
Authenticating Aggregate Range Queries over

Dynamic Multidimensional Dataset

Jia XU
jiaxu2001@gmail.com

National University of Singapore

Abstract. We are interested in the integrity of the query results from an outsourced database service
provider. Alice passes a set D of d-dimensional points, together with some authentication tag T, to an
untrusted service provider Bob. Later, Alice issues some query over D to Bob, and Bob should produce
a query result and a proof based on D and T. Alice wants to verify the integrity of the query result with
the help of the proof, using only the private key. Xu J. et al. [25] proposed an authentication scheme to
solve this problem for multidimensional aggregate range query, including Sum, Count, Min, Max and
Median, and multidimensional range selection query, with O(d2) communication overhead. However,
their scheme only applys to static database. This paper extends their method to support dynamic
operations on the dataset, including inserting or deleting a point. The communication overhead of our
scheme is O(d2 log N), where N is the number of data points in the dataset.

Key words: Authentication, Multidimensional Aggregate Query, Dynamic Database, Se-
cure Outsourced Database, Provable Remote Computing

1 Introduction

Alice has a set D of d-dimensional points. She preprocesses the dataset D using her private
key to generate some authentication tag T. She sends (outsources) D and T to an untrusted
service provider Bob. Then Alice deletes the original copy of dataset D and tag T from her
local storage. Later Alice may issue a query over D to Bob, for example, an aggregate query
conditional on a multidimensional range selection, and Bob should produce the query result
and a proof based on D and T. Alice wants to authenticate the query result, using only her
private key.

We are concerned about the communication cost and the storage overhead on Bob’s
side. Such requirements exclude the following two straightforward approaches: (1) Bob sends
back the whole dataset D with its tag T; (2) During preprocessing, Alice generates and signs
answers to all possible queries.

The problem we study in this paper fits in the framework of the outsourced database
applications [6, 11], which emerged in early 2000s as an example of “software-as-a-service”
(SaaS). By outsourcing database management, backup services and other IT needs to a
professional service provider, companies can reduce expensive cost in purchase of equipments
and even more expensive cost in hiring or training qualified IT specialists to maintain the
IT services [17].

Xu J. et al. [25] proposed a scheme, called MAIA, to authenticate aggregate range query,
including Sum, Count, Min, Max and Median, over a static d-dimensional dataset, with

O(d2) communication overhead. Since MAIA indexs each point in the dataset using integers
and intergers are not densely ordered, MAIA cannot handle with dynamic operations, like
inserting to or deleting a point from the dataset.

In this paper, we propose a method to index each point in the dataset with a rational
number in the interval [0, 1). Since rational number is densely ordered, i.e. there is at least
one rational number in-between any two unequal rational numbers, our indexing method
support dynamic operations. The new indexing method utilizes a special ternary tree, which
we call Doit tree— Dynamic Ordered Indexing Ternary Tree.

Based on the new indexing scheme, we propose a scheme, called dynamic MAIA, to au-
thenticate the same types of aggregate range queires as MAIA, over dynamic multidimensional
dataset. The communication overhead is O(d2 log N), where N is the number of points in
the dataset.

Table 1: Performance of our scheme Dynamic MAIA, compared with MAIA proposed by
Xu J. et al. [25]. Note both schemes are much more efficient in computation cost in 1D
case, compared with high dimensional case (See annotation ⋆). We point out that the high
computation cost on prover can be mitigated with horizontal partition of the dataset and
parallel execution on each partition.

Scheme Communica-
tion over-
head (bits)

Key
Size

Storage
overhead

Computation
(Verifier
Alice)

Computation
(Prover Bob)

Query

MAIA ([25]) O(d2) O(d) O(dN) O(d log N)†⋆ O(dN log N)‡⋆ Sum,Count,Min,Max, Median,
Quantile, Range Selection

Dynamic MAIA

(This paper)
O(d2 log N) O(d) O(dN) O(d log N)†⋆ O(dN log N)‡⋆ Insert, Delete,

Sum,Count,Min,Max, Median,
Quantile, Range Selection

d: The dimension of data point in the dataset. N : The number of tuples in the dataset.
†: O(d log N) modular multiplications. ‡: O(dN log N) modular exponentiations.
⋆: If the query range is 1D, the cost is O(|S|).

