
Adaptively Secure Broadcast Encryption
with Short Ciphertexts

Behzad Malek and Ali Miri

{bmalek,samiri}@site.uottawa.ca

School of Information Technology and Engineering
University of Ottawa, Ottawa, ON, Canada

Abstract. We propose an adaptively secure broadcast encryption scheme
with short ciphertexts. That is the size of broadcast encryption message
to share secret keys between all members of the broadcast group is fixed,
regardless of the size of the broadcast group. In our proposed scheme,
members can join and leave the group without requiring any change to
public parameters of the system or private keys of existing members.
Our construction has a twofold improvement over best previously known
broadcast encryption schemes. First, we propose a scheme that immedi-
ately yields adaptive security in the CCA model without any (sub-linear)
increase in the size of ciphertexts or use of a random oracle. Secondly, the
security model in our system includes decryption queries for any mem-
ber, even including the members in the challenge set. This a more secure
model, as it is closer to the adversary in real world.

1 Introduction

Sharing secrets or common keys between two parties has been solved by public
key cryptosystems in the 70’s, but efficiently extending the secret sharing beyond
two parties is still a challenge. This is a problem that we are facing in so many
applications today, such as video conferencing, Digital Rights Management sys-
tems, secure IP multicasting, or any other applications in general where different
parties belong to the same group and share the same credentials. They are in-
volved in the same activity and need to securely communicate with each other.
A naive solution would be to unicast the same key to all the members of the
group using conventional public key cryptosystems. This solution is not efficient
as the manager of the group has to store and communicate as many messages as
the number of group members. Moreover, every time there is any change in the
group membership, a new set of messages must be communicated with the new
members of the same group. We are looking for non-trivial solutions that can
share a secret key to dynamic members of group with minimum computations
and communications needed. As it can be seen from Fig. 1, establishing a secure
communication channel among a very disperse and dynamic set of users is a very
challenging tasks. This is mainly because traditional access control systems, e.g.
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Role Based Access Control (RBAC), often give full access to users depending
on the roles they take. This results in an all-or-nothing authorization, which
does not have the capability to set permissions selectively per user. Therefore,
we want a solution that can efficiently share access keys to all the users of a
specific resource (document). The solution has to be adapted to any arbitrary
set of users over any domain that can change dynamically.

Fig. 1. Sharing secrets among a dynamic group of users

In Fig. 1, we have supposed that a secret message needs to be communication
with Users 1,2,3,4 and all the users in Users Group B. Note that the users might
have different roles or be located at different domains. Nevertheless, the server
in Fig. 1 must be able to send a short broadcast message in the network that
can only be accessed by the privileged users. The broadcast message has to be
encrypted to be secure and short to avoid flooding the network. Users should
have different public/private keys pais to be able to securely communicate with
other members. The broadcast message needs to be generated using each user’s
public key, while any colluding subset of users in the network would not be able
to access the broadcast message if they are excluded from the set of privileged
recipients.

The cryptographic solutions in this area are usually categorized into Group
Key Multicasting (GKM) and broadcast encryption schemes. In GKM, distribu-
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tion of keys to an exclusive set of members, while the group membership changes
dynamically, is the main challenge. Emphasis is mostly on the security of the
current group members against adversaries over time in the past, present and
future. Members leave and join the group depending on the credentials they re-
ceive from the group manager. Small subgroups can form within a group, and
members should be able to securely communicate with any subgroup of mem-
bers. We are looking for ways to avoid or reduce re-sending keys to members after
every time there is a change in the group membership. We refer to the group
manager as administrator (Admin) who is responsible for managing the group
and distributing keys to group members. The Admin is usually interested in min-
imizing the communication/computation overheads imposed on group members,
in order to share a secret among themselves.

In broadcast encryption, security of the system and efficiency of sharing new
sessions keys are the main concern. It involves sharing a key between multiple
(more than two) parties in a group, where they join or leave the group at any
time. There are many security requirements in sharing new secret keys between
members of a group that dynamically change their membership. Generally, new
members of the group should not be able to access previous messages, or the
revoked members should be not be able to access the current messages commu-
nicated in the group. This usually requires updating or distributing new keys
to group members after any membership changes, affecting keys of all other
members and incurring extra communication overheads. This is referred to as
1-affects-all effect. Regarding the communication bandwidth as a limited natu-
ral resource, we would like to design a protocol that trades off computations or
storage complexity for minimal communication overheads.

