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Abstract 

In secret sharing, the exact characterization of ideal access structures is a 

longstanding open problem. Brickell and Davenport (J. of Cryptology, 1991) proved that 

ideal access structures are induced by matroids. Subsequently, ideal access structures and 

access structures induced by matroids have attracted a lot of attention. Due to the difficulty 

of finding general results, the characterization of ideal access structures has been studied 

for several particular families of access structures. In all these families, all the matroids 

that are related to access structures in the family are representable and, then, the matroid-

related access structures coincide with the ideal ones. 

In this paper, we study the characterization of representable matroids. By using the 

well known connection between ideal secret sharing and matroids and, in particular, the 

recent results on ideal multipartite access structures and the connection between 

multipartite matroids and discrete polymatroids, we obtain a characterization of a family of 

representable multipartite matroids, which implies a sufficient condition for an access 

structure to be ideal.  

By using this result and further introducing the reduced discrete polymatroids, we 

provide a complete characterization of quadripartite representable matroids, which was 

until now an open problem, and hence, all access structures related to quadripartite 

representable matroids are the ideal ones. By the way, using our results, we give a new and 

simple proof that all access structures related to unipartite, bipartite and tripartite matroids 

coincide with the ideal ones.  
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1  Introduction 

Secret-sharing schemes, which were introduced by Shamir [1] and Blakley [2] nearly 30 years 

ago, are nowadays used in many cryptographic protocols. In these schemes there is a finite set 

of participants, and a collection  of subsets of the participants (called the access structure). 

A secret-sharing scheme for  is a method by which a dealer distributes shares of a secret 

value to the participants such that (1) any subset in 

Γ

Γ

Γ  can reconstruct the secret from its 

shares, and (2) any subset not in  cannot reveal any partial information about the secret in 

the information theoretic sense. Clearly, the access structure 

Γ

Γ  must be monotone, that is, all 

supersets of a set in  are also in . Γ Γ

Ito, Saito, and Nishizeki [3] proved that there exists a secret-sharing scheme for every 

monotone access structure. Their proof is constructive, but the obtained schemes are very 

inefficient: the ratio between the length in bits of the shares and that of the secret is exponential 

in the number of parties. Nevertheless, some access structures admit secret-sharing schemes 

with much shorter shares. A secret-sharing scheme is called ideal if the shares of every 

participant are taken from the same domain as the secret. As proved in [4], this is the optimal 

size for the domain of the shares. The access structures which can be realized by ideal secret-

sharing schemes are called ideal access structures. 

The exact characterization of ideal access structures is a longstanding open problem, 

which has interesting connections to combinatorics and information theory. The most important 

result towards giving such characterization is by Brickell and Davenport [5], who proved that 

every ideal access structure is induced by a matroid (that is, matroid-related), providing a 

necessary condition for an access structure to be ideal. A sufficient condition is obtained as a 

consequence of the linear construction of ideal secret-sharing schemes due to Brickell [6]. 
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Namely, an access structure is ideal if it is induced by a matroid that is representable over some 

finite field. However, there is a gap between the necessary condition and the sufficient 

condition. Seymour [7] proved that the access structures induced by the Vamos matroid are not 

ideal. Other examples of non-ideal access structures induced by matroids have been presented 

by Matus [8]. Hence, the necessary condition above is not sufficient. Moreover, Simonis and 

Ashikmin [9] constructed ideal secret-sharing schemes for the access structures induced by the 

non-Pappus matroid, which is not representable over any field. This means that the sufficient 

condition is not necessary. The results in [5] have been generalized in [10] by proving that, if 

all shares in a secret sharing scheme are shorter than 3/2 times the secret value, then its access 

structure is matroid-related. 

Due to the difficulty of finding general results, the characterization of ideal access 

structures has been studied for several particular families of access structures: the access 

structures on sets of four [11] and five [12] participants, the access structures defined by graphs 

[13, 14, 15, 16, 17], the bipartite access structures [18], the access structures with three or four 

minimal qualified subsets [19], the access structures with intersection number equal to one [20], 

the access structures with rank three [21, 22], and the weighted threshold access structures [23]. 

In all these families, all the matroids that are related to access structures in the family are 

representable and, then, the matroid-related access structures coincide with the ideal ones. 

In addition, several authors studied this open problem for multipartite access structures 

since every access structure can be seen as a multipartite access structure. Multipartite access 

structure, informally, is that the set of participants can be divided into several parts in such a 

way that all participants in the same part play an equivalent role in the structure. Since we can 

always consider as many parts as participants, every access structure is multipartite (in the 

same way, every matroid is multipartite). More accurately, we can consider in any access 

structure the partition that is derived from a suitable equivalence relation on the set of 

participants.  

Multipartite access structures were first introduced by Shamir [1] in his seminal work, in 

which weighted threshold access structures were considered. Beimel, Tassa and Weinreb [23] 
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presented a characterization of the ideal weighted threshold access structures that generalizes 

the partial results in [24, 18]. Another important result about weighted threshold access 

structures has been obtained recently by Beimel and Weinreb [25]. They prove that all such 

access structures admit secret sharing schemes in which the size of the shares is quasi-

polynomial in the number of users. A complete characterization of the ideal bipartite access 

structures was given in [18], and related results were given independently in [26, 27]. Partial 

results on the characterization of the ideal tripartite access structures appeared in [28, 29], and 

this question was solved in [30]. Another important result about a complete characterization of 

the ideal hierarchical access structures has been obtained recently by Farras and Padro [31]. 

They prove that every ideal hierarchical access structure is induced by a representable matroid. 

In every one of these families of multipartite access structures, all access structures are related 

to representable matroids, and hence, they are all ideal access structures. 

Pointing out the close connection between multipartite matroids and discrete polymatroids 

(a combinatorial object introduced by Herzog and Hibi [32]), and the use for the first time in 

secret sharing of these concepts are among the main contributions in [30]. The basic definitions 

and facts about discrete polymatroids and the main results in [30] are recalled in Section 2. 