1.1 Contribution

Our main contributions can be summarized as follows:

1. We propose a Dynamic Ordered Indexing Ternatry Tree, called as Doit tree, which maps
a datapoint to a rational number in [0, 1) and preserves the order, and supports insertion
or deletion of datapoints.

2. Based on Doit tree, we propose dynamic MAIA, to authenticate aggregate range query
over dynamic multidimensional dataset.

3. Our scheme dynamic MAIA is efficient (See Table 1) and secure (See Theorem 1).

2

1.2 Organization

The rest of this paper is organized as follows: Section 2 briefs the related works, Section 3
reviews the scheme MAIA propsed in [25], Section 4 proposes the Doit tree, and Section 5
constructs our authentication scheme dynamic MAIA.

2 Related work

Researches [6, 11] in secure outsourced database emerged and quickly developed since early
2000’s . Most papers focus on privacy-preserving SQL query execution over encrypted datasets
[11,12,18,7], and authentication of query results [6,15,5,19,17,20,23,4,14,24,1,26,16,13,9].

There are roughly four categories of approaches for outsourced database authentication in
the literatures [6,15,5,19,17,20,23,4,14,24,1,26,16,13,9]. (1) (Homomorphic, or aggregatable)
Cryptographic primitives, like collision-resistant hash, digital signature, commitment [17,10,
3]. (2) Merkle Hash Tree and variants [16,14,4]. (3) Computational geometry approach [15,
4, 1]. (4) Inserting and auditing fake tuples [24].

In the “integrity authentication” track, most papers are working on authentication of
simple range selection queries [15, 19, 17, 20, 1, 4]. [19, 20] authenticated 1D range selection
queries, with linear (in the number of tuples selected by the query condition) communication
cost and storage overhead. [17] verified range selection queries using aggregated signatures
(like RSA [22], BLS [2]). [4] proposed a linear (or superlinear) scheme, using chained sig-
natures over a “verification R-Tree” with partitions of tuples as tree nodes, to authenticate
windows query, range query, kNN query, and RNN query. To the best of our knowledge, the
current most efficient authentication scheme for range selection queries is [1], which proposed
an efficient authentication scheme for 1D and 2D range selection queries over a grid dataset
(e.g. GIS or image data) with O(1) communication cost and linear storage overhead. [23]
claimed to authenticate arbitrary queries, but their security model is too weak: a playful
adversary can easily break their scheme.

3 Review of MAIA

In this section, we review the scheme MAIA proposed by Xu J. et al. [25]. For the sake of
presentation of this paper, we will re-organize the presentation of [25].

Let Dx = {x1,x2, . . . ,xN} be a set of N d-dimensional points. In the setup phase, Alice
normalizes [21] dataset Dx, to obtain dataset D = {i1, i2, . . . , iN}. Next, Alice runs key
generating algorithm KGen to generate a private key K, and encodes the dataset D using
data encoding algorithm DEnc with key K, to obtain tags T. At the end of setup phase,
Alice deletes Dx,D,T from her storage after sending them to Bob, and keeps key K private.

The query phase consists of multiple query sessions. In each session, Alice issues an
aggregate range query to Bob. Bob generates the query result, and produces a proof, with
help of Alice, by running the interactive algorithm ProVer with Alice. After receiving Bob’s
query result and proof, Alice verifies authenticity of the query reuslt using the private key
K. The type of queries include Sum, Count, Min, Max and Median.

3

Specially, among all components of MAIA, we take out all algorithms related to precess of
index and encapsulate them as an indexing scheme (Idx, ITag, Translate, Compress, Uncompress).
Idx maps a datapoint x ∈ Dx to an integer vector i in [N]d and preverses order for each
dimension. ITag produces an authentication tag for index i. Translate converts a query w.r.t.
datapoint x’s to a query w.r.t. indices i’s, which has the same query result as the previous
query. For any query range R, Compress can convert the set {ITag(i) : i ∈ R} (called as
Help-Info in [25]) into a d-dimensional vector of small size, and Uncompress can reverse the
process.

