
Accountability:
Definition and Relationship to Verifiability

Ralf Küsters
University of Trier, Germany

kuesters@uni-trier.de

Tomasz Truderung
University of Trier, Germany

truderun@uni-trier.de

Andreas Vogt
University of Trier, Germany

vogt@uni-trier.de

ABSTRACT
Many cryptographic tasks and protocols, such as non-repudiation,
contract-signing, voting, auction, identity-based encryption, and
certain forms of secure multi-party computation, involve the use of
(semi-)trusted parties, such as notaries and authorities. It is crucial
that such parties can be held accountable in case they misbehave
as this is a strong incentive for such parties to follow the proto-
col. Unfortunately, there does not exist a general and convincing
definition of accountability that would allow to assess the level of
accountability a protocol provides.

In this paper, we therefore propose a new, widely applicable def-
inition of accountability, with interpretations both in symbolic and
computational models. Our definition reveals that accountability
is closely related to verifiability, for which we also propose a new
definition. We prove that verifiability can be interpreted as a re-
stricted form of accountability. Our findings on verifiability are of
independent interest.

As a proof of concept, we apply our definitions to the analy-
sis of protocols for three different tasks: contract-signing, voting,
and auctions. Our analysis unveils some subtleties and unexpected
weaknesses, showing in one case that the protocol is unusable in
practice. However, for this protocol we propose a fix to establish a
reasonable level of accountability.

1. INTRODUCTION
Many cryptographic tasks and protocols, such as non-repudiation

[47], contract-signing [4], voting [16, 10], auctions [37], identity-
based encryption [19, 20], and certain forms of secure multi-party
computation [24], involve the use of (semi-)trusted parties, such
as notaries and authorities. It is crucial that such parties can be
held accountable in case they misbehave as this is a strong, in some
cases maybe the main incentive for such parties to follow the pro-
tocol. Unfortunately, there does not exist a general and convincing
definition of accountability that would allow to assess the level of
accountability a protocol provides. The few existing formulations
of accountability are, for the most part, quite ad hoc and protocol
specific (see Section 4 for the related work).

The main goal of this paper is therefore to propose a new, general
definition of accountability and to demonstrate its applicability to a
wide range of cryptographic tasks and protocols. Jumping ahead, it
turns out that accountability is closely related to verifiability. This
motivated us to also propose a new definition for this prominent
security requirement. More precisely, our contributions are as fol-
lows.

Contribution of this Paper. In this paper, we propose a general,

This work was partially supported by Deutsche Forschungsge-
meinschaft (DFG) under Grant KU 1434/5-1

model-independent definition of accountability. We provide inter-
pretations of our definition both in symbolic (Dolev-Yao style) and
computational (cryptographic) models. While, as usual, analysis in
the symbolic model is simpler and more amenable to tool-support,
the computational definition gives stronger security guarantees, as
it does not abstract from cryptographic details and allows for a
more-fine grained measure of accountability. As for the symbolic
definition, we discuss and illustrate how existing analysis tools can
be used to check accountability in some cases.

Our definition of accountability is applicable to a wide range of
cryptographic tasks and protocols, yet it allows to precisely cap-
ture the level of accountability a protocol provides. This is demon-
strated in three case studies, in which we apply our definition to
protocols for three important cryptographic tasks: contract-signing,
voting, and auctions. Our analysis of these protocols reveals some
subtleties and unexpected, partly severe weaknesses. For example,
in the auction protocol that we analyze [37], which was explicitly
designed to be of practical use, our analysis shows that if two bid-
ders with two different bids claim to be the winner of the auction,
then, even if it is clear that one of the two bidders misbehaved, a
judge cannot blame a specific bidder. It even remains open whether
the auctioneer was honest and who actually won the auction. We
propose a fix for this problem and prove that it in fact solves the
problem.

As mentioned, it turns out that accountability is closely related to
verifiability. Therefore, we also introduce a new definition of ver-
ifiability, again with a symbolic and computational interpretation.
This definition is interesting in its own right: It is again applicable
to a wide range of cryptographic tasks and protocols. Also, unlike
other definitions and informal descriptions, our definition takes a
global view on verifiability, centered around the overall goal of a
protocol, rather than focussing on what, in the context of e-voting,
is called individual and universal verifiability; although these forms
of verifiability can also be captured by our definition (see Sections 3
and 4).

We show that verifiability can be interpreted as a restricted form
of accountability. While, given our definitions, this relationship is
easy to see, in the literature, accountability and verifiability have
not been formally connected before. The relationship offers a
deeper understanding of the two notions and allows to derive state-
ments for verifiability from statements for accountability, as illus-
trated by our case studies. We believe that accountability is the
property protocol designers should aim for, not just verifiability,
which on its own is often too weak a property in practice: If a pro-
tocol participant (rightly) complains that something went wrong,
then it should be possible to (rightly) hold specific protocol partic-
ipants accountable for their misbehavior, and by this, resolve the
dispute.

Structure of the Paper. Accountability is defined in Section 2.
In Section 3 we provide our definition of verifiability, along with
the proposition that shows that verifiability is implied by account-
ability. Related work is discussed in Section 4. Our case studies
are presented in Sections 5 (voting), 6 (auction), and 7 (contract
signing). More details can be found in the appendix.

2. ACCOUNTABILITY
In this section, we provide our definition of accountability. As

mentioned in the introduction, we present two variants: a symbolic
and a computational one, which conceptually are closely related.
We start with a definition of protocols.

2.1 Protocols
In this section, we present a generic definition of a protocol, suit-

able for the definition of accountability (and verifiability).
We do not fix any specific symbolic or computational model as

our definitions do not depend on details of such models. We only
require that the model provides us with a notion of a process which
can perform internal computation and can communicate with other
processes by sending messages via (external) input/output chan-
nels. We also assume that processes can be composed to form new
processes; however, the composition may be subject to certain con-
ditions. If π and π′ are processes, then we write π ‖ π′ for the
composition of π and π′. Moreover, in the symbolic setting, we
assume that a process defines a set of runs; we assume a set of
runs, rather than a single run, as processes may be nondetermin-
istic. In the computational setting, a process defines a family of
probability distributions over runs, indexed by the security parame-
ter. The representation of a single run should contain a description
of the corresponding process. In the computational setting, a single
run also contains the security parameter and all random coins. We
will consider only complete runs that cannot be extended, which
in the symbolic setting can include infinite runs. Possible sym-
bolic instances of our framework include the applied π-calculus [2]
and models based on I/O-automata, see, e.g., [28]. In a computa-
tional model, processes would typically be modeled as probabilistic
polynomial-time systems of probabilistic polynomial-time interac-
tive Turing machines (ppt ITMs), see, e.g., [18]. Our case studies
provide concrete examples (see Sections 5 to 7).

For sets I and O of channel names, we denote by Π(I,O) the
set of all processes with external input channels in I and external
output channels in O.

DEFINITION 1 (PROTOCOL). A protocol is a tuple P =
(Σ,Ch, In,Out,{Πa}a∈Σ,{Π̂a}a∈Σ), where:
– Σ = {a1, . . . ,an} and Ch are finite sets, called the set of agents

and channels of P, respectively.
– In and Out are functions from Σ to 2Ch such that Out(a) and

Out(b) are disjoint for all a 6= b and In(a) and In(b) are disjoint
for all a 6= b. The sets In(a) and Out(a) are called the set of
(external) input and output channels of agent a, respectively. We
assume that a special channel decisiona ∈ Ch is an element of
Out(a), for every a∈ Σ, but that it is not an input channel for any
agent.

– Πa ⊆ Π(In(a),Out(a)), for every a ∈ Σ, is called the set of pro-
grams of a. This set contains all programs a can possibly run,
modeling both honest and potential dishonest behavior.

– Π̂a ⊆ Πa, for every a ∈ Σ, is called the set of honest programs
of a, i.e., the set of programs that a runs if a is honest. Often
this set is a singleton, but sometimes it is convenient to consider
non-singleton sets.

Let P = (Σ,Ch, In,Out,{Πa}a∈Σ,{Π̂a}a∈Σ) be a protocol. An
instance of P is a process of the form π = (πa1 ‖ . . . ‖ πan) with
πai ∈Πai . We say that ai is honest in such an instance, if πai ∈ Π̂ai .
A run of P is a run of some instance of P. We say that ai is honest
in a run r, if r is a run of an instance of P with honest ai. A property
γ of P is a subset of the set of all runs of P. By ¬γ we denote the
complement of γ.

2.2 Symbolic and Computational Account-
ability

We now provide a symbolic and a computational definition of
accountability.

Our definition of accountability is w.r.t. an agent J of the proto-
col who is supposed to blame protocol participants in case of mis-
behavior. The agent J, which we sometimes refer to as a judge,
can be a “regular” protocol participant or an (external) judge, pos-
sibly provided with additional information by other protocol par-
ticipants; however, J may not necessarily trust these other protocol
participants since they may be dishonest and may provide J with
bogus information.

In order to understand the subtleness of accountability, it is in-
structive to look at a first (flawed) definition of accountability and
its possible interpretations, inspired by informal statements about
accountability in the literature.

(i) (fairness) J (almost) never blames protocol participants who
are honest, i.e., run their honest program.

(ii) (completeness) If in a protocol run participants “misbehave”,
then J blames those participants.

While the fairness condition is convincing and clear, this is not the
case for the completeness condition. First, the question is what
“misbehavior” means. It could be interpreted as a behavior that
does not correspond to any honest behavior. However, this inter-
pretation is much too strong. No protocol would satisfy it, because
this includes misbehavior that is impossible to be observed by any
other party and misbehavior that is completely “harmless” and “ir-
relevant”. For example, if, in addition to the messages a party A
is supposed to send to another party B, A also sends some harm-
less message “hello”, say, then B can observe this misbehavior, but
cannot convince J of any misbehavior. This example also shows
that interpreting “misbehavior” as dishonest behavior observable
by honest parties, and hence, misbehavior that, at least to some ex-
tent, affects these parties, does not work either. In fact, a complete-
ness condition based on this notion of “misbehavior” would again
deem basically all non-trivial protocols insecure w.r.t. accountabil-
ity. More importantly, this completeness condition misses the main
point: Misbehavior that cannot be observed by any honest party
may still be very relevant and harmful. We therefore advocate an
interpretation that circles around the desired goals of a protocol.

Informally speaking, our definition of accountability reads as
follows:

(i) (fairness) J (almost) never blames protocol participants who
are honest, i.e., run their honest program.

(ii) (completeness, goal centered) If, in a run, some desired goal
of the protocol is not met—due to the misbehavior of one or
more protocol participants—then J blames those participants
who misbehaved, or at least some of them (see below).

For example, for voting protocols a desired goal could be that the
published result of the election corresponds to the actual votes cast
by the voters. The completeness condition now guarantees that if
in a run of the protocol this is not the case (a fact that must be
due to the misbehavior of one or more protocol participants), then
one or more participants are held accountable by J; by the fairness

2

condition they are rightly held accountable. In case of auctions,
a desired goal could be that the announced winner is in fact the
winner of the auction; if this is not so in a run, by the completeness
condition some participant(s), who misbehaved, will be blamed.
Desired goals, as the above, will be a parameter of our definition.

The informal completeness condition above leaves open who ex-
actly should be blamed. This could be fixed in a specific way.
However, this would merely provide a black and white picture, and
either set the bar too high or too low for many protocols. For exam-
ple, it is desirable that the judge, whenever a desired goal of a pro-
tocol is not met, blames all misbehaving parties. This, as explained
above, is usually not possible (e.g., if for a dishonest party the de-
viation from the protocol consists in sending a harmless “hello”
message). So, this sets the bar too high for practically every proto-
col. Alternatively, one could require that at least some misbehaving
parties can be blamed individually (individual accountability). Be-
ing able to rightly blame individual parties, rather than, say, just a
group of parties among which at least one misbehaved, is impor-
tant in practice, since only this might have actual consequences for
a misbehaving party. However, as illustrated by our case studies,
protocols often fail to achieve individual accountability. One could
set the bar lower and only require that a group of parties is blamed
among which at least one misbehaved. But this is often unsatisfying
in practice. Altogether, rather than fixing the level of accountabil-
ity protocols are supposed to provide up front, it is more reasonable
to have a language in which this can be described precisely, allow-
ing to compare protocols and tell apart weak protocols from strong
ones.

To this end, below we introduce what we call accountability
properties, which are sets of what we call accountability con-
straints. We also allow the judge to state quite detailed “verdicts”.

Formally, a verdict is a positive boolean formula ψ built from
propositions of the form dis(a), for an agent a, where dis(a) is
intended to express that a misbehaved (behaved dishonestly), i.e.,
did not follow the prescribed protocol. Let us look at some ex-
amples. If the judge states dis(a) ∨ dis(b), then this expresses
the judge’s belief that a or b misbehaved. (In case of a fair
judge, this implies that at least one of the two parties indeed mis-
behaved.) Another example: In a voting protocol, with a vot-
ing machine M and auditors A1, . . . ,Ar, if the judge states, say,
dis(M)∧dis(A1)∧ . . .∧dis(Ar), then this expresses the judge’s be-
lief that the voting machine and all auditors misbehaved; the judge
would state dis(M) ∨ (dis(A1) ∧ . . . ∧ dis(Ar)) if she is not sure
whether the voting machine or all auditors misbehaved. Our case
studies demonstrate the usefulness of such expressive forms of ver-
dicts. We will denote by Fdis the set of all verdicts. A party J
can state a verdict ψ, by sending ψ on its dedicated output channel
decisionJ . Note that, in one run, J may state many different verdicts
ψ1, . . . ,ψk, which is equivalent to stating the verdict ψ1∧·· ·∧ψk.

Formally, for a protocol P and an instance π of P, a verdict ψ is
true in π, written π |= ψ, iff the formula ψ evaluates to true with
the proposition dis(a) set to false, if a is honest in π, and set to true
otherwise.

We now introduce accountability constraints and accountability
properties which allow to precisely describe the level of account-
ability a protocol provides.

An accountability constraint of a protocol P is a tuple (α,ψ1, . . . ,
ψk), written (α⇒ ψ1 | · · · | ψk), where α is a property of P and
ψ1, . . . ,ψk ∈ Fdis. We say that a constraint (α ⇒ ϕ1 | · · · | ϕk)
covers a run r, if r ∈ α.

Intuitively, in a constraint C = (α⇒ ψ1 | · · · | ψk), the set α con-
tains runs in which some desired goal of the protocol is not met
(due to the misbehavior of some protocol participant). The formu-

las ψ1, . . . ,ψk are the possible (minimal) verdicts that are supposed
to be stated by J in such a case; J is free to state stronger verdicts
(by the fairness condition these verdicts will be true). Formally, for
a run r, we say that J ensures C in r, if either r /∈ α or J states in r
a verdict ψ that implies one of ψ1, . . . ,ψk (in the sense of proposi-
tional logic).

EXAMPLE 1. To illustrate the notion of accountability con-
straints, let us consider the following examples, where, say, J is
supposed to blame misbehaving parties, M is a voting machine,
A1, . . . ,Ar are auditors, and α contains all runs in which the pub-
lished result of the election is incorrect:

Cex
1 = α⇒ dis(M) | dis(A1) | · · · | dis(Ar) (1)

Cex
2 = α⇒ dis(M)∨ (dis(A1)∧·· ·∧dis(Ar)) (2)

Cex
3 = α⇒ dis(M) | dis(A1)∧·· ·∧dis(Ar). (3)

Constraint Cex
1 requires that if in a run the published result of the

election is incorrect, then at least one (individual) party among M,
A1, . . . ,Ar can be held accountable by J; note that different parties
can be blamed in different runs. Party J ensures Cex

1 in a run r ∈ α,
if, for example, J states dis(A1) or J states dis(M)∧dis(Ar), but not
if J only states dis(M)∨ dis(A1). Constraint Cex

3 is stronger than
Cex

1 as it requires that it is possible to hold dis(M) or all auditors
accountable. In this case, for J it does not suffice to state dis(A1),
but stating dis(M)∧ dis(Ar) or dis(A1)∧ ·· · ∧ dis(Ar) does. Con-
straint Cex

2 is weaker than Cex
3 , and incomparable to Cex

1 . It states
that if the published result of the election is incorrect, then J can
leave it open whether dis(M) or all auditors misbehaved.

As mentioned before, we think that in practice, individual account-
ability is highly desirable to deter parties from misbehaving. So
ideally, protocols should satisfy accountability constraints where
in case a desired goal is not met, at least one misbehaving party
is blamed individually. Formally, we say that (α⇒ ψ1 | · · · | ψk)
provides individual accountability, if for every i ∈ {1, . . . ,k}, there
exists a party a such that ψk implies dis(a). In other words, each
ψ1, . . . ,ψk determines at least one misbehaving party. In Exam-
ple 1, Cex

1 and Cex
3 provide individual accountability, but Cex

2 does
not.

