
Multiparty Computation for Modulo Reduction without

Bit-Decomposition and A Generalization to

Bit-Decomposition ∗

Chao Ning and Qiuliang Xu †

School of Computer Science and Technology, Shandong University,
Jinan, 250101, China

ncnfl@mail.sdu.edu.cn, xql@sdu.edu.cn

Abstract

Bit-decomposition, which is proposed by Damg̊ard et al., is a powerful tool for multi-party
computation (MPC). Given a sharing of secret x, it allows the parties to compute the sharings of
the bits of x in constant rounds. With the help of bit-decomposition, constant-rounds protocols
for various MPC problems can be constructed. However, bit-decomposition is relatively expensive,
so constructing protocols for MPC problems without relying on bit-decomposition is a meaningful
work. In multi-party computation, it remains an open problem whether the modulo reduction
problem can be solved in constant rounds without bit-decomposition.

In this paper, we propose a protocol for (public) modulo reduction without relying on bit-
decomposition. This protocol achieves constant round complexity and linear communication com-
plexity. Moreover, we show a generalized bit-decomposition protocol which can, in constant rounds,
convert the sharing of secret x into the sharings of the digits of x, along with the sharings of the
bits of every digit. The digits can be base-m for any m ≥ 2. Obviously, when m is a power of 2,
this generalized protocol is just the original bit-decomposition protocol.

Keywords. Multiparty Computation, Constant-Rounds, Modulo Reduction, Generalization to
Bit-Decomposition.

This is the full version of the paper in Proc. AsiaCrypt’2010.

∗Supported by the National Natural Science Foundation of China under Grant No. 60873232.
†Corresponding author.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Related Work . 5

2 Preliminaries 5
2.1 Notations and Conventions . 5
2.2 Known Primitives . 7

3 A Simple Introduction to Our New Primitives 7

4 Multiparty Computation for Modulo Reduction without Bit-Decomposition 9

5 A Generalization to Bit-Decomposition 11

6 Realizing the Primitives 12
6.1 Bitwise-Subtraction . 12
6.2 Computing the Borrow Bits . 13
6.3 Random-Digit-Bit . 14
6.4 Digit-Bit-wise-LessThan . 15
6.5 Random-Solved-Digits-Bits . 16
6.6 Digit-Bit-wise-Subtraction . 16

7 Comments 19

8 Applications 19
8.1 Efficient Integer Division Protocol . 20
8.2 Efficient Divisibility Test Protocol . 20
8.3 Conversion of Integer Representation between Number Systems 21
8.4 Base-10 Applications . 21

9 Conclusion and Future Work 21

2

1 Introduction

Secure multi-party computation (MPC) allows the computation of a function f when the inputs to f
are secret values held by distinct parties. After running the MPC protocol, the parties obtains only
the predefined outputs but nothing else, and the privacy of their inputs are guaranteed. Although
generic solutions for MPC already exist [BGW88, GMW87], the efficiency of these generic protocols
tends to be low. So we focus on constructing efficient protocols for specific functions. More exactly,
we are interested in integer arithmetic in the information theory setting [NO07].

A proper choice of representation of the inputs can have great influence on the efficiency of the
computation [DFK+06, Tof09]. For example, when we want to compute the sum or the product
of some private integer values, we’d better represent these integers as elements of a prime field Zp

and perform the computations using an arithmetic circuit as additions and multiplications are trivial
operations in the field. If we use the binary representation of the integers and a Boolean circuit to
compute the expected result, then we will get a highly inefficient protocol as the bitwise addition
and multiplication are very expensive [CFL83a, CFL83b]. On the other hand, if we want to compare
some (private) integer values, the binary representation will be of great advantage as comparison is a
bit-oriented operation. In this case, the arithmetic circuit over Zp will be a bad choice.

To bridge the gap between the arithmetic circuits and the Boolean circuits, Damg̊ard et al.
[DFK+06] proposed a novel technique, called bit-decomposition, to convert a sharing of secret x
into the sharings of the bits of x. This is a very useful tool in MPC because it gives us the best of the
two worlds. For example, for a protocol built in the prime field Zp, if a series of bit-oriented operations
(such as comparisons, computations of Hamming weight) are needed in the future procedure, we can,
using bit-decomposition, transform the sharings of the integers into the sharings of the bits of the
integers. Then, the future procedure can be handled easily. On the other hand, in a Boolean circuit, if
we need a series of additions and multiplications of the integers (which are represented as bits), then
we can (freely) transform the binary representation of these integers into elements of a prime field
(e.g. Zp) and perform all the additions and multiplications in this field. When the expected results
are obtained (in the field), bit-decomposition can be involved and the (aimed) binary representation
of the results can be finally obtained.

Thus, bit-decomposition is useful both in theory and application. However, the bit-decomposition
protocol is relatively expensive in terms of round and communication complexities. So the work on
constructing (constant-rounds) protocols for MPC problems without relying on bit-decomposition is
not only interesting but also meaningful. Recently, in [NO07], Nishide et al. constructed more efficient
protocols for comparison, interval test and equality test of shared secrets without relying on the bit-
decomposition protocol. However, in MPC, it remains an open problem whether the modulo reduction
problem can be solved in constant rounds without bit-decomposition [Tof07]. In this paper, we show
a linear protocol for the (public) modulo reduction problem without relying on bit-decomposition.
What’s more, the bit-decomposition protocol of [DFK+06] can only de-composite the sharing of secret
x into the sharings of the bits of x. However, especially in practice, we may often need the sharings
of the digits of x. Here the digits can be base-m for any m ≥ 2. For example, in real life, integers
are (almost always) represented as base-10 digits. Then, MPC protocols for practical use may often
require the base-10 digits of the secret shared integers. Another example is as follows. If the integers
are about time and date, then base-24, base-30, base-60, or base-365 digits may be required. So, to
meet these requirements, we propose a generalization to bit-decomposition in this paper.

3

1.1 Our Contributions

First we introduce some necessary notations. We focus mainly on the multi-party computation based
on linear secret sharing schemes. Assume that the underlying secret sharing scheme is built on field
Zp where p is a prime with bit-length l (i.e. l = dlog pe). For secret x ∈ Zp, we use [x]p to denote the

secret sharing of x, and [x]B to denote the sharings of the bits of x, i.e. [x]B =
(

[xl−1]p, ..., [x1]p, [x0]p

)
.

The public modulo reduction problem can be formalized as follows:

[x mod m]p ← Public-Modulo-Reduction([x]p,m)

where x ∈ Zp and m ∈ {2, 3, ..., p− 1}.
In existing public modulo reduction protocols [DFK+06, Tof07], the bit-decomposition protocol is

involved, incurring O(l log l) communication complexity. What’s more, in the worst case, the commu-
nication complexity of this protocol may go up to Θ(l2). Specifically, the existing modulo reduction
protocol uses the bit-decomposition protocol to reduce the “size” of the problem, and then uses up
to l comparisons, which is non-trivial, to determine the final result. This is essentially an “exhaustive
search”. If the bit-length of the inputs to the comparison protocol is relatively long, e.g. Θ(l), the
overall complexity will go up to Θ(l2). So, the efficiency of the protocol may be very poor. To solve this
problem, we propose a protocol, which achieves constant round complexity and linear communication
complexity, for public modulo reduction without relying on bit-decomposition. Besides this, we also
propose an enhanced protocol that can output the sharings of the bits of (x mod m), i.e. [x mod m]B.

Some primitives involved in bit-decomposition are generalized to meet the requirements of our
modulo reduction protocol. Using these generalized primitives and some other techniques, we also
construct a generalized bit-decomposition protocol which can, in constant rounds, convert the sharing
of secret x into the sharings of the digits of x, along with the sharings of the bits of every digit. The
digits can be base-m for any m ≥ 2. We name this protocol the “Base-m Digit-Bit-Decomposition”
Protocol. The asymptotic communication complexity of this protocol is O(l log l). Obviously, when m
is a power of 2, this protocol degenerates to the bit-decomposition protocol.

For illustration, we will show an example here. Pick a binary number

x = (11111001)2 = 249.

