
STUDIES ON VERIFIABLE SECRET

SHARING, BYZANTINE AGREEMENT AND

MULTIPARTY COMPUTATION

A THESIS

submitted by

ARPITA PATRA

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

MAY 2010

Thesis Certificate

This is to certify that the thesis entitled Studies on Verifiable Secret Sharing,
Byzantine Agreement and Multiparty Computation submitted by Arpita Pa-
tra to the Indian Institute of Technology Madras, Chennai for the award of the Degree
of Doctor of Philosophy is a record of bona-fide research work carried out by her under
my supervision and guidance. The contents of this thesis have not been submitted to
any other university or institute for the award of any degree or diploma.

Chennai 600036 Research Guide

Date: (Prof. C. Pandu Rangan)

i

To The Supreme Personality of Godhead Sri Krsna and to my parents

Acknowledgments

“Freedom consists not in refusing to recognize anything above us, but
in respecting something which is above us; for by respecting it, we
raise ourselves to it, and, by our very acknowledgment, prove that we
bear within ourselves what is higher, and are worthy to be on a level
with it.”

My first and foremost heart-felt gratitude goes to my wonderful supervisor
Prof. C. Pandu Rangan who introduced me to the world of ‘Cryptography’.
Prior to anything else, I would like to confess that I am among those luckiest
few students in the world who are bestowed to receive a supervisor in the form
of a father. It is rare to find such person who has extended the student-teacher
relationship to that of a father-child bond. Truly, for him every student is like
his own child (I feel more blessed, for I was one of his pet children!). It is not
only academics, but for every problem and worry in my life, I have got him by
my side. Still it is beyond my thought that I have to leave IIT Madras and
move to a place where he will not be there around me. I remember my entry
to IIT Madras with my eyes full of dreams to conquer the world and with a
mind full of enthusiasm, eagerness and ready to plunge into every new source of
knowledge. I never new GOD is planning to gift me one of the most precious
gifts of my life in the form of my advisor, a complete package of teacher, father,
dream-maker, friend, philosopher and the list grows on... I will never forget
about those philosophical conversations we had many a times. As I look back
now, I see how those conversations boosted my spirits, changed many aspects of
my life immensely, ignited the passion of learning, generating and disseminating
knowledge more and more without expecting much of material gain. I must
confess that he is the perfect dream-maker. Many foundation stones of my dream
are laid my him. His expertise in taking out the best out of a student is beyond
appreciation. His inspiration can lift any student to excellence. He is a great
orator and teacher. His oratory skill is phenomenal and it is something every
student who has got a chance to listen to him will cherish. I wish that I can
carry on the legacy of him to the next generation. Needless to mention, he
has a tremendous influence on my professional as well as personal development.
His guidelines in my initial days was of immense help for me. His colorful and
creative feedback on my writing style has transformed each one of my drafts into
excellent shape. Furthermore, I thank him for providing an excellent research
atmosphere at the Theoretical Computer Science (TCS) Lab, IIT Madras. It has
been a delight working in TCS Lab, thanks to the lively ambience maintained by
the past and present students of the lab. TCS lab remains to be matchless and
peerless in Department of Computer Science, as far as the seriousness, graveness
in research is concerned with. At the same time, it is the most hip and happening
place with full of fun, frolic and fiesta. I enjoyed every bit of my life in this lab
which have created many great researchers in the past.

Beside my advisor, I also would like to acknowledge the members of my doc-
toral committee namely, Prof. P. Sreenivasa Kumar, Dr. A. Thangaraj, Prof. R.
Rama, Dr. V. Kamakoti and Dr. Narayanaswamy for their encouragement and
invaluable suggestions during my doctoral committee meetings. I would also like
to thank the present and previous head of the department, Prof. C. Siva Ram

iii

Murthy and Prof. T. A. Golsalves, respectively for their kind help. My heart-felt
thanks to Prof. Kamala Krithivasan who has helped me a lot many times when
I needed. I would also like to thank Dr. Sukhendu Das (who was my advisor
during MS at IIT Madras) for helping me out in every little problem without
hesitation.

I would like to thank Dr. Tal Rabin, for her collaboration on our CRYPTO
paper and for her insightful remarks on some of our other articles. She was
instrumental in teaching me how to write real ‘good’ paper. Her critical feed-
backs were really eye-openers for me. Here I would also like to acknowledge Dr.
Jonathan Katz and Ranjit Kumaresan for their collaboration. By sincere thanks
to Dr. Jonathan Katz for allowing me to interact with his group at University of
Maryland and supporting my stay unconditionally.

I owe a lot to my senior Srinathan who is at present an assistant professor
at IIIT Hyderabad. A day’s out with him will surely enlighten a person both
academically and spiritually. I feel unfortunate for joining TCS Lab after he left
the place. But still I relished every bit of those discussion sessions that we had
at IIIT Hyderabad and at TCS Lab (when he used visit TCS Lab).

I am thankful to the unknown reviewers who rejected my papers several times
in some of the international conferences and journals. The comments that they
provided helped to polish our articles in better shape. But the bigger and nobler
cause of thanking them is that the rejections have equipped me with high level
of patience and helped me a lot to exercise/implement my spiritual thoughts in
practice.

Several other people from whom I draw lot of inspiration are Prof. Bimal Roy,
Prof. Palash Sarkar, Prof. Rana Barua from ISI Kolkata. I must say that they
are just superb gang of people. They have helped me in many odd situations
which I will never forget in my life. Something that always touches my heart
is their extremely hearty behavior towards me. I am greatly thankful to them
(specially Prof. Bimal Roy) for creating many opportunities for me for giving
invited talks. I will never forget the day of my marriage when Prof. Bimal Roy
and Prof. Palash Sarkar came to our residence. It was a very unexpected as well
as cherishable moment for me. My heart was completely inundated with joy and
the experience is beyond my words. This list will remain incomplete without two
other names, Prof. Dipanwita RoyChoudhury and Prof. Indranil DasGupta from
IIT Kharagpur. Both of them are very nice people and they have extended their
helping hand in many occasions.

My lab mates Esha, Chaya, Billy, Thiru, Sai, Shinku, Amjed, Nisha, Saki,
Manila, Kishore, Sobin, Madhu, Preetha madam, Sharmila and Vivek deserve
special acknowledgments. Special mention goes to my cute sisters (Esha and
Chaya), my sweet brothers (Billy, Thiru, Sai and Shinku), the pair (Vivek,
Sharmi) and their little cute son Svitin (whom I wish to have as my future
student :)) for their nice company. I also acknowledge my ex-lab-mates KP, Sid-
dharth, Meena, Harini, Balu, Aswin, Raghavendra, Naresh, Nainesh and Naveen
(some of them are exceptionally calm, cool and placid at heart). Aswin deserves
special thanks for his collaboration over several of our works and also for his
fruitful discussions.

The gang of close friends, Rima, Tanmoy, Suranjana, Anuradha, Annesha,
Soma and Soumi, have stood by me though the ups and downs of my life. Their
association has made my stay in IITM a pleasurable and memorable experience.
The outings with Tanmoy and Rima will be etched permanently in my memory.

iv

I will also not forget about those endless gossips, laughs that we had at our
lunch table. Cheers to you guys! Your friendship is truly beyond words of
acknowledgement.

My friends during my B. Tech days, Debi, Mitu, Saptarshee, Oishee, Soumen,
Deepak Shah, Deepak Pal, for having faith and confidence in me and for showing
enthusiasm and curiosity over my work. I still cherish the fresh excitements of
my B. Tech days in their companion.

My sincere thanks to my in-laws (Dr. Ajit Choudhury and Chhanda Choud-
hury), Salim mama and brother-in-low Rahul for their unconditional support.
They have always encouraged me for my study and above all they have uncondi-
tionally supported all that I wanted to do in my life.

My sincere thanks to all of our department office staffs (Radhai Madam,
Saradha Madam, Balu Sir, Prema madam and Murali) and academic section
stuffs (Saraswati Madam and Raghu Sir) for heartily helping me whenever I
required.

My sincere acknowledgments to Microsoft Research (MSR), Bangalore for
their Ph.D. fellowship and financial assistance during this work. I also acknowl-
edge IARCS (Indian Association for Research in Computing Science) for sup-
porting my travel to international conferences many time. I thank the organizing
committee of CRYPTO and PODC for supporting my travel for the respective
conferences. My sincere thanks to Google Inc. for supporting my entire cost of
travel for PODC 2008 and ICITS 2008, held at Toronto and Calgary, Canada. I
am thankful to Prof. Rei Safavi-Naini for supporting my stay at University of
Calgary twice during ICITS 2008 and PODC 2009.

The placid and serene ambience at IIT Madras has played a key role in helping
me out to keep my mental equilibrium. Undoubtedly, IIT Madras possesses
the best natural campus among all the IITs in India. It was such a soothing
experience to see and (sometimes feed) the deers and monkeys all around us.
Literally, we got to experience the thrill of living with wild-life. In short, IIT
Madras campus is simply rocking!

Now I would like to thank five remarkable people who had, are having and
will continue to have a tremendous influence on my life. My parents, Ahibhushan
Patra and Sima Patra, for introducing me to the world and bestowing me with
all the love of the world and mental support that I needed in every step and every
sphere of my life. My mother, the perfect dream-maker is the source of immense
inspiration to me. “All the education become meaningless and purposeless if
you do not become a good human being in that process”: this is the lesson
she taught me. My father is the first teacher in my life who taught me “Learn
to live by struggle. Struggle is the color of life”. My dearest sisters, Swagata
(Liza) and Ankita (Lona), for their endless love for me. There is nothing in the
world that I do not share with them. Moreover, I have got two best listeners in
them. We three are a rocking trio. I thank GOD a lot to bless me with such
a beautiful adorable family. I, from the bottom of my heart, sincerely want to
be the child of such a wonderful parents and sister of such innocent siblings in
all my births. This acknowledgement list will remain incomplete without the
mention of my beloved husband Ashish, who also happened to be my research
colleague. I have found a true life partner as well as research partner in him. I
feel like I am one of the chosen children of GOD who has not only blessed me
with loving family but also with such a wonderful husband. My every moment
of research and personal life has been a cherishing experience in his company.

v

My development till this stage would have been incomplete without his insightful
suggestions, fruitful discussions and critical remarks. He is my best and worst
critic. Regarding any critical research discussion, I am sure that I can face the
world fearlessly after I face him. He is truly a pillar of support for me.

Above all, I thank the Supreme personality of Godhead Krsna who created the
universe and gave the mankind the supreme knowledge in the form of Bhagavad
Gita, the ultimate manual for mankind and the quintessence of cosmic law in
the eternal words of the supreme Lord Sri Krsna. He also teaches us “niskama
karmayoga” i.e. the art of performing prescribed duties without having any
attachment to its fruit and without having any material expectations (that I am
trying my best to implement in my life):

“You have a right to perform your prescribed duty, but you are not
entitled to the fruits of action. Never consider yourself the cause of
the results of your activities, and never be attached to not doing your
duty.”

I am truly indebted to all of them who come to the weekly programme at IIT
Madras from ISKCON (International Society for Krsna Consciousness) to deliver
talks on various topics from Bhagavad Gita. Each and every talk helped me to
get elevated in the spiritual ladder and also to progress in my journey to the
supreme Godhead Krsna. I also thank all the devotees for their association.

vi

Abstract

This dissertation deals with three most important as well as fundamental prob-
lems in secure distributed computing, namely Verifiable Secret Sharing (VSS),
Byzantine Agreement (BA) and Multiparty Computation (MPC).

VSS is a two phase protocol (Sharing and Reconstruction) carried out among
n parties in the presence of a centralized adversary who can corrupt up to t par-
ties. Informally, the goal of the VSS protocol is to share a secret s, among the
n parties during the sharing phase in a way that would later allow for a unique
reconstruction of this secret in the reconstruction phase, while preserving the se-
crecy of s until the reconstruction phase. VSS is used as a key tool in MPC, BA
and many other secure distributed computing problems. It can take many differ-
ent forms, depending on the underlying network (synchronous or asynchronous),
the nature (passive or active) and computing power (bounded or unbounded)
of the adversary, type of security (cryptographic or information theoretic) etc.
We study VSS in information theoretic setting over both synchronous as well as
asynchronous network, considering an active unbounded powerful adversary. Our
main contributions for VSS are:

• In synchronous network, we carry out in-depth investigation on the round
complexity of VSS by allowing a probability of error in computation and
show that existing lower bounds for the round complexity of error-free VSS
can be circumvented by introducing a negligible probability of error.

• We study the communication and round efficiency of VSS in synchronous
network and present a robust VSS protocol that is simultaneously commu-
nication efficient and round efficient. In addition, our protocol is the best
known communication and round efficient protocol in the literature.

• In asynchronous network, we study the communication complexity of VSS
and propose a number of VSS protocols. Our protocols are highly communi-
cation efficient and show significant improvement over the existing protocols
in terms of communication complexity.

The next problem that we deal with is Byzantine Agreement (BA). BA is con-
sidered as one of the most fundamental primitives for fault tolerant distributed
computing and cryptographic protocols. BA among a set of n parties, each hav-
ing a private input value, allows them to reach agreement on a common value
even if some of the malicious parties (at most t) try to prevent agreement among
the parties. Similar to the case of VSS, several models for BA have been pro-
posed during the last three decades, considering various aspects like the under-
lying network, the nature and computing power of adversary, type of security.
One of these models is BA over asynchronous network which is considered to
be more realistic network than synchronous in many occasions. Though impor-
tant, research in BA in asynchronous network has received much less attention
in comparison to the BA protocols in synchronous network. Even the existing
protocols for asynchronous BA involve high communication complexity and in
general are very inefficient in comparison to their synchronous counterparts. We
focus on BA in information theoretic setting over asynchronous network toler-
ating an active adversary having unbounded computing power and mainly work

vii

towards the communication efficiency of the problem. Our contributions for BA
are as follows:

• We propose communication efficient asynchronous BA protocols that show
huge improvement over the existing protocols in the same setting. Our pro-
tocols for asynchronous BA use our VSS protocols in asynchronous network
as their vital building blocks.

• We also construct a communication optimal asynchronous BA protocol for
sufficiently long message size. Precisely, our asynchronous BA communi-
cates O(`n) bits for ` bit message, for sufficiently large `.

The studies on VSS and BA naturally lead one towards MPC problems. The
MPC can model almost any known cryptographic application and uses VSS as
well as BA as building blocks. MPC enables a set of n mutually distrusting
parties to compute some function of their private inputs, such that the privacy
of the inputs of the honest parties is guaranteed (except for what can be derived
from the function output) even in the presence of an adversary corrupting up
to t of the parties and making them misbehave arbitrarily. Much like VSS and
BA, MPC can also be studied in various models. Here, we attempt to solve
MPC in information theoretic setting over synchronous as well as asynchronous
network, tolerating an active unbounded powerful adversary. As for MPC, our
main contributions are:

• Using one of our synchronous VSS protocol, we design a synchronous MPC
that minimizes the communication and round complexity simultaneously,
where existing MPC protocols try to minimize one complexity measure at a
time (i.e the existing protocols minimize either communication complexity
or round complexity).

• We study the communication complexity of asynchronous MPC protocols
and design a number of protocols for the same that show significant gain
in communication complexity in comparison to the existing asynchronous
MPC protocols.

• We also study a specific instance of MPC problem called Multiparty Set
Intersection (MPSI) and provide protocols for the same.

In brief, our work in this thesis has made significant advancement in the state-
of-the-art research on VSS, BA and MPC by presenting several inherent lower
bounds and efficient/optimal solutions for the problems in terms of their key
parameters such as communication complexity and time/round complexity. Thus
our work has made a significant contribution to the field of secure distributed
computing by carrying out a foundation research on the three most important
problems of this field.

viii

Contents

1 Introduction 1
1.1 Overview of VSS, BA and MPC 2

1.1.1 Verifiable Secret Sharing (VSS) 2
1.1.2 Byzantine Agreement (BA) 3
1.1.3 Multiparty Computation (MPC) 3

1.2 Various Models for Studying VSS, BA and MPC 4
1.2.1 Communication Model . 5
1.2.2 Adversary Model . 6

1.3 The Model of our Interest and Informal Definitions of the Problems 8
1.4 History of Extant Literature on VSS, BA and MPC 9

1.4.1 The History of VSS in Synchronous Network 10
1.4.2 The History of VSS in Asynchronous Network 11
1.4.3 The History of MPC in Synchronous Network 12
1.4.4 The History of MPC in Asynchronous Network 12
1.4.5 The History of BA in Asynchronous Network 13

1.5 The Contribution of this Thesis 14
1.5.1 Investigation on The Round Complexity of Statistical VSS 14
1.5.2 Study of Communication and Round Efficiency of Statisti-

cal VSS . 15
1.5.3 Study of Communication Efficiency of Statistical AVSS . . 16
1.5.4 Study of Communication Efficiency of Perfect AVSS 16
1.5.5 Study of Communication and Round Efficiency of Statisti-

cal MPC . 16
1.5.6 Designing Efficient Multiparty Set Intersection Protocol in

Synchronous Network . 17
1.5.7 Study of Communication Efficiency of Statistical AMPC . 17
1.5.8 Study of Communication Efficiency of Perfect AMPC . . . 18
1.5.9 Designing Communication Efficient ABA for Small Message 18
1.5.10 Designing Communication Optimal ABA for Long Message 19

1.6 The Organization of this Thesis 20

I Results in Synchronous Network 24

2 An Efficient Information Checking Protocol 25
2.1 Introduction . 25

2.1.1 Existing Literature and Existing Definition of ICP 25
2.1.2 New Definition, Model, Structure and Properties of ICP . 25
2.1.3 The Road-map . 27

2.2 A Novel ICP . 27

ix

2.3 Comparison of MVMS-ICP with the ICPs of [138] and [48] 32
2.4 Some Important Remarks, Facts, Definitions and Notations 33

2.4.1 MVMS-ICP with One Round of Reveal 33
2.4.2 MVMS-ICP with Single Secret and n = 3t + 1 Verifiers . . 33
2.4.3 A Definition . 34
2.4.4 Notation for using MVMS-ICP 34

2.5 Linearity of Protocol MVMS-ICP 34
2.6 Conclusion and Open Problems 37

3 The Round Complexity of Statistical VSS and WSS 38
3.1 Introduction . 38

3.1.1 Relevant Literature of VSS 38
3.1.2 Our Results on Statistical VSS 39
3.1.3 Our Results on Statistical WSS 40
3.1.4 The Working Field of Our Protocols 41
3.1.5 On the Definition of Round Complexity of VSS and WSS . 41
3.1.6 The Network and Adversary Model 42
3.1.7 Definitions of VSS and WSS 42
3.1.8 The Road-map . 43

3.2 Efficient 1-round Sharing, 2-round Reconstruction (4, 1) Statistical
VSS . 44
3.2.1 Statistical VSS with One Round of Reconstruction 46
3.2.2 Statistical VSS with No Broadcast 46

3.3 Efficient 2-round Sharing, 2-round Reconstruction (3t + 1, t) Sta-
tistical WSS . 47
3.3.1 Statistical WSS with One Round of Reconstruction 51
3.3.2 Statistical WSS with One Round of Broadcast 51

3.4 Efficient 2-round Sharing, 2-round Reconstruction (3t + 1, t) Sta-
tistical VSS . 51
3.4.1 Statistical VSS with One Round of Reconstruction 55
3.4.2 Statistical VSS with One Round of Broadcast 55

3.5 Efficient 3-round Sharing, 2-round Reconstruction (3, 1) Statistical
VSS . 55
3.5.1 3-round Sharing VSS with One Round of Reconstruction . 57

3.6 In-efficient 4-round Sharing, 2-round Reconstruction (2t+1, t) Sta-
tistical VSS . 57
3.6.1 4-round Sharing VSS with One Round of Reconstruction . 61

3.7 Efficient 5-round Sharing, 2-round Reconstruction (2t + 1, t) Sta-
tistical VSS . 61
3.7.1 5-round Sharing VSS with One Round of Reconstruction . 61

3.8 Lower Bounds for Statistical VSS 62
3.8.1 Lower Bound for 2-round Sharing Statistical VSS 62
3.8.2 Lower Bound for 1-round Sharing Statistical VSS 67

3.9 Efficient 1-round Sharing, 2-round Reconstruction (3t + 1, t) Sta-
tistical WSS . 70
3.9.1 1-round Sharing WSS with One Round of Reconstruction . 73

3.10 Efficient 3-round Sharing, 2-round Reconstruction (2t + 1, t) Sta-
tistical WSS . 74
3.10.1 3-round Sharing WSS with One Round of Reconstruction . 76

3.11 Lower Bounds for Statistical WSS 76

x

3.12 Conclusion and Open Problems 76

4 Communication and Round Efficient Statistical VSS 78
4.1 Introduction . 78

4.1.1 Relevant Literature on Statistical VSS 78
4.1.2 Our Network and Adversary Model 78
4.1.3 Contribution of This Chapter 78
4.1.4 The Road-map . 80

4.2 Statistical VSS For a Single Secret 80
4.2.1 The Output Generated by 5VSS-Share 85
4.2.2 Linearity Property of 1d?-sharing and 2d?-sharing 86

4.3 Statistical VSS For Multiple Secrets 87
4.3.1 The Output Generated by 5VSS-MS-Share 88
4.3.2 Linearity Property of 1d(?,`)-sharing and 2d(?,`)-sharing . . 91

4.4 Conclusion and Open Problems 93

5 Statistical MPC with Optimal Resilience Minimizing both Round
and Communication Complexity 94
5.1 Introduction . 95

5.1.1 Definition of MPC . 95
5.1.2 The Relevant Literature on MPC 95
5.1.3 Statistical MPC with Optimal Resilience 95
5.1.4 Our Motivation and Contribution 98
5.1.5 Our Network and Adversary Model 99
5.1.6 The Road-map . 100

5.2 Overview of Our Statistical MPC Protocol 100
5.3 Preparation Phase . 100

5.3.1 Multiplication Protocol With Robust Fault Handling . . . 100
5.3.2 Conversion From 2d(?,`)-sharing to ` Individual 2d?-sharing 111
5.3.3 Preparation Phase — Main Protocol 113

5.4 Input Phase . 114
5.5 Computation Phase . 115
5.6 Statistical MPC Protocol . 117
5.7 Conclusion and Open Problems 117

6 Statistical Multiparty Set Intersection 118
6.1 Introduction . 118

6.1.1 Secure Multiparty Set Intersection (MPSI) 118
6.1.2 Existing Literature on MPSI 119
6.1.3 The Network and Adversary Model 120
6.1.4 Our Motivation and Contribution 120
6.1.5 The Road-map . 121

6.2 Round and Communication Complexity of MPSI Protocol of [116] 121
6.3 Discussion on Our New MPSI Protocol with n = 3t + 1 123

6.3.1 Our MPSI Protocol with n = 3t + 1 vs. Existing General
MPC Protocols . 123

6.3.2 The Working Field of our MPSI Protocol 124
6.3.3 Overview of Our Protocol 124

6.4 Generation of a Random Value 125
6.5 Statistical VSS with n = 3t + 1 125

xi

6.5.1 The Output Generated by VSS-Share 130
6.6 Generating Random t-(1d)-sharing 131
6.7 Multiplication Protocol . 132

6.7.1 Upgrading t-(1d)-sharing to t-(2d)-sharing 132
6.7.2 An ABC protocol— Proving c = ab 135
6.7.3 Our Multiplication Protocol 138

