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Abstract. Bit-decomposition, which is proposed by Damgård et al., is a powerful tool 
for multi-party computation (MPC). Given a sharing of secret a, it allows the parties to 
compute the sharings of the bits of a in constant rounds. With the help of 
bit-decomposition, constant rounds protocols for various MPC problems can be 
constructed. However, bit-decomposition is relatively expensive, so constructing 
protocols for MPC problems without relying on bit-decomposition is a meaningful 
work. In multi-party computation, it remains an open problem whether the “modulo 
reduction” problem can be solved in constant rounds without bit-decomposition. 

In this paper, we propose a protocol for (public) modulo reduction without relying 
on bit-decomposition. This protocol achieves constant round complexity and linear 
communication complexity. Moreover, we also propose a generalization to 
bit-decomposition which can, in constant rounds, convert the sharing of secret a into 
the sharings of the “digits” of a, along with the sharings of the bits of every “digit”. 
The “digits” can be base-m for any 2m ≥ . Obviously, when m is a power of 2, this 
(generalized) protocol is just the original bit-decomposition protocol. 
 
Keywords: Multiparty Computation, Constant Rounds, Secret Sharing, Bitwise 
Sharing, Digit-wise Sharing, Modulo Reduction, Generalization to Bit-Decomposition. 

1 Introduction 

Secure multi-party computation (MPC) allows the computation of a function f when the inputs to f 
are secret values held by distinct parties. After running the MPC protocol, the parties obtains only 
the desired outputs but nothing else, and the privacy of their inputs are guaranteed. Although 
generic solutions for MPC already exist [BGW88, GMW87], the efficiency of these generic 
protocols tend to be low. So we focus on constructing efficient protocols for specific functions. 
More precisely, we are interested in integer arithmetic in the information theory setting [NO07].  

A proper choice of the representation of the inputs can have great influence on the efficiency 
of the computation [DFK+06,Tof09]. For example, when we want to compute the “sum” or the 
“product” of some private integer values, we’d better represent these integers as elements of a 

prime filed pZ  and perform the computation using an arithmetic circuit as “addition” and 



“multiplication” are trivial operations in the field. If we use the binary representation of the 
integers and a Boolean circuit to compute the result, then we will get a highly inefficient protocol 
as the “bitwise addition” and the “bitwise multiplication” are very expensive [CFL83a,CFL83b]. 
On the other hand, if we want to “compare” some (private) integer values, then the binary 
representation will be of great advantage for “comparison” is a “bit-oriented” operation. In this 

case, the arithmetic circuit over pZ  will be a bad choice.  

To bridge the gap between the arithmetic circuits and the Boolean circuits, Damgård et al. 
[DFK+06] proposed a novel technique, called “bit-decomposition”, to convert a sharing of secret 
a  into the sharings of the bits of a . This is a very useful tool in MPC because it gives us the best 

of the two worlds. For example, for a protocol built in the prime filed pZ , if a series of 

bit-oriented operations (such as comparisons, computations of Hamming weight) are needed in the 
future process, we can, using “bit-decomposition”, transform the sharings of the integers into the 
sharings of the bits of the integers. Then, the future process can be handled easily. On the other 
hand, in a Boolean circuit, if we need a series of “additions” and “multiplications” of the integers 
(which are represented as bits), then we can (freely) transform the binary representation of these 

integers into the elements of a prime field (e.g. pZ ), and perform all the “additions” and 

“multiplications” in the field. When the desired results are obtained (in the field), the 
“bit-decomposition” can be involved and the (aimed) binary representation of the results can be 
finally obtained.  

Thus, “bit-decomposition” is useful both in theory and application. However, the 
“bit-decomposition protocol” is relatively expensive in terms of round and communication 
complexities [NO07]. So the work for constructing (constant rounds) protocols for MPC problems 
without relying on bit-decomposition is not only interesting but also meaningful. Recently, in 
[NO07], Nishide et al. constructed more efficient protocols for comparison, interval test and 
equality test of shared secrets without relying on the bit-decomposition protocol. However, in 
MPC, it remains an open problem whether the “modulo reduction” problem can be solved without 
bit-decomposition [Tof07]. So, in this paper, we show a linear protocol for the “(public) modulo 
reduction” problem without relying on bit-decomposition. What’s more, the “bit-decomposition 
protocol” of [DFK+06] can only de-composite the sharing of secret a  into the sharings of the 
“bits” of a . However, especially in practice, we may often need the sharings of the “digits” of a . 
Here the “digits” can be base-m for any 2m ≥ . For example, in real life, integers are (almost 
always) represented as base-10 digits. Then, MPC protocols for practical use may often need the 
base-10 digits of the secret shared integers. Another example is as follows. If the integers are 
about “time” and “date”, then “base-24”, “base-30”, “base-60”, or “base-365” digits may be 
required. So, we propose a generalization to “bit-decomposition”, which we call the “Base-m 
Digit-Bit Decomposition”, and which can de-composite the sharing of secret a into the sharings of 
the “base-m digits” of a, along with the sharings of the bits of every digit (if desired). 
 
Our Results. First we introduce some necessary notations. We focus mainly on the multi-party 
computation based on linear secret sharing schemes. Assume that the underlying secret sharing 

scheme is built on field pZ  where p  is a prime with bit-length l  (i.e. logl p= ⎡ ⎤⎢ ⎥ ). For secret 



pa Z∈ , we use [ ]pa  to denote the secret sharing of a , and [ ]Ba  to denote the sharings of the 

bits of a , i.e. ( )1 1 0[ ] [ ] ,...,[ ] ,[ ]B l p p pa a a a−= .  

The “public modulo reduction” problem can be formalized as follows: 

[ mod ] Modulo- Reduction([ ] , )p px m x m← ,  

i.e. given a sharing of secret x , i.e. [ ]px , and a public modulus {2,3,..., 1}m p∈ − , the parties 

compute the sharing of modx m , i.e. [ mod ]px m .  

In existing “(public) modulo reduction” protocols [DFK+06,Tof07], the “bit-decomposition” is 
involved, incurring (at least) ( log )O l l  communication complexity. What’s more, in the worst 

case, the communication complexity of this protocol may goes up to 2( )O l . Specifically, the 

existing “modulo reduction” protocol uses the bit-decomposition protocol to reduce the “size” of 
the problem, and then uses as many as l  “comparisons”, which is non-trivial, to determine the 
final result. If the bit-length of the inputs to the “comparison” protocol is relatively long, e.g. ( )lθ  

which is often the case, then the overall complexity will go up to 2( )O l . So, the efficiency of the 

protocol may be very low. To solve this problem, in this paper, we propose a protocol, which 
incurs only constant round complexity and linear communication complexity, for (public) modulo 
reduction without relying on the bit-decomposition protocol. What’s more, in this paper, we not 
only propose a protocol for the original (public) modulo reduction problem (which outputs 

[ mod ]px m ), but also proposed an “enhanced” protocol that can output the sharings of the bits of 

modx m , i.e. [ mod ]Bx m .  
Some primitives used in bit-decomposition are generalized to meet the requirements of our 

“modulo reduction” protocol. Using these generalized primitives and some other techniques, we 
also propose a generalization to bit-decomposition which can, in constant rounds, convert a 
sharing of secret a into the sharings of the “digits” of a, along with the sharings of the bits of 
every “digit”. The “digits” can be base-m for any 2m ≥ . We name this protocol the “Base-m 
Digit-Bit Decomposition Protocol”. Obviously, when m is a power of 2, our “Base-m Digit-Bit 
Decomposition Protocol” degenerates to the “bit-decomposition protocol”.  

For visualization, we will give out an example here. Pick binary number  
2(11111001) 249a = = . 