In this paper we continue the line of research of those previous works by studying the 

following question: which matroids are representable? Specifically, we are not restricting 

ourselves to a particular family of access structures related to representable matroids, but we 

study the characterization of representable matroids. By using the well known connection 

between ideal secret sharing and matroids and, in particular, the recent results on ideal 

multipartite access structures and the connection between multipartite matroids and discrete 

polymatroids, we obtain a characterization of a family of representable multipartite matroids 

(since every matroid and every access structure are multipartite, this sufficient condition is a 

general result), which implies a sufficient condition for an access structure to be ideal. Further, 

using this result and introducing the reduced discrete polymatroids, we provide a complete 

characterization of quadripartite representable matroids, which was until now an open problem, 

and hence, all access structures related to quadripartite representable matroids are the ideal ones. 
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By the way, using our results, we give a new and simple proof that all access structures related 

to unipartite, bipartite and tripartite matroids coincide with the ideal ones. More specifically, 

our results are the following: 

1. By using a group of inequalities related to the rank functions of the associated discrete 

polymatroids, a characterization of a family of representable multipartite matroids is 

present (that is, Theorem 3.2), and hence, all access structures related to this family of 

representable multipartite matroids are the ideal ones. 

2. Using Theorem 3.2, we give a new and simple proof that every unipartite, bipartite and 

tripartite discrete polymatroid is representable, which implies all access structures 

related to unipartite, bipartite and tripartite matroids coincide with the ideal ones. 

3. By using Theorem 3.2 and introducing the definition of -reduction, we obtain a 

complete characterization of quadripartite representable matroids (that is, Theorem 5.4), 

which was until now an open problem, and hence, all access structures related to 

quadripartite representable matroids are the ideal ones. 

D

2   Definitions and Preliminaries 

In this section we review some basic definitions and notations that will be used through the 

paper.  

2.1   Matroids and Ideal Secret Sharing  

The reader is referred to [33] for an introduction to secret sharing and to [34, 35] for general 

references on Matroid Theory. 

A matroid  is formed by a finite set  together with a family ( , )=M Q I Q

( )⊆I P Q  (  is the power set of the set .) such that ( )P Q Q

1. φ ∈ I , and 
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2. if 1I ∈I  and 2 1I I⊆ , then 2I ∈I , and 

3. if 1 2,I I ∈I  and 1 2| | | |I I< , then there exists 2 1x I I∈ −  such that { }1 xI ∈∪ I . 

The set  is the ground set of the matroid  and the elements of Q M I  are called the 

independent sets of . The bases of the matroid are the maximally independent sets. The 

family  of the bases determines the matroid. Moreover, by [34, Theorem 1.2.5], 

 is the family of bases of a matroid on  if and only if 

M

B

( )⊆B P Q Q

1.  is nonempty, and B

2. for every  and 1 2,B B ∈B 1 2x B B∈ − , there exists  such that 2y B B∈ − 1

{ } { }1( )x yB − ∪  is in . B

All bases have the same number of elements, which is the rank of  and is denoted . 

The dependent sets are those that are not independent. A circuit is a minimally dependent 

subset. A matroid is said to be connected if, for every two points , there exists a 

circuit  with 

M ( )r M

,x y∈Q

C ,x y C∈ . The rank of , which is denoted , is the maximum 

cardinality of the subsets of 

X ⊆Q ( )r X

X  that are independent. Observe that the rank of  is the rank 

of the matroid  that was defined before. The rank function  of a matroid 

satisfies 

Q

M : ( )r →P Q

1.  for every , and 0 ( ) | |r X X≤ ≤ X ⊆Q

2.  is monotone increasing: if , then r X Y⊆ ⊆Q ( ) ( )r X r Y≤ , and 

3.  is submodular: r ( ) ( ) ( ) ( )r X Y r X Y r X r Y+ ≤ +∩ ∪  for every . ,X Y ⊆Q

Let  be a field. A matroid K ( , )=M Q I  is -representable (or representable for 

short) if there exists a matrix 

K

M  over  whose columns are indexed by the elements of  

such that a subset 

K Q

{ }1,..., kI i i= ⊆Q  is independent if and only if the corresponding columns 

of M  are independent. In this situation, we say that the matrix M  is a -representation of 

the matroid . 

K

M
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Let  be a finite field and let K ( , )=M Q I  be a -representable matroid. Let 

 be special participant called dealer.and 

K

0p ∈Q { }0P p= ∪Q . For every  matrix 1)(k n +×

M  representing  over , let M K E  be a vector space of finite dimention dim E k=  over 

. For every , we define a surjective linear mapping: K i∈Q :i Eπ →K , and the -th column 

of 

i

M  corresponds to the linear form iπ . In that situation, for every random choice of an 

element x E∈ , we can obtain ( )i is xπ= ∈K  is the share of the participant i  and P∈

0
( )ps xπ= ∈K  is the shared secret value. Hence, by the columns of M , we define an ideal 

secret sharing scheme with access structure 
0
( )pΓ M , where 

{ }{ }
0 0min ( ) : is a circuit of p A P A pΓ = ⊆ ∪M M . Therefore, the access structures induced 

by representable matroids are ideal. 

2.2  Multipartite Access Structures, Multipartite Matroids and Discrete Polymatroids 

We write  for the power set of the set . An -partition ( )PP P m { }1,..., mP PΠ =  of a set  

is a disjoint family of  nonempty subsets of  with 

P

m P 1 ... mP P P= ∪ ∪ . Let  be a 

family of subsets of . For a permutation 

( )PΛ ⊆P

P σ  on , we define P

{ }( ) ( ) : ( )A A Pσ σΛ = ∈Λ ⊆P . A family of subsets ( )PΛ ⊆P  is said to be -partite if Π

( )σ Λ = Λ  for every permutation σ  such that ( )iP Piσ =  for every iP ∈Π . We say that Λ  

is -partite if it is -partite for some -partition m Π m Π . These concepts can be applied to 

access structures, which are actually families of subsets, and they can be applied as well to the 

family of independent sets of a matroid. A matroid ( , )=M Q I  is Π -partite if ( )⊆I P Q  

is -partite. Π
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Let  be a connected matroid and, for a point ( , )=M Q I 0p ∈Q , let { }1,..., mP PΠ =  

and { }{ }0 0 1, ,..., mp P PΠ =  be partitions of the sets { }0P = −Q p

)

 and  respectively. Then 

the access structure  is 

Q

0
(pΓ = Γ M Π -partite if and only if the matroid  is -partite. M 0Π

For every integer , we consider the set 1m ≥ { }1,...,mJ m= . Let  denote the set of 

vectors  with  for every 

m
+Z

( )1,..., m
mu u u= Z∈ 0iu ≥ mi J∈ . For a partition { }1,..., mP PΠ =  of 

a set  and for every P A P⊆  and mi J∈ , we define ( ) | |i iA A PΠ = ∩ . Then the partition Π  

defines a mapping  by considering : ( ) mP +Π → ZP ( )1( ) ( ),..., ( )mA AΠ = Π Π A . If  

is -partite, then 

( )PΛ ⊆P

Π A∈Λ  if and only if ( ) ( )AΠ ∈Π Λ . That is, Λ  is completely determined 

by the partition  and the set of vectors Π ( ) m
+Π Λ ⊂ Z .  

