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Abstract. Recent iterated ciphers have been designed to be resistant to differential crypt-
analysis. This implies that cryptanalysts have to deal with differentials having so small
probabilities that, for a fixed key, the whole codebook may not be sufficient to detect it.
The question is then, do these theoretically computed small probabilities have any sense?
We propose here a deep study of differential and differential trail probabilities supported
by experimental results obtained on a reduced version of PRESENT.
Keywords : differential cryptanalysis, differential probability, iterated block cipher,
PRESENT.

1 Introduction

Differential cryptanalysis has first been applied to the Data Encryption Standard (DES)
in the early 90’s by E. Biham and A. Shamir [BS91,BS93]. Since then, many ciphers have
been cryptanalyzed using differential cryptanalysis or one of the large family of variants
(truncated differential [Knu94], higher order differential [Knu94], impossible differential
[BBS99], . . . ).

The basic differential cryptanalysis is based on a differential over r rounds of the cipher.

Definition 1. A r-rounds differential characteristic
A r-rounds differential characteristic is a couple (δ0, δr) ∈ F

m
2 × F

m
2 . The probability of

a differential (δ0, δr) is

p∗
def
= PrX [F r

K(X) ⊕ F r
K(X ⊕ δ0) = δr] ,

where m is the input/output size of the cipher and F the round function.

Then, r rounds of the cipher can be distinguished from a random permutation using
this differential. To break r + 1 rounds of the block cipher, we look for differentials on r

rounds. Then, for all the possible subkeys for the last round, the attacker does a partial
decryption of the ciphertext pairs and count the number of time δr appears. For a wrong
candidate, the probability that δr appears is around 2−m and for the correct subkey, this
probability is around p∗ + 2−m. It is widely accepted that the number of pairs needed
to distinguish those two probabilities is of order p−1

∗
if the so called signal-to-noise ratio

is large enough
(

SN =
p∗

2−m

)

.



Recent ciphers, the Advanded Encryption Standard (AES) for instance, have been de-
signed to be resistant to the basic differential cryptanalysis. Nevertheless, when a new
cipher is proposed, cryptanalysts try to mount the best possible linear and differential
attacks. In the case of PRESENT[BKL+07], the cipher we used for the experiments, the
actual best published attack is the one of Wang [Wan08]. But actually, there is lacks in
the data complexity estimate of this attack. First of all, an erroneous way of counting
the number of subkey hits leads to a too optimistic signal-to-noise ratio of 17.63 and
the use of the formula of Selçuk [Sel08] for the success probability is not tight in the
case of differential cryptanalysis. We are not going to discuss this here because it is out
of the scope of this paper and it does not challenge the validity of the attack that still
has a very high success rate when taking these remarks into account. The second point
is that the probabilities p∗ of the differentials may be underestimated because they are
obtained taking into account only one way of going from the input difference to the
output difference. This is discussed in Section 4.

Contributions of this work.
In this work, we first present the cipher we used for experiments Section 2. Then, in

Section 3, we focus on differential trails that is sets of intermediate differences taken
by a pair that matches a differential. The classical way of estimating a trail probability
relies on some hypotheses that are not true. Nevertheless, experiments show that this
theoretical probability makes sense as an average of the probability over the keys. In
Section 4 we recall that a differential probability is the sum of the corresponding trail
probabilities. Then, we present some experiments about the key dependency of this
differential probability and give a way of understanding them. Finally, we conclude in
Section 5 and sum-up the results as well as the problematics left as open questions.

2 PRESENT

To confirm our conjectures, we made experiments on a lightweight cipher presented
in 2007 at CHES conference: PRESENT [BKL+07]. The structure of PRESENT is a
Substitution Permutation Network (SPN).

