
Garbled Circuits for Leakage-Resilience:
Hardware Implementation and Evaluation of

One-Time Programs

(Full Version)?

Kimmo Järvinen1, Vladimir Kolesnikov2,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Dep. of Information and Comp. Science, Aalto University, Finland
kimmo.jarvinen@tkk.fi??

2 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de? ? ?

Abstract. The power of side-channel leakage attacks on cryptographic
implementations is evident. Today’s practical defenses are typically attack-
specific countermeasures, such as changes to the underlying hardware or
to compilers that generate code resilient to certain classes of side-channel
attacks. The demand for a more general solution has given rise to the
recent theoretical research that aims to build provably leakage-resilient
cryptography. This direction is, however, very new and still largely lacks
practitioners’ evaluation with regard to both efficiency and practical se-
curity. A recent approach, One-Time Programs (OTPs), proposes using
Yao’s Garbled Circuit (GC) and very simple tamper-proof hardware to
securely implement oblivious transfer, to guarantee leakage resilience.

Our main contributions are (i) a generic architecture for using GC/OTP
modularly, and (ii) hardware implementation of GC/OTP evaluation and
its efficiency analysis. We implemented two FPGA-based prototypes:
a system-on-a-programmable-chip with access to hardware accelerator
(suitable for smartcards and future smartphones), and a stand-alone
hardware implementation (suitable for ASIC design). We chose AES as a
representative complex function for implementation and measurements.
As a result of this work, we are able to understand, evaluate and improve
the practicality of employing OTPs as a leakage-resistance approach.
Last, but not least, we believe that our work contributes to bringing
together the results of both theoretical and practical communities.

Keywords: Garbled Circuit, Hardware Implementation, Leakage-Resilience,
One-Time Programs, Secure Function Evaluation

? A short version of this paper appears in CHES 2010 [19].
?? Supported by EU FP7 project CACE.

? ? ? Supported by EU FP7 projects CACE and UNIQUE, and ECRYPT II.



2 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

1 Introduction

Side-channels and protection. For over a decade, we saw the power and el-
egance of side-channel attacks on a variety of cryptographic implementations
and devices. These attacks refute the assumption of “black-box” execution of
cryptographic algorithms, allow the adversary to obtain (unintended) internal
state information, such as secret keys, and consequently cause catastrophic fail-
ures of the systems. Often the attacks are on the device in attacker’s possession,
and exploit physical channels such as observing power consumption [21], emit-
ted radiation [8, 41, 1], and even the memory cache [20, 36, 34]. Moreover, even
when no computation is performed, stored secrets may be leaked [45] or read out
from RAM, which is typically not erased at power-off, allowing, e.g., cold-boot
attacks [15]. Hence, from the hardware perspective, security has been viewed as
more than the algorithmic soundness in the black-box execution model (see, e.g.,
[27, 58, 56, 47]).

Today’s practical countermeasures typically address known vulnerabilities,
and thus target not all, but specific classes of side-channel attacks. The desire
for a complete solution motivated the recent burst of theoretical research in
leakage-resilient cryptography, the area that aims to define security models and
frameworks that capture leakage aspects of computation or/and memory. Infor-
mation leakage is typically modeled by allowing the adversary learn (partial)
memory or execution states. The exact information given to the adversary is
specified by the (adversarily chosen) leakage function. Then, the assumption on
the function (today, usually the bound on the output length) directly translates
into physical assumption on the underlying device and the adversary. Proving
security against such an adversary implies security in the real-world with the
real hardware, subject to corresponding assumption (see [38] for a survey on
this strand of research). We wish to add that some leakage assumptions and
leakage-resilient constructions, although clearly stated, have not yet been evalu-
ated by practitioners and side-channel community.4 Further, efficiency is a major
concern with today’s solutions, since, e.g., embedded systems on an integrated
circuit (IC) have very little cost tolerance.5

Secure Function Evaluation in hardware and leakage-resilience. Ef-
ficient Secure Function Evaluation (SFE) in an untrusted environment is a long-
standing objective of modern cryptography. Informally, the goal of two-party
SFE is to let two mutually mistrusting (polynomially-bounded) parties compute
an arbitrary function on their private inputs without revealing any information
about the inputs, beyond the output of the function. SFE has a variety of ap-
plications, particularly in settings with strong security and privacy demands.
Deployment of SFE was very limited and believed expensive until recent im-
provements in algorithms, code generation, computing platforms and networks.

4 Indeed, ongoing work of [48] investigates the practical applicability and usability of
theoretical leakage models and the constructions proven secure therein.

5 At the same time, e.g., the size of private circuits in [17] grows quadratically with
the number of wire probes by the adversary.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 3

As advocated in numerous prior works [30, 29, 25, 39, 24, 18, 23], Garbled Cir-
cuit (GC) [59] is often the most efficient (and thus viable) SFE technique in
the two-party setting. As we argue in §3.2, the emerging fully homomorphic
encryption schemes [10, 6, 46] are unlikely to approach the efficiency of GC.

Because of the execution flow of the GC solution (one party can non-inter-
actively evaluate the function once the inputs have been fixed), the security
guarantees of SFE are well-suited to prevent all side-channel leakage. Indeed,
even GC evaluation in the open reveals no information other than the output.
Clearly, it is safe to let the adversary see (as it turns out, even to modify)
the entire execution process. The inputs-related stage of GC can also be made
non-interactive with appropriate hardware such as Trusted Platform Modules
(TPM) [14]. Goldwasser et al. [12] observed that very simple hardware is suf-
ficient, one that, hopefully, can be manufactured tamper-resistant at low cost.
They propose to use One-Time Programs (OTP), the (strengthened, see §3.1)
combination of GC and above hardware, as a leakage-resilient computing device.
The combination of non-interactive computation, count-limited execution, and
leakage resistance holds great promise, e.g., for outsourcing computation and
software business model. As as we explain below one of our goals in this paper
is to evaluate today’s performance of OTP in hardware.

Our objectives. We stress that practical efficiency of SFE and leakage-
resilient computing is of utmost importance. Indeed, in most settings, the tech-
nology can only be adopted if its cost impact is acceptably low. In this work, we
pursue the following two objectives.

First, we aim to mark this (practical efficiency) boundary by considering
hardware-accelerated GC evaluation. In our implementation, we use state-of-the-
art GC techniques, and optimize the code for embedded systems such as Systems
on a Chip (SoC) based on FPGAs. Hash functions form the most significant
computational burden in GC evaluation and throughout this paper we use SHA-
256 as hash function. A cost-effective, straightforward and useful accelerator
architecture is likely to implement SHA-256 functions in hardware, and thus will
have similar cost structure to what we consider: low-cost SHA-256 evaluation and
high-cost memory access. Implementing (at least some of) the SFE functionality
in hardware promises to significantly improve computation speed and reduce
power consumption. Our optimized hardware design and implementation allows
us to evaluate costs, benefits and trade-offs of hardware support for SFE.

Second, we use our GC hardware-accelerator to implement OTP and evaluate
its efficiency as a leakage-protection technique. As discussed in [12], OTPs have
applications in one-time proofs, E-cash, or extreme software protection (with
features such as limited number of executions or temporary transfer of crypto-
graphic abilities). However, the exact circuit sizes of these functions, and hence
the OTP practicability for these applications, are not yet clear. As a step in esti-
mating these costs, we implemented OTP-based evaluation of the AES function.
We chose AES as it is relatively complex and allows easy comparison with exist-
ing (heuristic) leakage-resilient protection mechanisms. We stress that OTP, and
our implementation, are resilient against arbitrary side-channel attacks, based



4 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

on the OTP (relatively weak) hardware assumption. Further, as an application
on its own, OTP evaluation of AES can be used for sending a small number of
messages securely over a completely untrusted platform (e.g., a computer in an
internet café) using a simple tamper-proof hardware token (e.g., a USB token)
and the same key for encrypting/authenticating multiple messages.