If the sharing of a, i.e. [ ]pa , is given to the bit-decomposition protocol as input, it outputs  

[ ] ([1] ,[1] ,[1] ,[1] ,[1] ,[0] ,[0] ,[1] )B p p p p p p p pa = ; 

if [ ]pa  and 2m =  (or 4,8,16,32,...m = ) are given to our “Base-m Digit-Bit Decomposition 

Protocol” as inputs, it will output the same with that of the bit-decomposition protocol above;  

however, when [ ]pa  and 10m =  are given to our “Base-m Digit-Bit Decomposition Protocol”, 



it will output  

( ) ( )[2] ,[4] ,[9] ([0] ,[0] ,[1] ,[0] ), ([0] ,[1] ,[0] ,[0] ), ([1] ,[0] ,[0] ,[1] )B B B p p p p p p p p p p p p= , 

which is significantly different from the output of the bit-decomposition protocol. 
We also propose a simplified version of the protocol, i.e. the “Base-m Digit Decomposition 

Protocol” that, e.g. when given [ ]pa  and 10m =  as inputs, outputs ( )[2] ,[4] ,[9]p p p , i.e. the 

sharings of the “base-10 digits” of a . 
Finally, we’d like to stress that all the protocols and primitives proposed in our paper are 

constant rounds and unconditionally secure, and our techniques can also be used to constructed 
non-constant rounds protocols which may be preferable in practice [Tof09]. 
 
Related Work. The problem of bit-decomposition is a basic problem in MPC and was partially 
solved by Algesheimer et al. in [ACS02]. However, their solution is not constant rounds and can 
only handle values that are noticeably smaller than p. Damgård et al. proposed the first constant 
rounds (full) solution for the problem of “bit-decomposition” in [DFK+06]. This work is ice-break, 
and constant rounds protocols for various problems can be constructed from their 
“bit-decomposition”. Their work is based on linear secret sharing schemes [BGW88,GRR98]. 
Independently, Shoenmakers and Tuyls [ST06] solved the problem of “bit-decomposition” for 
multiparty computation based on (Paillier) threshold homomorphic cryptosystems [DB03,CDN01]. 
In order to improve the efficiency, Nishide and Ohta [NO07] gave out a simplification to the 
“bit-decomposition protocol” of [DFK+06] by throwing off the unnecessary invocations of the 
expensive sub-protocols, such as “bitwise addition”. Moreover, they proposed solutions for 
comparison, interval test and equality test without relying on the “expensive” bit-decomposition 
protocol. Their techniques are novel, and enlightened us a lot. Recently, Toft showed a novel 
technique that can reduce the communication complexity of the “bit-decomposition protocol” to 
“almost linear” [Tof09]. Although we do not focus on the “almost linear” property of protocols, 
some techniques used in their paper are so inspiring and enlightening to us. 

2 Preliminaries 

In this section we will introduce some important notations and some known primitives. These 
notations and primitives will be frequently mentioned in the rest of the paper.  

2.1 Notations 

We will now introduce all the important notations used in this paper.  
The multiparty computation considered in this paper is based on linear secret sharing 

schemes, such as Shamir’s. As above, we denote the underlying field as pZ  where p is a prime 

with binary length l  (i.e. logl p= ⎡ ⎤⎢ ⎥ ).  

As in previous works, such as [DFK+06] and [NO07], we assume that the underlying secret 



sharing scheme allows to compute [ mod ]pa b p+  from [ ]pa  and [ ]pb  without communication, 

and that it allows to compute [ mod ]pab p  from (public) pa Z∈  and [ ]pb  without 

communication. We also assume that the secret sharing scheme allows to compute [ mod ]pab p  

from [ ]pa  and [ ]pb  through communication among the parties. We call this process the (secure) 

“multiplication” protocol. Obviously, for multiparty computation, the multiplication protocol is a 
dominant factor of complexity as it involves communication. So, as in previous works, the round 
complexity of the protocols is measured by the number of rounds of parallel invocations of the 
multiplication protocol, and the communication complexity is measured by the number of 
invocations of the multiplication protocol. For example, if a protocol involves a  
“multiplications” in parallel and then involves another b  “multiplications” in parallel, then we 
can say that the protocol has round complexity 2 and communication complexity a b+  
[DFK+06]. Note that the complexity analysis made in this paper is somewhat rough for we focus 
mainly on the ideas of the solution, not the details for implementation. 

As in [NO07], when we write [ ]pC , where C  is a Boolean test, it means that {0,1}C∈  

and 1C =  iff C  is true. For example, we use 
?

[ ]px y<  to denote the output of the comparison 

protocol, i.e. 
?

( ) 1x y< =  iff x y<  holds.  

For the base m, define ( ) logL m m= ⎡ ⎤⎢ ⎥ . It is easy to see that we should use ( )L m  “bits” to 

represent a base-m “digit”. For example, when 10m = , we have ( ) log10 4L m = =⎡ ⎤⎢ ⎥ , i.e. we must 

use 4 “bits” to represent a base-10 “digit”. Note that we have ( ) 1 ( )2 2L m L mm− < ≤  and ( )2L mm =  
holds iff m  is a power of 2.  

Define ( ) logm p
ml ⎡ ⎤= ⎢ ⎥ . Obviously, ( )ml  is the length of p  when p  is coded base-m.  

For any pa Z∈ , the secret sharing of a  is denoted by [ ]pa . We use [ ]Ba  to denote the 

bitwise sharing of a , i.e.  

( )1 1 0[ ] [ ] ,...,[ ] ,[ ]B l p p pa a a a−= . 

Note that when a  is public, [ ]Ba  degenerates to the binary representation of a .  
We use  

( )( ) 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D p p pl

a a a a
−

=  

to denote the “digit-wise sharing” of a . For { }( )
10,1,..., m

i l −∈ , [ ]m
i pa  denotes the sharing of the 

'i th  base-m digit of a . Obviously, we have 0 ( 1)ia m≤ ≤ −  for { }( )
10,1,..., m

i l −∈  because ia  



is a base-m digit. 

The “digit-bit-wise sharing” of a , i.e. ,[ ]m
D Ba , is defined as follows:  

( )( ), 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D B B B Bl

a a a a
−

=  

in which 

( )( ) 1 1 0[ ] [ ] ,...,[ ] ,[ ]m L m
i B i p i p i pa a a a−=  for { }( )

10,1,..., m
i l −∈   

denotes the bitwise sharing of ia  (which is the 'i th  base-m digit of a ). Note that  

( )( ) 1 1 0[ ] [ ] ,...,[ ] ,[ ]m L m
i B i p i p i pa a a a−=  

has ( ) logL m m= ⎡ ⎤⎢ ⎥  bits for ia  is a base-m digit.  

Sometimes, if m can be known from the context, we may write [ ]m
i pa  ( [ ]m

i Ba ) as [ ]i pa  

( [ ]i Ba ) for simplicity.  
It’s easy to see that if we have obtained the bitwise sharing of x , e.g. [ ]Bx , then the sharing 

of x , i.e. [ ]px , can be freely obtained by a linear combination of the sharings of the bits of x . 

We can think of this as [ ]Bx  contains “more information” than [ ]px . For example, if we get 

( )( ), 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D B B B Bl

a a a a
−

= , then ( )( ) 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D p p pl

a a a a
−

=  is implicitly obtained. In 

some protocols that can output both [ ]Bx  and [ ]px , which is often the case in this paper, we 

always output [ ]Bx  only, and [ ]px  is “dropped” for simplicity. 

Sometimes, we need to get the “digit-wise sharing” or “the digit-bit-wise sharing” of some 

public value c , i.e. [ ]m
Dc  or ,[ ]m

D Bc . This can be done freely as c  is public. 

Given [ ]pc , we need a protocol to recover c , which is denoted by ([ ] )pc reveal c← .  

When we write command " ? : "C b A B← , where , , pA B C Z∈  and {0,1}b∈ , it means the 

following:  
1, ; ( . . 0), .if b then C is set to A otherwise i e b C is set to B= =  

We call this command the “conditional selection command”. When all the variables in this 
command are public, this selection of course can be done. When the variables in this command are 
secret shared or even bitwise shared, this can also be done. Specifically, the command  

"[ ] [ ] ?[ ] : [ ] "p p p pC b A B←  

can be realized by set  

[ ] [ ] ([ ] [ ] ) [ ]p p p p pC b A B B← − + ; 



the command  

"[ ] [ ] ?[ ] : [ ] "
B B BpC b A B←  

can be realized by the following process: 
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
1:  for 0,1,..., 1i l= −  do       Suppose that | | | | | |A B C l= = =  

      [ ] [ ] ([ ] [ ] ) [ ]i p p i p i p i pC b A B B← − +  

End for 

( )1 1 0[ ] [ ] ,...,[ ] ,[ ]B l p p pC C C C−←  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Note that the above process costs 1 round, l  invocations of multiplication.  
Other cases, such as  

"[ ] [ ] ?[ ] : [ ] "m m m
D p D DC b A B←  

 and  

, , ,"[ ] [ ] ?[ ] : [ ] "m m m
D B p D B D BC b A B← ,  

can be realized similarly. We will often use this “conditional selection command” in our protocols. 

