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Abstract

Provable data possession (PDP) is a technique for ensuring the integrity of data in outsourcing storage service. In
this paper, we address the construction of efficient PDP schemes on hybrid clouds to support scalability of service and
data migration, in which we consider the existence of multiple cloud service providers (CSP) to cooperatively store and
maintain the clients’ data. The proposed PDP schemes include an interactive PDP (IPDP) and a cooperative PDP
(CPDP) schemes adopting zero-knowledge property and three-layered index hierarchy, respectively. In particular, we
present an efficient method for selecting the optimal number of sectors in each block to minimize the computation
costs of clients and storage service providers. Our experiments show that the verification requires a small, constant
amount of overhead, which minimizes communication complexity.

1 Introduction

In recent years, storage service in clouds has become a new profit growth point by providing a comparably low-cost,
scalable, location-independent platform for managing clients’ data. However, if such an important service is vulnerable
to security attacks, it would bring irretrievable losses to the clients since their data and archives are stored into an
uncertain storage pool outside the enterprise. Therefore, it is necessary for cloud service providers (CSP) to provide
secure management techniques to their storage services. A provable data possession (PDP) [1] is a probabilistic proof
technique for a storage provider to prove that clients’ data remains intact. In other words, the clients can fully recover
their data and have confidence to use the recovered data. This highlights a strong need to seek an effective solution for
checking if their data has been tampered with or deleted without downloading the latest version of data.

Motivation. A hybrid cloud is a cloud computing environment in which an organization provides and manages some
internal resources as well as external resources. For example, as shown in Figure 1, an organization, Hybrid Cloud I,
uses a public cloud service such as Amazon’s EC2 for general computing purposes while storing customers’ data within
its own data center in a private cloud.

Although cloud computing is often said to be the future of the industry, the hybrid model is more prevalent for a
number of reasons. Large enterprisers have already substantial investments in the infrastructure required to provide
local resources. Furthermore, many organizations would prefer to keep sensitive data under their own control, ensuring
security requirements.

Figure 1: Cloud computing types: private cloud, public cloud and hybrid cloud.

The previous schemes focus on the PDP issues at untrusted servers (public clouds). For ease of use, some existing
PDP schemes work in a publicly verifiable way so that anyone can use the verification protocol of PDP schemes to prove
the availability of the stored data. However, when such schemes are used for private clouds, the adversary could exploit
the public verification service to obtain the information of private data.

In cloud computing, one of the core design principles is dynamic scalability, which guarantees cloud storage service
to either handle growing amounts of application data in a flexible manner or to be readily enlarged. By integrating
multiple private and public cloud services, hybrid clouds can effectively provide dynamic scalability of service and data
migration. For example, a client might integrate the data from multiple private or public providers into a backup or
archive file (see Hybrid Cloud II in Figure 1), or a service might capture the data from the other services from private
clouds, but the intermediate data and results are stored in hybrid clouds [13, 14]. Although PDP schemes evolved
around public clouds offer a publicly accessible remote interface to check and manage the tremendous amount of data,
the majority of today’s PDP schemes is incapable of satisfying such an inherent requirement of hybrid clouds in terms of
bandwidth and time. In order to solve this problem, we consider a hybrid cloud storage service involving three different
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entities, as illustrated in Figure 2: the cloud client who stores or uses data in the cloud; the cloud service provider (CSP)
which has significant storage space and computation resources to manage and provide storage services; the trusted third
party (TTP) who is trusted to store the clients’ audit data and offer the query services for their data.

Figure 2: Cloud data storage architecture

In this architecture, we consider the existence of multiple CSPs to cooperatively store and maintain the clients’ data,
and a publicly verifiable PDP is used to verify the integrity and availability of their stored data in CSPs. The clients
are allowed to dynamically access and update their data for various applications and, the verification process of PDP
is seamlessly performed for the clients in hybrid cloud. This characteristic is important for hybrid clouds to support
dynamic scalability.

Background. To check the availability and integrity of the stored data in cloud storage, the researchers have proposed
two basic approaches called Provable Data Possession (PDP) [1] and Proofs of Retrievability (POR)[12]. Ateniese et
al. [1] first proposed the PDP model for ensuring possession of files on untrusted storages and provided a RSA-based
scheme for the static case that achieves the O(1) communication costs. They also proposed a publicly verifiable version,
which allows anyone, not just the owner, to challenge the server for data possession. This property greatly extended
application areas of PDP protocol due to the separation of data owners and the users. However, similar to replay
attacks, these schemes are insecure in a dynamic scenario because of the dependence on the index of blocks. Moreover,
it does not fit to hybrid clouds due to the loss of homomorphism in a proof of possession.

In order to support dynamic data operations, Ateniese et al. have developed a dynamic PDP solution called Scalable
PDP [2]. They proposed a lightweight PDP scheme based on cryptographic Hash function and symmetric key encryption,
but the server can deceive the owner by using the previous metadata or responses due to lack of the randomness in the
challenge. The number of updates and challenges is limited and fixed a priori. Also, one cannot perform block insertions
anywhere. Based on this work, ChrisErway et al. [9] introduced two Dynamic PDP schemes with a Hash function tree
to realize the O(log n) communication and computational costs for a file consisting of n blocks. The basic scheme, called
DPDP-I, remains the drawback of SPDP, and in the ‘blockless’ scheme, called DPDP-II, the data blocks {mij}j∈[1,t] can

be leaked by the response of challenge, M =
∑t

j=1 ajmij , where aj is a random value in the challenge. Furthermore,
these schemes are not effective to hybrid clouds because the verification path of the challenge block cannot be stored
completely in a cloud.

Juels and Kaliski [12] presented a POR scheme which relies largely on preprocessing steps the client conducts before
sending a file to CSP. Unfortunately, these operations prevent any efficient extension to update data. Shacham and
Waters [16] proposed an improved version of this protocol called Compact POR, which uses homomorphic property to
aggregate a proof into O(1) authenticator value and O(t) computation costs for t challenge blocks, but their solution
is also static and there exists the leakage of data blocks in the verification process. Wang et al. [17] presented a
dynamic scheme with O(log n) costs by integrating the above CPOR scheme and Merkle Hash Tree (MHT) in DPDP.
Furthermore, serveral POR schemes and models have been recently proposed including [6, 8]. Since the response of
challenges has homomorphic property, the above schemes (especially CPOR schemes) can leverage the PDP construction
on hybrid clouds. In this paper, we also focus on the homomorphic property of CPOR.

Contributions. In this paper, we focus on the construction of PDP scheme on hybrid clouds, supporting privacy
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Table 1: Comparison of PDP schemes for a file consisting of n blocks.

Scheme
CSP Client

Comm. Cloud Frag. Privacy
Dynamic Operations Prob. of

comp. Comp. modify insert delete Detection

PDP[1] O(t) O(t) O(1) single ✓ 1− (1 − �)t

SPDP[2] O(t) O(t) O(t) single ✓ ✓ ✓
♯

✓
♯ 1− (1 − �)t⋅s

DPDP-I[9] O(t logn) O(t logn) O(t logn) single ✓ ✓ ✓ ✓ 1− (1 − �)t

DPDP-II[9] O(t logn) O(t logn) O(t logn) single ✓ ✓ ✓ 1− (1 − �)Ω(n)

CPOR-I[16] O(t) O(t) O(1) single∗ 1− (1 − �)t

CPOR-II[16] O(t+ s) O(t+ s) O(s) single∗ ✓ 1− (1 − �)t⋅s

IPDP O(t+ s) O(t+ s) O(s) single ✓ ✓ ✓ ✓ ✓ 1− (1 − �)t⋅s

CPDP O(t+ cs) O(t+ s) O(cs) hybrid ✓ ✓ ✓ ✓ ✓ 1 −
∏

Pk∈P
(1 − �k)

t⋅s⋅rk

s is the number of sectors in each block, t is the number of sampling blocks, P denotes a set of CSPs in hybrid clouds, where P = {Pk} and
∣P∣ = c, ∗ indicates that the scheme could support hybrid cloud, ♯ indicates that a operation is performed only a limited (pre-determined)
number of times, � and �k is the probability of block corruption in a single cloud or the k-th CSP in hybrid cloud P, respectively, and rk is
the proportion of data blocks in the k-th CSP.

protection and dynamic scalability. The main contributions of this work are summarized as follows:

∙ Our work is the first attempt to introduce a formal framework for Interactive Provable Data Possession (IPDP) and
provides a practical Zero-Knowledge IPDP (ZK-IPDP) solution for private clouds to prevent data leakage in PDP
verification;

∙ We also provide an effective construction of Cooperative Provable Data Possession (CPDP) using Homomorphic
Verifiable Responses (HVR). This construction realizes zero-knowledge and transparent property for the clients to
store and manage the resources on hybrid cloud.

∙ In addition, we present an efficient method for selecting the optimal parameter value to minimize computational
overheads of CSP and clients’ operations. Our experimental results also validate the effectiveness of the optimal
value. This value ensures that the extra storage of tags does not exceed 1% in CSP.

Both schemes, ZK-IPDP and ZK-CPDP, use homomorphic property, on which the responses of the client’s challenge
computed from multiple CSPs can be combined into a single response as the final result of hybrid clouds. By using
this mechanism, the client can be convinced of data possession without knowing what machines or in what geographical
locations their files reside.

Let n be the number of blocks and s be the number of sectors in each block. The communication and computation
complexity are O(s) for verification process and dynamic data update in our schemes. Given the probability of sector
corruption � (or �k for k-th CSP in hybrid clouds P = {Pk}), the detection probability P is 1 − (1 − �)n⋅s⋅w and
1−
∏

Pk∈P(1−�k)
n⋅s⋅rk⋅w, where w is the sampling probability in verification process, rk is the proportion of data blocks

in k-th CSP (see Table 1). Given the fixed � and P , we found that the sampling number of verification protocol t = n ⋅w
is independent of the file size. This means that the challenge message in verification protocol has a constant length for
the files with different sizes. Furthermore, the number of sectors s has an optimal value to minimize the computation
costs of CSP and clients’ operations. This value can support 16T-Bytes in NTFS.

We list the features of our PDP schemes (ZK-IPDP and ZK-CPDP) in Table 1. We also include a comparison of
related techniques, such as, PDP [1], DPDP[9], and CPOR [16]. It clearly shows that our schemes not only support
privacy protection and dynamic data operations, but also have the O(1) computational and communication overheads,
which is independent of the file size.