1.1 Our Contributions and Outline

In line with our objectives stated above, we implement a variant of OTP with
state-of-the-art GC optimizations discussed in §2.1. As an algorithmic contribu-
tion, we propose an efficiency improvement for OTPs with multiple outputs in
§3.1. Further, we describe a generic architecture for using GC/OTP in a modular
way to protect against arbitrary side-channel attacks in §3.2.

In our implementation, we present a hardware architecture (§4.1) and opti-
mizations (§4.2) for efficient evaluation of GC/OTP on memory-constrained em-
bedded systems. We measure the performance of GC/OTP evaluation of AES, a
representative complex functionality, on our two FPGA-based prototype imple-
mentations in §4.3: a system-on-a-programmable-chip with access to a hardware
accelerator for SHA-256 (representative for smartcards and future smartphones)
and a stand-alone hardware implementation. Using our optimizations, secure
evaluation of AES on our prototypes requires < 1.3 s and < 0.15 s, respectively.
This shows that provable leakage-resilience via GC/OTP comes at a relatively
high cost: an unprotected implementation of AES in hardware runs in 0.15 µs,
and requires 2.6 times smaller chip area than OTP-based solution. (We note
that the chip area for hardware-accelerated GC/OTP evaluation is independent
of the evaluated function.) As AES is a representative complex function, we be-
lieve that our results, in particular our performance measurements, will serve as
reference point for estimating GC/OTP runtimes of a variety of other functions
(e.g., public key schemes).

1.2 Related Work

In this section we only briefly consider garbled circuits and one-time programs,
and give more detailed explanations of them in §2.
Efficient implementations of Garbled Circuits (GC). We believe this is
the first hardware implementation of garbled circuits (GC) and one-time pro-
grams (OTP) evaluation. While several implementations and measurements of
GC exist in software already, e.g., [30, 29, 39], the hardware setting presents dif-
ferent challenges. Our work allows to compare the approaches and estimate the
resulting performance gain (factor of 10-17). Hardware implementation of gen-
eration of GC in a cost-effective tamper-proof token with constant memory was
shown in [18]. Our work is complementary, and our hardware accelerator can
interoperate with the token of [18], as well as with software frameworks.
One-Time Programs (OTP). The combination of GC with non-interactive
oblivious transfer in the semi-honest setting was proposed in [14]. In the mali-
cious setting, OTP were introduced in [12] using minimal hardware assumptions.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 5

Subsequently, [13] showed how to build non-interactive unconditionally secure
computation from the hardware primitives proposed by [12]. We extend and im-
plement OTPs in hardware. Our extension is in the computational model with
Random Oracles (RO), and is more efficient than the constructions of [12, 13].
Protecting AES against side-channel attacks. We consider AES as ref-
erence implementation and summarize current techniques for protecting AES
implementations. We stress that our implementation is provably leakage-free,
assuming the security of OTP hardware blocks. However, this comes at a com-
putational cost which we evaluate in this work.

A large amount of research has been done on countermeasures against side-
channel attacks, e.g., power analysis attacks [21] requiring that power consump-
tion does not depend on the underlying secrets. This can be achieved either
by randomizing the power consumption or by making it constant [31]. Ran-
domizing is done with masking, i.e., by adding random values. A variety of
masking schemes for both algorithmic and circuit level have been proposed for
AES, e.g., [2, 7]. Power consumption can be made constant by using gates whose
power consumption is independent of input values, e.g., with dynamic differen-
tial (dual-rail) logic (see, e.g., [53, 16, 40, 43]). Countermeasures against power
analysis have significant area overheads ranging from factor 1.5 to 5 [51]. Pro-
tecting implementations against other side-channel attacks or even fault attacks
needs additional overhead. For instance, fault attack countermeasures require
error detection techniques such as proposed in [44]. None of these countermea-
sures provides complete security. Indeed, countermeasures providing protection
against simpler attacks have been shown to be useless against more powerful
attacks, such as, template attacks [5, 35, 3] and higher-order differential power
analysis [32, 11].

2 Preliminaries

In this section we describe the components and preliminaries underlying our
constructions – garbled circuits (§2.1) and one-time programs (§2.2).

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit (GC) approach [59] allows two parties, the sender S with
private input y and the receiver R with private input x, to securely evaluate a
boolean circuit C on their respective private inputs without revealing any other
information than the result z = C(x, y) of the evaluation, i.e., no intermedi-
ate values are revealed. We summarize the idea of Yao’s GC protocol in the
following(see Fig. 1 for an overview).

The circuit constructor S creates a garbled circuit C̃ from the circuit C: for
each wire Wi of C, he randomly chooses two garblings w̃0

i , w̃
1
i , where w̃j

i is the

garbled value of Wi’s value j. (Note: w̃j
i does not reveal j.) Further, for each

gate Gi, S creates a garbled table T̃i with the following property: given a set
of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the



6 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

corresponding Gi’s output, but nothing else. S sends these garbled tables, called
garbled circuit C̃, to evaluator (receiver R).

Additionally, R (obliviously) obtains the garbled inputs w̃i corresponding to
the inputs of both parties: the garbled inputs ỹ corresponding to the inputs y
of S are sent directly: ỹi = ỹyi

i . For each of R’s inputs xi, both parties run a
1-out-of-2 Oblivious Transfer (OT) protocol (e.g., [33]), where S inputs x̃0i , x̃

1
i

and R inputs xi. The OT protocol ensures that R receives only the garbled value
corresponding to his input bit, i.e., x̃i = x̃xi

i while S learns nothing about xi.

Now, R evaluates the garbled circuit C̃ on the garbled inputs to obtain
the garbled output z̃ by evaluating C̃ gate by gate, using the garbled tables T̃i.
Finally, R determines the plain value z corresponding to the obtained garbled
output value using an output translation table sent by S.

Correctness of GC follows from the way garbled tables T̃i are constructed.
Yao’s garbled circuit protocol is provably secure ([28]) when both parties are
semi-honest (i.e., follow the protocol but may try to infer information about the
other party’s inputs from the messages seen). We stress that each GC can be

evaluated only once, i.e. a new GC C̃ must be used for each invocation.

receiver R: input x

circuit C:

sender S: input y

�C

OT

�z
EVAL GC

�xi = �xxi
i

xi

z = C(x, y)

TRANSLATE

�x0
i , �x1

i

�yi = �yyi

i

translation table

garbled circuit �C:

⇐

gate Gi

W1W2

W3

∧

garbled table �Ti

�w1 �w2

�w3

∧⇐

Fig. 1. Overview of Yao’s Garbled Circuit Protocol (AND gate as example circuit)

Improved Garbled Circuits. We use the improved GC construction of [39],
summarized next. Each garbled value w̃i = 〈ki, πi〉 consists of a t-bit key ki and
a permutation bit πi, where t denotes the symmetric security parameter. XOR
gates are evaluated “for free”, i.e., no garbled table and negligible computation,
by computing the bitwise XOR of their garbled values [25]. For each non-XOR

gate with d inputs the garbled table T̃i consists of 2d− 1 entries of size t+ 1 bits
each; the evaluation of a garbled non-XOR gate requires one invocation of SHA-
256 [39]. At the high level, the keys ki of the non-XOR gate’s garbled inputs are
used to obtain the corresponding garbled output value by decrypting the garbled
table entry which is indexed by the input permutation bits πi. We present the
detailed description of the construction in Appendix §A.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 7

2.2 Non-Interactive Garbled Circuits and One-Time Programs

The GC construction, although traditionally considered in the interactive set-
ting, relies on interaction only as much as do the underlying OT executions.
Consequently, (e.g., noted in [22]) the round complexity and (non-)interactivity
features of the GC protocol are exactly those as the underlying OT.