6.8 Statistical MPSI Protocol with n = 3t + 1 139
6.9 Statistical MPSI Protocol with Optimal Resilience 146

6.9.1 Preparation Phase . 146
6.9.2 Input Phase . 147
6.9.3 Computation and Output Phase 147
6.9.4 Our New MPSI with Optimal Resilience 148
6.9.5 Our MPSI Protocol with n = 2t + 1 vs. Existing General

MPC Protocols . 149
6.10 Conclusion and Open Problems 149

II Results in Asynchronous Network 151

7 Efficient Asynchronous Information Checking Protocols 152
7.1 Introduction . 152

7.1.1 Existing Literature and Definition of Asynchronous ICP or
AICP . 152

7.1.2 New Definition, Model, Structure and Properties of AICP 152
7.2 A-cast: Asynchronous Broadcast 155
7.3 Our First AICP . 156
7.4 Our Second AICP . 159
7.5 Discussion About MVMS-AICP-I and MVMS-AICP-II 165
7.6 Comparison of MVMS-AICP-I and MVMS-AICP-II with Existing

AICP of [39, 35] . 165
7.7 Definition and Notations for Using MVMS-AICP-I and MVMS-AICP-

II as Black Box . 165
7.8 Conclusion and Open Problems 166

8 Efficient Statistical AVSS Protocols With Optimal Resilience 168
8.1 Introduction . 168

8.1.1 The Network and Adversary Model 169
8.1.2 Definitions . 169
8.1.3 Contribution of This Chapter 171
8.1.4 The Road-map . 172

8.2 Discussion on the Approaches used in the AVSS of [39] and the
Approaches used by our AVSS Protocols 172

8.3 Statistical AWSS Protocol . 173
8.3.1 AWSS Scheme for Sharing a Single Secret 173
8.3.2 AWSS Scheme for Sharing Multiple Secrets 180
8.3.3 Deriving Two AWSS Protocols for Single Secret from Pro-

tocol AWSS . 183
8.3.4 Deriving Two AWSS Protocols for Multiple Secrets from

Protocol AWSS-MS . 184
8.4 Our Weak Statistical AVSS protocol 186

xii

8.4.1 Our Weak Statistical AVSS Scheme for Sharing a Single
Secret . 186

8.4.2 Deciding The Choice of AWSS Protocol 191
8.4.3 Our Weak Statistical AVSS Scheme for Sharing Multiple

Secrets . 192
8.4.4 Deciding The Choice of AWSS Protocol 194

8.5 Our Strong Statistical AVSS protocol 197
8.5.1 Our Strong Statistical AVSS Scheme for Sharing a Single

Secret . 197
8.5.2 Deciding The Choice of AWSS Protocol 207
8.5.3 Our Strong Statistical AVSS Scheme for Sharing Multiple

Secrets . 208
8.5.4 Deciding The Choice of AWSS Protocol 209

8.6 Conclusion and Open Questions 212
8.7 Appendix: Analysis of the Communication Complexity of the AVSS

Scheme of [39] . 213

9 Efficient ABA with Optimal Resilience for Short Message 215
9.1 Introduction . 215

9.1.1 The Network and Adversary Model 216
9.1.2 Definitions . 216
9.1.3 Relevant History of ABA 217
9.1.4 The Motivation of Our Work 219
9.1.5 Contribution of This Chapter 219
9.1.6 The Road-map . 221

9.2 A Brief Discussion on the Approaches Used in the ABA Protocols
of [39, 1] and Current Chapter . 221

9.3 Our ABA Protocol for Single Bit 222
9.3.1 Existing Common Coin Protocol Using Our AVSS Protocol 222
9.3.2 Existing Voting Protocol 227
9.3.3 The ABA Protocol for Single Bit 230

9.4 Our Efficient ABA Protocol for Multiple Bits 233
9.4.1 An Incorrect Common Coin Protocol 234
9.4.2 A New and Efficient Common Coin Protocol for Multiple

Bits . 236
9.4.3 Final ABA Protocol for Achieving Agreement on t+1 Bits

Concurrently . 243
9.5 Conclusion and Open Problems 246
9.6 APPENDIX: Analysis of the Communication Complexity of the

ABA Scheme of [39, 35] . 247

10 Efficient Statistical AMPC with Optimal Resilience 248
10.1 Introduction . 248

10.1.1 Network and Adversary Model 248
10.1.2 Definitions . 248
10.1.3 Relevant History of Statistical Asynchronous MPC 250
10.1.4 Contribution of This Chapter 250
10.1.5 The Road-map . 251

10.2 Statistical ACSS . 251
10.2.1 Tool Used for our Statistical ACSS 251

xiii

10.2.2 Statistical ACSS for Sharing a Single Secret 251
10.2.3 Statistical ACSS for Sharing Multiple Secrets 256

10.3 Primitives Used in Our AMPC Protocol 259
10.4 The Approach Used in the AMPC of [21] and Current Chapter . . 259
10.5 Generating t-(2d)-Sharing . 261
10.6 Preparation Phase . 264

10.6.1 Generating Secret Random t-(2d)-sharing 264
10.6.2 An ABC Protocol– Proving c = ab 267
10.6.3 Generating Multiplication Triples: The Main Protocol For

Preparation Phase . 269
10.7 Input Phase . 271
10.8 Computation Phase . 272
10.9 The New Statistical AMPC Protocol with Optimal Resilience . . 274
10.10Conclusion and Open Problems 275

11 Efficient Statistical AVSS Protocol With Non-Optimal Resilience
and Perfect AVSS With Optimal Resilience 276
11.1 Introduction . 277

11.1.1 The Network and Adversary Model 277
11.1.2 The Definitions . 277
11.1.3 Relevant Literature . 278
11.1.4 Contribution of This Chapter 278
11.1.5 The Motivation for Presenting our AVSS Schemes 279
11.1.6 The Common Primitives Used for Both of our AVSS Schemes280
11.1.7 The Road-map . 280

11.2 Statistical AVSS For Sharing a Single Secret 281
11.2.1 Distribution Phase . 281
11.2.2 Verification & Agreement on CORE Phase 282
11.2.3 Generation of τ-(1d)-sharing Phase 289
11.2.4 Protocol St-AVSS: Statistical AVSS Sharing a Single Secret 290

11.3 Statistical AVSS For Sharing Multiple Secrets 292
11.4 A Different Interpretation of Protocol St-AVSS-MS 293
11.5 Finding (n, t)-star Structure in a Graph 295
11.6 Perfect AVSS for Sharing a Single Secret 298

11.6.1 Distribution Phase . 299
11.6.2 Verification & Agreement on CORE Phase 299
11.6.3 Generation of τ -(1d)-sharing Phase 303
11.6.4 Protocol Pf-AVSS-Share and Pf-AVSS-Rec 304

11.7 Perfect AVSS for Sharing Multiple Secrets 306
11.8 A Different Interpretation of Protocol Pf-AVSS-MS 308
11.9 Conclusion and Open Problems 309

12 Efficient Statistical AMPC Protocol With Non-Optimal Resilience
and Perfect AMPC With Optimal Resilience 310
12.1 Introduction . 311

12.1.1 The Network and Adversary Model 311
12.1.2 Definitions . 311
12.1.3 Relevant Literature on AMPC 311
12.1.4 Contribution of This Chapter 313
12.1.5 Primitives Used . 313

xiv

12.1.6 The Road-map . 315
12.2 Statistical AMPC of Huang et al. [107] 315
12.3 Statistical Protocol for Generating (t, 2t)-(1d)-sharing of ` Secrets 317
12.4 Statistical AMPC Protocol with n = 4t + 1 319

12.4.1 Preparation Phase . 319
12.4.2 Input Phase . 322
12.4.3 Computation Phase . 324
12.4.4 Our Statistical AMPC Protocol 325

12.5 Perfect Protocol for Generating (t, 2t)-(1d)-sharing of ` Secrets . . 326
12.5.1 Comparison with Existing Protocol for generating (t, 2t)-

(1d)-sharing . 326
12.6 Our Perfect AMPC Protocol Overview 327

12.6.1 Preparation Phase . 327
12.6.2 Input Phase . 328
12.6.3 Computation Phase . 328
12.6.4 Our Perfect AMPC Protocol 328

12.7 Conclusion and Open Problems 329

13 Efficient Statistical ABA Protocol With Non-Optimal Resilience330
13.1 Introduction . 331

13.1.1 The Network and Adversary Model 331
13.1.2 Our Motivation and Contribution 331

13.2 Our ABA protocol with Non-optimal Resilience 332
13.2.1 A New and Efficient Common Coin Protocol for Multiple

Bits with n = 4t + 1 . 332
13.2.2 Final ABA Protocol for Achieving Agreement on 2t+1 bits

Concurrently with n = 4t + 1 334
13.3 Conclusion . 334

14 Communication Optimal Multi-Valued A-cast and ABA with Op-
timal Resilience 335
14.1 Introduction . 336

14.1.1 The Network and Adversary Model 337
14.1.2 Definitions . 337
14.1.3 The History of Asynchronous Broadcast or A-cast 338
14.1.4 The History of Asynchronous Byzantine Agreement (ABA) 338
14.1.5 Multi-valued A-cast and ABA: Motivation of Our work . . 339
14.1.6 Contribution of This Chapter 340
14.1.7 The Road-map . 342

14.2 Communication Optimal (ε, δ)-A-cast Protocol 342
14.2.1 Tools Used . 342
14.2.2 Protocol Optimal-A-cast 343

14.3 Communication Optimal (ε, δ)-ABA Protocol 351
14.3.1 Tools Used . 351
14.3.2 Approach used in the BA protocol of [75] 353
14.3.3 Protocol Optimal-ABA . 354

14.4 Conclusion and Open Problem . 370

xv

III Summary, Discussions and Future Directions 371

15 Conclusion 372
15.1 Summary of Contributions . 372
15.2 Insightful Inferences . 373
15.3 Future Works and Future Directions 375

15.3.1 Future Work of Type I . 375
15.3.2 Future Work of Type II 376

xvi

List of Figures

2.1 Protocol MVMS-ICP with n = 2t + 1 Verifiers 29
2.2 Linearity of Protocol MVMS-ICP Over Addition Operation. 36

3.1 1-Round Sharing, 2-Round Reconstruction (4, 1) Statistical VSS. . 45
3.2 2-Round Sharing, 2-Round Reconstruction (3t + 1, t) Statistical

WSS. 48
3.3 2-Round Sharing, 2-Round Reconstruction (3t+1, t) Statistical VSS. 53
3.4 A 3-Round Sharing 2-Round Reconstruction (3, 1) Statistical VSS

protocol. 56
3.5 Sharing Phase of 4-round sharing 2-round reconstruction (2t+1, t)

statistical VSS. 58
3.6 Reconstruction Phase of 4-round sharing 2-round reconstruction

(2t + 1, t) statistical VSS. 59
3.7 A 1-Round Sharing 2-Round Reconstruction (3t + 1, t) Statistical

WSS . 72
3.8 A 3-Round Sharing 2-Round Reconstruction (2t + 1, t) Statistical

WSS . 75

4.1 Sharing Phase of 5-Round Sharing, 2-Round Reconstruction (2t +
1, t) Statistical VSS . 81

4.2 Reconstruction Phase of 5-round sharing 2-round reconstruction
(2t + 1, t) statistical VSS . 82

4.3 Sharing Phase of (2t + 1, t) statistical VSS Scheme 5VSS-MS . . . 89
4.4 Reconstruction Phase of (2t + 1, t) statistical VSS Scheme 5VSS-MS 90

5.1 Protocol for Generating 2d(?,`)-sharing of ` random values. 101
5.2 Public Reconstruction of ` Values that are 1d(?,`)-shared by some

party P . 103
5.3 Protocol to Generate 2d(?,`)-sharing of (c1, . . . , c`) where cl = albl

for l = 1, . . . , `. 106
5.4 Robust Multiplication Protocol. 109
5.5 Protocol for converting 2d(?,`)-sharing to ` separate 2d?-sharing. . 112
5.6 Protocol for generating 2d?-sharing of cM + cR random multiplica-

tion triples ((al, bl, cl) ; l = 1, . . . , cM + cR). 114
5.7 Protocol for generating 2d?-sharing of the inputs of each party. . . 115
5.8 Protocol for computing the circuit. 116

6.1 Protocol RandomVector: Generates a random value. 126
6.2 Protocol VSS-Share: Sharing Phase of Protocol VSS. 127
6.3 Protocol VSS-Rec: Reconstruction Phase of Protocol VSS 127
6.4 Protocol Random: Generates t-(1d)-sharing of ` random secrets. . 132

xvii

6.5 Protocol Upgrade1dto2d: Generates t-(2d)-sharing of ` secrets given
t-(1d)-sharing of the same secrets. 134

6.6 Protocol ProveCeqAB: An ABC Protocol for proving c = ab. . . . 136
6.7 Protocol Mult: Generates [cl]t from [al]t and [bl]t for l = 1, . . . , `. . 139
6.8 Input and Preparation Phase of our statistical MPSI Protocol . . 140
6.9 Protocol for Computation Phase and Output Phase of our MPSI

protocol. 142
6.10 Computation Phase and Output phase of our Statistical MPSI

Protocol . 148

7.1 Bracha’s A-cast Protocol with n = 3t + 1 155
7.2 Our First AICP with n = 3t + 1 Verifiers. 157
7.3 Our First AICP with n = 3t + 1 Verifiers. 158
7.4 Our second AICP with n = 3t + 1 160
7.5 Our second AICP with n = 3t + 1 161

8.1 Sharing Phase of Protocol AWSS for single secret s with n = 3t + 1 175
8.2 Reconstruction Phase of AWSS Scheme for single secret s with

n = 3t + 1 . 177
8.3 Sharing Phase of Protocol AWSS-MS for Sharing S Containing

` ≥ 1 Secrets . 181
8.4 Reconstruction Phases of AWSS-MS for Sharing S Containing `

Secrets . 182
8.5 Sharing Phase of our Weak Statistical AVSS Scheme for Sharing

a Single Secret s with n = 3t + 1 188
8.6 Reconstruction Phase of our Weak Statistical AVSS Scheme for

Sharing a Single Secret s with n = 3t + 1 189
8.7 Sharing Phase of Weak Statistical AVSS Scheme for Sharing a

Secret S Containing ` Elements 194
8.8 Reconstruction Phase of our Weak Statistical AVSS Scheme for

Sharing Secret S Containing ` Elements. 195
8.9 Code for Commitment by D Phase 199
8.10 Code for Verification of D’s Commitment Phase 201
8.11 Code for ”Re-commitment by Individual Parties” Phase 204
8.12 Our Strong Statistical AVSS for Sharing Secret s with n = 3t + 1 205
8.13 Code for Commitment by D Phase for ` ≥ 1 secrets 209
8.14 Code for Verification of D’s Commitment Phase for ` ≥ 1 secrets . 210
8.15 Code for ”Re-commitment by Individual Parties” Phase for ` ≥ 1

secrets . 210
8.16 Our Strong Statistical AVSS for Sharing ` ≥ 1 Secrets with n =

3t + 1 . 211

9.1 Existing Common Coin Protocol 224
9.2 Existing Vote Protocol . 229
9.3 Efficient ABA Protocol for Single Bit. 231
9.4 An Incorrect Common Coin protocol obtained by replacing WAVSS-

Share and WAVSS-Rec-Public by WAVSS-MS-Share and WAVSS-
MS-Rec-Public respectively in Protocol Common-Coin 235

9.5 Specific Adversary Behavior in Protocol Common-Coin-Wrong . . . 237
9.6 Multi-Bit Common Coin Protocol using Protocol WAVSS-MS-Share

and WAVSS-MS-Rec-Public as Black-Boxes 240

xviii

9.7 ABA Protocol to Reach Agreement on n− 2t = t + 1 Bits 245

10.1 Protocol ACSS-Share for Sharing Secret s with n = 3t + 1 253
10.2 Protocol ACSS-Rec-Private and ACSS-Rec-Public for Reconstruct-

ing Secret s privately and publicly (respectively) with n = 3t + 1 . 254
10.3 Protocol ACSS-MS-Share for Sharing Secret S Containing ` Ele-

ments with n = 3t + 1 . 257
10.4 Protocol ACSS-MS-Rec-Private and ACSS-MS-Rec-Public for Re-

constructing Secret S privately and publicly (respectively) with
n = 3t + 1 . 258

10.5 Protocol t-(2d)-Share for Generating t-(2d)-sharing of S = (s1, . . . , s`),
n = 3t + 1 . 263

10.6 Protocol for Collectively Generating t-(2d)-sharing of ` secrets,
n = 3t + 1 . 266

10.7 Protocol for Generating t-(1d)-sharing of [c1]t = [a1]t.[b
1]t, . . . , [c

`]t =
[a`]t.[b

`]t, n = 3t + 1 . 268
10.8 Protocol for Generating t-(1d)-sharing of cM + cR secret random

multiple triples . 270
10.9 Protocol for Input Phase, n = 3t + 1 272
10.10Protocol for Computation Phase (Evaluating the Circuit), n = 3t+1273

11.1 First Phase of Protocol St-AVSS-Share: Distribution Phase . . . 282
11.2 Steps to be executed with respect to a Single Verifier 284
11.3 Second Phase of Protocol St-AVSS-Share: Verification & Agree-

ment on CORE phase . 288
11.4 Third Phase of protocol St-AVSS-Share: Generation of τ-(1d)-

sharing . 289
11.5 Protocol St-AVSS . 290
11.6 First Phase of Protocol St-AVSS-MS-Share: Distribution Phase . 293
11.7 Steps to be executed with respect to a Single Verifier for multiple

secrets . 294
11.8 Second Phase of Protocol St-AVSS-MS-Share: Verification &

Agreement on CORE phase 295
11.9 Third Phase of protocol St-AVSS-MS-Share: Generation of τ-

(1d)-sharing Phase . 295
11.10Protocol St-AVSS-MS . 296
11.11Algorithm For Finding (n, t)-star 297
11.12First Phase of Protocol Pf-AVSS-Share: Distribution by D Phase 299
11.13Second Phase of Protocol Pf-AVSS-Share: Verification & Agree-

ment on CORE phase . 302
11.14Third Phase of protocol Pf-AVSS-Share: Generation of τ-(1d)-

sharing . 304
11.15Perfect AVSS protocol: Pf-AVSS 305
11.16First Phase of Protocol Pf-AVSS-MS-Share: Distribution by D

Phase . 306
11.17Second Phase of Protocol Pf-AVSS-MS-Share: Verification &

Agreement on CORE phase 307
11.18Third Phase of protocol Pf-AVSS-MS-Share: Generation of τ-

(1d)-sharing Phase . 307
11.19Our Perfect AVSS protocol: Protocol Pf-AVSS-MS 308

xix

12.1 Protocol for Agreement on a Common Subset with n = 4t + 1 . . 314
12.2 Steps for Generating t-(1d)-sharing of Random a and b in a Seg-

ment in the BSS Scheme of Zheng et al. [152] 316
12.3 Protocol for Generating (t, 2t)-(1d)-sharing of ` secrets Concurrently.318
12.4 Preparation Phase: Generation of (t, 2t)-(1d)-sharing of cM + cR

secret random values. 320
12.5 Input Phase: Generation of t-(1d)-sharing of the Inputs. 322
12.6 Computation Phase: Evaluation the Circuit. 325

13.1 Multi-Bit Common Coin Protocol using Protocol Pf-AVSS-MS-
Share and Pf-AVSS-MS-Rec as Black-Boxes 333

14.1 Protocols for First Two Phases of Optimal-A-cast: Distribution
Phase and Verification & Agreement on CORE Phase . . . 345

14.2 Protocol for Last Phase of Optimal-A-cast: Output Phase 347
14.3 Protocol Optimal-A-cast: Communication Optimal A-cast protocol. 350
14.4 Protocol for Agreement on a Common Subset with n = 3t + 1 . . 352
14.5 Overall structure of Protocol Optimal-ABA. 356
14.6 Code for Checking Phase. 358
14.7 Code for the Expansion Phase. 361
14.8 Code for Output Phase . 365

xx

List of Tables

1.1 The Attributes of Communication Model. 6
1.2 The Attributes of Adversary Model. 8

2.1 Communication Complexity and Round Complexity of protocol
MVMS-ICP and Existing ICP with n = 2t + 1 verifiers and ` secrets. 33

3.1 Summary of VSS Bounds and Round Complexity. 39
3.2 Summary of Statistical VSS Bounds and Round Complexity. . . . 40

4.1 Communication Complexity and Round Complexity of our statis-
tical VSS and Existing Statistical VSS Schemes with n = 2t + 1 . 79

5.1 Communication Complexity and Round Complexity of Existing
statistical MPC protocols with Optimal Resilience. 99

6.1 Comparison of our MPSI protocol with the MPSI protocol of [116]. 123
6.2 Comparison of our MPSI with the general MPC protocols that

securely compute (6.1). 124
6.3 Comparison of our MPSI with the general MPC protocols that

securely compute (6.1). 150

7.1 Communication Complexity of protocol MVMS-AICP-I, MVMS-
AICP-II and Existing AICP of [39, 35] with n = 3t + 1 verifiers
and ` secrets. 165

8.1 Comparison of our AVSS protocols with the exiting AVSS Protocol
of [39, 35] in terms of Communication Complexity. 172

9.1 Summary of Best Known Existing ABA Protocols 218
9.2 Comparison of Our ABA with Best Known Optimally Resilient

ABA Protocols . 220

10.1 Existing Statistical AMPC Protocols. 250

11.1 Comparison of our AVSS protocols with Existing AVSS Protocols.
CC: Communication Complexity 279

12.1 Communication complexity (CC) in bits per multiplication gate of
known AMPC protocols. 312

14.1 Summary of Best Known Existing ABA Protocols 339
14.2 Our Contribution . 341
14.3 Corresponding Black box Protocols and their Properties. 341

xxi

Chapter 1

Introduction

Cryptography, the science of secrecy, is the art of keeping a secret as secret. It
is the study of secure information exchange in an insecure environment. Cryp-
tographic applications have been explored for a few centuries and the earliest
known cryptographic protocols dates back to the period of Julius Caesar who
is known to invent and use Caesar Cypher. Historically, cryptography was ex-
clusively concerned with securely communicating messages in the presence of an
adversary. Till the first half of the previous century, the study and use of cryp-
tography was confined to the domain of militaries and governments. But the
tremendous and explosive growth of Internet in the past few decades has brought
cryptography and security out of the realms of the powers into the public domain.
Security concerns are inherent in any system that needs mutually unknown par-
ties to interact among themselves over a distributed network. One such area
of mutual interaction, that has captured the witty imaginations and insightful
thoughts of a lot of mathematicians and researchers in the past three decades is
the field of secure distributed computing. Secure distributed computing can model
any cooperative computation, where people jointly conduct computation tasks
based on the private inputs they each supplies. These computations could occur
between mutually un-trusted parties, or even between competitors. For example,
customers might send queries to a re-mote database that contain private informa-
tion; two competing financial organizations might jointly invest in a project that
must satisfy both organizations private and valuable constraints, and so on. The
world of secure distributed computing more or less revolves around the following
three mutually dependent, yet independently motivated, core problems:

1. Verifiable Secret Sharing (VSS);

2. Byzantine Agreement (BA);

3. Multiparty Computation (MPC).

This dissertation deals with these three fundamental and important problems
and contributes significantly for advancement of the state-of-the-art research on
these three problems. This chapter is now molded in the following manner: First
we give an overview of the problems which starts by tracing the genesis of each
of the individual problems and ends with the current standard interpretation of
the problems. Then we list different models in which the problems have been
studied so far and can be looked at in future. Next, we present the extant history
on each of the problems. In this part we also consciously try to bring forth how
these problems have grown interdependency among them, though created with

1

different motivations. We then emphasize on our contributions in this thesis and
their impacts on the literature. This will help to judge the stand that our results
hold with respect to the past history and also to understand how our results
have advanced the state-of-the-art research of this field. Lastly, we describe the
chapter wise organization of this thesis.

