
)

where (Dx)x goes over all POVMs (measurements),

and (ρx)x over all families of a-qubit mixed states. Intuitively, PF
succ(n

′) denotes the maximum

11Formally, in our model this step does not exist because our model assumes that the quantum memory
bound is effective between any two activations.
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Parameters: Integers ℓ (the length of the committed value), n < ℓ, and κ, d ≤ n. A binary
(n, κ, d)-linear code where S(ω) ∈ {0, 1}n−κ denotes the syndrome of a codeword ω ∈ {0, 1}n.
A family F of universal hash functions F : {0, 1}n → {0, 1}ℓ. All parameters may depend on
the security parameter k.
Subprotocols: The n-bit WSE protocol from Figure 3.
Parties: The sender Alice A and the recipient Bob B.
Inputs: In the commit phase, Alice gets v with v ∈ {0, 1}ℓ. Bob gets no inputs.
Commit phase:
C1. Alice and Bob execute the WSE protocol. Alice gets x, Bob gets I and xI .
C2. Alice picks a hash function F ← F, computes p := v ⊕ F (x), computes the syndrome

σ := S(x), and sends (F, σ, p) to Bob.
Open phase:
O1. Alice sends x̂ := x to Bob.
O2. Bob checks whether σ = S(x̂) and x̂I = xI . Otherwise, Bob aborts.
O3. Bob computes v := p⊕ F (x̂) and outputs v. (I.e., Bob accepts the opened value v.)

Figure 4: Commitment scheme πKWW from [KWW09].

probability of correctly decoding a random n′-bit string after it has been stored in an a qubit
state. In [KW09, page 1] it is shown that PF

succ(n
′) ≤ 2−n′(R−1) = 2−a+n′

for R := a
n′ . By

[KWW09, Theorem 3.2], for any constant δ ∈ (0, 1
2), we have that πWSE is an (n, λ, ε′)-WSE

protocol where λ −→ − 1
n log PF

succ

(

(1
2 − δ)n

)

and ε′ = 2e
− nδ2

512(4+log 1
δ
)2 . (In [KWW09], in

the formula for λ, the log is missing, but their proof reveals this to be a typo.) We have

that limλ ≥ − lim 1
n log 2−a+( 1

2
−δ)n = (1

2 − δ) −
a
n ≥

1
2 − δ − ν. Let ε′′ := max{2−k/2, ε′}.

Since πWSE is an (n, λ, ε′)-WSE protocol it is also an (n, λ, ε′′)-WSE protocol. Furthermore,
ℓ ≤ λn−(n−κ)−2 log 1/ε′′. Then, by [KWW09, Lemma 4.3],12 if πWSE is an (n, λ, ε′′)-WSE
protocol, then πKWW is (ε, a)-BQS-hiding with ε := 3ε′′.13 Since δ is constant and n ≥ k,
we have that ε′ and hence also ε = 3max{2−k/2, ε′} is exponentially-small. �

We proceed to show that πKWW is online-extractable. Since König et. only showed the
binding property, we need to extend the proof of [KWW09]. The main ideas are, however,
already present in [KWW09]. Intuitively, online-extractability of πKWW is not surprising: If
Bob has an unbounded amount of quantum memory, he can delay the measurement of the
qubits in πWSE and thus get all the bits xi. That is, πWSE is online-extractable. Then, in
πKWW, Bob will know x already in the commit phase and can thus compute v = p ⊕ F (x)
(after error-correcting x to match the syndrome σ). Since v is the committed value, this
implies that πKWW is online-extractable. To make this argument formal, we need to ensure
that even if Alice cheats, she is not able to send some x̂ in the open phase which differs from
the value x that Bob extracted. The proof of this fact is similar to the proof of the binding
property in [KWW09].

We begin by making the fact formal that Bob (given sufficient quantum memory) can
extract in πWSE.

12Strictly speaking, [KWW09, Lemma 4.3] analyzes a protocol that commits to a random value (and in
particular does not send the value p in the commit phase). It is, however, straightforward to see that their
proof also applies to πKWW as presented in Figure 4.

13The definition of hiding is formulated slightly differently in [KWW09] but can easily be seen to imply our
definition of BQS-hiding.
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Definition 16 (Online-extractable WSE) A n-bit WSE protocol π consisting of sender
AWSE and recipient BWSE is s-online-extractable if there exists an s-memory bounded
quantum-polynomial-time machine BWSE

S with the following properties:
• BWSE

S outputs an n-bit string x.
• For any adversary A′, let ρA′B denote the state of A′ after interacting with BWSE .

Here A′ gets the outputs xI and I made by BWSE . Let σA′IX̂I
denote the state of A′

after interacting with BWSE
S . Here A′ gets xI and I where x is the output of BWSE

S

and I is a uniformly random subset of {1, . . . , n}.14 Then ρA′B = σA′IX̂I

.

Note that in this definition, we do not require the extractor BWSE
S to produce the set I.

Instead, in an execution of A′ and BWSE
S , we choose I randomly. Alternatively, we could

also let BWSE
S pick I and require that I is uniformly random and independent of x and the

state of A′; this would lead to an equivalent definition.
The definition could be generalized by allowing an error ε; we would then require that

the trace distance ε between ρA′B and σA′IX̂I

is bounded by ε. For our purposes, however,
the present definition is sufficient.

Lemma 17 (Online-extractability of πWSE) πWSE is n-online-extractable. (Here n is as
in Figure 3.)

[KWW09, Theorem 3.5] states a weaker property (called “security for Bob”). The proof of
that theorem, however, explicitly constructs a simulator and proves the properties required
by Definition 16.15 Thus, their proof also constitutes a proof for our Lemma 17.

