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1 Introduction

Since 1996, Coppersmith’s methods for finding integer or modular roots of univariate or multivariate poly-
nomials are well-known tools to cryptographers.

The univariate case was first studied in [6] by Coppersmith. The problem (in its most general for-
mulation) is as follows: Given a monic polynomial f ∈ Z[x] of degree δ, and an integer N of unknown
factorization that has a divisor p ≥ Nβ , 0 < β ≤ 1 1, find efficiently all integer solutions x0 for the equation

f(x) = 0 mod p. The most recent results state that we can find all such solutions verifying |x0| ≤ cN
β2

δ in
time O(cδ5 log9N). They led to numerous applications, including attacks related to RSA and factorization
with partial information (see [19] for a survey).

In the multivariate case, we are given a polynomial f ∈ Z[x1, . . . , xn], and we want to find efficiently
either its integer or modular (modulo an unknown divisor of an integer N ) solutions (x1,0, . . . , xn,0) satis-
fying |xi,0| < Xi, where the Xi’s are bounds that we want to maximize. The problem has first been studied
by Coppersmith in [8]. Results concerning this problem depend upon the set of monomials of the input
polynomials and are thus a bit more difficult to state. They are presented in section 3 for the case in which
we are looking for integer solutions. One famous application of this problem is the cryptanalysis of RSA
with small private key of Wiener [26] and Boneh-Durfee [4]. One major problem with this kind of methods
is that they become heuristic (with non-understood failures) as soon as n ≥ 3, except in some special cases
with n = 3 that were made rigorous by Bauer and Joux in [2].

One goal of the internship was to generalize Coppersmith’s multivariate method to a system of polyno-
mial equations. Namely, we are given k algebraically independent polynomials f1, . . . , fk ∈ Z[x1, . . . , xn]
and our goal is to find efficiently all integer solutions (x1,0, . . . , xn,0) of the following system of equations:

f1(x1, . . . , xn) = 0
...

fk(x1, . . . , xn) = 0

satisfying |x1,0| < X1, . . . , |xn,0| < Xn where the Xi’s are bounds we want to maximize. Note that given
such a system, one can apply Coppersmith’s original method on one of the fi’s, or on a polynomial coming
from the elimination of variables in the system. Our bounds should therefore be better than what we can
achieve using the two aforementioned ideas.

Our generalization is given in section 4. Due to obstructions, we were not able to prove any bounds. Our
method is thus fully heuristic (as is Coppersmith’s multivariate method for n ≥ 4). We present nevertheless
encouraging experimental results in section 4.3.

The second problem that we studied intensively is the implicit hint factoring problem, as this is one
application (appeared recently in [25]) of Coppersmith’s multivariate method.

The implicit hint factoring problem first appeared in PKC 2009 in the paper of May and Ritzenhofen
[20]. The problem is as follows: Let N1 = p1q1 and N2 = p2q2 be two RSA moduli of unknown factor-
ization. The attacker is given the additional information that p1 and p2 share some of their bits (it can be

1β = 1 is an important case.
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most significant bits, or least significant bits, or both, or bits in the middle). The problem is to find under
which conditions on the number and layout of the shared bits N1 and N2 can be factored in polynomial time
in log2(N1) and log2(N2). Note that unlike the well-known Coppersmith’s result [8] which states that a
balanced RSA modulus N = pq can be factored in polynomial time as soon as we know half of the most
significant bits of p, here the additional information is only implicit. That is, the shared bits between p1 and
p2 are unknown to the attacker. Finally, the problem can be extended in the case the attacker has access to k
distinct RSA moduli Ni = piqi, with all the pi sharing bits.

May and Ritzenhofen’s result [20] applies in the case where p1 and p2 share least significant bits (LSBs).
Namely, if q1 and q2 are α-bit primes, and if p1 and p2 share t LSBs, their lattice-based method allows them
to provably factorize both N1 and N2 in quadratic time as soon as t ≥ 2α+3. Of course, this bound implies
that the method applies to unbalanced RSA moduli, which are not used in practice. Let’s take a numerical
example to make things clearer. If N1 and N2 are 1000-bit RSA moduli, q1, q2 are 250-bit primes, and
p1, p2 are 750-bit primes. May and Ritzenhofen’s result state that we can factorizeN1 andN2 in polynomial
time when p1 and p2 share at least 503 bits (that is, we can “discover” as much as 247 bits with these
parameters). Besides, when they are provided with k RSA moduli with all the pi’s sharing t LSBs, their
method generalizes and they can factorize all the Ni’s in polynomial time as soon as t ≥ k

k−1α. Note that
this last result is heuristic, as it relies on an assumption about a shortest vector of a k-dimensional lattice.

Very recently, in [25], Sarkar and Maitra applied Coppersmith’s multivariate method to the problem of
implicit factoring, and improved heuristically the previous bounds in some cases. Indeed, they reduced the
problem of implicit factoring (with shared MSBs and/or LSBs, or shared bits in the middle) to the one of
finding integer roots of trivariate integer polynomials (which makes their method heuristic). Their method
does not generalize to several RSA moduli. We give an insight into their work in section 3.2.

One of the most fruitful part of the internship was to try to generalize Sarkar et al.’s results to various
RSA moduli, using our generalized Coppersmith’s method. We were first able to reduce the implicit factor-
ing problem with k ≥ 3 RSA moduli to finding integer roots of a system of polynomial equations in section
4.3. In our experiments, our generalized method allowed us to solve the implicit factoring problem with
3 RSA moduli with better bounds than Sarkar et al.’s, though in an unexpected way. That gave us crucial
hints to devise a direct lattice-based method that solves the implicit factoring problem with shared MSBs,
and with an arbitrary number k of moduli. This method is described in section 5 and led to the writing of
an article. They form the main results obtained during the internship. Our contribution consists of a novel
and rigorous lattice-based method that address the implicit factoring problem when p1 and p2 share most
significant bits. That is, we obtained an analog of May and Ritzenhofen’s results for shared MSBs, and our
method is rigorous contrary to the work of Sarkar and Maitra in [25]. Namely, letN1 = p1q1 andN2 = p2q2
be two RSA moduli of same bit-size n. If q1, q2 are α-bit primes and p1, p2 share t most significant bits,
our method provably factorizes N1 and N2 as soon as t ≥ 2α + 3 (which is the same as the bound on t for
least significant bits in [20]). This is the first rigorous bound on t when p1 and p2 share most significant bits.
Moreover, contrary to [25], the method heuristically generalizes to an arbitrary number k of RSA moduli,
allowing us to factorize k RSA moduli as soon as t ≥ k

k−1α+ 6 MSBs are shared between the pi’s (a more
precise bound is stated later in this report). A summary of the comparison of our method with the methods
in [20] and [25] can be found in table 1.
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Table 1: Comparison of our results for the problem of implicit factoring against the results of [20] and [25]

k (number of
RSA moduli)

Results of May and Ritzen-
hofen in [20]

Results of Sarkar and Maitra in
[25] Our results

k = 2

When p1, p2 share t LSBs:
rigorous bound of t ≥ 2α+3
using 2-dimensional lattices
of Z2.

When p1, p2 share either t LSBs
or MSBs: heuristic bound bet-
ter than t ≥ 2α + 3 when α ≥
0.266n, and experimentally bet-
ter when α ≥ 0.21n, using 46-
dimensional lattices of Z46.

When p1, p2 share t MSBs: rig-
orous bound of t ≥ 2α+3 using
2-dimensional lattices of Z3.

k ≥ 3

When the pi’s all share
t LSBs: heuristic bound
of t ≥ k

k−1α using k-
dimensional lattices of Zk.

Cannot be applied.

When the pi’s all share t MSBs:
heuristic bound of t ≥ k

k−1α +
δk, with δk ≤ 6 and using k-
dimensional lattices of Z

k(k+1)
2 .

2 Preliminaries

We quickly set the notations and state some of the results used in this report. A reader interested in getting
a more complete introduction to Gröbner basis terminology can refer to [11].

Let k be an algebraically closed field and f ∈ k[x1, . . . , xn] be a multivariate polynomial. We call the
set of its monomials its shape. Let M be a set of monomials. We will say that f is defined over M when
the sets of its monomials is included in M . We will often associate to a monomial xα1

1 · · ·xαnn the point
(α1, . . . , αn) ∈ Nn, and to M the set of all the points associated with all its elements. This allows us to
speak about sets of monomials as geometric shapes. For instance, {xα1

1 · · ·xαnn |
∑n

i=1 αi ≤ D} will be
called a lower-triangle. Besides, we denote the euclidean norm on polynomials by ‖.‖.