A set Φ of constraints for protocol P is called an accountabil-
ity property of P. Typically, an accountability property Φ covers
all relevant cases in which desired goals for P are not met, i.e.,
whenever some desired goal of P is not satisfied in a given run r
due to some misbehavior of some protocol participant, then there
exists a constraint in Φ which covers r. We note that considering
sets of accountability constraints rather than just a single constraint
provides more expressiveness: A set of constraints allows to more
precisely link the participants to be blamed with specific violations,
and hence, captures more precisely the kind of accountability pro-
vided by a protocol (see our case studies for examples.

We are now ready to provide precise symbolic and computational
definitions of accountability. As already mentioned, conceptually
these two definitions share the same basic idea outlined above.

Symbolic Accountability. Let P be a protocol and J be an agent of
P. We say that J is fair, if his/her verdicts are never false. Formally,
J is fair in P, if, for every instance π of P and every run r of π,
whenever J states a verdict ψ in r, then π |= ψ. For instance, if in
some run with honest M and A1, an agent J states dis(M)∨dis(A1),
then J is not fair.

DEFINITION 2 (Symbolic accountability). Let P be a proto-
col with the set of agents Σ, let J ∈ Σ, and Φ be an accountability
property of P. We say that J ensures Φ-accountability for protocol
P (or P is Φ-accountable w.r.t. J) if

3

(i) (fairness) J is fair in P and
(ii) (completeness) for every constraint C in Φ and every run r of

P, J ensures C in r.

While the completeness condition requires J’s verdicts to be suffi-
ciently strict, i.e., at least as strict as the constraints require, fairness
guarantees that J’s verdicts are correct. Note that the fairness con-
dition does not depend on the accountability property under con-
sideration.

REMARK 1 (AUTOMATIC ANALYSIS). The fairness condi-
tion can often be checked automatically by tools for cryptographic
protocol analysis since it is a reachability property: For all B ⊆ Σ,
one considers systems in which the agents in B run their honest pro-
grams. Then, one checks whether a state can be reached, where J
states ψ such that ψ does not evaluate to true if dis(b) is set to false
iff b ∈ B. This can often be done automatically, provided that the
cryptographic primitives used and the communication model the
protocol builds on can be handled by the analysis tool and provided
that the sets Π̂c and Πc of programs of agents c, as specified in the
protocol P, are either finite or as powerful as a Dolev-Yao intruder.

Whether or not the completeness condition can be checked au-
tomatically heavily depends on the accountability property under
consideration.

Our analysis of the contract-signing protocol considered in Sec-
tion 7 illustrates how the fairness condition can be checked au-
tomatically; in this case, the completeness condition can also be
checked automatically, but it is quite trivial.

Computational Accountability As usual, a function f from the
natural numbers to the interval [0,1] is negligible if, for every c > 0,
there exists `0 such that f (`) ≤ 1

`c , for all ` > `0. The function f
is overwhelming if the function 1− f is negligible. A function f is
δ-bounded if, for every c > 0 there exists `0 such that f (`)≤ δ+ 1

`c ,
for all ` > `0.

Let P be a protocol with the set Σ of agents. Since we now
consider the computational setting, we assume that the programs
agents run are ppt ITMs. Let Φ be an accountability property of P.
Let π be an instance of P and J ∈ Σ be an agent of P. For a set V of
verdicts, we write Pr[π(1`) 7→ {(J :ψ) |ψ ∈V}] for the probability
that π produces a run in which J states ψ for some ψ ∈ V , where
the probability is taken over the random coins of the ITMs in π and
1` is the security parameter given to the ITMs. Similarly, we write
Pr[π(1`) 7→ ¬(J : Φ)] to denote the probability that π, with security
parameter 1`, produces a run such that J does not ensure C in this
run, for some C ∈Φ.

An agent J is computationally fair, if he states false verdicts only
with negligible probability. Formally, J is computationally fair in
a protocol P, if Pr[π(1`) 7→ {(J : ψ) | π 6|= ψ}] is negligible as a
function of `, for all instances π of P.

DEFINITION 3 (Computational accountability). Let P be a
protocol with the set of agents Σ, J ∈ Σ, Φ be an accountabil-
ity property of P, and δ ∈ [0,1]. We say that J ensures (Φ,δ)-
accountability for protocol P (or P is (Φ,δ)-accountable w.r.t. J)
if

(i) (fairness) J is computationally fair in P and
(ii) (completeness) for every instance π of P, the probability

Pr
[
π(1`) 7→ ¬(J : Φ)

]
is δ-bounded as a function of `.

In the completeness condition, it is of course desirable that δ = 0,
i.e., the probably that J fails to ensure a constraint is negligible.
However, as we will illustrate in Section 5, this is often too de-
manding. Instead of giving up in such cases, by introducing the

parameter δ, we can measure the level of completeness a protocol
provides.

3. VERIFIABILITY
In this section, we provide a symbolic and a computational defi-

nition of verifiability and show that verifiability is a restricted form
of accountability. We use the terminology and notation introduced
in Section 2.

Symbolic and Computational Verifiability. Let P be a protocol
and γ be a property of P, called the goal of P. We say that an agent
J accepts a run r, if in this run J sends the message accept on
channel decisionJ . Intuitively, J accepts a run if she believes that
the goal has been achieved in this run.

The agent J may be a regular protocol participant (voter, bidder,
authority, etc.) or an external judge, who is provided with informa-
tion by (possibly untrusted) protocol participants.

Expressing goals as properties of a protocol is, as in case of ac-
countability, a powerful and flexible tool, which for voting proto-
cols, for example, allows to capture several forms of verifiability
considered in the literature: The goal of an agent (a voter, in this
case) J could, for example, include all runs in which her vote is
counted as cast; this goal aims at what is called individual verifia-
bility [41]. Another goal could include all runs in which the ballots
shown on a bulletin board are counted correctly; this goal aims at
what is called universal verifiability [41]. In [43], another type of
verifiability is considered, namely eligibility verifiability. This is
captured by the goal γ that includes those runs where only eligi-
ble voters vote at most once. However, the bottom line should be
a goal, which we call global verifiability, that contains all runs in
which the published result exactly corresponds to the votes cast by
eligible voters (see Section 5 for a more precise formulation and a
more in depth discussion). This goal has not formally been consid-
ered in the literature so far, at most implicitly as a conjunction of
all the above mentioned goals. Analogously, goals for other kinds
of protocols, such as auction protocols, can be formulated (see Sec-
tion 6).

In our definition of verifiability, we require that an agent J ac-
cepts a run, only if the goal of the protocol is satisfied. This re-
quirement, however, would be easily satisfied in every protocol by
an agent who never accepts a run. Therefore, the definition of veri-
fiability should also contain conditions under which the goal should
be achieved and runs should be accepted. Clearly, one may ex-
pect that a protocol run should be accepted (and the goal should
be achieved), at least when all the protocol participants are hon-
est. Furthermore, in some protocols, such as those for e-voting,
one may expect that to achieve the goal it is sufficient that vot-
ing authorities follow the protocol, regardless of whether or not
the voters behave honestly. Therefore, our definition, besides the
goal, has an additional parameter: a positive boolean formula over
propositions of the form hon(a), for an agent a, which describes
a group or groups of participants that can guarantee, when run-
ning their honest programs, that a goal of a protocol is achieved.
We will denote the set of such formulas by Fhon. For example,
for an e-voting protocol with a voting machine M and auditors
A1, . . . ,Ar, one might expect that to achieve the goal of the pro-
tocol it is sufficient that M is honest and at least one of the au-
ditors A1, . . . ,Ar is honest. This can be expressed by the formula
ϕex = hon(M)∧ (hon(A1)∨·· ·∨hon(Ar)).

For an instance π of P and ψ ∈ Fhon, we write π |= ψ if ψ
evaluates to true with the proposition hon(a) set to true, if a is
honest in π, and set to false otherwise.

We can now provide symbolic and computational definitions of

4

verifiability.

DEFINITION 4 (Symbolic verifiability). Let P be a protocol
with the set of agents Σ. Let J ∈ Σ, ψ ∈Fhon, and γ be a property
of P. Then, we say that the goal γ is guaranteed in P by ψ and
verifiable by J if the following conditions are satisfied:

(i) For every run r of an instance π of P such that π |= ψ, the
agent J accepts r.

(ii) For every run r of an instance of P in which J accepts r, it
holds that r ∈ γ.

Condition (ii) guarantees that J only accepts a run if the goal is
in fact achieved. Condition (i) says that the protocol is sound in
the sense that if ψ holds, i.e. certain participants are honest, as de-
scribed byψ, then indeed J accepts, which by Condition (ii) implies
that the goal is achieved.

This definition can easily be turned into a computational defi-
nition of verifiability. For this, by Pr[π(1`) 7→ (J : accept)] we
denote the probability that π, with security parameter 1`, produces
a run which is accepted by J. Analogously, by Pr[π(1`) 7→ ¬γ, (J :
accept)] we denote the probability that π, with security parameter
1`, produces a run which is not in γ but nevertheless accepted by J.

DEFINITION 5 (Computational verifiability). Let P be a
protocol with the set of agents Σ. Let δ ∈ [0,1], J ∈ Σ, ψ ∈Fhon,
and γ be a property of P. Then, we say that the goal γ is guaran-
teed in P by ψ and δ-verifiable by J if for every instance π of P the
following conditions are satisfied:

(i) If π |= ψ, then Pr[π(1`) 7→ (J : accept)] is overwhelming as
a function of `.

(ii) Pr[π(1`) 7→ ¬γ, (J : accept)] is δ-bounded as a function of `.

Just as in case of accountability, assuming negligibility in Condi-
tion (ii), i.e., δ = 0, is too strong for many reasonable protocols.

Relationship to Accountability. The following proposition shows
that verifiability can be considered to be a special case of account-
ability. While, given our definitions, this relationship is easy to
prove, in the literature, accountability and verifiability have not
been formally connected before.

Let ϕ ∈Fhon. We denote by ϕ ∈Fdis the negation normal form
of ϕ, where ¬hon(b) is replaced by dis(b). For example, for ϕex as
above, we have ϕex = dis(M)∨ (dis(A1)∧·· ·∧dis(Ar)).

Let P be a protocol and J be an agent such that J states only
formulas ψ that imply ϕ. Furthermore, assume that J accepts a
run iff it does not output a formula ψ. Now, the proposition is as
follows (see Appendix C for the proof):

PROPOSITION 1. Let ϕ, P and J be defined as above. Let γ be
a property of P. Then the statement

J ensures {¬γ⇒ ϕ}-accountability for P (4)

implies the statement

γ is guaranteed by ϕ in P and verifiable by J. (5)

If we additionally assume that, in P, J blames only ϕ (i.e. if J out-
puts ψ, then ψ= ϕ), then we also have that (5) implies (4).

This holds for both the symbolic and the computational defini-
tions, where in the latter case the same δ ∈ [0,1] can be used for
accountability and verifiability.

So, verifiability is implied by a restricted form of accountabil-
ity. As our case studies show (see Sections 5 and 6), ϕ typically
does not provide individual accountability, and hence, verifiability
is merely a weak form of accountability, and as argued before, of-
ten too weak in practice, since in case something goes wrong, it is
not possible to held individual parties accountable.

4. RELATED WORK
As already mentioned in the introduction, accountability and ver-

ifiability play a crucial role for many cryptographic tasks and pro-
tocols. However, in most works, accountability and verifiability or
related notions are merely described informally or are tailored to
specific protocols and security aspects (see, e.g., [4, 5, 17, 46, 44,
14, 13, 40, 3, 11, 39, 36, 10, 12]).

The only work which tried to deal with the general notion of
accountability (and which illustrates that coming up with a con-
vincing definition for accountability is non-trivial) is the one by
Jagadessan et al. [23]. Based on an abstract labeled transition sys-
tem, Jagadessan et al. proposed several candidate definitions for
accountability. However, the authors themselves pointed out se-
vere problems with all these candidates. None of these candidates
captures the central intuition behind our definition that if a de-
sired goal of the protocol is not met then some misbehaving par-
ties are (rightly) blamed. Moreover, the framework proposed by
Jagadessan et al. inherently cannot deal with (even symbolic) cryp-
tography, as, for example, one of their propositions (Proposition
5) capturing properties of the framework would fail in presence of
digital signatures.

In [1, 9], tool-supported analysis of specific properties related to
accountability have been carried out for a certified email protocol
and a non-repudiation protocol, respectively.

In [6], a notion related to accountability is considered in the set-
ting of simulation-based security and tailored specifically to the
problem of secure multi-party computation.

In [21], a weaker notion related to accountability, namely, au-
ditability is formalized in RCF. The approach is model specific and
tailored towards automatic analysis by type checking. It assumes
that honest parties trigger audit actions. Also, the properties to be
audited are not expressed in relation to the actual traces, but with re-
spect to assume statements that honest and dishonest agents make,
where dishonest agents may make false statements.

Auditability based on log files is considered in many papers, with
various applications, including network file systems and peer-to-
peer email [22], network storage services [45], and business pro-
cesses [8].

In [43], three types of verifiability, namely eligibility verifiabil-
ity, universal verifiability, and individual verifiability are formal-
ized within the applied π-calculus (see also Section 3). These defi-
nitions are tailored to an automatic analysis and are, as the authors
say, merely sufficient conditions for verifiability. Moreover, these
definitions are applicable only to e-voting protocols and assume
some particular structure of these protocols.

Juels, Catalano and Jakobson [26] present a cryptographic defi-
nition of verifiability, which is specifically tailored to their voting
protocol [25, 26].

5. ANALYZING BINGO VOTING
In this section, we analyze accountability and verifiability prop-

erties of the Bingo voting system [10] in the cryptographic set-
ting. Our analysis reveals some interesting new features of the sys-
tem. While it turns out that the system does not provide individual
accountability, the level of accountability/verifiability it provides
does not depend on the random number generator used in the voting
booth being honest; the numbers it produces may be predictable.
Our analysis also illustrates the necessity of the parameter δ in our
computational definitions of accountability and verifiability.

5.1 Informal Description of the Protocol
We denote the Bingo Voting System by PBingo(n,qnum,qrec,

s,~p), where n is the number of voters, qnum and qrec are the prob-

5

abilities that an honest voter performs the required checks (see
below), s is the number of rounds in the zero-knowledge proofs,
and ~p = (p0, . . . , pl) is the probability distribution on the possible
choices that a voter has, with p0 being the probability that an honest
voter abstains from voting and pi, i ∈ {1, . . . , l}, being the proba-
bility that she votes for candidate i.

In addition to the voters, the participants in this system are: (i)
A voting machine (M), which is the main component in the voting
process. The machine uses a bulletin board, that everybody has
read-access to, for broadcasting messages. (ii) A random number
generator (RNG) which is an independent source of randomness,
with its own display, and which is connected to the voting machine.
(iii) Some number of auditors who will contribute randomness in a
distributed way used for randomized partial checking (RPC) in the
zero-knowledge proofs provided by the voting machine.

The election consists of three phases described below: initializa-
tion, voting, and tallying.

Initialization phase. In this phase, the voting machine, for ev-
ery candidate j, generates n random numbers x j

1, . . . ,x
j
n, along with

an unconditionally hiding commitment comm(j,x j
i) for each pair

(j,x j
i); more precisely, Pedersen commitments are used. All com-

mitments are then shuffled and published on the bulletin board.
Moreover, zero-knowledge proofs are published to guarantee that
the same number n of commitments is created for every candidate
(see Appendix A.1).

Voting phase. In this phase, a voter can enter the voting booth to
indicate the candidate of her choice, say j, to the voting machine,
by pressing a button corresponding to j. Note that a voter can of
course also abstain from voting. Then, the RNG creates a fresh
random number which is displayed to the voter and transfered to
the voting machine. The machine then prints a receipt consisting
of the candidate names along with the following numbers next to
them: The number next to the chosen candidate is the fresh random
number, where the voter is expected to check that this number is
the same as the one displayed by the RNG. Next to every other
candidate j′, the machine prints a so far unused number x j′

i , for
some i. We assume that an honest voter checks with probability
qnum whether the receipt shows the number displayed by the RNG
at the correct position and complains publicly if this is not the case.

Tallying phase. In this phase, the voting machine first publishes
the result of the election as well as all the receipts given to voters
(in a lexicographical order). A voter is supposed to check whether
her receipt appears on the bulletin board. We assume that a voter
checks her receipt on the bulletin board with probability qrec.

The machine also opens the commitments to all pairs (j,x j
i)

where the number x j
i is unused, i.e., x j

i has not been printed on
any receipt.

Moreover, the machine provides zero-knowledge proofs to show
that the commitments that it has not opened yet can be correctly as-
signed to the receipts, i.e., for every receipt, l−1 commitments (be-
longing to l−1 different candidates and different for every receipt)
can be assigned to l−1 different candidates so that the number next
to a candidate coincides with the number in the corresponding com-
mitment. These zero-knowledge proofs are described in Appendix
A.1.

Now every observer can determine the result of the election: the
number of votes for candidate j is the number of opened commit-
ments of the form comm(j,x j

i), for some i, minus the number of
abstaining voters.

The probability distributions ~p and qnum /qrec on the choices and
the checks, respectively, could be generalized to model that the

probabilities qnum and qrec are not necessarily independent and, fur-
thermore, the voters do not necessarily act independently of each
other; however, we stick to the simpler case above.