Contributions: Within the given requirements, we propose the first broad-
cast encryption scheme that is secure in a fully adaptive model. The proposed
scheme is proved secure in a formal model based on a known complexity as-
sumption, while there is no need for using random oracle (hash functions) in the
proof. The security model under which the security proof is provided is a very
strong model better simulating the adversary in the real world.

Outline: In this work, we first review some of the related work in Section 2.
We give the preliminaries to understand this work in Section 3, which is followed
by Section 4, where the main protocol is given. Security of the proposed protocol
in its underlying attack model is formally proved in Section 5. Performance of
our broadcast encryption scheme is discussed in Section 6. Finally, conclusions
and future work are given in Section 7.

2 Related Work

There exist various GKM or broadcast encryption schemes that can be used for
secure group communication. For a comprehensive survey of most recent group
key multicast protocols, the reader can refer to [8]. In a centralized scheme, there
is an authority that manages the entire group membership and is responsible to
share the corresponding keys to members of the group. With the exception of
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Secure Lock protocol [10], any change in the group memberships often requires
private keys of all other members to be changed creating extra communication
overheads in the group. In the Secure Lock protocol [10], this is avoid, but at
the expense of broadcast ciphertexts that are linear in the size of the group.

Our work is based on a centralized authority, which we refer to as Admin in
this work. The Admin is responsible for setting up and supervising the group.
The Admin can also be viewed as a central authority in our protocol. In Table 1,
we compare the performances of protocols that we find relevant to our scheme.

Table 1. Comparison of centralized group key sharing protocols

Scheme 1-Not-All Communication Computation Storage Update

Secure Lock[10] X O(n) O(1) O(1) O(1)
Burmerster et al.[7] - O(1) O(n) O(1) O(n)
Perrig et al.[18] - O(log2 n) O(log2 n) O(log2 n) O(log2 n)
Barua et al.[2] - O(n) O(n) O(1) O(log3 n)
Choi et al.[11] - O(1) O(n) O(1) O(n)
Boneh et al.[6] X O(1) O(n) O(n) O(1)
Gentry & Waters[13] X O(

√
n) O(n) O(n) O(1)

Our scheme X O(1) O(n) O(n) O(n)

Legend

Size of the broadcast group n
Does not have the 1-affects-all effect 1-Not-All

Communication complexity of broadcast messages Communication
Computation complexity to send broadcast messages Computation

Storage complexity to store private/public keys Storage
Size of update messages Update

An attempt to efficiently scale group key sharing from two (as in public key
cryptography) to many entities is found in [15], where bilinear pairings (Weil
or Tate) can be used for a one-round tripartite key agreement. The protocol is
extended to large groups consisting of n members in [2]. It uses ternary trees
and therefore requires O(log3 n) communication rounds for n members. Choi et
al. [11] propose a constant-round GKM protocol from bilinear pairings, based on
Burmester and Desmedt’s scheme [7]. A good collection of identity-based GKM
protocols from pairings is gathered in [9, 16] and their security is compared to
each other. The reader interested in efficiency comparison can be referred to [1,
19]. The key sharing scheme has to be collusion resistant; the excluded members
must not be able to cooperate together, in order to obtain the session key or
private keys of other members in the group. There are some fully collusion resis-
tant systems [12, 14, 17] in which the ciphertext grows linearly with the number
of privileged receivers in the broadcast group. Boneh et al. [6] have proposed a
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system that has short ciphertexts, i.e. the size of the broadcast message is fixed
and does not change with the size of the broadcast group.