2.2 Known Primitives 

We will now simply introduce some existing primitives which are important building blocks of 
this paper.  

2.2.1 Random-Bit 

The Random-Bit protocol is the most basic primitive which can generate a sharing of a uniformly 
random bit which is unknown to all parties. In the linear secret sharing setting, which is the case in 
this paper, it costs only 2 communication rounds and 2 multiplications [DFK+06]. We denote this 
sub-protocol as Random- Bit( )⋅ . 

2.2.2 Bitwise-LessThan 

Given two bitwise shared inputs, [ ]Bx  and [ ]By , the Bitwise-LessThan protocol can compute a 

secret shared bit 
?

[ ]px y<  where 
?

( ) 1x y< =  iff x y<  holds. The main part of this protocol is a 

prefix-OR, which costs linear (in l ) number of multiplications. We note that using the method of 
[Tof09], this protocol can be realized in 6 rounds and 13 6l l+  multiplications. Note that 
13 6 14l l l+ ≤  for 36l ≥  which is often the case in practice. So, for simplicity, we refer to the 
complexity of this protocol as 6 rounds and 14l  multiplications. We denote this sub-protocol as 
Bitwise- LessThan( )⋅ . 



2.2.3 Bitwise-Addition Protocol 

Given two bitwise shared inputs, [ ]Bx  and [ ]By , the Bitwise-Addition protocol outputs 
[ ] [ ]B Bd x y= + . One important point of this protocol is that d x y= +  holds over the integers, not 
only mod p . This protocol, which costs 15  rounds and 47 logl l  multiplications, is the most 
expensive part of the bit-decomposition protocol of [DFK+06]. We will not use this protocol in 
this paper, but use the “Bitwise-Subtraction protocol” instead. However, the asymptotic 
complexity of our Bitwise-subtraction protocol is the same with that of the Bitwise-Addition 
protocol for they both use a “generic prefix” protocol, which costs ( log )O l l  secure 
multiplications. We will introduce our Bitwise-subtraction protocol later. 

3 A Simple Introduction to Our New Primitives 

In this section, we will simply introduce all the new primitives proposed in this paper. We will 
only describe the inputs and the outputs of the protocols, along with some simple comments. All 
these new primitives will be described in details in Section 6.  

The Bitwise-Subtraction( )⋅  protocol, which is in fact proposed in [Tof09] and re-described (in 
a widely different form) here, accepts two bitwise shared values [ ]Bx  and [ ]By  and outputs 
[ ]Bx y− . In our protocols, we only need a “restricted” version which requires that x y≥ . We 

denote this “restricted” protocol by “ *Bitwise-Subtraction ( )⋅ ”. It costs 15 rounds and 47 logl l  

multiplications [NO07].  
A protocol “ BORROWS( )⋅ ” will be used in the Bitwise-Subtraction protocol (also in the 

Bitwise-Subtraction* protocol) to compute the borrow bits. Although this protocol is an important 
sub-protocol in the Bit-Subtraction protocol and some other protocols of our paper, it will be only 
sketched in Section 6 because it is very similar to the “CARRIES” protocol proposed in [DFK+06]. 
We will only describe the difference between them in Section 6.  

Given {2,3,..., 1}m p∈ −  as input, the “ Random- Digit- Bit( )⋅ ” protocol outputs  

( )( ) 1 1 0[ ] [ ] ,...,[ ] ,[ ]m L m
B p p pd d d d−= ,  

where {0,1,..., 1}d m∈ −  is a base-m digit. Note that [ ]m
pd  is implicitly obtained. This protocol 

costs 8 rounds and 16 ( )L m  multiplications.  
The “ Digit- Bit- wise- LessThan( )⋅ ” protocol accepts two “digit-bit-wise shared” values  

( )( ), 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D B B B Bl

x x x x
−

=  and ( )( ), 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D B B B Bl

y y y y
−

=  

and outputs 
?

[ ]px y< . The complexity of this protocol is 6 rounds and 14l  multiplications.  

Using the above two protocols, i.e. the “Random-Digit-Bit protocol” and the 
“Digit-Bit-wise-LessThan protocol”, the “ Random-Solved- Digits- Bits( )⋅ ” protocol, when given 

{2,3,..., 1}m p∈ −  as input, outputs a “digit-bit-wise shared” random value  

( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

r r r r
−

=  



satisfying r p< . It costs 14  rounds and 78l  multiplications.  
Digit- Bit- wise-Subtraction( )⋅ , which is the most important primitive of this paper, accepts two 

“digit-bit-wise shared” values  

( )( ), 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D B B B Bl

x x x x
−

=  and ( )( ), 1 01
[ ] [ ] ,...,[ ] ,[ ]m

m m m m
D B B B Bl

y y y y
−

=  

and outputs ,[ ]m
D Bx y− . As is the case in the “Bitwise-Subtraction protocol”, we need only the 

“restricted” version, i.e. the “ *Digit- Bit- wise-Subtraction ( )⋅ ” protocol which requires x y≥ . This 

restricted protocol costs 30 rounds and ( )47 log 47 log ( )l l l L m+  multiplications. What’s more, if 

we don’t need ,[ ]m
D Bx y−  but only need [ ]m

Dx y−  instead (i.e. we do not need the bitwise sharing 

of the digits of the difference), then the “Digit-Bit-Subtraction* protocol” can be (greatly) 
simplified by dropping the expensive “Bitwise-Subtraction* protocol” used in it. We denote this 

(further) restricted protocol by “ *Digit- Bit- wise-Subtraction ( )― ⋅ ”. The complexity of this protocol 

goes down to 15  rounds and 47 logl l  multiplications. 

4 Multiparty Computation for Modulo Reduction 

without Bit-Decomposition 

In this section, we will give out the “(public) Modulo Reduction” protocol which is realized 
without relying on the “bit-decomposition” protocol. This protocol is constant rounds and involves 
only ( )O l  multiplications. Informally speaking, our “Modulo Reduction” protocol is in fact the 
“Least Significant Digit Protocol”. Recall that for an integer a, the sharing of the “least significant 

base-m digit” of a is denoted by 0[ ]m
pa , and the bitwise sharing of the “least significant base-m 

digit” of a is denoted by 0[ ]m
Ba . The protocol is described in detail in Protocol 1.  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Protocol 1. The Modulo Reduction protocol, Modulo- Reduction( )⋅ , for computing the residue of a 
secret shared value modulo a public modulus.  
────────────────────────────────────── 

Input: A secret shared value [ ]px  with px Z∈  and a public modulus {2,3,..., 1}m p∈ − . 

Output: [ mod ]px m . 

Process: 

,[ ] Random-Solved- Digits- Bits( )m
D Br m←      

,([ ] [ ] )m
p D Bc reveal x r← +    Note that ,[ ]m

D Br  implies [ ]m
pr .  (1.a) 



1 0 0[ ] [ ] [ ]m m m
p p BX c r← −       Note that 0[ ]m

Br  implies 0[ ]m
pr . 

2 0 0[ ] [ ] [ ]m m m
p p BX c r m← − +  

0 0[ ] Bitwise- LessThan([ ] ,[ ] )m m
p B Bs c r←                       (1.b) 

2 1[ ] [ ] ?[ ] : [ ]m m m
p p p pX s X X←          Recall that this is a “conditional selection command”. 

 
c c p′ ← +                       Addition over the integers. 

1 0 0[ ] [ ] [ ]m m m
p p BX c r′ ′← −  

2 0 0[ ] [ ] [ ]m m m
p p BX c r m′ ′← − +  

0 0[ ] Bitwise- LessThan([ ] ,[ ] )m m
p B Bs c r′ ′←                       (1.c) 

2 1[ ] [ ] ?[ ] : [ ]m m m
p p p pX s X X′ ′ ′ ′←  

 

,[ ] Digit- Bit- wise- LessThan( ,[ ] )m
p D Bt c r←                    (1.d) 

0[ mod ] [ ] [ ] ?[ ] : [ ]m m m
p p p p px m x t X X′= ←  

return [ mod ]px m  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Correctness: By “simulating” a base-m “addition” process, the protocol extracts the “least 
significant base-m digit” of x , which is just modx m . Specifically, we use an “addition” in line 

(1.a) to randomized the secret input [ ]px . Note that the digit-bit-wise representation of c , i.e. 