If [x]p is given to the bit-decomposition protocol as input, it outputs

[x]B = ([1]p, [1]p, [1]p, [1]p, [1]p, [0]p, [0]p, [1]p);

if [x]p and m = 2 (or m = 4, 8, 16, 32, ...) are given to our “Base-m Digit-Bit-Decomposition” protocol
as inputs, it will output the same result with the bit-decomposition protocol above; however, when
[x]p and m = 10 are given to our “Base-m Digit-Bit-Decomposition” protocol, it will output

([2]B, [4]B, [9]B) =
(

([0]p, [0]p, [1]p, [0]p), ([0]p, [1]p, [0]p, [0]p), ([1]p, [0]p, [0]p, [1]p)
)

which is significantly different from the output of bit-decomposition.
We also propose a simplified version of the protocol, called “Base-m Digit-Decomposition”, which

outputs
(

[2]p, [4]p, [9]p

)
when given [x]p and m = 10 as inputs.

Finally, we’d like to stress that all the protocols proposed in our paper are constant-rounds and un-
conditionally secure, and our techniques can also be used to construct non-constant-rounds variations
which may be preferable in practice.

4

1.2 Related Work

The problem of bit-decomposition is a basic problem in MPC and was partially solved by Algesheimer
et al. in [ACS02]. However, their solution is not constant-rounds and can only handle values that
are noticeably smaller than p. Damg̊ard et al. proposed the first constant-rounds (full) solution to
the problem of bit-decomposition in [DFK+06]. This ice-break work is based on linear secret sharing
schemes [BGW88, GRR98]. Independently, Shoenmakers and Tuyls [ST06] solved the problem of bit-
decomposition for multiparty computation based on (Paillier) threshold homomorphic cryptosystems
[CDN01, DN03]. In order to improve efficiency, Nishide and Ohta [NO07] proposed a simplification
to the bit-decomposition protocol of [DFK+06] by throwing off one unnecessary invocation of bitwise
addition, which is the most expensive primitive in bit-decomposition. Moreover, they proposed solu-
tions for comparison, interval test and equality test of shared secrets without relying on the expensive
bit-decomposition protocol. Their techniques are novel, and have enlightened us a lot. Recently,
Toft showed a novel technique that can reduce the communication complexity of bit-decomposition
to almost linear [Tof09]. Although we do not focus on the almost linear property of protocols, some
techniques used in their paper are so inspiring and enlightening to us. In a followup work, Reistad
and Toft proposed a linear bit-decomposition protocol [RT09]. However, the security of their protocol
is non-perfect.

As for the problem of modulo reduction (without bit-decomposition), Guajardo et al. proposed a
partial solution to this problem in the threshold homomorphic setting [GMS10]. In [CS10], Catrina
et al. dealt with the non-constant-rounds private modulo reduction protocol with the incomplete
accuracy and statistical privacy in the setting where shared secrets are represented as fixed-point
numbers.

2 Preliminaries

In this section we introduce some important notations and some known primitives which will be
frequently mentioned in the rest of the paper.

2.1 Notations and Conventions

The multiparty computation considered in this paper is based on linear secret sharing schemes, such
as Shamir’s [Sha79]. As mentioned above, we denote the underlying field as Zp where p is a prime
with binary length l.

As in previous works, such as [DFK+06] and [NO07], we assume that the underlying secret sharing
scheme allows to compute [x + y mod p]p from [x]p and [y]p without communication, and that it allows
to compute [xy mod p]p from (public) x ∈ Zp and [y]p without communication. We also assume that
the secret sharing scheme allows to compute [xy mod p]p from [x]p and [y]p through communication
among the parties. We call this procedure the secure multiplication (or multiplication for simplicity).
Obviously, for multiparty protocols, this multiplication protocol is a dominant factor of complexity as
it involves communication. So, as in previous works, the round complexity of the protocols is measured
by the number of rounds of parallel invocations of the multiplication protocol, and the communication
complexity is measured by the number of invocations of the multiplication protocol. For example, if a
protocol involves a multiplications in parallel and then another b multiplications in parallel, then we
can say that the round complexity is 2 and the communication complexity is a+b multiplications. We
have to say that the complexity analysis made in this paper is somewhat rough for we focus mainly
on the ideas of the solution, but not on the details of the implementation.

5

As in [NO07], when we write [C]p, where C is a Boolean test, it means that C ∈ {0, 1} and

C = 1 iff C is true. For example, we use [x
?
<y]p to denote the output of the comparison protocol, i.e.

(x
?
<y) = 1 iff x < y holds.
For the base m ∈ {2, 3, ..., p − 1}, define L(m) = dlogme. It is easy to see that we should use

L(m) bits to represent a base-m digit. For example, when m = 10, we have L(m) = dlog 10e = 4, this
means we must use 4 bits to represent a base-10 digit. Notice that we have 2L(m)−1 < m ≤ 2L(m) and
m = 2L(m) holds iff m is a power of 2. Moreover, we have L(m) ≤ l as m ≤ p− 1.

Define l(m) = dlogmpe. Obviously, l(m) is the length of p when p is coded base-m. Note that

l(m) = dlogmpe =
⌈

log p
logm

⌉
=
⌈

l
logm

⌉
≤ l as m ≥ 2.

For any x ∈ Zp, the secret sharing of x is denoted by [x]p. We use [x]B to denote the bitwise
sharing of x.

We use [x]mD =
(
[xl(m)−1]

m
p , ..., [x1]

m
p , [x0]

m
p

)
to denote the digit-wise sharing of x. For i ∈ {0, 1, ..., l(m)−

1}, [xi]
m
p denotes the sharing of the i′th base-m digit of x with 0 ≤ xi ≤ (m− 1).

The digit-bit-wise sharing of x, which is denoted by [x]mD,B, is defined as below:

[x]mD,B =
(
[xl(m)−1]

m
B , ..., [x1]

m
B , [x0]

m
B

)
,

in which [xi]
m
B =

(
[x

L(m)−1
i]p, ..., [x

1
i]p, [x

0
i]p

)
(i ∈ {0, 1, ..., l(m)− 1}) denotes the bitwise sharing of the

i′th base-m digit of x. Note that [xi]
m
B has L(m) bits.

Sometimes, if m can be inferred from the context, we may write [xi]
m
p (or [xi]

m
B) as [xi]p (or [xi]B)

for simplicity.
In this paper, we often need to get the digit-wise representation or the digit-bit-wise representation

of some public value c, i.e. [c]mD or [c]mD,B. This can be done freely as c is public.
It’s easy to see that if we have obtained [x]B, then [x]p can be freely obtained by a linear combi-

nation. We can think of this as [x]B contains “more information” than [x]p. For example, if we get
[x]mD,B =

(
[xl(m)−1]

m
B , ..., [x1]

m
B , [x0]

m
B

)
, then [x]mD =

(
[xl(m)−1]

m
p , ..., [x1]

m
p , [x0]

m
p

)
is implicitly obtained.

In protocols that can output both [x]B and [x]p, which is often the case in this paper, we always omit
[x]p for simplicity.

Given [c]p, we need a protocol to reveal c, which is denoted by c← Reveal([c]p).
When we write command

C ← b?A : B,

where A,B,C ∈ Zp and b ∈ {0, 1}, it means the following:

if b = 1, then C is set to A; otherwise, C is set to B.

We call this command the conditional selection command [Tof07]. When all the variables in this
command are public, this “selection” can of course be done. When the variables are shared or even
bitwise shared, this can also be done. Specifically, the command

[C]p ← [b]p?[A]p : [B]p

can be realized by setting
[C]p ← [b]p([A]p − [B]p) + [B]p

which costs 1 round and 1 multiplication; the command

[C]B ← [b]p?[A]B : [B]B

6

can be realized by the following procedure:

For i = 0, 1, ..., l − 1 in parallel: [Ci]p ← [b]p([Ai]p − [Bi]p) + [Bi]p

[C]B ←
(

[Cl−1]p, ..., [C1]p, [C0]p

)
.|A| = |B| = |C| = l

Note that the above procedure costs 1 round, l invocations of multiplication.
Other cases, such as [C]mD ← [b]p?[A]mD : [B]mD and [C]mD,B ← [b]p?[A]mD,B : [B]mD,B can be realized

similarly. We will frequently use this conditional selection command in our protocols.