In this paper, we will propose an alternative indexing scheme to replace the one in
MAIA [25], and keep the other parts of MAIA unchanged. The resulting scheme is called
dynamic MAIA, which can support dynamic operations, like inserting or deleting a datapoint.

4 Dynamic Ordered Indexing Ternary Tree

We first propose a Dynamic Ordered Indexing Ternary tree, called as Doit tree in Section 4.1,
and then present an indexing scheme based on the Doit tree in Section 4.2.

4.1 Doit Tree

x2 x3 x4x1

2, p2

0, p10 2, p12

1, p01

0, p0

1, p1

1001 12 21

1, p21

Fig. 1: Doit Tree: Dynamic Ordered Indexing Ternary Tree for dataset {x1, x2, x3, x4}.

Let S2R : {0, 1, 2}∗ → [0, 1) be function that converts a string in {0, 1, 2}∗ to a real value
in [0, 1). On input string s in {0, 1, 2}∗, S2R treats the string “0.”‖s as a rational number in
ternary numeral system, and converts it to y ∈ [0, 1). As a result, S2R(s) = y.

We build a complete ternary tree T = (V , E) with vertex set V and edge set E . Let L ⊂ V
be the set of all leaf nodes. We associate each edge e ∈ E with attributes e.trit and e.p,
and each vertex v ∈ V with attributes v.lab, v.idx, v.range and v.tag. These attributes are
defined as follows.

1. Edge

4

(a) Each internal node has three child nodes: left child, middle child, right child. For any
edge el ∈ E pointing to a left child, el.trit ← 0; for any edge em ∈ E pointing to a
middle child, em.trit← 1; for any edge er ∈ E pointing to a right child, er.trit← 2.

(b) Each tree edge e ∈ E is associated with a public random prime, denoted as e.prime.
2. Vertex

(a) For any node v ∈ V, let (e1, e2, e3, . . . , ew) be the unique simple path from the root
r to node v, where e1 is adjacent to the root and ew is adjacent to node v. Then
v.lab ← e1.trit‖e2.trit . . . ‖ew.trit, where ‖ is the string concatenation operator.
Specially, for the root r, r.lab← ǫ, where ǫ is the empty string.

(b) For each node v ∈ V, v.idx← S2R(v.lab).
(c) For each node v ∈ V, v.range ← [v.idx, v.idx + 3−|v.lab|) ⊆ [0, 1), where |v.lab|

denotes the length of trit-string v.lab. Particularly, for root r, r.range = [0, 1), since
r.lab = ǫ, and S2R(ǫ) = 0, |ǫ| = 0.

(d) For any node v ∈ V, let (e1, e2, . . . , eu) be the unique simple path from the root to v.

Then v.tag = r.tag
∏

1≤j≤u
ej.prime mod n, where r denotes the root of the tree.

4.1.1 Indexing a dataset. Now, we use the newly constructed ternary tree to index a
1D dataset.

Let dataset Dx = {x1, x2, . . . , xN} ⊂ N and x1 < x2 < x3 . . . < xN . For simplicity of
presentation, assume N = (3H−1)/2 for some integer H. Build a complete ternary tree with
(2N + 1) leaves as above.

For the convenience of presentation, we name each vertex and edge.

1. For any v ∈ V with v.lab = s, we name v with Vs. For example, the root node r = Vǫ.
2. For any edge e = (u, v) ∈ E , where u is the parent node of v and v.lab = s, we name e

with Es, and name the prime e.prime with ps (See Figure 1).

Next, we associate an attribute val to some leaf nodes and define the mapping idx :
Dx → [0, 1) as follows.

1. From left to right, number all leaf nodes with 1, 2, 3, . . ., (2N + 1). So the leftmost leaf
node is the 1st leaf, and the rightmost leaf node is the (2N + 1)-th leaf.

2. For each leaf node v, associate an attribute, denoted as v.val. For the (2j)-th leaf v,
j ∈ [N], v.val← xj and idx(xj)← v.idx; for any other leaf v , v.val← ⊥. We call a leaf
v as unassigned leaf, if v.val = ⊥. Otherwise, we call it assigned leaf. Let L− be the set
of all assigned leaf nodes and L+ be the set of all unassigned leaf nodes. (L+,L−) forms
a partition of the set L of all leaf nodes.