Their collusion resistant broadcast encryption is designed in a static security
model, where the adversary must commit to the set of identities S′ that it will
attack before the setup phase, i.e. before seeing public parameters (PK) of the
broadcast group. The adversary is prohibited from querying private keys for any
i ∈ [1, n] \ S′. Gentry and Waters [13] propose a semi-static security model,
where the adversary similarly must commit to a set S′ of indices before the
setup phase, but can query an arbitrary subset of S′. Note that S′ ∪ S∗ = [1, n]
and the adversary cannot query the private keys for any i ∈ S∗. It is claimed
that “a semi-static adversary is weaker than an adaptive adversary, but it is
stronger than a static adversary, in that its choice of which subset of S′ to
attack can be adaptive”[13]. On the contrary, no initial commitment is required
from the adversary in an adaptively secure system. The adversary is allowed to
see the public parameters (including the identity of members) and can then ask
for private keys of members that it wishes to attack. Attacker in reality is an
adaptive attacker that can collude with any subset of group members and ask
for decryption queries of a ciphertext at any time. We address this attacker and
present a more general definition of adaptive security.

3 Preliminaries

In this section, we begin by defining a broadcast encryption system. Then, we
present the adaptive security model devised for a broadcast encryption system.
Later in this section, we introduce the cryptographic primitives used as the basis
of this work.

3.1 Broadcast Encryption Systems

We need to begin by formally defining a public-key broadcast encryption sys-
tem. We use the formal definition of Gentry and Waters [13] and propose our
broadcast encryption protocol in the same framework. The broadcast encryption
scheme is comprised of four algorithms:Setup(λ, n), KeyGen(i, SK), Encrypt(S, PK)
and Decrypt(S, i,Di,Hdr, PK).

Setup(λ, n) Takes as input the number of receivers (n) and the security pa-
rameter λ of a broadcast recipient group. It outputs a public/secret key pair
〈PK,SK〉 belonging to the Admin. Note that SK is called a secret key, as the
security of the given broadcast encryption system depends on it.

KeyGen(i, SK) Takes an input an index i ∈ {1, · · · , n} and the secret key SK.
It outputs a private key di for the i-th member (identity). We will see later that
this private key is used for decryption in the Decrypt() algorithm.
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Encrypt(S, PK) Takes as input a subset S ⊆ [1, n] and a public key PK. If
the size of the subset (|S|) satisfies |S| ≤ l, it outputs a pair 〈Hdr,K〉, where
Hdr is called the header and K ∈ K is a message encryption key. We will show
later that K is used as the encryption key and Hdr contains data for intended
recipients to find the encryption key. The broadcast to members in S consists of
〈S,Hdr〉.

Decrypt(S, i,Di,Hdr, PK) Takes as input a subset S ⊆ [1, n], an index i ∈
{1, · · · , n}, private key Di corresponding to i, a header Hdr for the given S and
the public key PK. If |S| ≤ l and i ∈ S, then the algorithm outputs the message
encryption key K ∈ K.

3.2 Security Model

The security of our protocol is defined in the chosen ciphertext security against
an adaptive adversary. Adaptive security in broadcast encryption is defined us-
ing the following game between an attack algorithm A and a challenger. Both A
and the challenger are given n and λ in the beginning. The adversary is adap-
tive; that is it does not to commit to a subset of members before seeing the
public parameters PK. We improve the security model of Gentry and Waters’
[13] by adding the decryption query round in which the adversary, in addition
to adaptively obtaining the private keys of the attack set, can send decryption
queries to the challenger for the challenge set. We believe that this is a stronger
security model, as it is captures a wider range of attacks and is therefore closer
to the adversary in real world. Our model is defined as follows:

Setup. The challenger runs Setup(λ, n) to obtain a public key PK, which is
then revealed to the adversary.

Key Query Phase. Algorithm A adaptively issues private key (Di) queries for
any set of indices S′ ⊂ [1, n].

Challenge. The challenge set is specified as S∗ = [1, n] \ S′. Note that for all
private keys (Di) of member i queried in the Key Query Phase, we have
i /∈ S∗. The challenger then runs Encrypt(S∗, PK) and outputs 〈Hdr∗,K〉.
The challenger secretly picks a random Z

R←−∈ K. It then sets b
R←−∈ {0, 1} and

returns 〈Hdr∗,K∗〉 to the adversary, where K∗ ← K if b = 0, otherwise K∗ ← Z.