An ideal I generated by polynomials f1, . . . , fp is denoted by I = 〈f1, . . . , fp〉. I is by definition
{a1f1 + · · · + apfp | ∀i, ai ∈ k[x1, . . . , xn]} and f1, . . . , fp is one of its basis. The variety defined by I
(or the set of monomials f1, . . . , fp) is the set of points of kn on which all the fi’s simultaneously vanish. It
is invariant by the choice of the basis of I . Its dimension is (very) informally the maximum number of free
variables when we describe the surface. An important particular case is the one of 0-dimensional varieties,
which are finite sets of points. Note that given a 0-dimensional variety defined by generators of an ideal,
there are efficient methods (that use Gröbner basis for instance) that can enumerate its points.

Polynomials f1, . . . , fp are called algebraically independent when for anyP ∈ k[x1, . . . , xp], P (f1, . . . , fp) =
0 implies P = 0. p algebraically independent polynomials of k[x1, . . . , xn] define a variety of dimension
n− p. In particular, we get a 0-dimensional variety from n algebraically independent polynomials.

A monomial ordering is any total and well-ordered relation ≺ on the monomials of k[x1, . . . , xn] that is
compatible with summation of monomials. The leading monomial of a polynomial is its greatest monomial
according to ≺. A monomial ordering is graded when for any monomials α, β, we have α ≺ β whenever
the total degree of β is greater than the total degree of α. Let M be a set of monomials. M is said to be
compatible with ≺ if for any monomials α, β, α is in M whenever β ∈M and α ≺ β. One useful example
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is when ≺ is a graded order and M is a lower-triangle.

A Gröbner basis of an ideal I with respect to a specific monomial ordering is a particular basis that
informally allows us to do many computations on I , including deciding whether a polynomial is in I and
recovering the points of a 0-dimensional variety.

Finally, we also use throughout this report very common results and algorithms on integer lattices. We
do not feel the need to detail them here. A reader interested in getting the statements of the results we use
may refer to appendix A.

3 Finding integer roots of multivariate polynomials

The problem is as follows. Given an irreducible multivariate polynomial f ∈ Z[x1, . . . , xn], find efficiently
all the integer roots (x1,0, x2,0, . . . , xn,0) of f satisfying |xi,0| < Xi where the Xi are bounds that we want
to maximize. The bounds depend upon n, the degree of f (more precisely, the set of its monomials) and the
size of its coefficients. We furthermore assume that the GCD of all the coefficients of f is 1.

In 1996, Coppersmith gave the first method [8] to solve this problem in the bivariate case, using again
lattice-based techniques. The method was subsequently simplified by Coron in [9], where the method was
however less efficient, and in [10] where he obtained the same efficiency as Coppersmith’s original method.
Namely, Coppersmith’s result is the following:

Theorem 1 (Coppersmith, [8]). Let f(x, y) =
∑

i,j fi,jx
iyj be an irreducible bivariate polynomial of

degree at most δ in each variable and such that the GCD of its coefficients is 1. Let X and Y be bounds on
the absolute values of the roots (x0, y0) of f that we want to find. Define W = maxi,j |fi,j |XiY j . Then,
for fixed δ, all the roots verifying |x0| < X and |y0| < Y can be recovered in polynomial-time in logW as
soon as:

XY < W
2
3δ (1)

Since the bound on the coefficients of the polynomial is defined implicitly, let’s illustrate this theorem
with two examples: one simple toy example, and a useful application. When f is a bivariate polynomial of
degree δ in each variable with all coefficients roughly of the size of an integer A, the bound on X and Y
becomes: XY < A

2
δ .

For the second example, which is the first application of the method given in [8], suppose that N = pq

is a balanced RSA moduli. Suppose that we know the high-order log2(N)
4 bits of p, that is, we know an

approximation p̃ of p such that |p̃ − p| ≤ N
1
4 . Define q̃ = N

p̃ , we have that |q̃ − q| / N
1
4 . Let f(x, y) =

(p̃ + x)(q̃ + y) − N = (p̃q̃ − N) + p̃y + q̃x + xy and observe that this polynomial has the small root
(x0, y0) = (p − p̃, q − q̃) over the integer. Set X = Y = N

1
4 , then W ≥ p̃Y ' N

3
4 . Since W

2
3 ≈ N

1
2 ,

equation 1 of Theorem 1 is satisfied, and the roots can be recovered in polynomial time, which immediately
yields the factorization of N .

Surprisingly, the analysis of Coppersmith’s method significantly depends upon the shape of the polyno-
mial, and not only upon its degree. It has to be redone for every different shape. Theorem 1 provides bounds
for polynomials of maximum degree δ in each variables, that is for rectangular-shaped polynomials. In [8],
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Coppersmith analyzes also the case of lower triangular-shaped polynomials (polynomials of total degree δ),
and obtains a different bound that guarantees the success of the method:

XY < W
1
δ (2)

Compared to equation 1, this bound is better for triangular-shaped polynomials (and of course much worse
for rectangular-shaped polynomials). Much effort has been made to improve the bounds for different poly-
nomial shapes, for instance in [3]. In [17], Jochemsz and May gave a more systematic and simpler method
to obtain bounds for arbitrary polynomial shapes. This is the method we present in the next section.

3.1 Overview of the method

We use the notations previously introduced. The method is summarized by these three steps.

1. Using f , construct a collection C of polynomials g1, . . . , gc ∈ Z[x1, . . . , xn] such that:

f(x1,0, . . . , xn,0) = 0 and |x1,0| < X1, . . . , |xn,0| < Xn ⇒ ∀i, gi(x1,0, . . . , xn,0) = 0 mod R

where R is a modulus which is carefully chosen.

2. Find n− 1 new polynomials (h1, . . . , hn−1) which are linear combinations of the gi’s and satisfying
the following two conditions:

• f, h1, . . . , hn−1 are algebraically independent.

• For every i, |hi(x1,0, . . . , xn,0)| is strictly smaller than R. That is, the hi’s vanish on the roots
of f over the integers.

This step is carried out by LLL-reducing a lattice spanned by the coefficient vectors of the polynomials
gi(x1X1, . . . , xnXn).

3. Finally compute all the integer roots of f within the bounds by enumerating the points of the 0-
dimensional variety defined by (f, h1, . . . , hn−1) and keeping only the integer points.

We can already explain why this method is rigorous for two variables, and heuristic for more than
two variables. Indeed, with three or more variables, there is no guarantee that the method in step 2 will
output polynomials that are algebraically independent, and we heuristically assume that it will. Besides, this
heuristic is not very well understood, as it appears to be always valid in practice in some cases, and to have
a high rate of failure in other cases. In [2], Bauer et al. succeeded in making the method fully rigorous in
three variables, unfortunately only in a special case.

We now explain the method in more details. We fix an error term ε > 0 and an integer m depending
on 1

ε . We call dj the maximal degree of xj in f and define W = ‖f(x1X1, . . . , xnXn)‖∞. Moreover, we

define R = W
∏n
j=1X

dj(m−1)
j . The method works when f has constant term a0 = 1. If this is not the case,

we can increase a little bit the Xj’s such that a0 is invertible modulo R, and use a−1
0 f mod R instead of

f . In the case where a0 = 0, we can translate f so that its constant term is not null anymore. Note that this
latter trick can modify the analysis, as it changes the set of the monomials of f .
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We consider two sets of monomials, S and M . The set S is the set of monomials by which we shift
f , and M is such that all the monomials of the shifts of f are included in M . We denote by lj the largest
exponent of xj that appears in the monomials of S, that is lj = dj(m − 1). Define the collection C as the
following shift polynomials:

g : xi11 · · ·xinn f(x1, . . . , xn)
n∏
j=1

X
lj−ij
j for xi11 · · ·xinn ∈ S

g′ : xi11 · · ·xinn R for xi11 · · ·xinn ∈M\S

Note that all g and g′ vanish on (x1,0, . . . , xn,0) modulo R. We construct the lattice L using as a
basis the coefficient vectors of the polynomials g(x1X1, . . . , xnXn) and g′(x1X1, . . . , xnXn). The next
step is to reduce L to find n − 1 small vectors of the lattice. Let’s call hi the polynomials associated
with these small vectors. We have to ensure two conditions on the hi’s so that the method is successful.
First, |hi(x1,n, . . . , xn,0)| has to be small enough. This can be guaranteed by imposing a condition on
the determinant of the lattice (and thus on the shape and the size of the coefficients of f ), using Theorem
9 about the norm of the vectors of an LLL-reduced basis and the following lemma that links the size of
|hi(x1,n, . . . , xn,0)| with the norm of hi(x1X1, . . . , xnXn):

Lemma 1 (Howgrave-Graham). Let h(x) ∈ Z[x1, . . . , xn] be a multivariate polynomial with ω monomials,
and let R be a positive integer. Suppose that:

1. h(x1,0, . . . , xn,0) = 0 mod R where |xi,0| < Xi

2. ‖h(x1X1, . . . , xnXn)‖ < R√
ω

Then h(x1,0, . . . , xn,0) = 0 holds over the integer.

