
Throughput-Optimal Routing in UnreliableNetworksPaul Bunn Rafail OstrovskyAbstractWe demonstrate the feasibility of throughput-e�cient routing in a highly unreliable net-work. Modeling a network as a graph with vertices representing nodes and edges representingthe links between them, we consider two forms of unreliability: unpredictable edge-failures, anddeliberate deviation from protocol speci�cations by corrupt nodes. The �rst form of unpre-dictability represents networks with dynamic topology, whose links may be constantly going upand down; while the second form represents malicious insiders attempting to disrupt communi-cation by deliberately disobeying routing rules, by e.g. introducing junk messages or deleting oraltering messages. We present a robust routing protocol for end-to-end communication that issimultaneously resilient to both forms of unreliability, achieving provably optimal throughputperformance. Our proof proceeds in three steps: 1) We use competitive-analysis to �nd a lower-bound on the optimal throughput-rate of a routing protocol in networks susceptible to onlyedge-failures (i.e. networks with no malicious nodes); 2) We prove a matching upper bound bypresenting a routing protocol that achieves this throughput rate (again in networks with no ma-licious nodes); and 3) We modify the protocol to provide additional protection against maliciousnodes, and prove the modi�ed protocol performs (asymptotically) as well as the original.Keywords. Network Routing; Fault Localization; Multi-Party Computation in Presence ofDishonest Majority; Communication Complexity; End-to-End Communication; CompetitiveAnalysis; Asynchronous Protocols1 IntroductionWith the immense range of applications and the multitude of networks encountered in prac-tice, there has been an enormous e�ort to study routing in various settings. For the purpose ofdeveloping network models in which routing protocols can be developed and formally analyzed,networks are typically modelled as a graph with vertices representing nodes (processors, routers,etc.) and edges representing the connections between them. Beyond this basic structure, additionalassumptions and restrictions are then made in attempt to capture various features that real-worldnetworks may display. In deciding which network model is best-suited to a particular application,developers must make a choice with respect to each of the following considerations: 1) Synchronousor Asynchronous; 2) Static or Dynamic Topology; 3) Global Control or Distributed/Local Control;4) Connectivity/Liveness Assumptions; 5) Existence of Faulty/Malicious Nodes.Notice that in each option above there is an inherent trade-o� between generality/applicabilityof the model verses optimal performance within the model. For instance, a protocol that assumes a�xed network topology will likely out-perform a protocol designed for a dynamic topology setting,but the former protocol may not work in networks subject to edge-failures. Similarly, a protocol thatprotects against the existence of faulty or deliberately malicious nodes will likely be out-performedin networks with no faulty behavior by a protocol that assumes all nodes act honestly.0



From both a theoretical and a practical standpoint, it is important to understand how each(combination) of the above listed factors a�ects routing performance. In this paper, we explorethe feasibility of end-to-end routing in highly unreliable networks, i.e. networks that simultaneouslyconsider all of the more general features: Asynchronous, Dynamic Topology, Local Control, noConnectivity Assumptions, and the existence of deliberately Malicious Nodes. Admittedly, in this�worst-case� model it is unlikely that any protocol will perform well, and one (or more) strongerassumption(s) must be made to achieve a reasonable level of performance. However, understandingbehavior in the worst case, even with respect to the most basic task of end-to-end communication,is important to determine how much (if any) the addition of each assumption improves optimalprotocol performance.1.1 Previous WorkAs mentioned above, development and analysis of routing protocols relies heavily on the choicesmade for the network model. To date, all network models have guaranteed at least one (andmore commonly multiple) �reliability� assumption(s) with respect to the above list of �ve networkcharacteristics. In this section, we explore various combinations of assumptions that have beenmade in recent work, highlighting positive and negative results with respect to each network model,emphasizing clearly which assumptions are employed in each case. Since our work focuses ontheoretical results, for space considerations we do not discuss below the vast amount of researchand analysis of routing issues for speci�c network systems encountered in practice, e.g. the Internet.Even still, the amount of research regarding network routing and analysis of routing protocols isextensive, and as such we include only a sketch of the most related work, indicating how theirmodels di�er from ours and providing references that o�er more detailed descriptions.End-to-End Communication: One of the most relevant research directions to our paper isthe notion of End-to-End communication in distributed networks, where two nodes (sender andreceiver) wish to communicate through a network. While there is a multitude of problems thatinvolve end-to-end communication (e.g. End-to-End Congestion Control, Path-Measurement, andAdmission Control), we discuss here work that consider networks whose only task is to facilitatecommunication between sender and receiver. Some of these include a line of work developing theSlide protocol (the starting point of our protocol): Afek and Gafni [2], Awerbuch et al. [12], Afeket al. [1], and Kushilevitz et al. [18]. The Slide protocol (and its variants) have been studied in avariety of network settings, including multi-commodity �ow (Awerbuch and Leighton [11]), networkscontrolled by an online bursty adversary (Aiello et al. [4]), and networks that allow corruption ofnodes (Amir et al. [7]). However, prior to our work there was no version of the Slide protocolthat considered routing in the �worst case� network setting: only [7] considers networks in whichnodes are corruptible, but their network model assumes synchronous communication and demandsminimal connectivity guarantees.Fault Detection and Localization Protocols: There have been a number of papers thatexplore the possibility of corrupt nodes that deliberately disobey protocol speci�cations in orderto disrupt communication. In particular, there is a recent line of work that considers a networkconsisting of a single path from the sender to the receiver, culminating in the recent work of Baraket al. [13] (for further background on fault localization see references therein). In this model, theadversary can corrupt any node (except the sender and receiver) in a dynamic and malicious manner.1



Since corrupting any node on the path will sever the honest connection between sender and receiver,the goal of a protocol in this model is not to guarantee that all messages sent are received. Instead,the goal is to detect faults when they occur and to localize the fault to a single edge.Goldberg et al. [17] show that a protocol's ability to detect faults relies on the assumption thatOne-Way Functions (OWF) exist, and Barak et al. [13] show that the (constant factor) overhead (interms of communication cost) incurred for utilizing cryptographic tools (such as MACs or SignatureSchemes) is mandatory for any fault-localization protocol. Awerbuch et al. [10] also explore routingin the Byzantine setting, although they do not present a formal treatment of security, and indeed acounter-example that challenges their protocol's security is discussed in the appendix of [13].Fault Detection and Localization protocols focus on very restrictive network models (typicallysynchronous networks with �xed topology and some connectivity assumptions), and throughput-performance is usually not considered when analyzing fault detection/localization protocols.Competitive Analysis: Competitive Analysis was �rst introduced by Sleator and Tarjan [21]as a mechanism for measuring the worst-case performance of a protocol, in terms of how badly thegiven protocol may be out-performed by an o�-line protocol that has access to perfect information.Recall that a given protocol has competitive ratio 1/λ (or is λ-competitive) if an ideal o�-line protocolhas advantage over the given protocol by at most a factor of λ.One place competitive analysis has been used to evaluate performance is the setting of distributedalgorithms in asynchronous shared memory computation, including the work of Ajtai et al. [6]. Thisline of work has a di�erent �avor than the problem considered in the present paper due to thenature of the algorithm being analyzed (computation algorithm verses network routing protocol).In particular, network topology is not a consideration in this line of work (and malicious deviationof processors is not considered).Competitive analysis is a useful tool for evaluating protocols in unreliable networks (e.g. asyn-chronous networks and/or networks with no connectivity guarantees), as it provides best-possiblestandards (since absolute performance guarantees may be impossible due to the lack of networkassumptions). For a thorough description of competitive analysis, see [14].Max-Flow and Multi-Commodity Flow: The Max-�ow and multi-commodity �ow modelsassume networks that are synchronous with connectivity/liveness guarantees and have incorrupt-ible nodes (max-�ow networks also typically have �xed topology and are global-control). Therehas been a tremendous amount of work in these areas, see e.g. Leighton et al. [19] for a discussionof the two models and a list of results, as well as Awerbuch and Leighton [11] who show optimalthroughput-competitive ratio for the network model in question.Admission Control and Route Selection: The admission control/route selection modeldi�ers from the multi-commodity �ow model in that the goal of a protocol is not to meet the de-mand of all ordered pairs of nodes (s, t), but rather the protocol must decide which requests itcan/should honor, and then designate a path for honored requests. There are numerous modelsthat are concerned with questions of admission control and route selection: The Asynchronous1Transfer Model (see e.g. Awerbuch et al. [9]), Queuing Theory (see e.g. Borodin and Kleinberg [15]and Andrews et al. [8]), Adversarial Queuing Theory (see e.g. Broder et al. [16] and Aiello et al.[5]). For an extensive discussion about these research areas, see [20] and references therein.1We emphasize that the de�nition of asynchronicity in ATM is di�erent than the one considered in this paper. Inparticular, �asynchronicity� in ATM literature is meant to emphasize the fact that the requests are not known aheadof time, and thus protocols face the added challenge of handling new requests adaptively.2



The admission control/route selection model assumes synchronous communication and incor-ruptible nodes and makes connectivity/liveness guarantees. Among the other options (�xed ordynamic topology, global or local control), each combination has been considered by various au-thors, see the above reference for further details and results within each speci�c model.1.2 Our ResultsIn this paper, we consider the feasibility of end-to-end routing in unreliable networks. We be-gin by exploring optimal throughput performance in networks whose nodes are trustworthy, butotherwise the network represents a �worst-case� network model. In particular, we use competitiveanalysis to prove matching upper and lower bounds on throughput performance for end-to-end com-munication in networks that are asynchronous, local-control, and have dynamic topology with noconnectivity guarantees.Theorem 1 (Informal) The best competitive-ratio that any protocol can achieve in a distributedasynchronous network with dynamic topology (and no connectivity assumptions) is 1/n (where n isthe number of nodes). In particular, given any protocol P, there exists an alternative protocol P ′,such that P ′ will out-perform P by a factor of at least n.Theorem 2 (Informal) There exists a protocol that achieves a competitive ratio of 1/n in a dis-tributed asynchronous network with dynamic topology (and no connectivity assumptions).Next, we move to networks where the nodes are susceptible to corruption and may deviate from thespeci�ed protocol in any desired manner to disrupt communication as much as possible. Somewhatsurprisingly, we show that this increased level of unreliability does not a�ect optimal throughputperformance; indeed, we demonstrate a protocol that achieves 1/n competitive ratio, which matchesthe lower-bound of Theorem 1.Theorem 3 (Informal) Assuming one-way functions exist and Public-Key Infrastructure, thereexists a protocol with competitive ratio 1/n in a distributed asynchronous network with dynamictopology (and no connectivity assumptions), even if an arbitrary subset of malicious nodes deliber-ately disobey the protocol speci�cations in order to disrupt communication as much as possible.In Section 2 we de�ne formally the network model(s) and our mechanism for analyzing throughputperformance, then in Sections 3-5 we go through the ideas for Theorems 1-3 (respectively). Rigorousproofs of all theorems can be found in the Appendix.2 The ModelIn this section, we describe formally the model in which we will be analyzing routing protocols.We begin by modeling the network as a graph G with n vertices (or nodes). Two of these nodes aredesignated as the sender S and receiver R, and the sender has a stream of messages {m1,m2, . . . }that it wishes to transmit through the network to the receiver.Asynchronous communication networks vary from synchronous networks in that the transmissiontime across an edge in the network is not �xed (even along the same edge, from one messagetransmission to the next). Since there is no common global clock or mechanism to synchronizeevents, an asynchronous network is often said to be �message driven,� in that the actions of thenodes in the network occurs exactly (and only) when they have just sent/received a message.3



Asynchronous networks are commonly modelled by introducing a scheduling adversary that con-trols the edges of the network as follows. Informally, we focus on a single edge E(u, v), and thena �round� consists of allowing the edge to deliver a message in both directions.2 To model unpre-dictable delivery times across each edge, we have each node u decide on the next message to sendto v immediately after receiving a message from v, and this message is then sent to the adversarywho stores the message until the next time the adversary activates edge E(u, v).Formally, we de�ne a round to consist of a single edge E(u, v) in the network chosen by theadversary in which two sequential events occur: 1a) Among the packets from u to v that theadversary is storing, it will choose one (in any manner it likes) and deliver it to v; 1b) Similarly, theadversary chooses one of the packets it is storing from v to u and delivers it to u; 2a) After seeingthe delivered packet, u sends requests of the form (u, v,m) = (sending node, target node, message)to the adversary, which will be stored by the adversary and may be delivered the next time E(u, v)is made a round; 2b) Similarly for v. If e.g. u does not have a packet he wishes to send v in step(2a), then u can choose to send nothing here. Similarly, the adversary does not send anything to vin step (1a) if he is not storing a message from u to v during round E(u, v).Modelling asynchronicity in this manner captures the intuition that a node has no idea howlong a message �sent� to an adjacent node will take to arrive, and this de�nition also captures the�worst-case� asynchronicity, in that a (potentially deliberately malicious) adversary controls thescheduling of rounds/edges.For ease of discussion, we assume that all edges in the network have a �xed bandwidth/capacity,and that this quantity is the same for all edges in the network. We emphasize that this assumptiondoes not restrict the validity of our claims in a more general model allowing varying bandwidths,but is only made for ease of exposition.Aside from obeying the above speci�ed rules, we place no restriction on the scheduling adversary.In other words, it may honor whatever edges it likes (this models the fact our network makes noconnectivity assumptions), wait inde�nitely long between honoring the same edge twice (modelingboth the dynamic and asynchronous features of our network), and do anything else it likes (so long asit respects steps 1) and 2) above each time it honors an edge) in attempt to hinder the performanceof a routing protocol.In Section 5, our model will also allow a polynomially bounded node-controlling adversary tocorrupt the nodes in the network. The node-controlling adversary is malicious, meaning that hecan take complete control over the nodes he corrupts, and can therefore force them to deviate fromany protocol in whatever manner he likes. We further assume that the adversary is dynamic, whichmeans that he can corrupt nodes at any stage of the protocol, deciding which nodes to corruptbased on what he has observed thus far. We do not impose any �access-structure� limitations onthe adversary. That is, the adversary may corrupt any nodes it likes (although if the sender and/orreceiver is corrupt, secure routing between them is impossible). Because integrity of the messagesreceived by the receiver is now a concern (as corrupt nodes can delete and/or modify messages), wewill say a routing protocol is secure if the receiver eventually gets all of the messages sent by thesender, in order and without duplication or modi�cation.2The demand that the adversary deliver messages in both directions when honoring an edge E(u, v) does notrestrict the power of the adversary. To generalize to the case where the adversary can deliver messages in only onedirection, one could simply de�ne an edge to be �down� until at least one message has been able to travel in eachdirection. Since competitive analysis can be used to show that acknowledgements of some kind are requisite to achieve�nite competitive-ratio, it is natural to de�ne a round in such a way so as to allow communication in both directions.4



The separation of the adversaries into two distinct entities is solely for conceptual reasons.Note that the scheduling adversary cannot be controlled or eliminated: edges themselves are notinherently �good� or �bad,� so identifying an unresponsive edge does not allow us to forever refusethe protocol to utilize this edge. By contrast, our protocol will limit the amount of in�uence thenode-controlling adversary has in the network. Speci�cally, we will show that if a node deviatesfrom the protocol in a su�ciently destructive manner (in a well-de�ned sense), then our protocolwill be able to identify it as corrupted in a timely fashion. Once a corrupt node has been identi�ed,it will be eliminated from the network by excluding it from all future communication.Note that our network model is on-line and distributed, in that we do not assume that the nodeshave access to any information (including future knowledge of the adversary's schedule) aside fromthe packets they receive during a round they are a part of. Also, we insist that nodes have boundedmemory which is at least Ω(n2).3The goal of this paper is to analyze the performance of routing protocols in a network model thatis: on-line, distributed, asynchronous, dynamic with no connectivity assumptions, and susceptibleto misbehaving nodes. Our mechanism for evaluating protocols will be to measure their throughput,a notion we can now de�ne formally in the context of rounds and the scheduling adversary. Inparticular, let fA
P : N → N be a function that measures, for a given protocol P and adversary A, thenumber of packets that the receiver has received as a function of the number of rounds that havepassed. Note that in this paper, we will consider only deterministic protocols, so fA

P is well-de�ned.The function fA
P formalizes our notion of throughput.As mentioned in the Introduction, we utilize competitive analysis to gauge the performance (withrespect to throughput) of a given protocol against all possible competing protocols. In particular, forany �xed adversary A, we may consider the ideal �o�-line� protocol P ′ which has perfect information:knowledge of all future decisions of the scheduling adversary, as well as knowledge of which nodesare/will become corrupt. That is, for any �xed round x, there exists an ideal o�-line protocol

P ′(A, x) such that fA
P ′(x) is maximal. We demand that the ideal protocol P ′ never utilizes corruptnodes, once they have been corrupted (this restriction is not only reasonable, it is necessary, as itcan easily be shown that allowing P ′ to utilize corrupt nodes will result in every on-line protocolhaving competitive ratio 1

∞).De�nition 2.1. We say that a protocol P has competitive ratio 1/λ (respectively is λ-competitive)if there exists a constant k and function g(n,C) (C is the memory bound per node) such that forall possible adversaries A and for all x ∈ N:4
fA
P ′(x) ≤ (k · λ) · fA

P (x) + g(n,C) (1)We assume that there is a Public-Key Infrastructure (PKI) that allows digital signatures. Inparticular, before the protocol begins we choose a security parameter l su�ciently large and run akey generation algorithm for a digital signature scheme, producing n = |G| (secret key, veri�cationkey) pairs (sku, vku). As output to the key generation, each processor u ∈ G is given its own privatesigning key sku and a list of all n signature veri�cation keys vkv for all nodes v ∈ G. In particular,this allows the sender and receiver to sign messages to each other that cannot be forged (exceptwith negligible probability in the security parameter) by any other node in the system.3For simplicity, we assume that all nodes have the same memory bound, although our argument can be readilyextended to handle the more general case.4Typically, λ is a function of the number of nodes in the network n, and De�nition 2.1 implicity assumes theminimal value of λ for which (1) holds. 5



3 Optimal Competitive Ratio in Unrestricted NetworksDue to space constraints and the complexity of the argument, we will only be able to sketch theproof of Theorem 1 in this section. At a high level, the idea is to describe an adversary that schedulesedges based on the given protocol's actions such that the packets of the protocol get �spread out�among the nodes of the network. Meanwhile, with knowledge of the adversary's schedule, an o�ineprotocol can choose to only move packets along edges leading to the receiver. A short descriptionis below; the full proof can be found in Appendix A.The network model assumes that nodes have bounded memory, so let C denote the maximalnumber of packets that any node can store at any time. We will show that for any deterministicprotocol P, there exists an adversary A, a protocol P ′, and a sequence of strictly positive integers
{m1,m2, . . . } such that for any α > 0, by round x =