,[ ]m
D Bc , can be obtained without communication because c  is public. Thus the “addition” in line 

(1.a) can be viewed as a “base-m addition”. Using the Bitwise- LessThan( )⋅  protocol in line (1.b) 
and (1.c), we get information on whether a “carry” is set at the least significant digit when 
performing the “base-m addition”. What’s more, we use the Digit- Bit- wise- LessThan( )⋅  protocol 
in line (1.d) to get information on whether a wrap-around modulo p  occurs when performing the 
“base-m addition”. Using these “information”, we can “select” the correct value for the least 

significant base-m digit of x , i.e. [ mod ]px m . So the correctness can be convinced.  

Privacy: The only possible information leakage takes place in line (1.a), where an “reveal” 
command is involved. However, the revealed value, i.e. c , is uniformly random, so it tells no 
information about the secret x . So the privacy can be convinced.  
Complexity: Complexity comes mainly from the invocations of sub-protocols. Note that the two 
invocations of “ Bitwise- LessThan( )⋅ ” and the invocation of “ Digit- Bit- wise- LessThan( )⋅ ” can 



process in parallel. In all it will cost 22 rounds and  
312 14 ( ) 1 14 ( ) 1 14 1 326 28 ( ) 3l L m L m l l L m+ + + + + + = + +  

multiplications. Note that ( )L m l≤  as 2 1m p≤ ≤ − , so the communication complexity is upper 
bounded by 354 3l +  multiplications. 

The original Modulo Reduction problem does not need the sharings of the bits of the residue, 
i.e. [ mod ]Bx m . So in the above protocol, [ mod ]Bx m  is not computed. However, if we want, we 
can get [ mod ]Bx m  using an “enhanced version” of the above Modulo Reduction protocol, which 

will be denoted by “ +Modulo- Reduction ( )⋅ ”. The construction is seen as Protocol 2.  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 

Protocol 2. The Modulo Reduction+ protocol, +Modulo- Reduction ( )⋅ , for computing the “bitwise 

sharing” of the residue of a secret shared value modulo a public modulus.  
────────────────────────────────────── 

Input: A secret shared value [ ]px  with px Z∈  and a public modulus {2,3,..., 1}m p∈ − . 

Output: [ mod ]Bx m . 
Process: 

,[ ] Random-Solved- Digits- Bits( )m
D Br m←      

,([ ] [ ] )m
p D Bc reveal x r← +  

1 0 1 0[ ] [ ] [ ] [ ]m m m m
B B B BM c S r← ←  

2 0 2 0[ ] [ ] [ ] [ ]m m m m
B B B BM c m S r← + ←     Note that the addition is over the integers. 

0 0[ ] Bitwise- LessThan([ ] ,[ ] )m m
p B Bs c r←  

2 1[ ] [ ] ?[ ] : [ ]m m m
B p B BM s M M←      Note that this command involves ( )L m  multiplications. 

2 1[ ] [ ] ?[ ] : [ ]m m m
B p B BS s S S←  

 
c c p′ ← +  

1 0 1 0[ ] [ ] [ ] [ ]m m m m
B B B BM c S r′ ′ ′← ←  

2 0 2 0[ ] [ ] [ ] [ ]m m m m
B B B BM c m S r′ ′ ′← + ←      

0 0[ ] Bitwise- LessThan([ ] ,[ ] )m m
p B Bs c r′ ′←  

2 1[ ] [ ] ?[ ] : [ ]m m m
B p B BM s M M′ ′ ′ ′←  

2 1[ ] [ ] ?[ ] : [ ]m m m
B p B BS s S S′ ′ ′ ′←  



 

,[ ] Digit- Bit- wise- LessThan( ,[ ] )m
p D Bt c r←  

[ ] [ ] ?[ ] : [ ]m m m
B p B BM t M M′←  

[ ] [ ] ?[ ] : [ ]m m m
B p B BS t S S′←  

 

*
0[ mod ] [ ] Bitwise-Subtraction ([ ] ,[ ] )m m m

B B B Bx m x M S= ←   Subtraction over the integers. 

return [ mod ]Bx m  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 

Note that once we get [ mod ]Bx m , we can obtain [ mod ]px m  freely.  

The correctness and the privacy of this protocol can be convinced similarly to that of the 
“Modulo Reduction protocol” above. By carefully selecting the “Minuend” and the “Subtrahend” 
(for the Bitwise-Subtraction* protocol), we can realize this protocol by using just one invocation 
of the Bitwise-Subtraction* protocol. As for complexity, note that every “conditional selection 
command” in this protocol involves ( )L m  multiplications, whereas in the previous protocol (i.e. 
the Modulo Reduction protocol) it involves only 1 multiplication. The overall complexity of this 
protocol is 37 rounds and  

( ) ( )326 28 ( ) 47 ( ) log ( ) 6 ( ) 326 34 ( ) 47 ( ) log ( )l L m L m L m L m l L m L m L m+ + + = + +   

multiplications. Note that when ( )L m  is large enough, e.g. ( )L m l= , the asymptotic 
communication complexity of this protocol may goes up to ( log )O l l , which is the asymptotic 
communication complexity of the “bit-decomposition” protocol. We argue that this is inevitable 
because when m  is large enough, this protocol becomes an “enhanced” bit-decomposition 
protocol. We will describe this in detail in Section 7.  

5 The “Base-m Digit-Bit Decomposition Protocol”—A 

Generalization to the “Bit-Decomposition Protocol” 

In this section, we will propose our generalization to the “bit-decomposition” protocol, i.e. the 
“Base-m Digit-Bit Decomposition” protocol. All the details of this protocol are presented in 
Protocol 3. The main framework of this protocol is similar to that of the bit-decomposition 
protocol in [Tof09].  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Protocol 3. The Base-m Digit-Bit Decomposition protocol, Digit- Bit- Deco mposition( , )m⋅ , for 
converting a sharing of secret x , into the digit-bit-wise sharing of x . 
────────────────────────────────────── 

Input: A secret shared value [ ]px  with px Z∈  and the base m. 



Output: ( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

x x x x
−

= , in which ( ) 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )m L m
i B i p i p i px x x x−=  for 

( ){0,1,..., 1}mi l∈ − . I.e. the output is the digit-bit-wise sharing of x . 

Process: 

,[ ] Random-Solved- Digits- Bits( )m
D Br m←      

,([ ] [ ] )m
p D Bc reveal x r← +                             (3.a) 

c c p′ ← +  

,[ ] Digit- Bit- wise- LessThan( ,[ ] )m
p D Bt c r←               (3.b)  

 

for ( )0,1,..., 1mi l= −  do        To get , , ,[ ] [ ] ?[ ] : [ ]m m m
D B p D B D Bc t c c′= . 

   [ ] [ ] ?[ ] : [ ]m
i B p i B i Bc t c c′←  

end for 

( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

c c c c
−

←   Note that c x r= +  

 

*
, , ,[ ] Digit- Bit- wise-Subtraction ([ ] ,[ ] )m m m

D B D B D Bx c r←        (3.c)  

return ,[ ]m
D Bx  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Correctness: Using the Digit-Bit-wise-LessThan protocol in line (3.b), we can get information on 
whether a wrap-around modulo p occurs when performing the “addition” in line (3.a). Basing on 
this “information” we can “select” the correct value for c x r= + . Then, using the 

*Digit- Bit- wise-Subtraction ( )⋅  protocol in line (3.c), with the digit-bit-wise sharing of ( )x r+  

and r  as inputs, we can get the desired result, i.e. ,[ ]m
D Bx . In fact, the major problem to overcome 

in constructing this protocol is how to realize the “Digit-Bit-wise-Subtraction* protocol”, which 
will be described in detail in Section 6.  
Privacy: Privacy can be convinced for we only call private sub-protocols.  
Complexity: There are only three sub-protocols that count for complexity, i.e. the 
Random-Solved-Digits-Bits protocol, the Digit-Bit-wise-LessThan protocol, and the 
Digit-Bit-wise-Subtraction* protocol. So, the overall complexity of this protocol is 
14 6 30 50+ + =  rounds and  

( )( ) ( )312 14 47 log 47 log ( ) 326 47 log 47 log ( )l l l l l L m l l l l L m+ + + = + +  

multiplications.  