Traditionally, for computational and storage efficiency, and because consid-
ered client-server applications permitted it, OT was considered in the interactive
setting. In [14] the authors suggested to extend the Trusted Platform Module
(TPM) [54] and use it as the hardware basis for non-interactive OT, resulting in
a non-interactive version of Yao’s protocol. Subsequently, One-Time Programs
(OTP) were introduced in [12]. This approach considers malicious receivers and
can be viewed simply as Yao’s Garbled Circuit (GC), where the oblivious transfer
(OT) function calls are implemented with One-Time Memory (OTM) tokens. An
OTM token Ti is a simple tamper-proof hardware, which allows a single query
of one of the two stored garbled values x̃0i , x̃

1
i ([12] suggests using a tamper-

proof one-time-settable bit bi which is set, e.g. by burning a one-time fuse, as
soon as the OTM is queried).6 Further, OTM-based GC execution can be non-
interactive, in the sense that the sender can send the GC and corresponding
OTMs to the receiver, who will be able to execute one instance of SFE on any
input of his choice.7 Finally, GC (and hence also OTP) is inherently a one-time
execution object (generalizable to k-time execution by repetition).

A subtle issue in this context, noted and addressed in [12], is the following.
Previous GC-based solutions were either in the semi-honest model, or used inter-
action during protocol execution, which precluded the receiver R from choosing
his input adaptively, based on given (and even partially evaluated) garbled cir-
cuit. This possibility of adaptive choice of inputs results in possible real attacks
byR in the non-interactive setting.8 The solution of [12] is to mask (each) output
bit zj of the function with a random bit mj , equal to XOR of (additional) random
bits mi,j contributed by each of the input OTMs Ti, i.e., mj = m1,j ⊕m2,j ⊕ . . .
and z′j = zj⊕mj . This way, the real-world adversary does not learn the output of
the function before he had queried all OTMs corresponding to his inputs, which

6 Indeed, this is one of the simplest functionalities possible, and one that is hopefully
easier to protect against leakage and tampering (we refer the reader to [12] for
extended discussion on such protection).

7 Further, as also noted in [13], the computed function can be fully hidden by evaluat-
ing a universal function instead. In practice, one would evaluate a garbled Universal
Circuit that is programmed to compute the intended function. For a k-gate function,
the universal circuit constructions of [55, 26, 42] result in an overhead of O(k log k),
O(k log2 k) and O(k2) gates respectively with decreasing constant factors.

8 From the mathematical perspective, the standard proof of security of GC now does
not go through, since the simulator Sim would have to output to R the simulated
garbled circuit (i.e., its garbled tables and output wire decoding) before knowing the
inputs of the malicious receiver.



8 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

precludes him from adaptively selecting the input.9 In §3 we present an efficiency
improvement, and a generic architecture for leakage-resilient and tamper-proof
computation derived from OTP.

3 Extending and Using One-Time Programs

In this section, we present in §3.1 a practical extension of the OTP construc-
tion of [12], which results in improved performance in case of multiple outputs.
Additionally we make several observations about uses, security guarantees and
applicability of OTP, and present a generic architecture for using OTPs for
leakage-resilient computation in §3.2.

3.1 Extending One-Time Programs

As mentioned in the previous section, the solution in [12] seems to require each
OTM token to additionally store a string of the size of the output. We propose
a practical performance improvement to the technique proposed in [12], which is
beneficial to SFE of functions with multi-bit output. In our solution each OTM
token (additionally) stores a random string ri of length of the security parameter
t. Consequently, our construction results in smaller OTMs when the number of
outputs is larger than the security parameter t. As a trade off, our security proof
utilizes Random Oracles (RO), as we do not immediately see how to avoid their
use and have OTM size independent of the number of outputs. (We discuss RO,
its uses and security guarantees in Appendix §C).

Our main idea is to insert a “hold off” gate into each output wire Wj which
can only be evaluated once all input OTMs had been queried, thus preventing R
from choosing his input adaptively. It can be implemented by requiring a call to a
hash function H (modeled as a Random Oracle) with inputs which include data
from all OTMs. To implement this, we secret-share a random value r ∈R {0, 1}t
over all OTMs for the inputs. That is, OTM Ti additionally stores a share ri
(released to R with x̃i upon the query), where r =

⊕
i

ri. Receiver R is able to

recover r if and only if he queried all OTMs.
Fig. 2(b) depicts this contruction: Our version of OTM Ti, in addition to

the two OT secrets x̃0i , x̃
1
i and the tamper-proof bit bi, contains a random share

ri ∈R {0, 1}t which is released together with x̃xi
i once Ti is queried with input

bit xi. After querying all OTMs, the receiver R can recover r =
⊕
i

ri. The GC

is constructed as usual (e.g., as described in §2.1), with the following exception.
On each output wire Wj with garbled outputs z̃0j , z̃

1
j , we append a one-input,

one-output OT-commit gate Gj , with no garbled table. We set the output wire
secrets of Gj to ẑ0j = H(z̃0j ||r), ẑ1j = H(z̃1j ||r). To enable R to compute the wire

output non-interactively, GC also specifies that ẑbj corresponds to b.

9 In the proof, the new Sim is able to produce an indistinguishable simulation, since
he only commits to the output values of the simulated GC when the last OTM is
queried, the point at which Sim knows the inputs of the malicious receiver.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 9

We note that a full formal construction is readily obtained from the above
description. Also note that a malicious receiver is unable to complete the evalu-
ation of any wire of GC until all the OTMs have been queried, and his input has
been specified in full. Further, he is not able to lie about the result of the com-
putation, since he can only compute one of the two values z̃0j , z̃

1
j . Demonstration

of knowledge of z̃ij serves as a proof for the corresponding output value.

Theorem 1. The above protocol is secure against a semi-honest sender S, who
generates the OTM tokens and the garbled circuit, and malicious receiver R, in
the Random Oracle model.

Proof. The proof of Theorem 1 is given in Appendix §B. ut

3.2 Using One-Time Programs for Leakage Protection

Most of today’s countermeasures to side-channel attacks are specific to known
attacks. Protecting hardware implementations (e.g., of AES) usually proceeds as
follows (e.g., see [2]). First, the inputs are hidden, typically by applying a random
mask (this requires trusted operation, and often the corresponding assumption
is introduced). Afterwards, the computation is performed on the masked data.
To allow this, the functionality needs to be adapted (e.g., using amended AES
S-boxes). Finally, the mask is taken off to reveal the output of the computation.

We use a similar approach with similar assumptions (cf. Fig. 2(a)) to provably
protect arbitrary functionalities against all attacks, both known and unknown:

1. The private data x provided byR is masked in a trusted environment MASK.
The masked data x̃ does not reveal any information about the private data,
but still allows to compute on it.

2. The computation on the masked data is performed in an untrusted envi-
ronment where the adversary is able to arbitrarily interfere (passively and
actively) with the computation. To compute on the masked data, the eval-

uation algorithm EVAL needs a specially masked version of the program P̃ .
Additional masked inputs ỹ of S that are independent of R’s inputs can be
provided as well. The result of EVAL is the masked output z̃.

3. Finally, z̃ is unmasked into the plain output z. The procedure UNMASK
allows to verify that z̃ was computed correctly, i.e., no tampering happened
in the EVAL phase in which case UNMASK outputs the failure symbol ⊥.
For correctness of this verification, UNMASK is executed in a trusted envi-
ronment where the adversary can observe but not modify the computation.

More specifically, the masked program P̃ is a garbled circuit C̃, masked values
x̃, ỹ, z̃ are garbled values and the algorithms MASK, EVAL and UNMASK can
be implemented as described next.