The second condition is to ensure that (f, h1, . . . , hn−1) are algebraically independent. We can indeed
only prove that f is pairwise algebraically independent with each of the hi’s. However, when n ≥ 3,
this is not sufficient to deduce that (f, h1, . . . , hn−1) are algebraically independent, and the method be-
comes heuristic. We use Hinek Stinson’s lemma shown below, with a(x1, . . . , xn) = hi(x1X1, . . . , xnXn),
b(x1, . . . , xn) = f(x1X1, . . . , xnXn) and r =

∏n
j=1X

dj(m−1)
j . It states that if the norm of hi(x1X1, . . . , xnXn)

is small enough, then it cannot be a multiple of f . Hence, thanks to lemma 3 (stated latter in this report), f
and hi are algebraically independent.
Lemma 2 (Hinek Stinson, see [16]). Let a(x1, . . . , xn) and b(x1, . . . , xn) be two non-zero polynomials
over Z of maximum degree d in each variable, such that b(x1, . . . , xn) is a multiple of a(x1, . . . , xn) in
Z[x1, . . . , xn]. Assume that a(0, . . . , 0) 6= 0 and b(x1, . . . , xn) is divisible by a non-zero integer r such that
gcd(r, a(0, . . . , 0)) = 1. Then:

‖b‖2 ≥ 2−(d+1)n+1|r|‖a‖∞

In the end, the two aforementioned conditions on the norm of the n− 1 first basis vectors found by LLL
are met (asymptotically in m and thanks to the choice of R) whenever the following condition holds:

n∏
j=1

X
sj
j < W sW where sj =

∑
x
i1
1 ···x

in
n ∈M\S

ij and sW = |S| (3)
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The idea of Jochemsz and May in [17] is to take for S and M respectively the sets of monomials of fm−1

and fm. They also state an extended method where they include additional shifts in one variable in the set
S. Namely, when we allow s extra shifts over the variable x1, S and M become:

S =
s⋃
j=0

{xi1+j1 xi22 · · ·xinn | x
i1
1 x

i2
2 · · ·xinn is a monomial of fm−1} (4)

M = {monomials of xi11 x
i2
2 · · ·xinn · f | x

i1
1 x

i2
2 · · ·xinn ∈ S} (5)

Their method to choose S and M provides a systematic way to adapt the method for specific shapes of f ,
and allows them to generalize all previously known bounds [3, 13, 7] on X1, . . . , Xn that were tailored to
specific shapes of polynomials. For instance, for a polynomial f(x1, . . . , xn) where the degree of xi is λiD
(a so-called generalized rectangular polynomial), we obtain the simple bound on the Xi’s:

Xλ1
1 · · ·Xλn

n < W
2

(n+1)D (6)

And in the case where f(x1, . . . , xn) is of total degree D (a so-called triangular polynomial), the bound
becomes:

X1 · · ·Xn < W
1
D (7)

Notice that the rectangular and triangular bounds degrade quickly as the degree and the number of variables
grow.

3.2 Application to the Implicit Factoring Problem

Let N1 = p1q1 and N2 = p2q2 be two n-bit RSA moduli, the qi’s being α-bit primes. We present in this
subsection the recent results [25] of Sarkar and Maitra. In order to simplify the exposition, assume that p1

and p2 share t most significant bits, that are unknown to the attacker. Note that the result and method are
very similar when p1 and p2 share t bits in total distributed between the MSBs and LSBs of p1 and p2. We
can write p1 = p+ p̃1 and p2 = p+ p̃2, where p represents the t shared MSBs of p1 and p2, and p̃1, p̃2 are
smaller than 2n−α−t+1. Then, N1 = q1(p+ p̃1) and N2 = q2(p+ p̃2).

We now consider q1, q2, p, p̃1, p̃2 as indeterminates, and eliminate p by multiplying the two previous
equalities respectively by q2 and q1, and finally subtracting them. We obtain:

q2N1 − q1N2 + q1q2(p̃2 − p̃1) = 0

That is, (q1, q2, p̃2 − p̃1) is a small integer solution of the polynomial equation f ′(x, y, z) = yN1 − xN2 +
xyz = 0. As f ′ has constant term zero, we solve instead

f(x, y, z) = f ′(x, y − 1, z) = yN1 − xN2 −N1 + xyz − yz = 0 (8)

whose solutions are (x0, y0, z0) = (q1, q2 + 1, p̃2 − p̃1).

Let X,Y, Z be upper-bounds on q1, q2 + 1 and |p̃2 − p̃1| respectively. Namely, X = Y = 2α and
Z = 2n−α−t+1. Besides, W = ‖f(xX, yY, zZ)‖∞ ≥ N1Y ≥ 2α+n−1. Let’s apply the bound for
rectangular polynomials (equation 6), to derive straightforward bounds on t. In equation 6, we set D = 1,
n = 2 and λ1 = λ2 = λ3 = 1, and we obtain after doing the computations the following bound on t:

t ≥ α+ n+ 3
2

(9)
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That means that as soon p1 and p2 share at least α+n+3
2 most significant bits, we are able (heuristically) to

factorize N1 and N2 in polynomial time. Note that this bound is already better than May and Ritzenhofen’s
results (which is t ≥ 2α+ 3) as soon as α ≥ n

3 .

The bound on t obtained by Sarkar and Maitra is a bit better (though much more complicated) than
inequality 9 we showed for the sake of argument. Rather than simply applying the bound for rectangular-
shaped polynomials, they evaluated the quantities sj and sW of equation 3 and used the sets S and M of
equations 4, 5 from the extended method. That leads to the following theorem:

Theorem 2 (Sarkar, Maitra, [25]). Let N1 = p1q1, N2 = p2q2 where p1, p2 are α-bit primes, and q1, q2 are
primes. Assume that p1 and p2 share t1 MSBs and t2 LSBs, and define t = t1 + t2. Let β = n− α− t. If

−4α2 − 2αβ − 1
4
β2 + 4αn+

5
3
βn− n2 < 0 and n− 3

2
β − 2α ≥ 0

then one can factorize N1, N2 in polynomial time, under the assumption that one can retrieve the integer
solutions of equation 8.

4 Generalization of Coppersmith’s multivariate method to a system of poly-
nomial equations

We present in this section how we generalized Coppersmith’s method for finding integer roots of a multi-
variate polynomial to a system of polynomial equations.

The problem is as follows. We are given k algebraically independent polynomials f1, . . . , fk ∈ Z[x1, . . . , xn].
Our goal is to find efficiently all integer solutions (x1,0, . . . , xn,0) of the following system of equations:

f1(x1, . . . , xn) = 0
...

fk(x1, . . . , xn) = 0

(10)

satisfying ∀i, |xi,0| < Xi, where the Xi’s are bounds that we want to maximize. We furthermore assume
that the fi’s are irreducible and that the GCD of the coefficients of each fi is 1.

4.1 Description of our method

Our method is a generalization of Coron and May’s formulation of Coppersmith method for multivariate
polynomial that is described in section 3.1. The outline of the method is very similar to the one of section
3.1, except that we use all the input polynomials f1, . . . , fk:

1. Using f1, . . . , fk, construct a collection C of polynomials g1, . . . , gc ∈ Z[x1, . . . , xn] such that the
gi’s vanish modulo R on the integer solutions (x1,0, . . . , xn,0) of the system of polynomial equation
satisfying: ∀i, |xi,0| < Xi. R is a modulus which is chosen latter.
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2. Find n − k new polynomials (h1, . . . , hn−k) which are linear combinations of the gi’s such that for
every i, |hi(x1,0, . . . , xn,0)| is strictly smaller than R (that is, the hi’s vanish on the solutions of the
system of equation over the integers) and such that the variety defined by (f1, . . . , fk, h1, . . . , hn−k)
is 0-dimensional. This step is carried out by LLL-reducing a lattice spanned by the coefficient vectors
of the polynomials gi(x1X1, . . . , xnXn).

