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Abstract

In this work, we initiate the study of position-based cryptography in the quantum setting. The aim
of position-based cryptography is to use the geographical position of a party as its only credential. This
has interesting applications, e.g., it enables two military bases to talk to each other over insecure (i.e.
neither private nor authenticated) channels and without having any pre-shared key, with the guarantee
that only parties within the bases learn the content of the conversation.

Position-based cryptography in the classical setting has recently been rigorously studied by Chan-
dran, Goyal, Moriarty and Ostrovsky [CGMO09]. They showed that position-based cryptography is
impossible when there are multiple colluding adversaries at various positions in geographical space, and
without assuming any restriction on these adversaries. This impossibility result holds even if the ad-
versaries are assumed to have limited computation power. On the positive side, they proved security
of certain position-based cryptographic schemes in the so-called Bounded Retrieval Model (BRM). The
BRM is a very strong assumption. Very informally, their model assumes that a huge amount of infor-
mation can be sent in an instantaneous “burst” of data and that adversaries can not retrieve nor store
all the data from such a burst. Their work left open the interesting question whether it is possible to
develop position-based secure protocols solely based on the laws of physics and without any adversarial
restrictions.

This is exactly the question that we resolve in this paper. That is, we investigate the possibility of
doing position-based cryptography in the quantum setting. We present schemes for several important
position-based cryptographic tasks: positioning, authentication, and key exchange, and we prove them
unconditionally secure, i.e., without assuming any restriction on the adversaries (beyond the laws of
quantum mechanics). Our position-based key exchange scheme for instance solves the above motivating
example of privately communicating between military bases, without using secure channels or a pre-
shared key. At the core of our security proofs lies the strong complementary information tradeoff recently
introduced by Renes and Boileau [RB09], which can also be understood as an entropic uncertainty
relation with quantum side information [BCC+09]. An attractive feature of all our schemes is that they
only involve “simple” quantum operations, namely to prepare, communicate and measure-upon-arrival
individual qubits; no quantum computations are needed.

We stress that the above position-based tasks are impossible in the classical setting without limiting
the adversary (e.g. his information retrieval bound). Therefore, our work shows that position-based
quantum cryptography is one of the rare examples besides QKD for which there is such a strong separa-
tion between classical and quantum cryptography, i.e., where quantum cryptography offers unconditional
security whereas by classical cryptographic means security is impossible if the adversary is not restricted.

Besides the schemes for which we give rigorous security proofs, we also present a couple of significantly
more efficient schemes for which we can merely conjecture security; proving them secure (or insecure)
remains an interesting challenge. Our results open a fascinating new direction for position-based security
in cryptography where security of protocols is solely based on the laws of physics and proofs of security
do not require any pre-existing infrastructure.
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1 Introduction

1.1 Background

Recently, Chandran, Goyal, Moriarty, and Ostrovsky [CGMO09] introduced the notion of position-based
cryptography. The goal of position-based cryptography is to use the geographical position of a party as its
only “credential”. For example, one would like to send a message to a party at a geographical position pos
with the guarantee that the party can decrypt the message only if he or she is physically present at pos.
As noted in [CGMO09], such a protocol could have important applications: if we trust physical perimeter
security and so can guarantee that any person entering a secure facility has been authorized to do so, then
one can send messages to a party present inside the facility or allow such parties to access confidential
data without having to share any secret or credential information with them.

A central task in position-based cryptography is the problem of secure positioning. We have a prover P
at position pos, wishing to convince a set of verifiers V0, . . . , Vk (at different points in geographical space)
that he (i.e. the prover) is indeed at that position pos. The prover can run an interactive protocol with the
verifiers in order to do this. The main technique for such a protocol is known as distance bounding [BC94].
In this technique, a verifier sends a random nonce to P and measures the time taken for P to reply back
with this value. Assuming that communication takes place at the speed of light, this technique gives an
upper bound on the distance of P from the verifier.

The problem of secure positioning has been studied before in the field of wireless security, and there
have been several proposals for this task ([BC94, SSW03, VN04, Bus04, CH05, SP05, ZLFW06, CCS06]).
However, [CGMO09] show that there exists no protocol for secure positioning that offers security in the
presence of multiple colluding adversaries P̂1, . . . , P̂`. In other words, the set of verifiers cannot distinguish
between the case when they are interacting with an honest prover at pos and the case when they are
interacting with multiple colluding dishonest provers, none of whom are at position pos. Their impossi-
bility result holds even if we make computational hardness assumptions, and it also rules out most other
interesting position-based cryptographic tasks.

In light of the strong impossibility result, [CGMO09] considered a model in which verifiers can broadcast
large bursts of information and there is a bound on the amount of information that the set of adversaries
can retrieve (this model is known as the Bounded Retrieval Model (BRM) and has been used widely in
cryptography). In this model, [CGMO09] constructed information-theoretically secure protocols for the
task of secure positioning as well as position-based key exchange (wherein the verifiers in addition to
verifying the position claim of a prover, also exchange a secret key with the prover). While these protocols
give us a way to realize position-based cryptography, the BRM has its drawbacks. Firstly, it requires
verifiers to be able to broadcast large bursts of information and this might be difficult to do; secondly, and
perhaps more importantly, the bound on the amount of information that an adversary retrieves might be
hard to impose. This leaves us with the following question—is there any other assumption or setting in
which position-based cryptography is realizable?

1.2 Our Approach And Our Results

In this work, we initiate the study of position-based cryptography in the quantum setting. To start
with, let us briefly explain why moving to the quantum setting might be useful. The impossibility result
of [CGMO09] relies heavily on the fact that an adversary can locally store all information he receives and
at the same time share this information with other, colluding adversaries, located elsewhere. Recall that
the positive result of [CGMO09] in the BRM circumvents the impossibility result by assuming that an
adversary cannot store all information he receives. By going to the quantum setting, one may be able to
circumvent the impossibility result thanks to the following observation. If some information is encoded
into a quantum state, then the above attack fails due to the no-cloning principle: the adversary can either
store the quantum state or send it to a colluding adversary (or do something in-between, like store part
of it), but not both! Thus, going to the quantum setting may indeed be a promising approach.

We show in this paper, for the first time, that this is really the case. We put forward quantum cryp-
tographic schemes for several position-based tasks: secure positioning, authentication, and key exchange,
and we prove these scheme unconditionally secure against an arbitrary coalition of adversaries. As already
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mentioned, a secure positioning scheme can be used to convince the verifiers V0, . . . , Vk of the geographic
position pos of P . A position-based authentication scheme on the other hand convinces the verifiers that a
message m originates from P at position pos. Finally, a position-based key exchange scheme ensures that
the verifiers share a secret key with P at position pos, and anyone that is not at position pos does not
have any information regarding the key. If this is possible, and the key is sufficiently long, then perfectly
secure communication with a device only located in a certain position is possible. In this paper, we resolve
all these questions in the affirmative, in arbitrary dimension, and without any computational nor physical
assumptions, and only using quantum laws of physics.

We stress that we prove security of our schemes for the above tasks without any restriction on the
power of the adversaries; they may have unbounded classical and quantum memory, and they may have
unbounded computing power; the only assumption is that the laws of quantum mechanics hold. Therefore,
our results show that position-based quantum cryptography is one of the rare examples besides QKD for
which there is a strong separation between classical cryptography and quantum cryptography, in that
the latter offers unconditional security whereas the former does not offer any security if the adversary is
unrestricted.

An additional attractive feature of all our solutions is that our schemes merely require one of the
verifiers, V0, to prepare individual qubits and send them to P , and P needs to measure them immediately
upon arrival. No quantum computation is needed, and all other communication may be classical.

1.3 Our Schemes in More Detail

Secure positioning. Our secure positioning scheme is extremely simple. Let us briefly discuss here the
1-dimensional case in which we have two verifiers V0 and V1, and a prover P at position pos that lies on
the straight line between V0 and V1. Now, to verify P ’s position, V0 sends a BB84 qubit Hθ|x〉 to P , and
V1 sends the corresponding basis θ to P , so that Hθ|x〉 and θ arrive at position pos at the same time. P
then has to measure the qubit in the given basis to obtain x, and immediately send x to V0 and V1, who
verify the correctness of x and if it has arrived “in time”. The intuition why this is secure is the following.
Consider a dishonest prover P̂0 between V0 and P , and a dishonest prover P̂1 between V1 and P .1 When
P̂0 receives the BB84 qubit, he does not know yet the corresponding basis θ. Thus, if he measures it
immediately when he receives it, then he is likely to measure it in the wrong basis and P̂0 and P̂1 will not
be able to provide the correct x. However, if he waits until he knows the basis θ, then it is not too hard
to see that P̂0 and P̂1 will be too late in sending x to V1 in time. And, similarly, if he forwards the BB84
qubit to P̂1, who receives θ before P̂0 does, then P̂0 and P̂1 will be too late in sending x to V0. It seems
that in order to break the scheme P̂0 needs to store the qubit until he receives the basis θ and at the same
time send a copy of it to P̂1. But this is impossible by no-cloning!