2.2 Known Primitives

We will now simply introduce some existing primitives which are important building blocks of this
paper. All these primitives are proposed in [DFK+06].

• Random-Bit The Random-Bit protocol is the most basic primitive which can generate a shared
uniformly random bit unknown to all parties. In the linear secret sharing setting, which is the
case in this paper, it takes only 2 rounds and 2 multiplications.

• Bitwise-LessThan Given two bitwise shared inputs, [x]B and [y]B, the Bitwise-LessThan pro-

tocol can compute a shared bit [x
?
<y]p. We note that using the method of [Tof09], this protocol

can be realized in 6 rounds and 13l + 6
√
l multiplications. Notice that 13l + 6

√
l ≤ 14l holds for

l ≥ 36 which is often the case in practice. So, for simplicity, we refer to the complexity of this
protocol as 6 rounds and 14l multiplications.

• Bitwise-Addition Given two bitwise shared inputs, [x]B and [y]B, the Bitwise-Addition proto-
col outputs [s]B = [x+ y]B. An important point of this protocol is that s = x+ y holds over the
integers, not (only) mod p. This protocol, which costs 15 rounds and 47l log l multiplications,
is the most expensive primitive of the bit-decomposition protocol of [DFK+06]. We will not
use this primitive in this paper, but use Bitwise-Subtraction instead. However, the asymptotic
complexity of our Bitwise-Subtraction protocol is the same with that of the Bitwise-Addition
since they both involve a generic prefix protocol which costs O(l log l) multiplications. We will
introduce our Bitwise-Subtraction protocol later.

3 A Simple Introduction to Our New Primitives

In this section, we will simply introduce the new primitives proposed in this paper. We will only
describe the inputs and the outputs of the protocols, along with some simple comments. All these
new primitives will be described in detail in Section 6.

• Bitwise-Subtraction The Bitwise-Subtraction protocol accepts two bitwise shared values [x]B
and [y]B and outputs [x− y]B. This protocol is in fact first proposed in [Tof09] and is re-described
(in a widely different form) in this paper. In our protocols, we only need a restricted version (of
Bitwise-Subtraction) which requires x ≥ y. A run of this restricted protocol is denoted by

[x− y]B ← Bitwise-Subtraction∗([x]B, [y]B).

It costs 15 rounds and 47l log l multiplications.

7

• BORROWS This protocol is used as a sub-protocol in the Bitwise-Subtraction protocol above
to compute the borrow bits (as well as in the Bitwise-Subtraction∗ protocol). Given two bitwise
sharings [x]B and [y]B, this protocol outputs

([bl−1]p, ..., [b1]p, [b0]p)← BORROWS([x]B, [y]B)

where [bi]p is the sharing of the borrow bit at bit-position i ∈ {0, 1, ..., l− 1}. The complexity of
this protocol is 15 rounds and 47l log l multiplications.

• Random-Digit-Bit Given m ∈ {2, 3, ..., p−1} as input, the Random-Digit-Bit protocol outputs

[d]mB =
(

[dL(m)−1]p, ..., [d
1]p, [d

0]p

)
← Random-Digit-Bit(m)

where d ∈ {0, 1, ...,m − 1} represents a base-m digit. Notice that [d]mp is implicitly obtained.
The complexity of this protocol is 8 rounds and 64L(m) multiplications.

• Digit-Bit-wise-LessThan The Digit-Bit-wise-LessThan protocol accepts two digit-bit-wise
shared values [x]mD,B and [y]mD,B and outputs

[x
?
<y]p ← Digit-Bit-wise-LessThan([x]mD,B, [y]mD,B).

The complexity of this protocol is 6 rounds and 14l multiplications.

• Random-Solved-Digits-Bits Using the above two primitives as sub-
protocols, we can construct the Random-Solved-Digits-Bits protocol which, when given m ∈
{2, 3, ..., p − 1} as input, outputs a digit-bit-wise shared random value [r]mD,B satisfying r < p.
We denote a run of this protocol by

[r]mD,B ← Random-Solved-Digits-Bits(m).

This protocol takes 14 rounds and 312l multiplications.

• Digit-Bit-wise-Subtraction This protocol is a novel generalization to the bitwise subtraction
protocol and is very important to this paper. It accepts two digit-bit-wise shared values [x]mD,B

and [y]mD,B and outputs [x− y]mD,B. Again, in this paper, we need only a restricted version which
requires x ≥ y. A run of this restricted protocol is denoted by

[x− y]mD,B ← Digit-Bit-wise-Subtraction∗([x]mD,B, [y]mD,B).

This restricted protocol costs 30 rounds and 47l log l + 47l log (L(m)) multiplications. What’s
more, if we don’t need [x− y]mD,B but (only) need [x− y]mD instead, then this restricted protocol
can be (further) simplified. We denote a run of this (further) simplified protocol by

[x− y]mD ← Digit-Bit-wise-Subtraction∗−([x]mD,B, [y]mD,B).

The complexity of this protocol goes down to 21 rounds and 16l+47l(m) log
(
l(m)

)
multiplications.

With the above primitives, we can construct our public modulo reduction protocol and “Base-
m Digit-Bit-Decomposition” protocol, which will be described in detail separately in Section 4 and
Section 5.

8

4 Multiparty Computation for Modulo Reduction without Bit-Decomposition

In this section, we give out our public modulo reduction protocol which is realized without relying
on bit-decomposition and which will be denoted as Pub-MR(·). This protocol is constant-rounds and
involves only O(l) multiplications. Informally speaking, our Pub-MR(·) protocol is essentially the
Least Significant Digit Protocol and is a natural generalization to the Least Significant Bit Protocol
(i.e. the LSB protocol) in [NO07]. Recall that for any integer x, the sharing of the least significant
base-m digit of x is denoted by [x0]

m
p , and the bitwise sharing of the least significant base-m digit of

x is denoted by [x0]
m
B . The protocol is described in detail in Figure 1.

The modulo reduction protocol, Pub-MR(·), for computing the residue of a shared integer modulo a
public integer.

Input: [x]p with x ∈ Zp and m ∈ {2, 3, ..., p− 1}.
Output: [x mod m]p.
Process:
[r]mD,B ← Random-Solved-Digits-Bits(m)
c← Reveal([x]p + [r]mD,B) .Note that [r]mD,B implies [r]p. (1.a)
[X1]

m
p ← [c0]

m
p − [r0]

m
B . [r0]

m
B implies [r0]

m
p .

[X2]
m
p ← [c0]

m
p − [r0]

m
B + m

[s]p ← Bitwise-LessThan([c0]
m
B , [r0]

m
B) (1.b)

[X]mp ← [s]p?[X2]
m
p : [X1]

m
p .A conditional selection command.

c′ ← c + p .Addition over the integers.
[X ′1]

m
p ← [c′0]

m
p − [r0]

m
B

[X ′2]
m
p ← [c′0]

m
p − [r0]

m
B + m

[s′]p ← Bitwise-LessThan([c′0]
m
B , [r0]

m
B) (1.c)

[X ′]mp ← [s′]p?[X ′2]
m
p : [X ′1]

m
p

[t]p ← Digit-Bit-wise-LessThan([c]mD,B, [r]mD,B) (1.d)
[x mod m]p = [x0]

m
p ← [t]p?[X ′]mp : [X]mp

Return [x mod m]p

Figure 1: The Modulo Reduction Protocol without Bit-Decomposition

Correctness: By simulating a base-m addition procedure, the protocol extracts [x0]
m
p which is

just [x mod m]p. Specifically, we use an addition in line (1.a) to randomize the secret input [x]p.
This addition can be viewed as a base-m addition. Using the Bitwise-LessThan protocol in line (1.b)
and (1.c), we can decide whether a carry is set at the least significant digit-position when performing
the base-m addition. What’s more, we use the Digit-Bit-wise-LessThan protocol in line (1.d) to
decide whether a wrap-around modulo p occurs when performing the (whole) addition. Using these
“knowledge”, we can “select” the correct value for [x0]

m
p .