5.2 Properties of the Protocol
Goal. Ideally, one might expect the system to provide individual
accountability whenever the goal γopt is violated, where γopt con-
tains all runs in which the result the machine outputs corresponds
exactly to the input of all the voters. However, this goal is too strong
for almost all real voting system: It is typically impossible to give
any guarantees concerning dishonest voters. In fact, a dishonest
voter may, for example, ignore the fact that her receipt is invalid or
is not posted on the bulletin board, and she might indicate this to
dishonest voting authorities/machines. Hence, the voting machine
can potentially alter the dishonest voter’s vote without the risk of
being detected.

Therefore, the best goal γ we can hope for is that the result is
correct up to the votes of dishonest voters. More formally, γ is
satisfied in a run if the published result exactly reflects the actual
votes of the honest voters in this run and votes of dishonest voters
are distributed in some way on the candidates, possibly differently
to the actual votes of the dishonest voters. This goal seems realistic
and we believe that it is the goal every voting system should aim
for. In particular, in case of verifiability, if this goal is achieved, one
can be sure that the votes of the honest voters are counted correctly
and that every dishonest voter votes at most once.

For the analysis of voting systems it is instructive to also con-
sider a family of goals γk, where γk coincides with γ except that up
to k of the votes of honest voters (rather than only dishonest voters)
may be altered as well; obviously γ = γ0. Note that since honest
voters check their receipts only with a certain probability (qnum and
qrec in our setting), undetected altering of votes by voting authori-
ties/machines may occur, but hopefully only with a small probabil-
ity.

Problems. Problem 1. If a voter v accuses the machine of not
having printed the number shown by the RNG on the receipt next
to the candidate chosen by v, it is unclear who cheated, unless one
makes the (unrealistic) assumption that the devices keep a com-
pletely trusted log of their actions: the voter (who possibly falsely
claimed something went wrong), the RNG (which possibly trans-
mitted the wrong number to the machine), or the machine (which
possibly filled out the receipt incorrectly). Hence, a judge can in
this case only state dis(M)∨dis(RNG)∨dis(v). There are two ways
to react to this statement: I) Stop the election process. However, it
is difficult to draw any practical consequences from this verdict,
such as punishing one of these parties. Also, the problem is that
any dishonest voter could easily spoil the whole election process.
II) Ignore the statement (formally, the judge should not make such
a statement, even if a voter complains) and continue the election
process. In this case, one has, however, to weaken the goal γ one
aims for: The published result of the election can only be accurate
up to honest voters who did not complain and, as before, dishonest
voters. We discuss variant I) in more detail below; variant II) is
discussed in Appendix A.4.

Problem 2. It is problematic if a number occurs twice on two
different receipts, which, if parties are honest, should happen with
only negligible probability: Consider the case that both the ma-
chine and the RNG are dishonest (and cooperate). The machine
then can know upfront the values that the RNG will produce. As-
sume that the RNG will produce the number r for voter v. In this
case, the voting machine could create commitments on (c,r) for
all candidates c. Now, if v votes for some candidate c0, the ma-

6

chine can print r next to c0 on the receipt and print a fresh random
number next to a different candidate. The machine can then per-
form correctly the ZK-proof, although it changed the vote of v. As
the machine has to open all commitments (possibly after shuffling
and re-randomization) it is visible that two times the same num-
ber occurs. However, the following cases could hold true: (i) the
machine and the RNG are dishonest (as in the case above), (ii) the
machine is honest but the RNG produced several times the same
number, and (iii) the RNG is honest and the machine produced sev-
eral times the same number. Hence it is not clear which individual
party misbehaved. Since M and the RNG are considered to be part
of the authorities, not knowing which specific device to blame is
not as problematic as in the previous case.

Judging Procedure. In order to be able to formally state and
prove the level of accountability the protocol provides, we first de-
fine a judging procedure, which decides whether to accept a run or
whether to blame (groups of) parties. Such a procedure should, in
fact, be part of the protocol specification.

The judging procedure is based solely on publicly available in-
formation, and hence, can be carried out both by an external judge
and a regular protocol participant. The procedure consists of the
following steps, where we assume that the procedure is run hon-
estly by some party a. In the following, we describe the behavior
of the agent a:
J1. If a participant b deviates from the protocol in an obvious way,

e.g., the RNG does not display a number or the voting machine
does not publish the commitments in the initialization phase, a
blames the respective participant by stating the trivial formula
dis(b). The voting machine is also blamed if a zero-knowledge
proof is not correct or a voter rightly complains about her re-
ceipt, i.e., she has a receipt that is not shown on the bulletin
board.

J2. If a voter v complains in the booth, a states the formula
dis(M)∨ dis(RNG)∨ dis(v) as explained above (Problem 1).
We denote the set of runs in which some voter complains in the
booth by αcompl.

J3. We denote the event that a number occurs twice on two dif-
ferent receipts with αtwice. In this case, the agent a states
dis(M)∨dis(RNG), as explained above (Problem 2).

J4. The agent a states dis(M) if a number occurs twice on one re-
ceipt or the machine opens a commitment to a number that al-
ready appears on a receipt.

J5. If none of the above happens, a accepts the run.

Modeling. The Bingo Voting system can easily be modeled as a
protocol in the sense of Definition 1, where in addition to the par-
ticipants mentioned in Section 5.1, we also consider a scheduler
and a voting booth (see Appendix A.2 for details). We denote
this protocol by Pa

Bingo1(n,qnum,qrec,s,~p), where the agent a car-
ries out the above judging procedure. We list some crucial security
assumptions reflected in our modeling:

A1. There is only an unidirectional connection from the RNG to
the machine, i.e., the machine cannot send messages to the
RNG (see below for the justification).

A2. One of the auditors that contribute to the randomness used for
the randomized partial checking of the zero-knowledge proofs
is honest. (Clearly, if all auditors were dishonest, the machine
could change the result of the election by faking the zero-
knowledge proofs without being detected.)

A3. It is not feasible to forge a receipt (see below for the justifi-
cation). This could be achieved by using special paper for the

receipts or by means of digital signatures.
A4. The voters that enter the voting booth are counted correctly

(by the voting booth); otherwise, nothing would prevent the
voting machine from voting on behalf of the abstaining voters,
which would further weaken the goal that can be achieved.

Note that we neither assume that the machine nor the RNG are
honest. The RNG can, for example, output some predetermined
sequence of numbers instead of random numbers. But then to prove
accountability/verifiability for a reasonable goal, assumption A1 is
crucial: If it were possible for the machine to send instructions to
the RNG, both devices could cooperate to change a voter’s vote,
see Appendix A.2 for details.

Without assumption A3, the following problem would occur: In
case a voter provides a receipt and claims that it does not appear
on the bulletin board, it would not be clear whether the machine
is dishonest (has not posted the legitimate receipt) or the voter is
dishonest (has forged the receipt). Hence, a judge could only blame
both parties, resulting in a lower level of accountability. Note that
A3 is a standard and reasonable assumption.

Accountability. We now state the level of accountability the Bingo
voting system provides. The parameter δ in the computational def-
inition of accountability (Definition 3) will be the following:

δk
Bingo = max

(
1
2s , max((1−qnum), (1−qrec), max

j=1,...,l
p j)k+1

)
,

where k is the parameter for the tolerated number of incorrectly
counted votes of honest voters, as used for the goal γk, and s, qnum,
qrec, and p1, . . . , pl are as introduced in Section 5.1.

We show (in Appendix A.3) that the protocol is accountable for
Φ1, where Φ1 consists of the following constraints:

αcompl⇒ dis(M)∨dis(RNG)∨dis(v1) | . . .
· · · | dis(M)∨dis(RNG)∨dis(vn)

αtwice⇒ dis(M)∨dis(RNG),
¬γk ∩¬αcompl∩¬αtwice⇒ dis(M) | dis(RNG).

THEOREM 1. Let a be an external judge or a voter. Under
the DLOG-assumption1, the agent a ensures (Φ1,δ

k
Bingo)-account-

ability for Pa
Bingo1(n,qnum,qrec,s,~p).

This theorem says that, in Pa
Bingo1, the probability that the goal γk

is not achieved and a does not blame anybody is at most δk
Bingo,

up to some negligible value. Moreover, a single agent can be held
accountable (and because of fairness rightly so) if, in the case the
goal is not achieved, no voter complains in the booth and no number
occurs twice on receipts.

We emphasize that the above theorem includes the case where
the RNG produces a totally predictable sequence of random num-
bers. If we had assumed an honest RNG, we could have omitted
the term max j=1,...,l p j in the definition of δk

Bingo in the above the-
orems. Also, we note that from the proof of Theorem 1 it follows
that the parameter δk

Bingo is optimal, i.e., there is a (misbehaving)
voting machine which changes k+1 votes but is detected only with
probability δk

Bingo.

Verifiability. Let us observe that, since J ensures (Φ1,δ
k
Bingo)-

accountability, J also ensures (¬γ⇒ψ)-accountability, where ψ=∨
a∈Σ dis(a). Also, whenever J states ψ′, then ψ′ implies ψ. There-

fore, due to the fact that the judging procedure is constructed in
1From this assumption, it follows that it is infeasible to open a
Pedersen-commitment to two different values [38].

7

such a way that J accepts the run if and only if J does not blame
anybody, by Proposition 1, we immediately obtain the following
result.

COROLLARY 1. Let a be an external judge or a voter. Under
the DLOG-assumption, in Pa

Bingo1(n,qnum,qrec,s,~p), the goal γk is

guaranteed by
∧

a∈Σ hon(a) and δk
Bingo-verifiable by a.

This corollary says that, in Pa
Bingo1, correctness of the result (up to

votes of dishonest voters) is guaranteed only if all participants are
honest and is δk

Bingo-verifiable by a (recall that a uses only public
information). This means that a, with overwhelming probability,
accepts a run if everybody is honest, but he/she accepts a run only
with probability at most δk

Bingo if the result is not correct (up to
votes of dishonest voters).

This verifiability property reflects the weakness of the system
Pa

Bingo1(n,qnum,qrec,s,~p) already revealed by Theorem 1: By
wrongly complaining, every single dishonest voter can spoil the
election process. This weakness is not present in the version men-
tioned above, that we study in Appendix A.4, which, however,
comes at a price of a weaker goal.

6. THE PRST PROTOCOL
In this section, we study the auction protocol proposed by Parkes,

Rabin, Shieber, and Thorpe [37]. More precisely, we study here
one of a few variants of the protocol proposed in [37], namely the
variant for Vickrey auctions with one item and without so-called
delayed decryption key revelation services; our definition also ap-
plies to the other variants, though. We carry out our analysis in a
symbolic (Dolev-Yao style) model.

While applying our definition of accountability to this protocol,
we identified some quite serious problems that allow parties to mis-
behave and spoil the complete auction process, without facing the
risk of being held individually accountable. We propose fixes to the
original protocol in order to establish individual accountability and
make the protocol useable.

6.1 Informal Description of the Protocol
The protocol assumes a public key infrastructure. In particular,

only bidders with registered signature keys can participate in the
protocol. The protocol uses digital signatures, a hash function (used
to produce commitments2), homomorphic randomized encryption
(more specifically, Paillier encryption), and non-interactive zero-
knowledge proofs for proving correctness of the result (see below).

By sigA[m] we abbreviate the message 〈m,sigA(m)〉, where
sigA(m) is a term representing the signature of A on the message
m. By EA(m,r) we will denote encryption of a message m under
the public key of A with random coins r. By hash(m) we denote
the hash of m.

The parties of the protocol are the following: the bidders
B1, . . . ,Bn, the auctioneer A, and the notaries N1, . . . ,Nl . The auc-
tioneer maintains a bulletin board, where he posts all public in-
formation about the auction. All posts to the bulletin board carry
appropriate digital signatures.

The protocol consists of the following steps. For simplicity of
presentation, in the description of the protocol given below, we as-
sume that all the entitled bidders B1, . . . ,Bn participate in the auc-
tion and that all their bids are different; this convention is not es-
sential and can easily be dropped. Also, for simplicity, we have

2A hash function is used to commit on values with high entropy.

left out some additional input provided by the parties for the zero-
knowledge proof, since in our symbolic modeling of zero-know-
ledge proofs this input is not needed (see [37] for details).
S1. A posts (on the bulletin board) basic information about the auc-

tion: the terms of the auction, an identifier Id, the deadlines
T1,T2,T3 for different stages of the auction, and his public en-
cryption key.

S2. To participate in the auction, a bidder Bi chooses her bid bi
and encrypts it as Ci = EA(bi,ri) using a random coin ri. Bi
then commits to Ci, computing Comi = 〈hash(Ci), Id〉, signs
this commitment, and sends sigBi

[Comi] to A and her no-
taries, if used, before time T1. The notaries forward the signed
commitments to A. A replies by sending a signed receipt
Ri = sigA[Comi, Id,T1] to Bi. If Bi does not obtain her receipt,
she complains.

S3. At time T1, the auctioneer A posts all the received commit-
ments in a random order: Comπ(1), . . . ,Comπ(n), where π is a
randomly chosen permutation of the indices of submitted com-
mitments.

S4. Between time T1 and T2 any bidder Bi who has a receipt Ri for a
commitment which is not posted can appeal her non-inclusion
(by providing her receipt).

S5. After time T2, every Bi sends to A her encrypted bid Ci. After
time T3, A posts Cπ(1), . . . ,Cπ(n). Anybody can verify whether
all the commitments posted in S3 have been correctly opened.

S6. A recovers the bids b1, . . . ,bn, by decrypting the encrypted bids
with his private decryption key, and determines the winner Bw
of the auction and the price bu the winner has to pay, which
is supposed to be the second highest bid. He also constructs
a (universally verifiable) zero-knowledge proof P that the re-
sult is correct, i.e. Cw contains the biggest bid and Cu contains
the second biggest bid bu: This is done by proving appropri-
ate inequalities between the bids in the ciphertexts C1, . . . ,Cn,
without revealing these bids, and by revealing the random coin
used in Cu, which he can recover using his private key. The
auctioneer posts

Bw, bu, sigBw
[Comw], P. (6)

6.2 Properties of the Protocol
In this section, we state accountability and verifiability properties

of the protocol.

Goal. The protocol should satisfy the goal γ which, informally,
is achieved in a run if the protocol successfully produces a result
which is correct with respect to the committed bids. Note that in
a run the committed bids are (computationally) determined by the
commitments to the encrypted bids C1, . . . ,Cn. Now, more pre-
cisely, γ requires that (i) all the submitted commitments are dif-
ferent, (ii) the result is published and the published price bu is the
second highest bid amongst the bids encrypted in C1, . . . ,Cn, and
(iii) an honest bidder is declared to be the winner if and only if her
bid is the highest in C1, . . . ,Cn.

Conditions (ii) and (iii) capture that the announced result corre-
sponds to the bids committed by the bidders. In addition, condition
(i) prevents that a dishonest bidder B j who somehow got to know
the commitment of another bidder Bi (e.g., a dishonest auctioneer
revealed the commitment to B j) can place the same bid as Bi, with-
out even knowing it. This problem was not considered in [37].

Ideally, we would hope that the protocol satisfies individual ac-
countability, i.e., if the goal is not achieved, then individual parties
can be (rightly) blamed for this. Unfortunately, as our analysis re-
veals, the protocol does not guarantee this strong level of account-

8

ability, due to the following problems, which will be reflected in
the accountability property we prove for this protocol.

Problems. In the following, for a set of agents A, let ψ∗X be the
verdict stating that all but possibly one agent in X misbehaved. For
instance, ψ∗{a,b,c} = (dis(a)∧dis(b))∨ (dis(a)∧dis(c))∨ (dis(b)∧
dis(c)).

Problem 1. This problem boils down to the fact that the protocol
does not offer any effective mechanism for non-repudiable commu-
nication, even though the notaries were introduced for this purpose:
If (a) a bidder Bi claims that she did not obtain her receipt after she
had sent her signed commitment to the auctioneer in Step S2 and
(b) the auctioneer claims that he did not obtain the signed commit-
ment from the bidder, then it is impossible to resolve the dispute.
Therefore, in such a case, the judge can only state dis(A)∨dis(Bi).

A similar problem occurs if, after Step S5, a bidder Bi claims that
her encrypted bid Ci has not been posted on the bulletin board and
A claims that he has not received this bid. Again, it is impossible to
resolve the dispute. This problem is more serious than the previous
one, as at this point the auctioneer knows all the values of the bids
and the corresponding bidders, and he may have an interest in ma-
nipulating the auction. It is also a good opportunity for a dishonest
bidder to disturb the auction process.

Problem 2. If two (or more) commitments posted in Step S3 have
the same value, then it is not clear who is to be blamed, even if
the auctioneer provided the signatures of the bidders on these com-
mitments. In fact, it is possible that one of the these bidders Bi
honestly followed the protocol, but the auctioneer forwarded her
commitment to the other bidders who submitted this commitment
with their own signatures. It may, however, as well be the case
that A is honest, but all the mentioned bidders are dishonest and
submitted the same commitment.