Discrete polymatroids, a combinatorial object introduced by Herzog and Hibi [32], are 

closely related to multipartite matroids and, because of that, they play an important role in the 

characterization of ideal multipartite access structures. Before giving the definition of discrete 

polymatroid, we need to introduce some notation. If , mu v +∈Z , we write  if u v≤ iu vi≤  for 

every , and we write  if mi J∈ u v< u v≤  and u v≠ . The vector  is defined by 

. The modulus of a vector 

w u v= ∨

max( , )i iw u= iv mu +∈Z  is 1| | mu u u= + ⋅⋅⋅+ . For every subset 

mX J⊆ , we write  and | (| |( ) ( ) X
i i Xu X u ∈= ∈Z+ ) | ii X

u X u
∈

=∑  

A discrete polymatroid on the ground set  is a nonempty finite set of vectors mJ mD +⊂ Z  

satisfying: 

1. if  and  is such that u D∈ mv +∈Z v u≤ , then v D∈ , and 

2. for every pair of vectors ,u v D∈  with | | | |u v< , there exists  with 

. 

w D∈

u w u v< ≤ ∨

The next proposition, which is easily proved from the axioms of the independent sets of a 

matroid, shows the relation between multipartite matroids and discrete polymatroids. 
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Proposition 2.1. Let  be a partition of a set  and let Π Q ( )⊆I P Q  be a -partite 

family of subsets. Then 

Π

I  is the family of the independent sets of a -partite 

matroid  if and only if 

Π

( , )=M Q I ( ) m
+Π ⊂ ZI  is a discrete polymatroid. 

A basis of a discrete polymatroid  is a maximal element in , that is, a vector D D u D∈  

such that there does not exist any v D∈  with u v< . Similarly to matroids, a discrete 

polymatroid is determined by its bases. Specifically, the following result is proved in [32, 

Theorem 2.3]. 

Proposition 2.2. A nonempty subset m
+⊂ ZB  is the family of bases of a discrete 

polymatroid if and only if it satisfies: 

1. all elements in  have the same modulus, and B

2. for every  and v  with , there exists u∈B ∈B iu v> i mj J∈  such that j ju v<  and 

, where  denotes the i -th vector of the canonical basis of . i ju e e− + ∈B ie mZ

The rank function of a discrete polymatroid  with ground set  is the function 

 defined by 

D mJ

: ( )mh J →ZP { }( ) max | ( ) |:h X u X u D= ∈ . The next proposition is a 

consequence of [32, Theorem 3.4]. 

Proposition 2.3. A function  is the rank function of a discrete 

polymatroid with ground set  if and only if it satisfies 

: ( )mh J →ZP

mJ

1. ( ) 0h φ = , and 

2.  is monotone increasing: if , then h mX Y J⊆ ⊆ ( ) ( )h X h Y≤ , and 

3.  is submodular: if , then h , mX Y J⊆ ( ) ( ) ( ) (h X Y h X Y h X h Y )+ ≤ +∪ ∩ . 

Moreover, a polymatroid  is completely determined by its rank function. Specifically, D

{ }:  | ( ) | ( ) for all m
mD u u X h X X J+= ∈ ≤ ⊆Z . 

Let  be a field, K E  a -vector space, and  subspaces of K 1,..., mV V E . It is not 

difficult to check that the mapping  defined by  is the : ( )mh J →ZP ( ) dim( )ii Xh X V
∈

= ∑
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rank function of a discrete polymatroid mD +⊂ Z . In this situation, we say that  is -

representable and the subspaces  are a -representation of . The next proposition 

is proved in [30, Theorem 7.1] 

D K

1,..., mV V K D

Proposition 2.4. Let  be a ( , )=M Q I Π -partite matroid and let ( )D = Π I  be its 

associated discrete polymatroid. If  is -representable, then so is . In addition, if  

is -representable, then  is representable over some finite extension of . 

M K D D

K M K

3  A Characterization of A Family of Representable Matroids 

In this section, by using a group of inequalities related to the rank functions of the associated 

discrete polymatroids, a characterization of a family of representable multipartite matroids is 

present, and hence, all access structures related to this family of representable multipartite 

matroids are the ideal ones.  

We firstly define the associated discrete polymatroids of this family of multipartite 

matroids as follow. 

Definition 3.1. Let  be a discrete polymatroid with ground set  and rank 

function . We say that  is a normalized discrete polymatroid if the rank 

function  of  is such that 

mD +⊂ Z mJ

: ( )mh J →ZP D

: ( )mh J →ZP D ({ , , }) ({ , , , }) ... ( )mh i j k h i j k g h J= = =  for every 

.  , , , mi j k g J∈

It is not difficult to check that for all unipartite, bipartite and tripartite matroids, the 

associated discrete polymatroids are normalized ones. 

The main goal of this section is to prove the following result: 

Theorem 3.2. Let  be a normalized discrete polymatroid with ground set  

and rank function .  is -representable if and only if there exists a 

nonnegative integer set  such that for every 

mD +⊂ Z mJ

: ( )mh J →ZP D K

{ ( ) :  for all  and }mR r A A J A= ⊆ ≠∅ , , mi j k J∈ , 
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{ }
( ) ({ })

m

A i
A J

r A h i
≠∅

⊆

=∑
∩

,    (3-1) 

{ , }
( ) ({ , })

m

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,    (3-2) 

{ , , }
( ) ({ , , }) ( )

m

m
A i j k
A J

r A h i j k h J
≠∅

⊆

≥ =∑
∩

,    (3-3) 

where every element of R  is a nonnegative integer and 1 2| | ... m
m m mR C C C= + + + . 