3. Finally, compute all the integer solution of the system of equations within the bounds by enumerating
the points of the 0-dimensional variety defined by (f1, . . . , fk, h1, . . . , hn−k).

As Coppersmith’s method, our method is heuristic because we were unable to prove that the method
yields a 0-dimensional variety under suitable bounds. We nevertheless give hints latter on how this could
be proved for specific shapes of polynomials. A new difficulty is added: as the lattice created in step 2 is
no longer constructed from a basis consisting of the row vectors of an upper-triangular matrix, it becomes
difficult to evaluate its determinant as a function of the coefficients of the input polynomials f1, . . . , fk.
These two points imply that the experiments done in the next subsection are very important to know how
the method behaves in practice.

Let’s explain how C is constructed. Let m be an integer which controls the size of C. Define by Si the
sets of monomials of fm−1

i and by Mi the monomials of fmi . Let S =
⋃k
i=1 Si, M =

⋃k
i=1Mi and lj be

the largest exponent of xj that appears in S. Let C be the collection defined by all these polynomials:

xi11 x
i2
2 · · ·xinn fi(x1, . . . , xn)

n∏
j=1

X
lj−ij
j for xi11 x

i2
2 · · ·xinn ∈ Si and 1 ≤ i ≤ k

xi11 x
i2
2 · · ·xinn R for xi11 x

i2
2 · · ·xinn ∈M\S

Note that all the polynomials of C are defined over M . Finally, R is chosen to be W
∏n
j=1X

lj
j where

W = maxki=1 ‖fi(x1X1, . . . , xnXn)‖∞.

The next step is to build a lattice L, spanned by all the coefficient vectors (over M ) of the polynomials
{g(x1X1, . . . , xnXn) | g ∈ C} and to reduce it using LLL. Note that the number of polynomials in C (and
thus the number of vectors used to span L) is a bit greater than |M |.

In order to derive bounds under which the method works, two major steps are needed. Note that we
weren’t able to prove any rigorous bound in the end; however, the experimental results in the next section
are encouraging and show that the method is of interest in practice. The first step is to ensure the the first
n−k vectors from the basis outputted by LLL are small enough so that Howgrave Graham’s lemma (lemma
1) apply in order to satisfy the first condition of step 2. Using Theorem 9, we get the following sufficient
condition on Vol(L) (and thus on the Xj’s upon which Vol(L) depends):

Vol(L) < 2−
d(d−1)

4

(
R√
d

)d+1−n+k

where d = |M |. Ignoring terms that do not depend on the size of the coefficients (which contribute to an
asymptotically small error term), we get the following condition:

Vol(L) < W

n∏
j=1

X
lj(d+1−n+k)
j

9



Deriving bounds on the Xj would require to express Vol(L) in terms of the Xj’s and the coefficients of
the fi’s. Unfortunately, it turns out to be a difficult task, as the lattice L is no longer defined by an upper-
triangular basis, due to the presence of several polynomials as inputs.

The second step would be to ensure that f1, . . . , fk, h1, . . . , hn−k are algebraically independent. As
in Coppersmith’s original method in the case n ≥ 3, we were not able to prove it. We nevertheless give
some hints and ideas how this could be done. We observed in our experiments presented in the next section
that this is the most restrictive condition to fulfill. The following lemma gives a criterion so that a new
polynomial is algebraically independent from all the previous ones taken as a whole:
Lemma 3 (A proof can be found in [2]). Let p1, . . . , pl be polynomials of Z[x1, . . . , xn] sharing a common
root (x1,0, . . . , xn,0). Define I = 〈p1, . . . , pl−1〉. Suppose that I is a prime ideal and that pl /∈ I . Then,
p1, . . . , pl are algebraically independent. In other words, the dimension of I is decremented by 1 if we add
pl to I .

Consider the special case where k = n− 1 (that is, the variety defined by f1, . . . , fk has dimension 1).
Let I = 〈f1, . . . , fk〉. We can suppose that I is a prime ideal, for otherwise we can replace it by one of the
radical of the ideals in its primary decomposition. We can furthermore assume that f1, . . . , fk is a Gröbner
basis for some monomial order≺ as it is often the case in practice and it gives us a lead to tackle the problem.
Assume also that M is compatible with the monomial ordering ≺ (see the definition in the preliminaries).
The previous lemma tells us that the method of this section will succeed if the generated polynomial h1 is not
in I . Thanks to the assumption made, h1 ∈ I translates into the existence of polynomials ai ∈ Z[x1, . . . , xn]
such that:

h1 = a1f1 + · · ·+ akfk and the aifi’s are defined over M

Note that it is the fact the f1, . . . , fk is a Gröbner basis for ≺ and that M and ≺ are compatible which
guarantees that the aifi’s are defined over M . This conveniently makes finite the set of monomials to which
the ai’s belong. One way to obtain rigorous bounds in this case would thus to prove an analog to Hinek
Stinson’s lemma for multiple polynomials that would solve the following problem:
Problem 1. Let f1, . . . , fk be polynomials of Z[x1, . . . , xn], and M be a set of monomials. Suppose that:

g = a1f1 + · · ·+ akfk

with the ai being in Z[x1, . . . , xn] and such that the aifi’s are defined over M . Lower-bound the norm of g
as a function of the fi’s and M . We’re especially interested in lower-bounds that increase as the coefficients
of the fi’s increase.

Note that we aren’t aware of anybody having studied this problem in the general case k ≥ 2. The major
difficulty in order to come up with a lower-bound is the cancellation of the coefficients in front of monomials
in the sum a1f1 + · · · akfk. Besides, any useful lower-bound would heavily depend upon the shape of the
fi’s. Let’s take a trivial example. Suppose that k = 2, f1 = ax1 + 1 and f2 = (a+ 1)x2 − 1, where a is a
big integer, and M = {x2

1, x
2
2, x1x2, x1, x2, 1}. Then g = f2 − f1 has arbitrarily tiny coefficients compared

to a.

4.2 Experimental results

We tested our method with n = 3 and n = 4 (that is, 3 and 4 variables), and two or three polynomials
f1, f2, (f3) vanishing on a common root as input. Indeed, we compared it to three other methods:
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Table 2: Success rate of the different methods in the case n = 3, k = 2 and rectangular polynomials of
degree 1 in each variable.

 0
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Multiplicative coefficient of the number of bits of the solutions.
 (1 means Coppersmith’s original method theoretical bound)

Coppersmith’s method with one polynomial

Coppersmith’s method after elimination

Our generalized Coppersmith’s method

1. Use only one polynomial out of the two or three, and use the original Coppersmith’s method described
in section 3.

2. Eliminate one variable computing the resultant g = Res(f1, f2, x1), and apply original Coppersmith’s
method on g. If we have three polynomials as input, we eliminate two variables computing g =
Res(Res(f1, f2, x1),Res(f1, f3, x1), x2). Note that there are several competing effects that increase
or decrease the bounds on the roots that can be recovered. Decreasing the number of variable and
g having greater coefficients than f1 and f2 improves the bounds, whereas g having a higher degree
worsens the bounds. All in all, we can predict (by estimating experimentally the size of the coefficients
of a resultant in term of the input polynomials) that computing the resultant increases the theoretical
bounds on the solutions by factors between 2 and 6 (depending on the shape of the polynomials).

3. Eliminate k − 1 variables using Gröbner basis for a lexicographical ordering on the monomials and
do the same as above.

We performed experiments for rectangular polynomials with maximum degree 1 in each variable, and
lower-triangular polynomials with total degree 2. Random polynomials were generated with random 200-
bit-sized coefficients, with the leading term being always non-zero, and a third of the remaining terms being
zero, in order to somehow reproduce real-world instances. We carried out tests for various size of solutions.
For a specific size, we carried out 5 tests, and called a test successful when the resulting variety was 0-
dimensional (which is the strongest notion of success for those methods). We couldn’t do more tests because
of the time needed for one individual test to complete (several days). That explains partly the irregularities
of the graphs. We show in figures 2 and 3 the success rate of the four methods as a function of the size of the
roots of the polynomials. (when the two methods of elimination were the same, we show only one curve).
In all this graphs, the x-axis represents the size (in number of bits) of the roots as a multiplicative factor of
the theoretical bound of Coppersmith’s original method using one polynomial (given by inequalities 6 and
7), and the y-axis represents the success rate. For instance, we can read in figure 3 (on the left) that our
method has 20% success rate when the roots are 1.5 times bigger (in number of bits) than the theoretical
bound of Coppersmith’s original method applied to rectangular polynomials of degree 1 in each variable.
Other graphs that do not give much additional useful information are shown in appendix B.
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Table 3: Success rate of the different methods in the case n = 4, k = 3. Rectangular polynomials of degree
1 in each variables on the left, and triangular polynomials of total degree 2 on the right.