∑α
i=1 miC:

fA
P ′(x) = αC and fA

P (x) ≤
αC

(n − 2)
≈

αC

n
, (2)from which we conclude that the competitive ratio of P is at best 1/n.We begin by describing the adversary, i.e. a schedule (or order) of edges that will be honored. Theschedule will proceed in cycles, with the ith cycle lasting miC rounds. Let the height of a node referto the number of packets currently stored by that node. For the �rst C rounds, the adversary �ndsthe internal node A1 with the largest height (ties are broken arbitrarily), and honors edge E(S,A1)for C rounds (here S denotes the Sender). The protocol then proceeds inductively, starting with

j = 2 and Â1 = A1:1. The adversary �nds node Aj , where Aj is the node in the network closest in height (butsmaller) to Âj−1. If there is no such node, set Aj to the Receiver R.2. The adversary honors edge E(Âj−1, Aj) for C rounds3. The adversary sets Âj to be whichever node (Âj−1 or Aj) has fewer packets after the C roundsof edge E(Âj−1, Aj) has just passed.The above three steps are continued until the end of the C rounds for which Aj = R.Notice a few features of the adversarial strategy: 1) The Sender's ability to insert packets ishindered by the fact the adversary is choosing to honor edge E(S,N) for the node N with thesmallest capacity to store more packets; 2) By selecting in Step 2 the node storing fewer packets,the adversary is attempting to minimize the number of packets that make progress towards theReceiver; indeed 3) Among all nodes in the network, the node N that is currently storing the fewestpackets will be the one connected to the Receiver in the �nal C rounds of the cycle. Also, it is clearthat an o�-line protocol P ′ with knowledge of all future rounds will be able to deliver C packetsevery cycle. Since a cycle consists of C ∗ m rounds for some positive integer m, we can generate asequence of positive integers {mi} coming from the ith cycle, yielding the �rst equality of (2), so itremains to prove the second bound in (2).Fix any on-line protocol P we wish to analyze. If we could demonstrate that P delivers atmost C/(n − 2) packets per cycle, then (2) would be immediate. Unfortunately, one can imaginee.g. the state of the network at the beginning of some cycle being such that all internal nodes arestoring the maximum C allowed packets. In this case, P will be able to deliver C packets this cycle.Therefore, we instead need to argue that if P ever reaches a state where it is able to deliver more6



than C/(n − 2) packets in some cycle (e.g. all nodes are full), then it must be that P has deliveredfewer than an average of C/(n − 2) packets per cycle in the past.With this counter-example in mind, we de�ne a potential function Ψα, which intuitively measuresthe ability of P to deliver packets in the αth cycle. We will show that whenever P delivers more than
C/(n − 2) packets, the di�erence Ψα − Ψα+1 will be positive and �su�ciently large.� Conversely,any time Ψα+1 > Ψα, we will show that necessarily P delivered �signi�cantly fewer� than C/(n− 2)packets in the αth cycle.Formally, at the start of any cycle α, label the internal nodes as {N1, . . . , Nn−2} in descendingorder in terms of how full their bu�ers are at the start of α. Let Hα

i denote the number of packetsthat node Nα
i is storing at the outset of α, and then de�ne:

Ψα =

n−2∑

i=1

(
1

2

)n-i-2
· max

(
0,Hα

i − (n − i − 2)
C

n − 2

) (3)Let Zα denote the number of packets the Receiver receives in the αth cycle. Our main technicalresult for this section is then:Lemma 3.1. For all α ∈ N:
Zα + (Ψα+1 − Ψα) ≤

7C

n − 2
(4)Proof. See the proof of Lemma A.12 in the Appendix.With Lemma 3.1 in hand, we obtain the second inequality of (2) as an immediate corollary:Lemma 3.2. For any α ∈ N and x = (n − 2)αC:

fA
P (x) ≤

7αC

n − 2
(5)Proof. Consider the string of inequalities:

fA
P (x) =

∑

β≤α

Zβ ≤
∑

β≤α

(
7C

(n − 2)
− (Ψβ+1 − Ψβ)

)
=

7αC

n − 2
+ Ψ1 − Ψα+1 ≤

7αC

n − 2
, (6)where the last inequality follows from the fact that Ψα+1 ≥ 0 and Ψ1 = 0 (the latter is true sinceat the outset of the protocol, all nodes are not storing any packets).4 Optimal On-line Local Control ProtocolIn this section we present an on-line protocol that enjoys competitive ratio 1/n. The protocolis a basic implementation of the �Slide� protocol (or gravitational-�ow), which was �rst introducedby Afek, Gafni, and Rosén [3], and further developed in a series of work [1] and [18]. We chose toanalyze the performance of this protocol in our �unrestricted� network model because its inherentmessage-driven protocol is well-suited for the asynchronous network, and it has also been shownto out-perform more naive candidates for asynchronous routing protocols (e.g. broadcast) whenstronger network assumptions are made [7].Because the Slide protocol has nodes make routing decisions based on their current height (howmany packets they are currently storing), it will be easier to work in a simpli�ed model for asyn-chronicity over the one presented in Section 2. In particular, for the remainder of this section, weassume a semi-asynchronous model, de�ned as follows:7



1′ The adversary does not maintain a bu�er of requests of packets from nodes and must insteadsatisfy them immediately as speci�ed in 3′ below
2′ The adversary proceeds in the same manner as before, by selecting an edge E(u, v) to honoraccording to the same guidelines as in Section 2
3′ During a round E(u, v), the adversary �rst �awakens� u and v to alert them they are a part ofthe current round. Nodes u and v may now submit their request, consisting only of a packetplus control information, to the adversary who must directly deliver the packet p to v duringthis round (similarly the packet p′ that v submitted is delivered to u).Comparing this to the fully asynchronous model de�ned in Section 2, the di�erence is that here thepackets that u and v deliver to each other, with their height information included, are current; inthe model of Section 2, the packets and height information delivered in some round E(u, v) wereactually set the previous time E(u, v) was honored. This slightly complicates things for routingprotocols in the fully asynchronous model, as the nodes are forced to make routing decisions basedon outdated information.It turns out that proving our protocol enjoys a certain competitive-ratio in the semi-asynchronoussetting is the hard part, and it is not di�cult to extend the proof to work in the fully asynchronoussetting. Indeed, all of the major ideas come from considering only the semi-asynchronous setting.In the next subsection we describe our protocol in the semi-asynchronous setting, and then sketch aproof that it enjoys competitive-ratio 1/n. The formal details of the proof are presented in AppendixB, and a description of the protocol extended to the fully asynchronous setting, together with formalproofs that it has the same competitive ratio, are provided in Appendix C.4.1 Description of the ProtocolThere are numerous instantiations of the Slide protocol that vary slightly between one another,but the basic principle is always the same. Due to space constraints, we will not provide a de-tailed description of the protocol, but refer the reader to [3] for the original protocol, and [1], [18],and [7] for various modi�cations. Below, we present a basic implementation of the Slide protocol,and then go on to prove that the basic Slide protocol achieves competitive ratio 1/n in the re-stricted semi-asynchronous model of 1′ − 3′ described above. Somewhat surprisingly, even thoughthe Slide protocol has been in existence for over a decade, no throughput competitive analysis forthe asynchronous (or even semi-asynchronous) model has ever been performed.The network model assumes that nodes have bounded memory, so let C denote the maximalnumber of packets that any node can store at any time. Also, we will assume C/n ∈ N and inparticular that C/n ≥ 2 (the former assumption is not necessary but will make the expositioneasier; the latter is necessary for the Slide protocol to work). Within the context of the semi-asynchronous network model (1′ − 3′ above), we describe the request that a node u will make tothe adversary when it is �awakened,� and also how this node u will respond to the packet it receivesfrom v:1. If u is the Sender, then u �nds the next packet pi ∈ {p1, p2, . . . } that has not yet been deleted (see1a below), and forms the packet to send to the adversary: p := (pi, C + C

n
− 1). Meanwhile, when ureceives (in the same round) the packet (pj , h):(a) If h < C, then u deletes packet pi from his input stream {p1, p2, . . . } (and ignores the receivedpacket pj)(b) If h ≥ C, then u keeps pi (and ignores the received packet pj)8



2. If u is the Receiver, then u forms the packet to send p := (⊥, −C
n

). Meanwhile, when u receives apacket of form (pj , h), if pj 6= ⊥, u stores/outputs pj as a packet successfully received.3. If u is an internal node (not Sender or Receiver) and u currently has height H , then u �nds the last5packet pi that it has received, and sets the packet to send to the adversary: p := (pi, H) (if H = 0,then set pi = ⊥). Meanwhile, when u receives (in the same round) a packet of form (pj , h):(a) If H ≥ h + C/n, then u will delete pi (and ignore the packet pj)(b) If H ≤ h − C/n, then u will keep pi, and also store pj (as the most recent packet received)(c) If |H − h| < C/n, then u will keep pi and ignore packet pjNotice that rules 1-3 essentially state that internal nodes will always accept packets from theSender (if they have room), always send packets to the Receiver (if they have any to send), and willtransfer a packet to a neighboring internal node if and only if they are currently storing at least
C/n more packets than that neighbor.4.2 Competitive Analysis of Slide in the Semi-Asynchronous ModelDue to space constraints, we provide here only a very brief sketch of the proof that the abovedescribed Slide protocol enjoys competitive ratio 1/n. The full proof can be found in Appendix B.Recall that we wish to show that there exists a constant k and function g(n,C) such that forany round x and against any adversary A (see (1)):

fA
P ′(x) ≤ (kn) · fA

P (x) + g(n,C) (7)Above (and through the remainder of this section), P will denote the Slide protocol, and for �xedchoice of adversary A and round x, P ′(A, x) will denote the ideal o�-line protocol (since we will be�xing x and A, we will usually write simply P ′). We will show that (7) will be true for all rounds xand all adversaries A for k = 4 and g(n,C) = 4n2C. We proceed by �xing an arbitrary adversary
A and round x ∈ N, and showing that for these (arbitrary) choices, (7) will be satis�ed. Let Y P ′(resp. ZP ′) denote the packets that have been inserted (resp. received) by the Sender (resp. theReceiver) for protocol P ′ as of round x (de�ne Y P and ZP analogously). Notice that fA

P ′(x), theleft-hand-side of (7), is equal to |ZP ′

| (we will occasionally write ZP ′ when we really mean |ZP ′

|;the meaning will be clear from context). We split ZP ′ into two disjoint subsets ZP ′

= ZP ′

1 ∪ ZP ′

2 ,which we now describe.We can view the adversary A as simply a schedule (or order) of edges that the adversarywill honor. We will imagine a virtual world, in which the two protocols (Slide and the ideal o�-lineprotocol) are run simultaneously in the same network. De�ne ZP ′

1 to be the subset of ZP ′ consistingof packets p′ for which there exists at least one round E(u, v) such that both p′ and some packet
p ∈ Y P were both transferred this round.6 Set ZP ′

2 = ZP ′

\ ZP ′

1 .Lemma 4.1. |ZP ′

1 | ≤ n|ZP | + n2CProof Sketch. Since every packet in ZP ′

1 travelled at the same time as a packet transfer in P, wecan bound |ZP ′

1 | by the number of packet transfers in P. Since any �xed packet drops in heightat least C/n each time it is transferred, the total number of packet transfers is at most n|Y P |.Finally, since the maximal number of packets that can be stored in all internal bu�ers is nC, wehave |Y P | ≤ |ZP | + nC. �5The Slide protocol typically utilizes FILO storage bu�ers, and then uses error-correcting codes to compensatethe packets that get �stuck� in a node's storage.6Note that we make no condition that the two packets traveled in the same direction.9



Lemma 4.2. |ZP ′

2 | ≤ 2n|Y P | ≤ 2n|ZP | + 2n2CProof Sketch. Consider a �xed packet p′ ∈ ZP ′

2 . When this packet was �rst inserted by P ′, sayinto some node u's bu�er, since P did not insert a packet in this round (by de�nition of ZP ′

2 ), wehave that u's bu�er must have been full (rule 1(a)). Meanwhile, when the receiver received p′ fromsome node v, since P did not transfer a packet this round, it must have been that v had an emptybu�er during this round. Thus, p′ travelled from a node with a completely full bu�er to one witha completely empty bu�er. In Appendix B we show how to use this fact to bound |ZP ′

2 | by thenumber of packet transfers in P, which can then be bounded by 2n|Y P | as in Lemma 4.1. �5 Protocol Secure Against Malicious AdversaryWe now move to the network setting that allows both unreliable edges controlled by the schedul-ing adversary and unreliable nodes corrupted by the node-controlling adversary (see Section 2 for aformal discussion of the network model and these two adversaries). Below is a high-level descriptionof the protocol and a statement of the main result. Pseudo-code of the protocol, as well as rigorousproofs of security and throughput performance, can be found in Appendix D.5.1 High Level DescriptionOur strategy in developing a protocol that routes e�ectively in this highly unreliable networksetting will be to start with the Slide+ protocol, which has optimal competitive ratio in termsof throughput, and add elements from cryptography to provide extra security against the node-controlling adversary. Speci�cally, we will modify the Slide+ protocol by using digital signatures inthe following two ways:1. The sender signs every packet, so that honest nodes do not waste resources on modi�ed orjunk packets, and so that packets the receiver gets are unmolested2. Communication between nodes will be signed by each node. This information will then beused later by the sender (if there has been malicious activity) to hold nodes accountable fortheir actions, and ultimately eliminate corrupt nodesThe routing rules for each internal node are the same as in the Slide+ protocol, except that whenevera node u sends a packet to a neighbor v, there will be four parts to this communication:(a) The packet itself, i.e. one of the packets from the sender intended for the receiver(b) The current height of u, i.e. how many packets u is currently storing(c) A signature on the communication that u has had so far with v, to be described shortly(d) Signatures from other nodes that the sender has requested, to be described shortlyThe �rst two parts of each communication are identical to the Slide+ protocol, so it remains todiscuss the second two items, which are used for the identi�cation of corrupt nodes. Note that thesecond two items each consist of a signature on some quantity; for this reason we will require thatthe bandwidth of each edge is large enough to allow for simultaneous transmission of two signatures(plus the packet itself).7 The signature that u includes on his communications with v for Item (c)above pertains to the following four items:7This assumption on bandwidth is not unreasonable: for a signature scheme with security parameter k, eachsignature requires only O(k) bits. Also, the requirement that bandwidth is large enough to allow two signatures ismade for convenience of exposition; our protocol can be modi�ed to handle the case of smaller bandwidth, althoughthis is not pursued here. 10



Sig. 1. The total number of packets u has sent to v so farSig. 2. The total number of times the previous packet p that was exchanged between themhas crossed the edge E(u, v) (in general, the same packet may cross the same edge multipletimes)Sig. 3. The cumulative di�erence in u and v's heights, measured from each time u and vexchanged a packetSig. 4. An index representing how many times E(u, v) has been honored, to serve as atime-stamp on the above three itemsIt remains to explain Item (d) from above, for which it will be useful to �rst describe from a high-level how our protocol handles malicious activity by corrupt nodes. We �rst note that if either thesender or receiver is corrupted by the node-controlling adversary, then secure routing is impossible(indeed it is not clear what is even meant by �secure routing� in this case). We will therefore assumethat the sender and receiver are incorruptible, and they will be responsible for regulation of thenetwork (e.g. identifying and eliminating corrupt nodes). Also, because our de�nition of security(see Section 2) requires that the receiver gets all of the packets sent by the sender, it is no longerenough to simply measure throughput in terms of number of packets received (as was done forthe Slide and Slide+ protocols above). Instead, we will use error-correction and �rst expand themessages into codewords so that the receiver can reconstruct each message if he has a constantfraction of the codeword packets. See e.g. [7] for a speci�c description of how this can be done.We note that because the de�nition of throughput only cares about asymptotic performance (i.e.constants are absorbed in the k that appears in De�nition 1), the use of error-correction will nota�ect the throughput of our protocol.From a high-level, the protocol attempts to transfer one message (codeword), consisting of O(nC)bits, at a time. The sender will continue inserting packets corresponding to the same codeword untilone of the following occurs:S1 The sender gets a message from the receiver indicating he could decode the current codewordF2 The sender gets a message from the receiver indicating inconsistencies in height di�erencesF3 The sender has inserted all packets corresponding to the current codewordF4 The sender gets a message from the receiver indicating the receiver got the same packet twiceF5 The sender is able to identify a corrupt nodeIn the case of S1, the message/codeword was delivered successfully, and the sender will begin insertingpackets corresponding to the next message/codeword. In the case of F5, the sender will eliminate theidenti�ed node (i.e. alert all nodes in the network to never trust or utilize the corrupt node again),and begin anew transmitting packets corresponding to the current codeword. The other three casesall correspond to failed attempts to transfer the current message/codeword due to corrupt nodesdisobeying protocol rules, and in each case the sender will use the signed information from Item (c)above to identify a corrupt node.In cases F2-F4, the sender will begin anew transmitting packets corresponding to the currentcodeword. Before nodes are allowed to participate in transferring the codeword packets, they must�rst learn that the last transmission failed, the reason for failure (F2-F4), and the sender mustreceive all of the signatures the node was storing from its neighbors (i.e. all signed information fromItem (c) above). Note that the network itself is the only medium of communication available forrelaying the signatures a node is storing to the sender, and hence part of the bandwidth of eachedge (and part of the storage capacity of each node) is devoted to returning these pieces of signedinformation to the sender (this is Item (d) from the above list). The speci�c rules regarding storing11



and transferring other nodes' signatures back to the sender can be found in the pseudo-code inAppendix D.Until the sender has received all of a node's information corresponding to a failed transmission,that node will remain on the blacklist. That is, no honest node u will transfer any codewordpackets to another node v until u obtains veri�cation from the sender that the sender has receivedall signatures from v. In Appendix D, we prove rigorously our main theorem:Theorem 3. If at any time P ′ has received Θ(xn) messages, then P has received Ω((x − n2))messages. Thus, if the number of messages x ∈ Ω(n2), then our protocol has competitive ratio 1/n.References[1] Y. Afek, B. Awerbuch, E. Gafni, Y. Mansour, A. Rosen, N. Shavit. �Slide� The Key to Poly. End-to-EndCommunication.� J. of Algorithms 22, pp. 158-186. 1997.[2] Y. Afek, E. Gafni �End-to-End Communication in Unreliable Networks.� PODC, pp. 1988.[3] Y. Afek, E. Gafni, A. Rosén. �The Slide Mechanism with Applications in Dynamic Networks.� Proc.11th ACM Symp. on Principles of Dist. Comp., pp. 35-46. 1992.[4] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. �Adaptive Packet Routing For Bursty AdversarialTra�c.� J. Comput. Syst. Sci. 60(3): 482-509. 2000.[5] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. �Dynamic Routing on Networks with Fixed-SizeBu�ers.� Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, pp. 771-780. 2003.[6] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. �A Theory of Competitive Analysis for DistributedAlgorithms.� Proc. 35th IEEE Symp. on Foundations of Computer Science, pp. 32-40. 1994.[7] Y. Amir, P. Bunn, and R. Ostrovsky. �Authenticated Adversarial Routing.� 6th Theory of Crypt. Conf.,pp. 163-182. 2009.[8] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu. �Universal Stabil-ity Results for Greedy Contention-Resolution Protocols.� Proc. 37th IEEE Symp. on Foundations ofComputer Science, pp. 380-389. 1996.[9] B. Awerbuch, Y. Azar, and S. Plotkin. �Throughput-Competitive On-Line Routing.� Proc. 34th IEEESymp. on Foundations of Computer Science, pp. 401-411. 1993.[10] B. Awerbuch, D. Holmer, C. Nina-Rotaru, and H. Rubens. �An On-Demand Secure Routing ProtocolResilient to Byzantine Failures.� Proc. of 2002 Workshop on Wireless Security, pp. 21-30. 2002.[11] B. Awerbuch and T. Leighton. �Improved Approximation Algorithms for the Multi-Commodity FlowProblem and Local Competitive Routing in Dynamic Networks.� Proc. 26th ACM Symp. on Theory ofComputing, pp. 487-496. 1994.[12] B. Awerbuch, Y Mansour, N Shavit �End-to-End Communication With Polynomial Overhead.� Proc.of the 30th IEEE Symp. on Foundations of Computer Science, FOCS. 1989.[13] B. Barak, S. Goldberg, and D. Xiao. �Protocols and Lower Bounds for Failure Localization in theInternet.� Proc. of Advances in Crypt., 27th EUROCRYPT, Springer LNCS 4965, pp. 341-360. 2008.[14] A. Borodin and R. El-Yaniv. �Online Computation and Competitive Analysis.� Camb. Univ Press. 1998.12



