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Abstract
We consider the rational secret sharing problem introduced by Halpern and Teague[1], where players prefer

to get the secret rather than not to get the secret and with lower preference, prefer that as few of the other
players get the secret. Some positive results have been derived by Kol and Naor[3] by considering that players
only prefer to learn. They have proposed an efficient m-out-of-n protocol for rational secret sharing without
using cryptographic primitives. Their solution considers that players are of two types; one player is the short
player and the rest of the players are long players. But their protocol is susceptible to coalitions if the short
player colludes with any of the long players. We extend their protocol, and propose a completely collusion free,
ε-Nash equilibrium protocol, when n ≥ 2m− 1, where n is the number of players and m is the number of shares
needed to construct the secret.

1 Introduction

In a secret sharing scheme there is a unique player called the dealer (player 0) who wants to share a secret
s among n players, p1, . . . , pn. The dealer sends every player a share of the secret in such a way that any
group of m (threshold value) or more than m players can together reconstruct the secret but no group of
fewer than m players can reconstruct the secret. Such a system is called an (m,n)-threshold scheme or
an m-out-of-n Shamir scheme[4]. Halpern and Teague[1] introduced the problem of rational secret sharing
assuming that the players are rational, where each player behaves in a selfish manner. Each player has
his own preferences and utility function (the profit he gets). He always tries to maximize his profits and
behaves accordingly. In brief, every player primarily prefers to get the secret rather than to not get it and
secondarily, prefers that the fewer of the other players that get it, the better. A rational player follows
the protocol only if it increases his expected utility.
This impossibility result is proved by Halpern and Teague[1]. They show that rational secret sharing is
not possible with any mechanism that has a fixed running time. This was shown using iterated deletion
of weakly dominated strategies (the strategy of not sending the share weakly dominates the strategy of
sending the share). Kol and Naor[3] proposed an efficient solution to the problem in the form of a strict
rational secret sharing protocol in the presence of a simultaneous broadcast channel (on which all players
broadcast simultaneously). The solution is non-cryptographic, i.e., it does not use any cryptographic
primitives, and it also considers the learning preferring property where players prefer to learn rather than
to not learn. The protocol in [3] is collusion free, even if (m− 1) long players collude they cannot get any
advantage. But if a short player colludes with even one long player, then they can learn which iteration is
the definitive iteration and thus, can learn the which iteration contains the secret. Indeed, colluded players
prevent other players from learning the secret by not following the protocol in the sense that they do not
broadcast in the iteration prior to the definitive iteration, causing the other players to abort. A completely
collusion free protocol for rational secret sharing works even if any m− 1 players collude. The completely
collusion free protocol is presented in [2] by Kol and Naor by making cryptographic assumptions. We
propose a completely collusion free, ε-Nash equilibrium protocol, when n ≥ 2m − 1 without making any
cryptographic assumptions, by incorporating changes in the original protocol by Kol and Naor[3]. Our
protocol is completely collusion free if n ≥ 2m−1, otherwise it is equivalent to Kol and Naor’s[3] protocol.
ε-Nash equilibrium has defined as follows.
ε-Nash Equilibrium: A behavioural strategy profile σ for the game Γ is said to be an ε-Nash equilibrium
if for every i ∈ N and every behavioural strategy σ′i, it holds that ui(σi, σ−i) + ε ≥ ui(σ′i, σ−i).
Authentication: We use authentication methods similar to those used in the paper [3]. Let us say that
the dealer chooses the message x as player i′s value. The dealer randomly choose si, bi ∈ F, bi 6= 0, such
that ci = (bix + si) ∈ F. The player i gets the value si, the tag and each and every other player gets
< bi, ci >. The player i broadcasts his value si along with the message x. The other players can verify the
correctness of the value x with si, bi and ci.
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2 Protocol