We call the construted ternary tree Doit Tree for dataset Dx, which stands for “Dy-
namic Ordered Indexing Ternary” Tree. Figure 1 shows an example Doit tree for a dataset
{x1, x2, x3, x4}.

A Doit tree has the following properties.

Property 1 (Doit Tree)

5

1. (Ternary Tree) Every internal node has exactly three children, called left child, middle
child and right child.

2. (Partition) For an internal node v with left child tl, middle child vm and right child tr,
(vl.range, vm.range, vr.range) form a partition of v.range. Additionally, for root node r,
r.range = [0, 1).

3. (Ordered) For any two nodes vi, vj ∈ V, if vi appears before vj in the preorder traversal,
then vi.idx ≤ vj.idx.

4. (Dynamic) For any xj, xj+1 ∈ D, let vj, vj+1 ∈ L
− be their corresponding leaf nodes, i.e.

vj.idx = idx(xj) and vj+1 = idx(xj+1), there exists one and only one leaf node between
vj and vj+1 and this leaf node is unassigned. Additionally, both the leftmost leaf and
the rightmost leaf node are unassigned. Those unassigned leaf nodes in set L+ allow the
insertions of new values. After insertions of new nodes, these four properties still hold.

4.2 Indexing Scheme for 1D Dataset

Now we show an indexing scheme based on the Doit tree. As menstion previously, an indexing
scheme consists of Idx, Translate, ITag, Compress and Uncompress.

4.2.1 itag. At first, we define function R2S : [0, 1) → {0, 1, 2}∗ to convert a real value
in [0, 1) to a trit-string, which is the inverse function of S2R. Given i ∈ [0, 1), let si ∈
“0.”{0, 1, 2}∗ be the expression of i in ternary numeral system. If |si| < H + 2, then append
(H +2− |si|) 0’s to si: si ← si‖ 00 . . . 0

︸ ︷︷ ︸

H+2−|si| 0’s

. Remove the first two symbols from si. Output si.

Given i ∈ [0, 1), we convert it into a trit-string R2S(i) ∈ {0, 1, 2}∗. We define

itag(i)
def
= VR2S(i).tag.

Let prefix(s, j) be the prefix of length j of string s and let h : {0, 1, 2}∗ → Prime be a
hash function [8]. In another equivalent expression,

itag(i)
def
= g

∏s=R2S(i)

1≤j≤|s|
h(prefix(s,j))

p mod n.

4.2.2 insert. The input is (T , x), where T is a Doit tree and x ∈ N.

1. Number all leaf nodes in L from left to right with 1, 2, 3, . . . , |L|. Denote the i-th leaf
node with ℓi. Find ζ such that ℓζ , ℓζ+2 ∈ L

− and ℓζ .val ≤ x < ℓζ+2.val.
2. Expand node ℓζ+1 and let tl, tm and tr denote its left child, middle child and right child,

respectively. Comment: As a result, ℓi+1 becomes an internal node and tl, tm and tr are three leaf nodes.

3. Update the tree T :
(a) Let tm.val← x;
(b) Remove ℓζ+1 from L and L+;
(c) Add tl, tm and tr into L;
(d) Add tl and tr into L+;

6

(e) Add tm into L−, etc.

Figure 2 shows an example of insertion. Note that the tree T , set L of leaves, set L+ of
unassigned leaves, set L− of assigned leaves are dynamic, and will be updated during each
insertion. However, for each node v and each edge e, the attributes v.lab, v.idx, v.range,
e.trit, e.prime are static.

x2 x3 x4

2, p2

0, p10 2, p12

0, p0

1, p1

10 12 21

1, p21

2, p02

1, p021

021

y

x1

1, p01

01

Fig. 2: Doit Tree: Insert a new value y, where x1 < y < x2.

4.2.3 MinCover. The input of algorithm MinCover is (v1, v2), where v1 and v2 are two
assigned leaf nodes of a Doit tree T , and v1.id ≤ v2.id. The equality is for special case
v1 = v2. The output is a collection of tree nodes {ri} such that {ri.range} forms a partition
of interval [v1.id, v2.id].