Problem 3. A quite serious problem occurs at the end of the auc-
tion. Suppose that the auctioneer posts a result as in (6), for some
w,u, with a correct zero-knowledge proof P. Suppose also that
some bidder B j 6= Bw claims that Cw is her encrypted bid. Then,
even if we assume that the judge requests both Bw and B j to send
him their receipts and to prove their knowledge of the random coin
rw used in Cw, the judge is not able to blame a specific party. In
fact, all the following scenarios are possible: (1) A is honest and
Bw,B j are dishonest: Bw submits the commitment for Cw and then
forwards to B j her receipt and the random coin rw. (2) Bw is honest
and A,B j are dishonest: A provides B j with the receipt Rw of bidder
Bw and her random coin rw; note that A can extract the random coin
from Cw. (3) B j is honest and A,Bw are dishonest: B j submits her
commitment, obtains her receipt, but A declares that Bw is the win-
ner, providing Bw, as above, with the receipt of B j and her random
coin.

This is a serious problem, since a judge cannot blame a specific
party among the parties A, Bw, and B j; he can only state the verdict
ψ∗{A,Bw,B j} and cannot determine who actually won the auction.

Judging Procedure. In order to be able to formally state and
prove the level of accountability the protocol provides, we first de-
fine a judging procedure, which decides whether to accept a run or
whether to blame (groups of) parties. Such a procedure should, in
fact, be part of the protocol specification.

The judging procedure is based solely on publicly available in-
formation, and hence, can be carried out both by an external judge
and a regular protocol participant. The procedure consists of the
following steps, where we assume that the procedure is run by some
party V .

V1. If a bidder Bi complains in Step S2, then V states dis(A)∨
dis(Bi) (Problem 1).

V2. If A does not publish the list of commitments when expected
(Step S3), then V blames A (states dis(A)). If A posts this
list, but, for l > 1, l commitments have the same value (Prob-
lem 2), then A is requested to provide signatures of l bidders
Bi1 , . . . ,Bil on these commitments. If A refuses to do so, V
blames A; otherwise, V states ψ∗{A,Bi1 ,...,Bil }

.

V3. If, in Step S4, Bi posts a receipt without a corresponding com-
mitment posted by A in the previous step, V blames A.

V4. In Step S5, if some previously posted commitment Comi is
not opened, A should provide the signature of Bi on Comi.
If A does not provide the requested signature, V blames him.
Otherwise, V states dis(A)∨dis(Bi) (Problem 1).

V5. If, in Step S6 A, does not post a result with a valid zero-
knowledge proof and a valid signature sigw[Comw], then V
blames A.

V6. If, after Step S6, some bidder B j with j 6= w complains and
provides a receipt of A on Comw as well as the random coins
for Comw, then V states the verdict ψ∗{A,Bw,B j} (Problem 3).

V7. If none of the above happens, then V accepts the run.

Modeling. We consider a few variants of the protocol: By PJ
PRST

we denote the version of the protocol with an additional party, the
judge. This party is assumed to be honest and run the judging pro-
cedure described above. By PX

PRST , for X ∈{B1, . . . ,Bn}, we denote
the version of the protocol, where X is assumed to be honest and
his/her honest program is extended by the judging procedure (i.e.
X , in addition to his/her protocol steps, also carries out the judging
procedure). In each of these systems, besides X also the bulletin
board is assumed to be honest. All the remaining parties are not
assumed to be honest. For a detailed modeling of these systems (in
a symbolic setting) see Appendix B.2.

Accountability Property. Now, we define the accountability
property of the protocol. Let αi

rec be the set of runs where Bi claims
that she has sent her signed commitment in Step S2, but has not ob-
tained her receipt (Problem 1). Let αi

open be the set of runs where
some commitment Comi is not opened in Step S5 and A provides
the signature of Bi on this commitment (Problem 2). Let αX

reuse,
where X is a set of at least two bidders, be the set of runs where A,
as described in Step V2, reveals signatures of all the bidders in X
on the same commitment. Finally, let αw, j

win be the set of runs where
the auctioneer posts a result of the form (6), for some w,u, with a
correct zero-knowledge proof P and some bidder B j 6= Bw claims
that Cw is her bid and provides the receipt of A on Comw as well as
the random coins of Cw (Problem 3). Let ¬α denotes the set of runs
which are not in αi

rec, αi
open, αX

reuse, and αw, j
win, for any i, j,w,X .

We will show that the protocol is accountable for Φ, where Φ

consists of the following constraints:

αi
rec⇒ dis(Bi)∨dis(A) for all i ∈ {1, . . . ,n}, (7)

αi
open⇒ dis(Bi)∨dis(A) for all i ∈ {1, . . . ,n}, (8)

αX
reuse⇒ ψ∗X∪{A} for all X ⊆ {B1, . . . ,Bn}, |X |> 1 (9)

α
w, j
win⇒ ψ∗{A,Bw,B j} for all w, j ∈ {1, . . . ,n}, (10)

¬α∩¬γ⇒ dis(A). (11)

Note that, amongst the above accountability constraints, only (11)
provides individual accountability.

THEOREM 2. Let V ∈ {J,B1, . . . ,Bn}. V ensures Φ-account-
ability for PV

PRST .

9

The proof of this theorem is given in Appendix B.5. This the-
orem guarantees that whenever the goal γ is not satisfied, agent V
states some verdict, where the agent A is held accountable individ-
ually if none of the cases αi

rec, αi
open, αX

reuse, and αw, j
win occurs. As

explained, occurrence of αw, j
win is very problematic.

Verifiability. As in Section 5.2, by Proposition 1, we immediately
obtain the following result.

COROLLARY 2. The goal γ is guaranteed in PV
PRST by

hon(A) ∧ hon(B1) ∧ ·· · ∧ hon(Bn) and verifiable by V , for any
V ∈ {J,B1, . . . ,Bn}.

6.3 Our Improved Version
We now propose fixes to the original auction protocol in order

to establish individual accountability and make the protocol use-
able. In this section, we only briefly sketch these fixes, with the
detailed description of our version of the protocol presented in the
Appendix B.1.

For our protocol, we assume an independent and honest bulletin
board (replacing the bulletin board controlled by the auctioneer),
where the auctioneer and the bidders can post messages. Now, ev-
ery bidder, instead of sending her signed commitment sigBi

[Comi]
to the auctioneer in Step S2, posts the message EA(sigBi

[Comi],r′i)
(for some random coin r′i) on the bulletin board. Similarly, instead
of sending the encrypted bid to A in Step S5, a bidder posts her
encrypted bid on the bulletin board. One can show that this enables
the judge to resolve the disputes described in Problems 1 and 2.

To prevent Problem 3, we modify the commitment Comi of Bi:
In our version, Comi = 〈hash(Ci),hash(qi), Id〉, where qi is a ran-
dom nonce generated by Bi. The bidder is supposed to keep the
nonce qi secret, except for using it to resolve the dispute described
in Problem 3: If B j notices that the commitment signed by Bw in (6)
is her own commitment, B j posts q j on the bulletin board; resulting
in Bw being blamed.

We prove that our version PV
PRST ′ of the protocol provides a

high level of accountability: individual parties are held account-
able whenever in a protocol run the goal γ is not achieved, where
γ is defined as in Section 6.2. Let Φ′ consist of only one individual
accountability constraint: ¬γ⇒ dis(A) | dis(B1) | · · · | dis(Bn). We
have the following result (see Appendix B.4 for the proof).

THEOREM 3. Let V ∈ {J,A,B1, . . . ,Bn}. V ensures Φ′-
accountability for protocol PV

PRST ′ .

As in the case of the original version of the protocol, the ac-
countability property stated in Theorem 3 allows us to immediately
obtain the corresponding verifiability property of our version of the
protocol. It is interesting to observe that, even though the two ver-
sions of the protocol enjoy very different levels of accountability,
the verifiability properties for both of them are exactly the same. In
fact, in both protocols, any dishonest bidder can spoil the auction
procedure and, therefore, the goal needs to be guaranteed by all the
participants. This, again, illustrates that verifiability is too coarse a
notion and is not able to distinguish between protocols that provide
strong incentives for the participants to behave honestly from those
that do not provide such incentives.

7. ASW PROTOCOL
In this section, we study accountability properties of the ASW

optimistic contract-signing protocol [4] in the symbolic setting. We
only sketch the protocol and our results (see Appendix D for de-
tails)

Description of the Protocol. The objective of the ASW protocol
is to enable two parties, A (the originator) and B (the responder),
to obtain each other’s signature on a previously agreed contractual
text with the help of a trusted third party T , who, however, is only
invoked in case of a problem. In the intended run of the protocol, A
first indicates her willingness to sign the contract to B, by sending
a message m1. Then B sends his willingness to sign the contract to
B (m2). Next, A sends a message m3 that together with m1 forms a
valid signature. Finally, B sends a message m4 that, again, together
with m2 forms a valid signature to A. If after A has sent m1, B does
not respond, A may contact T to obtain an abort token aT . If after
A has sent m3, she does not obtain the signature from B, A may ask
T for a replacement contract rT ; analogously for B. Once T issued
aT (rT), T should never issue rT (aT) afterwards.

Properties of the Protocol. We are interested in the accountability
of T . Ideally, we would like to hold T accountable whenever it
produces both aT and rT . However, this is unrealistic: T could
produce aT and rT and never send these messages to anybody. We
therefore consider only the case where there is a dispute in which
the judge is faced with both aT and rT . More precisely, by PASW
we denote the protocol (in the sense of Definition 1) modeling the
ASW protocol, where, in addition to A, B and T , we consider an
additional party, the judge J. The honest programs of A, B, and
T run each one instance of their role, as specified by the protocol,
where T can deal with up to three requests. The judge, who is
assumed to be honest, blames T if and only if he obtains a message
of the form 〈aT ,rT 〉 for some contract. For PASW , we define α to be
the set of runs where J obtains a message of the form 〈aT ,rT 〉 for
some contract, modeling that J is faced with both aT and rT . Let Φ

consist of the accountability constraint α⇒ dis(T). We obtain the
following theorem:

THEOREM 4. J ensures Φ-accountability for PASW .

Following Remark 1, we verified Theorem 4 automatically using
the protocol analysis tool by Millen and Shmatikov [35] (see [33]
for our formal modeling). As mentioned, the completeness condi-
tion is rather trivial in this case.

8. REFERENCES
[1] M. Abadi and B. Blanchet. Computer-assisted verification of

a protocol for certified email. Sci. Comput. Program.,
58(1-2):3–27, 2005.

[2] M. Abadi and C. Fournet. Mobile Values, New Names, and
Secure Communication. In POPL’01, p. 104–115. ACM
Press, 2001.

[3] B. Adida and R. L. Rivest. Scratch & vote: self-contained
paper-based cryptographic voting. In WPES’06, p. 29–40.
2006.

[4] N. Asokan, V. Shoup, and M. Waidner. Asynchronous
protocols for optimistic fair exchange. In IEEE Symposium
on Research in Security and Privacy, p. 86–99. IEEE
Computer Society, 1998.

[5] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair
exchange of digital signatures. IEEE Journal on Selected
Areas in Communications, 18(4):593–610, 2000.

[6] Yonatan Aumann and Yehuda Lindell. Security against
covert adversaries: Efficient protocols for realistic
adversaries. In TCC’07, volume 4392 of LNCS, p. 137–156.
Springer, 2007.

[7] M. Backes, M. Maffei, and D. Unruh. Zero-Knowledge in
the Applied Pi-calculus and Automated Verification of the

10

Direct Anonymous Attestation Protocol. In S&P’08, p.
202–215. IEEE Computer Society, 2008.

[8] Adam Barth, John C. Mitchell, Anupam Datta, and Sharada
Sundaram. Privacy and utility in business processes. In
CSF’07, p. 279–294. IEEE Computer Society, 2007.

[9] Giampaolo Bella and Lawrence C. Paulson. Accountability
protocols: Formalized and verified. ACM Trans. Inf. Syst.
Secur., 9(2):138–161, 2006.

[10] J.-M. Bohli, J. Müller-Quade, and S. Röhrich. Bingo Voting:
Secure and Coercion-Free Voting Using a Trusted Random
Number Generator. In VOTE-ID’07, volume 4896 of LNCS,
p. 111–124. Springer, 2007.

[11] D. Chaum. http://punchscan.org/.
[12] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc,

R. L. Rivest, P. Y. A. Ryan, E. Shen, and A. T. Sherman.
Scantegrity II: End-to-End Verifiability for Optical Scan
Election Systems using Invisible Ink Confirmation Codes. In
EVT’08, 2008.

[13] D. Chaum, P.Y.A. Ryan, and S. Schneider. A practical,
voter-verifiable election scheme. In ESORICS’05, volume
3679 of LNCS, p. 118–139. Springer, 2005.

[14] B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern,
and J. Traoré. On Some Incompatible Properties of Voting
Schemes. In WOTE’06, 2006.

[15] J. Clark, A. Essex, and C. Adams. Secure and Observable
Auditing of Electronic Voting Systems using Stock Indices.
In CCECE’07, 2007.

[16] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward
a Secure Voting System. In S&P’08, p. 354–368. IEEE
Computer Society, 2008.

[17] J.A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free
optimistic contract signing. In CRYPTO’99, volume 1666 of
LNCS, p. 449–466. Springer, 1999.

[18] O. Goldreich. Foundations of Cryptography, volume 1.
Cambridge Press, 2001.

[19] Vipul Goyal. Reducing trust in the pkg in identity based
cryptosystems. In CRYPTO’07, volume 4622 of LNCS, p.
430–447. Springer, 2007.

[20] V. Goyal, S. Lu, A. Sahai, and B. Waters. Black-box
accountable authority identity-based encryption. In CCS’08,
p. 427–436. ACM, 2008.

[21] N. Guts, C. Fournet, and F. Nardelli. Reliable evidence:
Auditability by typing. In ESORICS’09, volume 5789 of
LNCS, p. 168–183. Springer, 2009.

[22] A. Haeberlen, P. Kouznetsov, and P. Druschel. Peerreview:
practical accountability for distributed systems. In SOSP’07,
p. 175–188. ACM, 2007.

[23] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely. Towards a
theory of accountability and audit. In ESORICS’09, volume
5789 of LNCS, p. 152–167. Springer, 2009.

[24] W. Jiang, C. Clifton, and M. Kantarcioglu. Transforming
semi-honest protocols to ensure accountability. Data Knowl.
Eng., 65(1):57–74, 2008.

[25] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant
electronic elections. In WPES 2005. ACM Press, 2005.

[26] A. Juels, D. Catalano, and Markus Jakobsson.
Coercion-resistant electronic elections. Cryptology ePrint
Archive, Report 2002/165, 2002.
http://eprint.iacr.org/.

[27] D. Kähler, R. Küsters, and T. Truderung. Infinite State
AMC-Model Checking for Cryptographic Protocols. In

LICS’07, p. 181–190. IEEE, Computer Society Press, 2007.
[28] D. Kähler, R. Küsters, and Th. Wilke. A Dolev-Yao-based

Definition of Abuse-free Protocols. In ICALP’06, volume
4052 of LNCS, p. 95–106. Springer, 2006.

[29] S. Kremer and J.-F. Raskin. Game analysis of abuse-free
contract signing. In CSFW’02, p. 206–220. IEEE Computer
Society, 2002.

[30] R. Küsters. Simulation-Based Security with Inexhaustible
Interactive Turing Machines. In CSFW’06, p. 309–320. IEEE
Computer Society, 2006.

[31] R. Küsters and T. Truderung. An Epistemic Approach to
Coercion-Resistance for Electronic Voting Protocols. In
S&P’09, p. 251–266. IEEE Computer Society, 2009.

[32] R. Küsters and T. Truderung. An Epistemic Approach to
Coercion-Resistance for Electronic Voting Protocols.
Technical Report arXiv:0903.0802, arXiv, 2009. Available at
http://arxiv.org/abs/0903.0802.

[33] R. Küsters, T. Truderung, and A. Vogt. Automated
verification of asw. Available at
http://infsec.uni-trier.de/publications/

software/KuestersTruderungVogt-ASW-2010.zip.
[34] J. Millen and V. Shmatikov. Constraint Solver, a protocol

security analyzer. Available at http://www.homepages.
dsu.edu/malladis/research/ConSolv/Webpage/.

[35] J. K. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In
CCS’01, p. 166–175. ACM Press, 2001.

[36] T. Moran and M. Naor. Split-ballot voting: everlasting
privacy with distributed trust. In CCS’07, p. 246–255. ACM,
2007.

[37] D. Parkes, M. Rabin, S. Shieber, and C. Thorpe. Practical
secrecy-preserving, verifiably correct and trustworthy
auctions. In ICEC’06, p. 70–81, 2006.

[38] T. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO’91, volume 576
of LNCS, p. 129–140. Springer, 1991.

[39] R. L. Rivest and W. D. Smith. Three Voting Protocols:
ThreeBallot, VAV and Twin. In EVT’07, 2007.