Given an online-extractable WSE protocol, we get an online-extractable commitment
scheme:

Lemma 18 Assume that the code with syndrome S has efficient error-correction. If πWSE

is an s-online-extractable WSE protocol for some s, then πKWW is an (s, 2−d/2)-online-
extractable commitment scheme. Here d,S are the parameters from Figure 4. Notice that we
do not require that πWSE is the protocol from Figure 3.

Proof. To show that πKWW is online-extractable, we first construct the extractor BS. BS

follows the program of Bob (Figure 4), except that in Step C1, Bob runs the extractor
BWSE

S from Definition 16 (which yields an n-bit string x), chooses a random subset I of
{1, . . . , n}, and computes xI . In all other protocol steps, BS behaves like Bob in Figure 4.
After the commit phase, BS computes an x∗ with Hamming distance ω(x, x∗) ≤ (d − 1)/2
and S(x∗) = σ. (This can be done in polynomial-time since the code with syndrome S has
efficient error-correction.) Then BS computes v′ := p⊕F (x∗) and outputs v′. (If no x∗ with
ω(x, x∗) ≤ (d− 1)/2 exists, then BS sets v′ := ⊥ instead.)

Since BWSE
S satisfies Definition 16, we have that Pr[〈A′, B〉A′ = 1] = Pr[〈A′, BS〉A′ = 1].

To show that πKWW is (s, 2−d/2)-online-extractable, we thus are left to show that Pfail :=
Pr[v /∈ {v′,⊥}] ≤ 2−d/2.

From the construction of πKWW, we have that Pfail is upper bounded by the probability
that x̂ 6= x∗ and S(x̂) = σ and x̂I = xI . Fix some x̂, x∗ with x̂ 6= x∗ and S(x̂) = σ. From
S(x̂) = σ = S(x∗) we have S(x̂−x∗) = 0. Hence x̂−x∗ has Hamming-weight at least d. Thus

14The names of the states ρA′B and σA′IX̂I
are chosen to better match the notation in [KWW09].

15In the current revision of [KWW09], there is a mistake in the proof of Theorem 3.5. (At some point in
the proof, it is used that I is independent of (TX̃nΘn) which cannot be justified.) The proof can, however,
be fixed. The authors of [KWW09] are aware of the problem and will correct the proof in the next revision.
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ω(x̂, x∗) ≥ d. Since ω(x, x∗) ≤ (d − 1)/2, it follows that ω(x, x̂) ≥ d− (d − 1)/2 ≥ d/2. (In
the case where v′ = ⊥, we have ω(x, x∗) > (d− 1)/2 for all x∗ and hence ω(x, x̂) > (d− 1)/2
and hence ω(x, x̂) ≥ d/2.) Since I is chosen independently of x, x̂, and each i is in I with
probability 1

2 , it follows that xI = x̂I with probability at most (1
2)ω(x,x̂) ≤ 2−d/2. Thus

Pfail ≤ 2−d/2. �

Combining our results on πWSE and πKWW, we get the following theorem:

Theorem 19 (Online-extractable commitments) For any polynomially-bounded inte-
gers a and ℓ, there is a constant-round 0-memory bounded (ε, a)-BQS-hiding (ε, s)-online-
extractable commitment scheme π for some exponentially-small ε and some polynomially-
bounded s. The message space of π is M = {0, 1}ℓ.

Proof. Reed-Solomon codes [RS60] are (2b − 1, 2b − d, d)-linear codes over GF(2b) (for any
b, d). By representing each symbol as a b-bit string, they can be converted into binary
((2b−1)b, (2b−d)b, d)-linear codes. Error-correction is efficiently possible using the Berlekamp-
Massey algorithm [Ber67, Ber84].

Let δ, ν > 0 be some constants with δ + ν < 1
2 . (E.g., δ = ν = 1

6 .) Let k denote the
security parameter. All values introduced below will depend on k. Let d := k. Let b be the
smallest integer such that n := (2b− 1)b satisfies 1

2n− δn− νn− (d− 1)b− k ≥ ℓ and νn ≥ a
and n ≥ k. Such a b exists and then n is polynomially-bounded. Let κ := (2b − d)b. Let
S be the syndrome of the (n, κ, d)-Reed-Solomon code. Let F be a family of universal hash
functions F : {0, 1}n → {0, 1}ℓ. Such functions exist for any n, ℓ; for example, the set of all
affine transformations from {0, 1}n to {0, 1}ℓ is easily seen to be strongly universal.

Since ℓ ≤ 1
2n− δn− νn− (d− 1)b− k = 1

2n− δn− νn− (n− κ)− d, by Lemma 15, we
have that πKWW is (ε1, a)-BQS-hiding for some exponentially-small ε1.

And with s := n, by Lemmas 17 and 18, we get that πKWW is (s, ε2)-online-extractable
with ε := 2d/2.

Since both ε1 and ε2 are exponentially-small, the theorem holds with ε := max{ε1, ε2}.
�

3.2 BQS-UC commitments

In this section, we present a commitment scheme πCOM that is BQS-UC-secure for memory
bound a and for n concurrent instances of πCOM. The parameters a and n can be arbitrary,
but πCOM depends on them. To state our result, we first define the ideal functionality for
commitments.

Definition 20 (Commitment) Let A and B be two parties. The functionality FA→B,ℓ
COM

behaves as follows: Upon (the first) input (commit, x) with x ∈ {0, 1}ℓ(k) from A, send
committed to B. Upon input open from A send (open, x) to B. All communica-
tion/input/output is classical.