Organization. The rest of the paper is organized as follows. In Section 2, we describe some basic notations and
common structure of PDP. In Section 3, we define the formal models of IPDP and CPDP. We introduce ZK-IPDP
scheme on private clouds and ZK-CPDP scheme on hybrid clouds in Section 4 and Section 6, respectively. We describe
the performance of our schemes and the results of experiments in Section 7 and Section 8 concludes this paper.

2 Preliminaries

2.1 Notations and Preliminaries

A homomorphism is a map f : ℙ→ ℚ between two groups such that f(g1⊕ g2) = f(g1)⊗ f(g2) for all g1, g2 ∈ ℙ, where
⊕ denotes the operation in ℙ and ⊗ denotes the operation in ℚ. This notation has been used to define a Homomorphic
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Verifiable Tags (HVTs) in [1]: Given two values �i and �j for two message mi and mj , anyone can combine them into
a value �′ corresponding to the sum of the message mi +mj.

When provable data possession is considered as a challenge-response protocol, we also extend this notation to
introduce the concept of a Homomorphic Verifiable Responses (HVRs), which is used to integrate multiple responses
from the different CSPs in cooperative PDP scheme, as follows:

Definition 1 (homomorphic verifiable response). A response is called homomorphic verifiable response in PDP protocol,
if given two responses �i and �j for two challenges Qi and Qj from two CSPs, there exists an efficient algorithm to
combine them into a response � corresponding to the sum of the challenges Qi

∪

Qj.

Let ℍ = {Hk} be a keyed hash family of functions Hk : {0, 1}n → {0, 1}∗ index by k ∈ K. We say that algorithm A
has advantage � in breaking the collision-resistance of ℋ if

Pr[A(k) = (m0,m1) : m0 ∕= m1, Hk(m0) = Hk(m1)] ≥ �,

where the probability is over the random choice of k ∈ K and the random bits of A.

Definition 2 (collision-resistant hash). A hash family ℍis (t, �)-collision-resistant if no t-time adversary has advantage
at least � in breaking the collision-resistance of ℍ.

We set up our systems using bilinear pairings proposed by Boneh and Franklin [5]. Let G be two multiplicative groups
using elliptic curve conventions with large prime order p. The function e be a computable bilinear map e : G×G→ GT
with the following properties: for any G,H ∈ G and all a, b ∈ ℤp, we have 1) Bilinearity: e([a]G, [b]H) = e(G,H)ab. 2)
Non-degeneracy: e(G,H) ∕= 1 unless G or H = 1. 3) Computability: e(G,H) is efficiently computable.

Definition 3 (bilinear map group system). A bilinear map group system is a tuple S = ⟨p,G,GT , e⟩ composed of the
objects as described above.

Next, we recall two representative schemes in [16] to discuss the security of the existing schemes, as follows:

2.2 Public Blocked Scheme

The client breaks a (possibly encoded) file F into n blocks m1, ⋅ ⋅ ⋅ ,mn ∈ ℤp for some large prime p. Let e : G×G→ GT
be a computable bilinear map with group G’s support being ℤp and H : {0, 1}∗ → G be the BLS Hash function. A
client’s private key is sk = x ∈ ℤp, and her public key is pk = (v, u), where v = gx ∈ G and g, u is two generators in G.
the signature on block i is �i = [H(i)umi ]x. On receiving index-coefficient pair query Q = {(i, vi)}i∈I for an index I,
the server computes and sends back �′ ←

∏

(i,vi)∈Q
�vii and �←

∑

(i,vi)∈Q
vimi. The verification equation is

e(�′, g) = e(
∏

(i,vi)∈Q
H(i)vi ⋅ u�, v).

The scheme is not secure due to the leakage of file information and the forging of tags, as follows:

Attack 1. The adversary can get the file and tag information by running or wiretapping the n-times verification
communication for a file with n blocks.

Proof. Let n be the number of blocks in the attacked file and �(k) =
∑n

i=1 vi ⋅mi denote the response of the k-th user’s
challenge Q(k), where we fill vi = 0 to extent the challenge coefficients, that is, vi = 0 for any (i, vi) ∕∈ Q. Such that
the adversary gets the responses {(�(1), �(1)), ⋅ ⋅ ⋅ , (�(1), �(n))} after he finishes n times queries. These responses can
generate the equations

⎧





⎨





⎩

�(1) = v
(1)
1 m1 + ⋅ ⋅ ⋅+ v

(1)
n mn

...
...

�(n) = v
(n)
1 m1 + ⋅ ⋅ ⋅+ v

(n)
n mn

where, v
(k)
i is known for all i ∈ [1, n] and k ∈ [1, n]. The adversary can compute f = (m1, ⋅ ⋅ ⋅ ,mn) by solving the

equations. Similarly, the adversary can get all tags �1, ⋅ ⋅ ⋅ , �n by the equation system �(i) = �1
v
(i)
1 ⋅ �2

v
(i)
2 ⋅ ⋅ ⋅ ⋅ �n

v(i)n for
i ∈ [1, n]. Note that, the above attacks are not based on any kind of assumption.

Attack 2. The server can deceive the client by forging the tag of data block if the client’s private/public keys are reused
for the different files, the client modifies the data in a file, or the client repeats to insert and delete data blocks.
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Proof. This attack can be occurred in a variety of cases, but they have a common feature that the same hash value
H(i) been used at least 2 times. For example, the adversary gets two data-tag pairs (mi, �i) and (m′

i, �
′
i) with the

same H(i) from two file F and F ′, such that �i = (H(i) ⋅ umi)x, �′
i = (H(i) ⋅ um

′

i)x. The adversary first computes

�i ⋅ �
′
i
−1

= u(mi−m
′

i)x and gets ux = (�i ⋅ �
′
i
−1

)
1

mi−m′
i by using extended Euclidean algorithm gcd(mi −m

′
i, p). Further,

the adversary can capture the H(i)x (or H(k)x for ∀k ∈ [1, n]) by H(i)x = �i

(ux)mi
= (�′

i
mi/�

m′

i

i )
1

mi−m′
i . Hence, for an

arbitrary message m∗
k ∕= mk, the forged tag is generated by

�∗
k = H(k)x ⋅ (ux)m

∗

k = �k ⋅ (�i ⋅ �
′
i
−1

)
m∗

k
−mk

mi−m′
i .

This means that the adversary can forge the data and tags at any position within the file.

2.3 Public Fragmented Scheme

Given a file F , the client split F into n blocks (m1, ⋅ ⋅ ⋅ ,mn) and each blockmi is also split into s sectors (mi,1, ⋅ ⋅ ⋅ ,mi,s) ∈
ℤsP for some enough large p. Let e : G × G → GT be a bilinear map, g be a generator of G, and H : {0, 1}∗ → G be
the BLS hash. The secret key is sk = x ∈R ℤp and the public key is pk = (g, v = gx). The client chooses s random
u1, ⋅ ⋅ ⋅ , us ∈R G as the verification information t = (Fn, u1, ⋅ ⋅ ⋅ , us), where Fn is the file name.

For each i ∈ [1, n], the tag at the i-th block is �i = (H(Fn∣∣i)⋅
∏s

j=1 u
mi,j

j )x. On receiving queryQ = {(i, vi)}i∈I for an
index set I, the server computes and sends back �′ ←

∏

(i,vi)∈Q
�vii and � = (�1, ⋅ ⋅ ⋅ , �s), where �j ←

∑

(i,vi)∈Q
vimi,j .

The verification equation is

e(�′, g) = e(
∏

(i,vi)∈Q
H(Fn∣∣i)vi ⋅

∏s

j=1
u
�j

j , v).

This scheme is also not secure due to the leakage of file information and the forging of tags, as follows:

Attack 3. The adversary can get the file and tag information by running or wiretapping the n-times verification
communication for a file with n× s sectors.

Proof. The proof is similar to that of Theorem 1. Let s be the number of sectors. Given n times challenges (Q(1), ⋅ ⋅ ⋅ ,

Q(n)) and their the results ((�′(1), �(1)), ⋅ ⋅ ⋅ , (�′(n), �(n))), �(k) = (�
(k)
1 , ⋅ ⋅ ⋅ , �

(k)
s ) and Q(k) = {(i, vi)}i∈I , the adversary

can solve the system of equations, �
(k)
i = m1,i ⋅ v

(k)
1 + ⋅ ⋅ ⋅ +mn,i ⋅ v

(k)
n for k ∈ [1, n], to reach {m1,i, ⋅ ⋅ ⋅ ,mn,i}. After

s times solving these equations (i ∈ [1, s]), the adversary can obtain the whole file, F = {mi,j}
i∈[1,n]
j∈[1,s] . Similarly, the

adversary can get all tags �1, ⋅ ⋅ ⋅ , �n by using �′(1), ⋅ ⋅ ⋅ , �′(n).

Attack 4. Let s be the number of sectors in each blocks. The server can deceive the client by forging the tag of data
block if the client’s private/public keys and the file name are reused for 2 different files with the number of blocks n ≥ 2s,
the client modifies at least s data blocks in a file, or the client repeats at least s times to insert and delete data blocks.

Proof. The proof is similar to that of Theorem 2. Assume two file F and F ′ have the same file name Fn. The adversary
choices 2s different blocks randomly from the same position in two files, without loss of generality, (m1, ⋅ ⋅ ⋅ ,m2s) and

(m′
1, ⋅ ⋅ ⋅ ,m

′
2s), such that �i = (H(Fn, i) ⋅

∏s
j=1 u

mi,j

j )x, �′
i = (H(Fn, i) ⋅

∏s
j=1 u

′
j
m′

i,j )x for i ∈ [1, 2s]. The adversary

computes Δ1, ⋅ ⋅ ⋅ ,Δ2s by using Δi = �i ⋅ �
′
i
−1

=
∏s

j=1(u
mi,j

j ⋅ (u′
m′

i,j

j )−1)x. These values can generate the following
system of equations

(Δ1, ⋅ ⋅ ⋅ ,Δ2s)
T =M ⋅ (ux1 , ⋅ ⋅ ⋅ , u

x
s , u

′x
1 , ⋅ ⋅ ⋅ , u

′x
s )

T .

where, M denotes a 2s× 2s matrix as

M =

⎛

⎜

⎝

m1,1 ⋅ ⋅ ⋅ m1,s −m′
1,1 ⋅ ⋅ ⋅ −m′

1,s
...