[15] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. �Adversarial Queuing Theory.�Proc. 28th ACM Symp. on Theory of Computing, pp. 376-385. 1996.[16] A. Broder, A. Frieze, and E. Upfal. �A General Approach to Dynamic Packet Routing with BoundedBu�ers.� Proc. 37th IEEE Symp. on Foundations of Computer Science, pp. 390-399. 1996.[17] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. �Path-Quality Monitoring in the Presenceof Adversaries.� ACM SIGMETRICS Vol. 36, pp. 193-204. June 2008.[18] E. Kushilevitz, R. Ostrovsky, and A. Rosén. �Log-Space Polynomial End-to-End Communication.�SIAM Journal of Computing 27(6): 1531-1549. 1998.[19] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas. �Fast ApproximationAlgorithms for Multicommodity Flow Problem.� Proc. 23rd ACM STOC, pp. 101-111. 1991.[20] S. Plotkin. �Competitive Routing of Virtual Circuits in ATM Networks.� IEEE J. on Selected Areas inCommunications, Vol. 13, No. 6, pp. 1128-1136. 1995.[21] D. Sleator and R. Tarjan. �Amortized E�ciency of List Update and Paging Rules.� Commun. ACM,Vol. 28, No. 2, pp. 202-208. 1985.AppendixA Formal Proof of Throughput BoundIn this section, we go through the rigorous details of the proof of Theorem 1, which was sketchedin Section 3. We will use the same notation introduced there for the remainder of this section. Inparticular, recall that there is some �xed protocol P that we wish to analyze, and we are consideringa scheduling adversary A that proceeds in cycles.We begin with a reduction of the given protocol P to a virtual protocol P ′, which will be operatingwith respect to a di�erent scheduling adversary A′ than P. The schedule of edges honored by A′will be (in general) di�erent than those honored by A, but A′ will also proceed in cycles. For anycycle α in P ′'s world, de�ne Ψ′α and Z ′α analogous to Ψα and Zα that were de�ned for P in Section3. We emphasize that the two worlds of P and P ′ are di�erent, and we are not attempting to applycompetitive analysis to these two protocols. Rather, the property that P ′ will satisfy is:
∀α ∈ N : Ψα = Ψ′α and Zα = Z ′α (8)Then given that (8) holds for all cycles α, if we can show for all α (subject to A′'s schedule):

Z ′α + (Ψ′α+1 − Ψ′α) ≤
7C

n − 2
, (9)then the equivalent statement will be true for P, which is Lemma 3.1 in Section 3, and thus theproof will be complete.We now explain the alternate scheduling adversary A′, which will be de�ned in terms of anyarbitrary protocol attempting to route in a network controlled by A′. As mentioned above, theschedule of A′ will proceed in cycles, each of which will last (n − 1)C rounds. At the beginning of13



any cycle α, A′ labels the internal nodes by {Nα
1 , Nα

2 , . . . , Nα
n−2}, so that for all 1 ≤ i ≤ n − 3,node Nα

i is storing more packets than Nα
i+1 at the outset of cycle α (note that the labels/indices ofthe internal nodes will change every cycle). For the �rst C rounds of the cycle, the adversary willhonor edge E(S,N1) (here S denotes the Sender). We describe the remaining rounds in this cycleinductively (starting below for i = 1, and Ñα

1 = Nα
1 ):1. The adversary honors edge E(Ñα

i , Nα
i+1) for C rounds2. After the �rst (i + 1)C rounds of cycle α have passed (i.e. edge E(Ñα

i , Nα
i+1) has just beenhonored C times), let Ñα

i+1 ∈ {Ñα
i , Nα

i+1} denote the node storing fewer packets than theother.Steps 1-2 are repeated through i = n− 3, so that E(Ñα
n−3, N

α
n−2) has just completed, and Ñα

n−2 hasbeen de�ned. Then for the last C rounds of cycle α, the adversary honors edge E(Ñα
n−2, R).Lemma A.1. Given protocol P routing in a network controlled by A (whose schedule was describedin Section 3), there exists a protocol P ′ competing against A′, such that with respect to each protocol'sown cycle, (8) is valid.Proof. Since we are considering only deterministic protocols, we can de�ne what P ′ will do in anyround based on what P is doing. We will actually demonstrate something slightly stronger than(8), that is:Induction Hypothesis. Up to permutation of the internal nodes, the heights of eachof the internal nodes in both worlds is the same at the start/end of any cycle, as is thenumber of packets delivered in any cycle.We proceed by induction on the cycle. In particular, �x some cycle α, and assume that the inductionhypothesis is true for all cycles β < α. In the �rst C rounds of α in P's world, A opens edge E(S,A1),where A1 is the internal node currently storing the most packets. Similarly, in the �rst C rounds,

A′ opens edge E(S,A′
1), where A′

1 is the internal node currently storing the most packets in P ′'sworld. By the induction hypothesis, although the labels of node A1 verses A′
1 may be di�erent, thenode that label represents will have the same height in the two worlds, and we de�ne P ′ to do thesame thing that P does in these �rst C rounds.Let A2 denote the node for which the adversary A will honor edge E(A1, A2) for the next Crounds, and similarly for A′

2 with respect to A′. Note that by the induction hypothesis togetherwith the de�nition of P ′ (so far) for the �rst C rounds of cycle α, we have that the height of A1equals the height of A′
1, and similarly the heights of A2 and A′

2 match. Now de�ne P ′ to do inthe C rounds E(A′
1, A

′
2) whatever P does in the C rounds E(A1, A2).8 Thus, after 2C rounds havepassed, the two networks are still identical (up to permutation of the nodes).Let Ã2 denote the node among {A1, A2} that is storing fewer packets after the C rounds of

E(A1, A2). Now in P's world, the adversary will search for the node A3 with height closest to (butsmaller than) Ã2, and the adversary A will next honor edge E(Ã2, A3) for C rounds. Notice that, ife.g. P had A2 transfer all its packets to A1 during the C rounds of E(A1, A2), it is possible that A38In order to preserve Fact 1 below, we demand that after the C rounds of E(A′
1, A

′
2), A′

2 is storing fewer packetsthan A′
1. Therefore, if this is not the case for E(A1, A2), then de�ne P ′ to end in a symmetric state as P , i.e. so thatthe pair of nodes (A1, A2) have the same height as the pair of nodes (A′

1, A
′
2), but in the latter pair, necessarily A′

1is storing at least as many packets as A′
2 after the C rounds of E(A′

1, A
′
2).14



is not the node that had the third highest height at the start of cycle α (indeed, its even possiblethat A3 = R).By the induction hypothesis, there is some node A′
i (i ≥ 3) in P ′'s world such that at the startof α, the height of A3 equals the height of A′

i (if A3 = R, then i = n − 1, i.e. set A′
i = R). Noticethat in contrast to P's world, the schedule of A′ will necessarily go through every internal node atleast once. Indeed, for any 2 ≤ m ≤ n − 2, the node in P ′'s world that started cycle α as the mthfullest node will necessarily be a part of rounds mC through (m + 1)C − 1. Therefore, for each

3 ≤ m ≤ i, dictate that during rounds mC through (m + 1)C − 1, protocol P ′ will have the twonodes swap �nal states. In particular, for any 3 ≤ m ≤ i, if H ′
m denotes the height of A′

m at thestart of cycle α, then we dictate that P ′ transfers enough packets from A′
m to A′

m−1 during the Crounds of E(A′
m−1, A

′
m) such that the height of A′

m−1 at the end of the C rounds is equal to H ′
m.In this manner, it is clear that by the time the virtual world of P ′ reaches the end of iC cycles(recall that i is de�ned so that the height of A3 equals the height of A′

i), the state of the networksin the two worlds will be identical (up to permutation of the nodes). Furthermore, during the next
C rounds of each cycle, the adversaries A and A′ will honor an edge between two nodes (E(A2, A3)verses E(A′

i−1, A
′
i)) such that at the moment the C rounds start, the height of A2 equals A′

i−1, andthe height of A3 equals A′
i. Therefore, this process may be repeated iteratively through the end ofthe cycle in each respective world, and it is clear that the induction hypothesis will remain valid bythe end of cycle α. �For the remainder of the section, we will seek to prove (9) for the protocol P ′. To simplifynotation, it will be convenient to de�ne m = n − 2. At the outset of every cycle α, we label theinternal (i.e. excluding the Sender and Receiver) nodes {Nα

1 , Nα
2 , . . . , Nα

m}, such that if i < j, thennode Nα
i is storing more (or an equal number of) packets at the start of cycle α than Nα

j . For all
α, let Nα

0 = S and Nα
n−1 = R. For any 1 ≤ i ≤ n − 2, let Hα

i denote the height the node had atthe outset of α. We emphasize that while the heights of nodes may change through the course ofcycle α, the labeling {Nα
i } and the quantities {Hα

i } will remain �xed throughout the cycle. Indeed,the following fact implies that the labeling of nodes is independent of α (and in fact is �xed for alltime):Fact 1. For all α ∈ N and all 1 ≤ i ≤ m: Nα
i = Nα+1

iFact 2. For any cycle α, node Ni is a part of 2C rounds of the cycle: �rst for C roundswith E(Ni−1, Ni), and then for C rounds with E(Ni, Ni+1)These facts, along with the following observations, all follow from the de�nition/construction of P ′in the proof of Lemma A.1 above. To �x notation, for each 0 ≤ i ≤ m let Aα
i denote the numberof packets sent from Ai to Ai+1 during the C rounds E(Ni, Ni+1) of cycle α. Note that Aα

i may benegative if the net packet �ow during E(Ni, Ni+1) was towards Ni.Lemma A.2. For any cycle α and for any 1 ≤ i ≤ m:
1) Aα

i ≤
Aα

i−1 + Hα
i − Hα

i+1

2
(10)

2) Aα
i ≤ Hα+1

i − Hα
i+1 (11)15



Proof. Statement 1 follows from the two facts above as follows. Note that after the C rounds
E(Ni−1, Ni) but before the next C rounds, node Ni will have height Aα

i−1 + Hα
i . Now by de�nitionof protocol P ′, at the end of the C rounds of E(Ni, Ni+1), Nα

i will have a greater (or equal) numberof packets than Nα
i+1. In particular, since there are Aα

i−1 + Hα
i + Hα

i+1 total packets between thetwo nodes at the start of the C rounds E(Nα
i , Nα

i+1), it must be that at the end of these C rounds,
Nα

i is storing at least half of these. Since the number of packets stored by Nα
i after the C roundsof E(Nα

i , Nα
i+1) is given by Aα

i−1 + Hα
i − Aα

i , Statement 1 follows.Also, again since protocol P ′ speci�es that Nα
i must have more (or an equal number of) packetsas Nα

i+1 immediately after the C rounds of E(Nα
i , Nα

i+1), and by Fact 2 the height of Nα
i will notchange through the remainder of cycle α, Statement 2 follows. �Statement 1 above immediately implies the following, which we state separately for later use:Corollary A.3. For any cycle α and for any 1 ≤ i ≤ m:

Aα
i ≤

Aα
i−1 + Hα

i − min
(
Hα

i+1,
C
m

(m − i − 1)
)

2We are interested in the potential function:
Ψ′α =

m∑

i=1

(
1

2

)m−i

· max

(
0,Hα

i − (m − i)
C

m

) (12)For each 1 ≤ i ≤ m, de�ne:
δα
i =

{
1 if the 2nd term of the max statement in (12) dominates
0 otherwise (13)Also, for any pair of indices 1 ≤ i < j ≤ m, de�ne:

(Ψ′α+1−Ψ′α)i,j =

j∑

k=i

(
1

2

)m−k

·

[
max

(
0,Hα+1

k − (m − k)
C

m

)
− max

(
0,Hα

k − (m − k)
C

m

)] (14)Claim A.4. For any index 1 ≤ i ≤ m and any cycle α:
Hα+1

i = Hα
i + Aα

i−1 − Aα
i (15)Proof. Notice Nα+1

i = Nα
i (Fact 1) and Ni is a part of exactly 2C rounds for the αth cycle (Fact 2).In the �rst C rounds, Hi changes by Aα

i−1, and in the second C rounds it changes by −Aα
i . Since

Ni began the cycle with height Hα
i , we have that its height at the start of the (α + 1)th cycle willbe Hα

i + Aα
i−1 − Aα

i . �It will be convenient to introduce the following notation:De�nition A.5. For any 1 ≤ i ≤ m and any cycle α, de�ne:
να

i := max

(
0, Hα

i − (m − i)
C

m

) and ωα
i := min

(
0, Hα

i − (m − i)
C

m

) (16)16



Claim A.6. For any index 1 ≤ i ≤ m and any cycle α:
1) If δα+1

i = 1, then: (Ψ′α+1 − Ψ′α)i,i =
1

2m−i
(Aα

i−1 − Aα
i + ωα

i )

2) If δα+1
i = 0, then: (Ψ′α+1 − Ψ′α)i,i =

1

2m−i
να

i (17)Proof. If δα+1 = 1, then consider the equalities:
(Ψ′α+1 − Ψ′α)i,i =

1

2m−i

[
max

(
0,Hα+1

i − (m − i)
C

m

)
− max

(
0,Hα

i − (m − i)
C

m

)]

=
1

2m−i

[
(Aα

i−1 − Aα
i + Hα

i ) − (m − i)
C

m
− max

(
0,Hα

i − (m − i)
C

m

)]

=
1

2m−i
(Aα

i−1 − Aα
i ) +

{
0 if Hα

i ≥ (m − i) C
m

1
2m−i

(
Hα

i − (m−i)C
m

) if Hα
i < (m − i) C

m

=
1

2m−i
(Aα

i−1 − Aα
i + ωα

i )where the second equality is from Claim A.4 together with the assumption that δα+1 = 1. Otherwise,if δα+1 = 0, then Statement 2 is immediate. �Lemma A.7. For any pair of indices 1 ≤ i < j < m for which δα+1
k = 1 for every i ≤ k ≤ j:9

(Ψ′α+1�Ψ′α)i,j +
Aj

2m−j−1
−

j∑

k=i

ωk

2m−k
≤

Ai−1

2m−i
+

(j-i+1)

2m−i+1
(Ai−1+Hi) −

Hj+1

2m−j+1
+

j−1∑

k=i+1

(j − k)

2m−k+2
HkProof. This follows via an inductive argument on j − i together with Lemma A.2 and Claim A.6:Base Case: j = i + 1: First consider the right-hand-side of the inequality of Lemma A.7 with

j = i + 1: RHS A.7 =
Ai−1

2m−i
+

2

2m−i+1
(Ai−1 + Hi) −

Hi+2

2m−i

=
Ai−1

2m−i
+

1

2m−i
(Ai−1 + Hi) −

Hi+2

2m−i

=
Ai−1

2m−i−1
+

1

2m−i
(Hi − Hi+2) (18)9Unless explicity written otherwise, assume all superscripts are α, which we have suppressed for notational con-venience.
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Meanwhile, for j = i + 1, the left-hand-side of the inequality of Lemma A.7 is:LHS A.7 = (Ψ′α+1�Ψ′α)i,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

= (Ψ′α+1�Ψ′α)i,i + (Ψ′α+1�Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

=
1

2m−i
(Ai−1 − Ai + ωi) +

1

2m−i−1
(Ai − Ai+1 + ωi+1) +

Ai+1

2m−i−2
−

i+1∑

k=i

ωk

2m−k

=
1

2m−i−1
Ai+1 +

1

2m−i
(Ai + Ai−1)

≤
1

2m−i
((Ai + Hi+1 − Hi+2) + (Ai + Ai−1))

=
1

2m−i
(Ai−1 + Hi+1 − Hi+2) +

1

2m−i−1
Ai

≤
1

2m−i
(Ai−1 + Hi+1 − Hi+2) +

1

2m−i
(Ai−1 + Hi − Hi+1)

=
Ai−1

2m−i−1
+

1

2m−i
(Hi − Hi+2) (19)where the third equality is due to Claim A.6, the �rst inequality is Statement 1 of Lemma A.2(applied to Ai+1), and the second inequality is Statement 1 of Lemma A.2 (applied to Ai). Notice(18) matches (19), as required.
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Induction Step: Consider the string of inequalities:
(Ψ′α+1�Ψ′α)i,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k
= (Ψ′α+1�Ψ′α)i,i + (Ψ′α+1�Ψ′α)i+1,j +

Aj

2m−j−1
−

j∑

k=i

ωk

2m−k

≤
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i

2m−i
(Ai + Hi+1)

−
Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i + 1

2m−i
(Ai + Hi+1)

−
Ai + Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

≤
Ai−1 − Ai

2m−i
+

Ai

2m−i−1
+

j − i + 1

2m−i+1
(Ai−1 + Hi + Hi+1)

−
Ai + Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1

2m−i
+

j − i + 1

2m−i+1
(Ai−1 + Hi) +

j − i − 1

2m−i+1
(Hi+1)+

2

2m−i+1
(Hi+1) −

Hi+1

2m−i
−

Hj+1

2m−j+1
+

j−1∑

k=i+2

(j − k)

2m−k+2
Hk

=
Ai−1

2m−i
+

j − i + 1

2m−i+1
(Ai−1 + Hi) −

Hj+1

2m−j+1
+

j−1∑

k=i+i

(j − k)

2m−k+2
Hkwhere the �rst inequality is by the induction hypothesis together with Claim A.6 and the secondinequality is by Statement 1 of Lemma A.2. �Lemma A.8. For any pair of indices 1 ≤ i < i + 1 < j ≤ m for which δα+1

j = 1 but δα+1
k = 0 forevery i < k < j:10

(Ψ′α+1 − Ψ′α)i+1,j−1 +
Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

Hi+1

2m−i
−

Hj

2m−j+1
+

j−1∑

k=i+1

Hk

2m−k+1Proof. This follows via an inductive argument on j − i together with Lemma A.2:Base Case: j − i = 2: Looking at the right-hand-side of the inequality of Lemma A.8 for j = i+2:RHS A.8 =
Ai

2m−i−1
+

Hi+1

2m−i
−

Hi+2

2m−i−1
+

Hi+1

2m−i

=
Ai + Hi+1 − Hi+2

2m−i−1
(20)10On the right-hand side of the inequality of Lemma A.7, all superscripts are α, which we have suppressed fornotational convenience. 19



Meanwhile, looking at the left-hand-side of the inequality of Lemma A.8 for j = i + 2:LHS A.8 = (Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

ωi+1

2m−i−1

=
Ai+1

2m−i−2

≤
Ai + Hi+1 − Hi+2

2m−i−1
, (21)where the second equality is from Claim A.6 (since δα+1
i+1 = 0) and the inequality is Statement 1 ofLemma A.2. Notice (20) matches (21), as required.Induction Step: Consider the string of inequalities:

(Ψ′α+1�Ψ′α)i+1,j−1+Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k
= (Ψ′α+1�Ψ′α)i+1,i+1 + (Ψ′α+1�Ψ′α)i+2,j−1+Aj−1

2m−j
−

j−1∑

k=i+1

ωk

2m−k

≤
Ai+1

2m−i−2
+

Hi+2

2m−i−1
−

Hj

2m−j+1
+

j−1∑

k=i+2

Hk

2m−k+1

≤
Ai

2m−i−1
+

Hi+1

2m−i
−

Hj

2m−j+1
+

j−1∑

k=i+1

Hk

2m−k+1where the �rst inequality is by the induction hypothesis together with Claim A.6 and the lastinequality is by Statement 1 of Lemma A.2. �Lemma A.9. For any cycle α and any index 1 ≤ i < m− 1, if δα+1
i = 1, δα+1

i+1 = 0, and δα+1
i+2 = 1,then:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

1

2m−i−1

C

m
(22)Proof. Consider:

(Ψ′α+1 − Ψ′α)i+1,i+1 +
Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
=

Ai+1

2m−i−2

≤
Ai + Hi+1 − Hi+2

2m−i−1

≤
Ai

2m−i−1
+

1

2m−i−1

C

mwhere the �rst equality is Statement 2 of Lemma A.6, the �rst inequality is Statement 1 of A.2, andthe last inequality follows from the fact that δα+1
i+1 =0, and δα+1

i+2 =1 implies that Hi+1−Hi+2 ≤ C
m
. �Lemma A.10. For any cycle α and any index 1 ≤ i < m−2, if δα+1

i = 0, δα+1
i+1 = 1, and δα+1

i+2 = 0,then:
(Ψ′α+1 − Ψ′α)i+1,i+1 +

Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
≤

Ai

2m−i−1
+

1

2m−i−1

C

m
(23)20



Proof. Consider:
(Ψ′α+1 − Ψ′α)i+1,i+1 +

Ai+1

2m−i−2
−

i+1∑

k=i+1

ωk

2m−k
=

Ai

2m−i−1
+

Ai+1

2m−i−1

≤
Ai + Hα+1

i+1 − Hα
i+2

2m−i−1

≤
Ai

2m−i−1
+

1

2m−i−1

C

mwhere the �rst equality is Statement 1 of Lemma A.6, the �rst inequality is Statement 2 of A.2,and the last inequality follows from the fact that δα+1
i = 0, δα+1

i+1 = 1, and δα+1
i+2 = 0 implies that

Hα+1
i+1 −Hα

i+2

2m−i−1 ≤ 1
2m−i−1

C
m
. �Claim A.11. For any cycle α, we have:

Zα + (Ψ′α+1 − Ψ′α)m,m ≤ Aα
m−1 (24)Proof. Since (Hα+1

m − (m − m) C
m

) = Hα+1
m ≥ 0, we have that the second term of min(0,Hα+1

m −
(m − m) C

m
) always dominates, and hence for all cycles, δα+1

m = 1. Therefore, applying Claim A.6(for i = m):
(Ψ′α+1 − Ψ′α)m,m = Aα

m−1 − Aα
m + ωα

m

≤ Aα
m−1 − Aα

m

= Aα
m−1 − Zα (25)where the inequality follows since ωα

i ≤ 0 for all cycles α and nodes i, and the last equality isbecause Nm is the node that will be connected to the Receiver in the last C rounds of α, so byde�nition Aα
m = Zα. �We are now ready to prove the main result of this section, namely that (9) is satis�ed for allcycles α:Lemma A.12. For all cycles α, the following is always true:

Z ′α + (Ψ′α+1 − Ψ′α) ≤ 7
C

m
,Proof. Fix cycle α, and consider the string of bits {δα+1

i }m
i=1:

(δα+1
1 , δα+1

2 , . . . , δα+1
m−1, δ

α+1
m ) (26)By Claim A.11, we have:

Zα + Ψ′α+1 − Ψ′α = Zα + (Ψ′α+1 − Ψ′α)1,m ≤ (Ψ′α+1 − Ψ′α)1,m−1 + Aα
m−1 (27)We now use Lemmas A.7, A.8, A.9, and A.10 on the appropriate indices (based on the form of

{δα+1
i }), which yields:1111We combine these lemmas by starting at the far right index i = m − 1, and working our way down throughsmaller indices by using the appropriate lemma. Notice that the �rst term on the RHS of the inequality of eachlemma is exactly the term needed on the LHS of the next lemma.21



1. For the smallest index i such that δα+1
i = 1, we have leading term:

Ai−1

2m−i
(28)2. For any indices (i, j) falling under Lemma A.7, we have contributions:

j − i + 1

2m−i+1
(Ai−1 + Hi) +

j−1∑

k=i+1

(j − k + 1)(m − i)

2m−k+2
(29)3. For any indices (i, j) falling under Lemma A.8, we have contribution:

j∑

k=i

m − i

2m−k+1
(30)4. For any indices (i, j) falling under Lemma A.9 or A.10, we have contribution:

1

2m−i−1

C

m
(31)Notice that in terms of the contributions from (29), (Ai−1 + Hi) ≤ (m−i−1)C

m
by Statement 2 ofLemma A.2 together with the fact that δα+1

i−1 = 0 implies Hα+1
i−1 < (m−i+1)C

m
. The theorem nowfollows immediately from the facts:1. For any 1 ≤ i < j < ∞,

∑j
k=i

1
2k ≤

∑∞
k=1

1
2k = 12. For any 1 ≤ i < j < ∞,

∑j
k=i

k
2k ≤

∑∞
k=1

k
2k = 23. For any 1 ≤ i < j < ∞,

∑j
k=i

k(k−1)
2k ≤

∑∞
k=1

k(k−1)
2k = 4

�The remainder of the proof that the optimal competitive ratio is 1/n was presented in Section 3.B Rigorous Proof of Competitive Ratio of SlideThe high-level ideas of the proof of Theorem 2 were sketched in Section 4.2, and we encouragethe reader to re-read that section before proceeding here. In this Section, we begin by providing inSection B.1 a deeper explanation of the proof than was provided in Section 4.2, but still does notgo into the details of the proofs. Then in Sections B.2-B.5 we rigorously prove all the lemmas andtheorems.
22



B.1 Motivation and De�nitionsIn what follows, unless stated otherwise, all notation is as de�ned in Section 4.2. Recall fromSection 4.2 that we wish to construct two potential functions. The �rst one, denoted by ϕp′ , will beassociated to every packet p′ ∈ ZP ′

2 . However, ϕp′ will not be exactly as de�ned in Section 4.2, sowe provide now the motivation to explain how ϕp′ is actually de�ned, and why we need to slightlychange what it represents.Our �rst attempt employed in Section 4.2 was to de�ne ϕp′ to be the height, with respect to
P, of the node in which p′ was currently being stored. We state once-and-for-all that whenreferencing the height of a node, we will mean its height with respect to the Slideprotocol P. As noted in Section 4.2, if we de�ne ϕp′ this way, then for every p′ ∈ ZP ′

2 , ϕp′ will beinitially set to C (when P ′ �rst inserts p′), and ϕp′ will be zero when p′ is delivered to the Receiver.Thus, there is a net change of −C to ϕp′ from the time of insertion by the Sender to the time ofreception by the Receiver. The goal was then to de�ne a second overall network potential function
Φ, which increases by C every time P transfers a packet, and such that any time ϕp′ changes forany p′ ∈ ZP ′

2 , the cumulative changes of ∑
p′∈ZP′

2
ϕp′ will be mimicked by Φ. Since Φ increases by Cwhen there is a packet transfer in P, one (good) way to think of this approach is that for each dropin ϕp′ , we would like to �nd a packet transfer in P that can be �charged,� i.e. this packet transfer�allowed� ϕp′ to decrease.Unfortunately, with the simplistic de�nition of ϕp′ equal to the height of the node it is currentlystored in, we encounter a problem. To clarify the problem, as well as to set notation, at the verybeginning of each round x, we will label the internal nodes (i.e. not the Sender or Receiver) as:

{Nx
1 , Nx

2 , . . . , Nx
n−2}, where the labeling respects heights, so that at the start of the round x, Nx

i+1is storing at least as many packets as Nx
1 (ties are broken arbitrarily). Letting Hx

i denote the heightof Nx
i at the start of x (i.e. the number of packets Nx

i is storing with respect to P), we may restatethe criterion for labeling nodes at the start of each round by writing: Hx
1 ≤ Hx

2 ≤ · · · ≤ Hx
n−2. Notethat nodes may change labels from one round to the next, i.e. we may have Nx

i 6= Nx+1
i . When theround is unimportant, we will suppress the superscript x. Let S denote the Sender and R denotethe Receiver.We may now explain why the simplistic de�nition of ϕp′ above will not be adequate. De�ne

Q := C−n
n

, and consider the following two scenarios that may be present at the start of some round
x:Scenario 1: Hn−2 = C Hn−3 = C . . . H3 = C H2 = C H1 = (n − 3)QScenario 2: Hn−2 = (n − 3)Q Hn−3 = (n − 4)Q . . . H3 = 2Q H2 = Q H1 = 0In Scenario 1, consider a packet p′ ∈ ZP ′

2 that begins round x in node N1, so that ϕp′ = (n − 3)Q.Notice that if the adversary honors the edge E(N1, R), the Slide protocol will transfer a packet tothe Receiver (Rules 2 and 3a of Section 4.1). Now by de�nition of being in the set ZP ′

2 , in order for
p′ to be delivered to the Receiver via node12 N1, node N1 must have height zero when the adversaryhonors edge E(N1, R). Therefore, there must be exactly (n − 3)Q transfers in P (to drain N1)before p′ can be delivered to R via N1. Thus, loosely speaking, we can �charge� the resulting dropin ϕp′ from (n − 3)Q to 0 to these (n − 3)Q transfers in P.12Of course there is no reason to assume that p′ must be transferred to R via N1, but for the sake of the example,we imagine this is the case. 23



Now instead imagine we are in Scenario 2, and again �x a packet p′ ∈ ZP ′

2 such that ϕp′ =

(n − 3)Q at the start of round x, so p′ ∈ Nn−2. In this case, notice that p′ has a way to reach
R without any packets being transferred in P. In particular, the adversary could honor edge
E(Nn−2, Nn−3) in round x, and then E(Nn−3, Nn−4) in round x + 1, and so forth. Since thedi�erence in heights between adjacent nodes is less than C/n, the Slide protocol will not transferany packets during these rounds. Meanwhile, protocol P ′ may dictate that p′ is transferred eachof these rounds, all the way to the Receiver. Thus, in this scenario, ϕp′ was able to decrease from
(n − 3)Q to zero without any packets being transferred in P. Because we are trying to associatedrops in ϕp′ to packet transfers in P, this is problematic.Notice that the problem in Scenario 2 is that there exists a �bridge� between Nn−2 and R. Thatis, even though Nn−2 has a relatively large height, there is still a way for packets p′ ∈ ZP ′

2 thatare in Nn−2 to reach R without P being able to transfer any packets. In contrast, in Scenario 1,
p′ ∈ N1 will also have ϕp′ = (n− 3)Q, but now there must be (n− 3)Q transfers in P before p′ canreach R (again, since p′ ∈ ZP ′

2 requires that p′ is never transferred at the same time as a packet in
P). In summary, one might say that even though node N1 in Scenario 1 has the same height asnode Nn−2 from Scenario 2, these two nodes have di�erent �e�ectual� heights.Considering the above two Scenarios, we were encouraged to modify our de�nition of ϕp′ asfollows:- For node Ni, de�ne the node's e�ectual height:13 H̃i := max(0,Hi − (i − 1)C

n
)- For any p′ ∈ ZP ′

2 that is currently in Ni, de�ne its potential: ϕp′ := H̃iThis is almost the actual de�nition we eventually make for ϕ, but we will need to �rst �smooth-out�this de�nition. To motivate the need to smooth the de�nition, consider the following events, whichrepresent the only ways that ϕp′ can change (based on the new de�nition of ϕp′):Case 1. p′ is transferred from Ni to Nj in some round E(Ni, Nj)Case 2. p′ ∈ Ni when Ni changes height due to a packet transfer in P, but this packet transferdoes not cause a re-indexing of nodesCase 3. p′ is in some node Ni when a packet transfer in P causes Ni to change index to Nj(i.e. this node moves from the ith fullest node to the jth fullest node)Since we are only concerned with p′ ∈ ZP ′

2 , we note that whenever ϕp′ changes as by 1) above,necessarily P did not transfer a packet this round. In particular, this means that |Hi −Hj| < C/n.In order to control changes to ϕp′ that are a result of Case 1, we would therefore like for H̃i ≈ H̃jwhenever Hi ≈ Hj. Although the de�nition of e�ectual height H̃i above almost captures this, thereis necessarily a �jump� of C/n between the values H̃i and H̃j. This is one of the reasons we willwant to �smooth-out� the de�nition of ϕp′ .Changes to ϕp′ that come from Case 2 above are okay, since in such cases ϕp′ will change byone, and this can be �charged� to the fact that there has been a packet transfer in P. Lastly, noticethat ϕp′ can only change as in Case 3 above if there are two nodes at the outset of some round x, Niand Ni+1, such that a packet transfer during round x causes them to switch places (e.g. before thetransfer, Hi = Hi+1, and then Ni receives a packet in round x). Because there has been a packet13The �maximum� is added to prevent the e�ectual height of a node from being negative.24



transfer in P, we can �charge� some of the changes in ϕp′ to this packet transfer, but again the factthat there will be a �jump� of C/n to changes in ϕ will encourage a �smoothing� of the de�nitionof ϕ.This leads to the notion of a family of nodes. In particular, we will partition the internal nodesinto families. Intuitively, two nodes will be in the same family if they are relatively close to eachother in height (or more generally, if there is a �bridge� connecting them, as in Scenario 2 above).Then within each family, we will distribute the cumulative e�ectual height of the nodes in that familyevenly among all nodes in the family. Formally, for a family of nodes14 F = {Ni, Ni+1, . . . , Nj},de�ne the cumulative e�ectual height HF of the family F by:
H̃F :=

j∑

k=i

H̃k =

j∑

k=i

max

(
0,Hk − (k − 1)

C

n

)For any p′ ∈ ZP ′

2 such that p′ is currently in some node of family F , we will de�ne ϕp′ to be theaverage e�ectual height of the family, i.e.:
ϕp′ :=

H̃F

|F|Of course, H̃F may not divide evenly among the nodes in the family F , and then to force ϕp′ ∈ N,we will distribute the excess weight (the remainder) to the nodes with higher indices. Based on thisde�nition of ϕp′ , note that if p′ transfers between two nodes of the same family, ϕp′ can change byat most one.We re-visit the three ways ϕp′ may change, explaining in each case how we can �nd a packettransfer in P to �charge� for the change in ϕp′ . In terms of changes to ϕp′ resulting from Case1 above, we recall that necessarily |Hi − Hj| < C/n. We show in Lemma B.12 that anytime
|Hi − Hj| < C/n, Ni and Nj are necessarily in the same family, in which case our de�nition of ϕnow guarantees that ϕp′ can change by at most one when p′ is transferred between nodes. Changesto ϕp′ due to Case 2 will be at most one (since the cumulative e�ectual height of the family willchange by at most one, and this change will be distributed among nodes in the family), and we can�charge� such changes to the packet transfer in P that caused Case 2 to occur. Finally, for Case 3,if p′ ∈ Ni when Ni's index changes but Ni remains in the same family, then since ϕ is distributedevenly among nodes in the family, the change in index will be irrelevant (i.e. this will not cause
ϕp′ to change). On the other hand, we will show that whenever a node Ni switches families as aresult of a packet transfer in P, the average e�ectual height of its new family will di�er by at mostone from the average e�ectual height of its old family. Thus, in this case the change in ϕp′ is alsobounded by one, and we can �charge� this change to the packet transfer that caused families tore-align.De�ning how to partition nodes into families so that the families behave the way we want (e.g.so that: 1) nodes with height within C/n of each other are in the same family; 2) Families can onlyre-align during a round in which P transfers a packet; and 3) When families re-align, the averagee�ectual height of any node before and after the re-alignment di�ers by at most one) requires alittle thought, and it is done precisely in the following section. Once we have the formal de�nitionof a family, we would like to formalize the notion of �charging a change in ϕp′ to a packet transfer in14We will show in the next section that nodes within the same family will always have adjacent indices.25



P.� Namely, as mentioned in Section 4.2, we de�ne a second network potential Φ that will increaseby C every time there is a packet transfer in P, and that will also mirror the cumulative changes of
ϕp′ for each p′ ∈ ZP ′

2 . In order to prove Φ is always positive, we will distribute the total networkpotential between the families:
Φ = ΦF1 + · · · + ΦFl

(32)and then show in Lemma B.17 that within each family F :
ΦF ≥ 0. (33)The careful de�nition of families and the precise de�nition of the potential ϕ and the networkpotential Φ is presented below in Section B.2. The main lemma and proof of the fact that at alltimes Φ ≥ 0 can be found in Section B.5.B.2 Formal De�nition of �Family� and Potential of a Packet (ϕp′)We begin by de�ning formally the notion of a family introduced in the previous section. Notethat families will in general re-align during a round when there is a packet transfer in P, so we usethe notation Fx to denote some family F that was in existence at the start of round x. Recall thatat the start of each round x, the internal nodes are indexed according to their heights with respectto P: {N1, N2, . . . , Nn−2}, so that Hi ≤ Hj if i < j (ties are broken arbitrarily). Also recall fromthe previous section the de�nition of the e�ectual height H̃i of node Ni:

H̃i := max

(
0,Hi − (i − 1)

C

n

) (34)At the start of each round, we will partition the internal nodes into families inductively (startingfrom the emptiest nodes), so that the average e�ectual height of each family is minimized. Inparticular:De�nition B.1. At the start of round x, internal nodes will be partitioned into families {Fx
i } asfollows. Starting at i = 1 and k0 = 0:F1 Find index ki−1 < ki ≤ n − 2 such that the following quantity is minimal:

ki∑

j=k(i−1)+1

H̃j

(ki − ki−1)

(35)In case there are multiple values for ki that achieve the same minimum, de�ne ki to be thelargest of all possibilities. Then de�ne15 family Fx
i := {Nx

k(i−1)+1, . . . , N
x
ki
}.F2 Set i = i + 1 and repeat Step F1 until all internal nodes are in some family.F3 The Sender and Receiver will form their own, separate, families. Denote the Sender's familyby Fn and the Receiver's family by F0.1615When the round x is unimportant, we will suppress the superscript in our notation.16The only reason we place the Sender and Receiver in a family at all is to make the terminology easier in thelemmas that follow. In particular, the notation we use for the Sender's family ensures that it will have a higher indexthan all other nodes (there will be a gap between the index of the largest indexed family of internal nodes and theSender's family, which is unimportant), and conversely the Receiver's family will have a smaller index than all othernodes. 26



De�nition B.2. The cumulative e�ectual height H̃F of a family F is the sum of the e�ectual heightsof each of the nodes in the family. The average e�ectual height 〈H̃F 〉 of a family is the cumulativee�ectual height divided by the size of the family. Succinctly, if F := {Ni, Ni+1, . . . , Nj}:
H̃F :=

j∑

k=i

H̃k and 〈H̃F 〉 :=
H̃F

|F|
=

j∑

k=i

H̃k

j − i + 1

(36)Notice that by construction (see Rules F1 and F2), families are created so that the averagee�ectual height of (the lowest indexed) families is minimized.With the formal de�nition of families in hand, we are ready to formally de�ne the �rst kind ofpotential, ϕ. Recall that this potential will be associated to packets p′ ∈ ZP ′

2 , and if p′ ∈ Ni ∈ F atthe start of some round, then ϕp′ will (roughly) represent the average e�ectual height 〈H̃F 〉. Moreprecisely, we will ascribe to each node Ni ∈ F a potential ϕi equal to the average e�ectual height,except that the potential for some nodes in the family will be one bigger to account for the casethat H̃F

|F| /∈ Z. Formally:De�nition B.3. Let F = {Ni, Ni+1, . . . , Nj}. Then the potential ϕk of a node Nk ∈ F will beeither 〈H̃F 〉 or 〈H̃F 〉 + 1. More precisely, writing:
H̃F = b〈H̃F 〉c ∗ |F| + r (37)Then de�ne subsets of F :

F− := {Ni, Ni+1, . . . , Nj−r} and F+ := {Nj−r+1, . . . , Nj} (38)Then for nodes Nk ∈ F+, de�ne ϕk = b〈H̃F 〉c + 1. For nodes Nk ∈ F−, de�ne ϕk = b〈H̃F 〉c.Finally, if p′ ∈ ZP ′

2 and p′ is currently being stored in Nk, then de�ne the potential ϕp′ to be thepotential of Nk, i.e. ϕp′ := ϕk.One immediate consequence of the above de�nition that we will need later is:Lemma B.4. At the beginning of any round x and for any family Fx, the sum of the potentials forthe nodes in F equals the cumulative e�ectual height of the family:
∑

N∈F

ϕN = H̃F (39)De�nition B.5. The network potential Φ is an integer satisfying the following properties:1. Φ begins the protocol equal to zero.2. Φ increases by 4C every time a packet is transferred in protocol P3. For any packet p′ ∈ ZP ′