[40] P. Y. A. Ryan and S. A. Schneider. Prêt à Voter with
Re-encryption Mixes. In ESORICS 2006, volume 4189 of
LNCS, p. 313–326. Springer, 2006.

[41] K. Sako and J. Kilian. Receipt-Free Mix-Type Voting
Scheme — A practical solution to the implementation of a
voting booth. In EUROCRYPT’95, volume 921 of LNCS, p.
393–403. Springer, 1995.

[42] V. Shmatikov and J.C. Mitchell. Finite-state analysis of two
contract signing protocols. TCS, special issue on Theoretical
Foundations of Security Analysis and Design,
283(2):419–450, 2002.

[43] B. Smyth, M. Ryan, S. Kremer, and M. Kourjieh. Election
verifiability in electronic voting protocols. In WISSec’09,
2009.

[44] M. Talbi, B. Morin, V. Viet Triem Tong, A. Bouhoula, and
M. Mejri. Specification of electronic voting protocol
properties using adm logic: Foo case study. In ICICS’08,
volume 5308 of LNCS, p. 403–418. Springer, 2008.

[45] A. Yumerefendi and J Chase. Strong accountability for
network storage. TOS, 3(3), 2007.

[46] L. Yunfeng, H. Dake, and L. Xianhui. Accountability of
perfect concurrent signature. International Conference on
Computer and Electrical Engineering, 0:773–777, 2008.

11

[47] J. Zhou and D. Gollmann. A fair non-repudiation protocol. In
IEEE Symposium on Research in Security and Privacy, p.
55–61. IEEE Computer Society Press, 1996.

APPENDIX
A. THE BINGO VOTING SYSTEM

A.1 Zero-knowledge Proofs for Bingo Voting
Here we describe the zero-knowledge proofs used in the tallying

phase and the initialization phase of the Bingo Voting system in
more detail.
ZK-proofs in the tallying phase. The following steps are per-
formed for every receipt: First, the voting machine generates a
new commitment on the pair (j,r), where j is the chosen candi-
date and r is the number generated by the RNG and printed next
to j. Then, all the commitments for the receipt are published in a
random order: one of them is the commitment just described, the
other (l− 1) commitments are unopened commitments published
on the bulletin board in the initialization phase, where for different
receipts, different commitments are taken from the bulletin board.
An observer can verify that this is the case. Next, these commit-
ments are re-randomized and shuffled twice; both the intermediate
and the final set of commitments are published. The final commit-
ments are opened. Now an observer can check that there is exactly
one commitment for each candidate and that all numbers shown on
the receipt were in fact contained in the final commitments. Fi-
nally, the auditors choose a random bit in some distributed way,
see, e.g., [15]. Depending on the value of this bit, the voting ma-
chine publishes the random factors for the first or for the second
re-randomization step.

If the voting machine would try to cheat, this would be detected
with a probability of at least 50%; this probability can be increased
to 1− (1

2)s by repeating the procedure s times.
ZK-proofs in the initialization phase. This proof was not precisely
defined in [10], but it can be implemented by randomized par-
tial checking similarly to the zero-knowledge proof in the tallying
phase. To this end, we assume that a commitment comm(j,x j

i) on
a pair (j,x j

i) is implemented as (C j
i ,D

j
i) = (comm(j),comm(x j

i)),
where the commitments on the single components are Pedersen
commitments. Now, to show that among the published commit-
ments there are exactly n of the form comm(j,x j

i) for every candi-
date j, the zero-knowledge proof proceeds similarly as in the tal-
lying phase, except that it only uses the first component C j

i of a
commitment.

A.2 Modelling of the Bingo Voting Protocol
The modelling of the Bingo Voting system, is based on a quite

standard computational model, similar to models for simulation-
based security (see, e.g., [30]), in which inexhaustible interactive
Turing machines (IITMs) communicate via tapes. In this model,
only one IITM is active at a time. Such a machine may perform
computations polynomially bounded by the security parameter and
the input of its enriching tapes. It may send a message to another
IITM which is then triggered.

There is one special IITM, called the master, which is triggered
first. This machine is also triggered if, at some point, no message
is sent.

Here, every IITM only has so-called consuming tapes. By this, it
is guaranteed that polynomially bounded IITMs plugged together
form a polynomially bounded system. See [30] for a detailed dis-
cussion of this issue.

We define Pa
Bingo1 in the following way as the protocol (Σ,Ch,

In,Out,{Πa}a∈Σ,{Π̂a}a∈Σ):

Participants. The set Σ of the protocol participants consists of the
voters v1, . . . ,vn, the voting machine M, the auditors A1, . . . ,Ar, the
random number generator RNG, the judge a, and, additionally, the
scheduler S and the voting booth B. The role of the scheduler
(who formally will be the master) is to make sure that every party
gets a chance to perform some actions in every protocol phase. It
is important, because otherwise we could not blame parties who
did not perform required actions (for instance, did not open their
commitments, as required, in the appropriate protocol stage). B
models the voting booth, including the Bulletin Board.

Channels. The set of channels (correspond to tapes in the IITM
model) we consider here includes the channels cha

b, for every a,b∈
Σ\{RNG}. The channel cha

b is an output channel of a and an input
channel of b. Therefore a and b can communicate using cha

b and
chb

a. Further, the RNG is connected to the voting booth B and there
is a channel chRNG

M , modelling that the RNG can only be triggered
when a voter indeed is physically in the voting booth. In particular,
as we will assume that B is honest, the voting machine M cannot
send messages to the RNG. This reflects security assumption A1.

If it were possible for the machine to send instructions to the
RNG, both devices could cooperate to change a voter’s vote, from,
say, candidate i to candidate j in the following way: The machine
chooses an unopened commitment on (i,x), for some x, and instruct
the RNG to display x as the freshly generated number. Then the
machine chooses a fresh random number y and writes y next to j
and x next to i. By this, the machine produces a valid ballot for
candidate j without the risk of being detected.

Sets of programs Πa. First, we define the sets of honest programs
of the protocol participants.

The RNG. The RNG is triggered by B when a voter is in the vot-
ing booth (see below). The honest program of the RNG then creates
a fresh random number and sends this number to B. We assume
that the probability that two randomly picked numbers coincide is
negligible.

The Voter. The IITM running the honest program of a voter waits
until it is triggered by the scheduler. It then does nothing (in case
the voter wants to abstain, what happens with probability p0) or en-
ters the voting booth by sending an enter-message to B. After be-
ing triggered by B, it sends the chosen candidate to B. B forwards
the number from the RNG and the receipt to the voter. The voter
checks with probability qnum whether the number on the receipt
next to the chosen candidate corresponds to the number from the
RNG. If this is not the case, the voter sends a complain-message
to the judge. Further, in the tallying phase, with probability qrec,
the voter checks the receipt, i.e. demands from B the information
on the Bulletin Board and compares that with the receipt that she
received from B in the voting phase. If the receipts does not match,
the voter sends the receipt to the judge.

The Machine. The honest program of the voting machine is de-
scribed in the protocol description, where the machine publishes
everything that is to be published (e.g. the commitments and the
receipts) by sending these values to B (see below).

The Auditors. The honest program of an auditor picks, always
when it is triggered by the scheduler, a random bit and sends this
bit to the scheduler.

The Judge. The honest program of the judge is specified by the
judging procedure.

12

The Scheduler. As we have mentioned in every instance of the
protocol, the processes of the scheduler is the master. The role of
the scheduler, as we have also mentioned, is to trigger every party,
so that it is given a chance to perform the actions required by the
protocol. We assume that the run is stopped if the judge outputs
something on his decision-tape.

The honest program of S is as follows:

• It starts the system by first triggering the voting booth B that
is in charge of choosing the setup parameters (see below).

• It then triggers the voting machine M which is supposed to
send the commitments (according to the protocol specifica-
tions) to the voting booth B (recall that B plays the role of
the Bulletin Board), who confirms to S that this has been
done correctly. If S does not receive a confirmation, it sends
a message to the judge a who then outputs dis(M) on the tape
decisiona.

• S then triggers in turn the auditors and computes the random
challenges from the responses by taking the XOR over the
responses. We assume that at least one auditor is honest, see
below for a discussion of this issue.

• Then the machine M is triggered with these random chal-
lenges. The machine is supposed to open the commitments
corresponding to the challenges, i.e. sending the respective
information to B. S triggers the judge who checks if this
ZK-proof is done correctly, and, in case it is not, outputs
dis(M).

• Otherwise, S starts the voting phase by triggering the first
voter v1, chosen randomly among all voters. Note that S
could also trigger the voters in a fixed order, or even trigger
the voters in an order determined by some other party, without
changing the result (if every voter gets the possibility to vote).

• After it received a done(v1)-message from the booth B (see
below), it triggers the next voter and so on.

• If in this phase, at some point no message is sent the scheduler
(as it is the master) is triggered. In this case the scheduler
asks the booth B which participant misbehaved (see below)
and forwards this to the judge who outputs the corresponding
blaming on his decision-tape.

• After all voters have been triggered, S starts the tallying
phase by triggering the voting machine M, who is supposed
to open the unused commitments by sending the respective
information to B. Then S triggers the judge who checks
whether the commitments are opened correctly, and, in case
this is not the case, outputs dis(M). Otherwise, analogously
to the first ZK-proof, the auditors are triggered, S computes
the random challenges from the responses and the machine is
asked to open the respective commitments.

• After that, S triggers in turn every voter, who ask B with
probability qrec for the information on the Bulletin Board and
check whether her receipt has been published correctly. If the
judge receives a receipt from a voter, he/she checks that the
receipt is correctly signed and blames in case.

• After the tallying phase, S triggers the judge a who checks
the ZK-proofs, whether a number occurs twice or whether the
published result is compatible to the number of voters that
voted (the judge gets this information from B) and behaves
accordingly to the judging procedure.

The voting booth. The set of honest programs of the voting booth
B consists of the following program:

• When it is first triggered by S , it sets up the parameters for
the cryptographic primitives, i.e. for the commitment scheme
and the digital signatures. We model our security assumption
A3, i.e. that it is not possible to forge a receipt, by means
of digital signatures. We assume that B chooses the parame-
ters of a digital signature scheme in a way that the probability
that a polynomially bounded algorithm can forge a signature
is negligible. As B serves as the Bulletin Board, every partic-
ipant may request these parameters. In order that B does not
get exhausted, every participant can only once demand these
values.

• B also serves as Bulletin board for the messages that the ma-
chine has to publish, e.g. the commitments in the initializa-
tion phase. Every participant may once demand these values.
B also reports to S if messages to be published are not cor-
rect, i.e. if the number of commitments does not match or
the commitments do not belong to the space of commitments
specified by the setup parameters.

• It accepts exactly one enter-message from every eligible
voter vi, modelling that every eligible voter may only enter
once the voting booth. B counts correctly the voters, reflect-
ing the security assumption A4. Every participant may once
demand the total number of voters after the tallying phase.

• After B received a enter-message, she triggers the RNG
who is supposed to answer with a fresh random number.

• After that B triggers the voter who is supposed to answer
with a choice for a candidate.

• Then the voting machine M is triggered by B by sending the
choice and the random number to it. The machine is supposed
to answer with the receipt (specified by the protocol).

• If B does not receive messages of the expected type she re-
ports this to the judge, who blames the respective participant.

• If B does not receive a message at all (from the voter, the
RNG or the machine) the scheduler is activated who then asks
B for the misbehaving party. B answers correctly to that
request.

• If everybody behaves correctly, B sends the entire receipt to
the voter together with a digital signature. The voter then may
send a complain-message to the booth.

• B forwards this complain to the judge a (if we consider
Pa

Bingo1) who states dis(M)∨ dis(RNG)∨ dis(vi) or ignores
it (if we consider Variant II, see below).

• Finally, B sends a done(vi)-message to the scheduler.

We define the set Πb of the programs of b to be the set of honest
programs of b, i.e. Πb = {Π̂b}, as defined above, if b is honest,
i.e. for S , B, and the judge a. For simplicity of presentation we
assume that auditor A1 is honest. Note that our security assumption
A2 only states that one auditor is honest. This could be directly
encoded in the left hand sides of the accountability constraints (by
only considering the runs in which at least one auditor is honest).
However, as from the responses of the auditors, the random chal-
lenges are computed in a symmetric way (by XOR) it does not mat-
ter which auditor is honest.

The set of all possible programs is only limited by the network
configuration, if b is not assumed to be honest.

By these specifications we guarantee that every honest partici-
pant has enough ressources in order to follow the protocol. How-
ever, the entire system remains polynomially bounded.

13

A.3 Proof of Theorem 1
Fairness. By the definition of the judging procedure, and the hon-
esty of B and S, it follows that a is fair: This is trivial if a blames
some participant b (i.e. outputs the trivial formula dis(b)) because
of an obvious deviation. Further, a states dis(M)∨ dis(RNG)∨
dis(v) iff v complains in the voting booth. In this case, either
the machine or the RNG indeed cheated or the voter is dishon-
est, because she complained for no reason. Further, if a states
dis(M)∨dis(RNG), then a number occurs on two different receipts,
which only happens with negligible probability if both are honest.
For the same reason, the probability that a states dis(M) because of
a number occuring twice is negligible if M is honest.

Completeness. Let π be an instance of Pa
Bingo1. For a set of runs α,

with Pr[π(1`) 7→ α] we denote the probability that π(1`) produces
a run in α. Then we have

Pr[π(1`) 7→ αcompl, ¬(a : dis(M)∨dis(RNG)∨dis(v1)), . . .

. . . ,¬(a : dis(M)∨dis(RNG)∨dis(vn))] = 0

and

Pr[π(1`) 7→ αtwice, ¬(a : dis(M)∨dis(RNG))] = 0,

as by the definition of the judging procedure, a states the respective
formulas in case of the respective events. Hence it remains to show,
that Pr[X] is δk

Bingo-bounded, where X is the event that a run of

π(1`) does not belong to γk, αcompl, αtwice and that a does not state
dis(M) nor dis(RNG).

As neither the machine nor the RNG is blamed in a run belonging
to X , we have in particular that these two parties do not deviate from
the protocol in an obvious way, e.g., by not producing numbers at
all. Recall that in this case the booth B would inform S about the
misbehavior, and S would inform then the (honest) judge a about
this, who would output the respective verdict on his tape decisiona.

We distinguish whether or not the machine tries to fake a zero-
knowledge proof, i.e. if the machine does not produce the same
number of commitments for every candidate or writes different
commitments next to the receipts in the second ZK-proof. Let F de-
note the event that the machine tries to fake some zero-knowledge
proof. Then we have

Pr[X] = Pr[X | F] ·Pr[F]+Pr[X | F] ·Pr[F]

≤max(Pr[X | F],Pr[X | F]).

To complete the proof it is enough to show that

Pr[X | F]≤ 1
2s + f (`) (12)

and

Pr[X |F]≤max((1−qnum), (1−qrec), max
j=1,...,l

p j)k+1 + f (`) (13)

for some negligible function f .
First, let us prove inequality (12). So, assume that F holds, i.e.

the machine fakes some zero-knowledge proof. X means, among
others, that a does not state dis(M). As we assume that B picks the
parameters for the commitment scheme honestly and as the runtime
of system is polynomially bounded, under the DLOG-assumption,
the probability that the machine opens a commitment on one value
to another value is negligible. Further, if the machine tries to cheat
in the shuffling and re-randomization phase of a zero-knowledge
proof by pretending that it can open a commitment to another value,

this is detected with probability 1
2s as the challenges are really ran-

dom. Hence, as can be shown by a reduction proof, a does not state
dis(M) only with probability 1

2s + f (`) for some negligible function
f .

Now, we will prove (13). So, consider the probability X given F ,
i.e. the machine does not fake a zero-knowledge proof. F implies
that the machine produces the same number of commitments for
every candidate. Further, we get the following claims:

CLAIM 1. Assume that F and X hold. Then with overwhelming
probability, every receipt published on the bulletin board is well
formed in the following sense: Let x1, . . . ,xl be the numbers printed
on a receipt next to candidates 1, . . . , l, respectively. For (l− 1)
elements of {x1, . . . ,xl}, a commitment on (i,xi) has been published
on the bulletin board in the initialization phase and no commitment
on the only remaining number x has been posted on the bulletin
board.

Otherwise, as the machine has to assign l− 1 commitments from
the bulletin board to that receipt and open them (after shuffling and
masking, what is done correctly due to F), a would state dis(M),
what conflicts with X . Further suppose that a commitment on
the only remaining number has been posted on the bulletin board.
Then, this commitment cannot be assigned to the considered re-
ceipt (as this would mean that the machine assigned l previously
published commitments to one receipts which would imply that a
states dis(M) what contradicts X). If it were assigned to some other
receipt, then, by F , x would be also printed on this receipt, which
would contradict αtwice (and X). Finally, if it were not assigned to
any receipt, then it would be opened (with overwhelming probabil-
ity) and a would state dis(M) (Step J4), which, again, contradicts
X .

CLAIM 2. Assume that F and X hold. Then the probability that
M posts commitments on (a,R) and (b,R) (that share the same
number R) for candidates a 6= b on the bulletin board in the ini-
tialization phase is negligible.