1.1 Overview of VSS, BA and MPC

1.1.1 Verifiable Secret Sharing (VSS)

VSS finds its origin in one of the classical cryptographic problems called secret
sharing [140, 27, 22]. Secret sharing deals with the techniques to share secrets
among parties in such a way that only designated subset of parties can reconstruct
the shared secret and no other subset of parties can reconstruct the secret. It
finds extensive use in key management, distributed storage system etc. To be
more precise, secret sharing is a two phase protocol (sharing, reconstruction)
carried out among n parties. In the sharing phase a special party called dealer
shares a secret s among the n parties in such a way that later any designated
subset of parties (specified by access structure) can reconstruct the shared secret
s uniquely and no other subset of parties (specified by adversary structure) can
reconstruct s. Secret sharing has been classified in many types, e.g.

1. Cryptographic (the secrecy of the secret depends on the difficulty of solving
certain number-theoretic hard problem) or Information theoretic [140, 27]
(the secrecy of the secret is not dependent on the hardness of any compu-
tational problem).

2. Threshold [140, 27] (for a fixed threshold t, any set of t + 1 parties can
uniquely reconstruct the secret i.e. access structure is the set of all differ-
ent combinations of t + 1 parties) or Non-threshold [22] (generalization of
threshold; Access structure may have sets of parties of different size).

3. Static [140, 27, 22] (the shares of secret remain the same after the distri-
bution) or Proactive/Mobile [38, 97, 124] (the shares can be refreshed or
redistributed without changing the secret in order to maintain secrecy over
long periods).

Despite all these classifications, secret sharing can not withstand in real-life
applications, for it makes an unrealistic assumption that all the parties behave
honestly throughout in a system. That is, the parties in adversary structure
may at most behave like a eavesdropper who can simply learn the information of
other corrupted parties and try to obtain some information by manipulating the
collected data. So the big question comes that what would happen if some of the
parties stray away from their designated instructions to communicate/compute in
any arbitrary fashion and collaborate among themselves in a centralized fashion
to get some extra advantage. There are two main problems that may arise. In
the sharing phase, the dealer may share no valid secret and get away with it.
In the reconstruction phase, the bad/corrupted parties may input some wrong
shares and prevent the reconstruction of secret. The above two problems clearly
say that secret sharing is not equipped to tolerate malicious faults. To overcome
this problem, the first effort came from Tompa and Woll [147] and McEliece and
Sarwate [121], who gave some partial solutions considering faults in the system.

2

After that, the notion of VSS was introduced by Chor, Goldwasser, Micali and
Awerbuch in [43] to completely resolve the concern.

Informally, a VSS is a two phase protocol (Sharing and Reconstruction) carried
out among n parties in the presence of a malicious/active adversary (how the
corruption is done depends on different model discussed later). The goal of the
VSS protocol is to share a secret, s, among the n parties during the sharing phase
in a way that would later allow for a unique reconstruction of this secret in the
reconstruction phase, while preserving the secrecy of s until the reconstruction
phase. In many applications one may treat VSS as a form of commitment where
the commitment information is held in a distributed fashion by the parties. Most
importantly, in the distributed setting the de-commitment is guaranteed, that is
the committed value will be exposed. This is in contrast to the non-distributed
setting where the committer can decide whether to expose the value or not.

After the original introduction of the concept of VSS in [43], VSS has emerged
as one of the fundamental primitives in secure distributed computing and it finds
lot of application in MPC, BA, threshold signature schemes, secret ballot elections
and all other applications of secret sharing. After [43], many VSS protocols were
proposed motivated by various applications. In [95, 20, 41, 138, 93, 48, 49], VSS
protocols are devised as tool for MPC. In [64, 133], VSS protocols were devised
for the task of sharing secrets of discrete-log based cryptosystems. In [67, 39, 35],
VSS protocols are designed to be used in BA. In several other works [91, 73, 109],
VSS is considered as a stand alone application for studying its round complexity.

1.1.2 Byzantine Agreement (BA)

The problem of BA (popularly known as Byzantine General’s Problem) is a clas-
sical problem in distributed computing introduced by Lamport et al. in [115]. In
many practical situations, it is necessary for a group of parties (or processes) in
a distributed system to agree on some issue, despite the presence of some faulty
parties who may try to make the honest parties disagree. BA is the primitive to
solve the above mentioned problem. The most basic and commonly used form of
BA is as follows: BA among a set of n parties each having a private input value,
allows them to reach agreement on a common value even if some of the parties are
faulty and try to prevent agreement among the non-faulty parties. The faulty be-
havior may range from simple mistakes to total breakdown to skillful adversarial
talent. Attaining agreement on a common value is difficult as one does not know
whom to trust. BA is used in almost any task that involves multiple parties, like
voting, bidding, secure function evaluation, threshold key generation, MPC, etc.

The problem has drawn much attention over the years and many aspects of
the problem have been studied considering various models [68, 18, 29, 39, 35, 118,
72, 110, 2, 24, 25, 26, 30, 31, 32, 44, 56, 54, 57, 59, 60, 61, 74, 70, 71, 65, 67, 78,
86, 89, 114, 117, 134, 136, 150, 148, 149].

1.1.3 Multiparty Computation (MPC)

MPC finds its root in the Millionaires’s problem proposed by Yao [151] which
is known as one of the classical two-party computation problems. The problem
is like this: Two parties Alice and Bob want to know who is richer between the
two. But neither of them wants to reveal his/her actual wealth to the other. This
problem is easy to solve if an independent trusted third party is available. Both

3

Alice and Bob reveal their wealth to the third party, who can easily determine
the richer between the two. Thus Alice and Bob can find out the richer between
the two without actually knowing the other person’s wealth. But unfortunately,
the third party’s service may not be available in real-life instances. Thus, in the
absence of third party, a protocol executed between Alice and Bob can simulate
the role of third party and this protocol is called as two-party computation proto-
col. Secure Multiparty Computation (MPC) is the generalization (first proposed
in [95]) of two-party computation for n party settings.

MPC is a fundamental problem, both in distributed computing and cryptog-
raphy. In a nutshell, the problem of MPC1 can be stated as follows: There is
a set of n parties (among which some are faulty/corrupted), who do not trust
each other. Still these parties wish to compute some function of common interest
of their local inputs, without revealing anything about their respective inputs
except for what can be derived from the function output.

The problem of MPC is so relevant to practical cryptographic applications,
almost any known cryptographic problem (e.g encryption, authentication, com-
mitment, signatures, zero-knowledge, BA) can be viewed as a special case of
this general problem. Thus MPC has the potential to serve as a general uniform
paradigm for the study of cryptographic problems. Some of the real world special
instances of MPC include:

1. Electronic Voting: Here the voters wish to jointly compute the sum of their
votes, without revealing any individual vote;

2. Privacy-preserving Statistics: A set of companies wishes to compute statis-
tics of some secret business data, without revealing individual data sets;

3. Privacy-preserving Database Operations: A database is distributed over sev-
eral servers in such a way that any corrupted server has no information on
the stored data of other good servers, but still the servers can jointly com-
pute standard database operations, like union, intersection, finding cardi-
nality etc.

MPC has been studied extensively in different settings (see [3, 19, 5, 6, 7, 20,
12, 13, 14, 21, 9, 36, 41, 48, 49, 52, 95, 93, 98, 101, 103, 104, 135, 138, 143] and
their references).

1.2 Various Models for Studying VSS, BA and MPC

The problem of VSS, BA and MPC may assume many different forms, depending
on the communication model (that talks about the attributes of the underlying
network), the adversary model (that captures the nature, capacity and computing
power of the adversary) etc.

1Note that this problem is sometimes called secure function evaluation (SFE) whereas the term
multiparty computation would then refer to the more general problem of ongoing computations where
several function evaluations might be intertwined. To be more clear, the kind of computation, in which
all inputs can be given at the beginning of the computation is called SFE or non-reactive multiparty
computation. On the other hand more general reactive multiparty computation allows to perform an
arbitrary on-going (reactive) computation, where the users can give inputs and get outputs several
times during the computation.

4

1.2.1 Communication Model

The prominent attributes of the underlying network that lead to the various
classifications of VSS, BA and MPC are discussed below and are summarized in
Table 1.1.

1.2.1.1 Medium of Communication (uni-cast channel or multi-cast channel
or Broadcast channel)

In any protocol, the parties communicate with each other over channels where
channels can be uni-cast/point-to-point (one to one), multi-cast (one to many)
and broadcast (one to all). Uni-cast/point-to-point channel enables both way
communication between two parties. Multi-cast channels allow a party to send
some message identically to a subset of parties in the network. Broadcast channel
allows any party to send some message identically to all other parties in the
network. Uni-cast and broadcast channels are two extreme cases of multi-cast
channels. We may consider the channels to be undirected and directed. Most of
the literature on VSS, BA and MPC assume the existence of pairwise point-to-
point channels among the parties and often, broadcast channels are also assumed.
In many other cases, in the absence of broadcast channel, it is simulated by
executing broadcast (a variant of BA problem) protocol. There are few works in
the literature that considers multi-cast channels [45, 139]. In general, when we
say channel, we will usually mean uni-cast or point-to-point channel.

1.2.1.2 Network Topology (Complete or Incomplete)

The topology of the network can be complete or incomplete. In a complete net-
work, every pair of parties are directly connected, while in an incomplete network,
the connectivity can be limited. Except a very few attempts [55, 138, 16, 17, 88],
most of the works on VSS, BA and MPC consider complete network [20, 138, 43,
115].

1.2.1.3 Control over Channels (Secure or Insecure or Unauthenticated)

We distinguish three levels of control over the channels (or three levels of abstrac-
tion of the channel security): Secure (authentic and secret), Insecure (authentic
but tappable), and Unauthenticated (unauthenticate and tappable). In secure
channel model, the communication between any two uncorrupted or honest par-
ties are completely out of reach to the adversary i.e adversary cannot affect or
change or even eavesdrop the communication. Alternatively in insecure channel
model, the adversary can hear all the communication among all the parties; yet
the adversary can not alter the communication (between two honest parties). In
the last alternative, called unauthenticated channel model, the adversary has full
control over the communication. That is, on the top of tapping the communi-
cation the adversary can delete, generate and modify messages at wish. This
parameter (i.e control over channel) can also be considered as the attribute of
adversary rather than the attribute of network.

1.2.1.4 Synchrony of Network (Synchronous or Asynchronous or Hybrid)

Synchrony divides the networks into three types: Synchronous, Asynchronous
and Hybrid. In a synchronous network, all the parties have access to a common

5

global clock. All the messages are sent on a clock ‘tick’ and are received at the
next clock ‘tick’. That is, the delay of messages in the channel is bounded by a
known constant. In asynchronous network, there is no global clock. Moreover,
arbitrary (yet finite) time may lapse between the sending and receipt of a message.
In particular the messages may be received in an order different than the order
of sending. Thus in asynchronous network, the inherent difficulty in designing
a protocol comes from the fact that when a party does not receive an expected
message then he cannot decide whether the sender is corrupted (and did not
send the message at all) or the message is just delayed in the network. So a party
can not wait to consider the values sent by all parties before commencing its
computation at any particular step, as waiting for all of them can turn out to be
endless. Due to this, the protocols in asynchronous network are generally involved
in nature and require new set of primitives. For an comprehensive introduction
to asynchronous network and protocols, see [35].

There is another class of network called hybrid network that exercises the prop-
erties of synchronous and asynchronous network in many different ways. There
are at least two different notions for hybrid network available in the literature:
(a) A hybrid network allows a few synchronous rounds followed by a fully asyn-
chronous communication [15]; (b) A hybrid network consists of a synchronization
point and the network is asynchronous before and after the synchronization point
[51]. The synchrony reflects some effects on the behavior of adversary as well. In
asynchronous network, the adversary is given the power to schedule the delivery
of all messages in the network. However, the adversary can only schedule the
messages communicated between honest parties, without having any access to
them (in secure channel model).

Table 1.1: The Attributes of Communication Model.

Medium of Network Topology Control over Synchrony
Communication Channels of Network

Uni-cast Channel
Multi-cast Channel
Broadcast Channel

Complete
Incomplete

Secure
Insecure
Unauthenticated

Synchronous
Asynchronous
Hybrid

1.2.2 Adversary Model

Various models of VSS, BA and MPC can be obtained based on the kind of
adversary. Some of the features which characterize the adversary are discussed
below and are summarized in Table 1.2.

1.2.2.1 Computational Resources (Bounded or Unbounded)

The computational resources at the disposal of the adversary may be limited to
probabilistic polynomial time as in cryptographic settings [95]. On the other hand
adversary may have unbounded computing power as in information theoretic set-
tings [20, 41]. In information theoretic settings, protocols can be either perfectly
secure or in short perfect (error free) or statistically secure or in short statistical
(involves negligible error probability).

6

1.2.2.2 Control over the Corrupted Parties (Passive or Fail-stop or Active
or Mixed)

According to the type of control over the corrupted parties, adversary can be of
four genres: passive, fail-stop, active/Byzantine and mixed. The adversary may
act like an eavesdropper, that is he may gather all the information present with
corrupted parties and perform any arbitrary computation on this gathered data
in an effort to find out the honest party’s data. Such an adversary is called as
passive adversary. Furthermore if the adversary can stop the working of any of
the corrupted parties, then he is referred to as a fail-stop adversary. In addition, if
the adversary can also take complete control of the corrupted parties and alter the
behavior of the corrupted parties in an arbitrary and coordinated fashion, he is
called as Byzantine or active adversary. Lastly, an adversary may simultaneously
control some parties in passive, fail-stop and active fashion (possibly disjoint set
of parties); such a generalized adversary is called mixed adversary.

1.2.2.3 Mobility (Static or Adaptive/Dynamic or Mobile/Proactive)

Depending on the point in time when the adversary is allowed to corrupt parties,
adversary can be of three types: static, adaptive/dynamic and mobile/proactive.
If the adversary decides on the set of parties that it would corrupt before the
protocol begins its execution, then such an adversary is referred to as a static
adversary [41, 95]. Thus the set of corrupted parties is fixed (but typically un-
known) during the whole computation. More generally, the adversary may be
allowed to corrupt parties during the protocol execution, depending on the infor-
mation gathered so far. Such an adversary is called adaptive or dynamic. Thus
an adaptive or dynamic adversary [48] chooses which parties to corrupt as the
computation proceeds. In both the above cases, once a party is corrupted, he
remains corrupted for the rest of the protocol execution. Like an adaptive adver-
sary, a mobile adversary can corrupt parties at any time, but he can also release
corrupted parties, regaining the capability to corrupt further parties. Thus an
adversary is mobile [124] if he can corrupt, in an adaptive way, a different set of
parties at different times during the execution. That is a party once corrupted
need not remain so throughout. Mobile adversaries model, for example, to virus
attacks.

1.2.2.4 Corruption Capacity (Threshold or Non-threshold)

The number of parties that the adversary can keep corrupted at any given instance
of time is his corruption capacity. There are two different ways of specifying the
number of corrupted parties, viz. threshold and non-threshold. In the threshold
specialization [19, 20, 95, 100], the number of corrupted parties, at any given
time, is limited to at most t (a threshold). The non-threshold specialization is a
generalization of the threshold one. In the non-threshold specialization [10, 50,
77, 2, 99, 100], an adversary structure which is a set of subsets of the parties, is
used where the adversary is permitted to corrupt the parties of any one arbitrarily
chosen subset in the adversary structure.

7

Table 1.2: The Attributes of Adversary Model.

Computational Control Over Mobility Corruption Capacity
Resources Corrupted Parties

Bounded (Cryptographic)
Unbounded (Information
theoretic)

Passive
Fail-stop
Active/Byzantine
Mixed

Static
Adaptive
Mobile

Threshold
Non-threshold

1.3 The Model of our Interest and Informal Definitions
of the Problems

In this thesis, for VSS and MPC, we consider the following:

• Communication Model

1. Medium of Communication: Point-to-point channel with and some-
time without broadcast channel.

2. Network Topology: Complete network

3. Control over Channels: Secure channel model.

4. Synchrony of Network: Both synchronous and asynchronous.

• Adversary Model

1. Computational Resources: Unbounded powerful adversary, infor-
mation theoretic security (both perfect and statistical)

2. Control over the Corrupted Parties: Active/Byzantine

3. Mobility: Static

4. Corruption Capacity: Threshold

We denote the adversary with the above features by At, where t is the
threshold for corruption.

For BA also we follow the same settings as above, except that we study it in
only asynchronous network. Later we will discuss about our models more elabo-
rately in individual chapters of this thesis and will present the formal definitions
of the problems in respective model. For the time being, we just use the following
informal description of the problems akin to our model.

• VSS: Informally, a VSS is a two phase protocol (Sharing and Reconstruc-
tion) carried out among n parties in the presence of adversary At who can
malicioulsly/actively corrupt up to t parties. The goal of the VSS protocol
is to share a secret, s, among the n parties during the sharing phase in a
way that would later allow for a unique reconstruction of this secret in the
reconstruction phase, while preserving the secrecy of s from At until the
reconstruction phase.

• BA: A protocol among a group of n parties (out of which t may be corrupted
by At), each having a private value, is said to achieve Byzantine agreement,
if, at the end of the protocol, all honest parties agree on a value and the
following conditions hold:

8

1. Agreement: All honest parties agree on the same value;

2. Validity: If all honest parties start with the same value v ∈ {0, 1},
then all honest parties agree on v;

3. Termination: All honest parties eventually agree.

• MPC: MPC allows a set of n parties P = {P1, . . . , Pn} to securely compute
an agreed function f , even in the presence of centralized active adversary
At. More specifically, assume that f can be expressed as f : Fn → Fn and
party Pi has input xi ∈ F, where F is a finite field. Now MPC ensures the
following:

1. Correctness: At the end of the computation of f , each honest Pi gets
yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior
of the corrupted parties.

2. Secrecy: The adversary At should not get any information about
the input and output of the honest parties, other than what can be
inferred from the input and output of the corrupted parties.

In any general MPC protocol, the function f is specified by an arithmetic
circuit over F, consisting of input, linear (e.g. addition), multiplication,
random and output gates. We denote the number of gates of each type by
cI , cA, cM , cR and cO, respectively. Among all the different types of gate, the
evaluation/computation of a multiplication gate requires the most communi-
cation complexity. So the communication complexity of any general MPC is
usually given in terms of the communication complexity per multiplication
gate [14, 13, 12, 52, 126].

1.4 History of Extant Literature on VSS, BA and MPC

We will present the history of each of the problems mostly restricting to the
model of our interest. As far as the communication model is considered all the
works that we quote here consider a complete network of n parties, pairwise con-
nected by secure channels (sometimes broadcast channel is also assumed to be
available; we will specify when it is so). For every problem, we divide the litera-
ture survey into two parts based on synchrony of the network; one part focusing
on the works in synchronous network and other part concentrating on the works
in asynchronous network. Before proceeding to the survey, it is important to
know that in synchronous network any protocol has four system parameters or
measures: Resilience, Communication Complexity, Round Complexity and Com-
putation Complexity.

1. Resilience: It is the maximum number of corrupted parties that the protocol
can tolerate and still satisfy its properties;

2. Communication Complexity: It is the total number of bits communicated
by the honest parties in the protocol. A protocol is called communication
efficient if the communication complexity is polynomial in n and error pa-
rameter (in case the protocol is statistical and has an error parameter).

9

3. Round Complexity: In synchronous network due to the existence of a global
clock, the protocols operate in a sequence of rounds, where a round is defined
as the time period between two consecutive ‘tick’s of the global clock. In
each round, a party performs some local computation, sends new messages
to the other parties through the private channels (and broadcasts some
information over the broadcast channel), then it receives the messages that
were sent by the other parties in this round on the private channels (and
broadcast channels). Now round complexity is the total number of rounds
taken for the execution of the protocol. A protocol is called round efficient
if the round complexity is polynomial in n and the error parameter (in case
the protocol is statistical and has an error parameter).

4. Computation Complexity: It is the computational resources required by the
honest parties during a protocol execution. A protocol is called compu-
tationally efficient if the computational resources required by each honest
party are polynomial in n and error parameter (in case the protocol is sta-
tistical and has an error parameter).

In asynchronous network there is no global clock and thus in general there
is no concept of clock ‘tick’s or so called rounds. Here the time required for
the execution of a protocol is quantified by the parameter called Running Time.
Hence, apart from the parameters resilience, communication complexity and com-
putation complexity, a protocol in asynchronous network has another parameter
called running time.

• Running Time: We present an informal, but standard definition of the
running time of an asynchronous protocol. For more detailed definition
of running time, see [118]. The current definition is taken from [39, 35].
Consider a virtual ‘global clock’ measuring time in the network. Note that
the parties cannot read this clock. Let the delay of a message be the time
elapsed from its sending to its receipt. Let the period of a finite execution of
a protocol be the longest delay of a message in the execution. The duration
of a finite execution is the total time measured by the global clock divided
by the period of the execution.

Let E be an event that occurs in an execution of a protocol. Let average
duration be the average over the random inputs of the parties, of the du-
ration of executions of the protocol in which E occurs. Now the expected
running time of a protocol, conditioned on event E, is the maximum over
all inputs and applicable adversaries, of average durations.

1.4.1 The History of VSS in Synchronous Network

As mentioned before VSS finds its root in secret sharing. Since the appearance
of Shamir’s [140] and Blackley’s [27] seminal papers on threshold secret sharing,
the research on this topic has been done extensively. The solutions of Shamir
and Blackley worked in a model where there is no faults in the system. Tompa
and Woll [147] and McEliece and Sarwate [121] gave the first partial solution
considering faults in the model. Finally, Chor et al. [43] defined the complete
notion of VSS and give the first ever solution for VSS. Since then, under various
assumptions and driven by different motivations, solutions for VSS were pro-
posed in [96, 64, 20, 41, 138, 133, 93, 90, 48, 91, 49, 73, 109]. While the works of

10

[96, 64, 133, 93] consider cryptographic model where the adversary has bounded
computing power, the works of [20, 41, 138, 48, 91, 49, 73, 109] consider informa-
tion theoretic model (i.e. under the assumption of a computationally unbounded
adversary). The prominent works that consider generalized non-threshold adver-
sary are [92, 90, 77]. Several other works that assumes a mobile adversary are
[34, 97].

We now channelize our attention to the information theoretic model with
threshold static adversary. In the literature restricted to this model, the basic
approach of designing a VSS is to use Shamir’s protocol as the backbone structure
and then (on top of that) use some proof from the dealer that the values shared
lie on a polynomial of degree t, thus ensuring that the shares identify a unique
secret. In information theoretic settings, there are mainly two flavors of VSS:
perfect VSS (i.e. error free) and statistical VSS (involves some probability of
error).

• Perfect VSS: It is well known that perfect VSS tolerating At is possible iff
n ≥ 3t + 1 [55]. Perfect VSS protocols are proposed in [20, 91, 73, 109].
The protocol of [20] was designed with the motivation of using it in MPC
protocol. The investigation on the exact round complexity of perfect VSS
was first conducted by Gennaro et al. [91] and subsequently completed by
[73, 109].