We consider a Synchronous Broadcast Channel (SBC) that is present and connects all the n players in
such a way that at every clock tick, every player may broadcast a message over the channel and receive
other players’ messages. The reason the STOC 08 protocol was not collusion-resilient was that if any long
player colludes with the short player, then they both will get the secret and prevent others from doing
so by not broadcasting in the iteration prior to the definitive iteration. But by distributing the masked
secret as an (m−1)-out-of-n Shamir share, we protect the protocol against this type of collusion. Consider
the case where one short player and (m − 2) long players collude. If the players in the coalition do not
send their shares in the iteration before the definitive iteration, then they cannot get the shares of the
masked secret and hence reconstruct the masked secret and by extension the secret. Therefore they will
their shares in the iteration prior the to definitive iteration, but they may not send their shares in the
definitive iteration. Even if they decide to remain quite, the remaining m players will broadcast and in
this way everyone will get the secret. In the case where (m− 1) long players collude, they will not know
which iteration is definitive, and will continue to broadcast in each iteration because they are rational.
Thus, in any case, all players will get the secret regardless of whether or not a collusion is formed and also
regardless of how many members form that collusion and who is present in that collusion.
The dealer’s protocol:
We make two changes to the dealer’s protocol. One change is that instead of distributing the masked
secret to each player, we distribute an (m− 1)-out-of-n Shamir share of the masked secret to each player.
The second change pertains to the authentication information. The “tag” of the player’s element, which
allows him to prove the authenticity of the previous elements in the present cell, and the “hash function”,
which allows him to check the veracity of the elements in the corresponding cells of the other vectors,
are chosen such that the probability that the element supplied by another players is at least 1 − ε′ for
ε′ = min{β, ε

Umax
}. Here, Umax is an upper bound on the payoffs that the player may receive and β, which

depends on the utility functions, is the parameter to a geometric distribution used to calculate share size
as well as number of stages in each iteration.
The player’s reconstruction protocol:
This is similar to Kol and Naor’s[3] protocol. Please refer to Table 1 for a more detailed account.
Our protocol is an ε-rational protocol for the following reason. When a coalition containing the short player
is formed, the coalition will know which iteration is the definitive iteration. Since they will definitely get
the secret in the definitive iteration provided that the other players follow the protocol, they have no need
to be truthful in the final iteration. Therefore they will try to cheat by sending incorrect messages, which
they hope will pass the authentication check, in an effort to fool the other players into thinking that the
current iteration is not the definitive iteration. Our scheme incorporates an authentication mechanism
which ensures that the attempt by the coalition to cheat will fail with a probability at least 1− ε

Umax
, where

Umax is an upper bound on the payoffs that the players may receive. Hence our protocol is ε-rational.

Theorem 1 Let Y be a finite set of secrets with distribution D, and let (ui)iεN be learning preferring
utility functions. For all 2 ≤ m ≤ n, where n ≥ 2m− 1, the scheme described above is a simultaneous ε-
rational m-out-of-n secret sharing scheme for Y with respect to linger avoiding strategies. It has expected
running time O( 1

β2 ), and expected share size O( 1
β (log 1

β + log Umax
ε )), where β is a parameter derived from

utilities and distribution D, similar to [3].

Proof: If n < 2m − 1 then the protocol gracefully reduces to the one in [3]. In any case, the coalition,
if it includes the short player, will know the definitive iteration. However, as the secret can only be
reconstructed using m − 1 shares, any deviation by the coalition prior to the definitive iteration leads to
the quitting of the protocol by all the players,and hence the coalition, along with the other players, fail to
learn the secret with probability 1. As players follow learning preferring property, it is strictly dominating
for the colluded players, to follow the protocol correctly. ¤
Acknowledgement: The authors would like to acknowledge William Kumar Moses, Jr., for his insightful
remarks on theorem.
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Playeri(share)
Set secret revealed ← FALSE and cheater detected← FALSE.
Repeat until secret revealed←TRUE or cheater detected←TRUE.

• If your share ended:

– Keep silent.

– If at least m− 1 people have broadcasted and passed their messages passed the authentication
check, secret revealed←TRUE.

– If less than m− 1 people have broadcasted correctly, cheater detected←TRUE.

• If your share did not end: use the corresponding cell of share to check whether this is the last
stage of the present iteration.

– If this is not the last stage:

∗ Keep silent

∗ If anyone has broadcasted, cheater detected←TRUE.

– If this is the last stage:

∗ Broadcast the player’s tag and shares of the masked secret, random mask, and indicator
as they appear in the corresponding cell of the share.

∗ If all players sent:

· If the reconstructed indicator shows that this is the definitive iteration,
secret revealed←TRUE.

∗ If one or more players did not send:

· If number of valid messages broadcasted by others < m−1, cheater detected←TRUE.

· Else
If the reconstructed indicator shows that this is not the definitive iteration,

cheater detected←TRUE.
Else, secret revealed←TRUE.

• Leave the game: Reconstruct the masked secret using shares broadcasted in the present iteration.
Reconstruct the mask using shares broadcasted in the previous iteration. Now construct the possible
secret by subtracting the mask from the masked secret. Quit and output the possible secret.

Table 1: Player i’s reconstruction protocol
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