Proving the above intuition correct is non-trivial. Our proof is based on the strong complementary
information tradeoff (CIT) due to Renes and Boileau [RB09] (see also [BCC+09]), and it guarantees that
for any strategy, the success probability of P̂0 and P̂1 is bounded by approximately 0.89. By repeating the
above simple scheme sequentially, we obtain a secure multi-round positioning scheme with exponentially
small soundness error. On the other hand, parallel repetition of the above scheme would result in a more
efficient 1-round scheme. However, the security of the parallel repetition does not necessarily follow from
the security of the underlying scheme, and our techniques do not seem strong enough to prove security of
the parallel repetition. We leave the security of the parallel repetition as an interesting open problem.

The scheme can easily be extended to arbitrary dimension d. The idea is to involve additional verifiers
V2, . . . , Vd and have the basis θ secret-shared among V1, V2, . . . , Vd. Details are given later.

Position based authentication. Our position-based authentication scheme is based on our secure
positioning scheme, combined with a technique used by Renner and Wolf in [RW03]. The idea is to start
with a “weak” authentication scheme for a 1-bit message m, which works as follows. The verifiers and P
execute the secure positioning scheme; if P wishes to authenticate m = 1, then P correctly finishes the
scheme by sending x back, but if P wishes to authenticate m = 0, then P sends back an “erasure” ⊥ instead

1It is not too hard to see that additional dishonest provers do not help.
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of the correct reply x with some probability q (which needs to be carefully chosen). This authentication
scheme is weak in the sense that turning 1 into 0 is easy for the adversary, but turning a 0 into a 1 fails
with constant probability.

The idea is now to use a suitable balanced encoding of the actual message to be authenticated, so that
for any two messages, the adversary needs to turn many 0’s into 1’s. Unfortunately, an arbitrary balanced
encoding is not good enough. The reason for this is that we do not assume the verifiers and the honest P
to be synchronized. This allows the adversary to make use of honest P who is authenticating one index
of the encoded message, in order to authenticate another index of the modified encoded message towards
the verifiers.

Nevertheless, we show that for instance the specific encoding which maps 0 into 00...0 11...1 and 1
into 11...1 00...0, where all blocks of 0’s and 1’s are of length N/2, is good enough. First, we consider
a 1-bit message m. The security of the resulting authentication scheme follows from proving that in
order to succeed in changing a 0 to a 1 (or vice-versa), an adversary must succeed Ω(N) times in the
secure positioning protocol “on his own” (i.e., without the help of the prover P ) and hence has success
probability 2−Ω(N). To authenticate longer messages, we let P sequentially authenticate the message
bitwise. Proving that this is secure is non-trivial, again because of the out-of-sync issue, which potentially
allows the adversary to intertwine different executions of the authentication scheme between the verifiers
and the prover (unless we insert long delays between the executions). Nevertheless, with carefully chosen
parameters and a sophisticated analysis, we can show security of the authentication scheme, when executed
bit-by-bit, for arbitrary long messages.

Position based key exchange. Given a position-based authentication scheme, one can immediately
obtain a position-based key exchange scheme simply by (essentially) executing an arbitrary quantum-key-
distribution scheme (e.g. [BB84]), which assumes an authenticated classical communication channel, and
authenticate the classical communication by means of the position-based authentication scheme.

We also suggest a direct and significantly more efficient construction of a position-based key exchange
scheme. Unfortunately, our proof techniques do not seem to be strong enough to prove security of that
scheme, and thus we can merely conjecture its security. Proving its security (or showing that it is not
secure) hence remains an interesting open problem.

1.4 Organization of the paper

In Section 2, we begin by introducing notation, and presenting the relevant background from quantum
information theory. In Section 3, we describe our quantum model in more detail. We present our protocol
for secure positioning in Section 4. Section 5 is devoted to our position-based authentication protocol and
finally, in Section 6, we show how to combine the above tools to obtain position-based key exchange.

2 Preliminaries

2.1 Notation and Terminology

Quantum Systems and States. We assume the reader to be familiar with the basic concepts of quan-
tum information theory and refer to [NC00] for an excellent introduction; we merely fix some terminology
and notation here. A quantum system is associated with a complex Hilbert space, H = Cd, its state space.
The state of the system is given, in the case of a pure state, by a norm-1 state vector |ψ〉 ∈ H, respectively,
in the case of a mixed state, by a trace-1 positive-semi-definite matrix ρ : H → H, called density matrix.
We write D(H) for the set of all density matrices acting on H. We typically give quantum systems abstract
names, A, B etc., and we write HA for the state space of system A, and ρA (respectively |ϕA〉 in case of
a pure state) for the state of A. The state space of a bi-partite (or tri- or multi-partite) quantum system
AB, which consists of two (or three or more) subsystems, is given by the tensor product HAB = HA⊗HB.
If the state of AB is given by ρAB then the state of subsystem A on its own is given by the partial trace
ρA = trB(ρAB), and correspondingly for B. In order to simplify language, we are often a bit sloppy in
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distinguishing between a quantum system, its state, and the state vector or density matrix describing the
state.

Measuring a system A in basis {|i〉}i∈I , where {|i〉}i∈I is an orthonormal basis of HA, means applying
the measurement described by the projectors {|i〉〈i|}i∈I . This has the effect that outcome i ∈ I is observed
with probability pi = tr(|i〉〈i|ρA) (respectively pi = |〈i|ϕA〉|2 in case of a pure state). If A is a subsystem of a
bipartite system AB, then it means applying the measurement described by the projectors {|i〉〈i| ⊗ IB}i∈I ,
where IB is the identity operator on HB.

We measure closeness of two states ρ and σ in D(H) by their trace distance: δ(ρ, σ) := 1
2tr|ρ−σ|. One

can show that for any physical processing of ρ respectively σ, the two states behave in an indistinguishable
way except with probability at most δ(ρ, σ). Thus, informally, if δ(ρ, σ) is very small then, without making
a significant error, the quantum state ρ can be considered to be equal to σ.

Qubits. A qubit is a quantum system A with state spaceHA = C2. The computational basis {|0〉, |1〉} (for
a qubit) is given by |0〉 =

(
1
0

)
and |0〉 =

(
0
1

)
, and the Hadamard basis by H {|0〉, |1〉} = {H|0〉, H|1〉}, where

H denotes the 2-dimensional Hadamard matrix, which maps |0〉 to (|0〉+ |1〉)/
√

2 and |1〉 to (|0〉− |1〉)/
√

2.
The state space of an n-qubit system A = A1 · · ·An is given by HA = (C2)⊗n = C2 ⊗ · · · ⊗ C2.

Since we mainly use the above two bases, we can simplify terminology and notation by identifying the
computational basis {|0〉, |1〉} with the bit 0 and the Hadamard basis H {|0〉, |1〉} with the bit 1. Hence,
when we say that an n-qubit state is measures in basis θ ∈ {0, 1}n, we mean that the state is measured
qubit-wise where basis Hθi {|0〉, |1〉} is used for the i-th qubit.

An important example 2-qubit state is the EPR pair |ΦAB〉 = (|0〉|0〉+|1〉|1〉)/
√

2 ∈ HA⊗HB = C2⊗C2,
which has the following properties: if qubit A is measured in the computational basis, then a uniformly
random bit x ∈ {0, 1} is observed and qubit B collapses to |x〉, and, similarly, if qubit A is measured in
the Hadamard basis, then a uniformly random bit x ∈ {0, 1} is observed and qubit B collapses to H|x〉.

Classical and Hybrid Systems (and States). Subsystem X of a bipartite quantum system XE is
called classical, if the state of XE is given by a density matrix of the form

ρXE =
∑
x∈X

PX(x)|x〉〈x| ⊗ ρxE ,

where X is a finite set of cardinality |X | = dim(HX), PX : X → [0, 1] is a probability distribution, {|x〉}x∈X
is some fixed orthonormal basis of HX , and ρxE is a density matrix on HE for every x ∈ X . Such a state,
called hybrid state (also known as cq-state, for classical and quantum), can equivalently be understood as
consisting of a random variable X with distribution PX and range X , and a system E that is in state ρxE
exactly when X takes on the value x. This formalism naturally extends to two (or more) classical systems
X, Y etc. as well as to two (or more) quantum systems.