Privacy: The only possible information leakage takes place in line (1.a), where a reveal command
is involved. However, the revealed value, i.e. c, is uniformly random, so it leaks no information about
the secret x. So the privacy is guaranteed.

Complexity: Complexity comes mainly from the invocations of sub-protocols. Note that the two
invocations of Bitwise-LessThan and the invocation of Digit-Bit-wise-LessThan can be scheduled in
parallel. In all it will cost 22 rounds and

312l + 14L(m) + 1 + 14L(m) + 1 + 14l + 1 = 326l + 28L(m) + 3

9

multiplications. Recall that L(m) ≤ l, so the communication complexity is upper bounded by 354l+3
multiplications.

The original modulo reduction problem does not require the sharings of the bits of the residue,
i.e. [x mod m]B. So in the above protocol, [x mod m]B is not computed. However, if we want, we
can get [x mod m]B using an enhanced version of the above Pub-MR(·) protocol. This enhanced
protocol will be denoted by Enh-Pub-MR(·). Although we can get [x mod m]B by using the bit-
decomposition protocol with [x mod m]p as input, our enhanced public modulo reduction protocol,
which is constructed from scratch, is meaningful because it is more efficient. The construction is seen
as Figure 2.

The enhanced public modulo reduction protocol, Enh-Pub-MR(·), for computing the bitwise shared
residue of a shared integer modulo a public integer.

Input: [x]p with x ∈ Zp and m ∈ {2, 3, ..., p− 1}.
Output: [x mod m]B.
Process:
[r]mD,B ← Random-Solved-Digits-Bits(m)

c← Reveal([x]p + [r]mD,B)

[M̄1]
m
B ← [c0]

m
B

[M̄2]
m
B ← [c0 + m]mB .Addition over the integers.

[s]p ← Bitwise-LessThan([c0]
m
B , [r0]

m
B)

[M̄]mB ← [s]p?[M̄2]
m
B : [M̄1]

m
B .Involving L(m) multiplications.

c′ ← c + p
[M̄ ′1]

m
B ← [c′0]

m
B

[M̄ ′2]
m
B ← [c′0 + m]mB

[s′]p ← Bitwise-LessThan([c′0]
m
B , [r0]

m
B)

[M̄ ′]mB ← [s′]p?[M̄ ′2]
m
B : [M̄ ′1]

m
B

[t]p ← Digit-Bit-wise-LessThan(c, [r]mD,B)

[M]mB ← [t]p?[M̄ ′]mB : [M̄]mB . M is the minuend.
[S]mB ← [r0]

m
B . S is the subtrahend.

[x mod m]B = [x0]
m
B ← Bitwise-Subtraction∗([M]mB , [S]mB)

Return [x mod m]B

Figure 2: The Enhanced Modulo Reduction Protocol

The correctness and privacy of this protocol can be proved similarly to the Pub-MR(·) protocol
above. By carefully selecting the Minuend and the Subtrahend, we can get the expected result by
using only one invocation of the Bitwise-Subtraction∗ protocol. As for the complexity, note that every
conditional selection command in this protocol involves L(m) multiplications, whereas in the Pub-
MR(·) protocol it involves only 1 multiplication. The overall complexity of this protocol is 37 rounds
and

326l + 28L(m) + 47L(m) log (L(m)) + 6 L(m) = 326l + 34L(m) + 47L(m) log (L(m))

multiplications. Obviously, when L(m) is large enough (e.g. L(m) = l), the asymptotic (commu-

10

nication) complexity of this protocol goes up to O(l log l), which is the asymptotic complexity of
the bit-decomposition protocol. We argue that this is inevitable because when L(m) is large enough
(implying a very large m), this protocol becomes an enhanced bit-decomposition protocol. We will
describe this in detail in Section 7.

5 A Generalization to Bit-Decomposition

In this section, we will propose our generalization to bit-decomposition, i.e. the “Base-m Digit-Bit-
Decomposition” protocol. The details of this protocol are presented in Figure 3. The main framework
of this protocol is similar to the bit-decomposition protocol of [Tof09].

The “Base-m Digit-Bit-Decomposition” protocol, Digit-Bit-Decomposition(·,m), for converting the
sharing of secret x into the digit-bit-wise sharing of x.

Input: [x]p with x ∈ Zp and the base m ∈ {2, 3, ..., p− 1}.
Output: [x]mD,B

Process:
[r]mD,B ← Random-Solved-Digits-Bits(m)
c← Reveal([x]p + [r]mD,B) (3.a)
c′ ← c + p
[t]p ← Digit-Bit-wise-LessThan([c]mD,B, [r]mD,B) (3.b)
[c̃]mD,B = [t]p?[c′]mD,B : [c]mD,B . c̃ = x + r holds over the integers
[x]mD,B ← Digit-Bit-wise-Subtraction∗([c̃]mD,B, [r]mD,B) (3.c)
Return [x]mD,B

Figure 3: The Base-m Digit-Bit-Decomposition Protocol

As for the correctness, using the Digit-Bit-wise-LessThan protocol in line (3.b), we can decide
whether a wrap-around modulo p occurs when performing the addition in line (3.a). Based on
this “knowledge” we can “select” the correct value for c̃ = x + r. Then, using the Digit-Bit-wise-
Subtraction∗ protocol in line (3.c), with the digit-bit-wise sharing of c̃ = x+ r and r as inputs, we can
get the expected result, i.e. [x]mD,B. In fact, the major obstacle in constructing this protocol is how to
realize the Digit-Bit-wise-Subtraction∗ protocol, which is described in detail in Section 6.6.

Privacy is straightforward.
As for the complexity, it is easy to see that there are only three sub-protocols that count for

complexity, i.e. the Random-Solved-Digits-Bits protocol, the Digit-Bit-wise-LessThan protocol, and
the Digit-Bit-wise-Subtraction∗ protocol. So, the overall complexity of this protocol is 14+6+30 = 50
rounds and

312l + 14l + (47l log l + 47l log (L(m))) = 326l + 47l log l + 47l log (L(m))

multiplications. The communication complexity is upper bounded by 326l + 94l log l multiplications
as L(m) ≤ l.

If we do not need [x]mD,B but (only) need [x]mD instead, then the above protocol can be sim-
plified. The method is to replace the Digit-Bit-wise-Subtraction∗ protocol with the Digit-Bit-wise-
Subtraction∗− protocol. We call this simplified protocol the “Base-m Digit-Decomposition” Protocol,
a run of which is denoted by Digit-Decomposition(·,m). The correctness and privacy of this protocol

11

can be similarly proved. The complexity goes down to 14 + 6 + 21 = 41 rounds and

312l + 14l +
(

16l + 47l(m) log
(
l(m)

))
= 342l + 47l(m) log

(
l(m)

)
multiplications. Recall that l(m) = dlogmpe ≤ l, so the communication complexity is upper bounded
by 342l + 47l log l multiplications.

6 Realizing the Primitives

In this section, we will describe in detail the (new) primitives which are essential for the protocols of
our paper. Informally, most of the protocols in this section are generalized version of the protocols of
[DFK+06] from base-2 to base-m for any m ≥ 2. It will be seen that, when m is a power of 2, some
of our primitives degenerate to the existing primitives in [DFK+06]. So, in the complexity analysis,
we focus on the case where m is not a power of 2, i.e. m < 2L(m).

6.1 Bitwise-Subtraction

We describe the Bitwise-Subtraction protocol here. In fact, this protocol is already proposed in
[Tof09]. They reduced the problem of bitwise-subtraction to the Post-fix Comparison problem. Here,
we re-consider the problem of bitwise-subtraction and solve it in a (highly) similar manner to the
Bitwise-Addition protocol of [DFK+06].

As is mentioned in Section 3, we will first propose a restricted (bitwise-subtraction) protocol,
Bitwise-Subtraction∗, which requires that the minuend is not less than the subtrahend. We will only
use this restricted version in this paper. The general version without the above restriction can be
realized with the help of the Bitwise-LessThan protocol. We will describe this in detail later. Given
a BORROWS protocol that can compute the sharings of the borrow bits, the Bitwise-Subtraction∗

protocol can be realized as in Figure 4.