Proof: We begin by proving the first claim in the statement of Theorem 3.2. Suppose that 

 is -representable. Then there exists a -representation of  consisting of subspaces 

 of the -vector space 

D K K D

1,..., mV V K sE = K , where ( )ms h J= . It implies that for every , 

. Consider a nonnegative integer set 

 defined by  

mX J⊆

( ) dim( )ii Xh X V
∈

= ∑
{ ( ) :  for all  and }mR r A A J A= ⊆ ≠∅

)

)

( ) dim(
m

i
i J

m Vr J
∈

= ∩ , 

\{ }

( \{ }) dim( ) (
m

i
i J j

m mVr J j r J
∈

= −∩ , 

…, 

( ) dim( ) ( )

m

i
i A A X

X J

Vr A r X
∈ ⊂

⊆

= − ∑∩ , 

where , . Then we obtain that for every mj J∈  and mA J A⊆ ≠∅ , , mi j k J∈ , 

{ }

( ) dim( ) ({ })

m

i
A i
A J

r A V h i
≠∅

⊆

= =∑
∩

,  

{ , }

( ) dim( ) ({ , })

m

i j
A i j
A J

r A V V h i j
≠∅

⊆

= + =∑
∩

, and 

{ , , }

( ) dim( ) ({ , , }) ( )

m

i j k m
A i j k
A J

r A V V V h i j k h J
≠∅

⊆

= + + = =∑
∩

. 
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Hence, there exists a nonnegative integer set { ( ) :  for all  and }mR r A A J A= ⊆ ≠∅  such that 

(3-1)-(3-3) are satisfied. 

The proof for the second claim in the theorem is much more involved. Assume now that 

there exists a nonnegative integer set { ( ) :  for all  and }mR r A A J A= ⊆ ≠ ∅  such that (3-1)-

(3-3) are satisfied. Naturally, we obtain that for every , , , mi j k g J∈ , 

{ }

( ) ({ })

m

A i
A J

r A h i
≠∅

⊆

=∑
∩

,  

{ , }

( ) ({ , })

m

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,  

{ , , }

( ) ({ , , }) ( )

m

m
A i j k
A J

r A h i j k h J
≠∅

⊆

≥ =∑
∩

,    

          ,       (3-4)  
{ , , , }

( ) ({ , , , }) ( )

m

m
A i j k g
A J

r A h i j k g h J
≠∅

⊆

≥ =∑
∩

                           …,                    (…) 

                     ( ) ( )

m

m
A
A J

r A h J
≠∅
⊆

≥∑ .                (3-m)   

Let  and ( )ms h J= sE = K  be a s -dimensional vector space over some finite field  

with . Given a basis 

K

| | ( )

m

A
A J

r A
≠∅
⊆

≥ ∑K { }1,..., sv v  of E , consider the mapping : E→v K  

defined by 1
1

( ) s i
ii

x x v−
=

=∑v . Observe that the vectors ( )xv  have Vandermonde coordinates 

with respect to the given basis of E . This implies that every set of at most  vectors of the 

form 

s

( )xv  is independent (this property is very important to the following proof).  

Consider  disjoint sets | |t R= { }1,..., ( ) :tS S x x⊆ ∈v K E⊂ iS f i= 1 i t with (| | ( ) ≤ ≤ ), 

where :{1,..., }f t → R  is a bijection which associates each  (1i i t≤ ≤ ) with an element of 
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R . From (3-m), we obtain that 
1

| | ( )

m

t

i
i A

A J

S r A
= ≠∅

⊆

s= ≥∑ ∑ , where every set of at most  vectors 

in  are independent.  

s

1,..., tS S

According to (3-1), we construct  subspaces  such that for every m 1,..., mV V ⊆ E mj J∈ , 

jV  is spanned by  respectively. In this situation, from (3-1) and (3-2), we obtain 

that for every , the dimensions 

| | ({ })i

i
S h j

S
=∑
∪

, mi j J∈ dim( ) ({ })iV h i=  and dim( ) ({ , })i jV V h i j+ = . From 

(3-3)-(3-m), there hold that for |  and | 3A ≥ mA J⊆ , the dimensions 

dim( ) ( ) ( )j mj A
V h A h J

∈
= =∑  since every set of at most ( )ms h J=  vectors in  are 

independent. Hence, for all 

1,..., tS S

mA J⊆ , the dimensions dim( ) ( )jj A
V h A

∈
=∑  hold. These imply 

that  subspaces  of the vector space m 1,..., mV V sE = K  is a -representation of . 

Namely,  is representable over . 

K D

D K

As a consequence, from Proposition 2.4, Theorem 3.2 provides a characterization of a 

family of representable multipartite matroids, the associated discrete polymatroids of which are 

the normalized ones.  

The further importance of Theorem 3.2 is that it provides a sufficient condition for a 

multipartite access structure to be ideal. Namely, a multipartite access structure is ideal if it is 

of the form , where 
0
(pΓ M ) ( , )=M Q I  is a Π -partite matroid and ( )Π I  is the 

associated discrete polymatroid  which is a normalized one and there exists a nonnegative 

integer set  such that (3-1)-(3-3) are satisfied.  

D

{ ( ) :  for all  and }mR r A A J A= ⊆ ≠∅

In addition, the interest of Theorem 3.2 goes beyond its implications to secret sharing. The 

characterization of the representable discrete polymatroids was until now an open problem. By 

using Theorem 3.2, this problem will be smoothly solved if the representability of a discrete 

polymatroid can be characterized by the representability of a normalized discrete polymatroid. 

Therefore, Theorem 3.2 is an interesting new result about representability of matroids. 
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4  Operations on Discrete Polymatroids 

In this section, by dealing with the rank function of a discrete polymatroid, we introduce the 

definitions on the HΔ -set of a discrete polymatroid and the reduced discrete polymatroid 

respectively, which will be very useful in the characterization of quadripartite representable 

matroids.  

Definition 4.1. Let  be a discrete polymatroid with ground set  and rank 

function . We say that an integer set 

mD +⊂ Z mJ

: ( )mh J →ZP { ( ) :  for all  and }mH h A A J AΔ = Δ ⊆ ≠∅  

defined by 

({ }) ( ) ( \{ })m mh i h J h J iΔ = − ,      

({ , }) ( ) ( \{ , }) ({ }) ({ })m mh i j h J h J i j h i h jΔ = − −Δ −Δ , 

{ , , }
({ , , }) ( ) ( \{ , , }) ( )m m

A i j k
A

h i j k h J h J i j k h A
⊂
≠∅

Δ = − − Δ∑ , 

…, 

\{ }
( \{ }) ( ) ({ }) ( )

m

m m
A J j
A

h J j h J h j h A
⊂
≠∅

Δ = − − Δ∑ , and 

( ) ( ) ( )
m

m m
A J
A

h J h J h A
⊂
≠∅

Δ = − Δ∑ , 

is the HΔ -set of , where  and . D , , mi j k J∈ 1 2| | ... m
m mH C C CΔ = + + + m

In this situation, it is not difficult to check that 

{ }
({ }) ( )

m

A i
A J

h i h A
≠∅

⊆

= Δ∑
∩

, 

{ , }
({ , }) ( )

m

A i j
A J

h i j h A
≠∅

⊆

= Δ∑
∩

, 

…, 
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( ) ( )
m

m
A J
A

h J h A
⊆
≠∅

= Δ∑ . 