2 , any time ϕp′ changes, Φ changes by the same amount.
27



B.3 Preliminary LemmasIn this section, we state and prove the basic properties that follow from the de�nitions of theprevious section.Lemma B.6. At all times, all families consist of nodes with adjacent indices. In particular, if atthe start of any round x there are l families, then there exist indices k1 < k2 < · · · < kl−1 such that:
F1 = {N1, . . . , Nk1}, F2 = {Nk1+1, . . . , Nk2}, . . . , Fl = {Nkl−1+1, . . . , Nn−2} (40)Proof. This follows immediately from the rules regarding the construction of families (see F1 andF2 in the previous section). �Lemma B.7. Fix some round x and some pair of nodes Nx

i and Nx
j for i < j. Then:1. If Hx

i ≥ Hx
j − C/n, then H̃x

i ≥ H̃x
j .2. If Hx

i < Hx
j − (j − i)C/n and H̃j > 0, then H̃x

i < H̃x
j .Proof. Consider the following string of inequalities:

H̃i − H̃j = max(0,Hi − (i − 1)C/n) − max(0,Hj − (j − 1)C/n)

≥ max(0,Hi − (i − 1)C/n) − max(0, (Hi + C/n) − (j − 1)C/n)

≥ max(0,Hi − (i − 1)C/n) − max(0, (Hi + C/n) − ((i + 1) − 1)C/n)

= max(0,Hi − (i − 1)C/n) − max(0, (Hi − (i − 1)C/n)

= 0This proves Statement 1. For Statement 2, if H̃i = 0, then it is immediate. Otherwise, consider theinequalities:
H̃j − H̃i = Hj − (j − 1)C/n − (Hi − (i − 1)C/n)

= Hj − Hi + ((i − 1) − (j − 1))C/n

> (j − i)C/n + (i − j)C/n

= 0 �We state a trivial observation regarding fractions of positive numbers that will be useful in provingthe lemmas below.Observation 1. For any positive numbers a, b, c, d ∈ N:1. a
b

< c
d

⇒ a
b

< a+c
b+d

< c
d2. a

b
= c

d
⇒ a

b
= a+c

b+d
= c

dLemma B.8. Let x be any round, and suppose that at the outset of the round there is some family
Fx

α = {Ni, Ni+1, . . . , Nj}. Then the following statements are all true at the outset of round x:
1) For any i ≤ k < j :

∑k
m=i H̃m

k − i + 1
≥ 〈H̃Fα〉 ≥

∑j
m=k+1 H̃m

j − k

2) For any j < k ≤ n − 2 : 〈H̃Fα〉 <

∑k
m=j+1 H̃m

k − j

3) 〈H̃Fα〉 < 〈H̃Fα+1〉 28



Proof. The fact that ∑k
m=i H̃m

k−i+1 ≥
∑j

m=k+1 H̃m

j−k
follows immediately from Observation 1 together withthe rules regarding the construction of families (see Rule F1 from the previous section), and inparticular the fact that indices are found by minimizing (35). Statement 1 now follows from Ob-servation 1. Statement 2 also follows immediately from Rule F1 and Observation 1, and Statement3 follows immediately from Statement 2. �Statement 3 of Lemma B.8 can be immediately extended:Corollary B.9. Let x be any round, and suppose that at the outset of the round there are l families.Then:

〈H̃F1〉 < 〈H̃F2〉 < · · · < 〈H̃Fl
〉Lemma B.10. Let x be any round, and suppose that at the outset of the round there is some family

Fx
α = {Ni, Ni+1, . . . , Nj}. Then:For any 1 ≤ k < i :

∑i−1
m=k H̃m

i − k
< 〈H̃Fα〉 (41)Proof. Since k < i, necessarily Nk is in some family Fβ with index β < α. Then:

∑i−1
m=k H̃m

i − k
≤ 〈H̃Fβ

〉 < 〈H̃Fβ+1
〉 < . . . < 〈H̃Fα−1〉 < 〈H̃Fα〉, (42)where the �rst inequality is from Statement 1 of Lemma B.8 and the other inequalities are fromCorollary B.9. �Lemma B.11. If at the start of some round x we have that H̃x

j+1 ≤ H̃x
j , then Nj and Nj+1 are inthe same family at the start of round x.Proof. Suppose for the sake of contradiction that they are not in the same family at the start ofround x. Let Fx denote Nj 's family at the start of the round. By Lemma B.6 and the fact that jand j +1 are adjacent indices, we must have that Fx = {Ni, Ni+1, . . . , Nj} for some i ≤ j. The keyobservation is that:

H̃j+1

1
≤

H̃j

1
⇒

H̃j+1

1
≤

H̃j+1 + H̃j

2
≤

H̃j

1
(43)If i = j, then (43) contradicts Statement 2 of Lemma B.8 (set k = j + 1). If i < j, then de�ne:

A : =

j−1∑

l=i

H̃l and B := j − i (44)Then by Lemma B.8:
H̃j+1

1
≤

H̃j

1
≤

A

B
⇒

H̃j+1 + H̃j + A

B + 2
≤

H̃j + A

B + 1
= 〈H̃F 〉, (45)which contradicts Statement 1 of Lemma B.8. �Lemma B.12. If at the outset of any round x, we have that |Hx

i −Hx
j | ≤ C/n for any pair of nodes

Nx
i and Nx

j , then necessarily the nodes are in the same family at the start of round x.29



Proof. Suppose for the sake of contradiction that there exists some round x and some pair of nodes
Nx

i and Nx
j for which |Hx

i − Hx
j | ≤ C/n, but these nodes are in di�erent families. Since familiesconsist of adjacent indices (Lemma B.6) and nodes are indexed according to their heights at thestart of the round, we may assume without loss of generality that i and j are adjacent (i.e. that

j = i+1). By de�nition of indexing, we must have Hi ≤ Hi+1, which combined with the hypothesisof the lemma implies that Hi+1 − C/n ≤ Hi. But then H̃i ≥ H̃i+1 by Lemma B.7, and then Nx
iand Nx

i+1 in di�erent families contradicts Lemma B.11. �B.4 Lemmas Regarding the Re-structuring of FamiliesIn this section, we discuss all possible changes between how families are arranged at the beginningof one round and the next.Lemma B.13. Families can only re-align during rounds E(Na, Nb) during which there is a packettransfer in P from Na to Nb.Proof. This is immediate from the rules regarding constructing families, since the values of {H̃i}(34) can only change if there is a packet transfer in P, and thus the analysis in Rule F1 (35) willnot change if there has been no packet transfer in P. �Lemma B.14. Suppose that in some round x = E(Na, Nb), the Slide protocol transfers a packet from
Na to Nb. Let Fα := {Ne, . . . , Na, . . . , Nf} denote Na's family at the start of round x (e ≤ a ≤ f),and Fβ := {Nc, . . . , Nb, . . . , Nd} denote Nb's family17 at the start of x (c ≤ b ≤ d). The followingdescribes all possible changes to the way families are organized between the start of round x and thenext round:Case 1: H̃a and H̃b do not change. Then the families at the start of round x + 1 areidentical the arrangement of families at the start of x.Case 2: H̃a does not change, and H̃b increases by one. Then:(a) Families Fδ to the left of Fβ (i.e. δ < β) do not change(b) For any node Nm with b ≤ m ≤ d, Nm will be in the same family as Nb at the start ofround x + 1(c) For any node Nm with d < m, letting Fx

µ denote Nm's family at the start of round x,one of the following happens:i. Fx
µ does not changeii. Every node in Fx

µ is in the same family as Nb at the start of x + 1Case 3: H̃a decreases by one, and H̃b does not change. Then:(a) Families Fδ to the right of Fα (i.e. δ > α) do not change17Note that necessarily β ≤ α, as if both Na and Nb are internal nodes, then Rule 3 of the Slide protocol (togetherwith the de�nition of how nodes are indexed) guarantees that b < a, and then β ≤ α by Lemma B.6. If Na is theSender and/or Nb is the Receiver, then β ≤ α comes from our choice to denote the Sender's family by Fn and theReceiver's family by F0 (see Rule F3 regarding the formation of families).30



(b) For any node Nm with e ≤ m ≤ a, Nm will be in the same family as Na at the start ofround x + 1(c) For any node Nm with m < e, letting Fx
µ denote Nm's family at the start of round x,one of the following happens:i. Fx

µ does not changeii. Every node in Fx
µ is in the same family as Na at the start of x + 1Case 4: H̃a decreases by one, and H̃b increases by one. Then:(a) Families Fδ to the right of Fα (i.e. δ > α) and to the left of Fβ (i.e. δ < β) do notchange(b) For any node Nm with e ≤ m ≤ a, Nm will be in the same family as Na at the start ofround x + 1(c) For any node Nm with b ≤ m ≤ d, Nm will be in the same family as Nb at the start ofround x + 1(d) For any node Nm with d < m < e, letting Fx

µ denote Nm's family at the start of round
x, one of the following happens:i. Fx

µ does not changeii. Every node in Fx
µ is in the same family as Na at the start of x + 1iii. Every node in Fx
µ is in the same family as Nb at the start of x + 1iv. Every node in Fx
µ is in the same family as Na AND Nb at the start of x + 1Proof. That the four cases stated in the lemma cover all possibilities is immediate from the de�nitionof e�ective height H̃ (see De�nition (34)). Case 1 follows immediately from the rules F1-F2 forforming families (see De�nition B.1) since the e�ective heights have not changed. We go througheach of the other cases, and prove each Statement.Suppose that we are in Case 2, so that H̃a does not change, and H̃b increases by one. For δ < β,consider a family Fδ := {Ni, . . . , Nj}, and for the sake of contradiction, suppose that Fδ changes insome way from the start of round x to the start of round x + 1. Without loss of generality, we willsuppose that δ < β is the minimal index for which Fδ changes.Case A: Fδ Splits. In other words, Ni and Nj are not in the same family at the start of round

x+ 1. Let Fx+1
ι := {Ni, . . . , Nk} denote Ni's new family at the start of x+ 1, where k < j byassumption.18 Notice that for all i ≤ m ≤ j, the e�ective height H̃m will not change betweenthe start of x and x + 1 (since j < b < a). Therefore:

∑j
l=k+1 H̃l

j − k
≤

∑k
l=i H̃l

k − i + 1
= 〈H̃Fx+1

ι
〉 <

∑j
l=k+1 H̃l

j − k
, (46)where the �rst inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2of Lemma B.8. Clearly (46) is impossible, yielding the desired contradiction.18Necessarily Ni is the smallest-indexed node in Fι by our choice of minimality for δ.31



Case B: Fδ Grows. In other words, at the start of round x + 1 there is some family Fx+1
ι :=

{Ni, . . . , Nk} for k > j. If k < b, then for all i ≤ m ≤ k, the e�ective height H̃m will notchange between the start of x and x + 1, so:
∑j

l=i H̃l

j − i + 1
<

∑k
l=j+1 H̃l

k − j
≤

∑j
l=i H̃l

j − i + 1
, (47)where the �rst inequality is Statement 2 of Lemma B.8 and the second inequality is Statement1 of Lemma B.8. Clearly (47) is impossible, yielding the desired contradiction. On the otherhand, if k ≥ b, then for all i ≤ m ≤ k and m 6= b, the e�ective height H̃m will not changebetween the start of x and x + 1, but the e�ective height H̃b increases by one from the startof x and x + 1. Therefore (using superscripts only when necessary to specify the round):

∑j
l=i H̃l

j − i + 1
<

∑k
l=j+1 H̃x

l

k − j
<

∑k
l=j+1 H̃x+1

l

k − j
≤

∑j
l=i H̃l

j − i + 1
, (48)where the �rst inequality is Statement 2 of Lemma B.8 and the last inequality is Statement 1of Lemma B.8. Clearly (48) is impossible, yielding the desired contradiction.This proves Statement (a) of Case 2. For Statement (b), �x index m ∈ [b, d] (Statement (b) istrivially true for m = b, so assume b < m ≤ d). For the sake of contradiction, suppose that Nm isnot in the same family as Nb at the start of x + 1. Let Fx+1

β := {Ni, . . . , Nb, . . . , Nj} denote Nb'snew family at the start of x + 1, so by assumption j < m ≤ d, and also c ≤ i by Statement (a) ofCase 2. Notice that H̃x
b + 1 = H̃x+1

b , but that for all other i ≤ l ≤ m, H̃l does not change from thestart of x and x + 1. If i = c (using superscripts only when necessary to specify the round):
∑d

l=j+1 H̃l

d − j
≤

∑j
l=c H̃x

l

j − c + 1
<

∑j
l=c H̃x+1

l

j − c + 1
<

∑d
l=j+1 H̃l

d − j
, (49)where the �rst inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2 ofLemma B.8. Clearly (49) is impossible, yielding the desired contradiction. If on the other hand

c < i, then (using superscripts only when necessary to specify the round):
∑d

l=j+1 H̃l

d − j
≤

∑j
l=c H̃x

l

j − c + 1
= 〈H̃Fx

β
〉

≤

∑i−1
l=c H̃x

l

i − c

<

∑i−1
l=c H̃x+1

l

i − c

< 〈H̃Fx+1
ι

〉 =

∑j
l=i H̃

x+1
l

j − i + 1

<

∑d
l=j+1 H̃l

d − j
, (50)where the �rst and second inequalities are both Statement 1 of Lemma B.8, the fourth inequalityis Lemma B.10, and the last inequality is Statement 2 of Lemma B.8. Clearly (50) is impossible,yielding the desired contradiction. 32



This proves Statement (b) of Case 2. It remains to prove Statement (c). Fix some m > d, andlet Fw
µ = {Nw, . . . , Nm, . . . , Ny} denote Nm's family at the start of x. We prove Statement (c) viathe following two subclaims:Subclaim 1. Fµ does not Split. In other words, Nw and Ny will be in the same family at thestart of round x + 1.Proof. Suppose not. Let Fx+1

ω = {Ni, . . . , Nw, . . . , Nj} denote Nw's family at the start ofround x+ 1, so c ≤ i ≤ w ≤ j < y (where the �rst inequality is due to Statement (a)). Noticethat for every i ≤ l ≤ y, the only possible e�ective height H̃l that can possibly change inround x is for l = b, in which case H̃x
b + 1 = H̃x+1

b . If i = w, then (using superscripts onlywhen necessary to specify the round):
∑j

l=w H̃l

j − w + 1
<

∑y
l=j+1 H̃l

y − j
≤

∑j
l=w H̃l

j − w + 1
, (51)where the �rst inequality is Statement 2 of Lemma B.8 and the second is Statement 1 ofLemma B.8. Clearly, (51) is impossible, yielding the desired contradiction. If on the otherhand i < w, then (using superscripts only when necessary to specify the round):

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l +
∑j

l=w H̃x
l

j − i + 1
≤

∑y
l=j+1 H̃l

y − j
≤

∑j
l=w H̃l

j − w + 1
, (52)where the second inequality is Statement 2 of Lemma B.8, the third is Statement 1 of LemmaB.8, and the �rst comes from:

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l

w − i
⇒

∑j
l=w H̃l

j − w + 1
≤

∑w−1
l=i H̃x+1

l +
∑j

l=w H̃x
l

j − i + 1
, (53)where the �rst inequality is Statement 1 of Lemma B.8. Clearly, (52) is impossible, yieldingthe desired contradiction.Subclaim 2. If Fµ gets larger, then necessarily Nb will be in the same family as Nw and Nyat the start of round x + 1.Proof. Suppose not. Let Fx+1

ω = {Ni, . . . , Nw, . . . , Nj} denote Nw's family at the start ofround x + 1, so b < i ≤ w ≤ y ≤ j. Notice that for every i ≤ l ≤ y, since b < i, the e�ectiveheight H̃l does not change. If i = w, then since we are assuming Fµ grows, we have j > y,and:
∑y

l=w H̃l

y − w + 1
<

∑j
l=y+1 H̃l

j − y
≤

∑y
l=w H̃l

y − w + 1
, (54)where the �rst inequality is Statement 2 of Lemma B.8 and the second is Statement 1 ofLemma B.8. Clearly, (54) is impossible, yielding the desired contradiction. If on the otherhand i < w and j > y, then:

∑w−1
l=i H̃l

w − i
<

∑y
l=w H̃l

y − w + 1
<

∑j
l=y+1 H̃l

j − y
, (55)33



where the �rst inequality is from Lemma B.10, and the second is from Statement 1 of LemmaB.8. But then (55) implies:
∑w−1

l=i H̃l +
∑y

l=w H̃x
l

y − i + 1
<

∑j
l=y+1 H̃l

j − y
, (56)which contradicts Statement 1 of Lemma B.8. Finally, if i < w and j = y, then:

∑w−1
l=i H̃l

w − i
<

∑y
l=w H̃l

y − w + 1
, (57)which contradicts Statement 1 of Lemma B.8.Cases 3 and 4 follow analogous arguments. �B.5 Statement and Proof of Fact that Slide has Competitive Ratio 1/nLemma B.15. Suppose at the start of round x, there exists nodes {Nx

i , Nx
i+1, . . . , N

x
j } such that

Hx
i = · · · = Hx

j . Then under any permutation of the indices σ : {i, i + 1, . . . , j} → {i, i + 1, . . . , j},we have that:
j∑

k=i

H̃x
k =

j∑

k=i

max(0,Hx
k − (k − 1)C/n) =

j∑

k=i

max(0,Hx
σ(k) − (k − 1)C/n) (58)In particular, the value for ∑j

k=i H̃
x
k will not change if we re-index the nodes {Ni, . . . , Nj} in anyarbitrary manner.Proof. This is immediate from the hypothesis that Hx

i = Hx
i+1 = · · · = Hx

j . �Lemma B.16. Suppose that in some round x, Na transfers a packet to Nb in the Slide protocol. Let
Fβ denote Nb's family and Fα denote Na's family. Then either there is exactly one node Nb′ ∈ Fβsuch that ϕb′ increases by one, or ϕN does not change for every N ∈ Fβ . Similarly, either there isexactly one node Na′ ∈ Fα such that ϕa′ decreases by one, or ϕN does not change for every N ∈ Fα.No other node N ∈ G will have ϕN change as a result of this packet transfer.Proof. If Nb's e�ectual height H̃b does not increase as a result of the packet transfer (e.g. the `0' inthe maximum statement of (34) dominates), then Fβ 's cumulative e�ectual height does not change,and as a result, the potential ϕ of all nodes in Fβ remains unchanged. If on the other hand B'se�ectual height does increase, then this will raise the cumulative e�ectual height H̃Fβ

by one, andthis will be absorbed by some node in F−. A similar argument works with respect to Na in Fα.The last statement of the lemma follows from Lemma B.4. �We are now ready to prove the main lemma that will allow us to argue that the Slide protocolhas competitive ratio 1/n. To �x notation, for any internal node N , let HP ′

N denote the number ofpackets p′ ∈ ZP ′

2 that N is currently storing. Recall the de�nition of Φ (see De�nition B.5); we willdistribute the overall potential Φ between all the families, and show that with the rules regardingchanges in Φ, the potential of a family is always positive. Namely:34



Lemma B.17. For every round x and for all families F that are present at the start of x:
Φ ≥

∑

F

max




∑

N∈F−

C − HP ′

N ,
∑

N∈F+

HP ′

N


 ≥ 0 (59)Proof. We prove this based on induction on the round x. The lemma is clearly true at the outset ofthe protocol, when Φ = ΦF = 0, and all nodes are in the same family, since all nodes have heightzero. Suppose that at the start of round x = E(Na, Nb), (59) is satis�ed. We show that no matterwhat happens in round x, (59) will remain satis�ed at the start of round x + 1.Case 1: Neither P nor P ′ transfer a packet. In this case, families will not change (Lemma B.13), andno packets in ZP ′

2 move, so there will be no changes to either side of (59).Case 2: P ′ transfers a packet during x, but P does not. If the packet p′ transferred by P ′ is in ZP ′

1 ,then neither side of (59) will change. So suppose p′ ∈ ZP ′

2 . Note that in Case 1, Na and Nb are inthe same family, call it F (Since Slide does not transfer a packet, we have |Ha − Hb| < C/n, andsee Lemma B.12).
• If Na and Nb are in F+, then ϕa = ϕb, so ϕp′ does not change. In particular, neither side of(59) changes in this case. The same is true if Na and Nb are both in F−