Otherwise, as the machine eventually opens correctly every com-
mitment (possibly after masking and shuffling, what is done cor-
rectly due to F), R would occur twice with overwhelming probabil-
ity, which conflicts with X (either we have αtwice or a states dis(M)
).

Now, Claim 1 implies the following. If, for some voter who
choses candidate i, (i) the number xi printed next to the chosen can-
didate is the number provided by the RNG and (ii) no commitment
to this number was posted on the bulletin board in the initialization
phase, then the machine produces a receipt which corresponds to
a vote for candidate i (i.e. the machine assigns exactly one com-
mitment (that has not been assigned to a receipt so far) for each
candidate but i to this receipt).

Hence, if the machine changes a vote of an honest voter, then
one of the following cases must hold: (a) the receipt handed out to
the voter does not match the receipt that is published on the Bul-
letin Board, (b) this receipt matches but condition (i) is violated,
or (c) this receipt matches and condition (ii) is violated. Case (a)
can happen undetectedly, only if the voter does not check whether
her receipt appears on the bulletin board, which has probability
(1− qrec). Case (b) can only happen undetectedly, if the voter
does not check her receipt in the voting booth, which has proba-
bility (1− qnum). Finally, case (c) holds, by the well-formedness
of ballots, when it happens that the candidate j in the commitment
comm(j,xi) on the number xi produced by the RNG coincides with
the candidate chosen by the voter, that is if j = i. As the machine

14

does not know in the initialization phase which candidate the voter
will choose, and the RNG cannot learn the voters choice (assump-
tion A1), this happens only with probability≤max j=1,...,l p j. Note
that, by Claim 2, the candidate j is uniquely determined by xi.

Summing up, the probability that the machine changes unde-
tectedly the vote of a (fixed) honest voter, given F , is bounded
by max((1− qnum), (1− qrec), max j=1,...,l p j) and some negligi-
ble function. Hence, the probability that, given F , the machine
changes undetectedly the votes of k + 1 honest voters is smaller
than max((1− qnum), (1− qrec), max j=1,...,l p j)k+1 + f (`). As by
our assumption A4, the machine cannot vote on behalf of abstain-
ing voters, the goal γk is not achieved only if there are k+1 changed
votes, we get (13), which completes the proof.

A.4 Variant II
In this section, we discuss Variant II mentioned in Section 5, i.e.

the variant where the judge ignores that a voter complained in the
voting booth and the voting process simply continues.

For this purpose we will consider in this section a version of the
system where the judge does not blame anybody if a voter com-
plains in the voting booth.

Clearly, in this case, the machine can change the votes of the
voters by just ignoring the number transmitted from the RNG: an
honest voter will complain in that case, but the election will not be
aborted. For this variant of the system, we will therefore further
weaken the goal γk obtaining a goal γ′k which is already achieved
in a run if the result produced by the machine is correct up to votes
of dishonest voters, up to votes of voters complaining in the voting
booth, and up to k votes of honest voters who do not complain in
the booth.

We denote by Pa
Bingo2 this variant of the protocol, defined as

Pa
Bingo1 with the difference that J2 is omitted (for reasons already

discussed).

Accountability of Pa
Bingo2 As already stated in Section 5, a severe

problem with Theorem 1 is that in case a voter complains, it is not
clear who to blame specifically, the authority (which M and the
RNG are part of) or a voter.

With the new judging procedure, this problem disappears, but at
the price of a weaker goal. More specifically, we have the following
accountability property:

Φ2 = {αtwice⇒ dis(M)∨dis(RNG),

¬γ′k ∩¬αtwice⇒ dis(M) | dis(RNG)}.

For this, we obtain the following theorem:

THEOREM 5. Let a be an external judge or a voter. The agent a
ensures (Φ2,δ

k
Bingo)-accountability for Pa

Bingo2(n,qnum,qrec,s,~p).

PROOF. The proof of Theorem 5 is very similar to that of
Theorem 1. In order to conflict γ′k, k + 1 votes of honest, non-
complaining voters have to be changed. This can be done in the
same ways as in Theorem 1. But now, if the machine does not use
the number transmitted from the RNG at the correct place on the
receipt, that does not change the vote of an honest non-complaining
voter if the voter complains. Hence, also in this case, in order to
change an honest, non-complaining voters vote (by wrongly using
the number transmitted from the RNG), the machine has to hope
that the voter does not check the number. Hence we are exactly in
the situation of Theorem 1.

This theorem says that, in Pa
Bingo2, the probability that the goal

γ′k is not achieved and still a does not blame anybody is at most

δk
Bingo. Since now a always (rightly) accuses authorities, it is eas-

ier to hold them accountable, even though not always individually.
Moreover, unlike in Pa

Bingo1, no voter can spoil the voting process.
On the downside, the goal now is weaker, and hence, the published
result may deviate more from the actual votes than previously, with-
out a blaming anybody.

Verifiability of Pa
Bingo2 As already discussed in Section 5, the ver-

ifiability property stated in Corollary 1 reflects the weakness of the
system Pa

Bingo1(n,qnum,qrec,s,~p) already revealed by Theorem 1:
By wrongly complaining, every single dishonest voter can spoil
the election process. This weakness is not present in the system
Pa

Bingo2 as stated in the corollary below, which, however, comes at
a price of a weaker goal:

COROLLARY 3. Let a be an external judge or a voter. The
goal γ′k is guaranteed in Pa

Bingo2(n,qnum,qrec,s,~p) by hon(M)∧
hon(RNG) and δk

Bingo-verifiable by a.

B. THE PRST PROTOCOL

B.1 Our Improved Version
In this section, we describe in details our version of the PRST

protocol.
For our protocol, we assume an independent and honest bulletin

board, replacing the bulletin board controlled by the auctioneer: the
auctioneer A and every bidder Bi can post messages on the bulletin
board. The messages posted on the bulletin board appear with a
time-stamp, provided by the bulletin board. We implicitly assume
that the messages posted by A are signed by him; messages posted
by bidders are not. For privacy of the bidders, one can assume
that bidders can post messages on the bulletin board anonymously.
Notaries are superfluous in our protocol.

Now, our version of the protocol consists of the following steps,
where Steps S1’ and S6’ are exactly like the corresponding steps in
the original version of the protocol:
S1’. A posts (on the bulletin board) basic information about the

auction: the terms of the auction, an identifier Id, the dead-
lines T1,T2,T3 for different stages of the auction, and his pub-
lic encryption key.

S2’. Bidder Bi computes her encrypted bid Ci = EA(bi,ri), gen-
erates a nonce qi, and computes her commitment as Comi =
〈hash(Ci),hash(qi), Id〉. The bidder is supposed to keep the
nonce qi secret, except for the situation described below. Bi
posts (on the bulletin board)

Id, EA(sigBi
[Comi],r′i) (14)

before time T1. The (hash of the) nonce qi will be used to pre-
vent Problem 4 (see Step S7’). Posting (14), instead of send-
ing the signed commitment directly to A will prevent Prob-
lem 1. The signature in (14) is encrypted to hide Bi’s identify
from other bidders and observers. Note that Bi does not use
notaries and does not send her signed commitment directly to
A. Also, A is not required to send receipts.

S3’. At time T1, the auctioneer decrypts and collects all the com-
mitments posted in the previous step and posts these commit-
ments in a random order:

Comπ(1), . . . ,Comπ(n) (15)

where π is a randomly chosen permutation of the indices of
previously posted commitments.

15

If two or more commitments in this list have the same value,
then the auctioneer additionally posts the list of bidder’s sig-
natures on all these commitments. The bidder whose signa-
ture is at the first position on this list is challenged: she is
supposed to open her commitment before time T2 (see the next
step). This procedure enables the judge to resolve the conflict
described in Problem 2.

S4’. Between time T1 and T2 any bidder Bi whose bid is not in-
cluded in the list of commitments posted by A in the previous
step, appeals by posting

Id, sigBi
[Comi], r′i. (16)

(If the identity of Bi is to be kept secret, this message may be
sent to the judge only).
Also, before time T2, a bidder Bi who has been challenged in
the previous step, opens her commitment (if she does not do
it, she will be blamed; otherwise all the other bidders whose
signatures are on this list will be blamed; see V2’).3

S5’. After time T2, every Bi opens her commitment by posting
〈Comi,Ci〉 on the bulletin board (posting 〈Comi,Ci〉 instead
of sending Ci to A prevents Problem 2). After time T3, A posts

Cπ(1), . . . ,Cπ(n) (17)

(while this step is redundant, we keep it for compliance with
the original version of the protocol) and posts bidder’s signa-
ture on every unopened commitment.

S6’. A recovers the bids b1, . . . ,bn, by decrypting the encrypted
bids with his private decryption key, and determines the win-
ner Bw of the auction and the price bu the winner has to pay,
which is supposed to be the second highest bid. He also con-
structs a (universally verifiable) zero-knowledge proof P that
the result is correct, i.e. Cw contains the biggest bid and Cu
contains the second biggest bid bu: This is done by proving
appropriate inequalities between the bids in the ciphertexts
C1, . . . ,Cn, without revealing these bids, and by revealing the
random coin used in Cu, which he can recover using his pri-
vate key. The auctioneer posts

Bw, bu, sigBw
[Comw], P. (18)

(If more than one committed bid contains the highest value,
then the winner/winners are determined according to some
pre-agreed policy; due to space limitation, we do not consider
this case further.)

S7’. A bidder B j 6= Bw checks whether the signed commitment
Comw posted by the auctioneer in (18) is her own commit-
ment. If it is the case, she claims the fact, by posting q j on
the bulletin board, before some determined time. Note that by
this B j does not reveal her identity.

The new judging procedure performed by V is as follows:
V1.’ If A does not publish the list of commitments when expected

in Step S3’, then V blames A (states dis(A)).
V2.’ If two or more commitments in (15) have the same value

c and A does not post signatures on these commitments as
required in S3’, then A is blamed. If A posts such a list
sigBi1

(c), . . . ,sigBil
(c) then the following verdicts are stated:

If the commitment c is opened before time T2 (supposedly
by the challenged bidder Bi1), then V states dis(Bi2)∧ ·· · ∧
dis(Bil); otherwise, V states dis(Bi1).

3One could extend this procedure such that, if the challenged bid-
der does not open the commitment, then the next bidder is chal-
lenged, and so on. By this we could guarantee higher precision of
blaming.

V3.’ If in Step S4’, message (16) is posted such that there is a cor-
responding encryption in a message of the form (14) posted
before time T1 and Comi is not included in the list of commit-
ments posted by A in Step S3’, then V blames A.

V4.’ After Step S5’, if the bulletin board does not contain an entry
that opens some commitment Comi, then: If A has not pro-
vided the required signature in Step S5’, then V blames him.
Otherwise, the party identified by this signature is blamed.
Furthermore, if A does not post (17), then A is blamed.

V5.’ If, in Step S6’, A does not post a result with a valid zero-
knowledge proof and a valid signature sigw[Comw], then V
blames A.

V6.’ If, in Step S7’, a nonce qw is posted such that Comw contains
hash(qw), then V blames Bw.

We, again, consider a few variants of the protocol: By PJ
PRST ′ we

denote our version of the protocol with an additional, honest party,
the judge, who runs the judging procedure described above. By
PX

PRST ′ , for X ∈ {A,B1, . . . ,Bn}, we denote our version of the pro-
tocol, where X is assumed to be honest and his/her honest program
is extended by the judging procedure.

B.2 Symbolic Model of Processes
In this section we instantiate the abstract notion of a protocol

by a symbolic model, where atomic processes, following [31], are
represented as functions that for a sequence of input messages (the
messages received so far) produce output messages.

This model, unlike many other symbolic models (like π-
calculus), by means of a so called master process (a scheduler),
enables us to precisely model phases of the protocol so that every
party is given a chance to perform the required actions in every
stage of the protocol (and therefore can be fairly held accountable
if he/she does not do it).

While we focus here on specific cryptographic primitives used in
the PRST protocol, the model presented here is generic and can be
used with a different set of cryptographic primitives.

Messages. Let Σ be some signature for cryptographic primitives
(including a possibly infinite set of constants for representing par-
ticipant names, etc.), X = {x1,x2, . . .} be a set of variables, and
Nonce be an infinite set of nonces, where the sets Σ, X , and Nonce
are pairwise disjoint. For N ⊆ Nonce, the set TN of terms over
Σ∪N and X is defined as usual. Ground terms, i.e., terms with-
out variables, represent messages. The set of all messages will be
denoted by Msg.

We assume some fixed equational theory associated with Σ and
denote by ≡ the congruence relation on terms induced by this the-
ory. The particular signature Σ we take to model the PRST protocol,
along with an appropriate equivalence theory, is given below.

Cryptographic Primitives for PRST. We use a term of the form
〈m,m′〉 to represent a pair of messages m and m′; with first(p) and
sec(p) yielding, respectively, the first and the second component
of a pair p. A term sigk(m) represents the signature on a message
m under a (private) key k. Such a signature can be verified using
pub(k), the public key corresponding to k. A term hash(m) repre-
sents the result of applying the hash function to m.

We use the following terms to represent randomized encryption
with homomorphic property: {m}r

k represents a term m encrypted
under a (public) key k using a randomness r; dec(c,k) represents
a decryption of a ciphertext c with a key k (k is intended to be a
private key corresponding to the public key under which c is en-
crypted). The ability to extracting the random coin from a given
ciphertext is expressed using the symbol extractCoin.

16

checkSig(sigm(k),pub(k)) = T

dec({x}r
pub(k),k) = x

extractCoin({x}r
pub(k),k) = r

{m1}r1
k ×{m2}r2

k = {m1 +m2}r1+r2
k

first(〈x,y〉) = x sec(〈x,y〉) = y

x .= x = T T∨ x = T

T∧T = T x∨T = T

Figure 1: Theory E — equational theory for modeling PRST.

To model the set of possible bids (which is finite) we introduce
symbols 0, . . . ,(M− 1) along with operators + and × (needed for
expressing the homomorphic property of the encryption) and sym-
bols < and ≤. We assume full axiomatization of this finite set of
numbers w.r.t. these operators.

Zero-knowledge proofs. We will model the zero-knowledge
proofs used in the protocol following the approach of [7] and
[32]. A zero-knowledge proof will be represented by a term
P = ZKn,k

ϕ (t1, . . . , tn; s1, . . . ,sn) where t1, . . . , tn are terms called the
private component (the proof will keep these terms secret), terms
s1, . . . ,sn are called the public component (the proof reveals these
terms), and ϕ is a term built upon variables x1, . . . ,xn,y1, . . . ,yn (no
other variables and no nonces can occur in this term; xi is intended
to refer to ti, while yi is intended to refer to si), called the formula
of P.

We have the following equalities associated to zero-knowledge
proofs. The first group of equations reveals the public components
(also the formula) of a proof. The second one allows one to check
validity of a proof.

public(ZKn,k
ϕ (t1, . . . , tn,s1, . . . ,sn)) = 〈ϕ,s1, . . . ,sn〉

check(ZKn,k
ϕ (t1, . . . , tn,s1, . . . ,sn)) = T

if ϕ is a formula build upon x1, . . . ,xn,y1, . . . ,yn, and
ϕ[ti/xi,si/yi]≡E T.

To model the zero-knowledge proofs used in the protocol, we
will use the expression P<(b1,b2,k; c1,c2) representing the proof
that the c1 is of the form {b1}r1

k , for some r1, and c2 is of the form
{b2}r2

k , for some r2, with b1 < b2. Formally, P<(b1,b2,k; c1,c2)
stands for ZK1,1

ϕ (b1,b2,k; c1,c2), where

ϕ =
[
dec(y1,x3) = x1∧dec(y2,x3) = x2∧ x1 < x2

]
.

Similarly, P≤(b1,b2,k; c1,c2) representing the proof that the c1 is
of the form {b1}r1

k and c2 is of the form {b2}r2
k , with b1 ≤ b2. For-

mally, P≤(b1,b2,k; c1,c2) stands for ZK1,1
ϕ (b1,b2,k; c1,c2), where

ϕ =
[
dec(y1,x3) = x1∧dec(y2,x3) = x2∧ x1 ≤ x2

]
.

Runs and views. Let Ch be a set of channels (channel names). An
event is of the form (c : m), for c∈ Ch and m∈Msg. Such an event
is meant to express that the message m is delivered on channel c.
The set of all events will be denoted by Ev. A finite or infinite
sequence of events is called a run.

For a run ρ = (c1 : m1)(c2 : m2), . . ., we denote by chan(ρ) the
sequence c1,c2, . . . of channels in this sequence. For C ⊆ Ch, we

denote by ρ|C the subsequence of ρ containing only the events (c :
m) with c ∈ C. Let τ ∈ TN be a term. Then, with ρ as above,
we denote by τ [ρ] the message τ [m1/x1,m2/x2, . . .], where xi is
replaced by mi. (Recall that the set of variables is X = {x1,x2, . . .}.)

EXAMPLE 2. Assume that τex = dec(x1,first(x2)) and ρex =
(c1 : {a}r

pub(k)),(c2 : 〈k,b〉). Then

τex[ρex] = dec({a}r
pub(k),first(〈k,b〉))≡ex a.