Lemma 4.2. From Proposition 2.3 and Definition 4.1, observe that for all ,  , mi j J∈

({ }) ( ) ( { }) 0m mh i h J h J iΔ = − − ≥ ,  

. ({ , }) ( { }) ( { }) ( { , }) ( ) 0m m m mh i j h J i h J j h J i j h JΔ = − + − − − − ≥

These imply that for  all elements of 2m ≤ HΔ -set of a discrete polymatroid are bound to 

nonnegative integers, but for  one or more negative integers may be present. 3m ≥

Definition 4.3. Let  be a discrete polymatroid with ground set  and rank 

function . We say that a discrete polymatroid 

mD +⊂ Z mJ

: ( )mh J →ZP rD  with ground set  is the 

reduced discrete polymatroid of  if the rank function  of  is such that 

 for every , where 

mJ

D : ( )r mh J →ZP rD

( ) ( ) ( )r i X
h X h X h i

∈
= − Δ∑ mX J⊆ ( ) ( ) ( { })m mh i h J h J iΔ = − − . 

    It is not difficult to check that for every mj J∈ , { }( \ ) (r m r mh J j h J= )  

{ }( ) ( 1) (
m

m mi J
h J i m h J

∈
−= − −∑ ) , which is a important property of the reduced discrete 

polymatroids. In the appendix, the next proposition is proved. 

Proposition 4.4. Let  be a discrete polymatroid with ground set  and rank function 

. Let  be the associated reduced discrete polymatroid with ground set  

and rank function . If  is K -representable, then so is 

D mJ

: ( )mh J →ZP rD mJ

: ( )r mh J →ZP D rD . In addition, if 

rD  is -representable, then  is K -representable. K D

As a consequence, the representability of a discrete polymatroid can be completely 

characterized by the representability of the associated reduced discrete polymatroid.  
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5  A Characterization of Quadripartite Representable Matroids 

In this section, by using the HΔ -set of discrete polymatroids and the associated reduced 

discrete polymatroids of quadripartite matroids, we obtain a complete characterization of 

quadripartite representable matroids, which was until now an open problem, and hence, all 

access structures related to quadripartite representable matroids are the ideal ones.  

Since the associated discrete polymatroids are the normalized ones, by using Theorem 3.2, 

we firstly give the complete characterizations of unipartite, bipartite and tripartite representble 

matroids respectively. 

Example 5.1. Consider a discrete polymatroid  with ground set  and rank function 

. 

D mJ

: ( )mh J →ZP

For , from Lemma 4.2, all elements of 2m ≤ HΔ -set of  are bound to nonnegative 

integers. We can construct a nonnegative integer set 

D

{ ( ) :  for all  and }mR r A A J A= ⊆ ≠∅  

such that R H= Δ . Hence, from Theorem 3.2,  is representable over some finite field. D

As a consequence, all unipartite and bipartite matroids are representable, then access 

structures induced by unipartite and bipartite matroids are ideal ones, which has been done in 

[18], and also in [30]. 

Example 5.2. (Following Example 5.1) 

For , 3m = { }3 1,2,3J =  and  from Definition 4.1, the HΔ -set of  is 

 defined by 

D

3{ ( ) :  for all  and }H h A A J AΔ = Δ ⊆ ≠∅

3 3({ }) ( ) ( \{ })h i h J h J iΔ = − ,    (5-1) 

3 3({ , }) ( ) ( \{ , }) ({ }) ({ })h i j h J h J i j h i h jΔ = − −Δ −Δ ,     (5-2) 

3

3 3( ) ( ) ( )
A J
A

h J h J h A
⊂
≠∅

Δ = − Δ∑ .      (5-3) 

From Lemma 4.2, it is easily seen that all elements of HΔ -set of  except  are 

nonnegative integers.  

D 3( )h JΔ
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If , we can construct a nonnegative integer set 

 such that 

3( ) 0h JΔ ≥

3{ ( ) :  for all  and }R r A A J A= ⊆ ≠∅ R H= Δ . From Theorem 3.2,   is 

representable over some finite field. 

D

If , suppose that there exist  and a nonnegative integer set 

 such that for every 

3( ) 0h JΔ < 3'( ) ( )h J h J> 3

≠ ∅3{ ( ) :  for all  and }R r A A J A= ⊆ 3,i j J∈ , 

3

{ }
( ) ({ })

A i
A J

r A h i
≠∅

⊆

=∑
∩

,    (5-4) 

3

{ , }
( ) ({ , })

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,    (5-5) 

3

3( ) '( )
A
A J

r A h J
≠∅
⊆

=∑ .   (5-6) 

Together with (5-1)-(5-6), we obtain that for every 3,i j J∈ , 

3 3({ }) '( ) ( \{ }) 0r i h J h J i= − ≥ , 

3 3({ , }) ({ , }) ( ) '( ) 0r i j h i j h J h J= Δ + − ≥ , 

3 3 3 3( ) ( ) ( ) '( ) 0r J h J h J h J= Δ − + ≥ . 

These imply that  because from (5-1)-(5-3) 

and , it holds that  

3 3 3 3( ) ( ) '( ) ( ) ({ , })h J h J h J h J h i j−Δ ≤ ≤ + Δ

3( ) 0h JΔ < 3 3 3 3 3( \{ }) ( ) ( ) ( ) ( ) ({ , }h J i h J h J h J h J h i j )≤ ≤ −Δ ≤ + Δ  . 

Namely, we can find a nonnegative integer set 3{ ( ) :  for all  and }R r A A J A= ⊆ ≠∅  such 

that (5-1)-(5-3) are satisfied.  