2.2 Some Quantum Information Theory

The von Neumann entropy of a quantum state ρ ∈ D(H) is given by H(ρ) := −tr
(
ρ log(ρ)

)
, where here and

throughout the article, log denotes the binary logarithm. H(ρ) is non-negative and at most log(dim(H)).
For a bi-partite quantum state ρAB ∈ D(HA ⊗HB), the conditional von Neumann entropy of A given B
is defined as H(ρAB|B) := H(ρAB) − H(ρB). In cases where the state ρAB is clear from the context, we
may write H(A|B) instead of H(ρAB|B). If X and Y are both classical, then H(X|Y ) coincides with the
classical conditional Shannon entropy. Furthermore, in case of conditioning (partly) on a classical state,
the following holds.

Lemma 1 For any tri-partite state ρABY with classical Y : H(A|BY ) =
∑

y PY (y) H(ρyAB|B).

Lemma 1 in particular implies that for classical Y : H(A) ≥ H(A|Y ) ≥ 0.2 The proof of Lemma 1 is given
in Appendix A.

2For the first inequality, one additionally needs the concavity of H in combination with Jensen’s inequality.
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The following theorem, known as Holevo bound [Hol73] (see also [NC00]), plays an important role in
many applications of quantum information theory. Informally, it says that measuring only reduces your
information. Formally, and tailored to the notation used here, it ensures the following.

Theorem 1 (Holevo bound) Let ρAB ∈ D(HA ⊗ HB) be an arbitrary bi-partite state, and let ρAY be
obtained by measuring B in some basis to observe (classical) Y . Then H(A|Y ) ≥ H(A|B).

For classical X and Y , the Fano inequality [Fan61] (see also [CT91]) allows to bound the probability
of correctly guessing X when having access to Y . In the statement below and throughout the article,
h : [0, 1] → [0, 1] denotes the binary entropy function defined as h(p) = −p log(p) − (1 − p) log(1 − p) for
0 < p < 1 and as h(p) = 0 for p = 0 or 1, and h−1 : [0, 1] → [0, 1

2 ] denotes its inverse on the branch
0 ≤ p ≤ 1

2 .

Theorem 2 (Fano inequality) Let X and Y be random variables with ranges X and Y, respectively,
and let X̂ be a guess for X computed solely from Y . Then q := P [X̂ 6=X] satisfies

h(q) + q log(|X | − 1) ≥ H(X|Y ) .

In particular, for binary X: q ≥ h−1
(
H(X|Y )

)
.

Note that by incorporating the Holevo bound, the Fano inequality can be generalized to hybrid states in
order to bound the probability of correctly guessing X by measuring and processing a quantum system E.3

2.3 Strong Complementary Information Tradeoff

The following entropic uncertainty principle, called strong complementary information tradeoff (CIT)
in [RB09] and generalized in [BCC+09], is at the heart of our security proofs. It relates the uncer-
tainty of the measurement outcome of a system A with the uncertainty of the measurement outcome when
the complementary basis is used instead, and it guarantees that there can coexist at most one system E
that has full information on both possible outcomes. Note that by the complementary basis θ̄ of a basis
θ = (θ1, . . . , θn) ∈ {0, 1}n, we mean the n-bit string θ̄ = (θ̄1, . . . , θ̄n) ∈ {0, 1}n with θ̄i 6= θi for all i.

Theorem 3 (CIT) Let |ψAEF 〉 ∈ HA ⊗HE ⊗HF be an arbitrary tri-partite state, where HA = (C2)⊗n.
Let the hybrid state ρXEF be obtained by measuring A in basis θ ∈ {0, 1}n, and let the hybrid state σXEF
be obtained by measuring A (of the original state |ψAEF 〉) in the complementary basis θ̄. Then

H(ρXE |E) + H(σXF |F ) ≥ n .

CIT as expressed above in particular implies the following.

Corollary 1 Let |ψAEF 〉 ∈ HA ⊗HE ⊗HF be an arbitrary tri-partite state, where HA = (C2)⊗n. Let Θ
be uniformly distributed in {0, 1}n and let X be the result of measuring A in basis Θ. Then

H(X|ΘE) + H(X|ΘF ) ≥ n .

Proof. By Lemma 1, we can write

H(X|ΘE) + H(X|ΘF ) =
1
2n
∑
θ

H(ρθXE |E) +
1
2n
∑
θ

H(ρθXF |F ) =
1
2n
∑
θ

(
H(ρθXE |E) + H(ρθ̄XF |F )

)
.

Note that ρθXE is obtained by measuring A of |ψAEF 〉 in basis θ (and ignoring F ), and ρθ̄XF is obtained by
measuring A of |ψAEF 〉 in the complementary basis θ̄ (and ignoring E). Hence, Theorem 3 applies and we
can conclude that H(ρθXE |E) + H(ρθ̄XF |F ) ≥ n and thus H(X|ΘE) + H(X|ΘF ) ≥ n. �

3We would like to point out that the resulting bound is not what is commonly known as the quantum Fano inequality.
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3 The Model

We informally describe the model we use for the upcoming sections, which is a quantum version of the
Vanilla (standard) model introduced in [CGMO09] (see there for a full description). We consider entities
V0, . . . , Vk called verifiers and an entity P , the (honest) prover. Additionally, we consider a coalition P̂ of
dishonest provers (or adversaries) P̂0, . . . , P̂`. All entities can perform arbitrary quantum (and classical)
operations and can communicate quantum (and classical) messages among them.4 For simplicity, we
assume that quantum operations and communication is noise-free; however, our results generalize to the
more realistic noisy case, assuming that the noise is low enough. We require that the verifiers have a private
and authentic channel among themselves, which allows them to coordinate their actions by communicating
before, during or after protocol execution. We stress however, that this does not hold for the communication
between the verifiers and P : P̂ has full control over the destination of messages communicated between
the verifiers and P (both ways). This in particular means that the verifiers do not know per-se if they are
communicating with the honest or a dishonest prover (or a coalition of dishonest provers).

The above model, which so far could be described by quantum interactive Turing machines, is now
extended by incorporating the notion of time and space. Each entity is assigned an arbitrary but fixed
position pos in the d-dimensional space Rd, and we assume that messages to be communicated travel with
the speed of light, and hence the time needed for a message to travel from one entity to another equals
the Euclidean distance between the two (assuming that the speed of light is normalized to 1). This holds
for honest and dishonest entities. We assume on the other hand that local computations take no time.

Finally, we assume that the verifiers have precise and synchronized clocks, so that they can coordinate
exact times for sending off messages and can measure the exact time at which a message is received. We
do not require P ’s clock to be precise or in sync with the verifiers. However, we do assume that P ’s clock
only runs forward (i.e. P cannot be reset). This is the place to mention that we consider only stand-
alone security, i.e., there exists only a single execution of a single honest prover, and we do not guarantee
concurrent security.

This model allows to perform reasonings of the following kind. Consider a verifier V0 that is at position
pos0 and who sends a challenge ch0 to the (supposedly honest) prover claiming to be at position pos. If
V0 receives a reply within time 2d(pos0, pos), where d(·, ·) is the Euclidean distance measure in Rd and
thus also measures the time a message takes from one point to the other, then V0 can conclude that he is
communicating with a prover that is within distance d(pos0, pos).

Throughout the article, we will always (sometimes implicitly) require that the honest prover P is
enclosed by the verifiers V0, . . . , Vk in that the prover’s position pos ∈ Rd lies within the tetrahedron, i.e.,
convex hull, Hull(pos0, . . . ,posk) ⊂ Rd formed by the respective positions pos0, . . . ,posk of V0, . . . , Vk.

4 Secure Positioning

A secure positioning scheme should allow a prover P at position pos ∈ Rd (in d-dimensional space) to
convince a set of k+1 verifiers V0, . . . , Vk, which are located at respective positions pos0, . . . ,posk ∈ Rd, that
he is indeed at position pos. We assume that P is enclosed by V0, . . . , Vk, i.e., pos ∈ Hull(pos0, . . . ,posk).
We require that the verifiers jointly accept if honest prover P is at position pos, and we require that the
verifiers reject with “high” probability in case of a dishonest prover that is not at position pos. The latter
should hold even if the dishonest prover consist of a coalition of collaborating dishonest provers P̂0, . . . , P̂`
at arbitrary positions apos0, . . . , apos` ∈ Rd with aposi 6= pos for all i. We refer to [CGMO09] for the
general formal definition of the completeness and security of a secure positioning scheme. In this article,
we focus on secure positioning schemes that are of the form as specified in the following definition.

Definition 1 A 1-round secure positioning scheme SP consists of a challenge generator Chlg, which
outputs a list of challenges (ch0, . . . , chk) and some auxiliary information x, and a response algorithm
Resp, which on input a list of challenges outputs a response x′. SP is said to have perfect completeness
if Resp(ch0, . . . , chk) = x with probability 1 for (ch0, . . . , chk) and x generated by Chlg.