We call A the sender and B the recipient.

The protocol πCOM is depicted in Figure 5. Before we prove its security, we first explain
the underlying intuition. In order to prove the BQS-UC-security of πCOM, it is necessary
to construct a simulator (that may use more quantum memory than the adversary) that
achieves the following: When being in the role of the recipient, the simulator is able to
extract the commitment after the commit phase. When being in the role of the sender, the
simulator should be able to open the commitment to any value of his choosing (equivocality).
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The first requirement can easily be achieved by using the online-extractable commitment
scheme from Theorem 19. That scheme, however, is not equivocal. In order to make our
protocol equivocal, we intentionally weaken the binding property of the commitment. Instead
of committing to a single value v, the sender commits using a commitment scheme C2 to
random values R := R1, . . . , Rn. Then he sends v ⊕ F (R) with F being a universal hash
function and sends the syndrome σ of R with respect to a suitable linear code. In the open
phase, the sender does not open all commitments Ri, but instead just sends R to the recipient.
The recipient chooses a test set T , and the sender opens Ri for i ∈ T . The modified scheme is
still binding: Assume the sender wishes to be able to open the commitment with two different
values. Then he has to find values R′ 6= R that both pass the recipients checks in the open
phase. If R′ differs from R in many blocks Ri, with high probability the verifier will require
that one of these Ri is opened and the sender will be caught. If R′ and R differs in only few
blocks, then R−R′ has a low Hamming weight and it not in the code. Hence the syndrome
of R −R′ is not zero, and, since the code is linear, the syndromes of R′ and R cannot both
equal σ. Thus the sender is caught, too. Furthermore, our scheme is online-extractable if C2

since the simulator can extract the committed values R. However, we have not yet achieved
the equivocality. In order to open the commitment to a different value, the sender needs to
know T before sending R′. To achieve this, the recipient commits to T before the commit
phase (using an online-extractable commitment scheme C2). A simulator wishing to change
the value of the commitment simply extracts T . Then he knows which Ri can be changed
without being detected and can thus change F (R1, . . . , Rn) to any value he wishes.

Lemma 21 Assume that ǫ, δ are negligible, n, c are polynomially-bounded, and 2κb−mb−
2cb − ℓ is superlogarithmic (in the security parameter k). Assume that C1 is (ε, s1)-online-
extractable and C2 is (δ, a + ns1)-BQS-hiding. Assume that F is a family of affine strongly
universal hash functions.

Then πn
COM (a, ns1)-BQS-UC-emulates (FA→B,ℓ

COM )n for corrupted recipient B.

Proof. First, we describe the structure of the real and ideal model in the case that the
party B (Bob) is corrupted:

In the real model, we have the environment Z, the adversary Adv, the honest party A
(Alice), the corruption party BC . The adversary controls the corruption party BC , so ef-
fectively he controls the communication between Alice and Bob. The environment provides
Alice’s inputs (commit, v) and open. See Figure 6 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be defined below),
the dummy-party Ã, the corruption party BC , and the commitment functionality FCOM.
The inputs (commit, v) and open of FCOM are provided by the dummy-party B̃ and thus
effectively by the environment Z. The simulator Sim controls the corruption party BC and
hence gets the outputs committed and (open, v) of FCOM. See Figure 6 (b).

Fix an adversary Adv. To show Lemma 21, we need to find a simulator Sim with
QM(Sim) ≤ ns1 such that, for any environment Z with QM(Z) + QM(Adv) ≤ a, the
real model and the ideal model are indistinguishable. This simulator is described in Figure 7.
We use the abbreviations R := R1‖ . . . ‖Rm and R′ := R′

1‖ . . . ‖R
′
m.

To show that the real and the ideal model are indistinguishable, we start with the real
model, and change the machines in the real model step-by-step until we end up with the
ideal model. In each step, we show that the network before and after that step are indistin-
guishable.

Game 1. We change the machine A as follows: Instead of executing the program of the
honest recipient of C1, A executes the extractor AS . Let T ′ denote the extracted value.
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Parameters: Integers ℓ (the length of the committed value), m, c < m, b, d, κ < m. A
b-block (m,κ, d)-linear code where S(ω) ∈ {0, 1}(m−κ)b denotes the syndrome of a codeword
ω ∈ {0, 1}mb. A family F of strongly universal hash functions F : {0, 1}mb → {0, 1}ℓ. All
parameters may depend on the security parameter k.
Subprotocols: A commitment scheme C1 with sender Bob, and a commitment scheme C2

with sender Alice, both 0-memory bounded (not using quantum memory).
Parties: The sender Alice A and the recipient Bob B.
Inputs: In the commit phase, Alice gets (commit, v) with v ∈ {0, 1}ℓ. In the open phase,
Alice gets open. Bob gets no inputs.
Commit phase:
C1. Bob picks a random T ⊆ {1, . . . ,m} with #T = c. Then Bob commits to T using C1.

(We assume some encoding of sets T that does not allow to encode sets with #T 6= c.)
C2. Alice picks R1, . . . , Rm ∈ {0, 1}

b. For each i, Alice commits to Ri using C2. (The
commitments may be performed concurrently.)

C3. Alice picks a hash function F ← F, computes p := v ⊕ F (R1‖ . . . ‖Rm), computes
the syndrome σ := S(R1‖ . . . ‖Rm), and sends (F, σ, p) to Bob. (This may be done
concurrently with the commitments to Ri.)