...
...

...
m2s,1 ⋅ ⋅ ⋅ m2n,s −m′

2s,1 ⋅ ⋅ ⋅ −m′
2s,s

⎞

⎟

⎠

Let D = M−1 = (di,j)2s×2s. The adversary can compute uxi =
∏2s
j=1(

�j

�′
j

)di,j and u′
x
i =

∏2n
j=1(

�j

�′
j

)ds+i,j for i ∈ [1, s].

Such that H(Fn, k)x = �k/
∏s
j=1(u

x
j )
mk,j for k ∈ [1, n]. Hence, for any message m∗

k ∕= mk, the forged tag is �∗
k =

H(Fn, k)x ⋅
∏s

j=1(u
x
j )
m∗

k,j = �k ⋅
∏s

j=1(u
x
j )
m∗

k,j−mk,j .
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2.4 Common Fragmented PDP

We start by recalling the schemes in [1, 16] and can find that these schemes have the common framework and characters
(showed in Figure 3): 1) the file is split into n× s sectors and each block (s sectors) corresponds to a tag, so that the
storage of signature tags can be reduced with increase of s; 2) the verifier can verify the integrity of file in random
sampling approach, which is of utmost importance for large or huge files; 3) these schemes rely on homomorphic
properties to aggregate the data and tags into a constant size response, which minimizes network communication. The
signals used in Figure 3 are explained in Table 2.

1s

2s

3s

n
s

1v

2v

3v

n
v

1t 2t s
t

1m 2m s
m 's

Figure 3: The framework of PDP model.

The above model, considered to be common representative for some existing schemes, is readily converted to MAC-
based, ECC or RSA schemes. These schemes, built from BLS signatures and secure in random oracle model, have the
shortest query and response with public verifiability. However, the above attacks show that these schemes have still
some security problems in privacy and dynamic aspects:

∙ The validation process leads to the leakage of file and tag information, so these schemes cannot be used in private
cloud or privacy preserving applications;

∙ The dynamic operations (insert, delete, or modify) can incur a risk to the tag forgery in untrusted servers, so these
schemes is merely used to backup or archive data.

3 Definition of PDP Models

In this section, we present the precise definition and security models of our schemes (IPDP and CPDP). For clarity, we
list some used signals in Table 2.

Table 2: The signal and its explanation.

Sig. Repression

n the number of blocks in a file;
s the number of sectors in each block;
t the number of index coefficient pairs in a query;
c the number of clouds to store a file;

F the file with n× s sectors, i.e., F = {mi,j}
i∈[1,n]
j∈[1,s];

� the set of tags, i.e., � = {�i}i∈[1,n];
Q the set of index-coefficient pairs, i.e., Q = {(i, vi)};
� the response for the challenge Q.
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3.1 Interactive Provable Data Possession

We present the definition of Interactive Provable Data Possession (IPDP) based on interactive proof system:

Definition 4 (Interactive-PDP). An interactive provable data possession scheme S is a collection of two algorithms
and an interactive proof system, S = (K, T ,P):

KeyGen(1s): takes a security parameter s as input, and returns a secret key sk or a public-secret keypair (pk, sk);

T agGen(sk, F ): takes as inputs the secret key sk and a file F , and returns the triples (�,  , �), where � denotes the
secret of tags,  is the set of public verification parameters u and index information �, i.e.,  = (u, �); � denotes the
set of verification tags;

Proof(P, V ): is a protocol of proof of possession between prover (P) and verifier (V). At the end of the protocol run,
V returns {0∣1}, where 1 means the file is being correct stored on the server. It includes two cases:

∙ ⟨P (F, �), V (sk, �)⟩ is a private proof, where P takes as input a file F and a set of tags �, and V takes as input a
secret key sk and a secret of tags �;

∙ ⟨P (F, �), V ⟩(pk,  ) is a public proof, where P takes as input a file F and a set of tags �, and a public key pk and
a set of public parameters  is the common input between P and V .

where, P (x) denotes the subject P holds the secret x and ⟨P, V ⟩(x) denotes both parties P and V share a common data
x in a protocol.

This model is a more general PDP model than the existing PDP models. As the verification process considered as
an interactive protocol, this definition does not limit to the specific steps of verification, including scale, sequence, and
the number of moves in protocol, so it can provide greater convenience for the construction of protocol. Further, this
paper will consider only the construction of public proof protocol.

3.2 Security Requirements

According to the standard definition of interactive proof system proposed by Bellare and Goldreich [10], the PDP
protocol Proof(P, V ) has two requirements:

Definition 5. A pair of interactive machines (P, V ) is called an available provable data possession for a file F if P is a
(unbounded) probabilistic algorithm, V is a deterministic polynomial-time algorithm, and the following conditions hold
for some polynomial p1(⋅), p2(⋅), and all s ∈ ℕ:

∙ Completeness: For every � ∈ TagGen(sk, F ),

Pr[⟨P (F, �), V ⟩(pk,  ) = 1] ≥ 1− 1/p1(�); (1)

∙ Soundness: For every �∗ ∕∈ TagGen(sk, F ), every interactive machine P ∗,

Pr[⟨P ∗(F, �∗), V ⟩(pk,  ) = 1] ≤ 1/p2(�); (2)

where, p1(⋅) and p2(⋅) are two polynomial1, and � is a security parameter used in KeyGen(1�).

Here, the knowledge soundness can be regarded as a stricter notion of unforgeability for the file block tags. This
definition means that the prover can forge file tags by means of a knowledge Extractor [7] if soundness property does
not hold. For a private cloud, we are more concerned about the disclosure of private information in the verification
process. It is easy to find that data blocks and their tags could be obtained by the verifier in some existing schemes. To
solve this problem, we introduce Zero-Knowledge property into IPDP system, as follows:

Definition 6 (Zero-knowledge). A proof system for provable data possession problem is computational zero knowledge if
there exists a probabilistic polynomial-time algorithm S∗ (call a simulator) such that for every probabilistic poly-nomial-
time algorithm D, for every polynomial p(⋅), and for all sufficiently large s, it holds that

∣

∣

∣

∣

Pr[D(pk,  , S∗(pk,  )) = 1]−
Pr[D(pk,  , ⟨P (F, �), V ∗⟩(pk,  )) = 1]

∣

∣

∣

∣

≤ 1/p(s),

where, S∗(pk,  ) denotes the output of simulator S. That is, for all � ∈ TagGen(sk, F ), the ensembles SO(F )(pk,  )
and ⟨P (F, �), V ∗⟩(pk,  ) 2 are computationally indistinguishable.

1The function 1/p1(�) is called the completeness error, and the function 1/p2(�) is called the soundness error. For non-triviality, we
require 1/p1(�) + 1/p2(�) ≤ 1− 1/poly(�).

2The output of the interactive machine V ∗ after interacting with P (F, �) on common input (pk,  ).
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Actually, zero-knowledge is a property that captures P ’s robustness against attempts to gain knowledge by interacting
with it. For the PDP scheme, we use the zero-knowledge property to the security of data blocks and signature tags.

Definition 7 (ZK-IPDP). A IPDP is said as Zero-Knowledge Interactive Provable Data Possession (ZK-IPDP) if the
completeness, knowledge soundness, and zero-knowledge property hold.

3.3 Dynamic Provable Data Possession

In order to satisfy the requirement of dynamic scenario, we introduce a dynamic PDP definition on the above definition:

Definition 8 (Dynamic PDP). Given a provable data possession S = (K, T ,P), it is called as dynamic PDP if this
scheme support the following algorithms:

Update(sk,  ,m′
i): is an algorithm run by the client to update the block of file mi at the index i by using sk, and it

returns a new verification metadata ( ′, �′);

Delete(sk,  ,mi): is an algorithm run by the client to delete the block mi of file at the index i by using sk, and it returns
a new verification metadata ( ′);

ℐnsert(sk,  ,mi): is an algorithm run by the client to insert the block of file mi at the index i by using sk, and it
returns a new verification metadata ( ′, �′).

Since the dynamic operations may raise security issues, we state the security for a DPDP scheme using the following
game that captures the advantage of the adversary from dynamic operations, as follows:

Setup: The challenger runs KeyGen. It gives the adversary the resulting pk and keeps sk to itself;

Learning: The adversary issues signature queries m1, ⋅ ⋅ ⋅ ,mq. To each query mi the challenger responds by running
Sign to generate a signature �i of mi and sending �i to the adversary. These queries may be asked adaptively so that
each query mi may depend on the replies to m1, ⋅ ⋅ ⋅ ,mi−1.

Output: Finally the adversary outputs a pair (m∗, �∗). The adversary wins if �∗ is a valid signature of m∗ according
to Verify and (m∗, �∗) is not among the pairs (mi, �i) generated during the query phase.

3.4 Cooperative Provable Data Possession

In order to prove the integrity of data stored in hybrid clouds, we define a framework for Cooperative Provable Data
Possession (CPDP) based on the above-mentioned IPDP:

Definition 9 (Cooperative-PDP). A cooperative provable data possession scheme S ′ is a collection of two algorithms
and an interactive proof system, S ′ = (K, T ,P):

KeyGen(1�): takes a security parameter � as input, and returns a secret key sk or a public-secret keypair (pk, sk);

T agGen(sk, F,P): takes as inputs a secret key sk, a file F , and a set of cloud storage providers P = {Pk}, and returns
the triples (�,  , �), where � is the secret of tags,  = (u,ℋ) is a set of verification parameters u and an index
hierarchy ℋ for F , � = {�(k)}Pk∈P denotes a set of all tags, �(k) is the tags of the fraction F (k) of F in Pk;

Proof(P , V ): is a protocol of proof of data possession between the CSPs (P = {Pk}) and a verifier (V). At the end of
the protocol run, V returns a bit {0∣1} denoting false and true. It includes two cases:

∙ ⟨
∑

Pk∈P Pk(F
(k), �(k)), V (sk, �)⟩ is a private proof, where each Pk takes as input a fraction of file F (k) and a set

of tags �(k), and V takes as input a secret key sk and a secret of tags �;

∙ ⟨
∑

Pk∈P Pk(F
(k), �(k)), V ⟩(pk,  ) is a public proof, where each Pk takes as input a file F (k) and a set of tags �(k),

and a public key pk and a set of public parameters  is the common input between P and V .

where,
∑

Pk∈P denotes the cooperative computing in Pk ∈ P.