• If Na ∈ F+ and Nb ∈ F−, then the change on the left-hand side of (59) is -1 (since ∆ϕp′ = −1),which matches the change on the right-hand side of (59) (since HP ′

b increases by one, and
HP ′

a decreases by one). If instead Na ∈ F− and Nb ∈ F+, then similar reasoning shows thatthe change of both sides of (59) is +1.Case 3: P transfers a packet from Na to Nb in round x. Notice that this case is not concerned withwhether or not P ′ also transfers a packet, as such a packet would necessarily be in ZP ′

1 (by de�nition),and hence this packet movement in P ′ will not a�ect either side of (59). Also, without loss ofgenerality Na is the sending node and Nb is the receiving node. By Lemma B.14, there are 4 caseswe must consider:Case 3A: H̃b and H̃a do not change. Then by Lemma B.14, there will be no re-structuring of familiesbetween rounds x and x + 1. Consequently, if Fβ denotes Nb's family and Fα denotes Na's family(possible α = β), then for all other families, (59) will remain valid. Also, ϕN does not change forany N ∈ Fβ (similarly for N ∈ Fα) since H̃b and H̃a do not change. Therefore, the right-hand sideof (59) also will not change for Fβ and Fα, and the only change in the left-hand side comes fromthe increase of 4C to Φ (see Rule 2 of De�nition B.5), which can be divided arbitrarily among thefamilies {F}, and this will only help (59).Case 3B: H̃b increases by one, but H̃a does not change. Let Fβ = {Nc, . . . , Nb, . . . , Nd} for some c ≤
b ≤ d. By Lemma B.14, there exist integers r, s ≥ 0 and indices {k1, . . . , kr} and {l1, . . . , ls} such

35



that c ≤ k1 < · · · < kr ≤ b ≤ d < l1 < · · · < ls and:Families at the start of x Families at the start of x

Fβ = {Nc, . . . , Nb, . . . , Nd} F̂β = {Nc, . . . , Nk1−1}

Fβ+1 = {Nd+1, . . . , Nl1−1} F̂β+1 = {Nk1 , . . . , Nk2−1}

Fβ+2 = {Nl1 , . . . , Nl2−1} F̂β+2 = {Nk2 , . . . , Nk3−1}... ...
Fβ+s = {Nls−1 , . . . , Nls−1} F̂β+r−1 = {Nkr−1 , . . . , Nkr−1}

F̂β+r = {Nkr
, . . . , Nls−1}and no other families change.By Lemma B.16, there is only one node N ∈ F−

β for which ϕN increases by one as a resultof the packet transfer. Although Fβ will change in the manner described by the table above, byLemma B.4, the number of nodes N ∈ G with ϕN = b〈H̃Fβ
〉c (respectively ϕN = b〈H̃Fβ

〉c) will notchange (aside from the single node N ′ for which ϕN ′ increases by one, as guaranteed by LemmaB.16), although the speci�c nodes in F+ and F− may vary. A simple computation ensures that theright-hand side of (59) changes in the exact same way as the left-hand side of (59) whenever anytwo nodes in F swap places (in F+ and F−). Therefore, we may assume without loss of generalitythat there is exactly one node N ′ ∈ F−
β for which ϕN ′ increases by one as a result of the packettransfer, and for all other nodes N ∈ G, ϕN does not change between the start of x and x + 1.For each 0 ≤ i ≤ r and 0 ≤ j ≤ s, de�ne the following quantities:Families at the start of x Families at the start of x

Xi =
∑

N∈F̂−

β+i

(C − HP ′

N ) Xj =
∑

N∈F−

β+j
(C − HP ′

N )

Yi =
∑

N∈F̂+
β+i

HP ′

N Yj =
∑

N∈F+
β+j

HP ′

N

Ai = |F̂+
β+i| Ai = |F+

β+i|

Bi = |F̂−
β+i| Bi = |F−

β+i|

(60)Also de�ne F∗ = F̂β+r ∪ Fβ , and:
µ =

∑

N∈F̂−
∗

(C − HP ′

N ) ν =
∑

N∈F+
∗

HP ′

N α = |F̂+
∗ | and β = |F−

∗ | (61)By the induction hypothesis, we have that at the start of round x:
s∑

j=0

ΦFβ+j
≥

s∑

j=0

(
AjXj + BjYj

Aj + Bj

) (62)In addition to the above potential, we also have that Φ increases by 4C as a result of the packettransfer in Slide. Meanwhile, the goal is to show that at the start of round x + 1:
r∑

i=0

Φ
F̂β+i

≥
r∑

i=0

(
AiXi + BiYi

Ai + Bi

) (63)Putting all these facts together, we want to show that:
4C +

s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
≥

r∑

i=0

(
AiXi + BiYi

Ai + Bi

) (64)36



We demonstrate in the remainder of the proof how to show (64) is satis�ed.First look at the term i = r for the right-hand side of (64):
ArXr + BrYr

Ar + Br
=

(α + 1 +
∑s

j=1 Aj)(µ +
∑s

j=1 Xj − (C − HP ′

N ′))

Ar + Br

+
(β − 1 +

∑s
j=1 Bj)(ν + HP ′

N ′ +
∑s

j=1 Yj)

Ar + Br

=
α + 1

α + β
(µ − (C − HP ′

N ′)) +

s∑

j=1

Xj
Aj

Aj + Bj
+

β − 1

α + β
(ν + HP ′

N ′) +

s∑

j=1

Yj
Bj

Aj + Bj

+ (Y1 −X1)

(
α

∑
Bj − β

∑
Aj

(α + β)(Ar + Br)

)

+ · · · + (Ys −Xs)

(
As(β +

∑
Bj) − Bs(α +

∑
Aj)

(As + Bs)(Ar + Br)

)

< C +
α + 1

α + β
(µ − (C − HP ′

N ′)) +
s∑

j=1

Xj
Aj

Aj + Bj
+

β − 1

α + β
(ν + HP ′

N ′) +
s∑

j=1

Yj
Bj

Aj + BjWe have used above that (by Lemmas B.8 and Corollary B.9):
α

α + β
<

A1

A1 + B1
< · · · <

As

As + Bs
<

1 + α + A1 + · · · + As

α + β +
∑s

j=1(Aj + Bj)
(65)Meanwhile, we look at the left-hand side of (64) for the j = 0 term:

A0X0 + B0Y0

A0 + B0
=

(α +
∑r−1

i=0 Ai)(µ +
∑r−1

i=0 Xi

A0 + B0

+
(β +

∑r−1
i=0 Bi)(ν +

∑r−1
i=0 Yi)

A0 + B0

≥ µ

(
α

α + β

)
+ ν

(
β

α + β

)
−

µ +
∑r−1

i=0 Xi

A0 + B0

+

r−1∑

i=0

AiXi + BiYi

Ai + Bi
, (66)where we have used for the inequality above:

A0

A0 + B0
<

A0

A0 + B0
<

A1

A1 + B1
< · · · <

Ar−1

Ar−1 + Br−1
<

1 + α +
∑r−1

i=0 Ai

α + β +
∑r−1

i=0 (Ai + Bi)
, (67)with the inequalities following from Lemma B.8 and Corollary B.9. Putting this all together, wehave that:

4C +
s∑

j=0

(
AjXj + BjYj

Aj + Bj

)
≥

r∑

i=0

(
AiXi + BiYi

Ai + Bi

)which is (64).The other cases are proven similarly. �37



We state as an immediate consequence the lemma we needed in the discussion of Section 4:Lemma B.18. At all times:
|ZP ′

2 | ≤ 2nY P ≤ 2n|ZP | + 2n2C (68)C Competitive Analysis of the Slide+ ProtocolC.1 Description of Slide+Recall that we model an asynchronous network via a scheduling adversary that maintains a bu�erof requests of the form (u, v, p), which is a request from node u to send packet p to node v. Thescheduling adversary proceeds in a sequence of honored edges (called rounds), whereby we will meanthe following when we talk about an edge E(u, v) being honored by the adversary:Step 1. From its bu�er of requests, the adversary selects one request of form (u, v, p) anddelivers p to v, and also selects one request of form (v, u, p′) and delivers p′ to u. If there areno requests (u, v, p) (resp. (v, u, p′)), then the adversary sets p (resp. p′) to ⊥.Step 2. Node u (resp. v) sends new requests to the adversary of form (u, v, p) (resp. (v, u, p′)).Note that the two above-mentioned actions take place sequentially, so that the requests queuedto the adversary in Step 2 can depend on the packets received in Step 1, but requests formulatedduring Step 2 of some round E(u, v) will not be delivered until edge E(u, v) is honored again (atthe earliest). Since nodes in the network only send/receive packets when they are at one end of anedge currently being honored, nodes will not do anything except when they are a part of an honorededge. Thus, in describing Slide+, we need only describe what a node u will do when it is part of anhonored edge E(u, v). Recall that C denotes the size of each node's memory19, and for simplicitywe will assume that C/n ∈ N, and also for Slide+, we will require C ≥ 8n2.Slide+ Protocol Description.During honored edge E(u, v), let (v, u, (p′, h′)) denote the message that u receives from v in Step1 of the round (via the scheduling adversary). Also, u has recorded the request (u, v, (p, h)) thatit made during Step 2 of the previous round in which E(u, v) was honored; note that v will bereceiving this message during Step 1 of the current round.1. If u is the Sender, then:(a) If h < C, then u deletes packet p from his input stream {p1, p2, . . . } (and ignores thereceived packet p′), and then proceeds to Step (c).(b) If h′ ≥ C, then u keeps p (and ignores the received packet p′), and proceeds to Step (c).(c) The Sender �nds the next packet pi ∈ {p1, p2, . . . } that has not been deleted and is notcurrently an outstanding request already sent to the adversary, and sends the request
(u, v, (pi, C + C

n
+ n)) to the adversary. Also, u will update the fact that the currentmessage request sent to v is (u, v, (pi, C + C

n
+ n)).19For simplicity, we assume that all nodes have the same memory bound, although our argument can be readilyextended to handle the more general case. 38



2. If u is the Receiver, then u sends the request (u, v, (⊥, −C
n

− 2n + 1)) to the adversary. Mean-while, if p′ 6= ⊥, then u stores/outputs p′ as a packet successfully received.3. If u is any internal node, then:(a) If h ≥ h′ +(C/n+2n), then u will ignore p′, delete p and the �ghost packet associated to
p� (see Step 3d below), and slide down any packets/ghost packets to �ll any gaps created.Also, u will update his height h = h − 1, and proceed to Step 3d below.(b) If h ≤ h′ − (C/n + 2n), then u will keep p, and also store p′ in the stack location that uhad been storing the �ghost packet� for p (see Step 3d below), deleting the ghost packetin the process. Also, u will update his height h = h + 1, and proceed to Step 3d below.(c) If |h − h′| < C/n + 2n, then u will ignore packet p′ and keep p, but delete the �ghostpacket� associated to p, and then proceed to Step 3d.(d) Node u will search its stack for the highest packet p′′ (not including ghost packets) thatit has not already committed in an outstanding request to the adversary. It then sendsthe request (u, v, (p′′, h)) to the adversary. Additionally, u will create a �ghost packetassociated to the packet/request p′′� that it has just sent the adversary. This �ghostpacket� will assume the �rst un-�lled spot in u's memory stack. Finally, u will updatethe fact that the current message request sent to v is (u, v, (p′′, h)).In the following section, we will prove that the above routing rules are compatible with memoryrequirements (e.g. that Steps 3b and 3d do not require a node to store more than C (ghost) packets),as well as prove that Slide+ enjoys competitive ratio 1/n.C.2 Analysis of Slide+Before providing the full details of the proof that Slide+ enjoys competitive ratio 1/n, we willprovide a brief high-level description of how the proof works. First, notice that the main technicalchallenge in moving from the semi-asynchronous model of Section 4 to the fully asynchronous modelis that nodes can no longer make routing decisions based on current information. Indeed, the currentstate of a node may change drastically from the time it makes a request in Step 2 of some round

E(u, v) and the time the request is �nally sent by the adversary in Step 1 of the next round inwhich E(u, v) is honored. Since the Slide protocol uses the current height of a node to make routingdecisions, the fact that the height of a node may change substantially between the time a packetrequest is made and the time the receiving node receives the packet is an issue that must be resolved.The above described protocol handles this issue by allotting �ghost packets� in Step 3d (thiswill ensure there is always room to store a packet sent from an honest neighbor), as well as havingnodes make routing decisions based on old height considerations. In particular, Steps 1-3 abovedictate what u should do based on the height that u and v had during the last time E(u, v) washonored. Therefore, although this information may have become outdated since the last time u and
v communicated with each other, at least the decisions will be made consistently, both in the sensethat the heights being compared are synchronized (i.e. they are from the same time as each other,although possible now out-dated), and in the sense that the nodes will know what the other willdo in terms of whether or not it will keep the packet just sent/received. This last fact is crucial toprevent packet deletion and duplication from occurring.The proof will follow the main structure of the proof provided for the semi-asynchronous Slideprotocol, with one additional category to account for packet transferring decisions that were based39



on signi�cantly outdated height information.Theorem C.1. The Slide+ protocol achieves competitive ratio 1/n in any distributed, asynchronous,bounded memory network with dynamic topology (and no minimal connectivity assumptions). Morespeci�cally, for any adversary/o�-line protocol pair (A,P ′), if P denotes the Slide+ protocol, Cdenotes the capacity (memory bound) of each node, and ZP
x (resp. ZP ′

x ) denotes the number ofpackets received by protocol P (resp. P ′) as of round x, then for all rounds x:
ZP ′

x ≤ 8nZP + 8n2C (69)Proof. Fix any adversary/o�-line protocol pair (A,P ′), and let P denote the Slide+ protocol and
ZP

x and ZP ′

x as in the statement of the theorem. Motivated by the proof in the semi-asynchronoussetting, we imagine a virtual world in which the two protocols are run simultaneously in the samenetwork. We split ZP ′

x into the following three subsets (we will henceforth suppress the indexreferencing the round x):1. ZP ′

1 consists of packets p′ ∈ ZP ′ for which there exists at least one round E(u, v) such thatboth p′ was transferred by P ′ and some packet p was transferred by P.202. ZP ′

2 consists of packets p′ ∈ ZP ′ that were never transferred alongside a packet in P as in1 above, and such that every time p′ was transferred between two nodes u and v during around E(u, v), the heights H and h that were used by u and v in determining whether tostore/delete the packets delivered by the adversary during Step 1 of E(u, v) (see protocoldescription above) were each within n of the current heights of u and v.3. ZP ′

3 = ZP ′

\ (ZP ′

1 ∪ ZP ′

2 ).Clearly, |ZP ′

| = |ZP ′

1 | + |ZP ′

2 | + |ZP ′

3 |, and hence the theorem follows from Lemmas C.3, C.4, andC.5 below. �We will need the following trivial observation, which follows immediately from the descriptionof the Slide+ protocol in Section C.1.Observation 2. At all times, an internal node u has at most n ghost packets and at most noutstanding requests (one for each of its edges v).Proof. Rules 1(c) and 3(d) only allow a node to submit a single request for each round the nodeis part of an honored edge, and this request is then delivered by the adversary in Step 1 of thenext round in which the edge is honored. Also, Rules 3(a-c) guarantee that the ghost packetcorresponding to the current honored edge will be deleted before another one is created in Rule3(d). �In order to bound |ZP ′

1 |, we will need to bound the number of times any packet p can betransferred by the Slide+ protocol. In the asynchronous Slide protocol of Section 4, we showed thatany packet p could be transferred at most 2n times, as during every packet transfer in Slide, thepacket must drop in height by at least C/n− 1. At �rst glance, it might seem that we cannot makethe same argument in the fully asynchronous setting since the Slide+ protocol is making routing20Note that we make no condition that the two packets traveled in the same direction.40



decisions based on (potentially) outdated height information. However, the introduction of �ghostpackets� will allow us to retain this quality. Indeed, the purpose of utilizing ghost packets is toanticipate future packet transfers and reserve spots in a node's memory stack at the appropriateheight, allowing us to argue that even if nodes nodes are using out-dated height information, packetswill still ��ow downhill� from Sender to Receiver. This is captured in the following lemma.Lemma C.2. Let Y P
x denote the the set of packets inserted by P as of round x. Also let TP

x denotethe set of packet transfers that have occurred in P as of round x. Then any packet in the Slide+protocol is transferred at most 2n times.21 In particular, |TP
x | ≤ 2n|Y P

x | ≤ 2n(|ZP
x | + nC).Proof. We show that anytime a packet is transferred in the Slide+ protocol, the packet's height inthe new bu�er is necessarily at least C/n− 4n lower than its height in the old bu�er. Since packetsonly move within bu�ers when they are received or sent (or when they slide down as in 3(a)), andsince22 2n(C/n− 4n) > C, the lemma will follow. Fix a packet p, and consider a round x = E(u, v)in which p is transferred from u to v. In particular, it must have been that the previous round

x′ < x in which E(u, v) was honored, u sent some request of form (u, v, (p, h)) to the adversary inStep 2. Notice that when u selected p to form a part of its request as in 3(d), since u had height
h and u has at most n − 1 packets already committed as an outstanding request (Observation 2),
p must have height at least h − n in u's bu�er. Meanwhile, let (v, u, (p′, h′)) denote the requestthat v sent to the adversary in Step 2 of round x′. Notice that in 3(d), v reserved a position in itsbu�er (the �ghost packet�), into which p will be inserted when it is received in round x. Since theghost packet is assigned the topmost unoccupied (by packet or ghost packet) position in v's bu�er,we have that p will have height no bigger than h′ + n. Therefore, p will drop in height by at least
(h−n)− (h′ + n) = h−h′ − 2n when it is transferred from u to v. Since the criterion for acceptinga new packet (see 3(d)) demands that h − h′ ≥ C/n − 2n, we have that p will necessarily drop inheight by at least C/n − 4n when it is transferred. �Notice that Lemma C.2 is valid regardless of how long a request (u, v, (p, h)) has been queuedin the adversary's bu�er, and also of how u and v's stacks may have changed in the meantime. Weare now ready to state and prove the �rst requisite bound:Lemma C.3. |ZP ′

1 | ≤ 2n|ZP | + 2n2CProof. By de�nition, |ZP ′

1 | ≤ |TP |, and the latter is bounded by 2n|ZP |+2n2C by Lemma C.2. �Lemma C.4. |ZP ′

2 | ≤ 2n|ZP | + 2n2CProof. This bound follows the same reasoning as the proof of Lemma B.18. Suppose that packet
p′ ∈ ZP ′

2 is transferred by P ′ from u to v in round x. By de�nition of ZP ′

2 , Slide+ did not transfera packet, and thus (with the notation as in Rule 3(d) for Slide+) |h − h′| < C/n − 2n. Also byde�nition of ZP ′

2 , we have that v's height in round x is within n of h′, and u's height in round
x is within n of h. Consequently, u's height in round x must be within C/n of v's height. Thenif we de�ne families the same way as in the proof for the semi-synchronous Slide protocol (seeSection B), by Lemma B.12, u and v must be in the same family at the start of x. Indeed, allthe lemmas and proofs of Section B will remain valid23, and hence Lemma B.18, which states that
|ZP ′

2 | ≤ 2n|ZP | + 2n2C, remains valid. �21This matches the bound for the semi-asynchronous Slide protocol of Section 4.22For Slide+, we have demanded that C > 8n2.23The only necessary modi�cation is to consider the present de�nition of ZP
′

2 instead of the one used in Section B41



Lemma C.5. |ZP ′

3 | ≤ 4n|ZP | + 4n2CProof. Fix a packet p′ ∈ ZP ′

3 . By de�nition of ZP ′

3 , there exists some round xp′ = E(u, v) in which
p′ was transferred from u to v, where either u's height or v's height has changed by at least n sincethe previous round x′

p′ < x in which E(u, v) was honored. Let Sp′ ⊆ TP denote n of these packettransfers, where each packet transfer in Sp′ corresponds to a packet sent (or received) by u (or v),and took place between x′
p′ and xp′ .Observation. For any packet transfer in Slide+, there are at most 2n packets p′ ∈ ZP ′