Similar to the case in the Digit-Bit-wise-Subtraction* protocol, if we do not need ,[ ]m
D Bx  but 



only need [ ]m
Dx  instead (i.e. we do not need the bitwise sharing of the digits of x ), then the 

above protocol can be simplified. The method is to replace the Digit-Bit-wise-Subtraction* 
protocol, which is used at the end of the protocol, with the Digit-Bit-wise-Subtraction*－ protocol. 
We denote this simplified protocol by “ Digit- Decomposition( , )m⋅ ”. The correctness and the 
privacy of this protocol can be similarly convinced. The complexity goes down to 14 6 15 35+ + =  
rounds and  

312 14 47 log 326 47 logl l l l l l l+ + = +  
multiplications.  

6 Realizing the Primitives 

In this section, we describe in detail the primitives which are essential for the protocols of our 
paper. Informally, most of the protocols in this section are generalized version of the protocols of 
[DFK+06] from base-2 to base-m for any 2m ≥ . Note that, when m  is a power of 2, some of our 
primitives degenerate to the existing primitives in [DFK+06]. So, in the complexity analysis, we 
focus on the case where m  is not a power of 2, i.e. the case where ( )2L mm < .  

6.1 Bitwise-Subtraction 

We describe the “Bitwise-Subtraction protocol” here. In fact, this protocol is already used in 
[Tof09]. However, they realized the protocol in a widely different manner to ours. They reduced 
the problem of “Bitwise-Subtraction” to the “Post-fix Comparison problem” and solved it in 

( log )O l l  (communication) complexity. Here, we re-consider the problem of “Bit-Subtraction” 
and solve it in a manner which is very similar to that of the “Bitwise-Addition” protocol of 
[DFK+06].  

As mentioned in Section 3, we will first propose a “restricted” (bitwise-subtraction) protocol 
which requires that the “minuend” is not less than the “subtrahend”, which is the case in all the 
protocols proposed in this paper. We call this “restricted” version the “Bitwise-Subtraction*” 
protocol. The general version of bitwise-subtraction which does not have this restriction can be 
realized with the help of the “Bitwise-LessThan” protocol. We will introduce this later. 
Given a “BORROWS” protocol that can compute the sharings of the borrow bits, the 
“Bitwise-Subtraction*” protocol can be realized as in Protocol 4. 
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 

Protocol 4. The Bitwise-Subtraction* protocol, *Bitwise-Subtraction ( )⋅ , for computing the 

difference of two bitwise shared values. This protocol requires that the “minuend” is not less than 
the “subtrahend”. 
────────────────────────────────────── 
Input: Two bitwise shared values  

1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p px x x x−=  and 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p py y y y−=  

satisfying x y≥ . 



Output: 1 1 0[ ] [ ] ([ ] ,...,[ ] ,[ ] )B B l p p px y d d d d−− = = , i.e. the bitwise shared difference of the two 

inputs. 
Process: 

1 1 0([ ] ,...,[ ] ,[ ] ) ([ ] ,[ ] )l p p p B Bb b b BORROWS x y− ←  

    0 0 0 0[ ] [ ] [ ] 2[ ]p p p pd x y b← − +  

for 1, 2,..., 1i l= −  do 

      1[ ] [ ] [ ] 2[ ] [ ]i p i p i p i p i pd x y b b −← − + −  

end for 

1 1 0[ ] [ ] ([ ] ,...,[ ] ,[ ] )B B l p p px y d d d d−− = ←  Note that [ ]Bd  has only l  bits as x y≥  

    return [ ]Bx y−  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
 

Note that the output of this protocol, i.e. [ ]Bx y− , is of length l , not 1l + . This is because 
x y≥  and we do not need a sign bit.  

Privacy follows from the fact that we only call private sub-protocols. Correctness is 
straightforward. The complexity of this protocol is the same with that of the “Bitwise-Addition” 
protocol in [DFK+06], i.e. 15 rounds and 47 logl l  multiplications [NO07].  

Although in all the protocols proposed in this paper we will only use the 
“Bitwise-Subtraction*” protocol above, we also give out the general version of the bitwise 
subtraction protocol, i.e. the “Bitwise-Subtraction” protocol. For arbitrary  

1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p px x x x−=  and 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p py y y y−= , 

the “Bitwise-Subtraction” protocol computes 

1 1 0[ ] [ ] ([ ] ,[ ] ,...,[ ] ,[ ] )B B l p l p p px y d d d d d−− = = , 

where [ ]l pd  is the sharing of the sign bit, as follows. 

First compute 
?

[( )]px y<  using the “Bitwise-LessThan” protocol. This can be easily done as 

we know [ ]Bx  and [ ]By . Then set 
?

[ ] [( )] ?[ ] : [ ]B p B BX x y y x← <  and 
?

[ ] [( )] ?[ ] : [ ]B p B BY x y x y← < . 

It can be verified that X Y≥  always holds. Finally set  

*
1 1 0([ ] ,...,[ ] ,[ ] ) Bitwise-Subtraction ([ ] ,[ ] )l p p p B Bd d d X Y− =  

and set 
?

[ ] [( )]l p pd x y= <  as the sign bit. Then 1 1 0[ ] [ ] ([ ] ,[ ] ,...,[ ] ,[ ] )B B l p l p p px y d d d d d−− = =  is 

obtained.  
Correctness and privacy can be easily verified. Comparing to the “Bitwise-Subtraction*” 



protocol, this protocol costs 7 additional rounds and 16l  additional multiplications.  

6.2 Computing the Borrow Bits 

We now describe the “BORROWS” protocol which can computes the “borrow bits”. In fact our 
“BORROWS” protocol is very similar to the “CARRIES” protocol in [DFK+06]. So the difference 

is only sketched here. As in [DFK+06], we use an operator :∑×∑→∑ , where { }, ,S P K∑ = , 

which is defined by S x S=  for all x∈∑ , K x K=  for all x∈∑ , P x x=  for all x∈∑ . 
Here, " "  represents the “borrow-propagation” operator, whereas in [DFK+06], it represents the 
“carry-propagation” operator. When computing [ ]Bx y−  (where x y≥  holds) with two bitwise 

shared inputs 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p px x x x−=  and 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p py y y y−= , for 0,1, , 1i l= … − , 

let ie S=  iff a “borrow” is “set” at position i  (i.e. i ix y< ); ie P=  iff a “borrow” would be 
“propagated” at position i  (i.e. i ix y= ); ie K=  iff a “borrow” would be “killed” at position i  
(i.e. i ix y> ). It can be easily verified that 1ib =  (the 'i th  borrow bit is set, which means that 
the 'i th  bit needs to borrow a “1” from the ( 1) 'i th+  bit) iff 1 0i ie e e S− ⋅ ⋅ ⋅ = . It can be seen 
that in the case where " "  represents the “borrow-propagation” operator and in the case where 
" "  represents the “carry-propagation” operator, the rules for " "  (i.e. S x S= , K x K=  and 
P x x=  for all x∈∑ ) are completely the same. This means that when computing the borrow 
bits, once the value of ie  for every bit-position {0,1,..., 1}i l∈ −  is obtained, the rest of the 
process of the “BORROWS” protocol will be (completely) the same with that of the “CARRIES” 
protocol. So, the only difference between our “BORROWS” protocol and the “CARRIES” 
protocol lies only in the process of computing ie  for every bit-position {0,1,..., 1}i l∈ − , which 
will be sketched in the following. 
As in [DFK+06], we represent S, P and K with bit vectors  

3(1,0,0), (0,1,0), (0,0,1) {0,1}∈ . 