To realize the CPDP, a trivial way is to check the data stored in each cloud one by one. In this way the client
needs greater costs of communication and computation. It is obviously unreasonable that these costs are paid out by
the clients. Moreover, this way break the advantage of cloud storage: cloud storage should work fully transparent to
the end-user and support dynamic scalability.
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4 ZK-IPDP for Private Cloud

We propose a Zero-Knowledge IPDP scheme to enhance the security of data in private cloud. This scheme is a 3-
move interactive proof system, which provides zero-knowledge proof to ensure the confidentiality of secret data and the
undeceivability of invalid tags.

4.1 Proposed Construction

In our construction, the verification protocol has 3-move structure: commitment, challenge and response, which be
showed in Figure 4. This protocol is similar to Schnorr’s Σ protocol [15], which is a zero-knowledge proof system. By
using this property, we ensure the verification process does not reveal anything other than the veracity of the statement
of data integrity in a private cloud.

'

1( )C H=

{( , )}
i

Q i v=

( , ', )q p s m=

( , )F s

Figure 4: The framework of IPDP model.

We present our IPDP construction in Figure 5. In our scheme, each client holds a secret key sk, which can be used
to generate the tags of many files. Each processed file will produce a public verification parameter  = (u, �), where
u = (�(1), u1, ⋅ ⋅ ⋅ , us), � = {�i}i∈[1,n] is the index table. We define �i = (Bi∣∣Vi∣∣Ri), where Bi is the sequence number
of block, Ri is the version number of updates for this block, and Ri is a random integer to avoid collision. The value
�(1) can be considered as the signature of the secret �1, ⋅ ⋅ ⋅ , �s. Note that, it must assure that the  ’s are different for
all processed files. Moreover, it is clear that our scheme admits short responses in verification protocol.

In order to prevent the leakage of the stored data and tags in the verification process, the secret data {mi,j} are
protected by a random �j ∈ ℤp and the tags {�i} are randomized by a  ∈ ℤp. Furthermore, the values {�j} and  are

protected by the simple commitment methods, i.e., H
1 , H


2 and u�i

i ∈ G, to avoid the adversary from gaining them.

4.2 Security Proof of Construction

The above scheme is an efficient interactive proof system: 1) Completeness: for every available tag � ∈ TagGen(sk, F )
and a random challenge Q = (i, vi)i∈I , the completeness of protocol can be elaborated as follows:

e(�′, ℎ) = e(
∏

(i,vi)∈Q

(�
(2)
i )vi , ℎ)⋅� ⋅ e(g, ℎ)⋅�

∑
(i,vi)∈Q

∑s
j=1 �j⋅vi⋅mi,j

= e(
∏

(i,vi)∈Q

(�
(2)
i )vi , ℎ�⋅) ⋅ e(

s
∏

j=1

u
⋅

∑
(i,vi)∈Q

vi⋅mi,j

j , ℎ�)

= e(
∏

(i,vi)∈Q

(�
(2)
i )vi , ℎ�⋅) ⋅

s
∏

j=1

e(u
�j−�j

j , ℎ�).

There exists a trivial solution when vi = 0 for all i ∈ I. In this case, the above equation could not determine whether
the processed file is available due to �′ = 1, �j = �j , and �j = u

�j

j . Hence, the completeness of protocol holds

Pr[⟨P (F, �), V ⟩(pk,  ) = 1] ≥ 1− 1/pt, (4)
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KeyGen(1�): Let S = (p,G,GT , e) be a bilinear map group system with randomly selected generators g, ℎ ∈R G,
where G, GT are two group of large prime order p, ∣p∣ = O(�). Generate a collision-resistant hash function Hk(⋅)
and chooses a random �, � ∈R ℤp and computes H1 = ℎ� and H2 = ℎ� ∈ G. Thus, the secret key is sk = (�, �)
and the public key is pk = (g, ℎ,H1, H2).

TagGen(sk, F ): Splits the file F into n× s sectors F = {mi,j} ∈ ℤn×sp . Chooses s random �1, ⋅ ⋅ ⋅ , �s ∈ ℤp as the

secret of this file and computes ui = g�i ∈ G for i ∈ [1, s] and �(1) = H�(“Fn”), where � =
∑s
i=1 �i and Fn is

the file name. Builds an index table � = {�i}
n
i=1 and fills out the item �i = (Bi = i, Vi = 1, Ri ∈R {0, 1}

∗)† in �
for i ∈ [1, n], then calculates its tag as

�i ← (�
(2)
i )� ⋅ g

∑
s
j=1 �j ⋅mi,j⋅� ∈ G.

where �
(2)
i = H�(1)(�i) and i ∈ [1, n]. Finally, sets u = (�(1), u1, ⋅ ⋅ ⋅ , us) and outputs � = (�1, ⋅ ⋅ ⋅ , �s),  = (u, �)

to TTP, and � = (�1, ⋅ ⋅ ⋅ , �n) to CSP.

Proof(P, V ): This is a 3-move protocol between Prover (CSP) and Verifier (client) with the common input (pk,  ),
which is stored in TTP, as follows:

∙ Commitment(P → V ): P chooses a random  ∈ ℤp, and sends its commitment C = (H ′
1) to V , where

H ′
1 = H

1 ;

∙ Challenge(P ← V ): V chooses a random challenge set I of t indexes along with t random coefficients vi ∈ ℤp.
Let Q be the set {(i, vi)}i∈I of challenge index coefficient pairs. V sends Q to P ;

∙ Response(P → V ): P chooses s integers �j for j ∈ [1, s] at random, and calculates the response �, � as

�′ ←
∏

(i,vi)∈Q

�⋅vii , �j ← �j +  ⋅
∑

(i,vi)∈Q

vi ⋅mi,j ,

where � = {�j}j∈[1,s]. Let �j ← u
�j

j ∈ G1 for j ∈ [1, s] and � = {�j}j∈[1,s], P sends � = (�, �′, �) to V ;

Verification: Now the verifier V can check that the response was correctly formed by checking that

e(�′, ℎ)
?
= e(

∏

(i,vi)∈Q

(�
(2)
i )vi , H ′

1) ⋅ e(
s
∏

j=1

u
�j

j

�j
, H2). (3)

Figure 5: The Zero-Knowledge IPDP scheme.

where t is the number of index coefficient pairs in Q.
2) Soundness: For every tag �∗ ∕∈ TagGen(sk, F ), we assume that there exists an interactive machine P ∗ can pass

verification with any verifier V ∗ with noticeable probability. In order to prove the nonexistence of P ∗, to the contrary,
we make use of P ∗ to construct a knowledge extractorℳ, which gets the common input (pk,  ) and rewindable black-
box access to the prover P ∗ and attempts to break the computation Diffie-Hellman (CDH) assumption in G: given
G,G1 = Ga, G2 = Gb ∈R G, output Gab ∈ G. We have the following theorem:

Lemma 1. Our IPDP scheme has (t, �′) knowledge soundness in random oracle and rewindable knowledge extractor
model assuming the (t, �)-computation Diffie-Hellman (CDH) assumption holds in the group G for �′ ≥ �.

The proof of this Lemma is described in Appendix A. It is showed that there exists a polynomial p(⋅) and all
sufficiently large �’s, the following condition holds:

Pr[⟨P ∗(F, �∗), V ∗⟩(pk,  ) = 1] ≤ 1/p(�). (5)

Thus, the completeness and soundness are established.

Lemma 2. The verification protocol (P, V ) is a computational zero-knowledge system in our IPDP scheme.

By using the standard simulator S∗(pk,  ), the proof of this theorem is described in Appendix B. According to
Lemma 1 and 2, we have the following theorem:
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Theorem 1. Under CDH assumption, our IPDP scheme is a zero-knowledge provable data possession (called as ZK-
IPDP) in random oracle and rewindable extractor model.

5 Implementation of Dynamic Operations

To support dynamic data operations, it is necessary for the clients to employ an index table � to record the realtime
status of the stored files. This kind of index structure is also able to generate the value of Hash function H�(1)(�i) in
our ZK-IPDP scheme. Some schemes in a dynamic scenario are insecure due to replay attack on the same Hash values.
To solve this problem, a simple index table � = {�i} used in the above construction can be described in Table 3, which
includes four columns: No. denotes the real number i of data block mi, Bi is the original number of block, Vi stores the
version number of updates for this block, and Ri is a random integer to avoid collision.

Table 3: The index table with random values.

No. Bi Vi Ri

0 0 0 0
1 1 2 r′1
2 2 1 r2
3 4 1 r3
4 5 1 r5
5 5 2 r′5
...

...
...

...
n n 1 rn

n+1 n+1 1 rn+1

← Used to head
← Update

← Delete

← Insert

← Append

In order to ensure the security, we require that each �i = “Bi∣∣Vi∣∣Ri” is unique in this table. Although the
same values of “Bi∣∣Vi” may be produced by repeating the insert and delete operations, the random Ri can avoid this
collision. An alteration method is to generate an updated random value by R′

i ← HRi
(
∑s

j=1m
′
i,j), where the initial

value is Ri ← H�(1)(
∑s

j=1mi,j) and mi = {mi,j} denotes the i-th data block. We show a simple example to describe the
changes of different operations in Table 3. According to the structure of the index table, we propose a simple method
to provide dynamic data modification in Figure 6.

Fact 1. There no exists two same records �i = “Bi∣∣Vi∣∣Ri” in the index table �, that is, �i ∕= �j and i ∕= j, if Ri ∕= R′
j

for ∀i, j.

The other method is to use the value of Ri to record the maximum of Vk and Rk in all records �k with Bk = Bi,
define the initial value Ri ← 1 and its updated value R′

i ← maxBi=Bk
{Vk, Rk} + 1. In this case, the Hash value is

defined as H�(1)(�i), where �i = (“Bi∣∣Vi”). We show an example to describe the changes of different operations in Table
4. Assume that the size of each record �i is 32-Bits and the size of each block is 4K-Bytes, in which ∣Bi∣ = 11-Bits,
∣Vi∣ = ∣Ri∣ = 10-Bits. Such that the maximum number of data blocks is about n = 221 and the maximum length of file
is about 8T -Bytes in this case. It is more efficient than the above case in which the random value Ri must been enough
length to resilient Birthday attack.