• Statistical VSS: On the other hand, statistical VSS tolerating At is achiev-
able with n ≥ 2t + 1 in the presence of a broadcast channel (in addition to
point-to-point channel between every pair of parties) [138]. Statistical VSS
protocols are proposed in [41, 138, 48, 49] in which, except [41], all other
protocols were designed with optimal resilience i.e with n = 2t + 1 parties.
The protocol of [138, 48, 49] was designed with the motivation of using them
in MPC protocol. The works of [48, 49] strive for designing statistical VSS
protocols with better communication complexity (not bothering too much
on their round complexity). So far the round complexity of statistical VSS
is not investigated yet.

1.4.2 The History of VSS in Asynchronous Network

In comparison to the VSS protocols in synchronous network, research in VSS in
asynchronous network has received much less attention. In information theoretic
settings, there are two flavors of asynchronous VSS (now onwards we call it as
AVSS): perfect AVSS (i.e error free) and statistical AVSS (involves negligible error
probability).

• Perfect AVSS: Perfect AVSS tolerating At is possible if and only if n ≥
4t + 1 [19, 35]. Hence, we call any perfect AVSS protocol with n = 4t + 1
as optimally resilient, perfect AVSS protocol. Such AVSS protocols are
proposed in [19, 35, 13]. The protocols of [19, 35, 13] were proposed to
design MPC protocol in asynchronous network.

• Statistical AVSS: Statistical AVSS tolerating At is possible if and only if
n ≥ 3t + 1 [39, 21]. To the best of our knowledge, the AVSS protocol of
[39, 21] is the only known optimally resilient statistical AVSS protocol (i.e.,
with n = 3t + 1). There is one AVSS protocol with non-optimal resilience

11

(with n = 4t+1 parties) reported in [66, 67]. The AVSS protocol of [39, 66]
were designed for building asynchronous BA with n = 4t + 1 parties.

1.4.3 The History of MPC in Synchronous Network

The MPC problem was first introduced by Yao [151] in two party settings. The
first generic solutions presented in [95, 42, 85] in n party settings with n > 2, were
based on cryptographic intractability assumptions. Later MPC with information-
theoretic security in n party settings were presented in [20, 41, 138, 4, 6]. Much
like VSS, in information theoretic settings, there are two flavors of MPC: perfect
MPC (i.e. error free) and statistical MPC (involves some probability of error).

• Perfect MPC: Perfect MPC protocol tolerating At is possible if and only
if n ≥ 3t + 1 [20]. Perfect MPC with optimal resilience (i.e with n = 3t + 1
parties) has been studied in [20, 3, 7, 5, 98, 111, 14]. While works of [3, 7]
were focused to design MPC with constant round complexity at the cost of
very high communication complexity, works of [98, 14] focus on improving
communication complexity at the expense of high round complexity. The
protocols of [98, 14] uses player elimination framework proposed by Hirt et
al. in [98].

• Statistical MPC: Statistical MPC tolerating At is possible when n ≥ 2t +
1 [138, 4, 6], provided that a common broadcast channel is available (in
addition to point-to-point channel between every pair of parties). Statistical
MPC designed with exactly n = 2t+1 parties (in the presence of a broadcast
channel, along with secure point-to-point channel between every two parties)
is said to have optimal resilience. Statistical MPC protocols with optimal
resilience are reported in [138, 4, 3, 6, 48, 49, 12]. There are several works
reported on statistical MPC with non-optimal resilience (i.e with n > 2t +
1 parties) in [41, 101, 52] (these protocols were designed with n ≥ 3t +
1 parties). The protocols of [101, 52] use player elimination framework.
The protocol of [12] uses dispute control framework which is actually a
generalization of player elimination.

There are several attempts in the literature when specific instances of MPC
problems are studied such as — multiparty set intersection, set union, set cardi-
nality, other set related problems [84, 116], Longest Common Subsequence (LCS)
problem [81], private stable matching [80], secure group barter [82] etc. Though
these problems can be solved using general MPC protocol; but the disadvantages
are that a general MPC may not give as efficient solution as a specific solution
to these problems may provide. This is because, the specific solution takes into
account the nuances and subtleties of the problem and accordingly finds efficient
solution.

1.4.4 The History of MPC in Asynchronous Network

Unlike MPC in synchronous network, designing asynchronous MPC (now onwards
we call it as AMPC) protocols has received less attention due to their inherent
difficulty. In information theoretic settings, AMPC protocols can be categorized
mainly into two types:

12

• Perfect AMPC: In [19], it is shown that perfect AMPC tolerating At is
possible iff n ≥ 4t+1. Thus any perfect AMPC designed with n = 4t+1 is
said to be optimally resilient. Optimally resilient, perfect AMPC protocols
are reported in [19, 143, 13].

• Statistical AMPC: From [21], it is known that statistical AMPC tolerating
At is possible iff n ≥ 3t + 1. Thus any statistical AMPC protocol designed
with n = 3t+1 is said to be optimally resilient. Optimally resilient, statisti-
cal AMPC is reported in only [21]. In comparison to perfect AMPC, statis-
tical AMPC protocol [21] in the literature has much more communication
complexity. To achieve better communication complexity for the statistical
AMPC protocols, researchers have tried to design statistical AMPC with
non-optimal resilience i.e with n = 4t + 1 parties. Such AMPC protocols
are reported in [135] and recently in [107]. Both the AMPC protocols of
[135] and [107] are based on player elimination framework of [98], an im-
portant technique introduced in synchronous network in order to reduce
communication complexity of MPC protocols.

Recently in [15], the authors have designed communication efficient MPC pro-
tocols over networks that exhibit partial asynchrony (where the network is syn-
chronous up to certain point and becomes completely asynchronous after that).
In another work, Damg̊ard et al. [51] have reported efficient MPC protocol over
a network that assumes the concept of synchronization point; i.e. the network is
asynchronous before and after the synchronization point.

1.4.5 The History of BA in Asynchronous Network

In information theoretic settings, any asynchronous BA (now onwards we call it
as ABA) protocol tolerating At is possible iff n ≥ 3t + 1 [132, 118]. Thus any
ABA protocol designed with n = 3t + 1 parties is called as optimally resilient.
By the seminal result of [71], any ABA protocol, irrespective of the value of n,
must have some non-terminating runs/executions, where some honest party(ies)
may not output any value and thus may not terminate at all. So we say an
ABA protocol to be (1 − ε)-terminating, if the probability of occurrence of non-
terminating executions in the protocol is (1 − ε). On the other hand, we call
an ABA protocol to be almost-surely terminating, a term coined by Abraham et
al. in [1], if the probability of occurrence of a non-terminating execution in the
protocol is asymptotically zero.

Rabin [136] and Ben-Or [18] presented ABA protocols with n ≥ 8t + 1 and
n ≥ 5t + 1 respectively. Since, both these protocols were not optimally resilient,
researchers have tried to design ABA protocol with optimal resilience or close
to optimal resilience. The ABA protocols of [29, 39, 1] are designed with opti-
mal resilience, whereas the protocol of [66] is designed with n = 4t + 1 parties.
The protocol of [29] requires exponential (Θ(2n)) expected time and exponential
(Θ(2n)) communication complexity. But, the protocols of [66, 39, 1] require poly-
nomial communication complexity. The protocols of [29, 1, 66] are almost-surely
terminating and the protocol of [39] is (1 − ε)-terminating. Finally, protocols of
[39, 66] require constant expected running time and the protocol of [1] requires
polynomial (O(n2)) expected running time. All the above protocols have very
high communication complexity and thus designing communication efficient and
communication optimal ABA is still a challenging task to achieve.

13

1.5 The Contribution of this Thesis

This section is devoted for the description of our contributions for VSS, BA and
MPC. Prior to the details of our contribution, we present the following important
discussion. Many of our protocols for VSS, BA and MPC are statistical in nature
which means they involve negligible error probability of ε in their computation.
By negligible it means that ε is exponentially small in n i.e ε ≤ 1

2n or ε ≤ 1
2αn for

some integer α greater than or equal to one. Now to bound the error probability of
a protocol by some desired value of ε, we have to choose an appropriate finite field
over which all the computations of the protocol should be carried out. We say that
the protocol should operate on finite Galois field F = GF (2κ) where the κ has to
be chosen based on the desired value for ε and the relation between ε and κ. Here
κ is called as the error parameter. Due to the different working of protocols, there
will be different relationships between κ and ε for different protocols (therefore
we mention them in appropriate context in respective chapters). From ε ≤ 1

2αn ,

we may conclude that n = O(log 1
ε
). This relation will be used throughout this

thesis.
Now the following are our contributions for VSS, MPC and BA:

1.5.1 Investigation on The Round Complexity of Statistical VSS

Round complexity is one of the most important complexity measures of interac-
tive protocols. In this thesis, we study the round complexity of statistical VSS
and show that existing lower bounds for perfect VSS can be circumvented by
allowing negligible error probability in the protocol executions.

The study of the round complexity of VSS in the information theoretic setting,
was initiated by Gennaro et al. [91]. Their investigation was conducted for
perfect VSS i.e under the assumption that the protocols are error-free. The
assumed network model was a complete synchronous network with pairwise secure
channels and a broadcast channel. They refer to the round complexity of VSS as
the number of rounds in the sharing phase and prove that

1. A 1-round sharing VSS is possible if and only if t = 1 and n ≥ 5.

2. A 2-round sharing VSS is possible if and only if n ≥ 4t + 1.

3. A 3-round sharing VSS is possible if and only if n ≥ 3t + 1.

In this thesis, we examine the round complexity of statistical VSS and also
investigate the question of whether the lower bounds for the round complexity
of perfect VSS can be overcome by introducing a negligible probability of error.
We answer this in affirmative by showing that

1. A 1-round sharing VSS is possible if and only if t = 1 and n ≥ 4.

2. A 2-round sharing VSS is possible if and only if n ≥ 3t + 1.

Our results clearly show that probabilistically relaxing the conditions of VSS
helps to increase the fault tolerance. Our protocols have two rounds in the re-
construction phase and interestingly two rounds in reconstruction phase can be
collapsed into a single round when the adversary is considered to be non-rushing2.

2A rushing adversary can wait to hear the incoming messages in a given round prior to sending out
its own messages

14

A weaker version of VSS is called WSS (Weak Secret Sharing) which is gen-
erally used as a tool to design VSS protocols [138, 137]. The study of the round
complexity of perfect WSS in the information theoretic setting, was initiated in
[73]. In [73], the authors have referred to the round complexity of WSS as the
number of rounds in the sharing phase and have shown that

1. Efficient 1-round as well as 2-round sharing WSS protocol is possible if and
only if n ≥ 4t + 1.

2. Efficient 3-round sharing WSS protocol is possible if and only if n ≥ 3t + 1.

In this thesis, we completely resolve the round complexity of WSS involving
negligible error probability by showing that

1. Efficient 1-round as well as 2-round sharing WSS protocol is possible iff
n ≥ 3t + 1.

2. Efficient 3-round sharing WSS protocol is possible iff n ≥ 2t + 1.

Our results clearly show that probabilistically relaxing the conditions of WSS
helps to increase the fault tolerance.

A part of the above results has appeared in [125]. The lower bound proof for
2-round sharing WSS presented in this thesis, is based on [112].

1.5.2 Study of Communication and Round Efficiency of Statistical
VSS

In addition to round complexity, communication complexity is another important
parameter of VSS protocols. We study the communication and round efficiency of
statistical VSS protocols with optimal resilience (that is with n = 2t+1 provided
a public broadcast channel is available). We propose an optimally resilient, statis-
tical VSS scheme that is better than all the existing optimally resilient, statistical
VSS protocols both in terms of communication as well as round complexity.

There are three optimally resilient statistical VSS schemes reported so far,
namely the schemes of [138], [48] and [49]. Among the three protocols, the
protocols of [48] and [49] provide the best known communication complexity.
Both of them share a single secret with a communication complexity ofO(n3 log 1

ε
)

bits (communication over both pairwise secure and broadcast channel), where ε
is the error probability of the protocol.

In this thesis, we propose a protocol that provides a communication com-
plexity of O((`n2 + n3) log 1

ε
) bits (communication over both pairwise secure and

broadcast channel) for sharing ` secrets simultaneously. So for large value of
`, our protocol is better than the protocols of [48] and [49]. Additionally, our
protocol provides better round complexity than all the three existing protocols.

The key tool that is used for constructing our VSS is an efficient Information
Checking Protocol (ICP). ICP is a tool for authenticating messages in the pres-
ence of computationally unbounded corrupted parties. We present an ICP that
provides the best known round as well as communication complexity so far in the
literature.

15

1.5.3 Study of Communication Efficiency of Statistical AVSS

We study the communication efficiency of statistical AVSS protocols. In this
thesis, we design three statistical AVSS protocols: (a) two with optimal resilience
i.e with n = 3t + 1; (b) one with non-optimal resilience i.e with n = 4t + 1. Our
protocols are highly communication efficient and show significant improvement
over existing statistical AVSS protocols.

1. Communication Efficient AVSS with Optimal Resilience: Between
our two protocols with optimal resilience, the first one communicatesO((`n3+
n4 log 1

ε
) log 1

ε
) bits to simultaneously share ` ≥ 1 secrets, where ε is the er-

ror probability of the protocol. The other protocol communicates O((`n3 +
n4) log 1

ε
) bits to simultaneously share ` ≥ 1 secrets. The second proto-

col has a limitation as well as advantage compared to the first one. The
limitation is that a corrupted dealer may commit a NULL value (we will
discuss about this in more detail later in this thesis) and get away with this,
whereas in the first protocol dealer is forced to commit some secret from the
working field. The advantage is that the second protocol is much simpler
than the first one. The second protocol is used in our ABA and we show
that it’s NULL commitment is enough for ABA protocol. The first proto-
col is suitable for AMPC and we use it for designing our AMPC protocol.
There is only one known statistical AVSS protocol with n = 3t+1 reported
in [39]. The AVSS protocol of [39] requires a communication complexity
of O(n9(log 1

ε
)4) bits to share a single secret. Thus our AVSS protocols

show significant improvement in communication complexity over the AVSS
protocol of [39].

2. Communication Efficient AVSS with Non-optimal Resilience: Our
statistical AVSS with n = 4t + 1 achieves O((`n2 + n3) log n) bits of com-
munication complexity for sharing ` secrets concurrently.

Our statistical AVSS protocols with optimal resilience appeared in [128, 127].

1.5.4 Study of Communication Efficiency of Perfect AVSS

We also study the communication efficiency of perfect AVSS protocols. In this
thesis, we design a perfect AVSS with optimal resilience i.e with n = 4t + 1, that
provides the best communication complexity in the literature of perfect AVSS.

Our perfect AVSS protocol achieves an amortized communication costO(n log n)
bits for sharing a single secret. So far the best known AVSS with 4t + 1 was pro-
posed by [13]. The protocol of [13] is perfect in nature and requires an amortized
communication cost O(n2 log n) bits for sharing a single secret.

Our perfect AVSS protocol is presented in [131].

1.5.5 Study of Communication and Round Efficiency of Statistical
MPC

The round and communication complexity are the most important complexity
measures of MPC protocols in synchronous network. A proper balance of both the
complexity measures is essential from the perspective of practical implementation
of MPC protocol. So far communication complexity wise the best known opti-
mally resilient statistical MPC is reported in [12]. The protocol of [12] achieves

16

O(n2 log 1
ε
) bits of private communication 7 per multiplication gate at the cost

of high round complexity of O(n2D), where D is the multiplicative depth of the
arithmetic circuit representing function f and ε is the error probability of the
protocol. On the other hand, round complexity wise best known optimally re-
silient statistical MPC protocols are presented in [4, 5] and [138]8. The protocols
of [4, 5] and [138] have round complexity of O(D). But unfortunately, these MPC
protocols require broadcasting9 of Ω(n5(log 1

ε
)4) bits per multiplication gate10.

In this thesis, we focus to balance both the complexity measures of statistical
MPC. With this aim in mind, we present a new optimally resilient statistical
MPC that acquires a round complexity of O(D) and broadcasts O(n3 log 1

ε
) bits

per multiplication gate. Hence our protocol maintains the round complexity
of most round efficient protocol while improving the communication complex-
ity. Moreover, for all functions with constant multiplicative depth, our protocol
achieves constant round complexity while most communication efficient MPC of
[12] requires O(n2) rounds.

The above results are based on [126, 130].

1.5.6 Designing Efficient Multiparty Set Intersection Protocol in Syn-
chronous Network

In information theoretic settings, a protocol for multiparty set intersection (MPSI)
allows a set of n parties, each having a set of size m to compute the intersection
of those sets, even in the presence of At. In this thesis, we re-visit the problem of
MPSI in information theoretic settings. In [116], Li et al. proposed a statistical
MPSI protocol with n = 3t + 1 parties and claimed that their protocol takes six
rounds of communication and communicates O(n4m2) field elements. However,
we show that the round and communication complexity of the protocol in [116]
is much more than what is claimed in [116].

We then propose a novel statistical MPSI protocol with n = 3t + 1 parties,
which significantly improves the ”actual” round and communication complexity of
the protocol given in [116]. To design our protocol, we use several tools including
a VSS protocol, which are of independent interest. But the protocol of [116]
and our proposed protocol with n = 3t + 1 are statistical and still they require
n = 3t + 1 parties. Thus the protocols are non-optimal in resilience. So we also
design an optimally resilient statistical MPSI protocol with n = 2t + 1.

A major part of the above results has appeared in [129, 130].

1.5.7 Study of Communication Efficiency of Statistical AMPC

In this thesis, we work on the communication efficiency of statistical AMPC
protocols and design two protocols, one with optimal resilience i.e n = 3t+1 and
the other one with non-optimal resilience (with n = 4t+1). Our statistical AMPC
with optimal resilience shows huge improvement in communication complexity
over the only known statistical AMPC with optimal resilience reported in [21].

7Communication over secure channels.
8We have considered MPC protocols with polynomial (in n and log 1

ε
) communication complexity.

Constant round MPC can be achieved following the approach of [3] but at the expense of exponential
blow-up in communication complexity.

9Communication over broadcast channel
10The authors of [49] claimed to have an optimally resilient statistical MPC protocol with round

complexity of O(D) and communication complexity of O(n4 log 1
ε
) bits of broadcast per multiplication

gate, without providing exact implementation details.

17

1. Communication Efficient Statistical AMPC with Optimal Resilience:
Our statistical AMPC protocol with optimal resilience communicatesO(n5 log 1

ε
)

bits per multiplication gate, where ε is the error probability of the proto-
col. The only known optimally resilient statistical AMPC of [21] communi-
cates Ω(n11(log 1

ε
)4) bits per multiplication gate. For designing our AMPC,

we propose a new primitive called Asynchronous Complete Secret Sharing
(ACSS). The ACSS protocol uses our statistical AVSS with n = 3t + 1
parties as an important building block.

2. Communication Efficient Statistical AMPC with Non-optimal Re-
silience: Communication complexity, being one of the important parame-
ters of AMPC protocol, drew quite a bit of attention and hence there are
a number of attempts to improve the communication complexity of AMPC
protocols with 4t + 1 parties. The latest such attempt is reported in [107]
where the authors presented a statistical AMPC protocol with n = 4t + 1
that communicates O(n2 log |F|) bits per multiplication gate, where F is the
field over which computation is carried out. However, in this thesis we
show that the protocol of [107] is not a correct statistical AMPC. We then
present a new, simple, statistical AMPC protocol with n = 4t + 1 which
communicates O(n2 log n) bits per multiplication gate.

Our statistical AMPC protocol with optimal resilience has appeared in [128].

1.5.8 Study of Communication Efficiency of Perfect AMPC

In this thesis, we also present a perfect AMPC protocol with optimal resilience
that attains the best known communication complexity among all AMPC pro-
tocols designed with n = 4t + 1. Our protocol communicates O(n2 log n) bits
per multiplication gate. We note that our perfect AMPC protocol is able to
achieve the same communication complexity as our statistical AMPC protocol
with n = 4t + 1; moreover it is now optimally resilient (that is, it is designed
with n = 4t+1 parties) where our statistical AMPC protocol was non-optimal in
resilience. The best known perfect AMPC protocol with optimal resilience [13]
communicates O(n3 log n) bits per multiplication gate. Hence our AMPC pro-
tocol provides the best communication complexity among all the known AMPC
protocols. For designing our perfect AMPC protocol we use our perfect AVSS
with n = 4t + 1 parties.

This result has appeared in [131].

1.5.9 Designing Communication Efficient ABA for Small Message

An important variant of BA is Asynchronous Byzantine Agreement (ABA). The
communication complexity of ABA is one of its most important complexity mea-
sures. In this thesis, we study the communication efficiency of ABA protocol for
both the cases, namely ABA with optimal resilience i.e with n = 3t + 1 parties
and ABA with non-optimal resilience i.e with n = 4t + 1 parties.

1. Communication Efficient ABA with Optimal Resilience: In this
thesis, we present a simple and efficient ABA protocol whose communication
complexity is significantly better than the communication complexity of the
existing ABA protocols in the literature. Our protocol is optimally resilient

18

and thus requires n = 3t+1 parties for its execution. Moreover, our protocol
is (1− ε)-terminating.

Specifically, the amortized communication complexity of our ABA is O(Cn4

log 1
ε
) bits for attaining agreement on a single bit, where ε denotes the error

probability of non-termination and C denotes the expected running time of
our protocol. Conditioned on the event that our ABA protocol terminates,
it does so in constant expected time; i.e., C = O(1). Comparing our result
with most recent optimally resilient, ABA protocols proposed in [39] and [1],
we see that our protocol gains (in terms of communication complexity) by
a factor of O(n7(log 1

ε
)3) over the ABA of [39] and by a factor of O(n4 log n

log 1
ε

)

over the ABA of [1].

For designing our efficient ABA protocol, we use one of our statistical AVSS
protocol with n = 3t + 1. Our AVSS shares multiple secrets concurrently
and is far better than multiple parallel executions of AVSS sharing single se-
cret. Thus our AVSS brings forth several advantages of concurrently sharing
multiple secrets.

The common coin primitive is one of the most important building blocks
for the construction of ABA protocol. The only known efficient (i.e polyno-
mial communication complexity) common coin protocol [67, 35] uses AVSS
sharing a single secret as a black-box. Unfortunately, this common coin pro-
tocol does not achieve its goal when multiple invocations of AVSS sharing
single secret are replaced by single invocation of our AVSS sharing multiple
secrets. Hence in this thesis, we twist the existing common coin protocol
to make it compatible with our new AVSS. As a byproduct, our new com-
mon coin protocol is much more communication efficient than the existing
common coin protocol.

2. Communication Efficient ABA with Non-optimal Resilience: We
have also studied the communication complexity of ABA with n = 4t + 1
parties i.e with non-optimal resilience. We present an efficient ABA protocol
with n = 4t+1 whose communication complexity is significantly better than
the communication complexity of the only known existing ABA protocol of
[66, 67] with n = 4t + 1. Specifically, our ABA achieves an amortized
communication complexity of O(n2 log |F|) bits for attaining agreement on
a single bit, where F with |F| ≥ n denotes the finite field over which our
protocol performs all the computations. On the other hand, the only known
ABA with 4t + 1 proposed in [66, 67] communicates Ω(n4κ log |F|) bits for
single bit message, where κ is the error parameter. Like the ABA of [66, 67],
our protocol has constant expected running time and also our protocol is
almost-surely terminating. We use our perfect AVSS with n = 4t + 1 as a
vital building block for designing our ABA protocol.

Our result on ABA with optimal resilience has been published in [127].