The restricted Bitwise-Subtraction protocol, Bitwise-Subtraction∗(·), for computing the bitwise shar-
ing of the difference between two bitwise shared values. This protocol requires that the minuend is
not less than the subtrahend.

Input: [x]B = ([xl−1]p, ..., [x1]p, [x0]p) and [y]B = ([yl−1]p, ..., [y1]p, [y0]p) satisfying x ≥ y.
Output: [x− y]B = [d]B = ([dl−1]p, ..., [d1]p, [d0]p).
Process:
([bl−1]p, ..., [b1]p, [b0]p)← BORROWS([x]B, [y]B)
[d0]p ← [x0]p − [y0]p + 2[b0]p
For i = 1, 2, ..., l − 1 in parallel: [di]p ← [xi]p − [yi]p + 2[bi]p − [bi−1]p
[x− y]B = [d]B ← ([dl−1]p, ..., [d1]p, [d0]p)
Return [x− y]B

Figure 4: The Bitwise-Subtraction∗ Protocol

Note that the output of this protocol, i.e. [x− y]B, is of bit length l, not l + 1. This is because
x ≥ y holds and thus we do not need a sign bit. Correctness is straightforward. Privacy follows readily
from the fact that we only call private sub-protocols. The complexity of this protocol is the same with
that of the Bitwise-Addition protocol in [DFK+06], i.e. 15 rounds and 47l log l multiplications [NO07].

12

Although in all the protocols proposed in this paper we will only use the Bitwise− Subtraction∗

protocol above, we also give out the general version, i.e. the Bitwise-Subtraction protocol. With
(arbitrary) inputs

[x]B = ([xl−1]p, ..., [x1]p, [x0]p) and [y]B = ([yl−1]p, ..., [y1]p, [y0]p),

the Bitwise-Subtraction protocol outputs

[x− y]B = [d]B = ([dl]p, [dl−1]p, ..., [d1]p, [d0]p)

in which [dl]p is the sharing of the sign bit. The procedure is presented below.

First compute [(x
?
<y)]p using the Bitwise-LessThan protocol. Then set

[X]B ← [(x
?
<y)]p?[y]B : [x]B,

[Y]B ← [(x
?
<y)]p?[x]B : [y]B.

It can be verified that X ≥ Y always holds. Finally set

([dl−1]p, ..., [d1]p, [d0]p)← Bitwise-Subtraction∗([X]B, [Y]B)

and set [dl]p ← [(x
?
<y)]p as the sign bit. Then

[x− y]B = [d]B = ([dl]p, [dl−1]p, ..., [d1]p, [d0]p)

is obtained.
Correctness and privacy can be easily verified. Comparing with the Bitwise-Subtraction∗ protocol,

this protocol costs 7 additional rounds and 16l additional multiplications. So the overall complexity
of this protocol is 22 rounds and 47l log l + 16l multiplications.

6.2 Computing the Borrow Bits

We now describe the BORROWS protocol which can compute the sharings of the borrow bits. In
fact our BORROWS protocol is highly similar to the CARRIES protocol in [DFK+06]. So only the
difference is sketched here. As in [DFK+06], we use an operator ◦ :

∑
×
∑
→
∑

, where
∑

=
{S, P,K}, which is defined by S ◦ x = S for all x ∈

∑
, K ◦ x = K for all x ∈

∑
, P ◦ x = x for all

x ∈
∑

. Here, ◦ represents the borrow-propagation operator, whereas in [DFK+06] it represents the
carry-propagation operator. When computing [x− y]B (where x ≥ y holds) with two bitwise shared
inputs

[x]B = ([xl−1]p, ..., [x1]p, [x0]p) and [y]B = ([yl−1]p, ..., [y1]p, [y0]p),

for bit-position i ∈ {0, 1, . . . , l − 1}, let ei = S iff a borrow is set at position i (i.e. xi < yi); ei = P
iff a borrow would be propagated at position i (i.e. xi = yi); ei = K iff a borrow would be killed at
position i (i.e. xi > yi). It can be easily verified that bi = 1 (i.e. the i′th borrow bit is set, which
means the i′th bit needs to borrow a “1” from the (i + 1)′th bit) iff ei ◦ ei−1 ◦ · · · ◦ e0 = S. It can
be seen that in the case where ◦ represents the borrow-propagation operator and in the case where ◦
represents the carry-propagation operator, the rules for ◦ (i.e. S ◦ x = S, K ◦ x = K and P ◦ x = x
for all x ∈

∑
) are completely the same. This means that when computing the borrow bits, once all

the ei
′s are obtained, the residue procedure of our BORROWS protocol will be (completely) the same

13

with that of the CARRIES protocol (in [DFK+06]). So, the only difference lies in the procedure of
computing the ei

′s, which will be sketched below.
As in [DFK+06], we represent S, P and K with bit vectors

(1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ {0, 1}3.

Then, for every bit-position i ∈ {0, 1, ..., l − 1}, [ei]B = ([si]p, [pi]p, [ki]p) can be obtained as follows:

[si]p = [yi]p − [xi]p[yi]p; [pi]p = 1− [xi]p − [yi]p + 2[xi]p[yi]p; [ki]p = [xi]p − [xi]p[yi]p,

which in fact need only one multiplication (i.e. [xi]p[yi]p). Correctness follows readily from the above
arguments. Privacy is straightforward because nothing is revealed in the protocol. The complexity
of the protocol is the same with the CARRIES protocol in [DFK+06], i.e. 15 rounds and 47l log l
multiplications [NO07].

6.3 Random-Digit-Bit

We will now introduce the Random-Digit-Bit protocol for generating a random bitwise shared base-m
digit, which is denoted by d here. In fact, d is a random integer satisfying 0 ≤ d ≤ m− 1. We would
like to stress that the output of this protocol is not (only) the sharing of d, but the sharings of the bits
of d. The knowledge of (the sharings of) the bits of d helps us a lot in constructing other primitives.
The details are presented in Figure 5.

The Random-Digit-Bit protocol, Random-Digit-Bit(·), for generating the bitwise sharing of a random
digit. The digit is base-m for any m ≥ 2.

Input: The base m satisfying 2 ≤ m ≤ p− 1.
Output: [d]mB = ([dL(m)−1]p, ..., [d

1]p, [d
0]p) with 0 ≤ d ≤ m− 1.

Process:
For i = 0, 1, . . . , L (m)− 1 in parallel: [di]p ← Random-Bit().
[d]mB ← ([dL(m)−1]p, ..., [d

1]p, [d
0]p)

If m = 2L(m), then Return [d]mB . Otherwise proceed as below.
[r]p ← Bitwise-LessThan([d]mB ,m)
r ← Reveal([r]p)
If r = 0, then abort. Otherwise Return [d]mB .

Figure 5: The Random-Digit-Bit Protocol

As for the correctness, to generate a base-m digit, the protocol generates L(m) random shared
bits first. Then using Bitwise-LessThan, the protocol checks whether the generated random integer is
less than m, which is a basic requirement for a base-m digit. Note that when m is a power of 2 (i.e.
m = 2L(m)), this check is unnecessary because an L(m)-bit binary number is at most 2L(m) − 1 and
thus is always less than m.

As for the privacy, when this protocol does not abort, the only information leaked is that d < m,
which is an a priori fact.

As for the complexity, note that the protocol contains L(m) invocations of Random-Bit (in parallel)
and one invocation of Bitwise-LessThan. So, when m is not a power of 2, the total complexity of one
run of this protocol is 8 rounds and 16L(m) multiplications. As in [DFK+06], using a Chernoff bound,
it can be seen that if this protocol has to be repeated in parallel to get a lower abort probability, then
the round complexity is still 8, and the amortized communication complexity goes up to 4×16L(m) =
64L(m) multiplications.

14

6.4 Digit-Bit-wise-LessThan

The Digit-Bit-wise-LessThan protocol proposed here is a natural generalization to the Bitwise-LessThan
protocol. Recall that when we write [C]p, where C is a Boolean test, it means that C ∈ {0, 1} and
C = 1 iff C is true. The details of the protocol are presented in Figure 6.

The Digit-Bit-wise-LessThan protocol, Digit-Bit-wise-LessThan(·), for comparing two digit-bit-wise
shared values.