C4. Bob outputs committed.
Open phase:
O1. Alice sends R1‖ . . . ‖Rm to Bob.
O2. Bob opens T using C1.
O3. For each i ∈ T , Alice opens Ri using C2. (The open phases may be executed concur-

rently.)
O4. Bob checks that the values Ri sent by Alice match the values Ri opened by Alice for all

i ∈ T , and that σ = S(R1‖ . . . ‖Rm). Otherwise, Bob aborts.
O5. Bob computes v := p ⊕ F (R1‖ . . . ‖Rm) and outputs (open, v). (I.e., Bob accepts the

opened value v.)

Figure 5: Our commitment protocol πCOM.

The modified A does not use T ′. Since there are up to n copies of A, and since C1 is
(ε, s1)-online-extractable, the real model and Game 1 are nε-indistinguishable.

Game 2. We change the machine A to abort if the opening of T succeeds and reveals a
value T 6= T ′. Since C1 is (ε, s1)-online-extractable, in each instance of A, this happens with
probability at most ε, thus Game 1 and Game 2 are nε-indistinguishable.

Notice that the only machines that use quantum memory in Game 2 are Z, Adv, and n
copies of AS . Since AS is s1-memory bounded, and QM(Z) + QM(Adv) ≤ a we have that
the total amount of quantum memory used in Game 2 is bounded by a+ ns1.

Game 3. We change the machine A to commit to 0b instead of Ri for each i /∈ T ′. To
see that Game 2 and Game 3 are indistinguishable, we introduce an intermediate hybrid
game, Game 3j , in which only the first j of the commitments to Ri, i /∈ T are replaced by
commitments to 0ℓ. Since at most a + ns1 qubits of quantum memory are used in Game 2
and therefore also in Game 3j , and since the C2-commitments to Ri, i /∈ T are never opened,
from the fact that C2 is (δ, a+ns1)-BQS-hiding it follows that Game 3j and Game 3j+1 are δ-
indistinguishable. Note that there are, in the whole game, up to n copies of A and thus up to
nc C2-commitments to some Ri, i /∈ T . Thus Game 2 = Game 30 and Game 3 = Game 3nc

are ncδ-indistinguishable.
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(commit,v)
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(commit,v)
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(open,v)

committed
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Figure 6: Networks occurring in the proof of Lemma 21.

Commit phase (on input committed):
- When Bob commits to T using C1, the simulator runs the extractor AS for C1 instead of

the honest recipient’s program. (Since C1 has recipient Alice, we write AS , not BS .) Let
T ′ denote the value extracted by AS .

- The simulator picks R1, . . . , Rm ∈ {0, 1}
b. For each i, Sim commits (honestly) to Ri (if

i ∈ T ) or to 0b (if i /∈ T ) using C2.

- Sim picks a hash function F
R
← F, picks a random p

R
← {0, 1}ℓ, computes the syndrome

σ := S(R), and sends (F, σ, p) to Bob.
Open phase (on input (open, v) with v ∈ {0, 1}ℓ):
- Sim picks R′ ∈ {R′ : ∀i ∈ T ′.Ri = R′

i, σ = S(R′), p ⊕ F (R′) = v} uniformly.16

- Sim sends R′ to Bob.
- Sim waits for Bob to open T using C1. If T 6= T ′, Sim aborts.
- For each i ∈ T ′, Sim (honestly) opens Ri using C2.

Figure 7: Simulator Sim for the case of corrupted Bob. The program described in this figure
is executed for each instance of the n instances of πCOM. Communication with Bob is sent
to an internally simulated instance of the adversary Adv.

Game 4. We modify A to set R′ := R and to send R′ instead of R to Bob in step O1. This
modification is for notational purposes only, Game 3 and Game 4 are perfectly indistinguish-
able.

Game 5. We modify the way A chooses F,R,R′, σ, p: In Game 4, we have F
R
← F, R

R
←

{0, 1}nb, σ := S(R), p := v ⊕ F (R), R′ := R. (We call this distribution D1.) In Game 5

we use F
R
← F, R

R
← {0, 1}nb, p

R
← {0, 1}ℓ, σ := S(R), R′ R

← {R′ : ∀i ∈ T ′.Ri = R′
i, σ =

S(R′), p ⊕ F (R′) = v} =: RF,R,p. (We call this distribution D2.) To show that Game 4 and
Game 5 are indistinguishable, we use the following claim:

Claim 1 Let RT := (Ri)i∈T . For any v ∈ {0, 1}ℓ, the statistical distance between
(F,RT , R

′, σ, p) chosen according to D1 and (F,RT , R
′, σ, p) chosen according to D2 is at

most 2cb+mb/2+ℓ/2−κb−1.

We prove this claim below. Using Claim 1 and the fact that we have n instances of A, we
immediately get that Game 4 and Game 5 are n(2cb+mb/2+ℓ/2−κb−1)-indistinguishable because
the values (Ri)i/∈T are never used by A (except indirectly through R′, σ, and p).

16Note R′ can be sampled efficiently since the conditions ∀i ∈ T ′.Ri = R′

i, σ = S(R′), and p ⊕ F (R′) = v

are a system of linear equations. This uses that S is the syndrome of a linear code, and that F is a family of
affine functions.
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Finally, note that by construction of Sim, Game 5 and the ideal model are perfectly in-
distinguishable. Thus the real and the ideal model are γ-indistinguishable with γ :=
2nε+ncδ+n(2cb+mb/2+ℓ/2−κb−1). Since ǫ, δ are negligible, and n, c are polynomially-bounded,
and 2κb−mb−2cb− ℓ is superlogarithmic, we have that γ is negligible. Thus πn

COM (a, ns1)-

BQS-UC-emulates (FA→B,ℓ
COM )n in the case of corrupted Bob.