1. From T , remove all tree nodes v and their ajacent edges, such that v.id < v1.id.
2. From T , remove all tree nodes v and their ajacent edges, such that v.id > v2.id.
3. From T , remove all tree nodes, except v1, along the unique simple path from the root of
T to leaf v1 and their ajacent edges.

4. From T , remove all tree nodes, except v2, along the unique simple path from the root of
T to leaf v2 and their ajacent edges.

5. Let {T1, T2, . . . , Tm} denote the collection of remaining subtrees and each Ti is a sub-
tree. Let ri be the root node of tree Ti. Note {Ti} is the minimum cover for interval
[v1.id, v2.id].

6. Output (r1, r2, . . . , rm).

Figure 3 shows an example with input (V021, V21).

7

x2 x3 x4

2, p2

0, p10 2, p12

0, p0

1, p1

10 12

1, p21

2, p02

1, p021

x1

1, p01

01

y

021 022

2120

Fig. 3: Doit Tree: Compression of [0.021, 0.21] = [0.021, 0.022) ∪ [0.022, 0.1) ∪ [0.1, 0.2) ∪
[0.20, 0.21) ∪ [0.21, 0.22).

4.2.4 compress. The input is (v1, v2, α).

1. (r1, r2, . . . , rm)←MinCover(v1, v2).

2. For each i ∈ [m], vi
$
←− Gq, wi

$
←− Gr and δi ← (ri.tag)

α × vi × wi mod n.

3. Output {δ1, δ2, . . . , δm}.

4.2.5 uncompress. The input is (δ1, δ2, . . . , δm, v).

1. Let {T1, T2, . . . , Tm} denote the corresponding minimum cover and ri be the root node of
tree Ti.

2. Find j ∈ [m], such that v.id ∈ rj.range. Note v should be a leaf node of the subtree Tj.

3. Set rj.tag← δj and compute v.tag as described previously.

4. Output v.tag.

4.3 Indexing Scheme for d-Dimensional Dataset

Let Dx = {x1,x2, . . . ,xN} ⊂ N
d be a set of N d-dimensional data points, where N =

(3H − 1)/2 for some integer H.

For each dimension j ∈ [d], let D(j)
x

= {x[j] : x ∈ Dx}, build a Doit tree T (j) for
1D dataset D(j)

x
and define idx(j), compress(j), uncompress(j) correspondingly. Now we define

8

corresponding functions in vector forms.

Idx(x) = (idx(1)(x[1]), idx(2)(x[2]), . . . , idx(d)(x[d]))

ITag(x) = (
(

itag(1)(x[1])
)s1[1]

,
(

itag(2)(x[2])
)s1[2]

, . . . ,
(

itag(d)(x[d])
)s1[d]

)

Compress(v1,v2,α) = (compress(1)(v1[1],v2[1],α[1]), . . . , compress(d)(v1[d],v2[d],α[d]));

Uncompress(δ1, . . . , δd,v) = (uncompress(1)(δ1,v[1]), . . . , uncompress(d)(δd,v[d])).

4.3.1 Translate. Let Di = {Idx(x) : x ∈ Dx} be the set of indices of points in dataset
Dx. Given a query with range B = [a1, b1]× [a2, b2]× . . .× [ad, bd] ⊂ N

d, which asks for the
sum

⊕

x∈Dx∩B x, algorithm Translate output a query with range R = [β1, γ1]× [β2, γ2]× . . .×
[βd, γd] ⊂ [0, 1)d, which asks for the sum

⊕

i∈Di∩R Att(i), such that (1) the two queries are
equivalent, that is,

⊕

x∈Dx∩B x =
⊕

i∈Di∩R Att(i); (2) Alice can verify the correctness of the
translation.

Translate.

1. Alice sends to Bob {(ai, bi) : i ∈ [d]}.
2. Bob returns to Alice {(β̄i, x̄i, tβ̄i

; βi, xi, tβi
; γi, yi, tγi

; γ̄i, ȳi, tγ̄i
) : i ∈ [d]}.