Borrowing the notion of static equivalence from [2], we call two
runs ρ and ρ′ statically equivalent w.r.t. a set C ⊆ Ch of chan-
nels and a set N ⊆ Nonce of nonces, written ρ ≡C

N ρ′, if (i)
chan(ρ|C) = chan(ρ′|C) and (ii) for every τ1,τ2 ∈ TN we have that

τ1[ρ|C] ≡ τ2[ρ|C] iff τ1[ρ′|C] ≡ τ2[ρ′|C]. Intuitively, ρ ≡C
N ρ
′ means

that a party listening on channels C and a priori knowing the nonces
in N cannot distinguish between the inputs received according to ρ
and those received according to ρ′. We call the equivalence class
of ρ w.r.t. ≡C

N , the (C,N)-view on ρ.

EXAMPLE 3. For example, if k, k′, a, and b are different con-
stants, r and r′ are nonces, C = {c1,c2}, and N = /0, then it is easy
to see that ρ1

ex = (c1 : {a}r
pub(k)),(c2 : 〈k′,b〉),(c3 : k) and ρ2

ex =

(c1 : {b}r′
pub(k)),(c2 : 〈k′,b〉) yield the same (C,N)-view w.r.t. ≡ex.

Processes. Processes are built from atomic processes. An atomic
process is basically a function that given a finite history (represent-
ing the messages delivered so far) returns ε (if the process does not
send any message) or an element of the form (c : τ) (if the process
sends some message). We require that an atomic process behaves
the same on inputs on which it has the same view. Formally, atomic
processes are defined as follows.

DEFINITION 6. An atomic process is a tuple p = (I,O,N, f)
where

(i) I,O⊆ Ch are finite sets of input and output channels, respec-
tively,

(ii) N ⊆ Nonce is a set of nonces used by p,
(iii) f is a mapping which assigns, to each (I,N)-view U , a re-

sponce f (U) of the form ε or (c : τ) with c ∈ O and τ ∈ TN .
We refer to I, O and N by Ip, Op, and Np, respectively. We note
that the sets Ip and Op do not have to be disjoint (which means that
p can send messages to itself).

We note that (iii) guarantees that p performs the same computation
on event sequences that are equivalent according to≡I

N , and hence,
on which p has the same view. This is why f is defined on (I,N)-
views rather than on sequences of input events.

For a history ρ such that U is the equivalence class of ρ′

w.r.t. ≡I
N , we write p(ρ) for the output produced by p on input

ρ. This output is ε, if f (U) = ε, or (c : τ [ρ|I]) if f (U) = (c : τ).

EXAMPLE 4. Let I = {c1,c2}, N = /0, and U be the equiva-
lence class of ρ1

ex. Assume also that f (U) = (c4 : 〈x1,first(x2)〉).
Then, p(ρ1

ex) = (c4 : 〈{a}r
pub(k),first(〈k′,b〉)〉), which modulo ≡ex

can be equivalently written as (c4 : 〈{a}r
pub(k),k

′〉) and p(ρ2
ex) =

(c4 : 〈{b}r′
pub(k),first(〈k′,b〉)〉), which modulo ≡ex can be equiva-

lently written as (c4 : 〈{b}r′
pub(k),k

′〉). Note that since ρ1
ex and ρ2

ex

yield the same (I,N)-view w.r.t.≡ex, p performs the same transfor-
mation on ρ1

ex and ρ2
ex.

17

For the definition of a process, given below, we assume that there
is a distinct channel chinit ∈ Ch and a distinct constant init in the
signature Σ.

DEFINITION 7. A process is a finite set π of atomic processes
with disjoint sets of input channels and sets of nonces (i.e., Ip ∩
Ip′ = /0 and Np∩Np′ = /0, for distinct p, p′ ∈ π) such that there is an
atomic proces p0 ∈ π with chinit ∈ Ip and chinit /∈Op for all p in π.
The atomic process p0 is called the master atomic process of π.

Runs of processes. For a process π, we define the run of π in the
following way. In each step, we have a configuration that consists
of a finite run ρ (the events delivered so far) and the current event e
(the event to be delivered in the next step). We start with the initial
configuration with the empty run ρ and e = ε. In each step we
extend the run and compute the next current event, obtaining the
new configuration (ρ′,e′), as follows. By definition of processes,
there exists at most one atomic process, say p, in π with an input
channel corresponding to e (if e 6= ε). If such a process p exists
(which means that the current event can be delivered to p), then
we obtain the next configuration, by taking ρ′ = ρe and e′ = p(ρ′).
If such a process does not exists—which can happen if there is no
message to be delivered (e = ε) or there is no atomic process with
the appropriate input channel—then we trigger the master atomic
process p0 by sending to it the init event: we take ρ′ = ρ(chinit :
init) and e′ = p0(ρ′). Note that, in the first step of a run of π, the
master atomic process is always triggered. Now, the run of π is an
infinite run induced by the sequence of finite runs in the consecutive
configurations, as defined above.

We will consider only fair runs, where the master atomic process
is triggered infinitely often (which means that no regular processes
can “hijack” the run by performing some infinite computations).

B.3 Modeling the PRST System
In this section we provide the formal description of the PRST

protocol, based on the model described above. We give, however,
only the modeling of our variant of this system; the original variant
can be modeled in an analogously way. Also, since in our variant of
the protocol, the security properties we prove do not depend on the
use of notaries, we skip these parties in the modelling. Moreover,
for the simplicity of presentation, we consider only the case with
an external judge (the result easily carries out to the case when one
of the bidders plays the role of the verifier).

We define PJ
PRST ′ as the system (Σ,Ch, In,Out,{Πa}a∈Σ,

{Π̂a}a∈Σ) with the components defined below. We assign to ev-
ery party a ∈ Σ an infinite set Na of nonces a can use.

Participants. The set Σ of the protocol participants consists of
B1, . . . ,Bn (the bidders), A (the auctioneer), BB (the bulletin board),
the judge J, and, additionally, the scheduler S and the key distribu-
tion center (KDC). The role of the scheduler (who formally will
be the master atomic process; see Section B.2) is to make sure that
every party gets a chance to perform some actions in every proto-
col phase. It is important, because otherwise we could not blame
parties who did not perform required actions (for instance, did not
open their commitments, as required, in the appropriate protocol
stage). The role of KDC is to generate and distribute private and
public keys of the participants.

Recall that the judge and the bulletin board are assumed to be
honest. We also assume that the scheduler, and KDC are honest.
The remaining parties are not assumed to be honest.

Channels. The set of channels we consider here consists of chan-
nels cha

b, for every a,b ∈ Σ, the channel chinit, and decision chan-

time expected action
t1 A performs S1’
t2 every Bi performs S2’
t3 (= T1) A performs S3’
t4 every Bi performs S4’
t5 (= T2) every Bi performs (the first part of) S5′

t6 (= T3) A performs (the second part of) S5’
t7 A performs S6’
t8 every Bi performs S7’
t9 the judge performs V2’–V5’

Figure 2: The expected response of the protocol participants to
the consecutive time messages

nels decisiona, for every a ∈ Σ. The channel cha
b is an output chan-

nel of a and an input channel of b. So, a and b can communicate
using cha

b and chb
a. For a ∈ Σ, we define In(a) = {cha′

a : a′ ∈ Σ}
and Out(a) = {cha

a′ : a′ ∈ Σ}∪{decisiona}. For the scheduler, we
additionally assume that chinit is in In(S) (therefore, the scheduler
is running master atomic processes).

Sets of programs Πa. Depending on whether a party a ∈ Σ un-
der consideration is assumed to be honest (the judge, the bulletin
board, the scheduler, and the key distribution center) or, possibly,
dishonest (the auctioneer and the bidders) we define the set Πa of
the programs of a to be: (1) the set of honest programs of a, i.e.
Πa = Π̂a, as defined below, if a is honest, or (2) the set of all
possible programs only limited by the network configuration, i.e.
Πa = Proc(In(a),Out(a),Na), if a is not assumed to be honest.

Now, we define the sets of honest programs of the participants. We
provide here only high-level description of these programs. It is,
however, straightforward (although tedious) to encode these pro-
grams formally as atomic processes, as defined in the previous sec-
tion.

The scheduler: As we have mentioned, chinit is an input channel
of S and, hence, in every instance of the protocol, the processes
of the scheduler is the master (atomic) process. The role of the
scheduler, as we have also mentioned, is to to trigger every party,
so that it is given a chance to perform the actions required by the
protocol.

The set of honest programs Π̂S of the scheduler contains all the
processes π defined as follows. A process π ∈ Π̂S sends two kind
of messages to protocol participants (using the channels chS

a, for
a ∈ Σ): the message trigger and messages t0, t1, t2, . . . (time mes-
sages). Exactly one message is sent every time π is invoked by de-
livering (chinit : init), which, by fairness, happens an infinite num-
ber of times. The order of messages sent to different participants is
not restricted (different processes in Π̂S have different order corre-
sponding to different scheduling), except for the following require-
ment: (1) for every i, the message ti is sent exactly once to every
protocol participant and (2) if i < j, then ti is sent before t j .

By the above, it is guaranteed that every party is triggered in
every stage i, using the message ti and, apart from this, he/she can
be triggered an arbitrary number of times by the message trigger.

The expected response of the protocol participants to the consec-
utive time messages is, informally, summarized in Figure 2.

The bulletin board: The set of programs of the bulleting board
consists of only one program which collects all the received mes-
sages and, on request, provides the list of these messages to every
party.

The key distribution center: The set of programs of the bulleting

18

board consists of only one program which, in response to request
sent by a participant a, sends back to a the message

keysa = 〈ka,pub(ka),pub(kA),pub(kB1), . . . ,pub(kBn)〉,

where kb, for b ∈ Σ the private key of b generated by KDC (for-
mally, it is a distinct nonce of KDC). Note that pub(kb) represents
the corresponding public key (see Figure 1). Therefore, the re-
sponse of KDC contains the private key of a and the public keys of
the auctioneer and all bidders.

The bidders: The set of honest programs ΠBi of a bidder Bi con-
sists of two kinds of programs: (1) the empty program that ignores
all the incoming messages (representing the case when the bidder
abstains from bidding); (2) for each bid value b, the program πb

i
representing the case when the bidder, following the protocol, bids
b. This program in response to time messages t2, t4, t5 and t8 per-
forms steps S2’, S4’, S5’ (the first part), and S7’, respectively (other
messages are left without any reply).

We describe in more details only the response of πb
i to the mes-

sage t2 and t4 sent by the scheduler; the remaining steps can be
implemented similarly.

When we say that t2 is delivered to πb
i , then, formally, the fol-

lowing happens: the atomic process πb
i (or, more precisely, the

function of this process) is given a run ρ representing the history
of the system so far, with the last event (chS

Bi
: t2). Now, we

define the response to ρ as follows: The process sends request

to the KDC, i.e. it returns (chBi
KDC : request). The key distribu-

tion center, by the definition of its program, sends back to Bi the
message keysBi

. Therefore, πb
i is invoked again, this time with

ρ extended by (chKDC
Bi

: keysBi
). Now, the process sends the re-

quest (chBi
BB : request) to the bulletin board who, by the definition,

responds immediately, providing the complete list of messages
posted so far. This lists should contain the identifier Id of the auc-
tion signed by the auctioneer (if it is not the case, πb

i halts). Now,
the process posts (14) on the bulleting board, i.e. sends this mes-
sage on chBi

BB. To construct (14) the process uses its own nonces,
the retrieved keys, and Id obtained in the previous step.

Similarly, in responce to t4, the process πb
i sends the request

(chBi
BB : request) to the bulletin board who, by the definition,

responds immediately, providing the complete list of messages
posted so far. This list should contain, in particular, the list of com-
mitments signed and posted by the auctioneer (if it is not the case,
the process halts). Now, if the commitment of Bi (sent previously)
is not in this list, πb

i appeals, by sending (16) to the bulleting board.
Further, if Bi is challenged (i.e. the bulletin board contains a list
posted by A of signatures on the same commitment, with the sig-
nature of Bi on the first position on this list), then the process posts
his encrypted bid Ci. Otherwise, the process does not produce any
output.

The auctioneer: The set of honest programs of the auctioneer
consists of only one program which in response to messages t1, t3,
t6, and t7 performs Steps S1’, S3’, S5’ (the second part), and S6’,
respectively. Additionally, if requested by the judge in step V3’
(see below), it sends back to the judge the required signature.

The judge: The set of honest program of the judge consists of
only one program which: (1) obtains the public keys of all parties
(when triggered for the first time); (2) in every protocol step t1–
t9, retrieves the content of the bulletin board; (3) in response to
message t9 (retrieves the complete content of the bulleting board
and), performs steps V1’–V6’. Note that, at this point, the judge
has a complete view on the history of the system recorded on the
bulletin board.

B.4 Proof of Theorem 3
Before we prove Theorem 3, we provide a formal specification

of the goal γ, sketched in Section 6.2. The property γ is satisfied if
and only if the following conditions hold:

(a) A posts a list (15) of commitments which includes the com-
mitments of the honest bidders and where all commitments are
different.

(b) All the published commitments are correctly opened and the
sequence Cπ(1), . . . ,Cπ(n) of the corresponding encrypted bids
is posted by A in (17).

(c) A publishes a result, as in (18).

(d) The published price bu is the second highest bid amongst the
bids encrypted in C1, . . . ,Cn.

(e) An honest bider is declared to be the winner if and only if her
bid is the highest in C1, . . . ,Cn.

Now we are ready to prove the theorem.

Fairness: To show that V is fair in P = PV
PRST ′ , let π be an instance

of P and r be a run of π such that V states a verdict ψ in r. We
need to show that π |= ψ. Since V states a verdict, by definition of
the honest program of V , one of the cases given by V1’–V6’ must
hold.

We will present here only proofs for two most interesting cases:
V2’ and V6’. The proofs for the remaining cases are quite straight-
forward.
Case V2’: Suppose that the case described in V2’ holds. Without
loss of generality we can assume that the case described in V1’ does
not hold (we consider this case separately). It means that A posts
the list (15) of commitments and two or more commitments on this
list have the same value c. We have to consider two sub-cases.

First, suppose that A does not post signatures on these commit-
ments as required in S3’. In this case V states ψ = dis(A). By
the definition of the honest program of the auctioneer, A cannot
be honest in π (the honest program of A always posts the required
signatures, as described in S3’). Therefore the verdict ψ is true in
π.

Now, suppose that A posts a list sigBi1
(c), . . . ,sigBil

(c) of re-
quired signatures. We consider two cases depending on whether
or not the commitment c is opened before time T2.

If the commitment c is not opened before T2, then the verdict is
ψ = dis(Bi1). We need to show that Bi1 is not honest in π. Suppose
that it is not the case, but, on the contrary, Bi1 is honest in π. As,
by the definitions of honest programs of a bidder and the honest
program of the key issuer, the private key of Bi1 is never revealed to
other parties. Therefore, by the equational theory given in Figure 1,
it must have been Bi1 who produced sigBi1

(c) and, thus, by the
definition of her honest programs, c is the commitment of Bi1 and
she is able to open it, which she does before time T2, since she is
challenged. This contradict the assumption that c is not opened.

If the commitment c is opened before time T2 then V states ψ =
dis(Bi2)∧·· ·∧dis(Bil). We need to show that, for all k ∈ {2, . . . , l},
the bidder Bik is not honest in π. For the sake of contradiction,
suppose that Bik is honest in π. Then, as previously, one can show
that the signature sigBi1

(c) must have been produced by Bik and that
c is the commitment of Bik . But then, as Bik is not challenged, she
does not open this commitment before time T2. Also, nobody else
is able to open this commitment before this time, by the equational
theory under consideration (see Figure 1).
Case V6’: Suppose that none of V1’–V5’ holds and that V6’
holds, which means that A posts a result (18) with a valid zero-
knowledge proof and a valid signature sigw[Comw] (this is be-

19

cause the case described in V5’ does not hold) and, moreover,
a value qw is posted on the bulletin board such that Comw is of
the form 〈hash(Cw),hash(qw), Id〉. Therefore, V states the verdict
ψ = dis(Bw). To prove that ψ is true in π, we need to show that Bw
is not honest in π (i.e. the process of Bw used in π is not in Π̂(Bi)).

To do so, let us suppose, that this is not the case, but, on the
contrary, Bw runs some of his honest programs. As, by the defini-
tions of honest program of a bidder and the honest program of the
key issuer, the private key of Bw is never revealed to other parties.
Therefore, it must have been Bi who has signed the commitment
Comw and, thus, Bi must have produced this commitment. How-
ever, in such a case, again by the definition of honest programs of
bidders, Bw never reveals the nonce qw used in Comw and, in par-
ticular, does not post this value. Since the only term containing
qw, known to other parties, is hash(qw) and the symbol hash(·) is
free in the equational theory under consideration (see Figure 1), no
other party is able to derive qw and post it, which contradicts the
assumption that qw is posted.