Input: [x]mD,B = ([xl(m)−1]
m
B , ..., [x1]

m
B , [x0]

m
B) and [y]mD,B = ([yl(m)−1]

m
B , ..., [y1]

m
B , [y0]

m
B).

Output: [(x
?
<y)]p, where (x

?
<y) = 1 iff x < y holds.

Process:
[X]B ← ([x

L(m)−1
l(m)−1]p, ..., [x

1
l(m)−1]p, [x

0
l(m)−1]p,

...

...

...

[x
L(m)−1
1]p, ..., [x

1
1]p, [x

0
1]p,

[x
L(m)−1
0]p, ..., [x

1
0]p, [x

0
0]p)

[Y]B ← ([y
L(m)−1
l(m)−1]p, ..., [y

1
l(m)−1]p, [y

0
l(m)−1]p,

...

...

...

[y
L(m)−1
1]p, ..., [y

1
1]p, [y

0
1]p,

[y
L(m)−1
0]p, ..., [y

1
0]p, [y

0
0]p)

[(x
?
<y)]p = [(X

?
<Y)]p ← Bitwise-LessThan([X]B, [Y]B)

Return [(x
?
<y)]p

Figure 6: The Digit-Bit-wise-LessThan Protocol

As for the correctness, we will simply explain why x < y ⇔ X < Y . In this protocol, we view
the Digit-Bit-wise representation of x and y as two binary numbers (i.e. X and Y). When m < 2L(m),
the two binary numbers (i.e. X and Y) are of course not equal to the original numbers (i.e. x and y).
However, when comparing x and y this is allowed because, both in the digit-bit-wise representation
case and in the binary case, the relationship between the size of two numbers is determined by the
left-most differing bits of them. So, we can say that x < y ⇔ X < Y and the correctness is
guaranteed.

Privacy follows readily from only using private sub-protocols.
The complexity of the protocol is the same with the Bitwise-LessThan protocol involved. The

length of the inputs to the Bitwise-LessThan protocol (i.e. [X]B and [Y]B) is

L(m) · l(m) = dlogme · dlogmpe = dlogme ·
⌈

log p

logm

⌉
≈ log p ≈ l.

So, the overall complexity of this protocol is 6 rounds and (about) 14l multiplications.

15

6.5 Random-Solved-Digits-Bits

The Random-Solved-Digits-Bits protocol is an important primitive which can generate a digit-bit-wise
shared random value unknown to all parties. It is a natural generalization to the Random-Solved-Bits
protocol in [DFK+06]. The details are presented in Figure 7.

The Random-Solved-Digits-Bits protocol, Random-Solved-Digits-Bits(·), for jointly generating a
digit-bit-wise shared value which is uniformly random from Zp.

Input: m, i.e. the expected base of the digits.
Output: [r]mD,B, in which r is a uniformly random value satisfying r < p.
Process:
For i = 0, 1, ..., l(m) − 1 in parallel: [ri]

m
B ← Random-Digit-Bit(m).

[r]mD,B ← ([rl(m)−1]
m
B , ..., [r1]

m
B , [r0]

m
B)

[c]p ← Digit-Bit-wise-LessThan([r]mD,B, [p]mD,B)
c← Reveal([c]p)
If c = 0, then abort. Otherwise Return [r]mD,B.

Figure 7: The Random-Solved-Digits-Bits Protocol

Recall that the bitwise representation of the most significant base-m digit of p is [pl(m)−1]
m
B =(

p
L(m)−1
l(m)−1 , ..., p1

l(m)−1, p
0
l(m)−1

)
. Suppose pj

l(m)−1 (j ∈ {0, 1, ..., L(m) − 1}) is the left-most “1” in

[pl(m)−1]
m
B . Then, in order to get an acceptable abort probability, the bit-length of the most sig-

nificant base-m digit of r should be j+1 because an acceptable r must be less than p. In this protocol,

for simplicity, we assume that p
L(m)−1
l(m)−1 = 1. Under this assumption, we can generate [rl(m)−1]

m
B us-

ing the Random-Digit-Bit protocol. If p
L(m)−1
l(m)−1 = 0, then [rl(m)−1]

m
B can be generated by using the

Random-Bit protocol directly.
The correctness and the privacy is straightforward. As for the complexity, the protocol uses

l(m) invocations of Random-Digit-Bit and one invocation of Digit-Bit-wise-LessThan. So, the total
complexity of one run of this protocol is 8+6=14 rounds and l(m) ·64L(m) + 14l = 78l multiplications.
Similar to the Random-Digit-Bit protocol above, if this protocol has to be repeated in parallel to get
a lower abort probability, then the round complexity is still 14, and the amortized communication
complexity goes up to 4× 78l = 312l multiplications.

6.6 Digit-Bit-wise-Subtraction

In this section, we will describe in detail the restricted version, Digit-Bit-wise-Subtraction∗, which
requires that the minuend is not less than the subtrahend. The general version, which can be realized
using the techniques in the Bitwise-Subtraction protocol and which is not used in the paper, is omitted
for simplicity.
•The Restricted Digit-Bit-wise-Subtraction We will now describe in detail the Digit-Bit-

wise-Subtraction∗ protocol. This protocol is novel and is the most important primitive in our “Base-m
Digit-Bit-Decomposition” protocol. Similar to the case in the Digit-Bit-wise-LessThan protocol, we
will sometimes view the digit-bit-wise representation of an integer as a binary number directly. We
will explain why we can do this in detail later. The details of the protocol is presented in Figure 8.

Correctness: When calling the BORROWS protocol, we view the digit-bit-wise representation of
x and y as two binary numbers X and Y . This does make sense because of the following. For any two
binary numbers

16

The restricted Digit-Bit-wise-Subtraction protocol, Digit-Bit-wise-Subtraction∗(·), for computing the
digit-bit-wise sharing of the difference between two digit-bit-wise shared values with the minuend
not less than the subtrahend.

Input: [x]mD,B = ([xl(m)−1]
m
B , ..., [x1]

m
B , [x0]

m
B) and [y]mD,B = ([yl(m)−1]

m
B , ..., [y1]

m
B , [y0]

m
B) satisfying

x ≥ y.
Output: [x− y]mD,B = [d]mD,B = ([dl(m)−1]

m
B , ..., [d1]

m
B , [d0]

m
B).

Process:

[X]B ← ([x
L(m)−1
l(m)−1]p, ..., [x

1
l(m)−1]p, [x

0
l(m)−1]p,

...

...

...

[x
L(m)−1
1]p, ..., [x

1
1]p, [x

0
1]p,

[x
L(m)−1
0]p, ..., [x

1
0]p, [x

0
0]p)

[Y]B ← ([y
L(m)−1
l(m)−1]p, ..., [y

1
l(m)−1]p, [y

0
l(m)−1]p,

...

...

...

[y
L(m)−1
1]p, ..., [y

1
1]p, [y

0
1]p,

[y
L(m)−1
0]p, ..., [y

1
0]p, [y

0
0]p)

([b
L(m)−1
l(m)−1]p, ..., [b

1
l(m)−1]p, [b

0
l(m)−1]p,

...

...

...

[b
L(m)−1
1]p, ..., [b

1
1]p, [b

0
1]p,

[b
L(m)−1
0]p, ..., [b

1
0]p, [b

0
0]p)← BORROWS([X]B, [Y]B)

(8.a)

[t00]p = [x00]p − [y00]p + 2[b00]p (8.b)

For j = 1, ..., L(m)− 1, in parallel: [tj0]p = [xj0]p − [yj0]p + 2[bj0]p − [bj−10]p.
For i = 1, ..., l(m) − 1 do

[t0i]p = [x0i]p − [y0i]p + 2[b0i]p − [b
L(m)−1
i−1]p

For j = 1, ..., L(m)− 1, in parallel: [tji]p = [xji]p − [yji]p + 2[bji]p − [bj−1i]p.
End for (8.c)

C ← 2L(m) −m . Note that C is public. (8.d)

For i = 0, 1, ..., l(m) − 1 do

[ti]
m
B ← ([t

L(m)−1
i]p, ..., [t

1
i]p, [t

0
i]p)

If m < 2L(m) then .Recall that m < 2L(m) means m is not a power of 2.