Then, given two inputs (to the “BORROWS” protocol)  

1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p px x x x−=  and 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )B l p p py y y y−= ,  

the [ ] ([ ] ,[ ] ,[ ] )i B i p i p i pe s p k=  for {0,1,..., 1}i l∈ −  can be obtained as follows:  

[ ] [ ] [ ] [ ]i p i p i p i ps y x y= − ,  

[ ] 1 [ ] [ ] 2[ ] [ ]i p i p i p i p i pp x y x y= − − + ,  

[ ] [ ] [ ] [ ]i p i p i p i pk x x y= − ,  

which in fact need only one multiplication of secret shared variables (i.e. [ ] [ ]i p i px y ). 

Privacy is straightforward because nothing is revealed in the protocol. Correctness follows 
readily from the above arguments. The complexity of the protocol is the same with that of the 
Bitwise-Subtraction* protocol above, i.e. 15  rounds and 47 logl l  multiplications 



[NO07,DFK+06].  

6.3 Random-Digit-Bit 

We now introduce the protocol for generating a random bitwise shared base-m digit, which is 
denoted by d  here, for any 2m ≥ . Obviously, d  is in fact a random integer that satisfies 
0 1d m≤ ≤ − . Note that the output of this protocol is not the sharing of d , but the sharings of the 
bits of d . The knowledge of (the sharings of) the bits of d  helps us a lot in constructing other 
primitives. The protocol is presented in Protocol 5.  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Protocol 5. The Random-Digit-Bit protocol, Random- Digit- Bit( )⋅ , for generating the bitwise 
sharing of a random “digit”. The “digit” is base-m for any 2m ≥ .  
────────────────────────────────────── 
Input: The base m satisfying 2 1m p≤ ≤ − . 

Output: ( ) 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )m L m
B p p pd d d d−= , i.e. the bitwise sharing of a base-m digit d , with 

0 1d m≤ ≤ − . 
Process: 

for ( )0,1, , 1i L m= … −  do 

      [ ] Random- Bit()i
pd ←  

    end for  

( ) 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )m L m
B p p pd d d d−←  

if ( )2L mm =  then     Note that ( )2L mm =  means m  is a power of 2. 

return [ ]m
Bd                              (5.a) 

end if 

    [ ] Bitwise- LessThan([ ] , )m
p Br d m←       

    ([ ] )pr reveal r←                             (5.b) 

    if 0r =  then 
      protocol fails, abort 
    else  

      return [ ]m
Bd  

    end if  
Correctness: To generate a base-m digit, the protocol generates ( )L m  random secret shared bits 

first (recall that ( ) logL m m= ⎡ ⎤⎢ ⎥  is the binary length of a base-m digit). Note that in line (5.a), a 

“return” command is involved. This means if ( )2L mm =  holds, then all the commands after line 



(5.a) will not be run. When ( )2L mm =  does not hold, using the “Bitwise-LessThan” protocol, the 
protocol checks whether the “digit” lies in set {0,1,..., 1}m − , which is a basic requirement for a 
base-m digit. 
Privacy: The only information leakage takes place in line (5.b), where a “reveal” is involved. 
However, the revealed message, i.e. r , can only tell the parties that “the digit d  lies in 
{0,1,..., 1}m − ”, which is already known to everyone.  
Complexity: The protocol needs ( )L m  invocations of the Random- Bit( )⋅  protocol (in parallel), 
and one invocation of “ Bitwise- LessThan( )⋅ ”. So, when m  is not a power of 2, the total 
complexity of one run of this protocol is 8 rounds and 16 ( )L m  multiplications. As in [DFK+06], 
using a Chernoff bound, it can be seen that if this protocol has to be repeated in parallel to get a 
lower abort probability, then the round complexity is still 8, and the amortized communication 
complexity goes up to 4 16 ( ) 64 ( )L m L m× =  multiplications. 

6.4 Digit-Bit-wise-LessThan 

The “Digit-Bit-wise-LessThan protocol” proposed here is a generalization of the 

“Bitwise-LessThan protocol”. Recall that when we write [ ]pC , where C  is a Boolean test, it 

means that {0,1}C∈  and 1C =  iff C  is true. The details of the protocol is presented in 
Protocol 6. 
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Protocol 6. The Digit-Bit-wise-LessThan protocol, Digit- Bit- wise- LessThan( )⋅ , for comparing 
two digit-bit-wise shared values. 
────────────────────────────────────── 
Input: Two digit-bit-wise shared values  

( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

x x x x
−

=  and ( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

y y y y
−

= .  

Output: 
?

[( )]px y< , i.e. the sharing of bit 
?

( ) {0,1}x y< ∈ ,where 
?

( ) 1x y< =  iff x y<  holds. 

Process:  

( ) ( ) ( )
( ) 1 1 0

1 1 1

( ) 1 1 0
1 1 1

( ) 1 1 0
0 0 0

[ ] ([ ] ,...,[ ] ,[ ] ,

...

...

...,
[ ] ,...,[ ] ,[ ] ,

[ ] ,...,[ ] ,[ ] ).

m m m
L m

B p p pl l l

L m
p p p

L m
p p p

X x x x

x x x

x x x

−
− − −

−

−

←

 

( ) ( ) ( )
( ) 1 1 0

1 1 1

( ) 1 1 0
1 1 1

( ) 1 1 0
0 0 0

[ ] ([ ] ,...,[ ] ,[ ] ,

...

...

...,
[ ] ,...,[ ] ,[ ] ,

[ ] ,...,[ ] ,[ ] ).

m m m
L m

B p p pl l l

L m
p p p

L m
p p p

Y y y y

y y y

y y y

−
− − −

−

−

←

 



? ?
[( )] [( )] Bitwise- LessThan([ ] ,[ ] )p p B Bx y X Y X Y< = < ←  

return 
?

[( )]px y<  

 
Correctness: In the protocol, we view the “Digit-Bit-wise representation” of x  and y  as two 
binary numbers (i.e. X  and Y  defined in the protocol). When ( )2L mm < , the two binary 
numbers (i.e. X  and Y ) are of course not equal to the original numbers (i.e. x  and y ). But, 
when comparing x  and y  this is allowed because, both in the “digit-bit-wise representation” 
case and in the “binary” case, the relationship between the size of two numbers is determined by 
the left-most differing bits of them. So, we can say that x y X Y< ⇔ <  and the correctness can 
be convinced.  
Privacy: The privacy follows from only using private sub-protocols.  
Complexity: The complexity of the protocol is the same with that of the Bitwise- LessThan( )⋅  
protocol. Note that the length of the inputs to the Bitwise- LessThan( )⋅  protocol, i.e. [ ]BX  and 

[ ]BY , is ( )( ) log log logm p
mL m l m p l⎡ ⎤⋅ = ⋅ ≈ =⎡ ⎤⎢ ⎥ ⎢ ⎥ . So, the overall complexity of the protocol is 6 

rounds and 14l  multiplications.  

6.5 Random-Solved-Digits-Bits Protocol 

The “Random-Solved-Digits-Bits” protocol is an important primitive which can generate a 
digit-bit-wise shared value unknown to all parties. It is a natural generalization to the “Random 
Solved Bits” protocol in [DFK+06]. The details are presented in Protocol 7.  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Protocol 7. The Random-Solved-Digits-Bits protocol, Random-Solved- Digits- Bits( )⋅ , for jointly 

generating a digit-bit-wise shared value which is uniformly random in pZ . 

────────────────────────────────────── 
Input: m, i.e. the desired base of the digits.  

Output: ,[ ]m
D Br  in which r  is a uniformly random value with r p< .  

Process: 
1:  for ( )0,1,..., 1mi l= −  do 

[ ] Random- Digit- Bit( )m
i Br m←  

end for 

( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

r r r r
−

←  

,[ ] Digit- Bit- wise- LessThan([ ] , )m
p D Bc r p←  

    ([ ] )pc reveal c←                        (7.a) 

    if 0c =  then 



      protocol fails, abort 
else 

      return ,[ ]m
D Br  

    end if 
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 

Correctness is straightforward.  
As for privacy, the only information leakage takes place in line (7.a) where a reveal is 

involved, and the revealed message, i.e. c , only tells the parties that r p< , which is already 
known all. So the privacy can be convinced.  