Decryption Query Phase. The adversary issues adaptively decryption queries
q1, · · · , qD, where a decryption query consists of the triple (i, S,Hdr) for any
S ⊂ [1, n] including S ⊂ S∗. The only constraint is that Hdr 6= Hdr∗. The chal-
lenger responds with Decrypt(S, i,Di,Hdr, PK).

Guess. The adversary uses algorithm A to output its guess b′ ∈ {0, 1} for b and
wins the game if b′ = b.
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We refer to the game described above as the adaptive Chosen Ciphertext
Attack (CCA). Using an algorithm A to break the broadcast encryption system
(BE) with parameters (λ, n), i.e. to guess the correct value of b, the adversary’s
advantage is defined as follows:

AdvA,BE(λ, n) = |Pr[b′ = b]− 1

2
|,

where b′ is the algorithm A’s guess of b.

Definition 1 A broadcast encryption system BE is adaptively (negl(λ), n, qD)
CCA secure if for all polynomial-time algorithms A that make a total of qD
decryption queries, we have AdvA,BE(λ, n) = negl(λ). The adversary has a neg-
ligible advantage if negl(λ) can be made smaller than 1

poly(λ) for any arbitrary

polynomial poly().

3.3 Bilinear Maps

We make extensive use of bilinear maps at the core of our proposed schemes,
but first we have to define it.

Let G and GT be groups of order p, and let g be a generator of G. A bilinear
map is an efficiently computable function from G×G onto GT , such that it has
the following properties:

1. Bilinearity : For all g, g′, h, h′ ∈ G,

e : G×G→ GT ,
e(gg′, h) = e(g, h)e(g′, h),

e(g, hh′) = e(g, h)e(g, h′)

Note that e(·, ·) is symmetric, that is e(ga, gb) = e(gb, ga) = e(g, g)ab ∀a, b.

2. Non-degeneracy : If e(g, h) = 1 for all h ∈ G, then g = I (identity).

Weil pairing and Tate pairing are two implementations of an efficient bilinear
map over elliptic curve groups useful for cryptography. For a more detailed dis-
cussion on bilinear maps and pairings, we refer the reader to [3]. Bilinear maps
for cryptography has to have certain complexities to be used in cryptographic
algorithms. This is explained in the following section.

3.4 Complexity Assumptions

The security of our schemes is based on a complexity assumption that has
appeared in prior art [4–6, 13]. The many complexity assumptions found in
literature have slightly different settings, but they are all related to the diffi-
culty of solving Discrete Logarithm Problem (DLP) over large algebraic group.
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Our main construction, which is given later in Section 4, is based on a nar-
rower variant of the DLP assumption, referred to as the Bilinear Diffie-Hellman
Exponent (BDHE)-Sum assumption. This is the same complexity assumption
that has been used in Gentry and Waters’ adaptive scheme [13]. We have sim-
plified the definition to relate directly to our security proof.

Definition 2 (BDHE-Sum Assumption (for n):) As usual, let G and GT
be groups of order p with bilinear map e : G×G→ GT , g a generator for G and

α, s
R−→ Z∗p. Set S = [−2n, 2n]. Given {yi = gα

i

: i ∈ S}, compute e(g, g)α
4n+1

,
without knowing α.

The decision assumption variant of above assumptions is stated as follows:

Definition 3 Let ŷg,α,n = {yi = gα
i ∀i ∈ S}. An algorithm B that outputs

b ∈ {0, 1} has advantage ε in solving the decision BDHE(-Sum) for n in G if

Pr
[
B(g, ŷg,α,n, e(g, g)α

4n+1

) = 0
]
− Pr [B(g, ŷg,α,n, Z) = 0] ≥ ε,

where the probability is over the random choice of the generator g ∈ G, the
random choice of α ∈ Z∗p, the random choice of Z ∈ GT , and the random
bits consumed by B. We refer to the distribution on the left as PrBDHE and the
distribution on the right as RBDHE.

We say that the (decision) (ε, n)-BDHE-Sum assumption holds in G if no
polynomial-time algorithm has advantage of at least ε in solving the (decision)
BDHE-Sum problem for n in GT .