4In order to obtain “practical” schemes, we will minimize the quantum operations of the honest entities and the quantum
communication among them.
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The algorithms Chlg and Resp are used as described in Figure 1 to verify the claimed position of a
prover P . We clarify that in order to have all the challenges arrive at P ’s (claimed) location pos at the
same time, the verifiers agree on a time T and each Vi sends off his challenge chi at time T −d(posi, pos).5

As a result, all chi’s arrive at P ’s position pos at time T . In step 3, Vi receives x′ in time if x′ arrives
at Vi’s position posi at time T + d(posi, pos). Throughout the article, we use this simplified terminology.
Furthermore, we are sometimes a bit sloppy in distinguishing a party, like P , from its location pos.

Common input to the verifiers: their positions pos0, . . . ,posk, and the (claimed) position pos of P .

0. V0 generates (ch0, . . . , chk) and x using Chlg, and sends chi and x to Vi for i = 1, . . . , k.

1. Every Vi sends chi to P in such a way that all chi’s arrive at the same time at P ’s position pos.

2. When all the chi’s arrive, P computes x′ := Resp(ch0, . . . , chk) and sends x′ to all Vi’s.

3. The Vi’s jointly accept if and only if all Vi’s receive the same x′ in time and x′ = x.

Figure 1: Generic 1-round positioning scheme.

We stress that we allow Chlg and Resp to be quantum algorithms and the challenges chi to be quantum
states, but for simplicity we require x and x′ to be classical. In our constructions, only ch0 will actually be
quantum, and ch1 up to chk will be classical; thus, we will only require quantum communication from V0 to
P , all other communication may be classical. Furthermore, in our constructions, the only thing quantum
about the algorithms Chlg and Resp will be that Chlg involves the preparation of a quantum state (namely
the challenge ch0) and Resp involves a measurement. Thus, no involved and currently infeasible quantum
computations are required.

Definition 2 A 1-round secure positioning scheme SP = (Chlg,Resp) is called ε-sound if for any posi-
tion pos ∈ Hull(pos0, . . . ,posk), and any coalition of dishonest provers P̂0, . . . , P̂` at arbitrary positions
apos0, . . . , apos`, all 6= pos, when executing the scheme from Figure 1 the verifiers accept with probability
at most ε. We then write SPε for such a protocol.

Obviously, for the problem we address here, we only need to consider either an honest prover P or a
coalition of dishonest provers P̂ . In the subsequent sections, where we study position-based authentication
and key exchange, we will also need to consider a coalition of dishonest provers that attack an honest
execution of the scheme between P and the verifiers.

A secure positioning scheme can also be understood as a (position-based) identification scheme, where
the identification is not done by means of a cryptographic key or a password, but by means of the geo-
graphical location.

4.1 The Basic Scheme in 1 Dimension

We propose the following basic 1-round secure positioning scheme, given in Figure 2. It is based on the
BB84 encoding. In all our protocols all parties abort if they receive any message which is inconsistent with
the protocol, for instance (classical) message with a wrong length, or different number of received qubits
than expected, etc.

5Recall, d(posi, pos) is the Euclidean distance between posi and pos and coincides with the time needed for chi to travel
from posi to pos (given that the speed of light is normalized to 1).
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0. V0 chooses two random bits x, θ ∈ {0, 1} and sends them privately to V1.

1. V0 prepares the qubit Hθ|x〉 and sends it to P , and V1 sends the bit θ to P , so that Hθ|x〉 and
θ arrive at the same time at P .

2. When Hθ|x〉 and θ arrive, P measures Hθ|x〉 in basis θ to observe x′ ∈ {0, 1}, and sends x′ to
V0 and V1.

3. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Figure 2: A secure positioning scheme SPεBB84 based on the BB84 encoding.

Theorem 4 The 1-round secure positioning scheme SPεBB84 from Figure 2 is ε-sound with ε = 1−h−1(1
2).

A numerical calculation shows that h−1(1
2) ≥ 0.11 and thus ε ≤ 0.89. A particular attack for a dishonest

prover P̂ , sitting in-between V0 and P , is to measure the qubit Hθ|x〉 in the Breidbart basis, resulting in
an acceptance probability of about 0.85. This shows that our analysis is rather tight.6

Proof. In order to analyze the positioning scheme it is convenient to consider an equivalent purified
version, given in Figure 3. The only difference between the original and the purified scheme is the point
in time when V0 measures A (indeed, preparing |ΦAB〉 and measuring A in basis θ is just one possible way
to prepare Hθ|x〉) and the point in time when V1 learns x. This, however, has no influence on the view
of the (dishonest or honest) prover, nor on the joint distribution of θ, x and x′, and thus neither on the
probability that V0 and V1 accept. It therefore suffices to analyze the purified version.

0. V0 and V1 privately agree on a random bit θ ∈ {0, 1}.
1. V0 prepares an EPR pair |ΦAB〉 ∈ HA ⊗ HB, keeps qubit A and sends qubit B to P , and V1

sends the bit θ to P , so that B and θ arrive at the same time at P .

2. When B and θ arrive, P measures B in basis θ to observe x′ ∈ {0, 1}, and sends x′ to V0 and V1.

3. Only now, when x′ arrives, V0 measures qubit A in basis θ to observe x, and privately sends x
to V1. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Figure 3: EPR version of SPεBB84.

We first consider security against two dishonest provers P̂0 and P̂1, where P̂0 is between V0 and P and
P̂1 is between V1 and P . In the end we will argue that a similar argument holds for multiple dishonest
provers on either side.

Since V0 and V1 do not accept if x′ does not arrive in time, any potentially successful strategy of P̂0

and P̂1 must look as follows. As soon as P̂1 receives the bit θ from V1, it forwards (a copy of) it to P̂0.
Also, as soon as P̂0 receives the qubit A, it applies an arbitrary quantum operation to the received qubit
A that maps it into a bipartite state E0E1 (with arbitrary state space HE0 ⊗HE1), and P̂0 keeps E0 and
sends E1 to P̂1. Then, as soon as P1 receives θ, it applies some measurement (which may depend on θ) to
E0 to obtain x̂0, and as soon as P̂1 receives E1, it applies some measurement (which may depend on θ) to
E1 to obtain x̂1, and both send x̂0 and x̂1 immediately to V0 and V1, respectively. We will now argue that
the probability that x̂0 = x and x̂1 = x is upper bounded by ε as claimed.

Let |ψAE0E1〉 ∈ HA⊗HE0 ⊗HE1 be the state of the tri-partite system AE0E1 after P̂0 has applied the
quantum operation to the qubit B. Note that the quantum operation and thus |ψAE0E1〉 does not depend
on θ. Recall that x is obtained by measuring A in either the computational (if θ = 0) or the Hadamard (if

6We suspect that our analysis is not fully tight and that 0.85 is the real soundness error.
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θ = 1) basis. Writing x, θ, etc. as random variables X, Θ, etc., it follows from CIT (specifically Corollary 1)
that

H(X|ΘE0) + H(X|ΘE1) ≥ 1 .

Let Y0 and Y1 denote the classical information obtained by P̂0 and P̂1 as a result of measuring E0 and E1,
respectively, with bases that may depend on Θ. By the Holevo bound (Theorem 1), it follows from the
above that

H(X|ΘY0) + H(X|ΘY1) ≥ 1 ,

therefore H(X|ΘYi) ≥ 1
2 for at least one i ∈ {0, 1}. By Fano’s inequality (Theorem 2), we can conclude

that the corresponding error probability qi = P [X̂i 6=X] satisfies

h(qi) ≥ 1
2

It thus follows that the failure probability q = P [X̂0 6=X ∨ X̂1 6=X] ≥ max {q0, q1} ≥ h−1(1
2), and the

probability of V0 and V1 accepting, P [X̂0 =X ∧ X̂1 =X] = 1− q, is indeed upper bounded by ε as claimed.
It remains to argue that more than two dishonest provers cannot do any better. This can be reasoned

similarly to above. Namely, in order to respond in time, the dishonest provers that are closer to V0 than
P must map the qubit A—possibly jointly—into a bipartite state E0E1 without knowing θ, and jointly
keep E0 and send E1 to the dishonest provers that are “on the other side” of P (i.e., closer to V1). Then,
the reply for V0 needs to be computed from E0 and θ (possibly jointly by the dishonest provers that are
closer to V0), and the response for V1 from E1 and θ. Thus, it can be argued as above that the success
probability is bounded by ε as claimed. �

4.2 Reducing the Soundness Error

In order to obtain a secure positioning scheme with a negligible soundness error, we can simply repeat
the 1-round scheme SPεBB84 from Figure 2. Repeating the scheme n times in sequence, where the verifiers
launch the next execution only after the previous one is finished, reduces the soundness error to εn. This
follows immediately from the security of the 1-round scheme.