3. Alice outputs {(βi, γi) : i ∈ [d]}, if

(a) for each i ∈ [d], x̄i < ai ≤ xi and yi ≤ bi < ȳi;
(b) tβ̄i

, tβi
, tγi

and tγ̄i
, are valid itag values of (β̄i, x̄i), (βi, xi), (γi, yi) and (γ̄i, ȳi), respec-

tively.

Otherwise, Alice output ⊥.

5 Dynamic MAIA

The dynamic MAIA is a RC protocol [25] between Alice and Bob, and consists of setup phase
and query phase. In setup phase, Alice runs the key generating algorihtm KGen to generate
a private key, then encodes the dataset using data encoding algorithm DEnc with the private
key. The query phase consists of multiple query sessions. In each query session, Alice either
issue a query or update the dataset by inserting or deleting a point from the dataset.

5.1 Setup phase

5.1.1 KGen. At first, we define a subroutine KeyGen. KeyGen(1κ):

Alice

1. runs algorithm G(1κ) to generate (n, p, q, r, Gp, Gq, Gr, gp, gq, gr).
2. chooses (sℓ,1, sℓ,2, sℓ,3) at random from Z

∗
p × Z

∗
q × {0, 1}

κ for each ℓ ∈ [d].

9

Let s1 = (s1,1, s2,1, . . . , sd,1), s2 = (s1,2, s2,2, . . . , sd,2) and s3 = (s1,3, s2,3, . . . , sd,3). Let K =
(s1, s2, s3, n, p, q, r, gp, gq, gr). Output K.

Next, we define the algorithm KGen based on KeyGen.
KGen:

1. Run KeyGen(1κ) and obtains output K.
2. Run KeyGen(1κ) and obtains output K̄.

Output (K, K̄).

5.2 DEnc.

1. For each dimension j ∈ [d], construct a Doit tree T (j) for D(j)
x

= {x[j] : x ∈ D} and
define Att, Idx, ITag, Compress and Uncompress;

2. For each i ∈ Di, Alice
(a) chooses a number ξi at random from Z

∗
q;

(b) computes a tag ti using the private key K:

ti← TagK(Att(i), i; ξi). (1)

3. Let T = {ti : i ∈ Di}, and D̄ = T̄ = ∅. Alice sends D, D̄, T and T̄ to Bob, removes
local copy of D, D̄ and T from her storage, and keeps (K, K̄).

5.3 Query phase

5.3.1 Query. 〈Eval, Ext〉(Sum(R)). Let ProVer be as in scheme MAIA [25].

1. Simulate ProVer on input Sum(R) w.r.t. dataset D using private key K, and obatin result
X.

2. Simulate ProVer on input Sum(R) w.r.t. dataset D̄ using private key K̄, and obatin result
X̄.

3. Output X − X̄.

5.3.2 Insert.
Insert(x,D,T,K, π∗): Insert x into D.

1. For each j ∈ [d], insert(T (j),x[j]).

2. Let i← Idx(x).

3. Choose ξ from Z
∗
q at random, and compute tag: ti← TagK(x, i; ξ).

4. Add x into set D, and add ti into set T.

5. Update π∗: π∗ ← π∗ × CTagK(i)[1] mod n.

10

5.3.3 Delete.
Delete(x): Delete x from the dataset Dx.

1. If x ∈ Dx, then Insert(x, D̄, T̄, K̄, π̄∗). Otherwise, do nothing.

Editing can be implemented with combination of deleting and inserting. We save the
details.

5.4 Complexity Analysis

Without surprise, due the use of tree, the communication complexity of our scheme is
O(d2 log N). The computation and storage overhead remain the same as MAIA in Xu J. et
al. [25]. The details are showed in Table 1 in Section 1.

5.5 Security

Xu J. et al. [25] gave a security model for outsourced computing, called Provable Remote
Computing (PRC) protocol.

Theorem 1 Dynamic MAIA as constructed above is a PRC w.r.t. aggregate Sum query,
and insertion/deletion operations, if the Assumption 1 and Assumption 2 in Xu J. et al. [25]
hold, and RSA signature is a secure multiplicative homomorphic signature scheme.