4 Adaptively Secure BE Construction

By increasing the number of private keys, we manage to derive a fully adaptively
secure BE scheme with short ciphertexts, which is referred to as BEA. As before,
we denote the maximum number of members in the multicast group by n. Our
BEA scheme is given in the following:

Setup(λ, n) Run 〈G,GT , e
R←− GroupGen(λ, n)〉. Set α

R←− Z∗p, the genera-

tor g ∈ G, identity values x1, · · · , xn
R←− Gn and two secret values A, γ

R←− Z∗p.
Set PK to include a description of G,GT , e, {x1, · · · , xn}, {gAα

i

, ∀i ∈ [0, n]}
and e(g, g)Aα

2n+1

as the session key. The group’s secret SK is set as 〈A, γ, α〉,
which is known by Admin only. Output 〈PK,SK〉.

KeyGen(i, SK) Pick ri
R←− Z∗p. Release to member i the following set of private

keys Di ← {ri, di,j , Ti,j}, where:

di,j = g
αn

γα2rj
α−xi ∀ j ∈ [1, n] and j 6= i

Ti,j = g
Aαj

(γrj) ∀ j ∈ [0, n]
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We emphasis that ri and di,j values are used for decryption and Ti,j values
are used to create the broadcast encryption message.

Encrypt(S, i,Di, PK) The set S includes the index of members for which
the message will be sent, as well as the index of the encrypting member i. Pick

t
R←− Z∗p and set Hdr← 〈C1, C2〉, where C1 ← gtα

n

and

C2 ← gtAα
n−|S|(γri)

−1 ∏
j∈S(α−xj),

where i is the sender’s index i. Let’s denote p(α) = αn−|S|
∏
j∈S(α− xj). It

should be clear that p(α) is a polynomial of degree n, and therefore gA(γri)
−1p(α)

can be readily calculated from Ti,j-s and xj-s. The session key (K) is set as
follows:

K ← e(g, g)tAα
2n+1

.

Output 〈Hdr,K〉.
Decrypt(S, i,Di,Hdr, PK) If i ∈ S, find the sender’s index (j) and then

expand Hdr to 〈C1, C2〉 and output

K ← e(C1, g
Api(α))e(C2, di,j).

where pi(α) = αn+1− α2p(α)
α−xi . Note that for i ∈ S, pi is a polynomial of degree

n and therefore gApi(α) can be easily calculated from gAα
j

-s and xj-s, when i ∈ S.

Correctness: Let’s check that decryption recovers the correct value of K.

Recall that the secret key of a member is set as di,j = g
αn

γα2rj
α−xi . Then, we have

the following proceedings:

e(C1,g
Api(α))e(C2, di,j) = e(gtα

n

, gApi(α))

× e(gtA(γrj)
−1p(α), g

αn
γα2rj
α−xi )

= e(g, g)tAα
npi(α)e(g, g)

tAαn
α2p(α)
α−xi

= e(g, g)
tAαn(αn+1−α

2p(α)
α−xi

+
α2p(α)
α−xi

)

= e(g, g)tAα
2n+1

as required.

Authentication: Let SymEnc and SymDec be symmetric encryption and
decryption, respectively. Let M be a random verification message to be broadcast

to the set S, and let CM
R←− SymEnc(K,M) be the randomized encryption of

M under the session key K, which is broadcast to the set S. The broadcast to
members in S consists of 〈S,Hdr,M,CM 〉. The privileged receiver, a member in
the set S, can easily verify the sender of the broadcast message as follows:
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First, member i (if i ∈ S) retrieves the session key K from Hdr by using the
decryption key (di,j) corresponding to the sender (member j) of the message.
Then, member i checks if M = SymDec(K,CM ). If it passes, it verifies the
sender, otherwise, it refuses the authentication.

5 Security Analysis

In this section, we prove the fully security of the proposed BEA scheme in the
CCA model.

Theorem 1 Let GT be a bilinear group of prime order p. For any positive in-
tegers n, 2n(s.t. n < 2n < p) our n-broadcast encryption system is (negl(λ), 2n)
adaptively secure assuming the decision (negl(λ), 2n)-BDHE-Sum assumption
holds in GT .