1.5.10 Designing Communication Optimal ABA for Long Message

A-cast is the parallel notion of broadcast in asynchronous network. It allows a
party to send some information identically to all other parties in the network.
Though all existing protocols for A-cast and ABA are designed for a single bit
message, in real life applications typically A-cast and ABA are invoked on long

19

message (whose size can be in gigabytes) rather than on single bit. Therefore,
it is important to design efficient multi-valued A-cast and ABA protocols (i.e
protocols with long message) which extract several advantages offered by directly
dealing with long messages and are far better than multiple invocations to existing
protocols for single bit [72, 75]. In this thesis, we design new and highly efficient
multi-valued A-cast and ABA protocols for long messages, based on access to
the existing A-cast and ABA protocols for short messages. Moreover, we show
that both our A-cast and ABA protocols are communication optimal, optimally
resilient and are strictly better than existing protocols in terms of communication
complexity for sufficiently large `. In brief, we present the following results:

1. For an error parameter κ, we design a new, optimally resilient, multi-valued
A-cast protocol with n = 3t + 1 that requires a private communication of
O(`n) bits for an ` bit message, where ` is sufficiently large. Our A-cast
protocol uses the existing A-cast protocol of [29] as a black box for smaller
size message. The protocol of [29] is the only known protocol for A-cast and
it requires a private communication of O(n2) bits for a single bit message
where n = 3t + 1.

2. For an error parameter κ, we design a new, optimally resilient, multi-valued
ABA protocol with n = 3t + 1, which requires a private communication of
O(`n) bits to agree on an ` bit message, where ` is sufficiently large. Our
protocol uses the best known communication efficient ABA protocol pre-
sented in this thesis as a black box, which requires a private communication
of O(n7κ) bits to agree on a (t + 1) bit message.

Our protocols are based on several new ideas. Fitzi et al. [75] are the first
to design communication optimal multi-valued Byzantine Agreement (BA) pro-
tocols for large message with the help of BA protocols for smaller message, in
synchronous network. Achieving the same in asynchronous network was left as
an interesting open question in [75]. Our results in this thesis mark a significant
progress on the open problem by giving protocols with a communication com-
plexity of O(`n) bits for large `. Moreover, to the best of our knowledge, ours
is the first ever attempt to design multi-valued A-cast and ABA protocols, using
existing A-cast and ABA protocols (for small messages) as a black-box.

1.6 The Organization of this Thesis

We divide the thesis in three parts. The first part consisting of five chapters
i.e Chapter 2 - 6, includes all our results in synchronous network. The second
part consisting of eight chapters i.e Chapter 7 - 14, takes care of all our results
in asynchronous network. The third part consisting of Chapter 15 concludes
this thesis with the summary of our results and future directions for pursuing re-
search in VSS, BA and MPC. In the following, we brief the chapter wise contents.

In Chapter 2, we present a very important tool called Information Checking Pro-
tocol (ICP) which has been witnessed to play an important role in constructing
VSS and WSS protocols. Our ICP will also be used as a building block to de-
sign several of our VSS and WSS protocols proposed in the next four chapters,
namely Chapter 3, 4, 5, and 6. Our ICP provides the best known round and
communication complexity so far in the literature.

20

In Chapter 3, we study the round complexity of statistical VSS and WSS proto-
cols. Apart from presenting our lower bound results, we also present a set of new
and novel statistical VSS and WSS protocols some of which use ICP of Chapter
2 as a black box.

In Chapter 4, we concentrate on designing statistical VSS protocol that is si-
multaneously communication efficient as well as round efficient. In the previous
chapter, we were concerned on the round complexity of statistical VSS and WSS
protocols and therefore communication complexity was of low priority than round
complexity. Due to this, the protocols presented in the previous chapter were not
designed keeping the communication efficiency in mind. In this chapter, we give
importance to both the complexity measures simultaneously. Specifically, here
we design statistical VSS with optimal resilience i.e with n = 2t+1 parties (plus a
broadcast channel is available) that achieves the best known communication and
round complexity in the literature. Our VSS uses the ICP presented in Chapter
2 as a vital black box primitive.

In Chapter 5, we present a new optimally resilient, statistical MPC protocol that
simultaneously minimizes the communication and round complexity. The key
tool for our new MPC is the statistical VSS protocol presented in Chapter 4.
Using our VSS protocol, we propose a new and robust multiplication protocol for
generating multiplication triples.

In Chapter 6, we re-visit the problem of MPSI in information theoretic settings.
We first show that the actual round complexity and communication complexity
of the statistical MPSI protocol proposed in [116] is much more than what is
claimed in the paper [116]. We then propose a novel statistical MPSI protocol
with n = 3t + 1 parties, which significantly improves the “actual” round and
communication complexity of the protocol given in [116]. To design our pro-
tocol, we use several tools including a VSS protocol, which are of independent
interest. Finally, we design an optimally resilient (i.e with n = 2t + 1) statisti-
cal MPSI protocol, borrowing the techniques from our proposed statistical MPC
with n = 2t + 1 parties, presented in Chapter 5.

In Chapter 7, we present two novel asynchronous ICP abbreviated as AICP. Sim-
ilar to the case of ICPs in synchronous network, our AICPs are used as vital tools
for designing AVSS protocols in Chapter 8 which are further used in our ABA
protocol (presented in Chapter 9) and statistical AMPC protocol (presented in
Chapter 10).

In Chapter 8, we design two novel statistical AVSS protocols with optimal re-
silience (i.e with n = 3t + 1) using AICPs as black box. Both our AVSS proto-
cols can share multiple secrets simultaneously (when necessary) and thus achieve
many advantages offered by sharing multiple secrets concurrently in a single shot.
Our AVSS protocols are far better than the existing protocols with 3t+1 in terms
of communication complexity. The protocols achieve different properties accord-
ing to which we use one of the AVSSs in our ABA protocol presented in Chapter
9 and the other AVSS in our statistical AMPC protocol presented in Chapter 10.

21

In Chapter 9, we design an optimally resilient (i.e with n = 3t + 1 parties),
communication efficient ABA protocol for small messages. As a key tool, we use
one of our communication efficient AVSS (from Chapter 8). Furthermore, we
also propose a new common-coin protocol using our AVSS. Our ABA reports the
best known communication complexity among the existing ABA protocols with
n = 3t + 1 parties.

In Chapter 10, we design an optimally resilient, communication efficient statis-
tical AMPC protocol. First using one of our statistical AVSS of Chapter 8, we
introduce a new asynchronous primitive called ACSS (Asynchronous Complete
Secret Sharing) and design a protocol for it. Then using ACSS, we design our
AMPC protocol. Our statistical AMPC protocol is the best among the existing
statistical AMPC protocols with optimal resilience in terms of communication
complexity.

In Chapter 11, we present two AVSS protocols: (a) one protocol is statistical
and non-optimal in resilience (i.e designed with n = 4t + 1 parties) (b) the other
AVSS protocol is perfect and is designed with optimal resilience i.e n = 4t + 1
parties. Both the protocols are highly communication efficient and achieve some
properties which are never attained by any AVSS protocols in the literature.
Moreover the amortized communication complexity of the protocols for sharing
a single secret is best in the history of AVSS with 4t + 1 parties. These proto-
cols are used in Chapter 12 for designing AMPC protocols with n = 4t+1 parties.

In Chapter 12, our focus is on AMPC protocols designed with 4t+1 parties. The
most communication efficient AMPC was reported in [107]. The AMPC is statis-
tical in nature and claims to achieve a communication complexity of O(n2 log |F|)
bits per multiplication gate, where F is the finite field over which all the compu-
tations of the protocol are carried out. In this chapter, we first show that the
protocol of [107] is not a correct statistical AMPC. We then present a new, sim-
ple, statistical AMPC protocol with n = 4t + 1 which communicates O(n2 log n)
bits per multiplication gate. Moving a step forward, we also present a perfectly
secure AMPC protocol which communicates O(n2 log n) bits per multiplication
gate. Now it is important to note that our perfect AMPC protocol is optimally
resilient and at the same time achieves the same communication complexity as
our statistical AMPC protocol. To design our AMPC protocols, we use our AVSS
protocols presented in Chapter 11.

In Chapter 13, we design an efficient ABA protocol with 4t + 1 parties. Our
protocol shows significant improvement in communication complexity over the
only known ABA protocol of [66, 67] with n = 4t + 1, while keeping all other
properties in place such as constant running time and almost-surely terminat-
ing property. In fact our ABA in this chapter uses our perfect AVSS protocol
presented in Chapter 11 as an important building block. Thus our ABA shows
another application of the perfect AVSS protocol of Chapter 11 apart from the
perfect AMPC protocol presented in Chapter 12.

In Chapter 14, we design an optimally resilient, communication optimal A-cast

22

and ABA protocol for sufficiently long messages. Specifically, for an error pa-
rameter κ, our A-cast and ABA protocols with n = 3t + 1 require a private
communication of O(`n) bits for ` bit message, where ` is sufficiently large. Our
protocol uses player elimination framework introduced in [98] in the context of
MPC. So far player-elimination was used only in MPC and AMPC and hence
our result shows the first non-MPC application of the technique. Apart from
this, we propose a novel idea to expand a set of t + 1 parties, with all the honest
party(ies) in it holding a common message m, to a set of 2t + 1 parties with
all honest parties in it holding m. Moreover, the expansion process requires a
communication complexity of O(`n + poly(n, κ)) bits, where |m| = `. We hope
that this technique may be useful in designing protocol for many other form of
consensus/Byzantine Agreement problems in asynchronous network that aims to
achieve good communication complexity.

In Chapter 15, we present the summary of our results and future directions for
pursuing research in VSS, BA and MPC.

23

Part I

Results in Synchronous Network

24

Chapter 2

An Efficient Information
Checking Protocol

In this chapter, we present a very important primitive called Information Check-
ing Protocol (ICP) which plays an important role in constructing statistical VSS
and WSS protocols. Our ICP will also be used as a building block to design
several of our statistical VSS and WSS protocols proposed in the next four chap-
ters. Informally, ICP is a tool for authenticating messages in the presence of
computationally unbounded corrupted parties. In this chapter, we focus on ICP
in synchronous network and later in Chapter 7, we will focus on ICP in asyn-
chronous network and present a couple of protocols for it. Here we extend the
basic bare-bone definition of ICP, introduced by Rabin et al. [138] and then
present an ICP that attains the best communication complexity and round com-
plexity among all the existing ICPs in the literature. We also show that our
ICP satisfies several interesting properties such as linearity property which is an
important requirement in many applications of ICP as will be demonstrated later
in this thesis.

2.1 Introduction

2.1.1 Existing Literature and Existing Definition of ICP

The notion of ICP was first introduced by Rabin et al. [138]. Rabin et al. [138]
have used ICP for constructing a statistical WSS protocol which was further used
to design a statistical VSS protocol with n = 2t + 1. Since then many ICPs have
been designed [138, 39, 48] and used in constructing various statistical VSS and
WSS protocols.

As described in [138, 39, 48], an ICP is executed among three parties: a dealer
D, an intermediary INT and a verifier R. The dealer D hands over a secret value
s to INT . At a later stage, INT is required to hand over s to R and convince R
that s is indeed the value which INT received from D.

2.1.2 New Definition, Model, Structure and Properties of ICP

The basic definition of ICP involves only a single verifier R [138, 48, 39]. We
extend this notion to multiple verifiers, specifically to n verifiers/parties denoted
by P = {P1, . . . , Pn} out of which at most t are corrupted by unbounded powerful
active adversary. Moreover D and INT are some specific party from P . Thus our

25

ICP is executed among three entities: a dealer D ∈ P , an intermediary INT ∈ P
and the entire set P acting as verifiers. This will be later helpful in using ICP
as a tool in our VSS protocol. Moreover, in contrast to the existing ICPs that
deal with single secret, our ICP can deal with multiple secrets concurrently and
thus achieves better communication complexity than multiple execution of ICP
dealing with single secret.

The multiple secret, multiple receiver ICP is useful in the design of efficient
protocols for statistical VSS and WSS. Statistical VSS is possible iff n ≥ 2t + 1
(provided a physical broadcast channel is available in the system) and for the
design of statistical VSS with optimal resilience, we work with n = 2t + 1. As
our ICP is useful in such context, we design our ICP as well with n = 2t + 1.
Thus our ICP can be used for statistical VSS and WSS and they can be used for
statistical MPC with optimal resilience (i.e n = 2t + 1).

2.1.2.1 The Network and Adversary Model

We consider a setting with n parties (we also call them as verifiers) P = {P1, P2,
. . . , Pn} with n = 2t + 1, that are pairwise connected by a secure (or private)
channel. Also D, INT ∈ P are two specific parties where D is called as Dealer
and INT is referred to as Intermediary. We further assume that all parties in
P have access to a common broadcast channel. We assume the system to be
synchronous. Therefore the protocols operate in a sequence of rounds, where in
each round, a party performs some local computation, sends new messages to the
other parties through the private channels and broadcasts some information over
the broadcast channel, then it receives the messages that were sent by the other
parties in this round on the private and broadcast channels.

The adversary that we consider is a static, threshold, active and rushing ad-
versary having unbounded computing power. The adversary, denoted by At, can
corrupt at most t parties out of the n parties. Here At may corrupt D as well as
INT . The adversary controls and coordinates the actions of the corrupted/faulty
parties. We further allow the adversary to be rushing [48], i.e. in every round
of communication it can wait to hear the messages of the honest parties before
sending his own messages. We consider a static adversary, who corrupts all the
parties at the beginning of the protocol.

We assume that the messages sent through the channels are from a specified
domain. Thus if a party receives a message which is not from the specified domain
(or a party receives no message at all), then he replaces it with some pre-defined
default message. Thus, we separately do not consider the case when no message
or syntactically incorrect message is received by a party.

2.1.2.2 Structure of ICP

As in [138, 39], our ICP is also structured into sequence of following three phases:

1. Generation Phase: This phase is initiated by D. Here D hands over the
secret S containing ` elements from F (working field of ICP) to intermediary
INT . In addition, D sends some authentication information to INT and
some verification information to individual verifiers in P .

2. Verification Phase: This phase is initiated by INT to acquire an IC Signa-
ture on S that will be later accepted by every honest verifier in P . Depend-
ing on the behavior of D/INT , secret S OR S along with the authentication

26

information, held by INT at the end of Verification Phase will be called
as D’s IC signature on S and will be denoted by ICSig(D, INT,P , S).

3. Revelation Phase: This phase is carried out by INT and the verifiers
in P . Here INT reveals ICSig(D, INT,P , S). The verifiers publish their
responses after verifying ICSig(D, INT,P , S) with respect to their verifi-
cation information. Depending upon the responses of the verifiers, every
verifier Pi ∈ P either accepts ICSig(D, INT,P , S) or rejects it.

2.1.2.3 The properties of ICP

Our ICP satisfies the following properties (which are almost same as the prop-
erties, satisfied by the ICP of [138, 48]). In these properties, ε denotes the error
probability which is negligible (Recall the discussion presented in the beginning
of section 1.5 for the meaning of negligible).

1. ICP-Correctness1: If D and INT are honest, then ICSig(D, INT,P , S)
will be accepted in Revelation Phase by each honest verifier.

2. ICP-Correctness2: If INT is honest then at the end of Verification
Phase, INT possesses an ICSig(D, INT,P , S), which will be accepted in
Revelation Phase by all honest verifiers, except with probability ε.

3. ICP-Correctness3: If D is honest, then during Revelation Phase, with
probability at least (1 − ε), every ICSig(D, INT,P , S ′) with S ′ 6= S, pro-
duced by a corrupted INT will be rejected by honest verifiers.

4. ICP-Secrecy: If D and INT are honest then till the end of Verifica-
tion Phase, S is information theoretically secure from At (that controls t
verifiers in P).

2.1.3 The Road-map

In section 2.2, we present our novel ICP with its complete proof. In section
2.3, we compare our ICP with the existing ICPs and show that our ICP attains
the best communication and round complexity among all existing ICPs. Section
2.4 introduces several important remarks, facts, definitions and notations for our
ICP. Section 2.5 then concentrates on the linearity property of our ICP. Finally,
we conclude this chapter in section 2.6.

2.2 A Novel ICP

In this section, we present an ICP called as MVMS-ICP (MVMS stands for Multi
Verifier Multi Secret). Protocol MVMS-ICP requires one round for Generation
Phase and two rounds for Verification Phase and Revelation Phase each.
We will compare MVMS-ICP with the existing ICPs of [138, 48] at the end of this
chapter.

To bound the error probability by ε, our protocol MVMS-ICP operates over
field F = GF (2κ), where κ has to be determined using the relation ε ≥ n2−κ and
the value of ε. Specifically the the minimum value of κ that satisfies ε ≥ n2−κ

will determine the field F. Now onwards, similar interpretation has to be drawn
in all the subsequent contexts throughout the thesis. Now the relation between

27

ε and κ implies that we have |F| ≥ n
ε
. Moreover, we have n = O(log 1

ε
) (follows

from ε ≤ 1
2αn as mentioned in section 1.5). Now each element from the field is

represented by κ = log |F| = O(log n
ε
) = O(log n + log 1

ε
) = O(log 1

ε
) bits (the

last equality in the sequence follows from n = O(log 1
ε
)).

We now present an informal idea of MVMS-ICP.

The Intuition: In MVMS-ICP, D selects a random polynomial F (x) of degree
` + t, whose lower order ` coefficients are the elements of S and delivers F (x) to
INT . In addition, D privately delivers to each individual verifier Pi, the value
of F (x) at a random, secret evaluation point αi. This distribution of information
by D helps to achieve ICP-Correctness3 property. The reason is that if D is
honest, then a corrupted INT cannot produce an incorrect F ′(x) 6= F (x) during
Revelation Phase without being detected by an honest verifier with very high
probability. This is because a corrupted INT will have no information about the
evaluation point of an honest verifier and hence with very high probability, F ′(x)
will not match with F (x) at the evaluation point held by an honest verifier.

The above distribution by D also maintains ICP-Secrecy property. This is
because the degree of F (x) is `+t. But only up to t points on F (x) will be known
to At through t corrupted verifiers. Therefore At will fall short by ` points to
uniquely interpolate F (x).

But the above distribution alone is not enough to achieve ICP-Correctness2.
A corrupted D might distribute F (x) to INT and value of some other polynomial
(different from F (x)) to each honest verifier. To detect this situation, INT and
the verifiers interact in zero knowledge fashion to check the consistency of F (x)
held by INT and the values held by individual verifiers. The specific details
of the zero knowledge, along with other formal steps of protocol MVMS-ICP are
given in Fig. 2.1.

We now prove the properties of protocol MVMS-ICP.

Claim 2.1 If D and INT are honest then D will never broadcast S during Ver.

Proof: Since INT is honest, he will correctly broadcast (d, B(x)) during Round
1 of Ver. So during Round 2 of Ver, D will find B(αi) = dvi + ri for all
i = 1, . . . , n. Thus D will never broadcast S during Ver. 2

Lemma 2.2 (ICP-Correctness1) If D and INT are honest, then ICSig(D, INT,
P , S) produced by INT during Reveal will be accepted by each honest verifier.

Proof: If D is honest, then (F (x), R(x)) held by honest INT and (αi, vi, ri) held
by honest verifier Pi will satisfy vi = F (αi) and ri = R(αi). Moreover by Claim
2.1, D will never broadcast S during Ver. Hence ICSig(D, INT,P , S) = F (x).
Now every honest verifier Pi will broadcast Accept in Round 2 of Reveal as
condition C1 i.e vi = F (αi) will hold. Since there are at least t + 1 honest
verifiers, ICSig(D, INT,P , S) will be accepted by every honest verifier. 2

Claim 2.3 If D is corrupted and (F (x), R(x)) held by an honest INT and (αi, vi, ri)
held by an honest verifier Pi satisfies F (αi) 6= vi and R(αi) 6= ri, then except with
probability ε

n
, B(αi) 6= dvi + ri.

Proof: We first prove that for (F (x), R(x)) held by an honest INT and (αi, vi, ri)
held by honest verifier Pi, there is only one non-zero d for which B(αi) = dvi +ri,

28

Figure 2.1: Protocol MVMS-ICP with n = 2t + 1 Verifiers

MVMS-ICP(D, INT,P, S, ε)

Gen(D, INT,P, S, ε) : This will take one round

Round 1:

1. D picks and sends the following to INT :
(a) A random degree-(`+ t) polynomial F (x) over F, such that the

lower order ` coefficients of F (x) are elements of S.
(b) A random degree-(` + t) polynomial R(x) over F.

2. D privately sends the following to every verifier Pi:
(a) (αi, vi, ri), where αi ∈ F− {0} is random (all αi’s are distinct),

vi = F (αi) and ri = R(αi).

Ver(D, INT,P, S, ε) : This will take two rounds

Round 1: INT chooses a random d ∈ F \ {0} and broadcasts (d,B(x))
where B(x) = dF (x) + R(x).

Round 2: D checks dvi + ri
?= B(αi) for i = 1, . . . , n. If D finds any

inconsistency, he broadcasts S.

If D has broadcasted S, then ICSig(D, INT,P, S) = S, else
ICSig(D, INT,P, S) = F (x).

Reveal(D, INT,P, S, ε) : This will take two rounds

Round 1 INT broadcasts ICSig(D, INT,P, S) (i.e either F (x) or S).

Round 2: Verifier Pi broadcasts Accept in the following conditions.

1. If ICSig(D, INT,P, S) = S, then if the S broadcasted by D in
Round 2 of Ver is same as ICSig(D, INT,P, S).

2. If ICSig(D, INT,P, S) = F (x), then if one of the following condi-
tions holds.
(a) C1: vi = F (αi); OR
(b) C2: B(αi) 6= dvi + ri (B(x) was broadcasted by INT during

Ver) and D did not broadcast S in Round 2 of Ver.

Otherwise, Pi broadcasts Reject.

Local Computation (By Every Verifier) : If at least (t + 1) verifiers
have broadcasted Accept during Round 2 of Reveal then accept
ICSig(D, INT,P, S). Else reject ICSig(D, INT,P, S).

even though F (αi) 6= vi and R(αi) 6= ri. For otherwise, assume there exists an-
other non-zero element e 6= d, for which B(αi) = evi+ri is true, even if F (αi) 6= vi

and R(αi) 6= ri. This implies that (d− e)F (αi) = (d− e)vi or F (αi) = vi, which
is a contradiction. Now since d is randomly chosen by honest INT only after
D handed over (F (x), R(x)) to INT and (αi, vi, ri) to Pi, a corrupted D has to

29

guess d in advance during Gen to make sure that B(αi) = dvi+ri holds. However,
D can guess d with probability at most 1

|F|−1
≈ ε

n
. Hence only with probability

at most ε
n
, corrupted D can ensure B(αi) = dvi + ri, even though F (αi) 6= vi and

R(αi) 6= ri. 2

Lemma 2.4 (ICP-Correctness2) If INT is honest then at the end of Ver,
INT possesses an ICSig(D, INT,P , S), which will be accepted in Reveal by all
honest verifiers, except with probability ε.

Proof: We consider the case when D is corrupted, because when D is honest,
the lemma follows from Lemma 2.2. Now the proof can be divided into following
two cases:

1. ICSig(D, INT,P , S) = S: This implies that D has broadcasted S during
Round 2 of Ver. In this case, the lemma holds trivially, without any error.
This is because the honest INT will correctly broadcast ICSig(D, INT,P , S) =
S during Round 1 of Reveal and every honest verifier will find that S broad-
casted by INT is same as the one that was broadcasted by D during Round
2 of Ver. So all honest verifiers (at least t + 1) will broadcast Accept and
hence ICSig(D, INT,P , S) will be accepted by all honest verifiers.