The methods involved LLL-reducing lattices of sizes between 100 and 400, and each individual test took
up to a couple of days on Intel Xeon X5xxx or X7xxx processors belonging to the LIP6 computer cluster.
We used Stehlé’s fast implementation of LLL described in [23].

Overall, eliminating variables with Gröbner basis computation performs often much better than Copper-
smith’s method with one polynomial or after eliminating variables using resultants. With 3 variable and 2
polynomials as input, our generalized Coppersmith method performs a bit worse than Coppersmith’s origi-
nal method after having eliminated a variable. However, it can still be useful as it solves instances (15 out
of the 35 cases where our method works, between the abscissas 1.5 and 2.1) that are unsolvable by all other
methods (this is not shown on the graph). With 4 variables and 3 polynomials our method performs better
(but not in all cases) than the aformentioned methods using 3 polynomials. In particular, in the rectangular
case (figure 3, left side), our method performs well compared to other methods that uses 3 polynomials. On
the other hand, it should be pointed out that our results show that using only two polynomials out of the
three available (throwing out the third one for instance) surprisingly performs better than using directly the
three polynomials.

As a conclusion, none of the methods using more than 2 polynomials were conclusive. One should
instead use only two polynomials out of the k available. When using 2 polynomials, our method can in
some cases solve instances that cannot be solved by existing methods. One should therefore always try all
the methods in order to solve as many instances as possible.

Recall that there can be two reasons why our method fails on a particular instance. It can be either
because the reduced basis is not short enough (and thus the associated polynomials do not vanish over the
integer), or the new polynomials are not algebraically independent. It appeared in our experiments that
failure was always due to the second reason.

Finally, even though all methods using more than two polynomials do not give good experimental results
in the generic cases we tested, we still tried to apply our method the the implicit factoring problem in the
next section. It turned out that this lead to surprisingly good results which we fully explain.
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4.3 Application to the implicit factoring problem

Our main goal in this section is to generalize Sarkar and Maitra’s ideas (described in section 3.2) to solve
the implicit factoring problem to an arbitrary number k of moduli, by using our method to find integer roots
of a system of integer polynomials. As we’ll see, it turned out that our method performed well, but for an
unforeseen reason. Understanding this allowed us to devise in section 5 a novel and direct lattice-based
method that addresses the case where the pi’s share MSBs.

We present how we applied our method for finding integer roots of polynomial systems to the problem
of implicit factoring. Consider three RSA moduli Ni = piqi, 1 ≤ i ≤ 3, with the pi’s all sharing t MSBs.
As in section 3.2, we let p represent the t shared bits of the pi’s and write pi = p + p̃i for all 1 ≤ i ≤ 3.
We thus have the equalities Ni = q1(p+ p̃i). Let’s turn the qi’s,p̃i’s,p into indeterminates and introduce the
following polynomials:

w1(x1, x2, x3, x4, x5, x6, x7) = x2(x1 + x3)−N1

w2(x1, x2, x3, x4, x5, x6, x7) = x4(x1 + x5)−N2

w3(x1, x2, x3, x4, x5, x6, x7) = x5(x1 + x7)−N3

that vanish simultaneously in (p, q1, p̃1, q2, p̃2, q3, p̃3). Using Gröbner basis computations with a lexico-
graphical ordering, we eliminate x1, the variable representing p. Note that this is what Sarkar and Maitra
already do in their paper, though with only two polynomials and manually. After elimination, we get three
polynomials f1, f2, f3 with 6 variables whose common root (q1, p̃1, q2, p̃2, q3, p̃3) reveals the factorization
of the Ni’s. We have thus reduced the implicit factoring problem with several RSA moduli to computing
integer solutions of a polynomial system of equations. As the fi’s had no constant term, we substituted the
xi’s by xi + 1. We can apply our method we described in the previous sections.

Experimental results We ran our method with the polynomials f1, f2, f3 as input. We randomly chose
three unbalanced RSA moduli Ni = piqi with n = 200 bits, with the qi being α = 50 bits primes, and the
pi’s sharing from t = 120 to t = 60 MSBs. Remember that Sarkar and Maitra heuristic method requires
theoretically t = 105 shared MSBs in this cases (using Theorem 2), and that t = 91 is enough in their
experiments. That led to lattices of dimension roughly 400 each reduced in a couple of days.

Define the ideal I = 〈f1, f2, f3〉. We first observed that the new polynomials hi’s generated by the
method were always in I , which is apparently a failure. Nevertheless, we discovered that the new polyno-
mials often contained a coefficient whose GCD with the Ni was not trivial. We were able in those cases
to factorize all the Ni’s. Surprisingly, we discovered that our method allowed us always to factorize the
Ni’s when the pi shared at least 78 bits (which is significantly better than Sarkar and Maitra’s experimental
results), and that the method almost never worked when then pi’s shared less than 78 bits. This sharp cut-off
certainly calls for a detailed explanation.

After examination, the input polynomials had this form:

f1(x, y, z, t, u, v) = xyz + xy − xzt− xt+ p2q2x+ yz + y − zt− p1q1z − t+ (p2q2 − p1q1)
f2(x, y, z, t, u, v) = xyu+ xy − xuv − xv + p3q3x+ yu+ y − uv − p1q1u− v + (p3q3 − p1q1)
f3(x, y, z, t, u, v) = ztu+ zt− zuv − zv + p3q3z + tu+ t− uv − p2q2u− v + (p3q3 − p2q2)
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Besides, we observed that the new polynomials hi found by the method were not only in I , but linear com-
binations with integer coefficients of the fi. We discovered that this linear short combination was always the
same (for the “interesting” polynomials that yield a non-trivial factor of each Ni, and up to a multiplicative
constant which is a by-product of our method):

h = q3f1 − q2f2 + q1f3

Polynomials of this type lead immediately to the factorization of the Ni’s, and always corresponded to a
shortest vector of the LLL-reduced basis. Besides, we observed that the corresponding short vector was
significantly smaller (when the number of shared bits was not too close to our experimental bound t = 78)
than what the Gaussian heuristic predicted (see lemma 6), and that the estimated gap of the lattice (see
definition 1) was unusually high. Let’s examine the coefficients of h to see what happens. For instance,
the coefficient in front of x is q2q3(p2 − p3) and the constant term is q1q3(p3 − p1) + q1q2(p1 − p2).
Indeed, all the coefficients of h are either of the type “qiqj(pi − pj)” or a sum of qi’s. Note how the
relation qiNj − qjNi = qiqj(pj − pi) harnesses the cancellation of the shared MSBs of the pi. Thanks to
this cancellation, the large coefficients of h have at most 2α + n − t bits, which explains the fact that the
associated vector of the lattice is unusually short when t is big enough.

All of this suggests that the shift polynomials are not used at all during the reduction of the lattice, and
that we could obtain the same results much more efficiently by reducing directly the right sub-lattice. This
is what we achieved after some thinking; we present our results in the next section.

5 Direct lattice-based method for the implicit factoring problem

The results described in this section constitute the main results of the internship and led to the writing of an
article.

5.1 Implicit Factoring of Two RSA Moduli

As usual, we are given two n-bit RSA moduli N1 = p1q1 and N2 = p2q2, where q1 and q2 are α-bit primes,
given only the implicit hint that p1 and p2 share t most significant bits (MSBs) that are unknown to us.

The experiments of the previous section gave us the idea to craft a lattice whose shortest vector would
harness the short linear combination q1N2 − q2N1 = q1q2(p2 − p1) of N1 and N2. The algebraic relation
q1N2 − q2N1 = q1q2(p2 − p1) is specially interesting to craft a shortest vector that would reveal non-trivial
factors of the Ni’s because the shared most significant bits of p1 and p2 cancel out and thus q1q2(p2 − p1)
has approximately α + n − t bits. It can therefore be made quite small compared to N1 ≈ N2 ≈ 2n for t
large enough.