Corollary 2 The n-fold sequential repetition of SPεBB84 from Figure 2 is εn-sound with ε = 1− h−1(1
2).

A more efficient way of repeating SPεBB84 is by repeating it in parallel: V0 sends n BB84 qubits
Hθ1 |x1〉, . . . ,Hθn |xn〉 and V1 sends the corresponding bases θ1, . . . , θn to P so that they all arrive at the
same time at P ’s position, and P needs to reply with the correct list x1, . . . , xn in time. This is obviously
more efficient in terms of round complexity and appears to be the preferred solution. Unfortunately, we do
not have a proof for the security of the parallel repetition of SPεBB84. We state its security as a conjecture
and leave it as an open problem to resolve it.

Conjecture 1 The n-fold parallel repetition of SPεBB84 from Figure 2 is δn-sound for some δ < 1.

We actually suspect δ to be cos(π/8)2 ≈ 0.85, which is obtained by measuring all qubits in the Breidbart
basis.

We would like to point out that, similar to the proof of Theorem 4, the CIT (Corollary 1) allows to
conclude that at least one of P̂0 and P̂1 has Shannon entropy n/2 in the n-bit string X to be guessed.
However, this is not sufficient to conclude that the guessing probability is negligible.

4.3 Secure Positioning in Higher Dimensions

The scheme SPεBB84 can easily be extended into higher dimensions. For the sake of concreteness, we consider
here 3 dimensions. For 3 dimensions, we need at set of (at least) 4 non-coplanar verifiers V0, . . . , V3, and
the prover P needs to be located inside the tetrahedron defined by the positions of the 4 verifiers.

The scheme for 3 dimensions is a generalization of the scheme SPεBB84 in Figure 2, where now the
challenges of the verifiers V1, V2 and V3 form a sum sharing of the basis θ, i.e., are random θ1, θ2, θ3 ∈ {0, 1}
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such that their modulo-2 sum equals θ. As specified in Figure 1, the state Hθ|x〉 and the shares θ1, θ2, θ3

are sent by the verifiers to P such that they arrive at P ’s (claimed) position at the same time. P can then
reconstruct θ and measure Hθ|x〉 in the correct basis to obtain x′ = x, which he sends to all the verifiers
who check if x′ arrives in time and equals x.

We can argue security by a reduction to the scheme in 1 dimension. We consider a coalition of dishonest
provers P̂0, . . . , P̂` at arbitrary positions but different to P . We may assume that P̂0 is closest to V0. It is
easy to see that there exists a verifier Vj such that d(P̂0, Vj) > d(P, Vj). Furthermore, we may assume that
Vj is not V0 and thus we assume for concreteness that it is V1. We now strengthen the dishonest provers
by giving them θ2 and θ3 for free from the beginning. Since, when θ2 and θ3 are given, θ can be computed
from θ1 and vice versa, we may assume that V1 actually sends θ as challenge rather than θ1. But now, θ2

and θ3 are now just two random bits, independent of θ and x, and are thus of no help to the dishonest
provers and we can safely ignore them.

As P̂0 is further away from V1 than P is, P̂0 cannot afford to store Hθ|x〉 until he has learned θ. Indeed,
otherwise V1 will not get a reply in time. Therefore, before he learns θ, P̂0 needs to apply a quantum
transformation to Hθ|x〉 with a bi-partite output and keep one part of the output, E0, and send the other
part, E1 in direction of V1. Note that this quantum transformation is independent of θ. Then, x̂0 and x̂1,
the replies that are sent to V0 and V1, respectively, need then to be computed from θ and E0 alone and
from θ and E1 alone. It now follows from the analysis of the scheme in 1 dimension that the probability
that both x̂0 and x̂1 coincide with x is at most ε = 1− h−1(1

2).

Corollary 3 The above generalization of SPεBB84 to d dimensions is ε-sound with ε = 1− h−1(1
2).

5 Position-Based Authentication

In this section we consider a new primitive: position-based authentication. In contrast to secure position-
ing, where the goal of the verifiers is to make sure that entity P is at the claimed location pos, here the
verifiers want to make sure that a given message m originates from an entity P that is at the claimed
location pos. We stress that it is not sufficient to first execute a secure positioning scheme with P to ensure
that P is at position pos and then have P send or confirm m, because a coalition of dishonest provers may
do a man-in-the-middle attack and stay passive during the execution of the positioning scheme but then
modify the communicated message m.

Formally, in a position-based authentication scheme, the prover takes as input a message m and the
verifiers V0, . . . , Vk take as input a message m′ and the claimed position pos of P , and we require the
following security properties.

εc-Completeness: If m = m′, if P is honest and at the claimed position pos, and if there is no (coalition
of) dishonest prover(s), then the verifiers jointly accept except with probability εc.

εs-Soundness: For any position pos ∈ Hull(pos0, . . . ,posk) and for any coalition of dishonest provers
P̂0, . . . , P̂` at locations all different to pos, if m 6= m′ then the verifiers jointly reject except with
probability εs.

We build a position-based authentication scheme based on our secure positioning scheme. The idea is
to incorporate the message to be authenticated into the replies of the positioning scheme. Our construction
is very generic and may also be useful for turning other kinds of identification schemes (not necessarily
position-based schemes) into corresponding authentication schemes. We begin by proposing a weak but
simple position-based authentication scheme for 1-bit message m.

5.1 Weak 1-bit authentication scheme

Let SPε be a secure 1-round secure positioning scheme between k + 1 verifiers V0, . . . , Vk and a prover P .
We require SPε to have perfect completeness and soundness ε < 1. SPε may for instance be the scheme
SPεBB84 from Section 4. We let ⊥ be some special symbol. We consider the weak authentication scheme
given in Figure 4 for a 1-bit message m ∈ {0, 1}. We assume that m has already been communicated to
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the verifiers and thus there is agreement among the verifiers on the message to be authenticated. The
weak authentication scheme works by executing the 1-round secure positioning scheme SPε, but letting P
replace his response x′ by an “erasure” (i.e. by ⊥) with probability q, where we choose 0 < q < (1− ε)/4.

0. V0 generates (ch0, . . . , chk) and x using Chlg and sends chi and x to Vi for i = 1, . . . , k.

1. Every verifier Vi sends chi to P in such a way that all chis arrive at the same time at P .

2. When the chi’s arrive, P computes the authentication tag t as follows and sends it back to all
the verifiers. If m = 1 then t := Resp(ch0, . . . , chk), and if m = 0 then t := ⊥ with probability q
and t := Resp(ch0, . . . , chk) otherwise.

3. If different verifiers have received different values for t, or it didn’t arrive in time, the verifiers
abort. Otherwise, they jointly accept if t = x or both m = 0 and t = ⊥.

Figure 4: A generic position-based weak authentication scheme wAUTHε for a 1-bit message m.

We now analyze the success probability of an adversary authenticating a bit m′ ∈ {0, 1}. We consider
the case where there is no honest prover present (we call this an impersonation attack), and the case where
an honest prover is active and authenticates the bit m 6= m′ (we call this a substitution attack).

The following properties are easy to verify and follow from the security property of SPε.

Lemma 2 Let P̂ be a coalition of dishonest provers not at the claimed position and trying to authenticate
message m′ = 1. In case of an impersonation attack, the verifiers accept with probability at most ε, and in
case of a substitution attack (with m = 0), the verifiers accept with probability at most δ = 1−q(1−ε) < 1.

On the other hand, P̂ can obviously authenticate m′ = 0 by means of a substitution attack with success
probability 1; however, informally, P̂ has bounded success probability in authenticating message m′ = 0
by means of an impersonation attack unless he uses tag ⊥. (This fact is used latter to obtain a strong
authentication scheme.)

Let us try to extend the above in order to get a strong authentication scheme. Based on the observation
that by performing a substitution attack on wAUTHε, it is easy to substitute the message bit m = 1 by
m′ = 0 but non-trivial to substitute m = 0 by m′ = 1, a first approach to obtain an authentication scheme
with good security might be to apply wAUTHε bitwise to a balanced encoding of the message. Such an
encoding should ensure that for any distinct messages m and m′, there are many positions in which the
encoding of m′ is 1 but then encoding of m is 0. Unfortunately, this is not good enough. The reason is
that P and the verifiers are not necessarily synchronized. For instance, assume we encode m = 0 into
c = 010101...01 and m′ = 1 into c′ = 101010...10, and authentication works by doing wAUTHε bit-wise on
all the bits of the encoded message. If P̂ wants to substitute m = 0 by m′ = 1 then he can simply do the
following. He tries to authenticate the first bit 1 of c′ towards the verifiers by means of an impersonation
attack. If he succeeds, which he can with constant probability, then he simply authenticates the remaining
bits 01010...10 of c by using P , who is happy to authenticate all of the bits of c = 010101...01! Because
of this issue of P̂ bringing P and the verifiers out of sync, we need to be careful about the exact choice of
the encoding of the message.