MASK: Masking the input data x of receiver R is performed by mapping
each bit xi to its corresponding garbled value x̃i, i.e., to one of two garblings
x̃0i , x̃

1
i . This can be provided externally (e.g., by interaction with a party on the



10 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

masked input �x

masked output �z

output z or fail ⊥

UNMASK

EVAL

input x

MASK

untrusted
environment

trusted
environment

trusted
environment

masked program �P ,
masked input �y of S

(a) Generic Architecture

xi

�xi

OTM Ti

�x0
i , �x1

i , bi, ri

ri

�x

EVAL GC �C, �y

�z

MASK

EVAL

UNMASK

r =
�
i

ri

zj =





0 if H(�zj ||r) = �z0
j

1 if H(�zj ||r) = �z1
j

⊥ else

(b) Using One-Time Memory

Fig. 2. Evaluating a Functionality Without Leakage

network). We concentrate on on-board non-interactive masking which requires
certain hardware assumptions (see below). The following can be directly used as
a (non-interactive) MASK procedure:

– OTMs [12]: For small functionalities, we favor the very cheap One-Time
Memory (OTM), as this seems to carry the weakest assumptions (cf. §2.2).
However, as OTMs can be used only once, a fresh OTM must be provided
for each input bit of the evaluated functionality. For practical applications,
OTMs (together with their garbled circuits) could be implemented for ex-
ample on tamper-proof USB tokens for easy distribution.

– Modified TPM [14]: Trusted Platform Modules (TPM) are low-cost tamper-
proof cryptographic chips embedded in many of today’s PCs [54]. TPM
masking based on the non-interactive Oblivious Transfer (OT) protocol of
[14] requires the (slightly extended) TPM to perform asymmetric crypto-
graphic operations in form of a count-limited private key whose number of
usages is restricted by the TPM chip. The TPM chip is extended to allow
re-initialization for future non-interactive OTs with an interactive protocol
instead of shipping new hardware.

– Smartcard: In our preferred solution for larger functionalities, masking could
be performed by a tamper-proof smartcard. The smartcard would keep a se-
cure monotonic counter to ensure a single query per input bit. Another ad-
vantage of this approach is that the same smartcard can be used to generate
GC as well, thus eliminating GC transfer over the network as done in [18].
Further, the smartcard can be naturally used for multiple OTP evaluations.

For non-interactive masking, the hardware that masks the inputs must be
trusted and the entire input must be specified before anything about the output
z is revealed to prevent adaptive input selection as discussed in §2.2 and §3.1.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 11

EVAL: The main technical contribution of this paper, the implementation
of EVAL (of the masked program P̃ on masked inputs x̃ and ỹ) in embedded

systems is presented in detail in §4. Here we note that P̃ and ỹ (masked input of
S) can be generated offline by the sender S and provided to EVAL by convenient
means (e.g., via a data network or a storage medium). This is the scenario

advocated in [12]; one of its advantages is that generation of P̃ does not leak

to EVAL. Alternatively, P̃ and ỹ could be generated “on-the-fly” using a cheap
simple constant-memory stateless and tamper-proof token as shown in [18]. We

reiterate that the masked program P̃ can be evaluated exactly once.

UNMASK: Finally, the masked output z̃ is checked for correctness and
non-interactively decoded by R into the plain output z as follows (cf. §3.1 and

Fig. 2(b)). For each output wire, the masked program P̃ specifies the correspon-
dence ẑj → zj in form of the two valid hash values ẑ0j and ẑ1j . Even if EVAL is
executed in a completely untrusted environment (e.g., processed on untrusted
HW), its correct execution can be verified efficiently: when H(z̃j ||r) is neither ẑ0j
nor ẑ1j the garbled output z̃j is invalid and UNMASK outputs the failure symbol
⊥. The reason for this verifiability property of GC is that a valid garbled output
z̃j can only be obtained by correctly evaluating the GC but cannot be guessed.

How far can we go with Homomorphic Encryption. At the first glance,
the recently proposed Fully Homomorphic Encryption (FHE) [10, 6, 46] may
seem as an attractive alternative solution for leakage-free computation. Indeed,
FHE allows to compute arbitrary functions on encrypted data without the need
for helper data in form of a masked program. The MASK algorithm would homo-
morphically encrypt the input x and the UNMASK algorithm could decrypt the
result. Using verifiable computation [9], fully homomorphic encryption can also
be extended to allow verification that the computation was performed correctly.

However, we argue that FHE is in fact not appropriate in our setting: Our first
comment, which concerns any application of FHE, is that, in its state today, FHE
is extremely computationally intensive. Although significant effort is underway
in theoretical community to improve its performance, it seems unlikely that FHE
would reach the efficiency of current public-key encryption schemes. Intuitively,
this is because FHE must provide the same strong security guarantees, while,
at the same time, possessing extra algebraic structure to allow for homomorphic
operations. The extra structure weakens security, and countermeasures (costing
performance) are necessary. Further, even assuming performance similar to that
of RSA, this solution would be hundreds of times slower than GC-based solution,
as symmetric primitives used in GC are orders of magnitude faster. Finally, from
the leakage-resilience perspective, the UNMASK algorithm will be problematic,
as it would need to perform complicated decryptions based on secret key. We
would need to ensure nothing is leaked in these modules, which would bring us
either to using much stronger assumptions or to a chicken-and-egg problem.



12 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

4 Efficient Evaluation of Garbled Circuits in Hardware

In this section we describe how GCs (and hence also OTPs) can be efficiently
evaluated on embedded systems and memory-constrained devices. We first de-
scribe the HW architecture in §4.1. Then we present important compile-time
optimizations and show their effectiveness in §4.2. Finally, we discuss technical
details of our prototype implementation and timings in §4.3.

We stress that our designs and optimizations are generic. However, for con-
creteness and for meaningful comparison (e.g., with prior SW SFE of AES [39]),
we take SFE of the AES function as our example for timings and other mea-
surements. AES was chosen by [39] as a useful and representative function, with
applications such as Oblivious Pseudo-Random Functions (OPRF), side-channel
protection, blind MACs and encryption, and computation on encrypted data.

For AES evaluation, sender S provides AES key k as input y, and receiver
R provides a plaintext block m as input x. R obtains the ciphertext c as output
z, where c = AES(k,m). Recall, during GC evaluation (EVAL), both key and
message are masked (garbled) and hence cannot be leaked.

We use the [39] evaluation time of 2 seconds as a comparison baseline for our
HW implementation.

4.1 Architecture for Evaluating Garbled Circuits in Hardware

We describe our architecture for efficient evaluation of GC on memory-constrained
devices, i.e., having a small amount of slow memory only.

To minimize overhead, we choose key length t = 127; with a permutation bit,
garbled values are thus 128 bits long (cf. §2.1). In the following we assume that
memory cells and registers store 128 bit garbled values. This can be mapped to
standard hardware architectures by using multiple elements in parallel.

Fig. 3 shows a conceptual high-level overview of our architecture described
next. At the high-level, EVAL, the process of evaluating GC, on our architecture
consists of the following steps (cf. §3.2). First, the garbled input values x̃, ỹ are
stored in memory using the I/O interface. Then, GC gates are evaluated, using
registers A, B, and C to cache the garbled inputs and outputs of a single garbled
gate. Finally, garbled output value z̃ is output over the I/O interface.

As memory access is expensive (cf. §4.3) we optimize code to re-use values
already in registers. Our instructions are one-address, i.e., each instruction con-
sists of an operator and up to one memory address. Each of our instructions
has length 32 bits: 5 bits to encode one of 18 instructions (described next) and
27 bits to encode an address in memory.

LOAD/STORE: Registers can be loaded from memory using instructions
LOAD A and LOAD B. Register C cannot be loaded as it will hold the output
of evaluated non-XOR gates (see below). Values in registers can be stored back
into memory using STORE A, STORE B, and STORE C respectively.

XOR: We evaluate XOR gates [25] as follows. XOR A addr computes A←
A⊕mem[addr]. Similarly, the other one-operand XOR operations (XOR1) XOR B



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 13

Eval Gate

Garbled
Tables

OUTI/O

(1
or

2)
of

3

XOR AC

EVAL A/B/C
EVAL AB/AC/BC

M
em

or
y

(m
em

)

STORE C

LOAD A

LOAD B

STORE A

STORE B

XOR A

XOR B

XOR C Reg C

Reg B

Reg A

XOR AB

XOR BC

�x, �y

�z SHA-256

Fig. 3. Architecture for GC Evaluation (EVAL) on Memory-Constrained Devices

and XOR C xor the value from memory with the value in the respective regis-
ter. To compute XOR gates where both inputs are already in registers (XOR2),
the instruction XOR AB computes A ← A ⊕ B. Similarly, XOR AC computes
A← A⊕ C and XOR BC computes B ← B ⊕ C.