2. ICSig(D, INT,P , S) = F (x): This implies that D has not broadcasted
anything during Round 2 of Ver. Here, we first show that except with
probability ε

n
, each honest verifier will broadcast Accept during Reveal.

So let Pi be an honest verifier. We have now the following cases depend-
ing on the relation that holds between the information held by INT (i.e
(F (x), R(x))) and information held by the honest Pi (i.e (αi, vi, ri)):

(a) If F (αi) = vi: Here Pi will broadcast Accept without any error proba-
bility as condition C1 (i.e F (αi) = vi) will hold.

(b) If F (αi) 6= vi and R(αi) = ri: Here Pi will broadcast Accept without
any error probability, as condition C2 (i.e B(αi) 6= dvi + ri) will hold.

(c) If F (αi) 6= vi and R(αi) 6= ri: Here Pi will broadcast Accept except
with probability ε

n
, as condition C2 will hold, except with probability

ε
n

(see Claim 2.3).

As shown above, there is a negligible error probability of ε
n

with which an
honest Pi may broadcast Reject when F (αi) 6= vi and R(αi) 6= ri (i.e the
third case). This happens if a corrupted D can guess the unique d in Gen,
corresponding to Pi and it so happens that INT also selects the same d in
Ver and therefore condition C2 does not hold good for Pi in Reveal. Now
D can guess a di for each honest verifier Pi and if it so happens that honest
INT chooses d which is same as one of those t + 1 di’s guessed by D, then
condition C2 will not be satisfied for the honest verifier Pi for whom di = d
and therefore Pi will broadcast Reject. This may lead to the rejection of
ICSig(D, INT,P , S), as t corrupted verifiers may always broadcast Reject.
But the above event can happen with error probability t+1

|F|−1
= (t+1) ε

n
≈ ε.

This is because there are t + 1 di’s and INT has selected some d randomly
from F \ {0}. This implies that all honest verifiers will broadcast Accept

during Reveal, except with error probability ε.

This completes the proof of the lemma. 2

30

Lemma 2.5 (ICP-Correctness3) If D is honest then during Reveal, with prob-
ability at least 1 − ε, every ICSig(D, INT,P , S ′) with S ′ 6= S revealed by a
corrupted INT will be rejected by honest verifiers.

Proof: Here again we have the following two cases:

1. ICSig(D, INT,P , S) = S: This implies that D has broadcasted S dur-
ing Round 2 of Ver. In this case if a corrupted INT tries to reveal
ICSig(D, INT,P , S ′) where S ′ 6= S then all honest verifiers (at least t+1)
will broadcast Reject during Reveal. This is because the honest verifiers will
find that S ′ is not same as S which was broadcasted by D during Round
2 of Ver.

2. ICSig(D, INT,P , S) = F (x): This implies that D has not broadcasted
anything during Round 2 of Ver. Here a corrupted INT can produce
S ′ 6= S by broadcasting F ′(x) 6= F (x) during Reveal such that the lower
order ` coefficients of F ′(x) is S ′. We now claim that if INT does so, then
except with probability ε

n
, an honest verifier Pi will A-cast Reject during

Reveal. In the following, we show that the conditions for which the honest
verifier Pi would broadcast Accept are either impossible or may happen
with probability ε

n
:

(a) F ′(αi) = vi: Since Pi and D are honest, corrupted INT has no in-
formation about αi, vi. Hence the probability that INT can ensure
F ′(αi) = vi = F (αi) is same as the probability with which INT can
correctly guess αi, which is at most 1

|F−1| ≈ ε
n

(since αi is randomly

chosen by D from F).

(b) B(αi) 6= dvi + ri: This case is never possible because D is honest.
If B(αi) 6= dvi + ri corresponding to Pi, then honest D would have
broadcasted S during Round 2 of Ver and hence ICSig(D, INT,P , S)
would have been equal to S, which is a contradiction to our assumption
that ICSig(D, INT,P , S) = F (x).

As shown above, there is a negligible error probability of ε
n

with which
an honest Pi may broadcast Accept, even if the corrupted INT produces
F ′(x) 6= F (x). This happens if the corrupted INT can guess αi correspond-
ing to honest verifier Pi. Now there are t + 1 honest verifiers. A corrupted
INT can guess αi for any one of those t+1 honest verifiers and thereby can
ensure that F ′(αi) = vi holds for some honest Pi (which in turn implies Pi

will broadcast Accept). This will ensure that INT ’s ICSig(D, INT,P , S ′)
will be accepted, as t corrupted verifiers may always broadcast Accept. But
the above event can happen with probability at most t+1

|F|−1
= (t + 1) ε

n
≈ ε.

This asserts that every ICSig(D, INT,P , S ′) with S ′ 6= S, revealed by a
corrupted INT will be rejected by all honest verifiers with probability at
least (1− ε). 2

Lemma 2.6 (ICP-Secrecy) If D and INT are honest, then till the end of Ver,
S is information theoretically secure from At (that controls t verifiers in P).

Proof: During Gen, At will know t distinct points on F (x) and R(x). Since
both F (x) and R(x) are of degree-(` + t), the lower order ` coefficients of both

31

F (x) and R(x) are information theoretically secure. During Ver, At will know
d and dF (x) + R(x). Since both F (x) and R(x) are random and independent
of each other, the lower order ` coefficients of F (x) remain to be information
theoretically secure. Also, if D and INT are honest, then D will never broadcast
S during Ver (from Claim 2.1). Hence the lemma. 2

Theorem 2.7 Protocol MVMS-ICP is an efficient ICP.

Proof: Follows from Lemma 2.2, 2.4, 2.5 and 2.6. 2

Theorem 2.8 (Round Complexity of MVMS-ICP) In protocol MVMS-ICP,
Gen requires one round, Ver and Reveal requires two rounds each.

Proof: Follows from the protocol description as presented in Fig. 2.1 2

Theorem 2.9 (Communication Complexity of MVMS-ICP) Protocol MVMS-
ICP attains the following bounds:

• Protocol Gen privately communicates O((` + n) log 1
ε
) bits.

• Protocol Ver and Reveal requires broadcast of O((` + n) log 1
ε
) bits each.

Proof: In protocol Gen, D privately gives `+ t field elements to INT and three
field elements to each verifier. Since each field element can be represented by
κ = O(log 1

ε
) bits, Gen incurs a private communication of O((` + n) log 1

ε
) bits.

In protocol Ver, INT broadcasts B(x) containing `+ t field elements, thus incur-
ring broadcast of O((` + n) log 1

ε
) bits. Moreover, D may broadcast S which will

incur broadcast of O(` log 1
ε
) bits. Therefore, in total Ver requires broadcast of

O((`+n) log 1
ε
) bits. In protocol Reveal, INT broadcasts F (x), consisting of `+ t

field elements, while each verifier broadcasts Accept/Reject signal. So Reveal
involves broadcast of O((` + n) log 1

ε
) bits. 2

In the next section, we compare our protocol MVMS-ICP with the existing
ICPs with respect to communication and round complexity and show that MVMS-
ICP is the most communication and round efficient ICP in the literature. After
that, we describe few important remarks, facts and notations. Lastly, we ex-
plore an important property of MVMS-ICP called linearity property. Linearity
of MVMS-ICP will be used in Chapter 5 for constructing our statistical MPC
protocol with n = 2t + 1.

2.3 Comparison of MVMS-ICP with the ICPs of [138] and
[48]

Both the ICPs of [138] and [48] are designed in single verifier and single secret
model. But they can be extended to the case of multiple (i.e. n) verifiers easily.
Indeed in [138, 48], the single verifier ICPs were executed in parallel for n verifiers
in the implementation of VSS protocols. Moreover, as the protocols were designed
for single secret, they can be extended for ` secrets by ` parallel invocations of
the protocols. Since protocol MVMS-ICP is designed to handle n verifiers and `
secrets concurrently, in Table 2.1, we compare our MVMS-ICP with the ICPs of
[138] and [48] extended for n verifiers and ` secrets.

32

Table 2.1: Communication Complexity and Round Complexity of protocol MVMS-ICP
and Existing ICP with n = 2t + 1 verifiers and ` secrets.

Communication Complexity in Bits Round Complexity

Ref. Gen Ver Reveal Gen Ver Reveal

[138] Private– Broadcast– Broadcast– 1 at least 3 2
O(`n(log 1

ε
)2) O(`n(log 1

ε
)2) O(`n(log 1

ε
)2)

[48] Private– Broadcast– Broadcast– 1 3 2
O(`n log 1

ε
) O(`n log 1

ε
) O(`n log 1

ε
)

This thesis Private– Broadcast– Broadcast– 1 2 2
MVMS-ICP O((` + n) log 1

ε
) O((` + n) log 1

ε
) O((` + n) log 1

ε
)

2.4 Some Important Remarks, Facts, Definitions and No-
tations

2.4.1 MVMS-ICP with One Round of Reveal

It is interesting to note that if we restrict the adversary At to a non-rushing
adversary then the two rounds of Reveal can be collapsed into a single round
where INT broadcasts ICSig(D, INT,P , S) and simultaneously every verifiers
broadcast their values (αi, vi, ri). It is easy to check that all the properties of ICP
will hold in such a case. But in the presence of rushing adversary, the two rounds
are needed in order to force a corrupted INT to commit to the polynomial F (x)
prior to seeing the evaluation points, as this knowledge can enable the adversary
to publish a polynomial that can match with the values broadcasted by the honest
verifiers, which would violate the ICP-Correctness3 property of the protocol.
However, if the adversary is non-rushing then this property is achieved via the
synchronicity of the step. Hence, we have the following theorem:

Theorem 2.10 If the adversary is non-rushing then there exists an efficient ICP
with one round in Gen, two rounds in Ver and one round in Reveal.

Later we will show that due to this theorem, all the VSS and WSS protocols
that use our ICP as building block can be designed with one round of reconstruc-
tion when the adversary is assumed to be non-rushing.

2.4.2 MVMS-ICP with Single Secret and n = 3t + 1 Verifiers

Here we disclose two important facts about protocol MVMS-ICP, which will be
required for our subsequent chapters:

1. Though MVMS-ICP has been designed to deal with ` secrets concurrently,
we may use it for single secret when necessary. We may reflect this by
putting ` = 1 in all places. In fact in Chapter 3, we have used MVMS-
ICP for single secret to keep the description simple (also because Chapter
3 deals with only round complexity and communication complexity plays a
less significant role there).

2. Though MVMS-ICP has been designed for n = 2t+1 verifiers, it achieves all
its properties even when n = 3t + 1. In Chapter 6, we will use MVMS-ICP
with n = 3t + 1 verifiers.

33

2.4.3 A Definition

We now present the following definition:

Definition 2.11 (IC Signature with ε Error) An IC signature ICSig(D, INT,
P , S) for some secret S, is said to have ε error, if it satisfies the following:

1. ICP-Correctness1 without any error;

2. ICP-Correctness2 with error probability of at most ε;

3. ICP-Correctness3 with error probability of at most ε;

4. ICP-Secrecy without any error.

Notice that if an IC signature is generated in MVMS-ICP (which is executed
with error parameter ε), then the IC signature will have ε error. This follows
from the proofs of Lemma 2.2, 2.4, 2.5 and 2.6.

2.4.4 Notation for using MVMS-ICP

Notation 2.12 (Notation for Using MVMS-ICP) We say that:

1. “D sends ICSig(D, INT,P , S) having ε error to INT ” to mean that D
executes Gen(D, INT,P , S, ε);

2. “INT receives ICSig(D, INT,P , S) having ε error from D” to mean that
the parties have executed Ver(D, INT,P , S, ε);

3. “INT reveals ICSig(D, INT,P , S) having ε error” to mean that Reveal(D, INT,
P , S, ε) has been executed.

Clearly if D sends ICSig(D, INT,P , S) to INT in ith round, then INT will
receive ICSig(D, INT,P , S) in (i + 2)th round, as Ver requires two rounds.

2.5 Linearity of Protocol MVMS-ICP

The IC signature generated in MVMS-ICP satisfies linearity property, which is
exploited heavily in our VSS and MPC protocol in Chapter 4 and 5. Specifi-
cally, consider the following settings: let in q different instances of MVMS-ICP,
D has handed over IC Signature on q different set of ` secrets to INT , namely
Si = (s1

i , . . . , s
`
i), for i = 1, . . . , q. Moreover, let D has used the same αi as secret

evaluation point for verifier Pi in all the q instances of MVMS-ICP (an honest
D can always ensure it). This condition on αi is very important and we refer
this as the condition for linearity of IC signatures. Though linearity property
accounts for any form of linear function, we will demonstrate the linearity prop-
erty with respect to addition operation. This is because addition/subtraction are
the linear functions that will be used in our VSS and MPC protocols. So let
S = S1 + . . . + Sq, where S = (s1, . . . , s`) and sl = sl

1 + . . . + sl
q, for l = 1, . . . , `.

Now INT can compute ICSig(D, INT,P , S) using ICSig(D, INT,P , Si) for
i = 1, . . . , q and the verifiers can compute verification information correspond-
ing to ICSig(D, INT,P , S), without doing any further communication. For
the sake of completeness, we present a protocol in Fig. 2.2 showing how INT

34

and verifiers can achieve the above. Informally in the protocol we use the lin-
earity property of polynomials. That is, if ICSig(D, INT,P , S1) = F1(x) and
ICSig(D, INT,P , S2) = F2(x), then ICSig(D, INT,P , S1+S2) = F1(x)+F2(x).
Similarly, if F1(αi) and F2(αi) are the verification information of verifier Pi corre-
sponding to ICSig(D, INT,P , S1) and ICSig(D, INT,P , S2) respectively, then
F1(αi) + F2(αi) will be the verification information of verifier Pi corresponding
to ICSig(D, INT,P , S1 + S2).

In the protocol, it might be possible that some ICSig(D, INT,P , Si) is a
polynomial of degree `+ t (this implies that D has not broadcasted anything dur-
ing Ver of ith signature giving instance), while some other ICSig(D, INT,P , Sj)
is Sj (this implies that D has broadcasted Sj during Ver of jth signature giv-
ing instance). In such a case, INT finds a ` + t degree polynomial Fj(x),
whose lower order ` coefficients are elements of Sj and the remaining coeffi-
cients are some publicly known default values and assumes the polynomial to be
ICSig(D, INT,P , Sj). Notice that such Fj(x) will be known publicly, as Sj is
broadcasted by D. Accordingly, every verifier Pi considers Fj(αi) as his verifica-
tion information corresponding to ICSig(D, INT,P , Sj). Once this is done then
all the q IC signatures will be ` + t degree polynomials and hence INT can use
the linearity property of the polynomials (as explained above) to compute the
addition of IC signatures.

Now we show that a linearly combined IC signature that is computed from q
IC signatures (using protocol in Fig. 2.2), each having ε error, will have ε error.
For this, we prove the following lemma:

Lemma 2.13 Assuming each of the q individual IC signatures, ICSig(D, INT,P ,
Sj) has ε error, the linearly combined IC signature, ICSig(D, INT,P , S) will also
have ε error.

Proof: We will examine each of the four properties of IC signature one by one
depending on whether D and/or INT are honest or corrupted. When D and
INT are honest, then it is easy to see that ICSig(D, INT,P , S) will abide by
ICP-Correctness1 and ICP-Secrecy without any error.

Now when D is honest and INT is corrupted, ICSig(D, INT,P , S) satisfies
ICP-Correctness3 with error probability ε, which is same as the error of in-
dividual IC signatures. This is because, here the error probability depends on
correctly guessing one of the honest Pi’s αi (recall that same αi is associated with
Pi corresponding to all the individual IC signatures).

Finally, we show that when D is corrupted and INT is honest, ICSig(D, INT,
P , S) satisfies ICP-Correctness2 with error probability ε. The worst case that
causes this error probability is as follows:

1. To every honest verifier Pi, D gives vji 6= Fj(αi) and rji 6= Rj(αi), corre-
sponding to exactly one j ∈ {1, . . . , q};

2. For all other j ∈ {1, . . . , q}, D gives vji = Fj(αi) and rji = Rj(αi) to every
honest verifier Pi.

In this case, from the proof of Lemma 2.4, Bj(αi) 6= djvji + djrji will not
hold for some honest Pi, except with probability ε. Now notice that if D delivers
vji, rji satisfying vji 6= Fj(αi) and rji 6= Rj(αi) for more j’s, then D has to guess
more dj’s and hence the probability with which D can guess all those dj’s will

35

Figure 2.2: Linearity of Protocol MVMS-ICP Over Addition Operation.

Assumption:

1. D has sent ICSig(D, INT,P, Sj) having ε error to INT , for j = 1, . . . , q,
where Sj = (s1

j , . . . , s
`
j). Let D has used the same αi as secret evaluation

point for verifier Pi in all the q instances for giving IC signatures. Moreover,
let INT has used random value dj in Round 1 of Ver for jth signature giving
instance of MVMS-ICP.

2. INT has received ICSig(D, INT,P, Sj) having ε error from D.

3. For every j ∈ {1, . . . , q}, such that ICSig(D, INT,P, Sj) is a polynomial of
degree ` + t, let ICSig(D, INT,P, Sj) = Fj(x), i.e D had used Fj(x) to hide
Sj . Moreover let Pi has the verification information vji, which is supposed to
be same as Fj(αi).

Local Computation to Compute Addition of IC Signatures:

1. For all j ∈ {1, . . . , q}, such that ICSig(D, INT,P, Sj) = Sj , INT assumes a
degree `+ t polynomial Fj(x) whose lower order ` coefficients are the elements
of Sj and the remaining coefficients are some publicly known default values.
Notice that such Fj(x) polynomials will be known publicly. For every such
Fj(x), verifier Pi computes his verification information as vji = Fj(αi) .

2. Now to compute ICSig(D, INT,P, S), INT sets F (x) =
∑q

j=1 Fj(x) and
assigns ICSig(D, INT,P, S) = F (x).

3. Every verifier Pi computes his verification information corresponding to
ICSig(D, INT,P, S) in the following way: vi =

∑q
j=1 vji.

Revelation of Linear IC Signature:

1. INT broadcasts ICSig(D, INT,P, S) (i.e F (x)).

2. Verifier Pi broadcasts Accept if one of the following conditions holds.

(a) C1: vi = F (αi); OR

(b) C2: For some j ∈ {1, . . . , q}, Bj(αi) 6= djvji + rji (Bj(x) was broad-
casted by INT during Round 1 of Ver of jth signature giving instance)
and D has not broadcasted Sj in Round 2 of Ver of jth signature giving
instance.

Otherwise, Pi broadcasts Reject.

Local Computation (By Every Verifier): If at least (t + 1) verifiers have
broadcasted Accept then accept ICSig(D, INT,P, S) and hence S. Else reject
ICSig(D, INT,P, S).

decrease beyond ε. Hence we proved that when D is corrupted and INT is hon-
est, ICSig(D, INT,P , S) satisfies ICP-Correctness2 with error probability ε.

36

Hence the lemma. 2

The linearity of IC signatures also captures the following case: Let in an exe-
cution of MVMS-ICP, D has handed over IC Signature on a set of ` secrets to INT ,
say b1, . . . , b`. That is at the end of Ver, INT holds ICSig(D, INT,P , (b1, . . . , b`)).
Also let (a1, . . . , a`) are some publicly known values. Now INT can compute
ICSig(D, INT,P , (b1 − a1, . . . , b` − a`)) and similarly verifiers can update their
verification information accordingly, by doing local computation. Later in Reveal,
INT can reveal ICSig(D, INT,P , (b1 − a1, . . . , b` − a`)) to the verifiers. More-
over, the above idea can be extended for any number of IC signatures and any
number of sets containing publicly known values. In Chapter 5, we will need all
the above concepts extensively. Now we present the following important notes.

Note 2.14 We would like to alert that linearity of IC signatures holds only when
all the IC signatures are generated by same party, say P (who acts as a dealer).
Moreover, P should abide by the condition for the linearity of IC signatures. Lin-
earity does not hold on the IC signatures that are generated by different parties, as
they will not satisfy condition for the linearity of IC signatures (because different
parties may choose different αi for verifier Pi in their signature giving instance).

Note 2.15 Many protocols in the subsequent chapters will use MVMS-ICP as a
black box directly or indirectly with different error probability. To bound the error
probability by ε, different protocols will invoke (directly or indirectly through some
other sub-protocol) MVMS-ICP with different error probability. Consequently, de-
pending on the minimum error probability with which MVMS-ICP is invoked in
a protocol will determine the exact relationship between ε and κ for that protocol
(which in term determine the field F = GF (2κ) for that protocol).

2.6 Conclusion and Open Problems

In this chapter, we have extended the basic bare-bone definition of ICP, intro-
duced by Rabin et al. [138] and subsequently followed by [39, 48], to capture
multiple verifiers and multiple secrets concurrently. Then we have presented a
novel ICP (matching with our definition) that turns out to be the best ICP in
the literature as per the round and communication complexity. We then explored
the linearity property of our ICP (will be used in Chapter 5). We now conclude
this chapter with an interesting open question:

Open Problem 1 Can we improve the round and communication complexity of
MVMS-ICP when there are n = 2t + 1 verifiers?

This leads to a more general question:

Open Problem 2 What is the round and communication complexity lower bound
for ICP with n = 2t + 1 verifiers?

37

Chapter 3

The Round Complexity of
Statistical VSS and WSS

The round complexity of interactive protocols is one of their most important
complexity measures. The investigation of the round complexity of protocols is
usually conducted under the assumption that the protocols are error-free. In
this chapter, we investigate the round complexity of VSS and WSS (a weaker
notion of VSS) by introducing a probability of error and examine the question
of whether introducing a probability of error into the executions can improve on
known results and lower bounds. In fact, our results in this chapter show that
existing lower bounds for the round complexity of perfect VSS and WSS can be
circumvented by introducing a negligible probability of error.

3.1 Introduction

3.1.1 Relevant Literature of VSS

Due to the central importance of VSS in the context of many cryptographic
protocols such as MPC [3, 19, 5, 6, 7, 20, 12, 13, 14, 21, 9, 36, 41, 48, 49, 52, 95, 93,
98, 101, 103, 104, 135, 138, 143, 126], BA [68, 18, 29, 39, 35, 118, 72, 110, 2, 24, 25,
26, 30, 31, 32, 44, 56, 54, 57, 59, 60, 61, 74, 70, 71, 65, 67, 78, 86, 89, 114, 117, 134,
136, 150, 148, 149], etc, the VSS problem has drawn much attention over the years
(e.g. [43, 55, 108, 9, 95, 20, 41, 62, 63, 137, 48, 21, 39, 138, 73, 91, 93, 109, 125,
12, 14, 98, 126, 50, 47, 35, 96, 28, 133, 66, 64, 8, 37, 22, 53, 92, 123, 145, 34, 97])
and many aspects of the problem have been studied.

In information theoretic settings (i.e. under the assumption of a computa-
tionally unbounded adversary), there are mainly two flavors of VSS: Perfect VSS
(i.e. error free) and statistical VSS (involves some probability of error). It is
well known that perfect VSS is possible iff n ≥ 3t + 1 [55]. On the other hand,
statistical VSS where a probability of error is allowed, is achievable for n ≥ 2t+1,
assuming availability of a public broadcast channel [138] (in addition to the point-
to-point secure channels between every pair of parties).