Table 2. Comparison of identity-based broadcast encryption schemes

Scheme Ciphertext Private Keys Public Parameters Security ROM

Gentry & Waters[13] O(1) O(1) O(n) Semi-Static –
Gentry & Waters[13] O(1) O(1) O(n) Adaptive X
Gentry & Waters[13] O(

√
n) O(1) O(n) Adaptive –

Our scheme O(1) O(n) O(n) Adaptive –

Proof. As usual, we start by the assumption that there is an algorithm A with
advantage ε = negl(λ) in attacking the proposed BEA scheme. If this is true, we
prove that A can be used to solve the decision n-BDHE-Sum in G. We build
a simulation machine B that receives an instance of the decision n-BDHE-Sum
problem. This is comprised of Z ∈ G and the set of {gai : i ∈ [−2n, 2n]}.

No Commit. It has to be emphasized that the adversary’s algorithm A does
not commit to a predetermined set of indices S∗ to attack, before seeing the pub-
lic parameters of the scheme. Without loss of generality, we assume |S∗| = 2.
This implies that the adversary can attack and retrieve the private keys of all
members, except two members that will be used in the challenge round. One un-
attacked member is used to generate a broadcast message (Hdr∗) only for the
other un-attacked member. Otherwise, it is obvious that the adversary will be
able to recover the session key, as it already has the private key of other members.

Setup. B disguises the parameters of the challenge problem into parameters of
the proposed BEA scheme. B puts α = a and using the challenge instance, it
sets the public parameters as: gα

i

= ga
i

for i ∈ [0, 2n]. For the public identity’s

of members (xi), B picks xi
R←− Z∗p and publishes PK as G,GT , e, {x1, · · · , xn},
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and {gαi , ∀i ∈ [0, 2n]}. Then, B picks a random y0
R←− Z∗p and sets γ = y0a

−2n.

The session key, as before, is the following K = e(g, g)α
2n+1

= e(g, g)a
2n+1

. The
secret key SK includes the set {α = a, γ = y0a

−2n}.

Private Keys Query. Algorithm A queries private keys (di,j) for any arbitrary
subset S′ of [1, n], where max(|S′|) = n− 2. We make the restriction that A has
to query all private keys at once for members it will attack. Let’s denote the set
of un-attacked members by S∗. Thus, we have S∗∪S′ = [1, n]. We have assumed
that |S∗| = 2, so the notation j ⊕ 1 refers to the other index in S∗ than j in our
notes.

Having known the set of attacked members (S′) and the set of un-attacked

members (S∗), B picks a random bj
R←− Z∗p and sets Bj = bja

n for j ∈ [1, n],
but it sets Bj = bja

n−1(a − xj⊕1) and Bj⊕1 = bj⊕1a
n−1(a − xj). For i ∈ S′,

B responds to the query for member i’s private keys as follows: it returns
Di ← 〈ri, di,j , Ti,j〉, recall that in the real protocol, we have ri as a random value,

di,j = g
γαnBj

α2−rj
α−xi and Ti,j = g

αj

γBj . Accordingly, B returns ri = x2i and di,j =

gy0bj(a+xi) for j ∈ S′, but for j ∈ S∗, B returns di,j = gy0bja
−1(a−xj⊕1)(a+xi)

and di,j⊕1 = gy0bja
−1(a−xj)(a+xi). Finally, Ti,j = g(y0bi)

−1an+j

for all j ∈ [0, n].
Note that all these parameters can be readily calculated from the BDHE-Sum
instance. It is easy to check that the private keys are matched with the parame-
ters in the real protocol, and they are valid. The set of indices in the un-attacked
set S∗, which have not been queried, will be used in the challenge phase.