EVAL: Non-XOR gates [39] are evaluated with the Eval Gate block that
contains a hardware accelerator for SHA-256 (cf. §2.1 for details). The garbled
inputs are in one (EVAL1) or two registers (EVAL2), and the result is stored in
register C. The respective instructions for 1-input gates are EVAL A, EVAL B,
EVAL C and for 2-input gates EVAL AB, EVAL AC, EVAL BC. The required
garbled table entry is read from memory.

I/O: The garbled inputs of the circuit are always stored at the first |x|+ |y|
memory addresses. The memory addresses in which the output values are stored
are marked using final OUT instructions.

Example 1. Fig. 4 shows an example circuit and a possible sequence of instruc-
tions to evaluate it on our architecture. First, register A is loaded with x̃1 from
memory address 0x0, then x̃2 ⊕ ỹ1 is computed in register B and the AND gate
is evaluated to obtain output z̃1 which is stored at address 0x0 and overwrites
x̃1, which is no longer needed. Then, the NOT gate is computed using register
B as input and stored at address 0x1. The two outputs z̃1, z̃2 are at addresses
0x0 and 0x1.

��x1

�x2

�y1 1

�z1

�z2

LOAD A 0x0 // A← mem[0x0] = x̃1

LOAD B 0x1 // B ← mem[0x1] = x̃2

XOR B 0x2 // B ← B ⊕mem[0x2] = x̃2 ⊕ ỹ1

EVAL AB // C ← A ∧ B
STORE C 0x0 // mem[0x0]← C
EVAL B // C ← not B
STORE C 0x1 // mem[0x1]← C

OUT 0x0 // z̃1 ← mem[0x0]

OUT 0x1 // z̃2 ← mem[0x1]

Fig. 4. Example Circuit (left) and Instruction Sequence to Evaluate its GC on our
Architecture of Fig. 3 (right).



14 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

4.2 Compile-time Optimizations for Memory-Constrained Devices

In this section, we present several compile-time optimizations to improve perfor-
mance of GC evaluation (EVAL) on our hardware architecture. We aim to reduce
the size of GC (by minimizing the number of non-XOR gates), the size of the
program (number of instructions), the number of memory accesses and memory
size for storing intermediate garbled values. For concreteness, our presentation
is built on the example of SFE of AES, but our techniques are generic.

Optimization a:PSSW09) Our baseline is the AES circuit/code of [39], al-
ready optimized for a small number of non-XOR gates. Their circuit consists of
11, 286 two-input non-XOR gates; thus, its GC has size 11, 286 · 3 · 128 bit ≈
529 kByte. Without considering any caching strategies, this results in 113, 054
instructions, hence the program size is 113, 054 · 32 bit ≈ 442 kByte, and the
total amount of memory needed for EVAL is 34, 136 · 128 bit ≈ 533 kByte.

We start with further reduction of the size of the garbled circuit.
Optimization b:NoXNOR) We reduce the GC size by replacing XNOR gates

with XOR gates, and propagating the inverted output into the successor gates.
Output XNOR gates are replaced with XOR and a 1-input inverter gate. The
cost of this optimization is linear in the size of the circuit [37]. Overall, this
optimization results in the elimination of 4, 086 XNOR gates and reduces the
size of AES GC to (7, 200 · 3 + 40) · 128 bit ≈ 338 kByte (improvement of 36%).

Remaining optimizations assume b:NoXNOR; optimizations d:MaxFanout,
e:Rand use c:Cache.

Optimization c:Cache) We re-use values already in registers to reduce the
number of LOADs. Values in registers are saved to memory only if needed later.

Optimization d:MaxFanout) We select a specific topologic order (traversing
the circuit depth-first and following children in decreasing order of their fan-out).

Optimization e:Rand) We randomly consider several orders of evaluation,
and select the most efficient one for EVAL. (This is a one-time compilation
expense per function.) For present work, we considered several random topologic
orders of the circuit, constructed by the traversal where the next gate is selected
at random from the set of unprocessed gates with maximal fan-out. A more
rigorous approach to this randomized technique can result in more substantial
improvement, and is a good direction for future work.

Result. Using our optimizations we were able to substantially decrease the
memory footprint of EVAL: As shown in Table 1 the smallest program was
obtained with the non-deterministic optimization e:Rand which is only slightly
better than our best deterministic optimization d:MaxFanout. The size of the
AES program P is only 73, 583 · 32 bit ≈ 287 kByte (improvement of 34.9% over
a:PSSW09). The amount of intermediate memory is 17, 315 ·128 bit ≈ 271 kByte
(improvement of 49.3% over a:PSSW09) and the number of memory accesses
(read and write) is reduced by ≈ 35% compared to optimization a:PSSW09).

4.3 Prototype Implementation

We have designed two prototype implementations of the architecture of §4.1 – one
for a System-on-a-Programmable-Chip with a hardware accelerator for SHA (re-



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 15

Table 1. Optimized AES Circuits (Sizes in kB)

Garbled Circuit C̃ Program P Memory for GC Evaluation

Optimization non-XOR 1-input XOR Size Instr. Size Read Write Entries Size

a:PSSW09 11,286 0 22,594 529 113,054 442 67,760 33,880 34,136 533

b:NoXNOR 7,200 40 26,680 338 109,088 426 67,800 33,920 34,176 534
c:Cache 7,200 40 26,680 338 95,885 375 56,779 30,338 21,237 332
d:MaxFanout 7,200 40 26,680 338 74,052 289 42,469 23,767 18,676 292
e:Rand 7,200 40 26,680 338 73,583 287 42,853 22,650 17,315 271

flecting smartcard and future smartphone architectures) and another for a stand-
alone unit (reflecting a custom-made GC accelerator in hardware). Both proto-
type implementations are evaluated on an Altera/Terasic DE1 FPGA board
comprising an Altera Cyclone II EP2C20F484C7 FPGA and 512kB SRAM and
8MB SDRAM (and several other peripherals that are not relevant for this work)
and are functionally equivalent: they take the same inputs (program P , garbled

circuit C̃, and garbled inputs x̃, ỹ) and return the same garbled outputs z̃; the
only differences are the methods used in the implementation.

SDRAM

SRAM

NIOS II
Processor

FPGA

I/O

SHA-256

(a) System-on-a-Programmable-Chip

SDRAM Control SHA-256

FPGA

I/O

Regs

(b) Stand-Alone Unit

Fig. 5. Architectures for Hardware-Assisted GC Evaluation

System-on-a-Programmable-Chip (SOPC). Our first prototype imple-
mentation is a system-on-a-programmable-chip (SOPC) that consists of a pro-
cessor with access to a hardware accelerator for SHA-256, which speeds up the
heaviest computational burden of the GC evaluation. This is a representative ar-
chitecture for next generation smartphones or smartcards such as the STMicro-
electronics ST33F1M smartcard which includes a 32-bit RISC processor, cryp-
tographic peripherals, and memory comparable to our prototype system [50].

Our prototype implementation consists of a NIOS II/e 32-bit softcore RISC
processor (the smallest variation of NIOS II), a custom-made SHA-256 unit, the
SRAM, and the SDRAM. The entire process is run in the NIOS II processor
which uses the SHA-256 unit for accelerating gate evaluations. The architecture
is shown in Fig. 5(a). The SHA-256 unit is connected to the Avalon bus of
the NIOS II as a peripheral component and it computes the hash for a 512-bit
message in 66 clock cycles (excluding interfacing delays). The NIOS II program,



16 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

etc., are stored in the SRAM and the SDRAM is devoted solely for the data
required to execute an OTP, i.e., the program for our architecture, the garbled
circuit, the garbled inputs, the intermediate garbled values, etc.