[di]
m
B ← Bitwise-Subtraction∗

(
[ti]

m
B ,
(

[b
L(m)−1
i]p?C : 0

))
(8.e)

Else
[di]

m
B ← [ti]

m
B

End if
End for (8.f)

[x− y]mD,B = [d]mD,B ← ([dl(m)−1]
m
B , ..., [d1]

m
B , [d0]

m
B)

Return [x− y]mD,B

Figure 8: The Digit-Bit-wise-Subtraction∗ Protocol

17

[S]B =
(

[Sl−1]p, ..., [S1]p, [S0]p

)
and [T]B =

(
[Tl−1]p, ..., [T1]p, [T0]p

)
and any bit-position i, when we are computing S − T , the fact that “A borrow is set at position i” is
equivalent to the fact that

[S](i,...,1,0) =
(

[Si]p, ..., [S1]p, [S0]p

)
is less than [T](i,...,1,0) =

(
[Ti]p, ..., [T1]p, [T0]p

)
.

What’s more, as is mentioned in Section 6.4, both in the digit-bit-wise representation case and in the
binary case, the relationship between the size of two numbers is determined by the left-most differing
bits of them. So, concluding the above, we can say that the fact that “A borrow is set at (bit) position
i in the digit-bit-wise representation case” is equivalent to the fact that “A borrow is set at (bit)
position i in the binary case”. So, we can get the correct borrow bits by calling the BORROWS

protocol with [X]B and [Y]B as inputs. Note that for i ∈ {0, 1, ..., l(m) − 1}, [b
L(m)−1
i]p is in fact the

bit borrowed by the i′th digit (from the (i + 1)′th digit).
From line (8.b) to line (8.c), we calculate every bit of the difference as in the binary case. This is

of course not right when m < 2L(m) because, in this case, a “1” in the (i + 1)′th digit corresponds to
“m” in the i′th digit, not “2L(m)”. Here is an example.

When m = 10, we have L(m) = dlog 10e = 4, i.e. we use 4 bits to represent a base-10 digit. In
this case 2L(m) = 24 = 16. If the least significant digit d0 borrows a “1” from d1, then d0 should view
this “1” as “10” (which is the base m), not “16” (which is 2L(m)).

From line (8.b) to line (8.c), we (temporarily) ignore the above problem and calculate every bit
as in the binary case. Then, to get the final result, we use the commands from line (8.d) to line (8.f)
to “revise” the result. Specifically, if m < 2L(m), then for every digit-position i ∈ {0, 1, ..., l(m) − 1},
when b

L(m)−1
i = 1, which means the i′th digit borrows a “1” from the (i + 1)′th digit, we set [di]

m
B =

[ti]
m
B −

(
2L(m) −m

)
.

Privacy: Privacy follows readily from the fact that we only call private sub-protocols.
Complexity: There are only two sub-protocols that count for complexity. One is the BORROWS

in statement (8.a), the other is the Bitwise-Subtraction∗ in line (8.e). The length of the inputs to the
BORROWS protocol is L(m)·l(m) ≈ l, so this sub-protocol costs 15 rounds and 47l log l multiplications;
when m < 2L(m), the Bitwise-Subtraction∗ protocol is involved l(m) times (with inputs of length
L(m)) and costs 15 rounds and l(m) × 47 × L(m) log (L(m)) ≈ 47l log (L(m)) multiplications. Thus,
the total complexity of this protocol is 30 rounds and 47l log l + 47l log (L(m)) multiplications. The
communication complexity is upper bounded by 94l log l multiplications since L(m) ≤ l.
•A Simplified Version If we do not need [x−y]mD,B but (only) need [x−y]mD instead, a simplified

version of the above protocol, Digit-Bit-wise-Subtraction∗−, can be obtained by simply replacing all
the statements after statement (8.a) (in Figure 8) with the following:

[d0]
m
p = [x0]

m
p − [y0]

m
p + m[b

L(m)−1
0]p

For i = 1, ..., l(m) − 1 in parallel: [di]
m
p = [xi]

m
p − [yi]

m
p + m[b

L(m)−1
i]p − [b

L(m)−1
i−1]p

[x− y]mD = [d]mD ← ([dl(m)−1]
m
p , ..., [d1]

m
p , [d0]

m
p)

Return [x− y]mD

Note that the above process is free. Correctness and privacy is straightforward. The complexity of
this protocol goes down to 15 rounds and 47l log l multiplications as the expensive Bitwise-Subtraction∗

protocol is omitted.

If this (simplified) protocol is constructed from scratch, then, for relatively large m, the borrow

bits for every digit-position, i.e. [b
L(m)−1
i]p for i ∈ {0, 1, ..., l(m) − 1}, can be obtained with a lower

cost. For every digit-position i ∈ {0, 1, ..., l(m) − 1}, ei ∈ {S, P,K} can be obtained by calling the

18

linear primitive Bitwise-LessThan. Specifically, we have

ei = S ⇔ [xi]
m
B < [yi]

m
B ;

ei = P ⇔ [xi]
m
B = [yi]

m
B ;

ei = K ⇔ [xi]
m
B > [yi]

m
B .

So, using the Bitwise-LessThan protocol in both ways, which costs l +
√
l more multiplications

and no more rounds than one single invocation [Tof09], we can get all the ei
′s. Then as in the

BORROWS protocol (or the CARRIES protocol), the target borrow bits (for every digit-position) can
be obtained by using a generic prefix protocol which costs 15 rounds and 47l(m) log l(m) multiplications.
So the Digit-Bit-wise-Subtraction∗− protocol can be realized in 6+15=21 rounds and (less than) 16l+

47l(m) log
(
l(m)

)
multiplications. Recall that l(m) = dlogmpe. Then for relatively large m, e.g. m ≈ p

1
10

where l(m) = 10, the communication complexity may be very low.

7 Comments

As in [NO07], although we describe all our protocols in the secret sharing setting, our techniques are
also applicable to the threshold homomorphic setting. All the protocols in our paper can be similarly
realized in this setting. However, some of the protocols in this setting may be less efficient than their
counterpart in the secret sharing setting because the Random-Bit protocol, which is a basic building
block, is more expensive in the threshold homomorphic setting.

It is easy to see that using our “Base-m Digit-Decomposition” protocol which extracts all the
base-m digits of the shared input, we can also solve the modulo reduction problem (which requires
only the least significant base-m digit). However, our Pub-MR(·) protocol is meaningful because it
achieves linear communication complexity and thus is much more efficient.

Obviously, we can say that the bit-decomposition protocol (of [DFK+06]) is a special case of our
“Base-m Digit-Bit-Decomposition” protocol when m is a power of 2. In fact, we can also view the
bit-decomposition protocol as a special case of our enhanced public modulo reduction protocol when
the modulus m is just p, i.e. we have

[x]B = Bit-Decomposition([x]p) = Enh-Pub-MR([x]p, p)

for any x ∈ Zp. Our enhanced public modulo reduction protocol can handle not only the special
case where m = p but also the general case where m ∈ {2, 3, ..., p − 1}, so it can also be viewed as a
generalization to bit-decomposition.

We note that, in [Tof09], a novel technique is proposed which can reduce the communication com-
plexity of the bit-decomposition protocol to almost linear. We argue that their technique can also be
used in our “Base-m Digit-Bit-Decomposition” protocol (as well as our “Base-m Digit-Decomposition”
protocol) to reduce the (communication) complexity to almost linear, because their technique is in fact
applicable to any PreFix-◦ (or PostFix-◦) protocol (which is a dominant factor of the communication
complexity) assuming a linear protocol for computing the UnboundedFanIn-◦ exists, which is just the
case in our protocols.

8 Applications

Here we show some applications of our protocols. All application protocols proposed here are constant-
rounds and unconditionally secure. Recall that in this paper we focus on integer arithmetic in the
information theory setting. The underlying linear secret sharing scheme is built in field Zp where p is
a prime with bit-length l.