3 forwhich the packet transfer appears in Sp′ .Proof. Consider any round x′ = E(u, v) in which a packet is transferred from u to v by Slide+,and refer to this speci�c packet transfer as tx′ . Then for each edge of u and each edge of vand for any p′ ∈ ZP ′

3 , there can be at most one round xp′ > x′ for which tx′ ∈ Sp′ . After all,once a given edge of u or v, say for example E(u,w), transfers a packet p′ ∈ ZP ′

3 in round
xp′ > x′, the heights of both u and w are updated, and there can never be another p′′ ∈ ZP ′

3and later round xp′′ > xp′ such that xp′′ = E(u,w) and tx′ ∈ Sp′′ . Therefore, tx′ can appearin at most 2n sets of form Sp′ .Since |Sp′ | = n for each p′ ∈ ZP ′

3 , we have that:
∑

p′∈ZP′

3

|Sp′ | = n|ZP ′

3 | (70)Now since for any given packet transfer tx ∈ TP there can be at most 2n di�erent values of p′ ∈ ZP ′

3such that tx ∈ Sp′ , we have that:
⋃

p′∈ZP′

3

Sp′ ≥
n|ZP ′

3 |

2n (71)But ∪
p′∈ZP′

3
Sp′ ⊆ TP , so:

|TP | ≥ | ∪
p′∈ZP′

3
Sp′ | ≥

|ZP ′

3 |

2
(72)In particular, |ZP ′

3 | ≤ 2|TP | ≤ 4nZP + 4n2C, where the second inequality is Lemma C.2. �D Pseudo-Code and Proofs for Protocol Secure AgainstMalicious AdversaryD.1 Pseudo-CodeIn this section we present pseudo-code for implementing our protocol that is secure againsta coordinated attack of the edge-scheduling and node-controlling adversaries. Formal proofs ofsecurity, referring to line numbers of the pseudo-code of the following four �gures, are in the nextsection.
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Variable and Notation De�nitions ## Each of the below variables are transmission dependent
C = Capacity of each (internal) node's bu�er (i.e. number of codeword packets a node can store)
B = Capacity of each node to hold extraneous (broadcast) information
D = 4nC

λ
= Number of packets per codeword EN = List of Eliminated nodes

Y = Set of packets inserted by sender Z = Set of packets received by receiver
Pu,v = Net no. of p's to cross E(u, v) [p]

u,v
= Net no. p crossed E(u, v)

Φu,v = Net decrease in potential as a result of packet transfers from u to v
Φu = Total potential drop caused by packet transfers across all edges adjacent to u
Gp = Ghost packet associated to packet p (See Figure Internal Node Create Next Request)
Hu = Height of u's bu�er; i.e. the number of codeword packets u is currently storing
BBu = u's Broadcast Bu�er BLu = u's version of the Blacklist
DBs = Sender's Data Bu�er, used to store status report parcels that will help eliminate corrupt nodesFigure 1: De�nition of VariablesRouting Rules for Node u ∈ G01 Input:02 (v, u, (p′, H ′), (q′1, q

′
2), (α

′, σ(α′))) ## Received From v (via A)03 (u, v, (p,H), (q1, q2), (α, σ(α))) ## Previous request sent to v (via A)04 DO:05 Process the parcel q′1 as in Process Parcel below06 If α = α′, σ(α′) is valid, and v /∈ (ENu ∪ BLu)07 If u = s and Ready(v) is true and H ′ < C: ## Insert Packet08 Delete p from input stream {p1, p2, . . . }09 Increase Φs,v by the amount indicated by α10 Increase Ps,v, [p]s,v , and |Y | by one11 Else If u = r and Ready(v) is true and p′ 6= ⊥: ## Receive Packet12 Store/output p′ as a packet successfully received13 Increase Φr,v by the amount indicated by α14 Decrease Pr,v and [p]r,v by one and increase |Z| by one15 Else If u 6= r, s and Ready(v) is true and H ≥ H ′ + (C/n − 2n):## Send Packet16 Delete p and Gp and Slide ## Slide down (ghost) packets to �ll gaps17 Increase Φu,v and Φu by the amount indicated by α18 Increase Pu,v and [p]r,v by one, and set Hu = Hu − 119 Else If u 6= r, s and Ready(v) is true and H ≤ H ′ − (C/n − 2n):## Receive Packet20 Store p′ in location occupied by Gp21 Increase Φu,v and Φu by the amount indicated by α22 Decrease Pu,v and [p]u,v by one and set Hu = Hu + 123 Send to A the returned value of Create Next RequestFigure 2: Routing Rules
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Process Parcel for Internal Nodes and Receiver u01 Input:02 (q′1, q
′
2) ## Received From v (via A)03 DO:04 Store q′2 in BBu ## q′2 = Φw for some w. Replace old value, provided new value is larger05 Add q′1 to BBu ## Also mark edge E(u, v) as having transmitted this information06 If q′1 = ΩT07 Clear outgoing, incoming, BLu, and BBu (except status report parcels)08 Else If q′1 = w /∈ ENu denotes a node to eliminate09 Add q′1 to ENu10 Else If q′1 = w denotes a node to blacklist11 Add q′1 to BLu12 If w = u, Sign and Add n − 1 status report parcels to BBu13 ## Find reason u was blacklisted from SoT. For each v ∈ G:14 ## if case F2, add Φu,v, if case F3, add Pu,v, if case (F4, p′), add [p′]u,v15 If u = r and q′1 indicates T− 1 failed due to F2:16 For each v ∈ G, add Φw to BBrProcess Parcel for Sender17 Input:18 q′1 ## Received From v (via A)19 DO:20 Add q′1 to DBs21 If q′1 is the last missing status report parcel for some w ∈ BLs22 Remove w from BLs, and add fact w /∈ BL to BBsFigure 3: Rules For Processing Broadcast InformationD.2 High-Level Proofs Ideas for Competitive Analysis of ThroughputIn this section, we sketch the proof that our protocol is n-competitive, leaving the rigorousdetails to the next subsection. As was done for analysis of Slide and Slide+, we use competitiveanalysis to evaluate the throughput performance of our routing protocol. To this end, let (A,P ′)denote an adversary/o�-line protocol pair for which we compare our routing protocol P.Theorem D.1. If at any time P ′ has received Θ(xn) messages, then P has received Ω((x − n2))messages. Thus, if the number of messages x ∈ Ω(n2), then our protocol has competitive ratio 1/n,which is optimal.Proof. This follows as an immediate corollary to Lemmas D.3 and D.4 below. �Lemma D.2. If a transmission fails as in F2-F4, as soon as the sender receives all of the signedcommunications between all nodes, he will necessarily be able to identify a corrupt node.Proof. Intuitively, a transmission fails as in case F2 when a corrupt node is transferring packetsagainst transfer rules (e.g. from smaller heights to larger heights, or when a corrupt node is dupli-cating packets). Both of these can be detected by looking at the node's communication with eachof its (honest) neighbors, who have recorded the height di�erences caused by each packet trans-fer. If a transmission ends as in case F2, the sender will look for a node whose cumulative heightdrop is negative; this information is available through the Sig. 3 signed communications (see abovesection). 44



When a transmission fails as in case F3, this means that there is a corrupt node that is deletingpackets. The sender can identify such a node u when he has received each of the signed communica-tions (Sig. 1) from each of u's (honest) neighbors. Finally, transmission failure as in case F4 meansthere is a corrupt node that has duplicated some packet p. The sender can identify such a node uwhen he has received each of the signed communications (Sig. 2, corresponding to the packet p)from each of u's (honest) neighbors.This lemma is proved rigorously in Appendix D.5. �Lemma D.3. After a corrupt node has been eliminated (or at the outset of the protocol) and beforethe next corrupt node is eliminated, there can be at most n − 1 failed transmissions before the nextnode can be eliminated. In particular, there are at most n2 failed transmissions.Proof. The intuition for the proof is that the blacklist forces corrupt nodes to return their signedcommunication to the sender if they want to further disrupt future transmissions. Then use LemmaD.2 above to show that with the signed communication, the sender can identify a corrupt node. Arigorous proof is provided in Appendix D.4. �Lemma D.4. For every message/codeword transmission, by the time the transmission ends as aresult of S1 or F2-F5, we have that the ideal o�ine protocol P ′ has received at most O(n2C) packets.We will need the following de�nition for the proof:De�nition D.5. A round t = E(u, v) of a transmission is wasted if u and v are honest nodes, andthey were not allowed to transfer a packet because one (or both) of them was on the blacklist.Proof Sketch of Lemma D.4. Let C ′ denote the number of packets per codeword.24 The structureof the proof will be to show that if P ′ has received 3nC ′ packets as of some round t, then necessarilyS1 or F2-F5 has occurred. To do this, we follow the proof of the competitive ratio for Slide andSlide+ and imagine a virtual world in which P and P ′ are run simultaneously. Let ZP ′ denotethe packets delivered to the receiver by P ′, and let ZP ′

3 denote the subset of packets that travelledbetween two nodes during a wasted round. De�ne ZP ′

1 to be the subset of ZP ′

\ ZP ′

3 consistingof packets p′ for which there exists at least one round E(u, v) such that both p′ and some packet
p ∈ Y P were both transferred this round.25 Set ZP ′

2 = ZP ′

\ (ZP ′

1 ∪ ZP ′

3 ). Also, let TP
t

denotethe number of packet transfers in P between two honest nodes as of round t. We begin with thefollowing observation, which is analogous to the corresponding statements for Slide and Slide+ (seee.g. Lemmas 4.1 and 4.2), and is proved in Appendix D.4:Observation. |ZP ′

1 | ≤ TP
t

, |ZP ′

2 | ≤ TP
t

, and |ZP ′

3 | ≤ n4 + 2n3Notice that since TP
t

only takes into account packet transfers between honest nodes, we have that
TP
t

≤ Y P ∗ C/(C/n) = nY P , since every packet starts at height at most C and drops in heightby at least ≈ C/n every time it is transferred. Therefore, the above observation together with theassumption that 3nC ′ packets have been received by P ′ say:
3nC ′ = |ZP ′

| = |ZP ′

1 | + |ZP ′

2 | + |ZP ′

3 | ≤ 2TP
t

+ n4 + 2n3 ⇒ TP
t

≥ λn2C2 (73)24C′ = λnC is a constant multiple of n times the bu�er-size C (the constant λ depends on the error-correctionrate).25Note that we make no condition that the two packets traveled in the same direction.45



where in the last inequality we have used C ′ ≥ n3 + 2n2 and C ′ = λnC. Since each packet transfercorresponds to a height di�erence of at least C/n between the honest nodes exchanging the packet,(73) implies that honest nodes will have recorded a cumulative height di�erence of λn2C2, which isprecisely the condition for a transmission ending as in case F2. See Appendix D.3 for details. �D.3 Proof of Lemma D.4In this section, we prove the following lemma (which is a formal restatement of Lemma D.4).Before stating and proving this lemma, it will be convenient to introduce new terminology and �xnotation:De�nition D.6. We will say a node N ∈ G participated in transmission T if there was at least oneround in the transmission for which w was not on the (sender's) blacklist. The sender's variablethat keeps track of nodes participating in transmission T will be called the participating list fortransmission T, denoted by ρT (updated at the end of failed transmissions on line 30 of Figure 4).Also, we will refer to speci�c line numbers for the pseudo-code via (X.YY), where X refers tothe Figure number, and YY refers to the line number. Finally, let D denote the number of packetsper codeword, and note that:
D =

nC

λ
, (74)where λ is the error-rate of the error-correcting code.Lemma D.7. In any transmission T, |ZP ′

T
| ≤ 3nD. If the transmission was successful (i.e. r sentEoT parcel �S1� on 4.14-15 and 4.20), then |ZP

T
| ≥ (1 − λ)D = O(nC).We will prove Lemma D.7 via a sequence of Lemmas. First, recall from Section 5 the reasons atransmission may fail:S1, F2, F4 Sender receives End of Transmission (EoT) parcel from the receiver (4.25, 4.28)F3 Sender has inserted D packets since the end of Ti−1 (4.28)F5 Sender receives enough information to eliminate a new corrupt node (4.22)In order to prove Lemma D.7, we will show that if there is a transmission in which the ideal o�-line protocol P ′ has received at least 3nD packets, then necessarily the sender had received theEoT parcel from R indicating �F2,� a contradiction (the transmission should have ended). In otherwords, we show that if a transmission does not end as on (4.22) or (4.28), then necessarily thetransmission will end as on (4.25) before P ′ is able to receive more than 3nD packets.Lemma D.8. If the receiver forms any EoT parcel in round t of some transmission and P ′ hasinserted Z = ZP ′

t
packets at this point, then the sender will necessarily receive EoT before P ′ is ableto receive n2C + nC more packets.Proof. We will show that there can be at most n2C packet insertions by P ′ before the EoT parcelnecessarily has reached the sender, from which the lemma follows since there can be at most nCpackets in the bu�ers of the honest nodes at round t. Thus, the lemma follows immediately fromLemma D.15 in Appendix D.4. �46



By the above lemma, it remains to show that if at any time t we have that |ZP ′

t
| ≥ 3nD −

n2C − nC, then necessarily R will enter lines 16-17 of Figure 4. First, we will split ZP ′ into threedisjoint subsets ZP ′

= ZP ′

1 ∪ZP ′

2 ∪ZP ′

3 , which were described in Section 5, but are now restated interms of the pseudo-code.De�nition D.9. We will say a round t = E(u, v) of a transmission is wasted if u and v are honestnodes, and Ready(u) returned false for v or Ready(v) returned false for u (see lines 2.15, 2.17, and4.41-43).Intuitively, a round is wasted if two honest nodes would have transferred a packet (based ontheir relative heights), but they were not allowed to because they had not yet transmitted requisitebroadcast information across E(u, v), or because one was on the other's blacklist.We can view the scheduling adversary A as simply a schedule (or order) of edges that theadversary will honor. We will imagine a virtual world, in which P and P ′ are run simultaneously.Let ZP ′

3 denote the set of packets in ZP ′ that travelled between two nodes during a wasted round.De�ne26 ZP ′

1 to be the subset of ZP ′

\ ZP ′

3 consisting of packets p′ for which there exists at leastone round E(u, v) such that both p′ and some packet p ∈ Y P were both transferred this round.27Set ZP ′

2 = ZP ′

\ (ZP ′

1 ∪ZP ′

3 ). Also, let TP
t

denote the number of packet transfers in P between twohonest nodes (as on lines 15-22 of Figure 2) as of round t.Lemma D.10. For any round t: |ZP ′

1,t| ≤ TP
t

and |ZP ′

2,t| ≤ TP
tProof. These are Lemmas D.16 and D.17 in Appendix D.4. �For each packet p′ ∈ ZP ′

3 , we can �nd the �rst wasted round tp′ in which p′ was transferredbetween two nodes. De�ne W := {tp′ |p
′ ∈ ZP ′

3 }. Clearly, we have:
|ZP ′

3 | = |W| (75)Lemma D.11. For any transmission: |W| ≤ n4 + 2n3Proof. This is re-stated in Appendix D.4. �Lemma D.12. |ZP ′

| ≤ 2TP + n4 + 2n3Proof. Follows immediately from Lemmas D.16, D.17, and D.11, and (75). �Notice that although every packet transfer in P will cause a drop in potential, it may take sometime before a node's cumulative potential drop for the current transmission reaches the receiver,since only one node's potential is transferred across an edge during a given round (4.08). In orderto account for this, we will utilize the following notation. For any honest node u, let Uu ⊆ ZP ′denote the set of packets that have reached R (in P ′) and travelled through u at some point enroute to R. Let Uu,2 ⊆ Uu denote the subset consisting of the (at most) n3 packets that left u (forthe last time) latest (chronologically), and let Uu,1 = Uu \ Uu,2. If Uu,1 6= ∅, let tu denote the latestround such that some p′ ∈ Uu,1 last left u (otherwise set tu = 0).Lemma D.13. For any honest node u, R's stored value for Φu is at least as current as tu.26If we wish to emphasize the round, we will write ZP
′

1,t.27Note that we make no condition that the two packets traveled in the same direction.47



Proof. This is re-stated and proved in Appendix D.4. �We are �nally ready to put all the pieces together to prove Lemma D.7.Proof of Lemma D.7. Suppose for the sake of contradiction that there is some transmission forwhich |ZP ′

| = 3nD and the transmission has not yet ended. By Lemma D.17, we have that if tdenotes the round when |ZP ′

| = 3nD − (n2C + nC), then as of round t:
∑

u∈G

Φu < CD (76)where Φu denotes the value of this variable stored by R as of round t. Meanwhile, by Lemma D.12,we have that:
TP
t

≥ (1/2)(|ZP ′

t
| − n4 − 2n3) (77)Since packet transfers in P correspond to a potential drop of at least C/n, even if we ignorecontributions to potential drop from the transfers of each of the (up to) n3 packets in Uu,2 for each

u, by Lemma D.13 the receiver has recorded as of round t:
∑

u∈G

Φu ≥ (C/n)(TP
t

)

≥ (C/n)(1/2)((|ZP ′

t
| − n4) − n4 − 2n3)

≥ (C/n)(1/2)((3nD − n2C − nC)− 2n4 − 2n3)

≥ (C/n)(1/2)(3nD − nD)

= CD (78)where on the second line from ZP ′

t
we have subtracted out the up to n4 packets in Uu,2 for each

u, and for the third time we used that nD ≥ n(n + 1)(2n2 + C) (since C ≥ 8n2, λ ≤ 1/2, and
D = nC

λ
). This contradicts (76), completing the proof. �D.4 Miscellaneous Lemmas and ProofsWe restate and prove the lemmas used in the previous subsections. The �rst is a formal re-statement of Lemma D.3.Lemma D.14. After a corrupt node has been eliminated (or at the outset of the protocol) and beforethe next corrupt node is eliminated, there can be at most n−1 failed transmissions {T1, . . . , Tn} beforethere is necessarily some index 1 ≤ i ≤ n such that the sender has the complete status report fromevery node on ρTi

.Proof. We �rst state a simple observation:Observation. If w ∈ ρT, then the sender is not missing any status report parcel for w forany transmission prior to transmission T. In other words, there is no transmission T
′ < T suchthat w was blacklisted at the end of T′ (as in Sender Create Next Request), and the sender isstill missing status report information from w at the end of T.