Fact 2. There no exists two same records �i = “Bi∣∣Vi” in the index table �, that is, �i ∕= �j and i ∕= j, if any operations
update the value of Rk in all records {�k}Bk=Bi

with the same Bi.

Note that, all tags and the index table should be renewed if only any item in � is full. Of course, we can replace the
sequent lists by dynamically linked lists to improve the efficiency of updating index table.

Theorem 2. Under the CDH assumption in a cyclic group G ∈ S, the ZK-IPDP scheme is a DPDP scheme to resist
the attack of forging the tags for dynamic data operations with random oracle model if each �i is unique in �.

The proof of this theorem is described in Appendix C. It is easy to prove the each �i is unique in � in the above
algorithms. Further, we omit the discuss of the head and tail index items in � and they is easy to implementation.
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Update(sk,  ,m′
i): modifies the version number by Vi ← maxBi=Bj

{Vj}+1 and chooses a new Ri in �i ∈ � to get

a new  ′; computes the new hash �
(2)
i = H�(1)(“Bi∣∣Vi∣∣Ri”); by using sk, computes �′

i = (�(2))� ⋅ (
∏s

j=1 u
m′

i,j

j )� ,
where u = {uj} ∈  , finally outputs ( ′, �′

i,m
′
i).

Delete(sk,  ,mi): computes the original �i by mi and computes the new hash �
(2)
i = H�(1)(“Bi∣∣0∣∣Ri”) and

�′
i = (�

(2)
i )� by sk; delete i-th record to get a new  ′; finally outputs ( ′, �i, �

′
i).

Insert(sk,  ,m′
i): inserts a new record in i-th position of the index table � ∈  , and the other records move

backward in order; modifies Bi ← Bi−1, Vi ← maxBi=Bj
{Vj} + 1, and a random Ri in �i ∈ � to get a new  ′;

computes the new hash �
(2)
i = H�(1)(“Bi∣∣Vi∣∣Ri”) and �

′
i = (�(2))� ⋅ (

∏s

j=1 u
m′

i,j

j )� , where u = {uj} ∈  , finally
outputs ( ′, �′

i,m
′
i).

The client send the above result to cloud store provider P via secret channel. For Update or Insert operations, P
must check the following equation for ( ′, �′

i,m
′
i):

e(�′
i, ℎ)

?
= e(�

(2)
i , H1) ⋅ e(

s
∏

j=1

u
m′

i,j

j , H2).

For Delete operation, P must check whether �i is equal to the stored �i and e(�
′
i, ℎ)

?
= e(H�(1)(“Bi∣∣0∣∣Ri”), H1).

Furthermore, TTP must replace  by the new  ′ and check the completeness of � ∈  .

Figure 6: The dynamic scheme for ZK-IPDP.

Table 4: The index table with max function.

No. Bi Vi Ri

0 0 0 0
1 1 2 2
2 2 1 1
3 4 1 1
4 5 1 2
5 5 2 2
...

...
...

...
n n 1 1

n+1 n+1 1 1

← Used to head
← Update

← Delete

← Insert

← Append

6 ZK-CPDP for Hybrid Cloud

Based on the above ZK-PDP protocol, we propose a new Cooperative Provable Data Possession scheme for hybrid cloud,
which can support the user’s dynamic behavior and private protection. Concretely speaking, this scheme can meet the
following requirements:

∙ Conceal the details of the storage, which the users do not need to know in the verification process;

∙ Ensure that the verification does not reveal any information, it is of particular importance for sensitive data;

6.1 Protocol Settings and Index Hierarchy

A representative architecture for data storage on hybrid cloud is illustrated in Figure 7. This architecture is a hierarchical
structure ℋ on three layers to represent the relationship among all blocks for stored resources. Three layers can be
described as follows:

∙ First-Layer (Express Layer): offer an abstract representation of the stored resources;

∙ Second-Layer (Service Layer): immediately offer and manage cloud storage services;
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∙ Third-Layer (Storage Layer): practicably realize data storage on many physical devices;

This kind of architecture is a nature representation of file storage. We make use of this simple hierarchy to organize
multiple CSP services, which involves private clouds or public clouds, by shading the differences between these clouds.
In Figure 7, the resources in Express Layer are split and stored into three CSPs , that have different colors, in Service
Layer. In turn, each CSP fragmented and stored the assigned data into the storage servers in Storage Layer. We make
use of colors to distinguish different CSPs, and the denotation of Storage Layer is the same as in Figure 3. Moreover, we
follow the logical order of the data blocks to organize the Storage Layer. This architecture could provide some special
functions for data storage and management. For example, there may exist overlap among data blocks (as shown in
dashed line) and skipping (as shown on a non-continuous color). But these functions would increase the complexity of
storage management.
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Figure 7: The architecture of CPDP model.

We make use of this architecture to construct a new Index Hierarchy ℋ, which is used to replace the hash function
in the ZK-IPDP schemes, as follows:

∙ Express layer: given s random {�i}
s
i=1 and the file name Fn, sets �(1) = H∑

s
i=1 �i

(“Fn”) and makes it public for
verification but makes {�i}

s
i=1 secret;

∙ Service layer: given the �(1) and the cloud name Cn, sets �
(2)
k = H�(1)(“Cn”);

∙ Storage layer: given the �(2), a block number i, and its index record �i = “Bi∣∣Vi∣∣Ri”, sets �
(3)
i,j = H

�
(2)
k

(�i).

To meet this change, the index table � in the ZK-IPDP scheme needs to increase a new column Ci to record the serial
number of CSP, that stores the i-th block. By using this structure, it is obvious that our CPDP scheme can also support
dynamic data operations.

6.2 Cooperative Provable Data Possession

According to the above architecture, four different network entities can be identified as follows: the verifier (V), trusted
third party (TTP), the organizer (O), and some cloud service providers in hybrid cloud P = {Pi}i∈[1,c]. The organizer
is an entity that directly contacts with the verifier, moreover it can initiate and organize the verification process. Often,
the organizer is an independent server or a certain CSP in P . In our scheme, the verification is performed by a 5-
move interactive proof protocol showed in Figure 8, as follows: 1) the organizer initiates the protocol and sends the
commitment to the verifier; 2) the verifier returns a challenge set of random index-coefficient pairs Q to the organizer;
3) the organizer relays them into each Pi in C according to the exact position of each data block; 4) each Pi returns its
response of challenge to the organizer; 5) the organizer synthesizes a final response from these responses and sends it
to the verifier. The above process would guarantee that the verifier accesses files without knowing on what CSPs or in
what geographical locations their files reside.
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Figure 8: The framework of CPDP model.

According to the above framework of protocol, we propose the first CPDP construction for the hybrid clouds based
on the above-mentioned ZK-IPDP scheme, which is showed in Figure 9. In contrast to single (private or public) cloud
surrounding, the protocol considers the interaction of a verifier with more than one CSP in hybrid clouds, in which CSP
need not interact with each other during the verification process, but an organizer is used to organize and manage all
CSPs. For this idea, our construction differs from the ZK-IPDP scheme in two respects:

1) In the commitment stage, the organizer generates a random  ∈R ℤp and returns it to the verifier, but the
CSPs do not obtain the value of . So that it requires the organizer can compute the final �′ by using this  and the
�′
k received from CSPs. In order to ensure the security of data tags, we use the ElGamal encryption to encrypt the

combination of tags
∏

(i,vi)∈Qk
�vii , that is, for sk = s ∈ ℤp and pk = (g, S = gs) ∈ G2, the cipher of the message m is

C = (C1 = gr, C2 = m ⋅ Sr) and its decryption is preformed by m = C2 ⋅ C
−s
1 . Thus we have the following equation

�′ = (
∏

Pk∈P

�′
k

Rs
) = (

∏

Pk∈P

Srk ⋅
∏

(i,vi)∈Qk
�vii

Rsk
)

= (
∏

Pk∈P

∏

(i,vi)∈Qk

�vii ) =
∏

(i,vi)∈Q

�vi⋅i .

2) Because of the homomorphic property, the responses computed from the CSPs in hybrid clouds can be combined
into a single final response, as follows: given a set of �k = (�k, �

′
k, �k, Rk) received from Pk. Let �j =

∑

Pk∈P �j,k, the
organizer can compute the following equation:

�j =
∑

Pk∈P
�j,k =

∑

Pk∈P
(�j,k +

∑

(i,vi)∈Qk

vi ⋅mi,j)

=
∑

Pk∈P
�j,k +

∑

Pk∈P

∑

(i,vi)∈Qk

vi ⋅mi,j

= �j +
∑

(i,vi)∈Q
vi ⋅mi,j .

The corresponding commitment of �j is also computed by

�j =
∏

Pk∈P
�j,k =

∏

Pk∈P
u
�j,k

j = u

∑
Pk∈P

�j,k

j = u
�j

j .

It is obvious that the final response � received by the verifier in CPDP is the same as that in the ZK-IPDP scheme
in terms of the above analysis. This means that the verifier cannot feel the difference between them. Similarly to
implementation of dynamic operations in the ZK-IPDP scheme, this construction can also support the probable updates
to the stored data in hybrid clouds.

Two response algorithms, Response1 and Response2, comprise a homomorphic verifiable responses: Given two
responses �i and �j for two challenges Qi and Qj from two CSPs, i.e., �i = Response1(Qi, {mk}k∈Ii , {�k}k∈Ii), there
exists an efficient algorithm to combine them into a response � corresponding to the sum of the challenges Qi

∪

Qj, i.e.,

� = Response2(�i, �j)

= Response1(Qi
∪

Qj , {mk}k∈Ii
∪
Ij , {�k}k∈Ii

∪
Ij ).
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KeyGen(1�): Let S = (p,G,GT , e) be a bilinear map group system with randomly selected generators g, ℎ ∈ G,
where G,GT are two bilinear group of large prime order p, ∣p∣ = O(�). Makes a hash function Hk(⋅) public.