5.2 Secure Position-Based Authentication Scheme

To prevent the adversary from using the honest provers replay, we must encode m using a code with certain
properties. For this purpose we introduce the notion of dominating codes.

Definition 3 Let c ∈ {0, 1}N . A vector e ∈ {−1, 0, 1}2N is called an embedding of c if by removing all
the −1 entries in e we obtain c. Furthermore, for two strings c, c′ ∈ {0, 1}N we say that c′ dominates c
if for all embeddings e and e′ of c and c′ (at least) one of the following holds: (a) the number of positions
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i ∈ {1, . . . , 2N} for which e′i = 1 and ei < 1 is Ω(N), or (b) the number of positions for which e′i = 0 and
ei = −1 is Ω(N) and is larger than the number of positions for which e′i = 0 but ei ∈ {0, 1}.

For instance, c = 00...0 11...1 and c′ = 11...1 00...0, where the blocks of 0’s and 1’s are of length N/2,
dominate each other, which is not too hard to see. However, c̃′ = 0101...01 does not dominate c̃ = 1010...10,
since c̃′ can be embedded into ‡0101...01‡‡...‡ and c̃ into 1010...10‡‡...‡, where ‡ represents −1.

Definition 4 A code C is dominating, if any two codewords in C dominates each other.

Corollary 4 Let C be a dominating code (with |C| ≥ 2) and let c ∈ C. Define n0, n1 to be the number of
0s and the number of 1s in c, then for every c ∈ C, n0 = Ω(N), n1 = Ω(N).

Let wAUTHε be the above weak authentication scheme satisfying Lemma 2. In order to authenticate
a 1-bit message m ∈ {0, 1} in a strong way, an encoding c of m using a dominating code C is bit-wise
authenticated by means of wAUTHε, and the verifies perform statistics over the number of ⊥s received.
A possible choice for C is the balanced repetition code CBR = {00...0 11...1, 11...1 00...0} ⊂ {0, 1}N . The
resulting authentication scheme is given in Figure 5; as for the weak scheme, we assume that the message
m has already been communicated.

0. P and the verifiers encode m into a codeword c = (c1, . . . , cN ) ∈ C, for a dominating code C.

1. For j = 1, . . . , N , the following is repeated in sequence.

2.1 P authenticates cj by means of wAUTHε. Let ti be the corresponding tag received.
2.2 The verifiers keep track of the number of rounds in which P replied with ⊥, i.e., they compute

n0 = | {j : cj = 0} | and n⊥ = | {j : cj = 0 ∧ tj = ⊥} |.
2. If any of the wAUTHε executions fails, or if n⊥ > 2qn0 then the verifiers jointly reject. Otherwise,
m is accepted.

Figure 5: A generic position-based authentication scheme AUTH.

Theorem 5 The above generic position-based authentication scheme is 2−Ω(N)-complete.

Proof. An honest prover which follows the above scheme can fail only if n⊥ > 2qn0. Using Chernoff
bound [Che52], the probability of having n⊥ > 2qn0 is upper bounded by e−qn0/2. Since for every c ∈ C,
n0 = Ω(N) (Corollary 4), the theorem follows. �

Before we analyze the security of the authentication scheme, let us discuss the possible attacks on it.
Here we treat P̂ as a single identity, however P̂ represents a collaboration of adversaries. Similarly, we
refer the k + 1 verifiers as a single entity, V . We point out that we do not assume that honest P and V
have synchronized clocks. Therefore, we allow P̂ to arbitrarily schedule and interleave the N executions of
wAUTHε that V performs with the N executions that P performs. The only restriction on the scheduling
is that P as well as V perform their executions of wAUTHε in the specified order.

This means that at any point in time during the attack when P has executed wAUTHε for the bits
c1, . . . , cj−1 and V has executed wAUTHε for the bits c′1, . . . , c

′
j′−1 and both are momentarily inactive (at

the beginning of the attack: j = j′ = 1), P̂ can perform one of the following three actions. (1) Activate
V to run wAUTHε on c′j′ but not active P ; this corresponds to an impersonation attack. (2) Activate V
to run wAUTHε on c′j′ and activate P to run wAUTHε on cj ; this corresponds to a substitution attack if
cj 6= c′j′ . (3) Activate P to run wAUTHε on cj but not activate V ; this corresponds to “fast-forwarding”
P . We note that P̂ ’s choice on which action to perform may be adaptive and depend on what he has seen
so far. However, since V and P execute wAUTHε for each position within c independently, information

12



gathered from previous executions of wAUTHε does not improve P̂ ’s success probability to break the next
execution.

It is now easy to see that any attack with its (adaptive) choices of (1), (2) or (3) leads to embeddings
e and e′ of c and c′, respectively. Indeed, start with empty strings e = e′ = ∅ and update them as follows.
For every of P̂ ’s rounds where he chooses between (1), (2) or (3), update e by e‡ and e′ by e′c′j′ if P̂ chooses
(1), update e by ecj and e′ by e′c′j′ if he chooses (2), and update e by ecj and e′ by e′‡ if he chooses (3).
In the end, complete e and e′ by padding them with sufficiently many ‡s to have them of length 2N . It is
clear that the obtained e and e′ are indeed valid embeddings of c and c′, respectively, with ‡ representing
positions with value −1.

Theorem 6 For any ε > 0, the position-based authentication scheme from Figure 5 is 2−Ω(N)-sound.

Proof. Let m and m′ 6= m be the messages input by P and the verifiers, respectively, and let c and c′

be their encodings. Furthermore, let e and e′ be their embeddings, determined (as explained above) by
P̂ ’s attack. By the condition on the dominating code C we know that one of the following two properties
(a) or (b) holds. (a) The number of positions i ∈ {1, . . . , 2N} for which e′i = 1 and ei ∈ {−1, 0} is Ω(N).
In this case, by construction of the embeddings, in his attack P̂ needs to authenticate (using wAUTHε)
the bit 1 a linear number of times (by means of an impersonation or a substitution attack). By Lemma
2, the success probability of P̂ is thus at most δΩ(N), which is 2−Ω(N). (b) Defining the index subsets
Bad := {i : e′i = 0 ∧ ei = −1} and Good := {i : e′i = 0 ∧ ei ∈ {0, 1}}, it holds that |Bad| = Ω(N) and
|Bad| ≥ |Good|. In this case, we can argue as follows. For any i with e′i = 0, P̂ needs to authenticate
(using wAUTHε) the bit 0 by means of an impersonation attack, but he may only use ⊥ as tag for a
2q-fraction of those i’s. This means that he may use ⊥ as tag for at most a 4q-fraction of the i’s in Bad,
and for all the remaining i ∈ Bad he must provide the correct reply to the underlying secure positioning
scheme. However, by the ε-soundness of SPε, where ε < 1− 4q, the probability of P̂ succeeding in this is
exponentially small (in N , determined by the choice of code). �

Plugging in the concrete secure positioning scheme from Section 4.3, we obtain a secure realization of
position-based authentication scheme in Rd. The scheme is described in Appendix C.1 (Figure 7).

5.3 Authenticating Arbitrarily-Long Messages

Although the scheme AUTH from above is designed for 1-bit messages, it can be used to authenticate
messages m of arbitrary length. We assume that the verifiers expect a message of a fixed length n, and
that the executions of wAUTHε are performed in the specified order. Extending the authentication scheme
to arbitrary lengths can be done in the following ways:

One can try to find dominating codes for larger message spaces [if such codes exist]; then the scheme
AUTH and its analysis can stay unchanged. Another method would be to encode the message m bit-by-bit
using a dominating code (for each bit). The encoding of m might not result in a dominating code and thus
AUTH might not be secure for this case, if the adversary is allowed to interleave authentication executions
of adjacent m’s bits. In Appendix B (see Theorem 7) we show that the security of the sequential application
of AUTH can also be shown by a careful choice of the probability q, namely, q < (1 + ε)/16n, and a careful
choice of the code C, namely the balanced repetition code CBR, and a more involved analysis.