2.1 Reduced version of PRESENT: SMALLPRESENT-[s]

For the experiments to be meaningful, we need to be able to exhaustively compute the ci-
phertexts corresponding to all possible plaintexts for all possible keys. That is the reason
why we chose to work on a reduced version of PRESENT named SMALLPRESENT-
[s] [Lea10]. The family of SMALLPRESENT-[s] has been designed to be used for such
experiments. The value of s indicate the number of Sboxes per round. The Sboxes of
PRESENT are all the same and are defined in F

4
2. This transformation is described in

Table 1. The size of the message is then 4s. In this article we make experiments on
SMALLPRESENT-[4] that is the version with 4 Sboxes. The full version of PRESENT
has 16 Sboxes. One round of SMALLPRESENT-[4] and PRESENT are respectively
depicted in Figure 8, Figure 9 (Appendix A).
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2.2 Different key schedules for SMALLPRESENT-[4]

The problem with the reduced cipher presented in [Lea10] is the key schedule. Actually,
in the whole PRESENT, most of the bits of a subkey are directly used in the subkey of
the next round. Since for SMALLPRESENT-[s], the number of key bits is always 80 but
the state size is only 4 · s, this is not true anymore for a small s. We decide to introduce
two additional key schedules for our experiments.

1. Same key: The cipher has a master key that has the same size as the state and each
subkey is equal to this master key. Therefore SMALLPRESENT-[4] is parameterized
by a 16 bits master key.

2. 80-bits: This key schedule is the one used in the full version of PRESENT and
proposed in [Lea10].

3. 20-bits: a homemade key schedule used with SMALLPRESENT-[4] similar to the one
of the full version.
The master key is represented as K = k19k18 . . . k0. At round i the 16-bits round key
Ki = k19k18 . . . k4 consists in the 16 left-most bits of the current content of register
K. After extracting the round key Ki, the key register is updated as follows:
(a) [k19k18 . . . k1k0] = [k6k5 . . . k8k7]
(b) [k19k18k17k16] = S[k19k18k17k16]
(c) [k7k6k5k4k3] = [k7k6k5k4k3] ⊕ roundcounter
The key is rotated by 13 bit positions to the left, the left most four bits are passed
through the PRESENT Sbox, and the roundcounter value is exclusive-ored with bits
k8k7k6k5k4. We keep the 5-bits counter version. But we only study less than 7 rounds
of SMALLPRESENT-[4] so the counter can be represented in 3 bits.

3 Differential trail probability

3.1 Notation

Let us denote by K the master key. The round subkeys derived from K are denoted
by K1,K2, . . . ,Kr. Let FKi

: F
m
2 7→ F

m
2 be a round function of a block cipher. We will

denote by F r
K the application of r rounds of the block cipher.

F r
K = FKr ◦ FKr−1

◦ · · · ◦ FK1
.

In this section, we focus on differentials that have been defined in Definition 1. In
general, there is not one but many ways to go from the input difference to the output
difference of a differential characteristic. Such a way is called differential trail.

Definition 2. Differential trail
A differential trail of a cipher is a (r+1)-tuple (β0, β1, · · · , βr) ∈ (Fm

2 )r+1 of intermediate
differences at each round. The probability of a differential trail β = (β0, β1, · · · , βr) is
defined by

pβ
def
= PrX

[

∀i F i
K(X) ⊕ F i

K(X ⊕ β0) = βi

]

.
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Computing the exact value of a trail probability is not possible for real ciphers since it
need to encipher the whole codebook for all possible keys. The classical way of estimating
a trail probability is to chain trails on 1 round. This approach is based on a formalism
introduced by Lai, Massey and Murphy [LMM91].

Assumption
The sequence of differences at each round output forms a Markov chain.

Assuming this, the theoretical probability of a trail β = (β0, β1, · · · , βr) is computed
as follow

pt
β =

r
∏

i=1

PrX [FKi
(X) ⊕ FKi

(X ⊕ βi−1) = βi] .

But actually, this assumption is not true (at least for SPN ciphers). We give a counter
example in the following subsection and focus on the key dependency of the probability
of a trail.

3.2 Key dependency of a trail

The main difficulty in the pre-computation phase is the search of good differential trails.
The computed value of the probability of a differential trail relies on the widely used
aforementioned assumption. Thus, in some case the theoretical value of the probability
of a differential trail does not match with reality. For one round it is easy to see that
the theoretical value corresponds to the real one. But for more than one round it seems
legitimate to wonder what does this theoretical probability mean.
As we see below, the probability of a differential trail can be influenced by the choice of
the master key used to encipher samples. Thus, we override the previous definition of a
differential trial probability with the following one.