The protocol uses ( )ml  invocations of Random- Digit- Bit( )⋅  and one invocation of 

Digit- Bit- wise- LessThan( )⋅ . So, the total complexity of one run of this protocol is 8+6=14 rounds 

and ( ) 64 ( ) 14 78ml L m l l⋅ + =  multiplications. Similar to the Random- Digit- Bit( )⋅  protocol above, 

if this protocol has to be repeated in parallel to get a lower abort probability, then the round 
complexity is still 14, and the amortized communication complexity goes up to 4 78 312l l× =  
multiplications. 

6.6 Digit-Bit-wise-Subtraction Protocol 

We will describe in detail a “restricted” version of the “Digit-Bit-wise-Subtraction” protocol, i.e. 
the “Digit-Bit-wise-Subtraction*” protocol which requires that the “minuend” is not less than the 
“subtrahend”. The general version, i.e. the “Digit-Bit-wise-Subtraction” protocol, which can be 
realized using the techniques in Section 6.1, and which is not used in the paper, is omitted for 
simplicity.  

6.6.1 Digit-Bit-wise-Subtraction*  

We will now describe in detail the “Digit-Bit-wise-Subtraction* protocol”. This protocol is novel 
and is the most important primitive in our “Base-m Digit-Bit Decomposition Protocol”. In the 
process of this protocol, similar to the case in the “Digit-Bit-wise-LessThan” protocol, we will 
sometimes view the “digit-bit-wise representation” of an integer as a “binary number” directly. 
We will explain this in detail later. The process of the protocol is presented in Protocol 8.  
 
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 

Protocol 8. The Digit-Bit-wise-Subtraction* protocol, *Digit- Bit- wise-Subtraction ( )⋅ , for 

computing the difference of two digit-bit-wise shared values with the “minuend” no less than the 
“subtrahend”. 
────────────────────────────────────── 
Input: Two digit-bit-wise shared values  

( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

x x x x
−

=  and ( ), 1 01
[ ] ([ ] ,...,[ ] ,[ ] )m

m m m m
D B B B Bl

y y y y
−

= . 



Output: ( ), , 1 01
[ ] [ ] ([ ] ,...,[ ] ,[ ] )m

m m m m m
D B D B B B Bl

x y d d d d
−

− = = . 

Process: 

  

( ) ( ) ( )
( ) 1 1 0

1 1 1

( ) 1 1 0
1 1 1

( ) 1 1 0
0 0 0

[ ] ([ ] ,...,[ ] ,[ ] ,

...

...

...,
[ ] ,...,[ ] ,[ ] ,

[ ] ,...,[ ] ,[ ] ).

m m m
L m

B p p pl l l

L m
p p p

L m
p p p

X x x x

x x x

x x x

−
− − −

−

−

←

  

( ) ( ) ( )
( ) 1 1 0

1 1 1

( ) 1 1 0
1 1 1

( ) 1 1 0
0 0 0

[ ] ([ ] ,...,[ ] ,[ ] ,

...

...

...,
[ ] ,...,[ ] ,[ ] ,

[ ] ,...,[ ] ,[ ] ).

m m m
L m

B p p pl l l

L m
p p p

L m
p p p

Y y y y

y y y

y y y

−
− − −

−

−

←

 

( ) ( ) ( )
( ) 1 1 0

1 1 1

( ) 1 1 0
1 1 1

( ) 1 1 0
0 0 0

([ ] ,...,[ ] ,[ ] ,

...

...

...,
[ ] ,...,[ ] ,[ ] ,

[ ] ,...,[ ] ,[ ] ) BORROWS([ ] ,[ ] ).

m m m
L m

p p pl l l

L m
p p p

L m
p p p B B

b b b

b b b

b b b X Y

−
− − −

−

− ←

                   (8.a) 

 

0 0 0 0
0 0 0 0[ ] [ ] [ ] 2[ ]p p p pt x y b= − +                                      (8.b) 

for 1,..., ( ) 1j L m= −  do 

        1
0 0 0 0 0[ ] [ ] [ ] 2[ ] [ ]j j j j j

p p p p pt x y b b −= − + −  

     end for 
 

for ( )1,..., 1mi l= −  do  

  0 0 0 0 ( ) 1
1[ ] [ ] [ ] 2[ ] [ ]L m

i p i p i p i p i pt x y b b −
−= − + −  

  for 1,..., ( ) 1j L m= −  do 

    1[ ] [ ] [ ] 2[ ] [ ]j j j j j
i p i p i p i p i pt x y b b −= − + −  

  end for 
end for                                                       (8.c) 

 

( )2L mC m← −              .Note that C is public                  (8.d) 

for ( )0,1,..., 1mi l= −  do                



( ) 1 1 0[ ] ([ ] ,...,[ ] ,[ ] )m L m
i B i p i p i pt t t t−←  

if ( )2L mm <  then        ( )Recall that 2 means is not a power of 2.L mm m<  

( )( )* ( ) 1[ ] Bitwise-Subtraction [ ] , [ ] ? : 0m m L m
i B i B i pd t b C−←             (8.e) 

else 

[ ] [ ]m m
i B i Bd t←  

end if 
end for                                                        (8.f) 

 

( ), , 1 01
[ ] [ ] ([ ] ,...,[ ] ,[ ] )m

m m m m m
D B D B B B Bl

x y d d d d
−

− = ←  

return ,[ ]m
D Bx y−  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Correctness: When calling the BORROWS protocol, we view the “digit-bit-wise representation” 
of x  and y  as two binary numbers (i.e. X  and Y ). This is sensible because of the following.  

For any two binary numbers  

( )1 1 0[ ] [ ] ,...,[ ] ,[ ]B l p p pS S S S−=  and ( )1 1 0[ ] [ ] ,...,[ ] ,[ ]B l p p pT T T T−=  

and any bit-position i , the fact that “A borrow is set at position i ” is equivalent to the fact that 

“ ( )( ,...,1,0) 1 0[ ] [ ] ,...,[ ] ,[ ]i i p p pS S S S=  is less than ( )( ,...,1,0) 1 0[ ] [ ] ,...,[ ] ,[ ]i i p p pT T T T= ”. As is mentioned in 

Section 6.4, both in the “digit-bit-wise representation” case and in the “binary” case, the 
relationship between the size of two numbers is determined by the left-most differing bits of them. 
So, concluding the above, we can say that the fact that “A borrow is set at position i  in the 
binary case” is equivalent to the fact that “A borrow is set at position i  in the digit-bit-wise 
representation case”. So, we can get the correct borrow bits by calling the BORROWS  protocol 
with [ ]BX  and [ ]BY  as inputs.  

From line (8.b) to line (8.c), we calculate every “bit” as in the “binary” case. This is of course 
not right when ( )2L mm <  (i.e. m  is not a power of 2) because for a base-m number, a "1"  in the 

( 1) 'i th+  digit corresponds to " "m  in the 'i th  digit, not ( )"2 "L m . An example is as follows. 

When 10m = , we have ( ) log10 4L m = =⎡ ⎤⎢ ⎥ , i.e. we use 4 “bits” to represent a base-10 “digit”. 

Note that ( ) 42 2 16L m = = . If the least significant digit 0d  borrows a “1” from 1d , then 0d  

should view this “1” as “10” (which is the base), not 16 (which is ( )2L m ).  
From line (8.b) to line (8.c), we (temporarily) ignore the above problem and calculate every 

“bit” as in the “binary” case. Then, to get the final result, we use the commands from (8.d) to (8.f) 
to “revise” the result by subtracting ( )2L m m− , i.e. the difference between ( )2L m  and m .  
Privacy: Privacy follows readily from the fact that we only call private sub-protocols.  



Complexity: There are only two commands that count for complexity. One is the BORROWS 

protocol in line (8.a), the other is the *Bitwise-Subtraction ( )⋅  protocol in line (8.e). The length of 

the inputs of the BORROWS protocol is ( )( ) mL m l l⋅ ≈ , so this sub-protocol costs 15  rounds and 

47 logl l  multiplications; when ( )2L mm < , the *Bitwise-Subtraction ( )⋅  protocol is involved ( )ml  

times (with inputs of length ( )L m ) and costs 15 rounds and  

( ) ( )( ) 47 ( ) log ( ) 47 log ( )ml L m L m l L m× × ≈   

multiplications. The total complexity of this protocol is 30 rounds and ( )47 log 47 log ( )l l l L m+  

multiplications. Note that ( )L m l≤  as 2 1m p≤ ≤ − , so the communication complexity is upper 
bounded by 94 logl l  multiplications.  