We point out that the above approach results in rather inefficient position-based authentication schemes
that require a large number of communication rounds. For large messages, the efficiency can be somewhat
improved by using generic techniques, like first authenticating the message m by means of a standard
authentication code with a (short) key randomly chosen by P , and then simultaneously announcing and
authenticating the key by means of the position-based authentication scheme. Finding significantly more
efficient solutions, and in particular finding 1-round position-based authentication schemes, is left as an
interesting open problem.
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6 Position-Based Key Exchange

The goal of a position-based key exchange scheme is to have the verifiers agree with honest prover P at
location pos on a key K ∈ {0, 1}L, in such a way that no dishonest prover has any (non-negligible amount
of) information on K beyond its bit-length L, as long as he is not located at pos.7 Formally, we require
the following security properties.

εc-Completeness: If P is honest and at the claimed position pos, and if there is no (coalition of) dishonest
prover(s), then P and V0, . . . , Vk output the same key K of positive length, except with probability εc.

εs-Security: For any position pos ∈ Hull(pos0, . . . ,posk) and for any coalition P̂ of dishonest provers at
locations all different to pos, the hybrid state ρKE , consisting of the key K output by the verifiers
and the collective quantum system of P̂ at the end of the scheme, satisfies δ(ρKE , ρK̃E) ≤ εs, where
K̃ is chosen independently and at random of the same bit-length as K.

Note that the security properties only ensure that the verifiers can be convinced that P̂ has no in-
formation on the key they obtain; no such security is guaranteed for P . Indeed, P̂ can always honestly
execute the scheme with P , acting as verifiers. Also note that the security properties do not provide any
guarantee to the verifiers that P has obtained the same key in case of an active attack by P̂ , but this
can always be achieved e.g. with the help of a position-based authentication scheme by having P send an
authenticated hash of his key.

6.1 A Generic Construction

A position-based key exchange scheme can easily be obtained by taking any quantum key-distribution
(QKD) scheme that requires authenticated communication, and do the authentication by means of a
position-based authentication scheme, like the scheme from the previous section. One subtlety to take care
of is that QKD schemes usually require two-way authentication, whereas position-based authentication only
provides authentication from the prover to the verifiers. However, this can easily be resolved as follows.
Whenever the QKD scheme instructs V0 (acting as Alice in the QKD scheme) to send a message m in an
authenticated way to P (acting as Bob), V0 sends m without authentication to P , but then in the next
step P authenticates the message m′ he has received (supposedly m′ = m) toward the verifiers, who abort
and output an empty key K in case the authentication fails.

Using the standard8 BB84 scheme as our QKD, we obtain the position-based key exchange scheme
described in Appendix C.2. The security of this scheme follows from the security of the BB84 proto-
col [LC99, BBB+00, SP00, May01, BOHL+05] and of the position-based authentication scheme.

Due to the inefficiency of the underlying authentication scheme, the above construction is very ineffi-
cient, in particular in the number of communication rounds. Thus, the above should be considered as a
proof that position-based quantum key exchange with unconditional security is possible in principle. We
leave the search for efficient position-based key exchange schemes for future research, possibly inspired by
the approach from the next section.

6.2 A Direct Construction with Conjectured Security

We propose a simple and relatively efficient position-based key exchange scheme. Unfortunately we do
not have a security proof, and we leave it as an open problem to find an attack or prove its security. For
simplicity, we describe it for the 1-dimensional setting, with two verifiers; a scheme for higher dimensions
can be obtained by the same approach as in Section 4.3.

The scheme is parameterized by positive integers N and L, and it makes use of a universal hash function
g : R×{0, 1}N → {0, 1}L. The purpose of the universal hash function is to perform privacy amplification.

7The length L of the key may depend on the course of the scheme. In particular, an adversary may enforce it to be 0.
8More accurately, we use a variant of BB84 in which the entire classical authenticated communication is performed from

P to V . However, the standard BB84 scheme (with two-directional authenticated channel) can still be used using the method
described above.
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The scheme is given in Figure 6 below. 2−Ω(N)-Completeness is trivially satisfied; below, we state the
security of the scheme as a conjecture.

0. V0 and V1 privately agree on two random strings x = (x1, . . . , xN ) and θ = (θ1, . . . , θN ) in {0, 1}N .

1. For i = 1, . . . , N , the following is repeated (in sequence or in parallel).

1.1 V0 prepares the qubit Hθi |xi〉 and sends it to P , and V1 sends the bit θi to P , so that Hθi |xi〉
and θi arrive at the same time at P .

1.2 When Hθi |xi〉 and θi arrive, P measures Hθi |xi〉 in basis θi to observe x′i ∈ {0, 1}. Further-
more, P sets x′′i := x′i with probability 1

2 and x′′i := ⊥ otherwise.
1.3 V0 and V1 check on both sides if x′′i arrives in time and if x′′i ∈ {xi,⊥}.

2. If any check in step 1.3 fails, or if V0 and V1 have received different values for x′′ = (x′′1, . . . , x
′′
N ) ∈

{0, 1,⊥}, or if the number of ⊥s within x′′ is ≥ 3
4N , then V0 and V1 abort.

Otherwise, V0 chooses a random seed r ∈ R and sends it to P , and V0 and P compute K and
K ′ respectively as K = g(r, x) and K ′ = g(r, x′).

Figure 6: A simple and efficient key exchange scheme.

Conjecture 2 For a suitable choice of L = O(N), the scheme from Figure 6 is 2−Ω(N)-secure.

7 Conclusion

We have initiated an exciting new line of research: position-based quantum cryptography. We have shown
the existence of quantum cryptographic schemes for position-based tasks that can be rigorously proven
secure without assuming any limitation on the adversaries’ resources – security is based solely on the laws
of quantum mechanics. In combination with the impossibility result of [CGMO09], this shows a strong
separation between classical and quantum cryptography, similarly to the case of QKD. On the other hand,
our schemes with conjectured security show that position-based quantum cryptography still offers room
for further interesting research.
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Appendix

A Some Technical Lemmas

A.1 Proof of Lemma 1

In this section we proof the following lemma: For any tri-partite state ρABY with classical Y ,

H(A|BY ) =
∑
y

PY (y) H(ρyAB|B).

We first consider the case of an “empty” B. Y being classical means that ρAY is of the form ρAY =∑
y PY (y)ρyA ⊗ |y〉〈y|. Let us write λy1, . . . , λ

y
n for the eigenvalues of ρyA. Note that the eigenvalues of ρAY

are then given by PY (y)λyi with y ∈ Y and i ∈ {1, . . . , n}. It follows that

H(ρAY |Y ) = H(ρAY )−H(ρY ) = −tr
(
ρAY log(ρAY )

)
+ tr

(
ρY log(ρY )

)
= −

(∑
y,i

PY (y)λyi log
(
PY (y)λyi

)
−
∑
y

PY (y) log
(
PY (y)

))
= −

∑
y

PY (y)
∑
i

λyi log
(
λyi
)

=
∑
y

PY (y) H(ρyA) .

In general, we can no conclude that

H(ρABY |BY ) = H(ρABY )−H(ρBY ) =
∑
y

PY (y) H(ρyAB)−
∑
y

PY (y) H(ρyB)

=
∑
y

PY (y)
(

H(ρyAB)−H(ρyB)
)

=
∑
y

PY (y) H(ρyAB|B) ,

which proves the claim.

B Authenticating Bit-Wise Encoded Messages is Secure

We now prove that the authentication scheme of Figure 5 can be used to authenticate a message of arbitrary
length n. This is obtained by setting q ≤ (1−ε)/16n, and encoding the message m = m1m2 · · ·mn bit-wise
by means of the balanced repetition code CBR ⊂ {0, 1}N which maps 0 into CBR(0) = 000...0 111...1 and 1
into CBR(1) = 111...1 000...0, where the 0- and the 1-blocks are of length N/2.9 For simplicity we assume
that N is even.

Lemma 3 Assume that an adversary tries to authenticate c′ ∈ {0, 1}N by performing impersonation attack
at least γN times, for some constant γ (i.e., using only (1− γ)N callings to P ). Let n0 = |{j : c′j = 0}|,
then for 1

8nn0 < γ ≤ 1, and q < (1− ε)/16n the probability of success is bounded by

e
−(γ− 1

8n
n0)2(1−ε) N

2γ = 2−Ω(N) .

Proof. We will assume that the adversary succeeds to authenticate the remaining (1− γ)N rounds with
probability 1. In this case, the adversary is allowed to answer ⊥ at most 2qn0N < 2

16n(1 − ε)n0N times.
However, in expectation, (1 − ε)γN of the times the response will be ⊥ (or an error). Letting γ > 1

8nn0

and using Chernoff inequality, the lemma follows. �

Note that the above is true regardless to the message that the honest prover is authenticating, i.e., it holds
both for m′ = m and m′ 6= m.