Definition 3. Differential trail probability
The probability of a differential trail β = (β0, β1, · · · , βr) is defined by

pβ
def
= PrX,K

[

∀i F i
K(X) ⊕ F i

K(X ⊕ β0) = βi

]

.

We now take into account the choice of the master key in the variable we use. For a
r-rounds differential trail β = (β0, β1, · · · , βr), let us define

TK
def
=

1

2
#{X ∈ F

m
2 |F i

K(X) ⊕ F i
K(X + β0) = βi ∀1 ≤ i ≤ r},

T [j]
def
= #{K|TK = j}. (1)

Let nk be the number of bits of the master key. The real value of the trail probability
is

pβ = 2−m−1
∑

K∈F
nk
2

TK = 2−m−1−nk

∑

j

T [j] · j.

To motivate these new notation, we give an example where the key dependency is obvi-
ous.
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Example of a trails with experimental probability not equal to the theoretical
one
We illustrate this phenomena by a differential trail over 3 rounds on SMALLPRESENT -

[4]: β = (0x1101, 0xdd, 0x30, 0x220) (see Figure 1).

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

j 0 8 16

T [j] 131072 524288 393216

Fig. 1. Trail β = (0x1101, 0xdd, 0x30, 0x220) and the corresponding T [j]’s

First, we are going to compute the theoretical probability of this trail. Assuming
that the rounds of SMALLPRESENT-[4] are independent we can easily compute the
theoretical value of this differential trail.

– Round 1 3 S-boxes with input difference 0x1 and output difference 0x3.

– Round 2 2 S-boxes with input difference 0xd and output difference 0x2.

– Round 3 1 S-box with input difference 0x3 and output difference 0x6.

We have 6-Sboxes with transition probability 2−2 therefore pt
β = 2−12. This means that

the number of plaintext x such that (X,X ⊕ 0x1101) follows this trail for a fixed key
should be 216−1 · 2−12 = 23. We made experiments to check this assumption. For a fixed
key we computed the number of plaintexts that follows this trail. In Figure 1 are given
the values taken by T [j] for all keys in F

20
2 using the 20-bit key schedule. We can see that

there are three kinds of key leading to three different values of T [j]. We found many of
such trails on 3 rounds that split the space of keys.

Experiments on this trail show that for a fixed key, the theoretical probability of
a differential trail do not always match with the real value of this trail probability.
Experiments also show that for some keys the trail can be impossible. This can be of
real significance because such phenomenon is also existing on 3 rounds of PRESENT.
That means that, maybe, some differential trails used in a differential cryptanalysis may
not have the expected probability for most of the keys.

Averaging the probabilities over the keys, we see that the effective probability of
this differential trail is 2−11.6 (the theoretical one is 2−12). This difference between real
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and theoretical probabilities may weaken (or strengthen) some attacks. Does a lot of
trails have such a difference between their theoretical value and the average probability?
In the next subsection we will show that, most of the times, the theoretical value of a
differential trail is close to the effective one (averaged over the keys).

3.3 Theoretical probability and average probability of a trail over the keys

To understand this phenomenon, we made some experiments on PRESENT. We observed
that the theoretical probability is likely to be the average of the trail probability over
all the possible keys. We make experiments on SMALLPRESENT-[4] with different
key schedules. Let us recall that the theoretical probability of the differential trail β

is denoted by pt
β and the effective one (averaged over the keys) is denoted by pβ. In

Figure 2, Figure 3 and Figure 4, we have computed the difference between log(pt
β) and

log(pβ) for 500 random trails.

– In Figure 2 we assume that the round subkeys are derived from the 20-bits key
schedule. We average the probabilities over the whole set of 220 keys to obtain the
value pβ.

– In Figure 3 we assume that all the round subkeys are the same. We average the
probabilities over the whole set of 216 keys to obtain the value pβ.