1. For a CSP, chooses a random s ∈R ℤp and computes S = gs ∈ G. Thus, skp = s and pkp = (g, S).

2. For a user, chooses two random �, � ∈R ℤp and sets sku = (�, �) and pku = (g, ℎ,H1 = ℎ�, H2 = ℎ�).

TagGen(sk, F,P): Splits the file F into n× s sectors {mi,j}i∈[1,n],j∈[1,s] ∈ ℤn×sp . Chooses s random �1, ⋅ ⋅ ⋅ , �s ∈ ℤp
as the secret of this file and computes ui = g�i ∈ G for i ∈ [1, s]. Constructs the index table � = {�i}

n
i=1 and fills

out out the record �i = (Ci = k,Bi = i, Vi = 1, Ri ∈R {0, 1}
∗) in � for i ∈ [1, n], then calculates the tag for each

block mi as

�(1) = H∑
s
i=1 �i

(“Fn”), �
(2)
k = H�(1)(“Cn”), �

(3)
i,k = H

�
(2)
k

(�i), �i,k ← (�
(3)
i,k )

� ⋅ (
∏s

j=1
u
mi,j

j )� ∈ G,

where Fn is the file name and Cn is the CSP name. And then outputs � = (�1, ⋅ ⋅ ⋅ , �s) to the file owner,
 = ((u1, ⋅ ⋅ ⋅ , us), �

(1)) to TTP, and �k = {�i,j}∀j=k to Pk ∈ P .

Proof(P , V ): Let O be an organizer in hybrid cloud P = {Pi}i∈[1,c]. This is a 5-move protocol between Provers (P)
and Verifier (V ) with the common input (pk,  ), which is stored in TTP. The protocol can be described as:

1. Commitment(O→ V ): O chooses a random  ∈ ℤp and generates H ′
1 = H

1 , H
′
2 = H

2 , sends c = (H ′
1, H

′
2) to

V ;

2. Challenge1(O← V ): V chooses a set of challenge index coefficient pairs Q = {(i, vi)}i∈I and sends Q to O;

3. Challenge2(P ← O): O forwards Qk = {(i, vi)}mi∈Pk
∈ Q along to each Pk in P ;

4. Response1(P → O): Pk chooses a random rk ∈ ℤp and s random �j,k ∈ ℤp for j ∈ [1, s], and calculates the
response

�′
k ← Srk ⋅

∏

(i,vi)∈Qk

�vii ∈ G, �j,k ← �j,k +
∑

(i,vi)∈Qk

vi ⋅mi,j ∈ ℤp, �j,k ← u
�j,k

j ∈ G,

where �k = {�j,k}j∈[1,s] and �k = {�j,k}j∈[1,s]. Let Rk ← grk ∈ G, each Pk sends �k = (�k, �
′
k, �k, Rk) to O;

5. Response2(O→ V ): After receiving all responses from {Pi}i∈[1,c], O aggregates {�k}Pk∈P into a common � as

�′ ← (
∏

Pk∈P
�′
k ⋅ R

−s
k ) , �j ←

∑

Pk∈P
�j,k, �j ←

∏

Pk∈P
�j,k.

Let � = {�j}j∈[1,s] and � = {�i}i∈[1,s]. O sends � = (�, �′, �) to V .

Verification: Now the verifier V can check that the response was correctly formed by checking that

e(�′, ℎ)
?
= e(

∏

(i,vi)∈Q
H
�
(2)
k

(�i)
vi , H ′

1) ⋅ e(
∏s

j=1
u
�j

j ⋅ �j
−1, H ′

2).

Figure 9: Cooperative Provable Data Possession for Hybrid Cloud.

More importantly, the HVR is a pair of values � = (�, �, �), which have a constant size even for the different challenges.
We give a brief security analysis of this construction. This construction is in essence a Multi-Prover Zero-Knowledge

Proof (MPZK) protocol, which can be considered as an extension of the notion of an interactive proof system. Since this
construction is directly derived from the ZK-IPDP scheme, zero-knowledge and soundness properties are still remained
in this construction as follows:

Theorem 3. Under the CDH assumption, our CPDP construction is a zero-knowledge cooperative provable data pos-
session (called as ZK-CPDP) in random oracle and rewindable extractor model.
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7 Performances and System

7.1 Performances Analysis

We first analyze the computation cost of IPDP and CPDP schemes. For clearance, we give Table 5 to present them. In
this table, we use [E] to denote the computation costs of an exponent operation in G, namely, gx, where x is a positive
integer in ℤp and g ∈ G or GT . We neglect the computation costs of algebraic operations and simple modular arithmetic
operations because they run fast enough [3]. The more complex operation are the computation of a bilinear map e(⋅, ⋅)
between two elliptic points (denoted as [B]).

Table 5: The performance analysis for our schemes.

IPDP CPDP

KeyGen 2[E] 3[E]

TagGen (2n+ s)[E] (2n+ s)[E]

Proof(P) (t+ s+ 1)[E] (t+ cs+ 2c+ 3)[E]

Proof(V) 3[B] + (t+ s)[E] 3[B] + (t+ s)[E]

Update s+ 1[E] [3[B] + s[E]] s+ 1[E] [3[B] + s[E]]

Delete s+ 2[E] [2[B]] s+ 2[E] [2[B]]

Insert s+ 1[E] [3[B] + s[E]] s+ 1[E] [3[B] + s[E]]

Secondly, we analyze the storage and communication cost of our schemes. We define the bilinear pairing takes the
form e : E(Fpm)×E(Fpkm)→ F∗

pkm (we give here the definition from [4, 11]), where p is a prime, m is a positive integer,

and k is the embedding degree (or security multiplier). In this case, we utilize asymmetric pairing e : G1×G2 → GT to
replace symmetric pairing in the original schemes.

Without loss of generality, let the security parameter � be 80-bits, we need the elliptic curve domain parameters over
Fp with ∣p∣ = 160-bits and m = 1 in our experiments. This means that the length of integer is l0 = 2� in ℤp. Similarly,
we have l1 = 4� in G1, l2 = 24� in G2, and lT = 24� in GT for the embedding degree k = 6. Based on these definitions,
we decribe storage or communication costs in Table 6.

Table 6: The storage/communication overhead.

Algorithm IPDP CPDP

KeyGen
Client 2l0 2l0
CSP l0

TagGen
CSP nsl0 + nl1 (nsl0 + nl1)/c
TTP sl1 + (n+ 1)l0 sl1 + (n+ 1)l0

Proof

Commit 2l2 2l2

Challenge 2tl0
2tl0
2tl0/c

Response sl0 + (s+ 1)l1
(sl0 + (s+ 2)l1)c
sl0 + (s+ 1)l1

Hence, for IPDP scheme, the storage overhead of a file with size(f) = 1M -Bytes is store(f) = n⋅s⋅l0+n⋅l1 = 1.04M -
Bytes for n = 103 and s = 50. The storage overhead of its index table � is n ⋅ l0 = 20K-Bytes. We define the overhead

rate as � = store(f)
size(f) − 1 = l1

s⋅l0
and it should therefore be kept as low as possible in order to minimize storage in cloud

storage providers. It is obvious that a higher s means more lower storage. Furthermore, in the verification protocol,
the communication overhead of challenge is 2t ⋅ l0 = 40 ⋅ t-Bytes in terms of t, but its response have a constant-size
communication overhead s ⋅ l0 + (s+ 1) ⋅ l1 ≈ 3K-Bytes for the different-size files.

7.2 Optimization of Parameters

Theorem 4. Given a file with sz = n ⋅ s sectors and the probability � of sector corruption, the detection probability
of IPDP has P (sz, �, !) ≥ 1 − (1 − �)sz⋅!, where ! denotes the sampling probability in the verification protocol. For
a hybrid cloud P, the detection probability of CPDP has P (sz, {�k, rk}Pk∈P , !) ≥ 1 −

∏

Pk∈P(1 − �k)
sz⋅rk⋅!, where rk

denotes the proportion of data blocks in the k-th CSP, �k denotes the probability of file corruption in the k-th CSP.
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Proof. For a uniform random verification in the IPDP scheme, Pb ≥ 1− (1 − �)s is the probability of block corruption
with s sectors. For a challenge with t = n ⋅! index-coefficient pairs, the verifier can detect block errors with probability
P ≥ 1− (1 − Pb)

t ≥ 1− ((1− �)s)n⋅! = 1− (1− �)sz⋅!, where sz = n ⋅ s.
In the same way, the verifier can detect this server misbehavior with probability

P (sz, {�k, rk}Pk∈P , !) ≥ 1−
∏

Pk∈P

((1− �k)
s)n⋅rk⋅!

= 1−
∏

Pk∈P

(1− �k)
sz⋅rk⋅!,

where rk ⋅ ! denotes the possible number of blocks queried by the verifier in the k-th CSP.

Theorem 5. Given the detection probability P and the probability of sector corruption �, the optimal value of s can be
computed by

min
s∈ℕ

{

log(1− P )

log(1− �)

a

s
+ b ⋅ s

}

,

where a ⋅ t+ b ⋅ s denotes the computational cost of verification protocol in IPDP, and a, b ∈ ℝ.

Proof. Let sz = n ⋅ s = size(f)/l0. According to Theorem 4, the sampling probability holds

w ≥
log(1− P )

sz ⋅ log(1− �)
=

log(1 − P )

n ⋅ s ⋅ log(1− �)
.

In order to minimize the computational cost, we have

min
s∈ℕ

{a ⋅ t+ b ⋅ s} = min
s∈ℕ

{a ⋅ n ⋅ w + b ⋅ s}

≥ min
s∈ℕ

{

log(1− P )

log(1 − �)

a

s
+ b ⋅ s

}

.

Since a
s
is a monotone decreasing function and b ⋅ s is a monotone increasing function for s > 0, there exists an optimal

value of s ∈ ℕ in the above equation.

Remark. The optimal value of s is unrelated to a certain file from Theorem 4.
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Figure 10: The relationship between computational costs and the number of sectors in each block.

For instance, we assume the probability of sector corruption is the constant value � = 0.01. We set the detection
probability P ranged from 0.8 to 1, e.g., P = {0.8, 0.85, 0.9, 0.95, 0.99, 0.999}. In terms of Table 5, the computational
cost of the verifier can be simplified to t+ s, so that we can observe the computational costs under the different s and
P in Figure 10 by using Theorem 5. When s is less than the optimal value, the computational cost decreases evidently
with increase of s, and then it raises when s is more than the optimal value.

More accurately, we show the influence of parameters, sz ⋅ w, s, and t, under the different detection probabilities
in Table 7. It is easy to see that the computational costs raise with increase of P . Moreover, we can make sure the
sampling number of challenge by the following Lemma:
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Table 7: The influence of parameters under the different detection probabilities P (� = 0.01).