9We are a bit sloppy here and do not distinguish between the set of codewords and the encoding function.
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Lemma 4 Assume m ∈ {0, 1}n is encoded bitwise to c = c̃1c̃2 · · · c̃n, with c̃i ∈ {0, 1}N , by means of the
balance repetition code CBR. Then in order to authenticate a position i in which m′i 6= mi, the adversary
must call P at least N/8 times with positions that are not in c̃i, i.e., at least N/8 bits of c̃j, j 6= i, otherwise
his success probability is bounded by 2−Ω(N).

Proof. Look at an index i such that m′i 6= mi. Assume for contradiction that P is called more than 7N/8
times from indices of c̃i corresponding to the block i.

Let us look on the case where mi = 0,m′i = 1; thus c̃i = 000...0 111...1, c̃′i = 111...1 000...0. Since
the adversary has a higher success probability in authenticating 0 over 1 (by means of wAUTHε), we can
assume that the best scenario for the adversary is to have N/8 ones from a previous block, say c̃i−1. This
is equivalent to the case where the adversary authenticates

c′ = 111 . . . 1︸ ︷︷ ︸
N/2

000 . . . 0︸ ︷︷ ︸
N/2

, using c = 11..1︸︷︷︸
N/8

000 . . . 0︸ ︷︷ ︸
N/2

111 . . . 1︸ ︷︷ ︸
N/2

.

The notion of dominating can be extended in a trivial way to codewords of unequal lengths, and
using this extended notion, it is easy to verify that c′ dominates c. As a corollary of Theorem 6, any
authentication of (a message with encoding) c′ which is performed using an honest prover replies for the
encoding c would fail with high probability as long c′ dominates c. We can conclude that the adversary can
not authenticate c′ except with a negligible probability, by using less than N/8 calls of P with positions
in c̃j , j 6= i.

The other case (mi = 1,m′i = 0, thus c̃i = 111...1 000...0, c̃′i = 000...0 111...1) is similar. �

We can conclude that using this encoding, any adversary that tries to authenticate m′ 6= m must use
P ’s responses for some block c̃j in order to authenticate c̃′i, if m′i 6= mi. Now, when trying to authenticate
the block c̃′j , the adversary would face a problem, since many of P ’s responses for that block are used for
authenticating c̃′i. The following theorem shows that there exist at least one block c̃′i′ that the adversary
would fail to authenticate with high probability, and thus the scheme is secure.

Theorem 7 If the balanced repetition code CBR ⊂ {0, 1}N is used as code C, and if q is chosen 0 < q ≤
(1 − ε)/16n in the underlying scheme wAUTHε, then the bit-wise execution of the authentication scheme
from Figure 5 is 2−Ω(N/n)-sound for n-bit messages.

Thus, in order to get an exponentially small soundness error, N has to be chosen quadratic in n.

Proof. Since m′ 6= m there exists position i which they differ, m′i 6= mi. By lemma 4, in order to
authenticate the block c̃′i the adversary must use P with at least N/8 positions in c̃j , j 6= i. It follows
that at least N/16 are taken from one of the adjacent10 blocks c̃j , j = i± 1. Without loss of generality we
assume that j = i+ 1; the proof for j = i− 1 is similar.

Let us look on the case where the adversary authenticates c̃′j . The adversary can not use P replies of
c̃i, but it can use ξ replies from the consecutive block j + 1. If ξ ≤ N/16−N/16n than by Lemma 3, the
success probability for authenticating j is negligible. Otherwise, ξ > N/16−N/16n, which must be taken
from c̃j+1. The same reasoning holds for the (j + 1)-th block: N/16−N/16n of c̃j+1 positions were used
for block j; then either the adversary uses less than N/16 − 2 · (N/16n) positions from c̃j+2 and fails by
Lemma 3 or otherwise, we can focus on the authentication of the (j + 2)-th block instead. This continues
until we reach the last block c̃n which has no consecutive block to use, yet the previous round called P for
at least N/16−(n−1)(N/16n) = N/16n times with positions from c̃n, and by Lemma 3 the authentication
of n-th block would fail. We conclude that at least one of the blocks along the way will fail (with high
probability). �

10Otherwise, i.e., if the positions are taken from block other than the immediate adjacent blocks, the adversary clearly fails
on at least one block, due to Lemma 3.

18



C Concrete realization of quantum position-based primitives

In this section we describe a position-based message authentication scheme, and a position-based key
exchange protocol, both based on the secure positioning scheme SPεBB84 described in Figure 2

C.1 Position-Based Authentication scheme based on SPεBB84

The following is a realization of a 2−Ω(N)-complete and 2−Ω(N)-sound position-based authentication scheme,
based on the general authentication scheme (Figure 5) with SPεBB84 as the underlying secure-positioning
primitive. The scheme can be used either for 1-bit message m or an arbitrary length message, using the
methods described in section 5.3.

0. V0, . . . , Vk privately agree on two random strings x = (x1, . . . , xk) and θ = (θ1, . . . , θn) in {0, 1}k,
1. The verifiers and P encode the message m into a codeword c ∈ C, for a dominating code C ⊆
{0, 1}N .

2. For i = 1, . . . , N , the following is repeated in sequence.

2.1 V0 prepares the qubit Hθi |xi〉 and sends it to P . V1, . . . , Vk send a k-out-of-k sharing of the
bit θi to P , so that Hθi |xi〉 and (all the shares of) θi arrive at the same time at P .

2.2 When Hθi |xi〉 and θi arrive, P measures Hθi |xi〉 in basis Hθi {|0〉, |1〉} to observe x′i ∈ {0, 1}.
2.3 If ci = 1, P sends x′i to V1, . . . , Vk. Otherwise, P sends back x′i with probability 1− q or ⊥

with probability q.
2.4 Let ti be the corresponding tag received. V0, . . . , Vk check that ti arrives in time and that all

sides received the same tag ti. If ti 6= xi and (ci = 0, ti 6= ⊥), the verifiers abort.
2.5 The verifiers keep track of the number of rounds in which P replied with ⊥, i.e., they compute

n0 = | {j : cj = 0} | and n⊥ = |{j : cj = 0 ∧ x′′j = ⊥}|.
3. If any check in step 2.5 fails, or if different verifiers have received different values for c, or if
η⊥ > 2qn0 then V1, . . . , Vk abort. Otherwise, V1, . . . , Vk accept the message m.

Figure 7: A position-based authentication scheme based on BB84 encoding.

C.2 Position-based Key Exchange Protocol Based on BB84 and SPεBB84

The following is a realization of a position-based quantum key exchange protocol. The scheme uses BB84 as
the underlying QKD system, and realizes position-based authentication using SPεBB84 described in Figure 2.
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0. V0, . . . , Vk privately and randomly choose strings x = (x1, . . . , x(4+δ)n) and θ = (θ1, . . . , θ(4+δ)n)
in {0, 1}(4+δ)n.

1. For i = 1, . . . , (4 + δ)n, the following is repeated in sequence11.

1.1 V0 prepares the qubit Hθi |xi〉 and sends it to P .
1.2 When Hθi |xi〉 arrives, P randomly chooses a basis θ′i ∈ {0, 1} and measures Hθi |xi〉 in basis

Hθ′i {|0〉, |1〉} to observe x′i ∈ {0, 1}.
2. P signals the verifiers that all the qubits were received using the SP-authentication scheme.

3. After all the qubits were received by P , V0 sends the string θ used to encode the qubits.

4. Set Xsift to be the string composed of those positions i such that θi = θ′i. With high probability
(with respect to δ), |Xsift| ≥ 2n, otherwise, abort the protocol. ¿From this point and on, we
assume |Xsift| = 2n. P randomly chooses n positions I ⊂ {1, . . . , 2n} in Xsift. Set Xerr to be the
substring defined by positions I, and Xinf to be the substring defined by the other n positions,
{1, . . . , 2n} \ I.

5. Using the SP-authentication scheme (Figure 5), P sends the following information in authenti-
cated way: θ, θ′, I, Xerr, Error correction (EC) information for Xinf and Privacy Amplification
(PA) information for generating a key K from Xinf

12.

6. If any of the messages fails being authenticated, abort the protocol. Otherwise, V0, . . . , Vk verify
that θ received in step 5 equals the one sent to P in step 3, and compare Xerr to the appropriate
positions of x. If the error rate is higher than some predefined parameter ρe, abort the protocol.

7. Otherwise, V0, . . . , Vk compute Xinf using x and the EC information, and compute K using the
PA information and Xinf.

Figure 8: A position-based QKD scheme.

11This step can be replaced by a single step in which all the qubits are sent to P in a single transmission.
12Both EC and PA can be done with uni-directional communication from P to the verifiers, using pre-defined matrices PEC

and PPA; see for instance [BBB+02].
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