Thus, if , a nonnegative integer set 3( ) 0h JΔ < 3{ ( ) :  for all  and }R r A A J A= ⊆ ≠∅

3

 

can be found in the following way: 

All values of rank function of  remain unchanged except  is replaced with 

, and then from (5-1)-(5-3), we obtain a new set 

as following:  

D 3( )h J

3( ) ( )h J h J−Δ

3' { '( ) :  for all  and }H h A A J AΔ = Δ ⊆ ≠∅
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3 3 3'({ }) ( ) ( ) ( \{ }) 0h i h J h J h J iΔ = −Δ − ≥ , 

3 3 3'({ , }) ( ) ( ) ( \{ , }) ({ }) ({ })h i j h J h J h J i j h i h jΔ = −Δ − −Δ −Δ ({ }) ({ }) ({ , }) 0h i h j h i j= + − ≥ , 

3

3 3 3'( ) ( ) ( ) ( ) 0
A J
A

h J h J h J h A
⊂
≠∅

Δ = −Δ − Δ =∑ , 

where . Clearly, all elements of 3,i j J∈ 'HΔ  are nonnegative integers. We can construct a 

nonnegative integer set  such that 3{ ( ) :  for all  and }R r A A J A= ⊆ ≠∅ 'R H= Δ . There hold 

that 

3

{ }
( ) ({ })

A i
A J

r A h i
≠∅

⊆

=∑
∩

, 

3

{ , }
( ) ({ , })

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

, 

3

3 3( ) ( ) ( ) ( )
A J
A

r A h J h J h J
⊆
≠∅

= −Δ ≥∑ 3 . 

Hence, from Theorem 3.2,  is representable over some finite field. D

As a consequence of the above, for 3m = , there are two cases: 

(1) . The 3( ) 0h JΔ ≥ HΔ -set of  is nonnegative. Let D R H= Δ , then from Theorem 

3.2,  is representable over some finite field. D

(2) . After  is replaced with 3( ) 0h JΔ < 3( )h J 3( ) ( )h J h J3−Δ , the new set 'HΔ  is 

nonnegative. Let 'R H= Δ , then from Theorem 3.2,  is representable over some finite field. D

Therefore, all tripartite matroids are represntable and all access structures induced by 

tripartite matroids are ideal ones, which has been done in [30]. 

Following this line of research, in order to characterize quadripartite representable 

matroids by using Theorem 3.2, we first need to deal with every quadripartite matroid such that 

the representability of the associated discrete polymatroid can be characterized by the 

representability of a normalized discrete polymatroid, that is,  for every 

, which is exactly the property of the associated reduced discrete polymatroid.  

4( \{ }) ( )h J i h J= 4

4i J∈
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Hence, to characterize quadripartite representable matroids is equivalent to characterize 

the reduced discrete polymatroids with ground set , which are the normalized discrete 

polymatroids. From Theorem 3.2, we need to determine whether there exists a nonnegative 

integer set  such that (3-1)-(3-3) are satisfied, which is 

the main goal of this section. 

4J

4{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅

Example 5.3. (Following Example 5.2) 

For , 4m = { }4 1, 2,3,4J = . According to Definition 4.3, the associated reduced discrete 

polymatroid  with rank function  is obtained. From Proposition 4.4, in 

order to determine the representability of , we just determine the representability of 

rD : ( )r mh J →ZP

D rD .  

From the rank function  of : ( )r mh J →ZP rD , the HΔ -set of rD  is 

 defined by 4{ ( ) :  for all  and }H h A A J AΔ = Δ ⊆ ≠ ∅

   ,    (5-7) 4 4({ }) ( ) ( \{ }) 0r rh i h J h J iΔ = − =

    ,    (5-8) 4 4({ , }) ( ) ( \{ , }) ({ }) ({ })r rh i j h J h J i j h i h jΔ = − −Δ −Δ

    4 4
{ , , }

({ , , }) ( ) ( \{ , , }) ( )r r
A i j k
A

h i j k h J h J i j k h A
⊂
≠∅

Δ = − − Δ∑ ,    (5-9) 

    
4

4 4( ) ( ) ( )r
A J
A

h J h J h A
⊂
≠∅

Δ = − Δ∑ .    (5-10) 

From Lemma 4.2, it is easily seen that for all 4, ,i j k J∈ , all elements of HΔ -set of rD  

except  and  are nonnegative integers.  ({ , , })h i j kΔ 4( )h JΔ

If  and  for all ({ , , }) 0h i j kΔ ≥ 4( ) 0h JΔ ≥ 4, ,i j k J∈ , we can construct a nonnegative 

integer set  such that 4{ ( ) :  for all  and }R r A A J A= ⊆ ≠∅ R H= Δ . From Theorem 3.2,  

 is representable over some finite field. rD

If there exist one or more negative integers in the values of ({ , , })h i j kΔ  and  for 

all . Suppose that there exist  for every 

4( )h JΔ

4, ,i j k J∈ '({ , , }) ({ , , })h i j k h i j k≥ 4, ,i j k J∈ , 
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4'( ) ( )h J h J> 4  and a nonnegative integer set 4{ ( ) :  for all  and }R r A A J A= ⊆ ≠∅  such that 

for every , 4, ,i j k J∈

4

{ }
( ) ({ })

A i
A J

r A h i
≠∅

⊆

=∑
∩

,    (5-11) 

4

{ , }
( ) ({ , })

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,    (5-12) 

4

{ , , }
( ) '({ , , })

A i j k
A J

r A h i j k
≠∅

⊆

=∑
∩

,    (5-13) 

4

4( ) '( )
A
A J

r A h J
≠∅
⊆

=∑ .    (5-14) 

Together with (5-7)-(5-14), we obtain that for every 4, , ,i j k g J∈ , 

4 4({ }) '( ) '( \{ }) 0r i h J h J i= − ≥ , 

4 4 4 4({ , }) '( \{ }) ( ) ({ , }) '( \{ }) '( ) 0r i j h J j h J h i j h J i h J= − + Δ + − ≥

0

≥

k

4

, 

4 4 4 4 4({ , , }) '( ) '( \{ }) '( \{ }) '( \{ }) 2 ( ) ({ , , })r i j k h J h J i h J j h J k h J h i j k= − − − + + Δ ≥ , 

4 4 4 4 4 4 4 4( ) '( \{ }) '( \{ }) '( \{ }) 3 ( ) ( ) '( \{ }) '( ) 0r J h J j h J k h J g h J h J h J i h J= + + − + Δ + − . 