Completeness: To show that the only constraint of Φ′ is ensured
by V in every run of PPRST ′ , let us suppose that γ does not hold
in some run r of PPRST ′ . It means that one of the conditions (a)–
(e) is violated in r. In each of these cases we need to prove that
an individual party is blamed by V in r, i.e. V states in r a verdict
which implies (at least) one of dis(A), dis(B1), · · · ,dis(Bn).

Condition (a) is violated, i.e. A does not post a list (15) of com-
mitments which includes the commitments of the honest bidders.
If A does not posts this list at all, then A is blamed (i.e. V states the
verdict dis(A)), by V1’. If A posts such a list, but the commitment
of some honest bidder Bi is not included, then, by the definition
of honest programs of bidders, Bi appeals by posting (16) and, in
consequence, V blames A, by V3’. If, as previously, A posts such a
list, but two or more commitments in this list have the same value
c, then, by V2’, V either states dis(A) (if A does not provides the re-
quired list of signatures) or dis(Bi2)∧·· ·∧dis(Bil) (if A posts such
a list sigBi1

(c), . . . ,sigBil
(c)). Note that in both cases individual par-

ties are blamed. In particular, in the latter case, the verdict implies,
for instance, dis(Bi2).

Condition (b) is violated: If some commitment is not opened, then,
by V4’, V blames either A some bidder Bi. If the list (17) is not
posted by A, then A is blamed, also by V4’.

Condition (c) is violated, i.e. A does not publish any result (18). In
this case V blames A, by V5’.

Condition (d) is violated, i.e. the result (18) is published, but the
published price bu is not the second highest bid amongst the bids
encrypted in C1, . . . ,Cn. In this case, by the equational theory under
consideration, A is not able to construct a valid zero-knowledge
proof, as required in S6’ and, therefore, V blames A, by V5’.

Condition (e) is violated: We can assume that condition (b) is
satisfied (we have considered a violation of this condition above).

If an honest bidder is declared as the winner, then her signature
on the commitment Comw corresponding to the winning encrypted
bid Cw is posted in (18). By the definition of her honest programs,
the definition of the honest program of the key distribution cen-
ter, and by the equational theory we consider, this is possible only
if this honest bidder in fact has produced Cw. Now, if the bidder
declared as the winner did not bid the highest value, i.e. Cw does
not contain the highest value, then, by the equational theory un-
der consideration, A would not be able construct the required valid
zero-knowledge proof P. Therefore V would blame A by V5’.

Now, suppose that and honest bidder B j who has bid the highest
value is not declared as the winner (i.e. j 6= w). Then, since B j has

bid the highes value and her encrypted bid C j is in (17) (recall our
assumption that (b) is not violated), by the correctness of the zero-
knowledge proof P, Cw = C j and, hence, she knows and posts the
nonce q j = qw. In consequence, V blames Bw.

B.5 Proof of Theorem 2
We use the detailed specification of the goal γ given in Ap-

pendix B.4.

Fairness: To show that V is fair in P = PV
PRST , let π be an instance

of P and r be a run of π such that V states a verdict ψ in r. We
need to show that π |= ψ. Since V states a verdict, by definition of
the honest program of V , one of the cases given by V1–V6 must
hold. We will present here only a proof for the case, where V states
a verdict of the form ψ∗{A,Bi1 ,...,Bil }

, as described in Step V2. This is
is the most interesting case; the proofs for the remaining cases are
quite straightforward.

So, suppose that A posts the list of commitments such that l
commitments on this list, for l > 1, have the same value c and A
provides the signatures sigBi1

(c), . . . ,sigBil
(c) as required in V2.

Hence, by the definition of the judging procedure, V states ψ =
ψ∗{A,Bi1 ,...,Bil }

. To prove that ψ is true in π, it is enough to show that
if one of A,Bi1 , . . . ,Bil is honest, then the remaining ones are not
honest in π.

First, suppose that A is honest in π. Then, A does not reveal the
value of c before time T1. Therefore, every bidder in {Bi1 , . . . ,Bil}
must have either revealed her own commitment or submitted some-
body else’s commitment. In both cases the bidder is not honest.

Now, suppose that one of the bidders, say Bi1 is honest. Because
she has signed c, it must be her own commitment. Since she did
not reveal her commitment c, except for sending it directly to A,
the auctioneer must have revealed c to the other bidders, letting
them sign c, before publishing the list of commitments. Therefore,
A is not honest in π. Also Bi2 , . . . ,Bik are not honest in π, as they
have signed not their own commitments.

Completeness: We need to show that V ensures all the constraints
in Φ in every run r of PPRST :
Constraint (7). If αi

rec holds (i.e. r ∈ αi
rec), then V states dis(A)∨

dis(Bi), by V1.
Constraint (8). If αi

open holds, then V states dis(A)∨dis(Bi) by V4.

Constraint (9). If αX
reuse holds, then V states ψ∗X∪{A}, by V2.

Constraint (10). If αw, j
win holds, then V states ψ∗{A,Bw,B j}, by V6.

Constraint (11). Suppose that neither of αi
rec, αi

open, αX
reuse, αw, j

win
holds, and that ¬γ holds. It means that one of the conditions (a)–
(e) is violated in r. In each of these cases we to prove that A is
individually blamed:
Condition (a) is violated: If A does not post a list (15) of com-
mitments at all, then A is blamed, by V2. If A posts this list, but
the commitment of some honest bidder Bi is not included, then this
bidder provides her receipt (we know that she obtained her receipt,
because otherwise, she would claim, which would mean that αi

rec
holds) and A is blamed, by V3. We also know that commitments on
this list are pairwise different, because, as we assumed, αX

reuse does
not hold, for any X .
Condition (b) is violated: If some commitment is not opened (in
particular, if the list is not posted at all), then it must hold that
A does not provide any signature on any commitment (otherwise
αopen would hold). In this case, A is blamed by V4.
Condition (c) is violated, i.e. A does not publish any result (18). In
this case V blames A, by V5.

20

Condition (d) is violated, i.e. the result (18) is published, but the
published price bu is not the second highest bid amongst the bids
encrypted in C1, . . . ,Cn. In this case, by the equational theory under
consideration, A is not able to construct a valid zero-knowledge
proof, as required in S6’ and, therefore, V blames A, by V5.
Condition (e) is violated: We can assume that condition (b) is
satisfied (we have considered a violation of this condition above).

If an honest bidder is declared as the winner, then her signature
on the commitment Comw corresponding to the winning encrypted
bid Cw is posted in (18). This is possible only if this honest bidder
in fact has produced Cw. Now, if the bidder declared as the winner
did not bid the highest value, i.e. Cw does not contain the highest
value, then, by the equational theory under consideration, A would
not be able construct the required valid zero-knowledge proof P.
Therefore V would blame A by V5.

Now, suppose that and honest bidder B j , who has bid the highest
value, is not declared as the winner (i.e. j 6= w). One can show that
this case cannot hold, as it contradicts our assumption that αw, j

win
does not hold.

C. PROOF OF PROPOSITION 1
In this section we prove Proposition 1.

C.1 Symbolic Setting
Assume that (4) holds. That means that

(a) J is fair, i.e. if J states ψ in a run r of an instance π of P then
π |= ψ and

(b) J ensures (¬γ ⇒ ϕ), i.e. for every run r we have r ∈ γ or J
states a formula that implies ϕ.

We now show that the two conditions of Definition 4 hold.

1. Let r be a run of an instance π of P such that π |= ϕ. We have
to show that J accepts r.
If J does not accept r, then, by definition, J outputs a formula
ψ that, by assumption, implies ϕ. From (a) we get that π |=ψ.
As ψ implies ϕ, this implies π |= ϕ. That contradicts π |= ϕ.
Hence we get the first condition of verifiability of (5).

2. Let r be an arbitrary run of an instance π of P in which J
accepts r. We have to show that r ∈ γ.
As J accepts r, J does not state a formula ψ (that implies ϕ).
By (b) we have that r ∈ γ, what is the second condition of
verifiability.

Now we prove that (5) implies (4) under the condition that J, if
it states a formula, he states ϕ.

Assume that (5) holds. That means that

(c) For every run r of an instance π of P such that π |= ϕ, J
accepts r.

(d) For every run r in which J accepts r we have r ∈ γ.

We have to show that the fairness and completeness conditions of
Definition 2 are satisfied.

1. Let r be a run of an instance π of P such that J states a verdict
ψ. We have to show that π |= ψ.
By assumption we have ψ = ϕ. As by definition, J does not
accept r, by (c) we have that π |= ϕ does not hold, what im-
plies π |= ϕ, hence J is fair.

2. Further, let r be an arbitrary run of an instance of P. We
have to show that J ensures (¬γ ⇒ ϕ) in P. This is trivial
when r ∈ γ, hence let r ∈ ¬γ. If J would not state a verdict

that implies ϕ, then, by definition, J would accept this run.
By (d) we would get r ∈ γ. This contradiction implies the
completeness.

C.2 Computational Setting

Assume that (4) holds for some δ ∈ [0,1]. That means that

(a) J is computationally fair, i.e. Pr[π(1`) 7→ {(J : ψ) | π 6|= ψ}]
is negligible as a function of `, for all instances π of P and

(b) for every instance π of P, the probability that J does not en-
sure (¬γ⇒ ϕ) is δ-bounded as a function of `.

We now show that the two conditions of Definition 5 hold.

1. We have to show that Pr[π(1`) 7→ (J : accept)] is overwhelm-
ing as a function of ` for all instances π of P with π |= ϕ.
So let π with π |= ϕ, i.e. π 6|= ϕ, be arbitrary. If Pr[π(1`) 7→
(J : accept)] is not overwhelming, then Pr[π(1`) 7→ {(J : ψ) |
ψ implies ϕ}] is not negligible as J accepts iff J does not out-
put any ψ (that implies ϕ). For all ψ that imply ϕ, we have
π 6|= ψ. Hence Pr[π(1`) 7→ {(J : ψ) | π 6|= ψ}]≥ Pr[π(1`) 7→
{(J : ψ) | ψ implies ϕ}] is also not negligible, what contra-
dicts (a).

2. Further we have to show that Pr[π(1`) 7→ ¬γ, (J : accept)] is
δ-bounded as a function of `.
This follows directly from (b), as J does not ensure (¬γ⇒ϕ)
in a run r means that r∈¬γ and J does not state a formula that
implies ϕ. The latter implies that J does not state any formula
and hence, J accepts the run. Hence the second condition of
computational verifiability is satisfied.

Now we prove that (5) implies (4) under the condition that J, if
it states a formula, states ϕ.

Assume that (5) holds for some δ ∈ [0,1]. That means that for
every instance π of P

(c) If π |= ϕ, then Pr[π(1`) 7→ (J : accept)] is overwhelming as
a function of `.

(d) Pr[π(1`) 7→ ¬γ, (J : accept)] is δ-bounded as a function of `.

We have to show that the fairness and completeness conditions of
Definition 3 are satisfied.

1. Let π be an arbitrary instance of P. We have to show that
Pr[π(1`) 7→ {(J : ψ) | π 6|= ψ}] is negligible as a function of
`.
As if J states a formula, then J states ϕ, it is enough to show
that the probability that J states ϕ is negligible if π 6|= ϕ.
The latter implies π |= ϕ and hence, by (c), Pr[π(1`) 7→ (J :
accept)] is overwhelming. This implies that the probability
that J states ϕ is negligible, as by definition, J states a for-
mula iff J does not accept. Hence J is computationally fair.

2. Further we have to show that the probability that J ensures
(¬γ⇒ ϕ) is δ-bounded.
This follows directly from (d), as J does not ensure (¬γ⇒ϕ)
in a run r means that r∈¬γ and J does not state a formula that
implies ϕ. The latter means that J does not state any formula
and hence, J accepts the run. This implies the completeness.

D. ASW PROTOCOL
In this section, we provide some details on modeling and analysis

the ASW contract-signing protocol. [4].

21

D.1 Description of the Protocol
The objective of the ASW protocol is to enable two parties, A

(the originator) and B (the responder), to obtain each other’s signa-
ture on a previously agreed contractual text contract with the help
of a trusted third party T , where, however, T is only invoked in
case of a problem. In other words, the ASW protocol is an opti-
mistic two-party contract-signing protocol.

In the following, similarly to Section 6, we write sigk[m] as an
abbreviation for 〈m,sigk(m)〉, where sigk(m) is a term represent-
ing the signature on the message m with the key k. We will also
write 〈m1, . . . ,mn〉 to represent the concatenation of the messages
m1, . . . ,mn. We denote the public (or verification) key of a principal
A by kA.

In the ASW protocol, there are two kinds of messages that are
considered to be valid contracts: the standard contract 〈sigkA

[mA],
NA,sigkB

[mB],NB〉 and the replacement contract

rT = sigT [〈sigA[mA],sigB[mB]〉]

where NA and NB are nonces generated by A and B, respec-
tively, mA = 〈kA,kB,kT ,contract,hash(NA)〉, and mB = 〈sigkA

[mA],
hash(NB)〉

The ASW protocol consists of three subprotocols: the exchange,
abort, and resolve protocols. These subprotocols are explained
next.
Exchange protocol. The basic idea of the exchange protocol is that
A first indicates her interest to sign the contract. To this end, she
sends to B the message sigkA

[mA] as defined above, where NA is
a nonce generated by A. By sending this message, A “commits”
to signing the contract. Then, similarly, B indicates his interest to
sign the contract by generating a nonce NB and sending the message
sigkB

[mB] to A. Finally, first A and then B reveal NA and NB, respec-
tively. At this point both participants are able to build a standard
contract.
Abort protocol. If, after A has sent her first message, B does
not respond, A may contact T to abort, i.e., A runs the abort pro-
tocol with T . In the abort protocol, A first sends the message
sigkA

[
〈
aborted,sigkA

[mA]
〉
]. If T has not received a resolve re-

quest before (see below), then T sends back to A the abort token
aT = sigkT

[
〈
aborted,sigkA

[
〈
aborted,sigkA

[mA]
〉
]
〉
]. Otherwise (if

T received a resolve request, which in particular involves the mes-
sages sigkA

[mA] and sigkB
[mB] from above), it sends the replacement

contract rT to A.
Resolve protocol. If, after A has sent the nonce NA, B does
not respond, A may contact T to resolve, i.e., A runs the resolve
protocol with T . In the resolve protocol, A sends the message〈
sigkA

[mA],sigkB
[mB]

〉
to T . If T has not sent out the abort token aT

before, then T returns the replacement contract rT , and otherwise
T returns the abort token aT . Analogously, if, after B has sent his
commitment to sign the contract, A does not respond, B may con-
tact T to resolve, i.e., B runs the resolve protocol with T similarly
to the case for A.

We assume that both in the abort and the resolve protocol, the
communication with T is carried out over a reliable channel. Com-
munication between A and B is carried out over an unreliable net-
work channels.

D.2 Properties of the Protocol
Several properties of this protocol were studied in the literature,

including fairness, balance, and abuse-freeness, under the assump-
tion that the trusted third party behaves honestly (see, e.g., [29, 42,
28, 27]). More specifically, it was assumed that the trusted third
party never produces both the abort token aT and a replacement

contract rT . Here, we do not make this assumption but ask whether
the trusted third party can be held accountable in case it misbe-
haves. This is a crucial question, as a positive answer justifies the
assumption that the trusted third party behaves honestly.

Ideally, we would like to hold T accountable whenever it pro-
duces both aT and rT . However, it is easy to see that it is unre-
alistic: the mere fact that both messages were produced does not
necessarily mean that they were sent to any honest party, let alone
observed by the judge. We therefore consider only the case where
there is a dispute in which the judge is faced with both aT and rT .

D.3 Modeling
By PASW we denote the protocol (in the sense of Definition 1)

modeling the ASW protocol, where, in addition to A, B and T , we
consider an additional party, the judge J. The honest programs of A,
B and T are defined as specified by the protocol. The judge blames
T if and only if he obtains a message of the form 〈aT ,rT 〉, where
aT and rT are defined as above, for some A, B, contract, NA, and
NB.

We assume that the set of programs that the judge can run con-
sists only of his honest program, which means that we assume
that the judge is honest. However, the sets of programs of A, B,
and T consist of all possible processes that these parties can run,
where the processes are merely limited by the network configura-
tion. Hence, for these three parties any dishonest behavior is con-
sidered.

D.4 Automated Proof of Theorem 4
Following Remark 1, we have verified the property stated by this

theorem automatically, using the constraint solving for protocol
analysis tool [34], documented in [35]. Our modelling is available
at [33].
Fairness. For the fairness condition, we have encoded the system
with only honest T and J and with the intruder subsuming A and B
(which means that he knows their private keys and has access to the
same network interface these parties have, including the interface
to T), where T is capable to deal with up to three requests. The tool
has verified that a state in which J blames T is unreachable in this
system (note that J blames only T).
Completeness. To show that the only constraint of Φ is ensured
by J, we have encoded the system with only honest J and all the
remaining parties subsumed by the intruder. In this case, the veri-
fication is trivial, and the tool, as expected, has confirmed that it is
impossible to reach a state, where the judge obtains both aT and rT
and T is not blamed.

22