Challenge. In the challenge phase, B creates a broadcast encryption message
for i ∈ S∗. It sets S ⊂ S∗ and generates C∗1 = gt and C∗2 = gt(γbi)

−1p(α),
where i ∈ S∗. Let’s suppose that the broadcast message is generated by mem-
ber i, i ∈ S∗ and S = {i ⊕ 1}. The challenge is then calculated as follows:

pick a random t0
R←− Z∗p, and set t = t0a

2n. Then, calculate the broadcast

Hdr∗ ← 〈C∗1 , C∗2 〉, where C∗1 = gt0a
2n

and C∗2 = gt0a
2n(y0a

−2nBi)
−1an−1(a−xi⊕1),

which yields gt0(y0bi)
−1

for Bi = bia
n−1(a − xi⊕1). Note that both C∗1 and C∗2

can be directly calculated from the BDHE-Sum instance: C∗1 = (ga
2n

)t0 and

C∗2 = (g)t0(y0bi)
−1

. It should be noted that Hdr∗ = {C∗1 , C∗2} as set above is a

valid ciphertext for indices in S ⊂ S∗ and the session key K = e(g, g)t0a
2na2n+1

=

e(g, g)t0a
4n+1

. B outputs Hdr∗ and K∗ = Zt0 , where Z is the challenge from the
BDHE-Sum instance, as the new challenge to A.

Decryption Query. we further allow A to use the set of private keys it re-
ceived to generate a broadcast message for any i ∈ [1, n] and even for i ∈ S∗.
B is able to derive the private keys di,j for i ∈ S∗, in the same way as in the
Private Keys Query phase, except Ti,j values for i ∈ S∗. Nevertheless, this
does not stop B from returning correct decryptions, since only ri and di,j are
need for decrypting and Ti,j values are used to create the broadcast encryption.
By setting ri = x2i and di,j = gy0bj(a+xi) for any i ∈ S∗ and j ∈ S′, B is able to
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respond correctly to the decryption queries as in the real application.

Guess. The algorithm A outputs its guess b′ ∈ {0, 1} and wins the game if
b′ = b. B sends b′ to the challenger in the proposed BEA scheme to solve the
BDHE-Sum instance. From A’s perspective, B’s simulation has almost the same
distribution as the adaptive security model defined earlier in Section 3. The
public and private keys are appropriately distributed, since xi-s and therefore
ri-s are uniformly random. When b = 0 in the adaptive game, 〈Hdr∗,K∗〉 is
generated according to the same distribution as in the real application with
a valid session key K∗ = e(g, g)ta

2n+1

, where t = t0a
2n. Thus, the challenge

is a valid ciphertext under the randomness of t0. From B’s simulation, when
b = 0, we can easily find the solution to BDHE-Sum problem, by outputting
Z = K∗1/t0 = e(g, g)a

4n+1

.
When b = 1 in the adaptive game, 〈Hdr∗,K∗〉 is generated with K∗ being

replaced by a random key. This distribution is identical to that of B’s simulation,

where Hdr∗ is valid for randomness of t0, but K∗
R←− GT is a uniformly random

element of GT . From this, we see that B’s advantage in deciding n-BDHE-Sum
problem is precisely A’s advantage against the BEA scheme.

6 Performance Analysis

In this section, we analyze the overheads of increased security over previously
known schemes. We have seen that adding new members causes extra commu-
nications and updates of private keys of existing members. Nevertheless, the
maximum size of the group n in the proposed scheme is bounded by size of the
pairing group, i.e. n < |G|. For current levels of security, it is suggested to have
|G| ≥ 2160 [3]. More efficiency and security analysis of pairing groups are given in
[9]. This implies that the size of the underlying pairing groups increases linearly
with the maximum size of the broadcast group. This is a challenge that we leave
for future work.

We proposed a fully adaptive BE with short ciphertexts to meet the prime
objective of this work. The design is aimed at constructing a fully secure BE
scheme with O(1) session key messages (Hdr), regardless of the size of the broad-
cast group. In Table 2, we have compared our work to Gentry and Waters’ BE
scheme and its variants [13]. It can be seen from Table 2 that the increased se-
curity in our scheme has led to an increase in the size of private key parameters
of each member. Moreover, the adaptive security in Gentry and Waters’ work
[13] with short ciphertext O(1) is based on Random Oracle Model (ROM) and
hash functions.