Proof of Claim 1. We now prove the pending Claim 1. Let F
R
← F, R

R
← {0, 1}mb,

σ := S(R), p(1) := v ⊕ F (R), p(2) R
← {0, 1}ℓ, U

R
← {0, 1}ℓ, R′(1) := R, and R′(2) R

← RF,R,p(2) .
We write X ≡ Y if the random variables X and Y have the same distribution, and X ≈η

Y if their distributions have statistical distance at most η. Then we have to show that
(F,RT , R

′(1), σ, p(1)) ≈η (F,RT , R
′(2), σ, p(2)) with η := 2cb+mb/2+ℓ/2−κb−1.

The leftover hash lemma [HILL99] in the variant from [HU08] states that (F,F (R), RT ‖σ)
and (F,U,RT ‖σ) have statistical distance at most λ := 2|(RT ‖σ)|+|U |/2−H2(R)/2−1 where
H2(R) denotes the collision-entropy of R. (Intuitively, RT ‖σ is considered as leaked in-
formation about the source R, and F (R) is the randomness extracted from R.) We have
λ = 2cb+(m−κ)b+ℓ/2−mb/2−1 = η.

Hence (F,F (R), RT , σ) ≈η (F,U,RT , σ). Thus (F,RT , p
(1), σ) ≡ (F,RT , v ⊕ F (R), σ) ≈η

(F,RT , v ⊕ U, σ) ≡ (F,RT , p
(2), σ). We define the probabilistic function W , which on input

(F,RT , p, σ) returns a uniform element from RF,R,p (note that RF,R,p does not depend on
Ri, i /∈ T ). Then (F,RT , p

(1), σ,W (F,RT , p
(1), σ)) ≈η (F,RT , p

(2), σ,W (F,RT , p
(2), σ)). By

definition of R′(2) we have (F,RT , p
(2), σ,W (F,RT , p

(2), σ)) ≡ (F,RT , p
(2), σ,R′(2)). Fur-

thermore, since W (F,RT , p
(1), σ)) uniformly samples from those R compatible with F ,

RT , p(1), and σ, we have that (F,RT , p
(1), σ,W (F,RT , p

(1), σ)) ≡ (F,RT , p
(1), σ,R) ≡

(F,RT , p
(1), σ,R′). Thus (F,RT , p

(1), σ,R′) ≈η (F,RT , p
(2), σ,R′(2)) and Claim 1 is shown.

�

Lemma 22 Assume that ǫ, δ are negligible, n is polynomially-bounded, and (1− d
m)c is negli-

gible (in the security parameter k). Assume that C1 is (ε, a)-BQS-hiding and that C2 is (δ, s2)-
online-extractable. Assume that the code with syndrome S has efficient error-correction.

Then πn
COM (a, nms2)-BQS-UC-emulates (FA→B,ℓ

COM )n for corrupted sender A.

Proof. First, we describe the structure of the real and the ideal model in the case that the
party A (Alice) is corrupted:

In the real model, we have the environment Z, the adversary Adv, the corruption
party AC , and the honest party B (Bob). The adversary controls the corruption party AC ,
so effectively he controls the communication between Alice and Bob. The environment gets
Bob’s outputs committed and (open, v). See Figure 8 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be defined below),
the corruption party AC , the dummy-party B̃, and the commitment functionality FCOM.
The inputs (commit, v) and open of FCOM are provided by the corruption party AC and thus
effectively by the simulator Sim. The environment Z controls the dummy-party B̃ and hence
gets the outputs committed and (open, v) of FCOM. See Figure 8 (b).

Fix an adversary Adv. To show Lemma 21, we need to find a quantum-polynomial-time
simulator Sim with QM(Sim) ≤ nms2 such that, for any environment Z with QM(Z) +
QM(Adv) ≤ a, the real model and the ideal model are indistinguishable. This simulator
is described in Figure 9. Note that Sim is quantum-polynomial-time: The extractor BS is
quantum-polynomial-time by definition, and computing R∗ is possible in polynomial-time
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open
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committed
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Figure 8: Networks occurring in the proof of Lemma 22.

Commit phase:
- Sim picks a random T ⊆ {1, . . . ,m} with #T = c. Then Sim (honestly) commits to T

using C1.
- When Alice commits to R1, . . . , Rm, the simulator runs the extractor BS for C2 instead

of the honest recipient’s program. Let R′
1, . . . , R

′
m denote the extracted values.

- Sim waits for (F, σ, p) from Alice.
- Sim computes an R∗ ∈ {0, 1}mb with S(R∗) = σ and ω(R′, R∗) ≤ (d−1)/2 (remember that
ω is the block-wise Hamming distance), computes v′ := p⊕F (R∗), and sends (commit, v′)
to FCOM. (If no such R∗ exists, we set v′ := ⊥.)

Open phase:
- Sim waits for R from Alice.
- Sim (honestly) opens T using C1.
- For each i ∈ T , Sim waits for Alice to open Ri using C2.
- Sim checks that the values Ri sent by Alice match the values Ri opened by Alice for all
i ∈ T , and that σ = S(R1‖ . . . ‖Rm).

- Sim sends open to FCOM.

Figure 9: Simulator Sim for the case of corrupted Alice. The program described in this figure
is executed for each instance of the n instances of πCOM. Communication with Alice is sent
to an internally simulated instance of the adversary Adv.

because the code with syndrome S has efficient error-correction. Since C2 is (δ, s2)-online-
extractable and Sim uses m instances of BS per copy of B, QM(Sim) ≤ nms2. We use the
abbreviations R := R1‖ . . . Rm and similarly for R′ and R∗.