48



Proof. Nodes are added to the blacklist whenever they were participating in a transmissionthat failed (see as in Sender Create Next Request). Nodes are removed from the blacklistwhenever the sender receives all of the status report information he requested of them (3.21-22), or when a node is eliminated (4.22-24), in which case the sender no longer needs statusreports from nodes for old failed transmissions28 (and in particular, this case falls outside thehypotheses of the Lemma). Since ρT is de�ned as non-blacklisted nodes, the fact that w ∈ ρTimplies that w was not on the sender's blacklist at the end of T (but before BLT is createdon 4.30). Also, notice that (4.30) guarantees that all nodes not already on the sender'sblacklist will be put on the blacklist if the transmission fails. Therefore, in the case that whas not been blacklisted since the last node was eliminated, then there have not been anyfailed transmissions, and hence the sender is not missing any status reports. Otherwise, let
T
′ < T denote the last time w was put on the blacklist, as on (4.30). In order for w to be puton ρT on line (4.30) of transmission T, it must have been removed from the blacklist at somepoint between T

′ and the end of T. In this case, the remarks at the start of the proof of thisobservation indicate the sender is not missing any status reports from w. �Suppose now for the sake of contradiction that we have reached the end of transmission Tn, whichmarks the nth transmission {T1, . . . , Tn} such that for each of these n failed transmissions, the senderdoes not have the complete status report from at least one of the nodes that participated in thetransmission. De�ne the set S to be the set of nodes that were necessarily not on ρTn , and initializethis set to be empty.Since the sender is missing some node's complete status report that participated in T1, there issome node w1 ∈ ρT1 from which the sender is still missing a status report parcel corresponding to
T1 by the end of transmission Tn−1. Notice by the observation above that w1 will not be on ρT′ forany T2 ≤ T

′ ≤ Tn−1, so put w1 into the set S. Now looking at T2, there must be some node w2 ∈ ρT2from which the sender is still missing a status report parcel from T2 by the end of transmission Tn−1.Notice that w2 6= w1 since w1 /∈ ρT2 , and also that w2 /∈ ρTn−1 (both facts follow from the aboveobservation), so put w2 into S. Continue in this manner, until we have found the (n− 1)st distinctnode that was put into S due to information the sender was still missing by the end of Tn−1. Butthen |S| = n − 1, which implies that all nodes, except for the sender, are not on ρTn .We reach a contradiction by showing that transmission T can not be a failed transmission (unlessa corrupt node can be immediately identi�ed). Recall that there are 3 ways a transmission can fail:1) F2, i.e. R has stored value ∑
u∈G Φu > CD; 2) F3, sender has inserted D packets; 3) F4, Rhas received a duplicated packet p. However, each of these cases is impossible, since no node is onthe participating list ρTn , and hence no (honest) node should have transferred a packet (ρTn = ∅implies that all nodes except S are on the blacklist), as line 41f of Figure 4 will fail for all honestnodes. Therefore, no honest nodes will transfer any codeword packets during T, so the sender hasnot inserted any packets and the receiver has not received any packets, and any node u that reportsa non-zero value for Φu is necessarily corrupt. �We are now ready to prove Theorem D.1, reserving the proof of Lemma D.19 to the next section.28The sender already received enough information to eliminate a node. Even though it is possible that other nodesacted maliciously and caused one of the failed transmissions, it is also possible that the node just eliminated causedall of the failed transmissions. Therefore, the protocol does not spend further resources attempting to detect anothercorrupt node, but rather starts anew with a reduced network (the eliminated node no longer legally participates),and will address future failed transmissions as they arise.49



Proof of Theorem D.1. By Lemma D.7, for every successful transmission we have 1
n
|ZP ′

T
| ≤ 8nC ∼

(1 − λ)D = |ZP
T
|, so it remains to show that there are at most n2 failed transmissions. By LemmaD.14, by the end of at most n− 1 failed transmissions, there will be at least one failed transmission

T such that the sender will have all status report parcels from every node on ρT. Then by LemmaD.19, the sender can eliminate a corrupt node. At this point, lines (4.22-24) essentially call forthe protocol to start over, wiping clear all bu�ers except for the eliminated nodes bu�er, which willnow contain the identity of a newly eliminated node. The transmission of the latest codeword notyet transmitted then resumes, and the argument can be applied to the new network, consisting of
n− 1 nodes. Since the node-controlling adversary can corrupt at most n− 2 nodes (the sender andreceiver are incorruptible), this can happen at most n − 2 times, yielding the bound of n2 for themaximum number of failed transmissions. �Lemma D.15. ∀1 ≤ i ≤ n, if P ′ has inserted (i ·nC) packets since round t, then either the senderhas received the EoT parcel, or there are at least i distinct (honest) nodes that have received EoT.Proof. (Induction on i). The subclaim is clearly true for i = 1, since R knows EoT as soon as itcreates it in round t. Assume the subclaim is true for i− 1, and we aim to show it will then be truefor i. If the sender has received EoT after P ′ inserts inC packets (after t), then done. Otherwise,let Si−1 = {u1, . . . , ui−1} denote the set of (honest) nodes that had EoT as of the (i−1)nCth packetinserted after t by P ′. Now during the next nC insertions by P ′, since nC exceeds the capacity ofthe honest nodes, one of the last nC packets (say p′) just inserted necessarily reached the receiver.Let uj denote the �rst (with respect to time, not with respect to the index ordering within Si−1)node in Si−1 travelled to en route from S to R (that such a node exists is immediate since s /∈ Si−1but r ∈ Si−1). Let v denote the node that passed p′ to uj . Then in the round when p′ was passedfrom v to uj , uj necessarily29 sent v EoT (see lines 02-03 of Figure 4), i nodes will know EoT, asrequired. �Lemma D.16. For any round t:

|ZP ′

1,t| ≤ TP
t

(79)Proof. This follows immediately from the de�nition of ZP ′

1,t together with the fact that P ′ is restrictedto transferring packets between honest nodes. �The following lemma follows directly from Lemma 4.2:Lemma D.17. For any round t:
|ZP ′

2,t| ≤ TP
t

(80)Proof. This is Lemma 4.2 of [BO] together with Lemma B.17 of [BO]. Note that even thoughthe network setting of [BO] assumes no malicious activity, the proof remains valid because P ′ isrestricted to the honest nodes of G. In particular, we may restrict our graph G (which consistsof honest and corrupt nodes) to G′ (consisting of only honest nodes), and follow the lemmas andproofs leading to Lemma B.17 on the subgraph G′. Since ZP ′

2 excludes ZP ′

3 (the packets of ZP ′ thattravelled during a wasted round), the analysis leading to Lemma B.17 remains valid. �29P ′ is restricted to the sub-graph of G consisting of honest nodes, so there is no danger that v or uj will disobeyprotocol rules. 50



Lemma D.11. For any transmission:
|W| ≤ n4 + 2n3 (81)Proof. By investigating line 41 of Figure 4, there are 5 reasons a round may be wasted. By LemmaD.18 below, we need only consider lines 41c, 41d, 41e, and 41f. We bound the number of wastedrounds for each of these, noting that each edge will only transmit a broadcast parcel across it once:1. Since there are only 2n parcels total comprising the SoT broadcast and EoT parcel and lessthan n2/2 edges, lines 41c-d can cause at most n3 wasted rounds.2. A node can only be removed from the blacklist once per transmission. Since there are n nodesthat may need to be removed from the blacklist, and less than n2/2 edges, line 41e can causeat most n3 wasted rounds.3. We will split wasted rounds caused by 41f into two categories. In the �rst category, the nodethat is blacklisted has not yet passed all of its status report parcels across the relevant edge.Since each node's status report consists of n − 1 parcels, and each edge will only transmit astatus report parcel once, this �rst category can cause up to (n − 1)n(n2/2) < n4/2 rounds.In the second category, the blacklisted node has already passed all of its status report parcelsacross the relevant edge. To bound the number of wasted rounds caused by this secondcategory, we focus on a single such wasted round t = E(u, v) caused by packet p′ ∈ ZP ′

3 .Without loss of generality we may assume that the round was wasted because v was on u'sblacklist, and since we are in the second category, u already has all of v's status report parcels.Subclaim. v was on BLs when p′ was inserted.Proof. If v /∈ BLs when p′ was inserted, then S must have received all of v's statusreport parcels and removed v from BLs (3.22). Therefore, the broadcast parcel thatindicates that v should be removed from the blacklist is put into the sender's broadcastbu�er when it removes v from BLs (2.38-39). Let w denote the �rst node that p′ travelsto en route from S to u such that w does not know that v should be removed from theblacklist, and let t′ denote the round that w received p′. Note that t′ < t. Also, since
w received p′ from a node that knew v should be removed from the blacklist, round t

′must have been wasted (2.41e), which contradicts minimality of t.Thus, for �xed p′ ∈ ZP ′

3 corresponding to wasted round E(up′ , vp′), we have that vp′ was on
BLs when p′ was inserted (subclaim above) and up′ had all of vp′ 's status report parcels beforethe start of round E(up′ , vp′). Therefore, for each p′ ∈ ZP ′

3 , let wp′ denote the �rst node that p′travelled to that had vp′ 's complete status report when it received p′. Since wp′ 6= s (otherwise
vp′ /∈ BLs when p′ is inserted), we have that the node that sent p′ to wp′ (in say round tp′)must not have known vp′ 's complete status report. Since tp′ was not a wasted round, wp′must have sent a status report parcel (not necessarily corresponding to vp′) during round tp′ .Therefore, for every p′ ∈ ZP ′

3 , we can associate a round in which a status report parcel wassent across an edge. Since there are less than n2 total status reports and n2/2 edges, thiscategory of 41f can cause at most n4/2 wasted rounds.Adding contributions from 41c-41f, we obtain the lemma. �51



Lemma D.18. For any p′ ∈ ZP ′

3 , the corresponding �rst wasted round tp′ ∈ W was wasted as aresult of line 41c, 41d, 41e, or 41f (see Figure 4).Proof. Fix any tp′ ∈ W, and for notation, let tp′ = t = E(u, v), and without loss of generality,assume p′ passed from u to v in this round. We will show that necessarily u has the full SoTbroadcast at the start of t, from which the lemma follows. Suppose for the sake of contradictionthat u did not have the full SoT broadcast at the start of t. Let t0 denote the round in which p′was inserted by the sender (in protocol P ′). Let w denote the �rst node that p′ visited en routefrom S to u such that w did not have the complete SoT broadcast, and let w′ denote the node thatsent p′ to w in round t
′. By choice of w, we have that w′ knew the complete SoT broadcast whenit received p′, and hence it had the complete broadcast by t

′ (when p′ was sent to w). But thenline 41c should have been true, so round t
′ must have been wasted. Since clearly t

′ < t, we havethe required contradiction. �Lemma D.13. For any honest node u, R's stored value for Φu is at least as current as tu.Proof. We prove the following statement, from which the lemma follows immediately:For any node u and for any 1 ≤ i ≤ n, if in2 of the n3 packets in Uu,2 have reached R, theneither R has stored a value for Φu that is at least as recent as tu, or at least i distinct (honest)nodes have stored values for Φu that are at least as recent as tu.We prove the statement via induction on i. For i = 1, there is nothing to show, as clearly u itself hasa current value stored for Φu. Let ti−1 denote the round in which the (i − 1)n2 packet in Uu,2 lastleft u, and let ti denote the round in which the in2 packet of Uu,2 last left u, so tu < ti−1 < ti. Ifas of ti the receiver has a stored value for Φu that is at least as recent as tu, then done. Otherwise,the induction hypothesis guarantees that there exists some set Fi−1 = {v1, . . . , vi−1} ⊆ G of honestnodes that, as of round ti−1, have a stored value of Φu that is at least as recent as tu. Let Sudenote the n2 packets in Uu,2 that left u between ti−1 and ti.Claim. There exists (at least) one pair of honest nodes (vj , vk) ∈ Fi−1 × G \ Fi−1 such thatat least n packets in Su were transferred across E(vj , vk) at some point after they left u andbefore they reached R.Proof. Notice that each of the n2 packets in Su had not left u for the last time as of round
ti−1. For each p′ ∈ Su, we may therefore �nd the �rst node v′p such that vp′ ∈ Fi−1 had avalue for Φu at least as current as round tu, but the node that vp′ passed p′ to did not (since
P ′ is restricted to honest nodes, necessarily vp′ is honest). Finding vp′ for each p′ ∈ S andusing an averaging argument, there is (at least) one honest node v ∈ Fi−1 such that n packetsin S left from v to a node not in Fi−1. Since the assignment of values Φw to the parcel q2 aremade in a round-robin fashion (see line 08 of Figure 4), v sent his value for Φu to some node
w /∈ Fi−1 during one of these n transfers, thus growing the family of nodes who have a storedvalue for Φu (at least as current as tu) by one. �D.5 Proof of Lemma D.2In this section, we aim to prove the following lemma, which is a restatement of Lemma D.2, andwhich states that the sender will be able to eliminate a corrupt node if he has the complete statusreports from every node that participated in some failed transmission T.52



Lemma D.19. Suppose transmission T failed and at some later time (after transmission T butbefore any additional nodes have been eliminated) the sender has received all of the status reportparcels from all nodes on ρT. Then the sender can eliminate a corrupt node.Recall that there are three ways a transmission can fail:F2. The sender receives EoT parcel indicating �F2�F3. The sender inserted D packetsF4. The sender receives EoT parcel indicating �(F4, p′)�We will see that case F2 roughly corresponds to packet duplication, since the nodes are reportinga cumulative potential drop greater than is possible based on the packet insertions by the sender.Case F3 roughly corresponds to packet deletion, since the D packets the sender inserted do notreach the receiver (otherwise the receiver could have decoded by Fact 1), and case F4 correspondsto a mixed adversarial strategy of packet deletions and duplications. We treat each case separatelyin Lemmas D.20, D.21 and D.22 below, thus proving Lemma D.19:Proof of Lemma D.19. The theorem is proven for each case below in Lemmas D.20, D.21 and D.22.
�We declare once-and-for-all that at any time, G will refer to nodes still a part of the network,i.e. nodes that have not been eliminated by the sender.Handling Failures as in F2: Packet DuplicationThe goal of this section will be to prove the following theorem.Lemma D.20. Suppose transmission T failed and falls under case F2, and at some later time (aftertransmission T but before any additional nodes have been eliminated) the sender has received all ofthe status report parcels from all nodes on ρT. Then the sender can eliminate a corrupt node.Proof. The idea of the proof is as follows. Case F2 of transmission failure roughly corresponds topacket duplication: there is a node w ∈ G who is jamming the network either by outputting duplicatepackets or disobeying transfer rules (e.g. by transferring a packet from a node with small height toa node with large height). This means that w will be responsible for illegal increases in potential.Using the status reports for case F2, which include nodes' signatures on changes of potential due topacket transfers, we will catch w by looking for a node who caused a greater increase in potentialthan is possible if it had been acting honestly.More speci�cally, Case F2 means that R had stored potential values such that: ∑

u∈G Φu > CD.Since we are not in Case F3, the sender did not insert D packets. Since each packet insertion cancause an increase in potential of at most C, the total (valid) increase of potential for the transmissionis at most CD, which is less than the claimed potential drop ∑
u∈G Φu of the internal nodes. Inparticular, there is an extra potential drop in the network that cannot be accounted for by packetinsertions; i.e. there is a node creating duplicated packets or lying about height information whentransferring packets. The formal details of how the signed status reports {Φu,v} can be used by thesender to identify a corrupt node can be found in the proof of Theorem 10.6 of [7]. �Handling Failures as in F3: Packet DeletionThe goal of this section will be to prove the following theorem.53



Lemma D.21. Suppose transmission T failed and falls under case F3, and at some later time (aftertransmission T but before any additional nodes have been eliminated) the sender has received all ofthe status report parcels from all nodes on ρT. Then the sender can eliminate a corrupt node.Proof. Case F3 of transmission failure roughly corresponds to packet deletion: the sender has in-serted D packets, and yet the receiver has gotten less than D − nC of them (otherwise, R coulddecode by Fact 1, and the transmission would not have failed). Since the total capacity of the net-work is only nC, there is (at least) one node w ∈ G who is deleting packets (or storing more than Cpackets, which an honest node would not do). Using the status reports for case F3, which includenodes' signatures on Pu,v (the net number of packets that have passed across each adjacent edge),we will catch w by looking for a node who input more packets than it output, and this di�erenceis greater than the bu�er capacity of the node. The formal details of how the signed status reports
{Pu,v} can be used by the sender to identify a corrupt node can be found in the proof of Theorem10.11 of [7]. �Handling Failures as in F4: Packet Duplication + DeletionThe goal of this section will be to prove the following theorem.Lemma D.22. Suppose transmission T failed and falls under case F4, and at some later time (aftertransmission T but before any additional nodes have been eliminated) the sender has received all ofthe status report parcels from all nodes on ρT. Then the sender can eliminate a corrupt node.Proof. Case F4 of transmission failure roughly corresponds to packet duplication and packet dele-tion: clearly packet duplication has occurred since R has received a duplicated packet p (whichwould not happen if all nodes were acting honestly), but the transmission did not fail due to CaseF2, and so likely the adversary is deleting packets as he duplicates them so that signatures on po-tential cannot catch him. We will use the status reports for case F4, which include nodes' signatureson [p]u,v (the net number of times p has crossed each adjacent edge), to �nd a corrupt node w bylooking for a node who output p more times than it input p. The formal details of how the signedstatus reports [p]u,v} can be used by the sender to identify a corrupt node can be found in the proofof Theorem 10.12 of [7]. �
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Internal Node Create Next Request for E(u, v)01 DO:02 Set q1 to be a parcel from BBu not yet transferred across E(u, v), chosen according to priority:03 1) EoT parcel; 2) SoT parcels; 3) Node to remove from BL; 4) Status report parcel of a node on BLu04 If q1 6= EoT or SoT parcel and v /∈ (ENu ∪ BLu) ## Okay to send/receive p's with v05 Set new p ## Look in stack to �nd highest p not already sent as a request to A06 Set new Gp ## Reserve the highest non-committed spot of stack07 Else set p = ⊥08 Set new q2 ## Chosen from u's (current) values of Φw in round-robin fashion09 Set α = (Pu,v, [p′]
u,v

, Φu,v) ## p′ is packet transferred across E(u, v) the previous round E(u, v) was honored10 Return (u, v, (p, H), (q1, q2), (α, σ(α))) ## Also remember this request for next time E(u, v) is honoredReceiver Create Next Request for E(r, v)11 DO:12 If rec'd duplicate ## The packet p′ just received had already been received by R13 Form EoT: q1 = (�F4�, p′)14 Else If |Z| = (1 − λ)D ## R now has enough packets to decode codeword15 Form EoT: q1 = �S1�16 Else If ∑
w∈G

Φw ≥ CD ## Too much potential drop: packet duplication has occurred17 Form EoT: q1 = �F2�18 Else set q1 as for Internal Nodes19 Set p, q2 = ⊥, and set α as for Internal Nodes20 Return (r, v, (⊥, −C
n

), (q1,⊥), (α, σ(α))) ## Also remember this request for next time E(u, v) is honoredSender Create Next Request for E(s, v)21 DO:22 If S can eliminate a node w ## Status report parcel just rec'd allows S to identify corrupt node23 Add w to ENs, clear BBs and DBs (including BLs but not EN), re�ll Outgoing bu�er24 Set ΩT+1 = (|EN |, 0, 0, 0)25 Else If S received EoT = �S1� ## R was able to decode codeword26 Re�ll Outgoing Bu�er27 Set ΩT+1 = (|EN |, |BT|, F, 0) ## F denotes no. failed trans's since prev. node eliminated28 Else If |Y | = D or S received EoT = �F2� or (�F4�, p′) ## Failed Transmission due to mal. activity29 Re�ll Outgoing Bu�er30 ∀w /∈ (BLs ∪ ENs): Add w to ρT and then add w to BLs31 If EoT = (�F4�, p′), set ΩT+1 = (|EN |, |BT|, F, p′)32 Else If |Y | = D, set ΩT+1 = (|EN |, |BT|, F, 1)33 Else If EoT = �F2�, set ΩT+1 = (|EN |, |BT|, F, 2)34 If transmission just ended ## I.e. line 22, 25, or 28 was true35 Set SoT to be the following 2n parcels, and add to BBs:36 1) ΩT+1; 2) ENs; 3) BLs; 4) Reason the prev. n − 1 trans's failed: (�F2�, �F3�, or (�F4�,p′))37 Set new p ## Look in stack to �nd highest p not already sent as a request to A38 Set new q1: Choose parcel not yet transferred across E(s, v) by priority:39 1) SoT parcel; 2) a node w to remove from BL; 3) ⊥40 Return (s, v, (p, C+C
n
-1), (q1,⊥), (α, σ(α))) ## Also remember this request for next time E(u, v) is honoredReady(v) ## Called from node u41 If 





u does not have (ΩT, T) in BBu OR

u has (ΩT, T) with ΩT = (|EN |, |BT|, F, ∗), but has not yet rec'd |EN | parcels as in line 200b,
F parcels as in line 200c, or |BT| parcels as in line 200d OR

u has rec'd the complete SoT broadcast, but every parcel hasn't yet passed across E(u, v) OR

u has EoT ∈ BBu, but this has not passed across E(u, v) yet OR

u knows some node w to remove from BL, but hasn't yet passed this fact across E(u, v) OR

u or v ∈ BLu42 Return False43 Else: Return TrueFigure 4: Rules For Finding Codeword Packet and Broadcast Parcel to Send55