Then, it is obtained that , where 4 4'( ) '( \{ })m h J h J i n≤ − ≤

4 4 4max 0,  '( \{ }) '( \{ }) 2 ( ) ({ , , }),(m h J j h J k h J h i j= + − − Δ  

4 4 4'( \{ }) '( \{ }) 2 ( ) ({ , , }),  h J j h J g h J h i j g+ − −Δ  

4 4 4'( \{ }) '( \{ }) 2 ( ) ({ , , }))h J k h J g h J h i k g+ − − Δ  and 

4 4min '( \{ }) ( ) ({ , }),(n h J j h J h i j= − + Δ  

4 4 4 4'( \{ }) ( ) ({ , }),  '( \{ }) ( ) ({ , }),  h J k h J h i k h J g h J h i g− + Δ − + Δ  

4 4 4 4'( \{ }) '( \{ }) '( \{ }) 3 ( ) ( ))h J j h J k h J g h J h J+ + − + Δ . 
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It implies that such a nonnegative integer set 4{ ( ) :  for all  and }R r A A J A= ⊆ ≠∅  can not be 

found if whatever the values of  for every 4'( \{ })h J i 4i J∈  and  are given, there is 

always , such as Example 5.5. 

4'( )h J

m n>

Thus, if there exist one or more negative integers in the values of  and 

 for all , a nonnegative integer set 

({ , , })h i j kΔ

4( )h JΔ 4, ,i j k J∈ 3{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅  

can be found or not in the following way:: 

For all , the values of 4, ,i j k J∈ 4({ , , }) ( )h i j k h JΔ + Δ  can be computed. Similar to the 

case of , if  is a negative integer,  is replaced with 

. At the same time, for all 

, the smallest negative integer in the values of 

3m = 4({ , , }) ( )h i j k h JΔ + Δ ({ , , })rh i j k

4 4({ , , }) ( ({ , , }) ( )) ( ) ( ({ , , }) ( ))r rh i j k h i j k h J h J h i j k h J− Δ + Δ = − Δ + Δ 4

4, ,i j k J∈ 4({ , , }) ( )h i j k h JΔ + Δ ,  

and  is selected and set to , and then  is replaced with . After 

we complete these replacements, leaving other values of rank function of 

({ , , })h i j kΔ

4( )h JΔ hΔ 4( )rh J 4( )rh J h−Δ

rD  unchanged, 

according to (5-7)-(5-10), a new set 3' { '( ) :  for all  and }H h A A J AΔ = Δ ⊆ ≠∅  can be 

determined.  

If there still exist one or more negative integers in the elements of 'HΔ , it must be 

 or  (see Example 5.5). This implies that there does not exist a 

nonnegative integer set  such that (3-1)-(3-3) are 

satisfied. Therefore, from Theorem 3.2, 

'({ }) 0h iΔ < '({ , }) 0h i jΔ <

≠ ∅4{ ( ) :  for all  and }R r A A J A= ⊆

rD  is non-representable over any finite field. 

If all elements of 'HΔ  are nonnegative integers, We can construct a nonnegative integer 

set  such that 4{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅ 'R H= Δ . There hold that 

4

{ }
( ) ({ })r

A i
A J

r A h i
≠∅

⊆

=∑
∩

, 

4

{ , }
( ) ({ , })r

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

, 
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4

4 4 4r
{ , , }

( ) ( ) ( ({ , , }) ( )) ( )r
A i j k
A J

r A h J h i j k h J h J
≠∅

⊆

= − Δ + Δ ≥∑
∩

4

4
{ , , }

( ) ( )r
A i j k
A J

r A h J
≠∅

⊆

= or ∑
∩

, 

4

4 4( ) ( ) ( )r r
A J
A

r A h J h h J
⊆
≠∅

= −Δ ≥∑ . 

Therefore, from Theorem 3.2, rD  is representable over some finite field. 

As a consequence of the above, for 4m = , there are two cases: 

(1) All  and ({ , , }) 0h i j kΔ ≥ 4( ) 0h JΔ ≥ . The HΔ -set of rD  is nonnegative. Let 

R H= Δ , then from Theorem 3.2,  is representable over some finite field. rD

(2) There exist one or more negative integers in the values of ({ , , })h i j kΔ  and 4( )h JΔ . 

After  is replaced with ({ , , })rh i j k 4 4( ) ( ({ , , }) ( ))rh J h i j k h J− Δ + Δ  for every 

 and  is replaced with 4({ , , }) ( ) 0h i j k h JΔ + Δ < 4( )rh J 4( )rh J h−Δ , if the new set 'HΔ  is 

nonnegative, from Theorem 3.2, rD  is representable over some finite field; otherwise, rD  is 

non-representable over any finite field. 

In order to check the representability of a quadripartite matroid, here we can use an 

iterative algorithm to realize this process. Namely, if there are one or more negative integers 

after the calculation of HΔ -set of -reduction, then the replacements described above are 

implemented, and then computing the new set 

D

'HΔ . Eventually, if there are still one or more 

negative integers, then it is a non-representable quadripartite matroid; otherwise, it is a 

representable quadripartite matroid over some finite field. 

In the next theorem, we give the complete characterization of representable quadripartite 

matroids.  

Theorem 5.4. A quadripartite matroid is representable if and only if the HΔ -set of the 

associated reduced discrete polymatroid is nonnegative or the new set 'HΔ  is nonnegative, 

where 'HΔ  is obtained after the following replacements are implemented: 

1. for every ,  is replaced with 

, and 

4({ , , }) ( ) 0h i j k h JΔ + Δ < ({ , , })rh i j k

4 4( ) ( ({ , , }) ( ))rh J h i j k h J− Δ + Δ
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2.  is replaced with 4( )rh J 4( )rh J h−Δ , where hΔ  is the smallest negative integer in 

the values of , 4({ , , }) ( )h i j k h JΔ + Δ ({ , , })h i j kΔ  and 4( )h JΔ . 

Proof: See Example 5.3. 

Therefore, after all representable quadripartite matroids are characterized, all access 

structures related to quadripartite representable matroids are the ideal ones. 

We need to highlight that since there exist ideal access structures related to non-

representable matroids, to characterize representable quadripartite matroids is not equivalent to 

characterize the ideal access structures related to quadripartite matroids. 

Example 5.5. The Vamos matroid ( , )=M Q I  is a known non-representable matroid, 

which is defined on { }1, 2,3, 4,5,6,7,8=Q  with bases all 4-sets except the five 4-sets which 

are: { }1, 2,3, 4 ,{ }1, 2,5,6 ,{ }1, 2,7,8 ,{ }3,4,5,6 ,{ }3,4,7,8 .  