P 0.8 0.85 0.9 0.95 0.99 0.999

sz ⋅ w 160.14 188.76 229.11 298.07 458.21 687.31

s 12 14 14 14 18 25

t 14 14 17 22 26 28

Lemma 3. Given the detection probability P , the probability of sector corruption �, and the number of sectors in each

block s, the sampling number of verification protocol is a constant t = n ⋅ w ≥ log(1−P )
s⋅log(1−�) for the different files.

Finally, we observe the change of s under the different � and P . The experimental results are showed in Table 8. It
is obvious that the optimal value of s raises with increase of P and with decrease of �. We choose the optimal value
of s on the basis of practical settings and system requisition. For NTFS format, we suggest that the value of s is 200
and the size of block is 4K-Bytes, which is the same as the default size of cluster when the file size is less than 16TB in
NTFS. In this case, the value of s ensures that the extra storage doesn’t exceed 1% in storage servers.

Table 8: The influence of parameter s under the different probabilities of sector corruption � and the different detection
probabilities P .

0.1 0.01 0.001 0.0001

0.8 3 12 37 118
0.85 3 14 40 136
0.9 4 14 44 150
0.95 4 14 53 166
0.99 6 18 61 207
0.999 7 25 79 249

Theorem 6. Given a detection probability P and hybrid cloud P = {Pk}, the optimal value of s can be computed by

min
s∈ℕ

{

log(1− P )
∑

Pk∈P rk ⋅ log(1− �k)
⋅
a

s
+ b ⋅ s

}

, (6)

where rk denotes the proportion of data blocks in the k-th CSP, �k denotes the probability of file corruption in the k-th
CSP, a ⋅ t+ b ⋅ s denotes the computational cost of verification protocol in CPDP, and a, b ∈ ℝ.

7.3 Implementation and Experimental Results

We have implemented Hierarchy PDP scheme in order to test the effect of dispersal secret data on private cloud and
hybrid cloud. The code is written in C++ and experiments were run on an Intel Core 2 processor running at 2.16 GHz.
All cryptographic operations utilize the QT and bilinear cryptographic library.

We evaluate the performance of our ZK-IPDP and ZK-CPDP schemes in terms of computational overhead, due to
these two schemes have constant-size communication overhead. For sake of comparison, our experiments use the same
scenario as the above analysis, where a fix-size file is used to generate the tags and prove possession under the different
s. For a 150K-Bytes file, the computational overheads of the verification protocol are showed in Figure 11(a) when the
value of s is ranged from 1 to 50 and the size of sector is 20-Bytes. It is obvious that the experiment curve is consistent
with the above analysis in Figure 10. The optimal values of s are consistent with the above analysis. The computational
overheads of the tag generation are also showed in Figure 11(b) in the same case. The results indicate that the overhead
is reduced when the values of s is increased. Our demo software is showed in Figure 12 and is downloaded in our web
(http://sefcom.asu.edu/cloud/release.rar).

8 Conclusions

In this paper, we addressed the construction of PDP scheme on hybrid clouds. Based on interactive zero-knowledge
proof and multi-prover zero-knowledge proof, we proposed an interactive PDP (IPDP) scheme to support zero-knowledge
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Figure 11: The experiment results of the different s for a 150K-Bytes file (� = 0.01 and P = 0.99).

Figure 12: The demo software for our schemes (download it in our web).

property and dynamic scalability, as well as a cooperative PDP (CPDP) solution on hybrid clouds using three-layered
index hierarchy. Our experiments showed that our schemes require a small, constant amount of overhead, which
minimizes computation and communication complexity while presenting an efficient method for selecting the optimal
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number of sectors in each block to minimize the computation costs of clients and storage service providers.
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A Proof of Knowledge Soundness

Proof. For some unavailable tags {�∗} ∕∈ TagGen(sk, F ), we assume that there exists an interactive machine P ∗ can
pass verification with noticeable probability, that is, there exists a polynomial p(⋅) and all sufficiently large �’s,

Pr[⟨P ∗(F, {�∗}), V ⟩(pk,  ) = 1] ≥ 1/p(�). (7)

Using P ∗, we build a probabilistic algorithmℳ (called the knowledge Extractor) that breaks the Computational Diffie-
Hellman CDH problem in a cyclic group G ∈ S of order p. That is, given G,G1, G2 ∈R G, output Gab ∈ G, where
G1 = Ga, G2 = Gb. The algorithmℳ is constructed by interacting with P ∗ as follows:

Setup: ℳ chooses a random  ∈R ℤp and sets g = G, ℎ = G , H1 = G1 , H2 = G2 as the public key pk = (g, ℎ,H1, H2),
which is sent to P ∗;

Learning: given a file F = {mi,j}
i∈[1,n]
j∈[1,s] ,ℳ first chooses s random �i ∈R ℤp and ui = G�i2 for i ∈ [1, s]. Secondly,ℳ

assigns the indexes 1, ⋅ ⋅ ⋅ , n into two sets T = {t1, ⋅ ⋅ ⋅ , tn
2
} and T ′ = {t′1, ⋅ ⋅ ⋅ , t

′
n
2
}. Let mti,j ∕= mt′

i
,j for all i ∈ [1, n/2]

and j ∈ [1, s]. Then,ℳ builds an index table � and �(1) in terms of the original scheme and generates the tag of each
block, as follows:

∙ For each ti ∈ T ,ℳ chooses ri ∈R ℤp and sets �
(2)
ti

= H�(1)(�ti) = Gri and �ti = Gri1 ⋅G
∑

s
j=1 �j⋅mti,j

2 .

∙ For each t′i ∈ T ′, ℳ uses ri and two random r′i, �i ∈R ℤp to sets �
(2)
t′
i

= H�(1)(�t′i) = Gri ⋅ G
r′i
2 and �t′

i
=

G�i1 ⋅G

∑
s
j=1 �j⋅mt′

i
,j

2 .

ℳ checks whether e(�t′
i
, ℎ)

?
= e(�

(2)
t′
i
, H1) ⋅ e(

∏s

j=1 u
mt′

i
,j

j , H2) for all t′i ∈ T ′. If the result is true, then outputs

Gab = Ga2 = (G�i ⋅ Gri1 )(r
′

i)
−1

, otherwiseℳ sends (F, �∗ = {�i}
n
i=1) and  = (u = {ui}, �, �

(1)) to P ∗. At any time,

P ∗ can query the hash function H�(1)(�k),ℳ responds with �
(2)
ti

or �
(2)
t′
i

with consistency, where k = ti or t
′
i.

Output: ℳ chooses an index set I ⊂ [1, n2 ] and two subset I1 and I2, where I = I1
∪

I2, ∣I2∣ > 0. ℳ constructs the
challenges {vi}i∈I and all vi ∕= 0. Thenℳ simulates V to run an interactive ⟨P ∗,ℳ⟩ as follows:

∙ Commitment. ℳ receives H ′
1 from P ∗;

∙ Challenge. ℳ sends the challenge Q1 = {(ti, vi)}i∈I to P ∗;

∙ Response. ℳ receives (�′, {�′
j, �

′
j}
s
j=1) from P ∗.

ℳ checks whether or not these responses is an effective result by Equation 3. If it is true, then ℳ completes a
rewindable access to the prover P ∗ as follows:

∙ Commitment. ℳ receives H ′′
1 from P ∗;

∙ Challenge. ℳ sends the following challenge to P ∗,

Q2 = {(ti, vi)}i∈I1
∪

{(t′i, vi)}i∈I2 ;

∙ Response. ℳ receives (�′′, {�′′
j , �

′′
j }
s
j=1) or a special halting-symbol from P ∗.

If the response is not a halting-symbol, thenℳ checks whether the response is effective by Equation 3, H ′
1

?
= H ′′

1 , for

∀j ∈ [1, s], �′
j

?
= �′′

j . If they are true, thenℳ outputs

Gab = Ga2 = (�′′�′− G
r⋅( −1)

∑
i∈I rivi

1 )
1

r⋅
∑

i∈I2
r′
i
⋅vi . (8)

where r = (�′′
j − �

′
j) ⋅ (

∑

i∈I2
vi ⋅ (mt′

i
,j −mti,j))

−1 and

 =

∑

i∈I1

∑s

j=1 �jmti,jvi +
∑

i∈I2

∑s

j=1 �jmt′
i
,jvi

∑

i∈I

∑s

j=1 �jmti,jvi

for any j ∈ [1, s], H ′
1 = Hr

1 and  ∕= 1.
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It is obvious that we set � = a and � = b in the above construction. Since the tags �ti are available in ∀ti ∈ T , the
responses in the first interactive satisfies the equation:

e(�′, ℎ) = e(
∏

i∈I

(�
(2)
ti

)vi , H ′
1) ⋅ e(

∏s

j=1
u
�′

j

j ⋅ �
′
j

−1
, H2)

= e(G
∑

i∈I
ri⋅vi , H ′

1) ⋅ e(
∏s

j=1
u
�′

j

j ⋅ �
′
j
−1
, H2).

However, the �t′
i
are unavailable in ∀t′i ∈ T

′. In the second interaction, we require that ℳ can rewind the prover
P ∗, i.e., the chosen parameters are the same in two protocol executions [7, 10]. In the above construction, this property
ensures H ′

1 = H ′′
1 = Hr

1 and for all j ∈ [1, s], �′
j = �′′

j . So we have �′′
j − �

′
j = r ⋅

∑

i∈I vi ⋅ (mt′
i
,j −mti,j) = r ⋅

∑

i∈I2
vi ⋅

(mt′
i
,j −mti,j),

∏s

j=1 u
�′

j

j �
′
j
−1

= G
∑

i∈I

∑
s
j=1 �jmti,j

vi

2 , and
∏s

j=1 u
�′′

j

j �′′
j
−1

= G
∑

i∈I1

∑s
j=1 �jmti,j

vi

2 ⋅G

∑
i∈I2

∑
s
j=1 �jmt′

i
,jvi

2 .
In terms of the responses, we hold

e(
∏

i∈I1

(�
(2)
ti

)vi ⋅
∏

i∈I2

(�
(2)
t′i

)vi , H ′′
1 ) ⋅ e(

s
∏

j=1

u
�′′

j

j ⋅ (�
′′
j )

−1, H2)

= e(
∏

i∈I1

(Gri)vi ⋅
∏

i∈I2

(Gri ⋅G
r′i
2 )vi , H ′′

1 ) ⋅ e(

s
∏

j=1

u
�′′

j

j

�′′
j

, H2)

= e(
∏

i∈I

Gri⋅vi , H ′
1) ⋅ e(

∏

i∈I2

G
r′i⋅vi
2 , H ′

1) ⋅ e(

s
∏

j=1

u
�′

j

j

�′
j

, H2)
 

= e(�′ , ℎ) ⋅ e(G
∑

i∈I2
r′ivi

2 ⋅G(1− )
∑

i∈I
rivi , H ′

1) = e(�′′, ℎ)

Thus, we have the equation e(�′′/�′ , ℎ) = e(G
∑

i∈I2
r′i⋅vi

2 ⋅ G(1− )
∑

i∈I
rivi , H ′

1) and H ′
1 = ℎar, the Equation 8 holds.