The study of the round complexity of VSS in the information theoretic security
setting, was initiated by Gennaro et al. [91]. Their investigation was conducted
for perfect VSS i.e under the assumption that the protocols are error-free. They
refer to the round complexity of VSS as the number of rounds in the sharing phase
and prove that a 3-round sharing error-free VSS is possible only if n ≥ 3t + 1,
and match it with an inefficient upper bound. Fitzi et al. [73] present an efficient

38

3-round sharing VSS protocol in this setting. The protocol of Fitzi et al. used
the broadcast channel in more than one round of the sharing phase and Katz
et al. [109] showed how to achieve the same result while using a single round of
broadcast. Apart from the lower bound for 3-round sharing VSS, [91] also reports
that 1-round sharing VSS is possible iff t = 1 and n ≥ 5 and 2-round sharing
VSS is possible iff n ≥ 4t + 1. In summary, the results reported in [91, 73, 109]
are presented in Table 3.1.

Table 3.1: Summary of VSS Bounds and Round Complexity.

Sharing Rounds Conditions Comment Efficient Protocol?
1 t = 1; n ≥ 5 iff Yes
2 n ≥ 4t + 1 iff Yes
3 n ≥ 3t + 1 iff Yes

So far in the literature, there are three statistical VSS protocols with n = 2t+1
[138, 48, 49]. All of them require fairly very high round complexity.

3.1.2 Our Results on Statistical VSS

In this chapter, we examine the round complexity of statistical VSS and also
investigate the question of whether the lower bounds for the round complexity
of VSS can be overcome by introducing a negligible probability of error. In our
work, we show that if we allow negligible error probability then there exists:

1. An efficient 1-round sharing, 2-round reconstruction VSS protocol for t = 1
and n ≥ 4.

2. An efficient 2-round sharing, 2-round reconstruction VSS protocol for n ≥
3t + 1.

3. An efficient 3-round sharing, 2-round reconstruction VSS protocol for t = 1
and n ≥ 3.

4. An in-efficient 4-round sharing, 2-round reconstruction VSS protocol for
n ≥ 2t + 1.

5. An efficient 5-round sharing, 2-round reconstruction VSS protocol for n ≥
2t + 1.

Interestingly, in all the above protocols, 1-round reconstruction is possible if we
assume the adversary to be non-rushing, where a rushing adversary can wait to
hear the incoming messages in a given round prior to sending out its own mes-
sages. The VSS protocols mentioned in 3rd, 4th and 5th items require optimal
number of rounds in reconstruction phase. This is because in [49], it is proved
that VSS with n = 2t + 1 and any value of t ≥ 1 will require 2 rounds in recon-
struction when the adversary is rushing and the reconstruction can be collapsed
in a single round when the adversary is considered to be non-rushing. We do not
know whether the same holds for our 1-round sharing and 2-round sharing VSS
protocols (mentioned in 1st and 2nd items). But here we prove that our proto-
cols mentioned in 1st and 2nd items are optimal both in resilience and number of
sharing rounds by showing:

39

1. There does not exist any 1-round sharing statistical VSS protocol for (t ≥ 2;
n ≥ 4) and (t = 1; n < 4).

2. There does not exist any 2-round sharing statistical WSS (and hence VSS)
for n ≤ 3t.

In summary, our results are presented in Table 3.2.

Table 3.2: Summary of Statistical VSS Bounds and Round Complexity.

Sharing Rounds Conditions Comment Efficient Protocol?
1 t = 1; n ≥ 4 iff Yes
2 n ≥ 3t + 1 iff Yes
3 t = 1; n ≥ 3 only if Yes
4 n ≥ 2t + 1 only if No
5 n ≥ 2t + 1 only if Yes

Our results for 2-round sharing statistical VSS show that existing lower bounds
of [91] for 3-round sharing error-free VSS can be circumvented by introducing a
negligible probability of error. Apart from this, our results for 2-round sharing
VSS matches the sharing phase round complexity of the best known protocols in
the computational setting [64, 133] with no set-up assumptions (but note that
these protocols use a one round reconstruction phase). Our VSS protocol for
n ≥ 3t + 1 also achieve the design optimization of Katz et al. [109] and use a
single round of broadcast in the sharing phase and no broadcasts at all in the
reconstruction phase. Finally, comparing Table 3.1 and 3.2, we see that intro-
ducing error probability in VSS protocol also helps to increase the fault tolerance
of VSS.

3.1.3 Our Results on Statistical WSS

Generally, WSS is used as a tool to design VSS protocols [138, 137]. Informally
WSS is a primitive which satisfies the same properties as VSS except for the
commitment property. VSS has a strong commitment, which requires that at the
end of the sharing, there is a fixed value s∗ and that the honest parties output this
value in the reconstruction phase. In contrast, WSS has a weaker commitment
property which requires that at the end of the reconstruction phase, the honest
parties output s∗ or NULL.

The study of the round complexity of perfect WSS in the information theoretic
security setting, was initiated in [73]. In [73], the authors referred to the round
complexity of WSS as the number of rounds in the sharing phase and have shown
that

1. Efficient 1-round as well as 2-round sharing WSS protocol is possible iff
n ≥ 4t + 1.

2. Efficient 3-round sharing WSS protocol is possible iff n ≥ 3t + 1.

In this chapter, we completely resolve the round complexity of WSS involving
negligible error probability by showing that:

40

1. Efficient 1-round as well as 2-round sharing WSS protocol is possible iff
n ≥ 3t + 1.

2. Efficient 3-round sharing WSS protocol is possible iff n ≥ 2t + 1.

Our results clearly show that probabilistically relaxing the conditions of WSS
helps to increase the fault tolerance. The 2-round sharing WSS presented in our
chapter is used to build our 2-round sharing VSS protocol.

3.1.4 The Working Field of Our Protocols

All our protocols (VSS and WSS) involve an error probability of ε. To bound
the error probability by ε, our protocols operate with values from a finite field
F = GF (2κ), where κ has to be determined using the value of ε and the relation
between ε and κ. The exact relationship between ε and κ is different for different
protocols and therefore it is mentioned in respective sections. In all cases, each
element of F can be represented by κ = O(log 1

ε
) bits. We say that our protocols

are efficient if the communication and computation of the honest parties are
polynomial in κ or log 1

ε
. All the protocols, except 4-round sharing VSS protocol,

presented in this chapter perform computation and communication which are
poly(κ) or poly(log 1

ε
).

3.1.5 On the Definition of Round Complexity of VSS and WSS

As we have stated earlier, the common definition for the round complexity of
VSS is the number of rounds in the sharing phase. This is a natural definition for
the perfect (i.e., zero error) setting, as the reconstruction can always be done in
one round (by having all parties reveal their complete view generated at the end
of sharing phase). However, in all our protocols we have a reconstruction phase
that cannot be collapsed into a single round. In [49], it is proved that VSS with
n = 2t+1 and t ≥ 1 will require two rounds in reconstruction when the adversary
is rushing and the reconstruction can be collapsed in a single round when the
adversary is considered to be non-rushing. But we do not know whether the same
holds with respect to our 1-round sharing statistical VSS (with n ≥ 4 and t = 1)
and 2-round sharing statistical VSS (with n ≥ 3t + 1) protocols. This indicates
that a different definition for the round complexity of VSS may be needed, which
is the total number of rounds in the sharing plus the number of rounds in the
reconstruction. It is to be noted that the previous 3-round sharing perfect VSS
[91, 73, 109] and our result for 2-round sharing 2-round reconstruction statistical
VSS exhibit VSS with a total of four rounds1. This introduces the question of
what is the lower bound on the total number of rounds for VSS with n = 3t + 1
or with n = 2t + 1. We may as well ask similar questions for WSS. Even all
the three WSS protocols presented in this chapter require 2-round reconstruction
and similar to the case of VSS, they can be collapsed to single round when the
adversary is non-rushing.

1As the total number of rounds in both protocols is the same, the question of which protocol to
use depends on the application. For applications where there is a need of more efficiency during the
sharing, i.e. fewer number of rounds, our two round sharing statistical protocol should be used.

41

3.1.6 The Network and Adversary Model

We follow the network model of [138, 91]. The model is presented in Section
2.1.2 of Chapter 2. Recall that the set of parties is denoted by P = {P1, . . . , Pn}
and t out of the n parties can be under the influence of a computationally un-
bounded powerful, Byzantine (active), rushing adversary, denoted as At. Apart
from pairwise secure channels, there is a physical broadcast channel available in
the network. Here n takes different values (such as 3t + 1 and 2t + 1) in different
protocols.

3.1.7 Definitions of VSS and WSS

We now present two different standard definitions of VSS.

Definition 3.1 (Weak Definition of VSS [43]) In a VSS protocol there is a
distinguished party D ∈ P , that holds an input s ∈ F referred to as the secret.
The protocol consists of two phases, a sharing phase and a reconstruction phase.
We call an n party protocol with adversary At an (n, t) VSS protocol if it satisfies
the following conditions for dealer D holding secret s:

• Secrecy If D is honest then At’s view during the sharing phase reveals no
information on s. 2 More formally, At’s view is identically distributed for
all different values of s.

• Correctness If D is honest then the honest parties output s at the end
of the reconstruction phase. Moreover, this is true for any choice of the
random inputs of the uncorrupted parties and At’s randomness.

• Strong Commitment If D is corrupted, then at the end of the sharing
phase there is a value s∗ ∈ F∪{NULL}, such that at the end of reconstruc-
tion phase all honest parties output s∗, irrespective of the behavior of the
corrupted parties.

This definition is equivalent to saying that s∗ ∈ F, by fixing a default value in
F, which may be output in case the reconstruction ends with a NULL. However,
we prefer this form of the definition so as to distinguish it from a stronger defi-
nition of VSS [94, 91]. The stronger definition of VSS requires that at the end of
the sharing there is a commitment to an actual value in F, i.e. the dealer cannot
commit to NULL. Thus, using the above definition points to the fact that NULL
is a possible value, instead of setting it to a default value in F.

Protocols that do not satisfy the stronger VSS definition are not suitable for
use in multiparty computations. Hence, we also need the stronger definition of
VSS [94].

Definition 3.2 (Strong Definition of VSS [94]) This is same as the previ-
ous definition with the following modification in Strong Commitment:

Strong Commitment. If D is corrupted, then at the end of the sharing phase
there is a value s∗ ∈ F, such that at the end of reconstruction phase all honest
parties output s∗, irrespective of the behavior of the corrupted parties.

2If D is corrupted, then s will be known to At. In such a case, the secrecy property does not apply.

42

Definition 3.3 (Weak Definition of Statistical VSS) A statistical VSS pro-
tocol is said to satisfy the weak definition of statistical VSS if the protocol satisfies
correctness and strong commitment, except with error probability ε. More-
over, the strong commitment property is inline with weak definition of VSS
given in Definition 3.1. Note that we assume secrecy to be perfect.

Definition 3.4 (Strong Definition of Statistical VSS) A statistical VSS pro-
tocol is said to satisfy the strong definition of statistical VSS if the protocol sat-
isfies correctness and strong commitment, except with error probability ε.
Moreover, the strong commitment property is inline with strong definition of
VSS given in Definition 3.2. Note that we assume secrecy to be perfect.

The VSS protocol with n = 3t + 1 presented in this chapter satisfy the weak
definition of statistical VSS, which leave the open question of whether a 2-round
VSS protocol can be designed that satisfies the strong definition of statistical
VSS. However, when examining the round complexity of VSS as a stand alone
application, the weak definition is sufficient. The VSS protocols with n = 2t + 1
parties presented in this chapter satisfy strong definition of statistical VSS.

VSS in External Dealer Model: In the external dealer model, the system
is assumed to consist of a dealer and n parties. The dealer is considered as an
external party. Moreover, the adversary At is allowed to corrupt D and up to t
additional parties. We stress that all the protocols and lower bounds presented
in this chapter will work for this model as well.

We now present the definition of WSS [138, 137].

Definition 3.5 (WSS) The setting is the same as for the VSS and the defini-
tion satisfies the Secrecy and Correctness properties. However, we relax the
Strong Commitment property as follows:

Weak Commitment. If D is faulty then at the end of the sharing phase there is
a value s∗ ∈ F ∪ {NULL} such that at the end of the reconstruction phase,
each honest party will output either s∗ or NULL.

Notice that it is not required that all honest parties output the same value,
i.e. some may output s∗ and some may output NULL. The above definition is
standard and follows many of the existing definitions [137, 138, 109].

Definition 3.6 (Statistical WSS) A statistical WSS protocol satisfies correct-
ness and weak commitment, except with error probability ε. Moreover, secrecy is
assumed to be perfect.

3.1.8 The Road-map

We have structured this chapter in the following way:

1. Section 3.2: Presents 1-round sharing 2-round reconstruction (4, 1) VSS.

2. Section 3.3: Presents 2-round sharing 2-round reconstruction (3t+1, t) WSS.

3. Section 3.4: Presents 2-round sharing 2-round reconstruction (3t+1, t) VSS.
This protocol uses 2-round sharing WSS as a black box (presented in section
3.3).

43

4. Section 3.5: Presents 3-round sharing 2-round reconstruction (3, 1) VSS.

5. Section 3.6: Presents 4-round sharing 2-round reconstruction (2t+1, t) VSS.
This protocol is in-efficient.

6. Section 3.7: Presents 5-round sharing 2-round reconstruction efficient (2t+
1, t) VSS.

7. Section 3.8: Presents the lower bounds on VSS.

8. Section 3.9: Presents 1-round sharing 2-round reconstruction (3t+1, t) WSS.

9. Section 3.10: Presents 3-round sharing 2-round reconstruction (2t + 1, t)
WSS.

10. Section 3.11: Presents the lower bounds on WSS.

Finally, this chapter ends with a concluding note where we pose a set of interesting
open problems.

3.2 Efficient 1-round Sharing, 2-round Reconstruction (4, 1)
Statistical VSS

Here we design a 1-round sharing, 2-round reconstruction (4, 1) statistical VSS
protocol. In [91] it is shown that there exists a 1-round sharing, 1-round re-
construction (5, 1) perfect VSS. This shows that probabilistically relaxing the
conditions of VSS helps to increase the fault tolerance. Let the parties be de-
noted by P1, P2, P3, P4, where P1 is the dealer and s is the secret. The protocol
has an error probability of ε. To bound the error probability by ε, our protocol
works over a finite field F = GF (2κ), where κ has to be determined using relation
ε ≥ 2−κ.

The Intuition: The sharing phase of our VSS protocol is very simple. Here D
selects four polynomials each of degree one, namely f(x), f2(x), f3(x), f4(x) such
that the constant term of f(x) is secret s and f(i) = fi(0) for i = 2, 3, 4. Moreover
D also selects three random non-zero values from F (called as evaluation points),
namely α2, α3, α4. D then gives fi(x), αi and values of other fj(x) polynomials
at αi to Pi for i = 2, . . . , 4. Notice that D participates in the sharing phase
just to distribute information to other parties. In the reconstruction phase, the
parties disclose their polynomials, secret evaluations points and the values of the
polynomials as received in sharing phase. The important step is that D is not
allowed to take part in reconstruction phase. Now the reconstruction phase is
simple and is based on the technique of using secret evaluation points and values
(of the polynomials) to check the validity of the polynomials. The protocol is
presented in Fig. 3.1

Lemma 3.7 (Secrecy) Protocol 1-Round-VSS satisfies perfect secrecy.

Proof: We have to consider the case when D is honest. Without loss of gener-
ality, let P4 be corrupted. Then P4 knows f4(x). P4 will also know one distinct
point on each fi(x) for 2 ≤ i ≤ 3. Since degree of each fi(x) is one, adversary
lacks one point on each f2(x), f3(x) to completely know them and hence f(0) = s
will be information theoretically secure. 2

44

Figure 3.1: 1-Round Sharing, 2-Round Reconstruction (4, 1) Statistical VSS.

Protocol 1-Round-VSS(D,P, s, ε)

Sharing Phase: One Round

1. D selects a random polynomial f(x) over F of degree one, such that
f(0) = s.

2. For every i, 2 ≤ i ≤ 4 the dealer D chooses and sends to Pi the following:

(a) A random polynomial fi(x) of degree one over F such that fi(0) =
f(i).

(b) Random non-zero element from F, denoted by αi.
(c) vji = fj(αi) for 2 ≤ j ≤ 4.

Reconstruction Phase: Two Rounds— D(P1) is not allowed to participate

Round 1: Each Pi broadcasts f ′i(x), for 2 ≤ i ≤ 4.

Round 2: For 2 ≤ i ≤ 4, Pi broadcasts the evaluation point α′i and the
values v′ji, for 2 ≤ j ≤ 4.

Local Computation (by each party except P1):

1. Party Pi ∈ P \ {P1} is confirmed if there exists a Pj ∈ P \ {P1, Pi}
for which f ′i(α

′
j) = v′ij .

2. If there are less then two confirmed parties then output NULL.
Otherwise, if the f ′i(0)s corresponding to the set of confirmed parties
define a polynomial f(x) of degree one then output f(0); else output
NULL.

Lemma 3.8 (Correctness) Protocol 1-Round-VSS satisfies correctness property,
except with error probability ε.

Proof: Here we have to consider D to be honest. If D is honest, then among the
remaining three parties at most one can be corrupted. Let P4 be the corrupted
party among P2, P3 and P4. It is easy to see that P2 and P3 will be confirmed.
Therefore there will be at least two confirmed parties. Now we assert that if P4

is confirmed then he must have broadcasted f ′4(x) = f4(x) during reconstruction
phase with probability at least (1−ε). So first assume that P4 broadcasts f ′4(x) 6=
f4(x) during reconstruction phase. Clearly, P4 will be confirmed only if f ′4(α2) =
f4(α2) or f ′4(α3) = f4(α3). But since P4 broadcasts f ′4(x), without knowing α2

and α3, the first, second or both the equalities may satisfy only when P4 can
correctly guess α2, α3 or both respectively. But P4 can do the guessing only with
probability at most 2

|F| ≈ ε, which is negligible.

So with probability at least (1 − ε), f ′i(x) = fi(x) for every confirmed party.
Now it is easy to see that f(x) and hence secret s = f(0) will be reconstructed
back with the help of fi(0) values, except with probability at most ε. 2

Lemma 3.9 (Strong Commitment) Protocol 1-Round-VSS satisfies strong com-
mitment property without any error probability.

45

Proof: We have to consider the case when D (P1) is corrupted. Thus P2, P3

and P4 are honest and behave correctly in the reconstruction phase (recall that
D is not allowed to participate in the reconstruction phase). As the values of the
honest parties are fixed in the sharing phase, the question of which party will be
confirmed is fixed as well. Thus, D is committed to NULL if (a) there is zero or
one confirmed party or (b) there are three confirmed parties but their fi(0)’s do
not define a polynomial f(x) of degree one. On the other hand, we say that D is
committed to f(0) when there are (a) two confirmed parties whose fi(0)’s define a
unique polynomial f(x) of degree one or (b) three confirmed parties whose fi(0)’s
define a unique polynomial f(x) of degree one. In the reconstruction phase, D’s
committed secret (which is either NULL or f(0)) will be reconstructed without
any error. Hence the lemma. 2

Theorem 3.10 There exists an efficient 1-round sharing, 2-round reconstruction
(4, 1) statistical VSS protocol.

Proof: Protocol 1-Round-VSS presented here achieves correctness, except with
probability ε and also satisfies strong commitment and secrecy without any error.
This follows from Lemma 3.7, 3.8 and 3.9. Hence the theorem. 2

Protocol 1-Round-VSS follows the weak definition of statistical VSS (see Def-
inition 3.3). This follows from the proof of Lemma 3.9 where it is shown that a
corrupted D may commit to NULL.

3.2.1 Statistical VSS with One Round of Reconstruction

It is interesting to note that if we restrict the adversary to a non-rushing adversary
then the two rounds of the reconstruction phase can be collapsed into a single
round. The two rounds are needed in order to force the adversary to commit to
the polynomial fi(x) of the faulty party prior to seeing the evaluation points, as
this knowledge can enable the adversary to publish a polynomial that will match
with the values of the honest parties, which would violate the correctness of the
protocol. However, if the adversary is non-rushing then this property is achieved
via the synchronicity of the step. We state this in the following theorem:

Theorem 3.11 If the adversary At is non-rushing then there exists an efficient
1-round sharing 1-round reconstruction (4, 1) statistical VSS protocol.

3.2.2 Statistical VSS with No Broadcast

We now show how protocol 1-Round-VSS can be modified, so that it uses no
broadcast. The Sharing Phase of 1-Round-VSS uses no broadcast (see Fig.
3.1). Now we modify the Reconstruction Phase, so that it does not require
any broadcast.

Reconstruction Phase: Two Rounds— D(P1) is not allowed to participate

Round 1: Each Pi privately sends f ′i(x), for 2 ≤ i ≤ 4 to every other party Pj.

Round 2: For 2 ≤ i ≤ 4, Pi privately sends the evaluation point α′i and the
values v′ji, for 2 ≤ j ≤ 4 to every other party Pj.

46

Local Computation (by each party except P1): This is same as presented
in Fig. 3.1.

This modified version of protocol 1-Round-VSS preserves all the properties of
protocol 1-Round-VSS.

3.3 Efficient 2-round Sharing, 2-round Reconstruction (3t+
1, t) Statistical WSS

In this section, we present our 2-round sharing, 2-round reconstruction statistical
WSS protocol with n = 3t + 1. This is used as building block to design our
2-round sharing, 2-round reconstruction (3t + 1, t) statistical VSS presented in
the next section. The WSS protocol appears in Fig. 3.2. For ease of exposition,
we describe our protocol using multiple rounds of broadcast. We follow this with
a brief description on how to modify the protocol to a variation that uses a single
round of broadcast. The protocol has an error probability of ε. To bound the
error probability by ε, our protocol works over a field F = GF (2κ), where κ has

to be determined using the relation ε ≥ n2κ2−κ. So we have |F| ≥ n2κ
ε

.

The Intuition: In the sharing phase, D selects a bivariate polynomial F (x, y)
of degree t in y and nκ+1 in x. D also selects κ random secret evaluation points
for every party in P . D delivers the polynomial fi(x) = F (x, i), κ evaluation
points and the values of all fj(x) polynomials (for j = 1, . . . , n) at those κ eval-
uation points to Pi. In Round 2, the parties communicate among themselves
to check the consistency of the fi(x) polynomials with their corresponding values
in a zero-knowledge fashion. To keep the secrecy of fi(x) polynomials during
the zero-knowledge communication, D also delivers another random polynomial
ri(x) of degree nκ + 1 to every Pi and its corresponding values at κ secret eval-
uations points to every party. The details of the protocol can be found in Fig. 3.2.

Now before we turn to our proofs we draw the readers attention to the fol-
lowing interesting points that enable us to achieve the final result. The bivariate
polynomial F (x, y) (defined by D) has a tweak, the x variable is of degree nκ+1,
which results in the polynomials fi(x) being of degree nκ+1 (where as this degree
is typically t in other protocols). We further create a situation where these poly-
nomials never need to be reconstructed and thus the parties need not hold large
number of points on the polynomials to interpolate them. These two properties
put together, enable us to give each party many evaluation points and values on
these polynomials and to further allow them to expose a portion of them with-
out exposing the underlying polynomial. In addition, we adapt an interesting
technique from Tompa and Woll [146] and use secret evaluation points.

The fact that we can expose points on the high degree polynomials and that
the evaluation points are secret, facilitates the cut-and-choose proof, carried out
by the parties in Round 2. It should be noted that if we allow rushing adversary,
then a cheating prover may try to foil the cut-and-choose proof during the sharing
phase. However, surprisingly we show that this proof is sufficient for our needs
and that we can deal with such faulty parties in the reconstruction phase.