– In Figure 4 we assume that the round subkeys are derived from the 80-bits key
schedule. Since we cannot average probabilities over the 280 possible master keys,
the computed value is obtained by an average over 220 keys.
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Fig. 2. Number of trails as a function of log(pβ) − log(pt
β) with a sample of 500 trails on 5 rounds and

the 20-bits key schedule
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Fig. 3. Number of trails as a function of log(pβ) − log(pt
β) with a sample of 500 trails on 5 rounds and

the same subkey for all rounds
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Fig. 4. Number of trails as a function of log(pβ) − log(pt
β) with a sample of 500 trails on 5 rounds and

220 keys using the 80-bits key schedule

Remark:
We can see that the phenomenon is not the same depending on the key schedule.

Indeed, in Figure 3 when the same key is taken over the 5 rounds the dependency of the
round key is more important than in Figure 4 where the 80-bits key schedule is used
implying that all the key bits are used only once (on average). This remark has motivate
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the 20-bits key schedule we use in the following experiments that seems to be the most
appropriate.

Experiments show that the average proportion of pairs satisfying a differential trail
is close to the theoretical probability. We can observe that this behavior is getting worse
as the probability is decreasing.
Nevertheless, it seems to be some symmetry what leads to the idea that taking enough
trails will correct this and give better results.

4 Differential probability

4.1 Differential probability and trail probabilities

The first thing to say here is that the probability of a differential is the sum of the
probabilities of the corresponding differential trails.

Lemma 1. Let (δ0, δr) be a r-rounds differential characteristic. Then the probability p∗
of this differential is

p∗ =
∑

β=(δ0,β1,...,βr−1,δr)

pβ.

Proof. This is essentially due to the fact that a pair that matches a trail cannot match
any other (they are disjoint events) and thus Pr [∪iAi] =

∑

i Pr [Ai].

For a large number of rounds, it is impossible to compute the probability of a differ-
ential (δ0, δr) because there is too much differential trails that go from δ0 to δr. Actually,
in differential cryptanalysis, one uses a lower bound on the probability of the differential
(δ0, δr) by considering the sum of the likeliest trail probabilities.

In Section 3, we saw that the effective trail probability may not match with the
theoretical one. Nevertheless, it seems to be some symmetry what leads to the idea
that the sum of theoretical trail probabilities may give a good estimate of a differential
probability (averaging over the key).

We made some experiments on 5 rounds of SMALLPRESENT-[4] with the 20 bits
key schedule to see how many trails are required to get a good estimate of a differential
probability. We computed the sum of the theoretical probabilities of many trails corre-
sponding to the same differential characteristic. Since the cipher is small we also have
computed the effective value of the differential by averaging over all plaintexts and all
keys. In Figure 5 we have plotted the difference between both values for 20 differen-
tial characteristics. We can see that taking many trails give a better estimation of the
differential probability.

Looking at the results in Figure 5 we can wonder whether it is possible to determine
the number of trails to consider for estimating a differential probability. In this example
we see that taking 27 trails seems to be sufficient but when we look at the whole cipher
it is obviously not enough (see the following paragraph).
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Fig. 5. Convergence of the sum of trails probabilities to the real value of the differential characteristic

Remark on Wang’s paper [Wan08]
In [Wan08], the target is the whole PRESENT (64 bits). The differential used is

(d0, d14) = (0x000000070000700, 0x0000000900000009)

on 14 rounds obtained by iterating 3 times a differential trail on 4 rounds and by adding
one more round at the beginning and at the end.

We observe some things about this trail.

– This trail on 4 rounds is not one of the best since it has a probability equal to 2−18

and we found a lot of differential trails with probability 2−12. Nevertheless, it is the
best iterative differential on 4 rounds.

– There exists lots of differential trails on 14 rounds with probability 2−62 and 2−62 is
the best value of the probability of a differential trail over 14 rounds. Therefore the
trail taken by Wang is one of the best.

– We have theoretically computed all differential trails with input difference d0, output
difference d14 and probability greater than 2−73. We have sum-up the results in
Figure 6. By taking the sum of the probabilities of the 2k best trails, we observe that
the probability of the differential characteristic (d0, d14) is greater than 2−57.53.