Before we proceed, we introduce two variants of the honest recipient B. The machine
B∗ behaves like B, but when Alice commits to R1, . . . , Rm using C2, B

∗ runs the extractor
BS for C2 instead of the honest recipient’s program. Call the extracted values R′

1, . . . , R
′
m.

Further, B∗ computes an R∗ with S(R∗) = σ and ω(R′, R∗) ≤ (d− 1)/2 and then computes
v′ := p ⊕ F (R∗). (If no such R∗ exists, v′ := ⊥.) In the open phase, B∗ behaves like B. In
particular, B∗ outputs (open, v), not (open, v′). That is, v′ is computed but never used.

The machine B+ behaves like B∗, but outputs (open, v′) instead of (open, v).
By definition of online-extractability, and since B∗ does not use the value extracted by

BS , we have that B and B∗ are δ-indistinguishable. More precisely, for any network S, we
have that S ∪ {B} and S ∪ {B∗} are δ-indistinguishable. Since online-extractability was
defined with respect to non-memory bounded adversaries, this holds even if S is not memory
bounded.

As in Lemma 21, we proceed by investigating a sequence of games.
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Game 1. In the game Game 1j , the j-th instance of B is replaced by an instance of B∗.
(Note: only one instance is replaced, not the first j instances.) We use the following claim:

Claim 2 Let S be an a-memory bounded network. In an execution of S ∪ {B∗}, let v, v′

denote the values v, v′ computed by B∗. Then Pr[v /∈ {v′,⊥}] ≤ ε+ (1− d
m)c := η.

We prove this claim below. Since C1 and C2 are 0-memory bounded, we have that the
machine B is 0-memory bounded. QM(Z) + QM(Adv) ≤ a. Thus we can apply Claim 2 to
Game 1j . Hence in Game 1j , Pr[vj /∈ {v

′
j ,⊥}] ≤ η where vj, v

′
j are the values v, v′ computed

by B∗. We write vj := ⊥ if the open phase fails or does not take place (and hence vj is not
computed by B∗).

Game 2. This game is defined like the real model, except that we use n instances of B∗

instead of the n instances of B. Using the fact that B and B∗ are δ-indistinguishable, we
get that the real model and Game 2 are nδ-indistinguishable.

Again using that B and B∗ are δ-indistinguishable, we get that
∣

∣Pr[vj /∈ {v′j ,⊥} :

Game 1j] − Pr[vj /∈ {v′j ,⊥} : Game 2]
∣

∣ ≤ (n − 1)δ. Thus Pr[vj /∈ {v′j ,⊥} : Game 2] ≤
η + (n− 1)δ. Since this holds for all j = 1, . . . , n, we get:

Pr[∃j. vj /∈ {v
′
j ,⊥} : Game 2] ≤ nη + n(n− 1)δ. (1)

Game 3. This game is defined like the real model, except that we use n instances of B+

instead of the n instances of B. Notice that Game 2 and Game 3 only differ in the fact that
in Game 2 we use instances of B∗ and in Game 3 instances of B+. By definition, B∗ and
B+ only differ in the value they output: B∗ outputs (open, v) and B+ outputs (open, v′).
By (1), the probability that the values v, v′ are different in some instance of B∗ is bounded
by nη + n(n− 1)δ. Hence Game 2 and Game 3 are (nη + n(n− 1)δ)-indistinguishable.

Finally, note that by construction of Sim, Game 3 and the ideal model are perfectly in-
distinguishable. Thus the real and the ideal model are γ-indistinguishable with γ :=
nδ + nη + n(n − 1)δ = n2δ + nε + n(1 − d

m)c. Since δ, ε are negligible, n is polynomially-

bounded, and (1− d
m)c is negligible, we have that γ is negligible. Thus πn

COM (a, nms2)-BQS-

UC-emulates (FA→B,ℓ
COM )n in the case of corrupted Alice.

Proof of Claim 2. We now prove the pending Claim 2. Let R, R′, R∗ and T denote the
corresponding values as computed by B∗. We abbreviate RT := (Ri)i∈T and R′

T := (R′
i)i∈T .

By Bad we denote the event that RT = R′
T and S(R) = σ and R 6= R∗. By construction

of B∗, v 6= ⊥ implies RT = R′
T and S(R) = σ. And v /∈ {v′,⊥} implies R 6= R∗. Thus

v /∈ {v′,⊥} implies Bad . Therefore, to show Claim 2, it is sufficient to show Pr[Bad ] ≤ η in
S ∪ {B∗}. To show this, we again proceed using a sequence of games:

Game 4. An execution of S ∪ {B∗}.

Game 5. We change B∗ to halt after receiving R from Alice. Then Pr[Bad : Game 4] =
Pr[Bad : Game 5].