It should be noted that the adaptive security of the proposed scheme is
obtained in an attack model that is stronger that the one appeared in [13]. In
our security model, we allow the adversary not only to query private keys of all
members under attack, but also to query decryption of messages intended for all
other members – the ones it did not query for private keys. We believe that this
a better security model as it is closer to the adversary in real world.
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Table 3. Satisfying requirements for broadcast encryption schemes

Requirement Boneh et al.[6] Gentry & Waters[13] Our scheme

Efficiency in communication X X X
Efficiency in computation X ] X
Collusion resistant X X X
Scalability X ] ]
No 1-affects-all X X ]
Ephemeral secrecy X X X
Long-term secrecy X X X
Forward secrecy X X X
Group forward secrecy X X X
Backward secrecy X X X
Provable security X X X
Symmetry X X X
Authentication – – X

Legend

Fully satisfies the requirements X
Partially satisfies the requirements ]
Does not satisfies the requirements –

6.1 Group Operations

In the proposed BEA scheme also, removing from the group membership do not
affect existing members. Excluding a member simply means not including the
index of excluded member in calculate the ciphertexts (Hdr). If a member is
permanently removed from the group, only the identity parameter (xk) of the
excluded member is removed and no further changes to private keys of mem-
bers are required. Keys of members remain the same as the group membership
changes without compromising security of the BEA protocol. It should be added
that member removal is performed at no extra communication or computation
cost to group members.

Removal. membership removal is inherent in the BEA scheme. Excluding a
member is as usual and is performed by not including the index of the excluded
member in S. Thus, no extra communication or computation overhead is in-
curred for removing a member.

Addition. adding a member is authorized by Admin. If the group’s maximum
capacity, set by n, is not reached, any new member i′ can be added to the
group. The Admin simply generates a new set of private keys {di′,j , Ti′,j} for
the new member and publishes its identity (xi′) to the group. Unlike the semi-
static scheme of Boneh et al. [6] that did not require further key update at the
existing members, we have to send the new decryption key di,i′ for the existing
member i to be able to communicate with new member i′. We further compare
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the proposed scheme in Table 3 with regards to the general requirements that
we provided earlier in this work.

As listed in Table 3, the proposed broadcast encryption scheme satisfies al-
most all the requirements. As said earlier, the maximum size of the group is
limited by the order of bilinear underlying group. Moreover, adding new mem-
bers requires the Admin to broadcast new decryption keys to all current members
of the group, where as removing any member does not require any change to
keys of existing members. Our proposed scheme is the only scheme that provides
authentication of the sender without any increase in the size of the broadcast
encryption message.

7 Conclusions and Future Work

In this work, we have proposed a broadcast encryption scheme based on pair-
ings over elliptic curves. We have proposed the first adaptively secure broadcast
encryption scheme with short ciphertexts without the use of random oracles.
The security model of the proposed broadcast encryption scheme is a strong
model that simulates the adversary in the real world as closely as possible. In
our model, we prove adaptive security of the proposed scheme, where the adver-
sary not only receives private keys of its selected members, but also it can send
decryption queries for members in the challenge set. We believe this is a better
security model, as it captures a wider range of attacks in practice.

Increase security has resulted in an increase in the size of private keys. How-
ever, this increase yields an authentication service with no extra overheads. In
our proposed scheme, the sender of a broadcast message can be verified to the
members of the broadcast group. As a side effect, if new members are added to
the broadcast group, verification keys of the added members need to be commu-
nicated with existing group members.

We have also shown that the communication and computation needed for
the protocol to actively exclude or include memberships are very minimal, i.e.
with O(1) communication and O(n) computations, where n is the size of the
broadcast group. The amount of storage required for each member can be trivial
when compared to other protocols. Members can join or leave the group, while
the security keys of other members will not be affected by the change in group
memberships. The maximum number of that can join the group is limited by
the underlying algebraic group structure. Thus, we believe that the protocol is
suitable for small groups with limited bandwidth. Our protocol will drastically
reduce the communication and computation overheads needed to establish secure
key exchange between the group members.

The maximum size of the broadcast group is bounded by the size of the under-
lying bilinear group. In future, we intend to design adaptively secure broadcast
encryption schemes that has short ciphertext and exponential size groups. It is
still an open question if one could design a broadcast encryption scheme with
both short ciphertexts and short private keys.
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