4.2 Key dependency of a differential probability

We now consider a differential (δ0, δr) that is to be used in a differential cryptanalysis.
The attacker will get some samples enciphered with a fixed master key. Depending on
this key, the real probability of the differential will be smaller/equal/larger than the
theoretically computed value.
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Fig. 6. Probability of the differential characteristic presented in [Wan08]as a function of the logarithm
of the number of trails

For a fixed key K, let us denote by DK the number of pairs of plaintexts with input
difference δ0 that lead to an output difference δr. Since we do not want to count a pair
twice, we introduce a 1

2 coefficient.

DK
def
=

1

2
#{X|F r

K(X) + F r
K(X + δ0) = δr}.

We are going to study the distribution of DK ’s.

D[j]
def
= #{K|DK = j}.

Previous experiments shown that the theoretical value of a differential probability
(δ0, δr) obtained by summing the theoretical probabilities of the corresponding trails is
a good estimate of the proportion of pairs matching this differential averaged over the
keys. Then, an intuitive way of looking at this problem is the following.

We look at the set of couples (X,K) ∈ F
m
2 × F

nk

2 . The proportion of pairs (X,K)
such that

F r
K(X) ⊕ F r

K(X ⊕ δ0) = δr (2)

is p∗ that we estimate summing the theoretical probabilities of the trails. Then, fixing
a key can be seen as taking simultaneously and at random 2m pairs. In this setting,
the number of pairs fulfilling (2) is a random variable that follows an hyper-geometric
distribution with parameters (2m, p∗, 2

m+nk). Since for cryptographic applications, m =
O(nk) ≫ 1, this distribution can be approximated by a binomial law of parameters
(2m, p∗).

We made some experiments on 5 rounds of SMALLPRESENT-[4] to check this. Using
the 20-bits key schedule we computed the repartition of the DK ’s. In Figure 7, we see
that the DK ’s seems to follow a binomial distribution as the intuition we got suggested.
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Fig. 7. Distribution of D[j]’s for 8 differentials over 5 rounds of SMALLPRESENT-[4]

This observation should be taken into account when computing the success prob-
ability of an attack. Let us denote by pt

∗
the theoretical probability of the differential

characteristic used in a cryptanalysis. We recall that nk is the number of key bits. For
K ∈ F

nk

2 , the effective probability of the differential is DK

2m−1 where DK is a random
variable that follows a binomial distribution of parameters (2m−1, pt

∗
). If we denote by

PS(p∗) the success probability of a differential cryptanalysis using a differential with ef-
fective probability p∗ (see [Sel08,BGT10]). Then the success probability of a differential
cryptanalysis using a differential with theoretical probability pt

∗
is

PS =

2m−1

∑

i=0

PS

(

i

2m−1

)

·

[

(pt
∗
)i(1 − pt

∗
)2

m−1
−i

(

2m−1

i

)]

. (3)

5 Conclusion

We have presented lots of experiments on differential cryptanalysis. The main teaching
of this work is that claimed complexities of differential cryptanalyses on recent ciphers
may be under/over-estimated.

The first point is the fact that estimating a differential probability with the proba-
bility of its main trail is really not suitable. To illustrate the first point, we estimated
the probability of a differential used in [Wan08] to 2−57.53 while the author only takes
into account the best trail and provides an estimate of 2−62.

The second point is the key dependency of a differential probability. The theoretical
probability of a differential makes sense if we average effective probabilities over the
keys. But, an attacker uses a differential to attack a cipher parameterized by a fixed
key. Then, the fact that the differential probability depends on the key has to be taken
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into account. In Section 4, we propose a way to understand this dependency based on
the hyper-geometric distribution and give a new formula for the success probability of a
differential cryptanalysis.

This work give some elements for understanding differential cryptanalysis but it still
remains some open questions. The two main problematics that seems to be of great
interest are the following.

– The theoretical probability of a trail seems to be less meaningful as this probability
decreases. How far does this theoretical value make sense?

– How can we get a good estimate of a differential probability without finding all the
corresponding differential trails?
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A Characteristics of PRESENT

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 1. The S-box of PRESENT
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Fig. 9. 1 round of PRESENT
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