Game 6. We change B∗ to commit to some fixed T0 using C1 instead of committing to
T . We wish to apply the (ε, a)-BQS-hiding property of C1 in order to show that

∣

∣Pr[Bad :
Game 5] − Pr[Bad : Game 6]

∣

∣ ≤ ε. Let B1 denote the sender in the commitment scheme
C1. To commit to T (or T0) using C1, B

∗ internally runs B1. We construct an adversary
A′

1 that interacts with B1. This adversary simulates S ∪ {B∗} (with B∗ as in Game 5)
except for the machine B1 inside B∗. Note that in Game 5, only the commit phase of C1
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is executed. We let A′
1 output 1 iff Bad happens. We define B̂1 like B1, except that B̂1

ignores its input and commits to T0. Let P be the probability that A′
1 outputs 1 when

running with B1, and let P̂ be the probability that A′
1 outputs 1 when running with B̂1. By

construction, P = Pr[Bad : Game 5] and P̂ = Pr[Bad : Game 6]. Thus we only have to show
that |P − P̂ | ≤ ǫ. To apply the (ε, a)-BQS-hiding property of C1 we have to check that A′

1

is a-memory bounded. A′
1 simulates Z, Adv, and B∗. We have QM(Z) + QM(Adv) ≤ a

by assumption. But B∗ contains the extractor BS for C2 which uses additional s qubits of
quantum memory. Yet, BS is executed after the end of the commit phase of C1. That is,
B∗ is executed within a single activation of A′

1 (since B1 is not activated any more after
the commit phase). Our definition of memory bounded machines allows a machine to use
arbitrary memory within a single activation as long as the state before and after the activation
is memory bounded. (This follows from the fact that we allow arbitrary superoperators to
describe the evolution of a single step in the operation of a machine.) Thus A′

1 is a-memory
bounded. Hence |P − P̂ | ≤ ǫ and thus

∣

∣Pr[Bad : Game 5]− Pr[Bad : Game 6]
∣

∣ ≤ ε.

Game 7. We change B∗ to choose T only after receiving R′. Since T is not used earlier
by B∗, Pr[Bad : Game 6] = Pr[Bad : Game 7]. Fix values R, R′ and σ with S(R) = σ.
We distinguish two cases, depending on whether there exists an R∗ with S(R∗) = σ and
ω(R∗, R′) ≤ (d−1)/2. Case “R∗ exists”: Since S is the syndrome of a b-block (m,κ, d)-linear
code, S(R−R∗) = 0, hence R−R∗ is a codeword. Hence R = R∗ or ω(R,R∗) ≥ d. Using the
triangle inequality and ω(R∗, R′) ≤ (d−1)/2, we get thatR = R∗ or ω(R,R′) ≥ d−(d−1)/2 ≥
d/2. Case “R∗ does not exist”: Since no R∗ with S(R∗) = σ and ω(R∗, R′) ≤ (d−1)/2 exists,
and since S(R) = σ, we have that ω(R,R′) > (d− 1)/2. Hence ω(R,R′) ≥ d/2.

Thus, for any fixed choice of R,R′, σ, we have S(R) 6= σ or R = R∗ or ω(R,R′) ≥ d/2.
If R = R∗ or if S(R) 6= σ, the event Bad does not occur by definition.
If ω(R,R′) ≥ d/2, we bound the probability of Bad occurring as follows: Let D := {i :

Ri 6= R′
i}. Then, for random T ⊆ [m] with #T = c, we have Pr[Bad ] ≤ Pr[RT = R′

T ] =

Pr[T ∩D = ∅] ≤ (1− #D
m )c ≤ (1− d

m)c.

Thus for any fixed R,R′, σ we have Pr[Bad ] ≤ (1− d
m)c. By averaging over the choice of

R,R′, σ, we get Pr[Bad : Game 7] ≤ (1− d
m)c.

Summarizing, we have Pr[Bad : Game 4] ≤ ε+ (1− d
m)c = η. This shows Claim 2. �

Using Reed-Solomon codes for S, and the extractable commitments from Theorem 19 for
C1 and C2, we can instantiate the parameters of πCOM to satisfy the conditions of Lemmas 21
and 22. Thus we get the following theorem:

Theorem 23 Let ℓ, n, and a be polynomially-bounded. Then there are choices for the pa-
rameters of πCOM and a polynomially-bounded integer s such that πCOM is polynomial-time,
constant-round and πn

COM (a, s)-BQS-UC-emulates (FA→B,ℓ
COM )n.

Proof. Let k be the security parameter. Let ℓ′ := max{ℓ, k}. Let b := ⌈log ℓ′⌉, m := 2b − 1,
c := d := ⌈m6 ⌉, and κ := 2b− d. For any b and any d < 2b, there exists a Reed-Solomon code
[RS60] over GF(2b) that is a (2b−1, 2b−d, d)-linear code. Thus there exists an efficient b-block
(m,κ, d)-linear code. Let S be its syndrome. Let F be a family of affine strongly universal
hash functions F : {0, 1}mb → {0, 1}ℓ. Such functions exist for any m, b, ℓ; for example,
the set of all affine transformations from {0, 1}mb to {0, 1}ℓ is easily seen to be strongly
universal. By Theorem 19 there exists a polynomially-bounded s1, a negligible ε, and a
constant-round 0-memory bounded (ε, a)-BQS-hiding (ε, s1)-online-extractable commitment
scheme C1. Again by Theorem 19, there exists a polynomially-bounded s2, a negligible δ,
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and a constant-round 0-memory bounded (δ, a + ns1)-BQS-hiding (δ, s2)-online-extractable
commitment scheme C2. Let s := max{ns1, nms2}.

We have that

2κb−mb− 2cb− ℓ = 2(2b − d)b− (2b − 1)b− 2db− ℓ

= 2bb− 4db+ b− ℓ ≥ ℓ′⌈log ℓ′⌉ − 4⌈ ℓ
′−1
6 ⌉⌈log ℓ

′⌉ − ℓ′

is superlogarithmic in ℓ′ and thus also in k ≤ ℓ′. Thus the conditions for Lemma 21 are
fulfilled. Hence πn

COM (a, ns1)-BQS-UC-emulates (FA→B,ℓ
COM )n in the case of corrupted Bob.