Furthermore, we have

Pr[ℳ(CDH(G,Ga, Gb)) = Gab]

≥ Pr[⟨P ∗(F, {�∗}),ℳ⟩(pk,  ) = 1] ≥ 1/p(�).

It follows thatℳ can solve the given �-CDH challenge with advantage at least �, as required. This completes the proof
of Theorem.

B Proof of Zero-knowledge

Proof. In order to prove the theorem, we construct a protocol S ′ 3, which is the same as the original protocol S, with
one difference: we replace �i = u�i

i with Λi = e(ui, H
′
2)
�i , such that, Λi = e(�i, H2), and the equation of verification is

charged as

e(�′, ℎ)
?
= e(

∏

(i,vi)∈Q

H�(1)(�i)
vi , H ′

1) ⋅
e(
∏s

j=1 u
�j

j , H2)

e(
∏s
j=1 �j , H2)

= e(
∏

(i,vi)∈Q

H�(1)(�i)
vi , H ′

1) ⋅
e(
∏s

j=1 u
�j

j , H2)
∏s

j=1 Λj

For the protocol S ′, we construct a machine S, which is called a simulator for the interaction of V with P . Given the
public key pk = (g, ℎ,H1, H2), for a file F , a public verification information  = (u1, ⋅ ⋅ ⋅ , us), and a index set I (t = ∣I∣),
the simulator SF (pk,  ) executes the following:

1. Chooses a random �′ ∈R G1 and computes e(�′, ℎ);

2. Chooses t random coefficients {vi}i∈I ∈R ℤtp and a random  ∈R ℤp to compute H ′
1 ← H

1 and

A1 = e(
∏

i∈I

H�(1)(�i)
vi , H ′

1);

3We do not adopt this scheme as a result of the high computational overhead of bilinear map.

23



3. Chooses s random {�i} ∈R ℤsp to A2 = e(
∏s

j=1 u
�j

j , H2);

4. Chooses random {�i}i∈[1,s−1] ∈R Gs−1 to calculate

{

Λi ← e(�i, H
′
2) i ∈ [1, s− 1]

Λs ← A1 ⋅A2 ⋅
(

e(�′, ℎ) ⋅
∏s−1
i=1 Λi

)−1 .

Finally, the output of simulator S is SF (pk,  ) = (C,Q, �) = (H ′
1, {(i, vi)}, (Λ, �

′, �)), which is an available verifica-
tion for Equation (3). Let V iewF (⟨P (F, �), V ∗⟩(pk,  )) = (H ′

1, {(i, vi)}, (Λ, �
′, �)) denote the output of the interactive

machine V ∗ after interacting with the interactive machine P on common input (pk,  ). In fact, every pair of vari-
ables is identically distributed in two ensembles, for example, H ′

1, {(i, vi)} and H ′
1, {(i, vi)} are identically distributed

due to , {vi} ∈R ℤp, as well as (Λ, �′, �) and (Λ, �′, �) is identically distributed due to �′ ∈R G, �j ∈R ℤp and
uj ← �j +

∑

i∈I vi ⋅ mi,j for i ∈ [1, s], {�i}i∈[1,s−1] ∈R G, and the distribution of Λs is decided on the randomized
assignment of the above variables. Hence, the ensembles SF (pk,  ) and V iewF (⟨P (F, �), V ∗⟩(pk,  )) is computation-
ally indistinguishable, thus for every probabilistic polynomial-time algorithm D, for every polynomial p(⋅), and for all
sufficiently large �, it holds that

∣

∣

∣

∣

Pr[D
(

pk,  , SF (pk,  )
)

= 1]−
Pr[D

(

pk,  , V iewF (P (F, �), V ∗)(pk,  )
)

] = 1

∣

∣

∣

∣

≤ 1/p(�).

The fact that such simulators exist means that V ∗ does not gain any knowledge from P since the same output could
be generated without any access to P . That is, the S ′ is a zero-knowledge protocol. Further, assume there exists no
leakage of information by replace �i with Λi, such that S is a zero-knowledge protocol.

C Proof of Security against Forging Attack

Proof. Assume that an adversary A breaks the DPDP scheme S to forge an available tag, that is, the adversary A has
advantage � in forging the tags in S after A executes a series of dynamic data operations: given the valid pk,  , � for a
file F and a DPDP Oracle S(�) with the secret of tags �,

Pr

[

AS(�)(pk,  ) = ((F, �), (m∗, �∗))
∧⟨P (m∗, �∗), V ⟩(pk,  )) = 1 ∧m∗ ∕∈ F

]

≥ �.

where (F, �) is the new file and tags after dynamic data operations and (m∗, �∗) is a forged data block and tag. Using
A, we build an algorithm ℬ that breaks the Computational Diffie-Hellman (CDH) problem in a cyclic group G ∈ S of
order p. That is, given G,G1, G2 ∈R G, output Gab ∈ G, where G1 = Ga, G2 = Gb. The algorithm ℬ is constructed by
interacting with A as follows:

Setup: ℬ generates the public key pk and  as follows:

∙ chooses two random �,  ∈R ℤp and sets g ← G1, ℎ← G�, H1 ← G�2 , H2 ← G�;

∙ chooses s random �1, ⋅ ⋅ ⋅ , �s ∈R ℤp and computes ui ← G�i1 for i ∈ [1, s];

∙ builds an empty index set L and an empty hash table T , in which each record Ti involves a status Mi (the initial
value is NULL) and a random Xi (the initial value is 0);

∙ provides pk← (g, ℎ,H1, H2) and  ← (u1, ⋅ ⋅ ⋅ , us) to A.

Learning: A issues up to t queries for dynamic data operations and s hash queries, ℬ responds to each query as follows:

∙ for an update query (i,mi): given any message mi = {mi,j}j∈[1,s], ℬ searches the index table � at the index i,
if there exists the record �i, then ℬ sets the value of Vi ← maxBi=Bj

{Vj}+1 and chooses a random Ri in �i. ℬ
chooses a new random ri ∈R ℤp and computes

H�(1)(�i)← Gri , �i ← Gri2 ⋅G
∑

s
j=1 �j ⋅mi,j ⋅

1 .

Finally, ℬ stores (True, ri) in Ti, sets i ∈ L, and sends (mi, �i) to A;
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∙ for a delete query (i): given an index i, ℬ sets �i = “Bi∣∣0∣∣Ri” chooses a new random ri ∈R ℤp and computes
H�(1)(�i)← Gri , �i ← Gri2 , delete this record and sends �i to A;

∙ for an insert query (i,mi): given any message mi = {mi,j}j∈[1,s], ℬ searches the index table � at the index i, if
there exists the record �i, then ℬ moves the No. ≥ i records backward in order and sets the value of Bi ← Bi−1,
Vi ← maxBi=Bj

{Vj}+ 1 and chooses a random Ri in �i. ℬ chooses a new random ri ∈R ℤp and computes

H�(1)(�i)← Gri , �i ← Gri2 ⋅G
∑s

j=1 �j ⋅mi,j ⋅

1 .

Finally, ℬ stores (True, ri) in Ti, sets i ∈ L, and sends (mi, �i) to A;

∙ for a hash query (i): given an index i, if i ∈ L, then ℬ sends H�(1)(�i) = Gri to A in terms of the stored ri, else ℬ
chooses a new random ri ∈R ℤp, computes H�(1)(�i) = Gri1 , and then increases a new record Ti (sets Mi = false
and Xi = ri) and sends H�(1)(�i) = Gri1 to A.

Output: after A outputs a forgery (m∗
i , �

∗
i ), ℬ checks whether the index i belongs to L and the following equation

holds

e(�∗
i , ℎ)

?
= e(Gri1 , H1) ⋅ e(

s
∏

j=1

u
m∗

i,j

j , H2), (9)

which can replace the verification of ⟨P, V ⟩. If (m∗
i , �

∗
i ) passes the above check, ℬ outputs

Gab ←

(

�∗
i

G
∑

s
j=1 �j ⋅m

∗
i,j

⋅

1

)r
−1
i

. (10)

It is easy to discover that ℬ defines � = b (unknown) and � = . As the hash function is a random Oracle
manipulated by ℬ, ℬ provides the different values in terms of the choices of A, that is,

H�(1)(�i) =

{

Gri Mi = True
Gri1 Mi = False

(11)

where L denotes the set of all distributed tags. When i ∈ L, it is easy to prove the availability of all tags {�i}i∈L by
using the following equation

e(�i, ℎ) = e(Gri2 , G
�) ⋅ e(G

∑
s
j=1 �j ⋅mi,j ⋅

1 , G�) = e(Gri , H1) ⋅ e(

s
∏

j=1

u
mi,j

j , H2).

But for all i ∕∈ L, ℬ uses the hash value Gri1 to solve the CDH problem:

e(�∗
i , ℎ) = e(Gri1 , H1) ⋅ e(

s
∏

j=1

u
m∗

i,j

i , H2)

= e(Gri1 , G
�
2 ) ⋅ e(G

∑s
j=1 �j⋅m

∗

i,j ⋅

1 , G⋅�)

= e(Ga⋅b⋅ri , G�) ⋅ e(G
⋅

∑
s
j=1 �j ⋅m

∗

i,j ⋅

1 , G�) = e(�∗
i , G

�)

The probability that a given tag query causes ℬ to abort is at most qℎ/p and therefore the probability that ℬ aborts
as a result of A’s tag is at most qℎqt/p. Thus, ℬ can solve the given CDH challenge with advantage at least �(1− qℎqt

p
),

as required. This completes the proof of Theorem.
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