For the Vamos matroid , we consider a partition ( , )=M Q I { }1 2 3 4, , ,P P P PΠ =  of the 

ground set  with Q { } { } { } { }1 2 3 41, 2 , 3, 4 , 5,6, , 7,8P P P P= = = = , and then, the partition Π  

defines a mapping , from which we obtain the associated discrete polymatroid 4: ( ) +Π →P Q

( )D = Π I  with ground set { }4 1, 2,3, 4J = . The rank function  of 4: ( )h J →P Z ( )D = Π I  

are as following: 

({1}) ({2}) ({3}) ({4}) 2h h h h= = = = ，

{ } { } { } { } { }( 1, 2 ) ( 1,3 ) ( 1, 4 ) ( 2,3 ) ( 2, 4 ) 3h h h h h= = = = = ， { }( 3, 4 ) 4h = ，

{ } { } { } { }( 1, 2,3 ) ( 1, 2, 4 ) ( 1,3, 4 ) ( 2,3, 4 ) 4h h h h= = = = , 

{ }( 1, 2,3, 4 ) 4h = . 

From Definition 3.1, the associated discrete polymatroid  of the Vamos matroid is a 

normalized discrete polymatroid. All elements of the 

D

HΔ -set of  are calculated. Namely,  D
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({1}) ({2}) ({3}) ({4}) 0h h h hΔ = Δ = Δ = Δ = ，

，({1,3}) ({1,4}) ({2,3}) ({2,4}) ({3,4}) 1h h h h hΔ = Δ = Δ = Δ = Δ = ({1,2}) 0hΔ = ，

，({1,2,3}) ({1,2,4}) 0h hΔ = Δ = ({1,3,4}) ({2,3,4}) 1h h= Δ = − , Δ

({1,2,3,4}) 1hΔ = . 

Clearly, there exist two negative integers, that is, ({1,3,4}) ({2,3,4}) 1h hΔ = Δ = − . Seeing 

that  and 

, it merely needs to replace 

({1,2,3}) ({1,2,3,4}) ({1,2,4}) ({1,2,3,4}) 1h h h hΔ + Δ = Δ + Δ =

({1,3,4}) ({1,2,3,4}) ({2,3,4}) ({1,2,3,4}) 0h h h hΔ + Δ = Δ + Δ =

{ }( 1, 2,3, 4 ) 4rh =  with { }( 1, 2,3, 4 ) 5rh =  since 1hΔ = − , and then all elements of 'HΔ  are 

obtained. Namely, 

'({1}) '({2}) '({3}) '({4}) 1h h h hΔ = Δ = Δ = Δ = , 

, , 

, 

'({1,3}) '({1,4}) '({2,3}) '({2,4}) '({3,4}) 0h h h h hΔ = Δ = Δ = Δ = Δ = '({1,2}) 1hΔ = −

'({1,3,4}) '({2,3,4}) 0h h'({1,2,3}) '({1,2,4}) 1h hΔ = Δ = = Δ = , Δ

'({1,2,3,4}) 0hΔ = . 

Obviously, there still exists a negative integer, that is, '({1,2}) 1hΔ = − . Therefore, the Vamos 

matroid is non-representable over any field. 

6  Conclusion 

In this paper, by introducing the normalized discrete polymatroids, we obtain a characterization 

of a family of representable multipartite matroids, which implies a sufficient condition for an 

access structure to be ideal. Further, using this result and introducing the reduced discrete 

polymatroids, we provide a complete characterization of quadripartite representable matroids, 

which was until now an open problem, and hence, all access structures related to quadripartite 

representable matroids are the ideal ones. By the way, using our results, we give a new and 

simple proof that all access structures related to unipartite, bipartite and tripartite matroids 
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coincide with the ideal ones. Our results are potentially interesting to solve the open problem, 

that is, which matroids induce ideal access structures?  
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Appendix 

Proposition 4.4. Let  be a discrete polymatroid with ground set  and rank function 

. Let 

D mJ

: ( )mh J →ZP rD  be the associated reduced discrete polymatroid with ground set  

and rank function . If  is K -representable, then so is . In addition, if 

mJ

: ( )r mh J →ZP D rD

rD  is -representable, then  is K -representable. K D

Proof: We begin by proving the first claim in the statement of Proposition 4.1. Suppose 

that  is -representable. Then there exists a -representation of  consisting of 

subspaces  of the -vector space 

D K K D

1,..., mV V K sE = K , where ( )ms h J= . For every mi J∈ , 

consider two subspaces  such that ,i iU W E⊆ { }m
i jj J i

U V
∈ −

=∑  and . Since 

 and 

iE U W= ⊕ i

( ) dim( )ms h J E= = { } { }( ) dim(
m

m jj J i
h J i V

∈ −
− = )∑ , we deduce that . On ( ) dim( )ir i WΔ =
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the other hand,  because iW V⊆ i iiE U V= +  and iE U Wi= ⊕ . Consider two subspaces 

,i i iR W V⊆  such that . Since i iV R W= ⊕ i iiE U W= ⊕  and i iV R Wi= ⊕ , we obtain 

that , where 

 and , and hence, 

dim( ) dim( ) dim( ) dim( )i i i ii X i X i X i X
V R W R

∈ ∈ ∈ ∈
= ⊕ = +∑ ∑ ∑ ∑ iW

r idim( ) ( )ii X
V h X

∈
=∑ dim( ) ( )ii X i X

W
∈ ∈

= Δ∑ ∑ dim( ) ( )i ri X
R h X

∈
=∑    

Therefore, the subspaces 1,... mR R  of the K -vector space '' sE = K  are a -representation 

of , where . 

K

rD ' ( ) (
m

m i J
s h J r i

∈
= − Δ∑ )

The proof for the second claim in the theorem is similar to the first. Assume now that rD  

is -representable. Then there exists a -representation of  consisting of subspaces K K rD

1,... mR R  of the -vector space K '' sE = K , where ' ( ) (
m

m i J
s h J r i

∈
= − Δ )∑ . Consider two 

subspaces ', sE W E⊆ =K  such that 'E E W= ⊕ , where . Then 

. Consider the subspaces  such that , 

where . Let . Since 

( )ms h J=

dim( ) ( )
mi J

W
∈

= Δ∑ r i

i i

1,... mW W W⊆ 1 ... mW W W= ⊕ ⊕

dim( ) ( )iW r= Δ i iV R W= ⊕ 'E E W= ⊕  and , we obtain 

that  and, hence, the subspaces  of the 

-vector space 

'
m

ii J
E

∈
=∑ R

iWdim( ) dim( ) dim( )i ii X i X i X
V R

∈ ∈ ∈
= +∑ ∑ ∑ 1,..., mV V

K sE = K  are a -representation of , where K D ( )ms h J= . 

As a consequence, the representable reduced discrete polymatroids can characterize the 

representable discrete polymatroids. 
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