Stand-Alone Unit. The second implementation is a stand-alone unit con-
sisting of a custom-made control state machine, registers (A, B, C), a custom-
made SHA-256 unit, and SDRAM. This architecture could be used to design
an Application Specific IC (ASIC) as high-speed hardware accelerator for GC
evaluation. Our prototype FPGA architecture is depicted in Fig. 5(b).

The interface (I/O in Fig. 5(b)) allows the host to write to and read from the
SDRAM. First, the host writes the program, the garbled circuit, and the garbled
inputs to SDRAM. The stand-alone unit then executes the program. The state
machine parses the program and reads/writes data from/to SDRAM to/from
the registers or evaluates the non-XOR gates using the SHA-256 unit according
to the instructions (see §4.1 for details). The garbled outputs are written into
specific addresses from which the host retrieves them using the I/O interface.

Prototyping Environment. The implementations were synthesized with
Altera Quartus II, version 9.1 (2009). The custom-made units were written with
VHDL and verified with simulations in ModelSim Altera-edition, version 6.5b
(2009). The NIOS II processor was programmed with C using NIOS II IDE,
version 9.1 (2009). All parts of both implementations run with a 50 MHz clock.
The interfacing with the host was implemented with NIOS II also for the stand-
alone unit. In both implementations, data was transferred to the FPGA by
using the Host File System (HFS) of NIOS II; we point out that HFS is feasible
for prototyping phase only, and the interface should be replaced with a more
appropriate one (e.g., PCI-Express or Gigabit Ethernet) in a real application.

Area. The area requirements of our prototype implementations are shown
in Table 2. Both prototypes easily fit into the low-cost Cyclone II FPGA which
contains 18,754 logic cells (LC), each containing one 4-to-1-bit look-up table
(LUT) and a flip-flop (FF), and 52 4092-bit embedded memory blocks (M4K).
The values of the stand-alone unit exclude NIOS II used for the HFS in the
prototype. SHA-256 is the largest and most significant block in both prototypes.
The SOPC additionally contains NIOS II, on-chip memory, and SDRAM con-
troller, and the stand-alone unit contains additional control logic, registers, and
SDRAM controller (cf. Fig. 5).

Table 2 also shows the area for a straightforward iterative implementation of
AES-128 on the same FPGA to ease cost evaluation of our methodology; how-
ever, this implementation does not include any countermeasures against side-
channel attacks. Compared to an unprotected implementation, countermeasures
against power analysis have area overheads ranging from factor of 1.5 to 5 [51]
as discussed in §1.2; therefore, the area overheads of OTP evaluation are com-
parable with other side-channel countermeasures.

Timings. Instructions. The timings of instructions are summarized in Ta-
ble 3. They show the average number of clock cycles required to execute an
instruction excluding the latency of fetching the instruction. Gate evaluations
are expensive in the SOPC implementation, although the SHA-256 computations



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 17

Table 2. Areas of the Prototypes for GC
Evaluation on an Altera Cyclone II FPGA

Design LC FF M4K

SOPC 7501 4364 22
NIOS II 1104 493 4
SHA-256 2918 2300 8

Stand-Alone Unit 6252 3274 8
SHA-256 3161 2300 8

AES (unprotected) 2418 431 0

Table 3. Timings for Instructions on
Prototypes (clock cycles, average)

Instruction SOPC Stand-Alone Unit

LOAD 291.43 87.63

XOR1 395.30 87.65
XOR2 252.00 1.00

STORE 242.00 27.15

EVAL1 1,282.30 109.95
EVAL2 1,491.68 135.05

OUT 581.48 135.09

are fast, because they involve a lot of data movement (to/from the SHA-256 unit
and from the SDRAM) which is expensive. The dominating role of memory reads
and writes is clear in the timings of the stand-alone implementation: the only
instructions that do not require memory operations (XOR2) require only a single
clock cycle and EVAL1 are faster than EVAL2 because they access the memory
on average every other time (no access if the permutation bit is zero) compared
to three times out of four (no access if both permutation bits are zeros).

AES. The timings to run the optimized garbled circuits for the AES func-
tionality of §4.2 on our prototype implementations are given in Table 4. These
timings are for GC evaluation only; i.e, they neglect the time for transferring
data to/from the system because interface timings are highly technology de-
pendent (HFS is extremely slow, but convenient for prototyping). The SHA-256

Table 4. Timings for the FPGA-based Prototypes for GC Evaluation

System-on-a-Programmable-Chip Stand-Alone Unit

Clock cycles Timings (ms) Clock cycles Timings (ms)
Optimization SHA Total SHA Total SHA Total SHA Total

a:PSSW09 744,876 94,675,402 14.898 1,893.508 744,876 11,235,118 14.898 224,702

b:NoXNOR 477,840 87,433,180 9.557 1,748.664 477,840 10,604,268 9.557 212.085
c:Cache 477,840 77,991,519 9.557 1,559.830 477,840 9,208,586 9.557 184,172
d:MaxFanout 477,840 62,929,278 9.557 1,258.586 477,840 7,203,630 9.557 144.073
e:Rand 477,840 62,629,261 9.557 1,252.585 477,840 7,201,150 9.557 144.023

computations take an equal amount of time for both implementations because
the SHA-256 unit is the same. The (major) difference in timings is caused by
data movement, XORs, interface to the SHA-256 unit, etc. The runtimes for both
implementations are dominated by writing and reading the SDRAM; e.g., 84.3%
for the stand-alone unit and our smallest AES circuit (optimization e:Rand).
Hence, improving the speed of the memory, e.g., by introducing burst reads and
writes, is the key for further speedups.

Performance Comparison. A software implementation that evaluates the
GC/OTP of the unoptimized AES functionality a:PSSW09 required 2 seconds



18 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

on an Intel Core 2 Duo 3.0 GHz with 4GB of RAM [39]. Our optimized circuit
e:Rand evaluated on the stand-alone unit requires only 144 ms for the same op-
eration and, therefore, provides a speedup by a factor of 10.4–17.4 (taking the
lack of precision into account).

On the other hand, the unprotected AES implementation listed in Table 2
encrypts a message block in 10 clock cycles and runs on a maximum clock fre-
quency of 66 MHz resulting in a timing of 0.1515µs; hence, the GC/OTP eval-
uation suffers from a timing overhead factor of ≈ 950, 000. For comparison, the
timing overhead of one specific implementation including power analysis coun-
termeasures was factor of 3.88 [52].

5 Conclusion

The power of side-channels attacks on cryptographic implementations have mo-
tivated both theoreticians and practitioners to seek more general defense models
and solutions. The recent strand of research on leakage-resilient cryptography is
still in its early stage, and most proposals are not yet implemented and evaluated
in practice. The recent observation of one-time programs (OTPs) uses estab-
lished Garbled Circuit (GC) techniques, and relies on hardware with relatively
weak tamper-proof assumptions, to realize provably leakage-resilient evaluation
of arbitrary functions in an untrusted environment.

In this work, we studied the performance of GC/OTP evaluation in hard-
ware. For this, we implemented two hardware prototypes for GC/OTP evalua-
tion based on FPGA: one for a system-on-a-programmable-chip with access to
a hardware accelerator for SHA-256 (representative for smartcards and future
smartphones), and a stand-alone hardware implementation (reflecting a custom-
made GC accelerator in hardware). We chose AES as the representative complex
function, and we believe our measurements will serve as a reference point for es-
timating runtimes of a variety of useful functions.

Our measurements show an order of magnitude performance improvement
over the previous software implementation of AES GC evaluation reported in
[39]. We thus believe that GC/OTP is a viable option for hardware implementa-
tion, especially for secure computation scenarios, where hardware acceleration is
desired. The use of GC/OTP for leakage resilience carries high cost, and should
be reserved for truly security-critical applications. Finally, OTP can be inher-
ently evaluated only once, i.e., each additional evaluation requires fresh OTM
hardware modules and data transfer for the GC (338 kByte for AES), which
prevents certain deployment scenarios.