6.6.2 A Simplified Version－the Digit-Bit-wise-Subtraction*－ Protocol 

If we do not need ,[ ]m
D Bx y−  but only need [ ]m

Dx y−  instead (i.e. we do not need the bitwise 

sharing of the digits of the difference), then a simplified version of the above protocol (i.e. 

Protocol 8), which we denote by “ *Digit- Bit- wise-Subtraction ( )― ⋅ ”, can be obtained by simply 

replacing all the commands after line (8.a) with the following commands.  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 

( ) 1
0 0 0 0[ ] [ ] [ ] [ ]m m m L m

p p p pd x y m b −= − +  

for ( )1,..., 1mi l= −  do  

   ( ) 1 ( ) 1
1[ ] [ ] [ ] [ ] [ ]m m m L m L m

i p i p i p i p i pd x y m b b− −
−= − + −  

end for 

( ) 1 01
[ ] [ ] ([ ] ,...,[ ] ,[ ] )m

m m m m m
D D p p pl

x y d d d d
−

− = ←  

return [ ]m
Dx y−  

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 
Correctness and privacy is straightforward. The complexity of this protocol goes down to 15  

rounds and 47 logl l  multiplications for the expensive Bitwise-Subtraction* protocol is omitted.  

7 Comments 

In this section, we will make some comments on the protocols of this paper.  
Obviously, we can say that the “bit-decomposition” protocol (of [DFK+06]) is a special case 

of our “Base-m Digit-Bit Decomposition Protocol” where m  is a power of 2. In fact, we can also 



view the “bit-decomposition” protocol as a special case of our “Modulo Reduction+” protocol 
where the modulus m is just p, i.e. we have 

+[ ] Bit- Decomposition([ ] ) Modulo- Reduction ([ ] , )B p px x x p= =  

for any px Z∈ . Obviously, our “Modulo Reduction+” protocol can handle not only the special 

case where m p=  but also the general case where {2,3,..., 1}m p∈ − . So, our “Modulo 
Reduction+” protocol can also be viewed as a generalization to the “bit-decomposition” protocol.  

We note that, in [Tof09], a novel technique is proposed which can reduce the communication 
complexity of the “bit-decomposition” protocol to “almost linear”. We can argue that their 
technique can also be used in our “Base-m Digit-Bit-Decomposition” protocol and our “Base-m 
Digit-Decomposition” protocol to reduce the (communication) complexity to almost linear, 
because their technique is in fact applicable to any “ PreFix - ” (or “ PostFix - ”) protocol (which 
is a dominant factor of the communication complexity) assuming a linear protocol for computing 
the “Unbounded Fan - In ” exists, which is just the case in our protocols.  

8 Applications 

We will introduce some applications of our protocols in this section. All the protocols propose in 
this section are unconditional secure constant rounds protocols. Recall that in this paper we focus 
on integer arithmetic in the information theory setting. The underlying linear secret sharing 

scheme is built in prime field pZ  where p is a prime with bit-length l (i.e. logl p= ⎡ ⎤⎢ ⎥ ). 

8.1 Efficient Integer division protocol 

Given a secret shared value [ ]px  and a public modulus m , the integer division protocol  

_ : , ( , )p p
xint div Z Z x m
m
⎢ ⎥→ ⎢ ⎥⎣ ⎦

 

can be realized efficiently using our “Modulo Reduction protocol”. Set xt
m
⎢ ⎥= ⎢ ⎥⎣ ⎦

, then we have 

( )modx tm x m= + . So we can see that, if modx m  can be obtained in linear communication 

complexity, which is just the case in our Modulo Reduction protocol, then xt
m
⎢ ⎥= ⎢ ⎥⎣ ⎦

 can also be 

obtained in linear complexity by setting ( )( )( )1mod mod modt x x m m p p−= − .  

8.2 Efficient Divisibility Test Protocol 

The “divisibility test” problem can be formalized as follows: 



?
[ | ] Divisibility- Test([ ] , )p pm x x m← ,  

where px Z∈ , {2,3,..., 1}m p∈ −  and 
?

( | ) 1m x =  iff m  is a factor of x .  

Obviously, 
?

( | ) 1 ( mod ) 0m x x m= ⇔ = . So, in a “divisibility test” protocol, the parties need 

only to obtain the residue modx m  first and then decide whether the residue is 0. We provide two 
options for this task in the following. 

Option 1: First the parties get [ mod ]px m  using our “Modulo Reduction” protocol. Then using 

the “Equality Test Protocol” or the “Probabilistic Equality Test Protocol” in [NO07], which is 
realized without bit-decomposition and incurs constant rounds and linear communication 
complexity, the parties can determine whether ( mod ) 0x m = . So, the final result can be obtained. 
When the “Equality Test Protocol” of [NO07] is used, the total complexity of the above process is 
8 22 30+ =  rounds and  

81 (326 28 ( ) 3) 407 28 ( )l l L m l L m+ + + ≈ +  multiplications. 
 
Option 2: Using our “Modulo Reduction+” protocol, the parties can get  

( ) 1 1 0[ mod ] ([ ] ,...,[ ] ,[ ] )L m
B p p px m t t t−= .  

Then the parties can compute 
?

[ mod ] 0Bx m =  as 
( ) 1

0

(1 [ ] )
L m

i
p

i

t
−

=

−∏  by using an unbounded fan-in 

And. The overall complexity of “Option 2” is 5 37 42+ =  rounds and  

( )( ) ( )5 326 34 ( ) 47 ( ) log ( ) 331 34 ( ) 47 ( ) log ( )l l L m L m L m l L m L m L m+ + + = + +  

multiplications.  
Recall that ( )L m l≤ . Thus the communication complexity of “Option 1” is always linear in 

l . However this is not the case in “Option 2”. In fact, when m  is large enough, e.g. ( )L m l= , 
the asymptotic communication complexity (of “Option 2”) goes up to ( log )O l l . However, when 
m  is relatively small, e.g. 10m =  which is often the case in practice, “Option 2” can be a better 
choice. 

8.3 Conversion of Integer Representations Between Number Systems 

In multiparty computation, being able to converting integer representations between different 
number systems is meaningful both in theory and application. This can be done using our “Base-m 
Digit Decomposition” protocol. For example, given the sharings of the “base-M digits” of integer 

x , i.e. [ ]M
Dx , the parties can obtain the sharings of the “base-N digits” of x , i.e. [ ]N

Dx , as follows 

(Note that , {2,3,..., 1}M N p∈ − ). First get the sharing of x , i.e. [ ]px . Recall that this can be 

easily done by a linear combination which is free. Then by running the protocol 

“ Digit- Decomposition([ ] , )px N ”, the parties can get the desired result, i.e. [ ]N
Dx . 



8.4 Base-10 Applications 

Given a secret shared value [ ]px  and 10m =  as inputs, our “Base-m Digit Decomposition” 

protocol (or our “Base-m Digit-Bit Decomposition” protocol) can output the sharings of the 
base-10 digits of x . This is meaningful because in real life, integers are (almost always) encoded 
base-10. We believe that, in multiparty computation for practical use, if we can “de-composite’ a 
secret shared integer into (the sharings of) its base-10 digits, we will gain a lot of convenience. 

9 Conclusion and Future Work 

In this paper, we have solved the open problem whether the “public modulo reduction” problem 
can be realized without relying on the bit-decomposition protocol. We propose an efficient 
protocol that can solve this problem in constant rounds and linear communication complexity. 
What’s more, we generalize the “bit-decomposition protocol”, which is a powerful tool for 
multiparty computation, to the “base-m Digit-Bit-Decomposition protocol”, which can convert the 
sharing of secret a  into the sharings of the “base-m digits” of a  along with the bitwise sharing 
of every “digit”, and which we believe will be useful both in theory and application.  

Although we are successful in providing an (efficient) solution for the “public modulo 
reduction” problem, we fail in solving the problem of “private modulo reduction”, where the 
modulus is (also) secret shared. The absence of the knowledge of the exact value of m  makes 
our techniques useless. We will try to propose an efficient protocol for the “private modulo 
reduction” problem in the future.  
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