Furthermore, we have that

(1− d
m)c ≤ (1− 1

6)⌈m/6⌉ ≤ (5
6)ℓ

′/6−1 ≤ (5
6)k/6−1

is negligible. Thus the conditions for Lemma 22 are fulfilled. Hence πn
COM (a, nms2)-BQS-

UC-emulates (FA→B,ℓ
COM )n in the case of corrupted Alice. Since ns1, nms2 ≤ s, it follows that

πn
COM (a, s)-BQS-UC-emulates (FA→B,ℓ

COM )n.
Note that πCOM executes all instances of C2 concurrently, so πCOM is constant-round. �

4 General two-party computation

We now show that general two-party computation is possible in the BQS-UC-framework.
More precisely, for any arbitrary functionality G, any arbitrary memory-bound a, and any
bound n on the number of concurrent instances of the protocol, we construct a constant-
round protocol πbqs2pc such that πn

bqs2pc (a, s)-BQS-UC-emulates Gn,
To construct this protocol, we only need to plug together known results:

Theorem 24 (OT reversal [Wul07]) There is a classical constant-round protocol πrevOT

that classical-UC-emulates FA→B
OT and invokes one instance of FB→A

OT . Here FA→B
OT denotes

the functionality for
(2
1

)

-oblivious transfer with sender A and recipient B. FB→A
OT is defined

analogously.

Theorem 25 (Classical two-party computation [IPS08]) Let G be a well-formed17

classical probabilistic-polynomial-time functionality. Then there is a classical constant-
round protocol π2pc that classical-UC-emulates G and invokes polynomially-many instances
of FA→B

OT and FB→A
OT .

Theorem 26 (OT from commitment [Unr10]) There is a constant-round 0-memory
bounded protocol πQOT that quantum-UC-emulates FB→A

OT and invokes polynomially-many

instances of FA→B,1
COM .

Theorem 27 (BQS two-party computation) Let G be a classical well-formed probabilis-
tic-polynomial-time functionality. Let n and a be polynomially-bounded. Then there is a
polynomially-bounded s and a constant-round 0-memory bounded protocol πbqs2pc not invoking
any functionality such that πn

bqs2pc (a, s)-BQS-UC-emulates Gn.

17Well-formedness describes certain technical restrictions stemming from the proof by Ishai et al. [IPS08]:
Whenever the functionality gets an input, the adversary is informed about the length of that input. Whenever
the functionality makes an output, the adversary is informed about the length of that output and may decide
when this output is to be scheduled.
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Proof. By composing the protocols from Theorem 25 and Theorem 24, we get a classical
constant-round protocol σ1 that classical-UC-emulates G and invokes polynomially-many in-
stances of FB→A

OT . Using the quantum lifting theorem from [Unr10], this implies that σ1

quantum-UC-emulates G. Using the composition theorem (for quantum-UC, [Unr10]), we
can compose σ1 with πQOT (from Theorem 26) and get a constant-round protocol σ2 that

quantum-UC-emulates G and invokes polynomially-many instances of FA→B,1
COM . Using the

composition theorem again, we get that σn
2 quantum-UC-emulates Gn. (Remember that

in the case of quantum-UC-security, the composition theorem allows for concurrent com-
position.) By Lemma 4 (iii, iv), σn

2 (a − nQM(σ2) + s′′, s′)-BQS-UC-emulates Gn for some
polynomially-bounded s′ and all s′′. Let m be a polynomial upper bound on the number
of instances of FA→B,1

COM invoked by σ2. By Theorem 23, there is a polynomially-bounded s′′

and a constant-round protocol πCOM such that πnm
COM (a, s′′)-BQS-UC-emulates (FA→B,1

COM )nm.

Let πbqs2pc be the protocol resulting from replacing invocations of FA→B,1
COM in σ2 by invoca-

tions of πCOM. By Corollary 11, πbqs2pc (a−nQM(σ2), s
′′ + s′)-BQS-UC-emulates Gn. Since

QM(σ2) = 0 by construction, the theorem follows with s := s′′ + s′. �

5 Conclusions

We have defined the BQS-UC model for analyzing protocols in the bounded quantum storage
model. We have given a composition theorem that permits us to replace arbitrary subproto-
cols; the composition theorem does not, however, allow for concurrent composition (except
in rare cases where the simulation overhead s is smaller than the memory bound a). We
gave a statistically secure commitment protocol in the BQS-UC model. Our protocol allows
for concurrent composition of a polynomially-bounded number n of instances of itself, but
the protocol’s parameters depend on n. Our protocol has an efficient simulator. Combining
our result with prior results, we constructed a statistically BQS-UC secure constant-round
protocol for general two-party computation without any setup assumption.

Open questions. We believe that the following questions constitute interesting directions
for future work:

• Find a protocol that concurrently composes with any polynomial-number n of instances
of itself; the protocol’s parameters should not depend on n. The protocol should also
compose with instances of itself in which Alice and Bob exchanged their roles.

• Find a more efficient construction. Currently, our commitment scheme executes a
number of instances of the scheme from Theorem 19. The communication complexity
of the latter is in the order of magnitude of the adversary’s memory bound a. Is it
possible to find a BQS-UC secure commitment scheme whose overall communication
complexity is in the order of magnitude of a? Furthermore, can we directly implement
an OT in the BQS-UC model without going through the construction from [Unr10]?

• Extend our protocols to tolerate noise on the quantum channel. If the protocols tolerate
a sufficient amount of noise, they can be implemented with today’s technology. Essen-
tially, this boils down to making the protocols from [KWW09] and [Unr10] tolerate
noise.
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