Acknowledgements. Thanks to anonymous reviewers of CHES’10 for their
helpful comments and to co-authors of [39] for the initial AES circuit.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 19

References

1. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s).
In Cryptographic Hardware and Embedded Systems (CHES’02), volume 2523 of
LNCS, pages 29–45. Springer, 2002.

2. M.-L. Akkar and C. Giraud. An implementation of DES and AES, secure against
some attacks. In Cryptographic Hardware and Embedded Systems (CHES’01), vol-
ume 2162 of LNCS, pages 309–318. Springer, 2001.

3. C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Template at-
tacks in principal subspaces. In Cryptographic Hardware and Embedded Systems
(CHES’06), volume 4249 of LNCS, pages 1–14. Springer, 2006.

4. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557–594, 2004.

5. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Cryptographic Hardware
and Embedded Systems (CHES’02), volume 2523 of LNCS, pages 13–28. Springer,
2003.

6. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. Cryptology ePrint Archive, Report 2009/616, 2009.
http://eprint.iacr.org. To appear at EUROCRYPT 2010.

7. W. Fischer and B. M. Gammel. Masking at gate level in the presence of glitches.
In Cryptographic Hardware and Embedded Systems (CHES’05), volume 3659 of
LNCS, pages 187–200. Springer, 2005.

8. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.
In Cryptographic Hardware and Embedded Systems (CHES’01), volume 2162 of
LNCS, pages 251–261. Springer, 2001.

9. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. Cryptology ePrint Archive, Report
2009/547, 2009. http://eprint.iacr.org.

10. C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium
on Theory of Computing (STOC’09), pages 169–178. ACM, 2009.

11. B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede. Revisiting higher-order
DPA attacks: Multivariate mutual information analysis. In Cryptographers’ Track
at RSA Conference (CT-RSA ’10), volume 5985 of LNCS, pages 221–234. Springer,
2010.

12. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In Advances
in Cryptology – CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, 2008.

13. V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography
on tamper-proof hardware tokens. In Theory of Cryptography (TCC’10), volume
5978 of LNCS, pages 308–326. Springer, 2010.

14. V. Gunupudi and S. Tate. Generalized non-interactive oblivious transfer using
count-limited objects with applications to secure mobile agents. In Financial
Cryptography and Data Security (FC’08), volume 5143 of LNCS, pages 98–112.
Springer, 2008.

15. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-
drino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold
boot attacks on encryption keys. In USENIX Security Symposium (Security’08),
pages 45–60. USENIX Association, 2008.

16. D. Hwang, K. Tiri, A. Hodjat, B. Lai, S. Yang, P. Schaumont, and I. Verbauwhede.
AES-based security coprocessor IC in 0.18-µm CMOS with resistance to differen-
tial power analysis side-channel attacks. IEEE Journal of Solid-State Circuits,
41(4):781–791, 2006.



20 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

17. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In Advances in Cryptology – CRYPTO 2003, volume 2729 of
LNCS, pages 463–481. Springer, 2003.

18. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Embedded SFE:
Offloading server and network using hardware tokens. In Financial Cryptography
and Data Security (FC’10), LNCS. Springer, 2010. To appear.

19. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs.
In 12th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES’10), LNCS. Springer, 2010. To appear.

20. J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of prod-
uct ciphers. In European Sumposium on Research in Computer Security (ESORICS
’98), volume 1485 of LNCS, pages 97–110. Springer, 1998.

21. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology – CRYPTO 1999, volume 1666 of LNCS, pages 388–397, 1999.

22. V. Kolesnikov. Gate evaluation secret sharing and secure one-round two-party
computation. In ASIACRYPT’05, volume 3788 of LNCS, pages 136–155. Springer,
2005.

23. V. Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In Theory of Cryptography (TCC’10), volume 5978 of LNCS, pages
327–342. Springer, 2010.

24. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building
blocks and applications to auctions and computing minima. In Cryptology and
Network Security (CANS’09), volume 5888 of LNCS, pages 1–20. Springer, 2009.

25. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and ap-
plications. In International Colloquium on Automata, Languages and Programming
(ICALP’08), volume 5126 of LNCS, pages 486–498. Springer, 2008.

26. V. Kolesnikov and T. Schneider. A practical universal circuit construction and
secure evaluation of private functions. In Financial Cryptography and Data Security
(FC’08), volume 5143 of LNCS, pages 83–97. Springer, 2008.

27. K. Lemke. Embedded security: Physical protection against tampering attacks. In
C. Paar K. Lemke and M. Wolf, editors, Embedded Security in Cars, chapter 2,
pages 207–217. Springer, 2006.

28. Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party compu-
tation. Journal of Cryptology, 22(2):161–188, 2009. Cryptology ePrint Archive,
Report 2004/175, http://eprint.iacr.org.

29. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation effi-
ciently with security against malicious adversaries. In Security and Cryptography
for Networks (SCN’08), volume 5229 of LNCS, pages 2–20. Springer, 2008.

30. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party
computation system. In USENIX Security Symposium (Security’04). USENIX As-
sociation, 2004.

31. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

32. T. S. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. In Cryptographic Hardware and Embedded Systems (CHES’00), volume 1965
of LNCS, pages 238–251. Springer, 2000.

33. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In ACM-SIAM Sym-
posium On Discrete Algorithms (SODA’01), pages 448–457. Society for Industrial
and Applied Mathematics, 2001.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 21

34. D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The
case of AES. In Cryptographers’ Track at RSA Conference (CT-RSA’06), volume
3860 of LNCS, pages 1–20. Springer, 2006.

35. E. Oswald and S. Mangard. Template attacks on masking—resistance is futile. In
Cryptographers’ Track at RSA Conference (CT-RSA ’07), volume 4377 of LNCS,
pages 243–256. Springer, 2007.

36. D. Page. Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical Report CSTR-02-003, University of Bristol, 2002.

37. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-
private functions. In Applied Cryptography and Network Security (ACNS’09), vol-
ume 5536 of LNCS, pages 89–106. Springer, 2009.

38. K. Pietrzak. Provable security for physical cryptography. In Western European
Workshop on Research in Cryptology (WEWORC’09), 2009. Survey available at
http://homepages.cwi.nl/~pietrzak/publications/Pie09b.pdf.

39. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party compu-
tation is practical. In Advances in Cryptology – ASIACRYPT 2009, volume 5912
of LNCS, pages 250–267. Springer, 2009.

40. T. Popp and S. Mangard. Masked dual-rail pre-charge logic: DPA-resistance
without routing contraints. In Cryptographic Hardware and Embedded Systems
(CHES’05), volume 3659 of LNCS, pages 172–186. Springer, 2005.

41. J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): Measures and
countermeasures for smart cards. In Research in Smart Cards (E-smart 2001),
volume 2140 of LNCS, pages 200–210. Springer, 2001.

42. A.-R. Sadeghi and T. Schneider. Generalized universal circuits for secure evalua-
tion of private functions with application to data classification. In International
Conference on Information Security and Cryptology (ICISC’08), volume 5461 of
LNCS, pages 336–353. Springer, 2008.

43. M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh. A design methodology for a DPA-
resistant cryptographic LSI with RSL techniques. In Cryptographic Hardware and
Embedded Systems (CHES’09), volume 5747 of LNCS, pages 189–204. Springer,
2009.

44. A. Satoh, T. Sugawara, N. Homma, and T. Aoki. High-performance concurrent er-
ror detection scheme for AES hardware. In Cryptographic Hardware and Embedded
Systems (CHES’08), volume 5154 of LNCS, pages 100–112. Springer, 2008.

45. S. P. Skorobogatov. Data remanence in flash memory devices. In Cryptographic
Hardware and Embedded Systems (CHES’05), volume 3659 of LNCS, pages 339–
353. Springer, 2005.

46. N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography (PKC’10), LNCS.
Springer, 2010. Cryptology ePrint Archive, Report 2009/571, http://eprint.

iacr.org.
47. S. W. Smith. Fairy dust, secrets, and the real world. IEEE Security & Privacy,

1(1):89–93, 2003.
48. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald.

Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report
2009/341, 2009. http://eprint.iacr.org/.

49. M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik, and
B. d. Weger. Short chosen-prefix collisions for MD5 and the creation of a rogue CA
certificate. In Advances in Cryptology – CRYPTO 2009, volume 5677 of LNCS,
pages 55–69. Springer, 2009.



22 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

50. STMicroelectronics. Smartcard MCU with 32-bit ARM SecurCore SC300 CPU
and 1.25 Mbytes high-density Flash memory. Data brief, October 2008.
http://www.st.com/stonline/products/literature/bd/15066/st33f1m.pdf.

51. K. Tiri. Side-channel attack pitfalls. In Design Automation Conference (DAC’07),
pages 15–20. ACM, 2007.

52. K. Tiri, D. Hwang, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont, and I. Ver-
bauwhede. Prototype IC with WDDL and differential routing — DPA resistance
assessment. In Cryptographic Hardware and Embedded Systems (CHES ’05), vol-
ume 3659 of LNCS, pages 354–365. Springer, 2005.

53. K. Tiri and I. Verbauwhede. A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In Design, Automation and Test in
Europe (DATE’04), volume 1, pages 246–251. IEEE, 2004.

54. Trusted Computing Group (TCG). TPM main specification. Main specification,
Trusted Computing Group, May 2009. http://www.trustedcomputinggroup.org.

55. L. G. Valiant. Universal circuits (preliminary report). In ACM Symposium on
Theory of Computing (STOC’76), pages 196–203. ACM, 1976.

56. I. Verbauwhede and P. Schaumont. Design methods for security and trust. In
Design, Automation and Test in Europe (DATE’07), pages 672–677. ACM, 2007.

57. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In Advances in
Cryptology – CRYPTO 2005, volume 3621 of LNCS, pages 17–36. Springer, 2005.

58. S. H. Weingart. Physical security devices for computer subsystems: A survey of at-
tacks and defences. In Cryptographic Hardware and Embedded Systems (CHES’00),
volume 1965 of LNCS, pages 302–317. Springer, 2000.

59. A. C. Yao. How to generate and exchange secrets. In IEEE Symposium on Foun-
dations of Computer Science (FOCS’86), pages 162–167. IEEE, 1986.

A Improved Garbled Circuits

Yao’s original GC construction has been improved by reducing its computa-
tion and communication complexity as described next. As throughout the entire
paper we denote symmetric security parameter with t.
Free XOR gates. An efficient method for creating garbled circuits which allows
“free” evaluation of XOR gates was presented in [25]. More specifically, a garbled
XOR gate has no garbled table (no communication) and its evaluation consists of
XORing its garbled input values (negligible computation). The main observation
of [25] is, that the constructor S randomly chooses a global key difference ∆ ∈R
{0, 1}t which remains unknown to evaluator R and relates the garbled values as
w̃0

i = w̃1
i ⊕ (∆||1). The usage of such garbled values allows for free evaluation

of XOR gates with input wires W1,W2 and output wire W3 by computing w̃3 =
w̃1 ⊕ w̃2 (no communication and negligible computation).
Reduced non-XOR gates. Non-XOR gates, can be evaluated as in Yao’s GC con-
struction [59] with a point-and-permute technique (as used in [30]): The garbled
values w̃i = 〈ki, πi〉 ∈ {0, 1}t+1 consist of a symmetric key ki ∈ {0, 1}t and a ran-
dom permutation bit πi ∈ {0, 1}. The entries of the garbled table are permuted
such that the permutation bits πi of a gate’s garbled input wires can be used
as index into the garbled table to directly point to the entry to be decrypted.
After decrypting this entry using the garbled input wires’ t-bit keys ki, evaluator



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 23

obtains the garbled output value of the gate. The encryption is done with the
symmetric encryption function Encsk1,...,kd

(m), where d is the number of inputs
of the gate and s is a unique identifier used once, e.g., a monotonic gate counter.
Enc can be instantiated with m ⊕ H(k1|| . . . ||kd||s), where H is a Random Ora-
cle (RO) which can be instantiated with a suitably chosen cryptographic hash
function such as SHA-256 in practice. We note that the RO assumption can
be avoided or weakened at small additional computation cost – see [39]. Addi-
tionally, garbled row reduction of [39] allows to remove the first entry from the
garbled tables of non-XOR gates, i.e., the garbled table of a d-input non-XOR
gate consists of 2d − 1 table entries of size t+ 1 bits each.

B Proof of Theorem 1.

Proof. (sketch) Security against semi-honest S is trivial as S does not see R’s
input (we consider OTMs a separate entity from S).

We now describe the simulator Sim which will produce a view indistinguish-
able from the view of R in real execution. Sim will query the receiver R as a
black box and answer all of R’s queries, including calls to (simulated) RO O.
Our proof is based on the idea that Sim will “program” O such that the output
of the “hold off” gates will match the output given by the trusted party of the
ideal game.

Without loss of generality, we assume that R queries RO only once for each
distinct input. Upon initialization, Sim constructs GC, as would an honest S in
the construction described above, and sends the GC toR together with randomly
chosen commitments ẑ0j , ẑ

1
j for all output wires. Additionally, Sim generates

a random key r and a random secret sharing r =
⊕
i

ri of it. For the wires

corresponding to the input of S, Sim sends secrets corresponding to 0-values.
Whenever R queries the i-th OTM with input bit xi, Sim responds with the
corresponding garbled value x̃xi

i , constructed earlier as part of GC construction,
and the share ri. Once R had queried the final OTM, Sim sends the input
received from R to the trusted party, and receives the output f(x, y) of the
computation. Now Sim “programs” O to output certain values according to the
received f(x, y). That is, on input (z̃j ||r) (call associated with OT-commit gate

Gi and the j-th bit of the output), O will output ẑ
fj(x,y)
j , i.e., the commitment

for the wire leaving Gj that corresponds to the bit fj(x, y) of the output he
received from the trusted party.

It is not hard to see that the above simulator generates view indistinguishable
from the view of R in real execution. First, we note that the simulated GC and
responses to RO and OTM queries are indistinguishable from real execution.
Thus, in particular, R “behaves normally” during the simulation, and would not
be able to, e.g., substitute inputs in a special way, etc. Further, “programming”
of O will not be noticed by R, since he can query programmed values only with
negligible probability prior to completing all OTM calls (since r is random and
unknown to R prior to completing all OTM calls). ut



24 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

C On our use of Random-Oracle

We note that in our extension of one-time programs described in §3.1, we use a
relatively strong assumption of programmable RO. In fact, it had been shown
[4] that some (contrived) uses of RO cannot be securely instantiated with any
hash function. Therefore, proofs in the RO model cannot be seen as proofs in the
strictest mathematical sense. However, we believe that modeling cryptographic
hash functions, such as SHA-256, as RO is well-justified in our setting.

Firstly, to date, no attacks exploiting the RO assumption are known on prac-
tical systems. This holds true even in academic context10. Further, even in well-
understood and deployed real-life systems, the crypto core (which includes the
employed hash functions) is almost never targeted for attacks, in favor of much
easier to exploit implementation flaws. In our setting, we deal with much less
understood physical leakage, and make strong assumptions on the amount and
content of leakage. We believe that exploiting the structure of real hash function
(required to violate the RO assumption), something that eluded cryptographers
for decades, is far harder and costlier than violation of other assumptions used
in design of leakage-resilient systems.

In sum, we strongly believe that making the RO assumption on the employed
hash function is practically justified in ours and many other settings.

10 Important attacks on SHA-1 [57] that exploit the structure of the functions were
far impractical, and simply accelerated migration to stronger primitives, which are
believed secure today. While some attacks, such as the attack on MD5 [49], are in
fact practical, the use of MD5 had long been considered unsafe, and [49] broke poorly
managed systems. Thus we do not consider [49] an attack on properly implemented
protocols. In fact, [49], and the works that lead to it only support the historic fact
that users of hash functions do receive weakness warnings years ahead of possible
real breaks.