6 Conclusion

In this paper, we proposed a dynamic ordered indexing ternary tree, and based it we proposed
a method to authenticate aggregate range query over dynamic multidimensional dataset. The
supported query types include Sum, Count, Min, Max and Median. The communication
overhead is O(d2 log N), where d is the dimension and N is the number of points in the
dataset.

References

1. M. J. Atallah, Y. Cho, and A. Kundu. Efficient data authentication in an environment of untrusted third-party
distributors. In ICDE ’08: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering,
pages 696–704, Washington, DC, USA, 2008. IEEE Computer Society.

2. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J. Cryptol., 17(4):297–319, 2004.
3. S. H. W. G. H. Brian Thompson, Danfeng Yao and T. Sander. Privacy-preserving computation and verification of

aggregate queries on outsourced databases. In Privacy Enhancing Technologies Symposium (PETS), Aug 2009.
4. W. Cheng and K.-L. Tan. Query assurance verification for outsourced multi-dimensional databases. J. Comput.

Secur., 17(1):101–126, 2009.
5. P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data publication over the internet. J.

Comput. Secur., 11(3):291–314, 2003.

11

6. P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine. Authentic third-party data publication. In
Proceedings of the IFIP TC11/ WG11.3 Fourteenth Annual Working Conference on Database Security, pages
101–112, Deventer, The Netherlands, The Netherlands, 2001. Kluwer, B.V.

7. T. Ge and S. B. Zdonik. Answering aggregation queries in a secure system model. In VLDB, pages 519–530,
2007.

8. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In EURO-
CRYPT, pages 123–139, 1999.

9. M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Super-efficient verification of dynamic outsourced databases.
In CT-RSA, pages 407–424, 2008.

10. S. Haber, W. Horne, T. Sander, and D. Yao. Privacy-preserving verification of aggregate queries on outsourced
databases. Technical report, HP Laboratories, 2006. HPL-2006-128.

11. H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the database-service-provider
model. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international conference on Management of
data, pages 216–227, New York, NY, USA, 2002. ACM.

12. H. Hacigümüs, B. R. Iyer, and S. Mehrotra. Efficient execution of aggregation queries over encrypted relational
databases. In DASFAA, pages 125–136, 2004.

13. K. M. HweeHwa PANG, Jilian ZHANG. Scalable verification for outsourced dynamic databases. In Will appear
in 35th International Conference on Very Large Data Bases (VLDB09).

14. F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index structures for outsourced
databases. In SIGMOD Conference, pages 121–132, 2006.

15. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for authenti-
cated data structures. Algorithmica, 39(1):21–41, 2004.

16. K. Mouratidis, D. Sacharidis, and H. Pang. Partially materialized digest scheme: an efficient verification method
for outsourced databases. The VLDB Journal, 18(1):363–381, 2009.

17. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced databases. Trans.
Storage, 2(2):107–138, 2006.

18. E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In IFIP WG 11.3 Working
Conference on Data and Applications Security, pages 89–103, July 2006.

19. H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying completeness of relational query results in data
publishing. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, pages 407–418, New York, NY, USA, 2005. ACM.

20. H. Pang and K.-L. Tan. Verifying completeness of relational query answers from online servers. ACM Trans.
Inf. Syst. Secur., 11(2):1–50, 2008.

21. F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

22. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Commun. ACM, 21(2):120–126, 1978.

23. R. Sion. Query execution assurance for outsourced databases. In VLDB, pages 601–612, 2005.
24. M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing of outsourced data. In VLDB ’07: Proceedings of the

33rd international conference on Very large data bases, pages 782–793. VLDB Endowment, 2007.
25. J. XU and E.-C. CHANG. Authenticating aggregate range queries over multidimensional dataset. Cryptology

ePrint Archive, Report 2010/050, 2010. http://eprint.iacr.org/.
26. Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join processing in outsourced databases.

In SIGMOD Conference, pages 5–18, 2009.

12

http://eprint.iacr.org/

	Authenticating Aggregate Range Queries over Dynamic Multidimensional Dataset
	Jia XU jiaxu2001@gmail.com