Reducing the row vectors of
(
N1

N2

)
would still however be non-sense and “lead” to the trivial relation

N2N1−N1N2 = 0. In order to control the size of the coefficients in front ofN1 andN2 in a shortest vector,

we concatenated the matrix
(
K 0
0 K

)
to the previous one, and chose K ≈ 2n−t in order to “penalize”
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coefficients in front of N1, N2 greater than the qi ≈ 2α. A basis of our lattice is now the row vectors v1 and
v2 of (

K 0 N1

0 K N2

)
and we hope that v0 = q2v1 − q1v2 = (q1K, q2K, q1q2(p1 − p2)) whose coefficients are all roughly
(n+ α− t)-bit integers is a shortest vector of the lattice.

We now present rigorously our results and show that N1 and N2 can be factored in quadratic time as
soon as t ≥ 2α+3. By saying that the primes p1, p2 of maximal bit-size n−α+1 share t MSBs, we really
mean that |p1 − p2| ≤ 2n−α−t+1.

Let’s consider the lattice L spanned by the row vectors (denoted by v1 and v2) of the following matrix:(
K 0 N2

0 K −N1

)
where K = b2n−t+ 1

2 c

and consider the following vector of L: v0 = q1v1 + q2v2 = (q1K, q2K, q1q2(p2 − p1)).

Notice that the shared MSBs of p1 and p2 cancel each other out in the difference p2 − p1. Each of the
coefficients of v0 are thus integers of roughly (n + α − t) bits. Provided that t is sufficiently large, ±v0

may be a shortest vector of L that can be found using Lagrange reduction on L. Moreover, note that as soon
as we retrieve v0 from L, factoring N1 and N2 is easily done by dividing the first two coordinates of v0 by
K. Proving that v0 is a shortest vector of L under some conditions on t is therefore sufficient to factorize
N1 and N2.

We first give an intuition on the bound on t that we can expect, and we give after that a proof that v0 is
indeed a shortest vector of L under a similar condition.

The volume of L is the square root of the determinant of G, the Gramian matrix of L:

G =
(
K2 +N2

2 −N1N2

−N1N2 K2 +N2
1

)
That is,

Vol(L) = K
√
N2

1 +N2
2 +K2 ≈ 22n−t (11)

because K2 ≈ 22(n−t) is small compared to the N2
i ≈ 22n.

The norm of v0 is approximately 2n+α−t, because each of its coefficients have roughly n+α− t bits. If
v0 is a shortest vector of L, it must be smaller than the Minkowski bound applied to L: 2n+α−t ≈ ‖v0‖ ≤√

2 Vol(L)1/2 ≈ 2n−t/2, which happens when t ≥ 2α.

The following theorem states that v0 is indeed a shortest vector of L under a similar condition on t.

Theorem 3. Let N1 = p1q1, N2 = p2q2 be two n-bit RSA moduli, where the qi’s are α-bit primes and the
pi’s are primes that share t most significant bits. If t ≥ 2α+3, thenN1 andN2 can be factored in quadratic
time in n.
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Proof. Let L be the lattice generated by the row vectors v1 and v2 of the following matrix:(
K 0 N2

0 K −N1

)
where K = b2n−t+

1
2 c

and let
v0 = q1v1 + q2v2 = (q1K, q2K, q1q2(p2 − p1))

Our goal is to prove that ±v0 is a shortest vector of the lattice L.

Let (b1,b2) be the resulting basis from the Lagrange reduction on L. Computing (b1,b2) takes a
quadratic time in n, as the norms of v1 and v2 are bounded by 2n+1. This reduced basis verifies ‖b1‖ =
λ1(L), ‖b2‖ = λ2(L), and, by Hadamard’s inequality:

‖b1‖‖b2‖ ≥ Vol(L) (12)

As v0 is in the lattice, ‖b1‖ = λ1(L) ≤ ‖v0‖. Using (12), we get ‖b2‖ ≥ Vol(L)
‖v0‖ . Moreover, if v0 is

strictly shorter that b2, v0 is a multiple of b1; for otherwise b2 would not be the second minimum of the
lattice. In this case, v0 = ab1 = a(bv1 + cv2), a, b, c ∈ Z, and looking at the first two coefficients of v0,
we get that ab = q1 and ac = q2. Since the qi’s are prime, we conclude that a = ±1, that is, v0 = ±b1.
Using the previous inequality, a condition for v0 to be strictly shorter than b2 is:

‖v0‖2 < Vol(L) (13)

Let’s upper-bound the norm of v0 and lower-bound Vol(L). We first provide simple bounds that proves
the theorem when t ≥ 2α+ 4 and derive secondly tighter bounds that require only t ≥ 2α+ 3.

The pi’s have at most n−α+1 bits, and they share their tmost significant bits so |p2−p1| ≤ 2n−α+1−t.
We thus have the following inequality on the norm of v0:

‖v0‖2 ≤ 22(n−t)+1(q21 + q22) + q21q
2
2(p1 − p2)2

≤ 22(n+α−t)+2 + 22(α+n+1−t)

≤ 22(n+α−t)+3 (14)

We can lower-bound the expression (11) for the volume of L, using that N1, N2 ≥ 2n−1 and K2 ≥ 22(n−t):

Vol(L)2 = K2(N2
1 +N2

2 + 22(n−t))

> 24n−2t−1 (15)

Using inequalities (14) and (15), (13) is true provided that:

22(n+α−t)+3 ≤ 22n−t− 1
2

which is equivalent to (as t and α are an integers):

t ≥ 2α+ 4 (16)
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We have thus proved the theorem under condition 16.

We now refine the bounds on ‖v0‖ and Vol(L) in order to prove the tight case.

q1 and q2 are α-bit primes, therefore ∀i, qi ≤ 2α − 1. Define ε1 by 2α − 1 = 2α−ε1 . We get:

∀i, q2i ≤ 22α−2ε1 (17)

Moreover,
K2 ≤ 22(n−t)+1 (18)

because K = b2n−t+
1
2 c. We can therefore upper-bound K2q2i using the inequalities (17) and (18):

∀i,K2q2i ≤ 22(n−t+α)+1−2ε1 (19)

The pi’s have at most n − α + 1 bits and they share t bits, so (p2 − p1)2 ≤ 22(n−α+1−t). Using inequality
(17), we can bound q21q

2
2(p2 − p1)2:

q21q
2
2(p2 − p1)2 ≤ 22(n−t+α+1−2ε1) (20)

We can finally bound the norm of v0 using (20) and (19):

‖v0‖2 = K2(q21 + q22) + q21q
2
2(p2 − p1)2

≤ 22(n+α−t)+2−2ε1 + 22(n−t+α+1−2ε1)

≤ 22(n+α−t)+3−ε1 (21)

Let’s define ε2 by the equality 2n−t+1/2 − 1 = 2n−t+1/2−ε2 . We have that K = b2n−t+
1
2 c ≥

2n−t+1/2−ε2 and N2
i ≥ 22n−2. We can therefore lower-bound Vol(L)2:

Vol(L)2 = K2(N2
1 +N2

2 + 22(n−t))

> K2(N2
1 +N2

2 )

> 24n−2t−2ε2 (22)

Using the inequalities (21) and (22), the condition (13) is true under the new condition that:

22(n+α−t)+3−ε1 ≤ 22n−t−ε2

that is:
t ≥ 2α+ 3 + ε2 − ε1

It remains to show that ε2 ≤ ε1. This comes from the fact that ε1 = log2(
1

1− 1
2α

) and ε2 = log2(
1

1− 1

2
n−t+1

2

),

and that α ≤ n− t. �

Remark 1. For our analysis, the value K = b2n−t+
1
2 c is indeed the best possible value. If we use K =

b2n−t+γc, we obtain the bound t ≥ 2α+ f(γ) where

f(γ) =
3
2
− γ + log2(2 + 22γ)

The minimum of f is 3 and is attained in γ = 1
2 .
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5.2 Implicit Factoring of k RSA Moduli

The construction of the lattice for 2 RSA moduli naturally generalizes to an arbitrary number k of moduli.
Similarly, we show that a short vector v0 of the lattice allows us to recover the factorization of theNi’s. This
vector takes advantage of the relations qiNj − qjNi = qiqj(pj − pi) for all i, j ∈ {1, . . . , k}. However, we
were unable to prove that v0 is a shortest vector of the lattice. Therefore, our method relies on the Gaussian
heuristic to estimate the conditions under which v0 should be a shortest vector of the lattice. Experimental
data in the next section confirms that this heuristic is valid in nearly all the cases.