19

8.1 Efficient Integer Division Protocol

Given a shared value [x]p and a public modulus m, the integer division protocol

int div : Zp → Zp, x 7→
⌊ x
m

⌋
can be realized efficiently using our Pub-MR(·) protocol. Denote t =

⌊
x
m

⌋
, then we have x = tm +

(x mod m). So we can see that, if (x mod m) can be obtained in linear communication complexity,
which is just the case in our Pub-MR(·) protocol, then t =

⌊
x
m

⌋
can also be obtained in linear

complexity by setting
t = (x− (x mod m))

(
m−1 mod p

)
mod p.

8.2 Efficient Divisibility Test Protocol

The divisibility test problem can be formalized as follows:

[m
?

| x]p ← Divisibility-Test([x]p,m),

where x ∈ Zp, m ∈ {2, 3, ..., p− 1}, (m
?

| x) ∈ {0, 1} and (m
?

| x) = 1 iff m is a factor of x. Obviously,

(m
?

| x) = 1 ⇔ (x mod m) = 0.

So, in a divisibility test protocol, the parties need only to obtain (the sharing or the bitwise sharing
of) x mod m and then decide whether it is 0. We provide two options for this task below.

Option 1: First the parties get [x mod m]p using our Pub-MR(·) protocol. Then using the
Equality-Test protocol or the Probabilistic-Equality-Test protocol in [NO07], which is realized without
bit-decomposition and achieves constant round complexity and linear communication complexity, the
parties can determine whether (x mod m) = 0 holds. When the Equality-Test protocol of [NO07] is
involved, the total complexity of the above procedure is 8+22 = 30 rounds and 81l+(326l+28L(m)+
3) ≈ 407l + 28L(m) multiplications.

Option 2: Using our enhanced public modulo reduction protocol, Enh-Pub-MR(·), the parties
can get

[x mod m]B = ([x
L(m)−1
0]p, ..., [x

1
0]p, [x

0
0]p).

Then the parties can compute [(x mod m)
?
= 0]p as

L(m)−1∧
i=0

(1− [xi0]p)

by using an unbounded fan-in And [DFK+06]. The overall complexity of “Option 2” is 5 + 37 = 42
rounds and

5l + (326l + 34L(m) + 47L(m) log (L(m))) = 331l + 34L(m) + 47L(m) log (L(m))

multiplications.

Recall that L(m) ≤ l. Thus the communication complexity of “Option 1” is always linear. However,
this is not the case in “Option 2”. In fact, when m is large enough, e.g. L(m) = l, the asymptotic
communication complexity (of “Option 2”) goes up to O(l log l). However, when m is relatively small,
e.g. m = 10 which is often the case in practice, “Option 2” can be a better choice.

20

8.3 Conversion of Integer Representation between Number Systems

In multiparty computation, being able to convert integer representation between different number
systems is of both theoretical and practical interest. This can be done using our “Base-m Digit-
Decomposition” protocol. For example, given the sharings of the base-M digits of integer x, i.e. [x]MD ,
the parties can obtain the sharings of the base-N digits of x, i.e. [x]ND , as follows. First get the
sharing of x, i.e. [x]p. This can be easily done by a linear combination which is free. Then by running
Digit-Decomposition([x]p, N), the parties can get the expected result, i.e. [x]ND .

8.4 Base-10 Applications

Given a shared value [x]p and m = 10 as inputs, our “Base-m Digit-Decomposition” protocol (as well
as our “Base-m Digit-Bit-Decomposition” protocol) can output the sharings of the base-10 digits of
x. This is meaningful because in real life, integers are (almost always) encoded base-10. We believe
that, in multiparty computation for practical use, being able to de-composite a secret shared integer
into (the sharings of) its base-10 digits will provide us with a lot of convenience.

9 Conclusion and Future Work

In this paper, we give an answer to the open problem whether the public modulo reduction problem can
be solved without relying on bit-decomposition. We propose a linear, constant-rounds protocol (i.e. the
Pub-MR(·) protocol) for the public modulo reduction problem without relying on bit-decomposition.
What’s more, we generalize the bit-decomposition protocol, which is a powerful tool for multiparty
computation, to the “Base-m Digit-Bit-Decomposition” protocol, which can convert the sharing of
secret x into the sharings of the base-m digits of x, along with the bitwise sharing of every digit. We
believe that our public modulo reduction protocol and “Base-m Digit-Bit-Decomposition” protocol
will be useful both in theory and application.

Although we are successful in providing an (efficient) solution for the public modulo reduction
problem, we fail in solving the private modulo reduction problem where the modulus (i.e. the base
m) is also secret shared. The absence of the knowledge of the exact value of m makes our techniques
useless. We leave it an open problem to construct efficient protocols for private modulo reduction
without relying on bit-decomposition.

Acknowledgments.

We would like to thank the anonymous reviewers for their careful work and helpful comments.

References

[ACS02] Algesheimer, J., Camenisch, J.L., Shoup, V.: Efficient Computation Modulo A Shared
Secret with Application to the Generation of Shared Safe-Prime Products. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417-432. Springer, Heidelberg (2002)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Noncryptographic
Fault-Tolerant Distributed Computations. In: 20th Annual ACM Symposium on Theory
of Computing, pp. 1-10. ACM Press, New York (1988)

21

[CDN01] Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty Computation from Threshold Ho-
momorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
280-300. Springer, Heidelberg (2001)

[CFL83a] Chandra, A.K., Fortune, S., Lipton, R.J.: Lower Bounds for Constant Depth Circuits for
Prefix Problems. In: Dı́az J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 109-117. Springer,
Heidelberg (1983)

[CFL83b] Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded Fan-In Circuits and Associative
Functions. In: 15th Annual ACM Symposium on Theory of Computing, pp. 52-60. ACM
Press, New York (1983)

[CS10] Catrina, O., Saxena, A.: Secure Computation with Fixed-Point Numbers. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 35-50. Springer, Heidelberg (2010)

[DFK+06] Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure
Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and Exponen-
tiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285-304. Springer,
Heidelberg (2006)

[DN03] Damg̊ard, I.B., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation
from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 247-264. Springer, Heidelberg (2003)

[GMS10] Guajardo, J., Mennink, B., Schoenmakers, B.: Modulo Reduction for Paillier Encryptions
and Application to Secure Statistical Analysis. In: Sion, R. (ed.) FC 2010. LNCS, vol.
6052, pp. 375-382. Springer, Heidelberg (2010)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game or A Complete
Theorem for Protocols with Honest Majority. In: 19th Annual ACM Symposium on Theory
of Computing, pp. 218-229. ACM Press, New York (1987)

[GRR98] Gennaro, R., Rabin, M.O., Rabin, T.: Simplified Vss and Fast-Track Multiparty Com-
putations with Applications to Threshold Cryptography. In: 17th ACM Symposium on
Principles of Distributed Computing, pp.101-110. ACM Press, New York (1998)

[NO07] Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Comparison
without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 343-360. Springer, Heidelberg (2007)

[RT09] Reistad, T., Toft, T.: Linear, Constant-Rounds Bit-Decomposition. In: Lee, D., Hong, S.
(eds.) ICISC 2009. LNCS, vol 5984, pp. 245-257. Springer, Heidelberg (2010)

[Sha79] Shamir, A.: How to Share A Secret. Communications of the ACM 22(11), 612-613 (1979)

[ST06] Schoenmakers, B., Tuyls, P.: Efficient Binary Conversion for Paillier Encrypted Values. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522-537. Springer, Heidelberg
(2006)

[Tof07] Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis, University
of Aarhus (2007),
http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf

22

http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf

[Tof09] Toft, T.: Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared Values. In:
Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357-371. Springer, Heidelberg (2009)

23

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Notations and Conventions
	Known Primitives

	A Simple Introduction to Our New Primitives
	Multiparty Computation for Modulo Reduction without Bit-Decomposition
	A Generalization to Bit-Decomposition
	Realizing the Primitives
	Bitwise-Subtraction
	Computing the Borrow Bits
	Random-Digit-Bit
	Digit-Bit-wise-LessThan
	Random-Solved-Digits-Bits
	Digit-Bit-wise-Subtraction

	Comments
	Applications
	Efficient Integer Division Protocol
	Efficient Divisibility Test Protocol
	Conversion of Integer Representation between Number Systems
	Base-10 Applications

	Conclusion and Future Work