In this section, we are given k RSA moduli of n bits: Ni = piqi, 1 ≤ i ≤ k, where the qi’s are α-bit
primes and the pi’s are primes that all share t most significant bits.

Let us construct a matrix M whose row vectors will form a basis of a lattice L. M will have k rows
and k +

(
k
2

)
= k(k+1)

2 columns. Denote by s1, . . . , sm with m =
(
k
2

)
all the subsets of cardinality 2 of

{1, 2, . . . , k}. To each of the si’s, associate a column vector ci of size k the following way. Let a,b be the
two elements of si, with a < b. We set the a-th element of ci to Nb, the b-th element of ci to −Na, and
all other elements to zero. Finally, form M by concatenating column-wise the matrix KIk×k, where Ik×k
is the identity matrix of size k, along with the m column vectors c1, . . . , cm. K is chosen to be b2n−t+

1
2 c.

We will call v1, . . . ,vk the row vectors of M .

To make things more concrete, consider the example of k = 4. Up to a reordering of the columns (that
changes nothing to the upcoming analysis),

M =


K 0 0 0 N2 N3 N4 0 0 0
0 K 0 0 −N1 0 0 N3 N4 0
0 0 K 0 0 −N1 0 −N2 0 N4

0 0 0 K 0 0 −N1 0 −N2 −N3

 where K = b2n−t+ 1
2 c (23)

Notice that the columns k + 1 to k +m correspond to all the 2-subsets of {1, 2, 3, 4}.

Similarly to the case of 2 RSA moduli, L contains a short vector that allows us to factorize all the Ni’s
(by dividing its first k coordinates by K for instance):
Lemma 4. Let v0 = q1v1 + · · ·+ qkvk. Then v0 can be rewritten as follows:

v0 = (q1K, . . . , qkK, . . . , qaqb(pb − pa), . . .︸ ︷︷ ︸
∀{a,b}⊂{1,...,k}

)

Assumption 1. If ±v0 is shorter than the Gaussian heuristic applied to L: λ1(L) ≈
√

k
2πe Vol(L)

1
k then

it is a shortest vector of L.

This assumption is backed by experimental data in the next section. We found it to be almost always
true in practice. This condition can be seen as an analog of condition 13 of section 5.1 in the case of two
RSA moduli.

Let’s derive a bound on t so that v0 is smaller than the Gaussian heuristic applied to L. The norm of v0

can be computed and upper-bounded easily:

‖v0‖2 = K2

(
k∑
i=1

q2i

)
+

∑
{i,j}⊂{1,...,k}

q2i q
2
j (pi − pj)2 ≤ k222(n+α−t)+1
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Computing the volume of L is a bit more involved, we refer to lemma 6 of appendix C:

Vol(L) = K

(
K2 +

k∑
i=1

N2
i

) k−1
2

≥ 2n−t
(√

k2n−1
)k−1

We now seek the condition on t for the norm of v0 to be smaller than the Gaussian heuristic. Using the two
previous inequalities, v0 is smaller than the Gaussian heuristic provided that:

t ≥ k

k − 1
α+ 1 +

k

2(k − 1)

(
2 +

log2(k)
k

+ log2(πe)
)

(24)

When k ≥ 3, we can derive the simpler and stricter bound: t ≥ k
k−1α+ 6.

Finally, as±v0 is now a shortest vector of L under Assumption 1, it can be found in time C(k, k(k+1)
2 , n)

where C(k, s,B) is the time to find a shortest vector of a k-dimensional lattice of Zs given by B-bit basis
vectors. We just proved the following theorem:

Theorem 4. Let N1 = p1q1, . . . , Nk = pkqk be k n-bit RSA moduli, with the qi’s being α-bit primes, and
the pi’s being primes that all share t most significant bits. Under Assumption 1, the Ni’s can be factored in
time C(k, k(k+1)

2 , n), as soon as t verifies equation (24).

Remark 2. Note that we can find a shortest vector of the lattice of Theorem 4 using Kannan’s algorithm
(Theorem 8) in time O(P(n, k) k

k
2e

+o(k)) where P is a polynomial. It implies that we can factorize all
N1, . . . , Nk in time polynomial in n as soon as k is constant or kk is a polynomial in n. Unfortunately, to
the best of our knowledge,this algorithme is not implemented in the computer algebra system Magma [5] on
which we implemented our methods. We used instead Schnorr-Euchner’s enumeration which is well known
[14, 15] to perform well beyond small dimension (≤ 50). For example, we found that finding a shortest
vector of the lattice using Schnorr-Euchner’s algorithm takes less than 1 minute for k ≤ 40. One may also
reduce the lattice using LLL algorithm instead of Schnorr-Euchner’s. If t is not too close to the bound of
Theorem 4, the Gaussian heuristic suggests that the gap of the lattice is large, and thus LLL may be able to
find a shortest vector of L even in medium dimension (50–200).

Similarly to the case of 2 RSA moduli, K = b2n−t+
1
2 c is optimal for our analysis. Indeed, if we redo

the analysis with K = b2n−t+γc, we find that the optimal value for γ is the one that minimizes the function
fk = γ 7→ 1

2k log2(k − 1 + 22γ−1)− γ, which is γ = 1
2 regardless of k.

5.3 Experimental results

In order to check the validity of Assumption 1 and the quality of our bounds on t, we implemented the
method on Magma 2.15 [5]. We generated many random 1024-bit RSA moduli, for various values of α and
t. We observed that the results were similar for other values of n. In the case where k = 2, we used the
Gaussian reduction to find with certainty a shortest vector of the lattice, and for 3 ≤ k ≤ 40 we compared
Schnorr-Euchner’s algorithm (that provably outputs a shortest vector of the lattice) with LLL (that gives an
exponential approximation of a shortest vector). We used only LLL for k = 80.

We conducted experiments for k = 2, 3, 10, 40 and 80, and for several values for α. For specific values
of k, α and t, we said that a test was successful when the first vector of the reduced basis of the lattice was
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of the form ±v0 (that is, it satisfies Assumption 1 in the heuristic case k ≥ 3). For each k and each α, we
generated 100 tests and found experimentally the best (lowest) value of t that had 100% success rate. We
compared this experimental value to the bounds we obtained in theorems 4 and 3. For the first value of t
that doesn’t have 100% success rate and for k ≥ 3, we analyzed the rate of failures due to Assumption 1
not being valid. Note that failures can be of two different kinds: the first possibility is that ‖v0‖ is greater
than the Gaussian heuristic, and the second one is that ‖v0‖ is smaller than the Gaussian heuristic yet v0 is
not a shortest vector of the lattice (that is, Assumption 1 does not hold). We wrote down the percentage of
the cases where Assumption 1 was not valid among all the cases where ‖v0‖ was smaller than the Gaussian
heuristic. These results are shown in tables 4 to 8. Let’s take an example. For k = 10 and α = 200 (second
line of table 6), Theorem 4 predicts that v0 is a shortest vector of the lattice as soon as t ≥ 227. It turned
out that it was always the case as soon as t ≥ 225, which is better than expected. For t = 224, Assumption
1 was not valid in 3% of the cases.

Let’s analyze the results now. In the rigorous case k = 2, we observe that the attack consistently goes
one bit further with 100% success rate than our bound in Theorem 3.

In all our experiments concerning the heuristic cases k ≥ 3, we observed that we had 100% success rate
(thus, Assumption 1 was always true) when t was within the bound (24) of Theorem 4. That means that
Theorem 4 was always true in our experiments. Moreover, we were often able to go a few bits (up to 3)
beyond the theoretical bound on t. When the success rate was not 100% (that is, beyond our experimental
bounds on t), we found that Assumption 1 was not true in a very limited number of the cases (less than 3%).
Finally, up to dimension 80, LLL was always sufficient to find v0 when t was within the bound of Theorem
4, and Schnorr-Euchner’s algorithm allowed us to go one bit further than LLL in dimension 40.

Additionally, we show in table 9 the lowest value of t with 100% success rate and the running-time of
LLL and Schnorr-Euchner’s algorithm for several values of k. For each k, we show the worst running-time
we encountered when running 10 tests on an Intel Xeon E5420 at 2.5Ghz. We see that all individual tests
completed in less than 1 second for 2 ≤ k ≤ 20. We used Schnorr-Euchner’s algorithm up to k = 60 where
it took at most 6200 seconds. LLL completes under one minute for 20 ≤ k ≤ 40 and in less than 30 minutes
for 40 ≤ k ≤ 80.

Table 4: Results for k = 2 and 1024-bit RSA moduli

α (bit-size of
the qi’s)

Bound of Theorem 3 t ≥
2α+ 3

Best experimental t (number of bits
shared among the pi’s)

150 303 302
200 403 402
250 503 502
300 603 602
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Table 5: Results for k = 3 and 1024-bit RSA moduli

α (bit-size
of the qi’s)

Bound t ≥ 3
2α+ 5.2 . . .

of Theorem 4

Best experimental t (number of bits
shared among the pi’s) using LLL
algorithm

Best experimental t
using Kannan’s al-
gorithm

Failure rate of
Assumption 1

150 231 228 228 0% (t = 227)
200 306 303 303 0% (t = 302)
250 381 378 378 0% (t = 377)
300 456 453 453 0% (t = 452)
350 531 528 528 0% (t = 527)
400 606 603 603 0% (t = 602)
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Table 6: Results for k = 10 and 1024-bit RSA moduli

α (bit-size
of the qi’s)

Bound t ≥ 10
9 α +

4.01 . . . of Theorem 4

Best experimental t (number of bits
shared among the pi’s) using LLL
algorithm

Best experi-
mental t using
Schnorr-Euchner’s
algorithm

Failure rate of
Assumption 1

150 171 169 169 0% (t = 168)
200 227 225 225 3% (t = 224)
250 282 280 280 3% (t = 279)
300 338 336 336 1% (t = 335)
350 393 391 391 2% (t = 390)
400 449 447 447 0% (t = 446)

Table 7: Results for k = 40 and 1024-bit RSA moduli

α (bit-size
of the qi’s)

Bound t ≥ 40
39α +

3.68 . . . of Theorem 4

Best experimental t (number of bits
shared among the pi’s) using LLL
algorithm

Best experi-
mental t using
Schnorr-Euchner’s
algorithm

Failure rate of
Assumption 1

150 158 156 155 2% (t = 154)
200 209 208 207 3% (t = 206)
250 261 259 258 1% (t = 257)
300 312 310 309 1% (t = 308)
350 363 362 361 0% (t = 360)
400 414 413 412 2% (t = 411)

Table 8: Results for k = 80 and 1024-bit RSA moduli

α (bit-size of
the qi’s)

Bound t ≥ 80
79α +

3.62 . . . of Theorem 4

Best experimental t (number of bits
shared among the pi’s) using LLL
algorithm

150 156 155
200 207 206
250 257 257
300 308 307
350 359 358
400 409 409

22



Table 9: Running time of LLL and Schnorr-Euchner’s algorithm, and bound on t as k grows.
(α = 300 and n = 1024)
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A Preliminaries on lattice

An integer lattice L is an additive subgroup of Zn. Equivalently, it can be defined as the set of all integer
linear combinations of d independent vectors b1, . . . ,bd of Zn. The integer d is called the dimension of L,
and B = (b1, . . . ,bd) is one of its basis. All the bases of L are related by a unimodular transformation.
The volume (or determinant) of L is the d-dimensional volume of the parallelepiped spanned by the vectors
of a basis of L and is equal to the square root of the determinant of the Gramian matrix of B. It does not
depend upon the choice of B. We denote it by Vol(L).

We state (without proofs) common results on lattices that will be used throughout this paper. Readers
interested in getting more details and proofs can refer to [22].

Definition 1. For 1 ≤ r ≤ d, let λr(L) be the least real number such that there exist at least r linearly
independent vectors of L of Euclidean norm smaller than or equal to λr(L). We call λ1(L), . . . , λd(L) the
d minima of L, and we call g(L) = λ2(L)

λ1(L) ≥ 1 the gap of L.

Lemma 5 (Hadamard). Let B = (b1, . . . ,bd) be a basis of a d-dimensional integer lattice of Zn. Then the
following inequality holds:

d∏
i=1

‖bi‖ ≥ Vol(L)

Theorem 5 (Minkowski). Let L be a d-dimensional lattice of Zn. Then there exists a non zero vector v in
L with the following property:

‖v‖ ≤
√
dVol(L)

1
d

An immediate consequence of Minkowski’s theorem is that:

λ1(L) ≤
√
dVol(L)

1
d

Theorem 6 (Gaussian heuristic, see [1]). Let L be a random d-dimensional lattice of Zn. Then, with
overwhelming probability, all the minima of L are asymptotically close to:√

d

2πe
Vol(L)

1
d

Theorem 7 (Lagrange reduction). Let L be a 2-dimensional lattice of Zn, given by a basis B = (b1,b2).
Then one can compute a Lagrange-reduced basis B′ = (v1,v2) of L in time:

O(n log2(max(‖b1‖, ‖b2‖)))

Besides, it verifies:
‖v1‖ = λ1(L) and ‖v2‖ = λ2(L)

More information about the running time of the Lagrange reduction may be found in [22].

Theorem 8 (Kannan’s algorithm, see [18, 24, 15]). Let L be a d-dimensional lattice of Zn given by a basis
(b1, . . . ,bd). One can compute a shortest vector of L (with norm equal to λ1(L)) in time

O(P(logB,n) d
d
2e

+o(d))

where P is a polynomial and B = maxi(‖bi‖). This is done by computing a HKZ-reduced basis of L.
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The time complexity of finding a shortest vector of L will be denoted by C(d, n,B) (hence C(d, n,B) ≤
O(P(logB,n) d

d
2e

+o(d))).

Theorem 9 (LLL). Let L be a d-dimensional lattice of Zn given by a basis (b1, . . . ,bd). Then LLL
algorithm computes a reduced basis (v1, . . . ,vd) that satisfy:

∀i, ‖vi‖ ≤ 2
d(d−1)

4(d+1−i) Vol(L)
1

d+1−i

The running time of Nguyen and Stehlé’s version is O(d5(d + logB) logB) where B = maxi(‖bi‖), see
[23].

In practice, LLL algorithm is known to perform much better than expected. It has been experimentally
established in [14] that we can expect the following bound on ‖v1‖ on random lattices:

‖v1‖ ≤ 1.0219d Vol(L)
1
d

and that finding a shortest vector of a lattice with gap greater than 1.0219d should be easy using LLL.

B Additional experimental results of the generalized Coppersmith’s multi-
variate method

This appendix contains additional experimental results of our generalized Coppersmith’s multivariate method
described in section 4.

Table 10: Success rate of the different methods in the case n = 4, k = 2 and rectangular polynomials of
degree 1 in each variable.
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Table 11: Success rate of the different methods in the case n = 3, k = 2 and triangular polynomials of total
degree 2.
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C Exact computation of the Volume of lattice L of section 5.2

In this section, we compute exactly the volume of the lattice L defined at the beginning of section 5.2. As a
visual example of the construction of this lattice, the reader may take a look at the matrix defined in equation
(23) in the case of k = 4. We use the notations of section 5.2.

Lemma 6. Let L be the lattice whose construction is described at the beginning of section 5.2. Then its
volume is:

Vol(L) = K

(
K2 +

k∑
i=1

N2
i

) k−1
2

Proof. Let G be the Gramian matrix (of size k × k) of L. Its diagonal terms are:

〈vi,vi〉 = K2 +
k∑

u=1
u6=i

N2
u

and its other terms are:
〈vi,vj〉 = −NiNj

28



Observe that we can rewrite G as follows:

G =

(
K2 +

k∑
i=1

N2
i

)
Ik×k + J

where Ik×k is the identity matrix of size k and J is the k × k matrix with terms −NiNj . If we let χJ be the
characteristic polynomial of J and λ0 = K2 +

∑k
i=1N

2
i , we observe that det(G) = χJ(−λ0).

All the columns of J are multiples of


N1

N2
...
Nk

. The rank of J is thus 1. J has therefore the eigenvalue 0

with multiplicity k − 1. The last eigenvalue is computed using its trace: Tr(J) = −
∑k

i=1N
2
i . Therefore,

up to a sign,

χJ(X) = Xk−1

(
X +

k∑
i=1

N2
i

)

We conclude that

det(G) = χJ

(
−K2 −

k∑
i=1

N2
i

)
= K2

(
K2 +

k∑
i=1

N2
i

)k−1

and that

Vol(L) =
√

det(G) = K

(
K2 +

k∑
i=1

N2
i

) k−1
2

�
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