Note: Following the notation of [91], whenever we say that dealer is disqualified
during the sharing phase of WSS/VSS, we mean to say that all honest parties

47

accept the sharing of NULL (or a default value from F) as the dealer’s secret. 2

Figure 3.2: 2-Round Sharing, 2-Round Reconstruction (3t + 1, t) Statistical WSS.

Protocol 2-Round-WSS(D,P, s, ε)

Sharing Phase: Two Rounds

D’s Computation: D does the following:

1. Picks a random bivariate polynomial F (x, y) over F of degree t in the variable
y and degree nκ + 1 in the variable x, such that F (0, 0) = s.

2. Defines fi(x) = F (x, i) for 1 ≤ i ≤ n.

3. Picks random polynomials ri(x) over F, such that deg(ri(x)) = nκ + 1 for
1 ≤ i ≤ n.

4. Chooses nκ random, non-zero, distinct elements from F, denoted by
αi,1, αi,2, . . . , αi,κ for 1 ≤ i ≤ n.

Round 1: D sends to party Pi:

• The polynomials fi(x), ri(x). Let fi(0) be Pi’s share of D’s secret s.

• The random evaluation points αi,` for 1 ≤ ` ≤ κ.

• aj,i,` = fj(αi,`) and bj,i,` = rj(αi,`) for 1 ≤ ` ≤ κ, 1 ≤ j ≤ n.

Round 2: Party Pi broadcasts the following:

• A random non-zero value ci and polynomial gi(x) = fi(x) + ciri(x) with
deg(gi(x)) = nκ + 1. (Whenever we say that a party broadcasts a polynomial of
a certain degree we assume that if this is not done then the party is disqualified.)

• For a random subset of indices `1, ..., ` κ
2
, the evaluation points αi,`1 , ..., αi,` κ

2
and aj,i,`1 , ..., aj,i,` κ

2
and bj,i,`1 , ..., bj,i,` κ

2
for 1 ≤ j ≤ n.

Local Computation (By Every Party):

1. Party Pi is accepted by party Pj if ai,j,` + cibi,j,` = gi(αj,`) for all ` in the set
of indices broadcasted by Pj in Round 2.

2. Initiate the set SH = ∅. Place Pi in SH if it is accepted by at least 2t + 1
parties.

3. If |SH| ≤ 2t disqualify dealer D. Note that SH computed by all honest parties
are identical.

Reconstruction Phase: Two Rounds

Round 1: Each Pi in SH broadcasts fi(x) such that deg(fi(x)) = nκ + 1.

Round 2: Each Pj ∈ P broadcasts all the evaluation points αj,` which were not broad-
casted in the sharing phase and ai,j,` corresponding to those indices, for i = 1, . . . , n.

Local Computation (By Every Party):

1. Party Pi ∈ SH is re-accepted by Pj ∈ P if for one of the newly revealed points
it holds that ai,j,` = fi(αj,`).

2. Initiate the set REC = ∅. Place Pi in REC if it is re-accepted by at least t + 1
parties.

3. If |REC| < t + 1, then output NULL. Otherwise, if the shares (i.e fi(0)’s)
of the parties in REC interpolate to a degree t polynomial g(y) then output
s = g(0); else output NULL.

Lemma 3.12 (Secrecy) Protocol 2-Round-WSS satisfies perfect secrecy.

Proof: The secrecy has to be argued when D is honest. For simplicity, assume
that first t parties are corrupted. So in Round 1 of the Sharing Phase, the ad-

48

versary will know the polynomials f1(x), . . . , ft(x), r1(x), . . . , rt(x) and κt points
on fi(x) and ri(x) for t + 1 ≤ i ≤ n. In Round 2 of the Sharing Phase, the
adversary learns κ

2
(2t + 1) additional points on fi(x) and ri(x) for t + 1 ≤ i ≤ n.

So in total the adversary will know κt + κ
2
(2t + 1) points on each of fi(x) and

ri(x) for t + 1 ≤ i ≤ n which is less than the degree of the polynomials, i.e
(nκ + 1). Thus, the constant term of the polynomials fi(x) for t + 1 ≤ i ≤ n are
information theoretically secure in the Sharing Phase, which further implies
information theoretic security for s. 2

Lemma 3.13 (Correctness) Protocol 2-Round-WSS satisfies correctness prop-
erty, except with probability ε.

Proof: It is easy to see that if D is honest, then every honest party Pi is present
in SH as well as in REC. Given that all honest parties are present in SH, the
dealer will not be disqualified during the sharing phase. In order to show that
the correct secret is reconstructed, we first prove that if a faulty Pi (belonging
to SH) broadcasts a polynomial fi(x) 6= fi(x), then with probability at least
(1− ε

n
), Pi will not be added to REC.

In order for a faulty Pi to be included in REC, it needs to be re-accepted
by t + 1 parties and thus by at least one honest party. For this, the faulty Pi

have to guess one of the κ
2

un-revealed random evaluation points held by some
honest party in P . The corrupted Pi can guess one of the κ

2
un-revealed points

for a particular honest Pj with probability at most κ/2
|F| . Therefore, Pi can guess

one of the κ
2

un-revealed points for some honest party in P with probability at

most O(n)κ/2
|F| ≈ (nκ)

|F| ≤ ε
n
. Thus we have proved that if a faulty Pi (belonging to

SH) broadcasts a polynomial fi(x) 6= fi(x) in reconstruction phase, then with
probability at least (1 − ε

n
), Pi will not be added to REC. Subsequently, none

of the faulty parties of SH who broadcast a polynomial fi(x) 6= fi(x) will be
included in REC with probability at least (1 −O(t) ε

n
) ≈ (1 − ε) (since we may

have O(t) such faulty parties in SH).
The above argument proves that with probability at least (1− ε), every party

in REC have broadcasted the polynomial that he has received from D in shar-
ing phase. Hence with probability at least (1 − ε), the parties will reconstruct
s = f(0), which is D’s secret. 2

Note that in the previous proof we did not claim, and in fact cannot claim, that
there are no faulty parties in SH. As we allow the adversary to be rushing, it can
cause faulty parties, i.e. parties that have broadcasted inconsistent polynomials
(during Round 2 of the sharing phase), to be included in this set. This is done
by waiting to hear the evaluation points of the honest parties (in the Round 2 of
the sharing phase). However, this does not affect the result of the reconstruction
because the parties in SH broadcast their polynomials in the Round 1 while
the secret evaluation points of the parties are revealed only in the Round 2 of
the reconstruction phase.

Lemma 3.14 (Weak Commitment) Protocol 2-Round-WSS satisfies weak com-
mitment property, except with probability at most ε.

Proof: To prove this lemma we need to show that in case a faulty D was not
disqualified, i.e. |SH| ≥ 2t + 1, then with probability at least (1 − ε), all the

49

honest parties that are in SH are also present in REC. If we prove this then the
lemma follows immediately; we set D’s committed secret s∗ to be the constant
term of the polynomial, which is defined by the interpolation of the shares of
the honest parties in SH (note that s∗ may be NULL). As we require that the
shares of all the parties in REC define a polynomial of degree t, then either the
value s∗ or NULL will be reconstructed.

In order for an honest Pi to be in SH and not in REC it must be the case
that at least 2t + 1 parties have accepted Pi in the sharing phase but at most t of
them re-accepted it in the reconstruction phase. This means that there is at least
one honest Pj who accepted Pi but did not re-accept it. This implies that the
data (evaluation points and values) that Pj exposed in the sharing phase satisfies
the polynomial gi(x) that Pi broadcasted during the sharing phase, but on the
other hand, out of the remaining evaluation points that are used by Pj in the
reconstruction phase, none satisfy the polynomial fi(x) produced by Pi. That is,
for the selected κ

2
indices `1, ..., `κ

2
, it holds that ai,j,` + cibi,j,` = gi(αj,`) for all ` in

the set of indices {`1, ..., `κ
2
} and fi(αj,`) 6= ai,j,` for all ` in the remaining set of

indices. Notice that Pi chooses ci independent of the values given by D. Also, Pj

chooses the κ
2

indices randomly out of κ indices. So the probability that the above

event happens is 1

(κ
κ/2)

< 1
2κ ≤ ε

n2κ
. Now the probability that Pi was accepted by

2t+1 parties (in which at least t+1 were honest) and is not re-accepted by some
honest Pj is at most O(t) ε

n2κ
≈ ε

nκ
. Subsequently, we can assert that the above

may happen for some honest Pi in SH (i.e some Pi in SH may not belong to
REC) with probability at most O(t) ε

nκ
≈ ε

κ
< ε.

This shows that all honest parties from SH will be included in REC, with
probability exceeding (1− ε). Now consider the case when s∗, the secret defined
by the shares of the parties in SH, is a value from F. In this case, depending on
how the corrupted parties in REC have exposed their polynomials, either s∗ or
NULL will be reconstructed. On the other hand if s∗ = NULL, then irrespective
of the polynomials broadcasted by the corrupted parties in REC, NULL will be
reconstructed. 2

Theorem 3.15 There exists an efficient 2-round sharing, 2-round reconstruction
(3t + 1, t) statistical WSS protocol.

Proof: Protocol 2-Round-WSS presented here achieves correctness and weak
commitment except with probability ε and also achieves perfect secrecy. This
follows from Lemma 3.12, 3.13 and 3.14. 2

Important Note: There is another interesting way to interpret the computa-
tion done in the protocol 2-Round-WSS. We may view this as D sharing a degree
t polynomial g(y) using protocol 2-Round-WSS. For this, D selects the bivari-
ate polynomial F (x, y) as in protocol 2-Round-WSS, such that F (0, y) = g(y).
The polynomial g(y) is the polynomial that D used to share the secret g(0) =
F (0, 0) = s. The polynomial g(y) is not random but only preserves the secrecy
of the constant term. Yet, this distribution of polynomials is sufficient to provide
the secrecy requirements needed by our protocols.

In the sequel, we will invoke our WSS as 2-Round-WSS(D,P , g(y), ε) to mean
that D want to share g(y) in a sense described above.

50

3.3.1 Statistical WSS with One Round of Reconstruction

It is interesting to note that if we restrict the adversary to a non-rushing adversary
then the two rounds of the reconstruction phase can be collapsed into a single
round. The two rounds are needed in order to force the adversary to commit to
the polynomials fi(x) of the faulty parties prior to seeing the evaluation points,
as this knowledge can enable the adversary to publish a polynomial that is re-
accepted by the honest parties, which would violate the correctness of the protocol.
However, if the adversary is non-rushing then this property is achieved via the
synchronicity of the step. We state this in the following theorem:

Theorem 3.16 If the adversary is non-rushing then there exists an efficient 2-
round sharing, 1-round reconstruction (3t + 1, t) statistical WSS protocol.

3.3.2 Statistical WSS with One Round of Broadcast

We now show how protocol 2-Round-WSS can be modified, so that it uses only
one round of broadcast (the Round 2 of Sharing Phase). Specifically, we mod-
ify the Reconstruction Phase of 2-Round-WSS, so that it requires no broadcast.

Reconstruction Phase, 2-rounds:

Round 1: Each Pi in SH privately sends fi(x), deg(fi(x)) = nκ + 1 to every
other party.

Round 2: Each Pj ∈ P privately sends all the evaluation points αj,` which were
not broadcasted in the sharing phase and ai,j,` for those indices, to all other
parties.

Local Computation (By Every Party): It is the same as in the protocol
2-Round-WSS.

This modified version of 2-Round-WSS preserves secrecy perfectly and correct-
ness except with probability at most ε. It will also satisfy weak commitment
(except with probability at most ε), but without agreement. That is, some hon-
est party(ies) may output the committed secret s∗ while some other may output
NULL.

3.4 Efficient 2-round Sharing, 2-round Reconstruction (3t+
1, t) Statistical VSS

We now design a 2-round sharing, 2-round reconstruction (3t + 1, t) statistical
VSS protocol. In [91] it is shown that there exists a 2-round sharing, 1-round
reconstruction (4t + 1, t) perfect VSS. This shows that probabilistically relaxing
the conditions of VSS helps to increase the fault tolerance.

The Intuition: We follow the general idea of [20, 91, 73, 109] of sharing the
secret s with a symmetric bivariate polynomial F (x, y) where each party Pi gets
the univariate polynomial fi(y) = F (i, y) and his share is fi(0). The next step
is for every pair of parties to verify that they have received the correct values

51

from the dealer. However, as we have only one more round available we can-
not depend on D to resolve conflicts in a third round. Thus, instead of doing
the verification point wise we carry out the verification on polynomials. More
specifically, party Pi initiates an execution of protocol 2-Round-WSS in the first
round, to share a random polynomial gi(y). In the second round, Pi broadcasts
the masked polynomial hi(y) = fi(y) + gi(y), while every other party broadcasts
the corresponding point on hi(y). In fact, this verification can be viewed as an
extension of the round reducing technique of pad sharing for a single value given
in [91], to the sharing of polynomial, which is used as a pad for the verification
of a polynomial. Our 2-round sharing VSS protocol now appears in Fig. 3.3.

The protocol has a error probability of ε. To bound the error probability by ε,
our protocol works over a field F = GF (2κ), where κ has to be determined using
the relation ε ≥ n3κ2−κ. This is because, our protocol invokes 2-Round-WSS with
error probability ε

n
and we require ε ≥ n2κ2−κ to bound the error probability of

2-Round-WSS by ε. Now the relation ε ≥ n3κ2−κ implies that we have |F| ≥ n3κ
ε

.

Lemma 3.17 (Secrecy) Protocol 2-Round-VSS satisfies perfect secrecy.

Proof: This proof is similar to the entropy based argument, used to prove the
secrecy of 3-round perfect VSS protocol of [73]. 2

Lemma 3.18 (Correctness) Protocol 2-Round-VSS satisfies correctness prop-
erty, except with probability ε.

Proof: A simple examination of the protocol 2-Round-VSS and the properties
of protocol 2-Round-WSS reveal that all honest parties will be in VSS-SH and
thus an honest D is not disqualified during the sharing phase. Now to prove this
lemma we need to show two things:

• With probability at least (1 − ε), for every faulty party Pj in REC the
following holds: if at the end reconstruction phase of WSSPj , the recon-
structed polynomial is gj(y), then hj(y)− gj(y) is in fact polynomial fj(y),
received by Pj from D. What this implies is that we cannot guarantee that
all parties in VSS-SH are honest. But we can ensure that if they eventually
remain in REC then they have shared the proper polynomials.

• With probability at least (1 − ε), all fi(y) polynomials corresponding to
the honest parties in VSS-SH will be reconstructed successfully (due to
the correctness of 2-Round-WSS) and thus there will be sufficient number
of parties in REC even when the reconstruction phase of WSSPj outputs
NULL for every corrupted party Pj in VSS-SH.

If we prove the above statements then the lemma follows immediately.
We now prove the first statement. Let Pj be a corrupted party in REC.

Evidently, Pj belongs to VSS-SH. Now since Pj is present in VSS-SH, we know
that |Acceptj ∩ SHj| ≥ 2t + 1. This means that there are t + 1 honest parties
in this set. By the properties of 2-Round-WSS, this set of honest parties define
the polynomial gj(y) which Pj is committed to, at the end of the sharing phase
of WSSPj . We now examine the polynomial hj(y) − gj(y) and show that it is
equal to fj(y). The set of (t + 1) honest parties in (Acceptj ∩ SHj) verified that
the sum of the share fi(j) = fj(i) (which they received from D) and gj(i) (which
they received from Pj), in fact lie on the polynomial hj(y). Moreover, the set of

52

Figure 3.3: 2-Round Sharing, 2-Round Reconstruction (3t + 1, t) Statistical VSS.

Protocol 2-Round-VSS(D,P, s, ε)

Sharing Phase: Two Rounds

Round 1:

• D selects a random symmetric bivariate polynomial F (x, y) over F
of degree t in each variable such that F (0, 0) = s and sends the
polynomial fi(y) = F (i, y) to Pi.

• Party Pi initiates Round 1 of protocol 2-Round-
WSS(Pi,P, gi(y), ε

n) to share a random degree t polynomial
gi(y). Denote this execution by WSSPi .

Round 2:

• Party Pi broadcasts the polynomial hi(y) = fi(y) + gi(y) such that
deg(hi(y)) = t and values aji = fi(j) + gj(i) = fj(i) + gj(i), for
1 ≤ j ≤ n.

• Execute Round 2 of the sharing phase of each WSSPi . Let SHi

denote the set SH from this execution.

Local Computation (By Every Party):

1. Party Pi is accepted by party Pj if hi(j) = aij .
2. Let Accepti denote the set of parties that accepted Pi.
3. Create the set VSS-SH. Place Pi in VSS-SH if |Accepti| ≥ 2t + 1.
4. Remove Pi from VSS-SH if |VSS-SH∩Accepti∩SHi| ≤ 2t. Repeat,

until no more parties can be removed.
5. If |VSS-SH| ≤ 2t then disqualify D.

Reconstruction Phase: Two Rounds

Round 1 and 2: For all Pi in VSS-SH, execute the 2-round reconstruction
phase of WSSPi . If the output of the execution is not NULL then let
gi(y) be the output from this execution.

Local Computation (for each party)

1. Initialize REC = VSS-SH.
2. Remove Pi from REC if the output of WSSPi is NULL.
3. If |REC| < t + 1, then output NULL. Otherwise, compute fi(y) =

hi(y)− gi(y) for all Pi ∈ REC such that gi(y) is obtained from the
reconstruction phase of WSSPi and hi(y) was broadcasted by Pi in
Round 2 of sharing phase.

4. For each (Pi, Pj) ∈ REC, check whether fi(j) = fj(i). If not
then output NULL. If yes, then reconstruct symmetric bivariate
polynomial F (x, y) such that F (x, i) = fi(x) for every Pi ∈ REC
and output F (0, 0).

t + 1 shares, corresponding to these honest parties define the polynomial fj(y).

53

Thus, hj(y)− gj(y) = fj(y). Now by the weak commitment property of protocol
2-Round-WSS, gj(y) has been reconstructed correctly, with probability (1 − ε

n
).

Since REC may contain at most t corrupted parties, the probability that gj(y)
corresponding to all of them will be reconstructed correctly, is (1− t ε

n
) ≈ (1− ε).

Thus in the reconstruction phase of our VSS protocol, hj(y) − gj(y) will be
polynomial fj(y), received by Pj from D for all corrupted Pj in REC, with
probability at least (1− ε).

We now prove the second statement. The reconstruction phase of 2-Round-
WSS corresponding to an honest party in VSS-SH will be successful with proba-
bility (1− ε

n
) (according to the correctness property of 2-Round-WSS). Now since

there are 2t+1 honest parties in VSS-SH, the probability that the reconstruction
phase of 2-Round-WSS corresponding to all the honest parties in VSS-SH will be
successful is at least (1− (2t + 1) ε

n
) ≈ (1− ε).

Now it is easy to see that for an honest D, the secret s = F (0, 0) will be
reconstructed correctly, except with probability ε. 2

Lemma 3.19 (Strong Commitment) Protocol 2-Round-VSS satisfies strong com-
mitment property, except with probability ε.

Proof: If D is corrupted and does not get disqualified during the sharing phase,
then VSS-SH is fixed at the end of sharing phase. Since VSS-SH ≥ 2t + 1, it
contains a set H of honest parties of size at least t + 1. If fj(y)’s corresponding
to the parties in H define a unique symmetric bivariate polynomial F ∗(x, y) of
degree t in x and y, then D’s committed secret is s∗ = F ∗(0, 0). Otherwise, s∗ =
NULL. We show that in the reconstruction phase s∗ will be reconstructed, with
probability at least (1− ε).

It is easy to see that due to the correctness property of our 2-Round-WSS,
with probability at least (1 − ε), all the honest parties in H ⊆ VSS-SH will
also be present in REC. We now divide our proof into two cases: (a) s∗ 6=
NULL: The proof for this case follows from the proof of Lemma 3.18 as this
case is indistinguishable from the case when D is honest. (b) s∗ = NULL: As
H ⊆ REC, during Step 3 of the reconstruction phase all parties will output
NULL which is equal to s∗ with probability at least (1− ε). Hence the lemma. 2

Theorem 3.20 There exists an efficient 2-round sharing, 2-round reconstruction
(3t + 1, t) statistical VSS protocol.

Proof: Protocol 2-Round-VSS presented here achieves correctness and strong
commitment except with probability ε and also satisfies perfect secrecy. This
follows from Lemma 3.17, 3.18 and 3.19. 2

We stress that protocol 2-Round-VSS follows weak definition of statistical VSS as
presented in Definition 3.3. That is, in 2-Round-VSS, D can commit NULL at
the end of the sharing phase. This makes Protocol 2-Round-VSS unsuitable for
Multiparty Computation. It is an interesting problem to see whether there exists
an efficient 2-round sharing, (3t+1, t) statistical VSS protocol, which satisfies the
strong definition of statistical VSS [94, 91], (see Definition 3.4 given in Section
3.1). In fact, if such a VSS exists then it would also imply that there is a one
round reconstruction, as error correction can be used to interpolate the secret in
the reconstruction phase.

54

3.4.1 Statistical VSS with One Round of Reconstruction

As the reconstruction phase of the 2-Round-VSS is simply the reconstruction
phase of 2-Round-WSS, we claim here as well, that the reconstruction phase can
be collapsed into one round against a non-rushing adversary.

Theorem 3.21 If the adversary is non-rushing then there exists an efficient 2-
round sharing 1-round reconstruction (3t + 1, t) statistical VSS protocol.

3.4.2 Statistical VSS with One Round of Broadcast

We now explain how protocol 2-Round-VSS can be modified, so that the broadcast
channel is used in only one round throughout the protocol, namely in Round
2 of the sharing phase. The reconstruction phase of 2-Round-VSS is simply the
reconstruction phase of 2-Round-WSS. Moreover, in the previous section, we have
seen how protocol 2-Round-WSS can be modified, so as to have only one round of
broadcast. Thus, if we can argue that the modified 2-Round-WSS is sufficient for
the reconstruction of 2-Round-VSS, then we have a VSS protocol that does not
use broadcast in the reconstruction phase. Examining the proof of 2-Round-VSS,
we see that it is not mandatory that the set of polynomials, which the honest
parties use in reconstruction is identical, but rather that it has a large enough
intersection. As the polynomials of the honest parties provide this guarantee, it is
irrelevant which polynomials of the faulty parties are included in the computation.
Thus, by using the modified 2-Round-WSS, we get a 2-round sharing, 2-round
reconstruction statistical VSS, with only one round of broadcast.

3.5 Efficient 3-round Sharing, 2-round Reconstruction (3, 1)
Statistical VSS

We now present a 3-round sharing, 2-round reconstruction (3, 1) statistical VSS
protocol called 3-Round-VSS. As opposed to the previous VSS protocols, here
the protocol ensures that D always selects secret from F instead of F ∪ NULL.
That is protocol 3-Round-VSS satisfies the strong definition of statistical VSS
(see Definition 3.4). Let the three parties be denoted as P = {P1, P2, P3} with
D = P1. The protocol is now given in Fig. 3.4.

The protocol has an error probability ε. To bound the error probability by
ε, our protocol 3-Round-VSS operates over field F = GF (2κ), where κ has to be
determined using the relation ε ≥ 2n2−κ. Hence |F| ≥ 2n

ε
. This is because, our

protocol invokes MVMS-ICP with error parameter ε
2

and ε ≥ n2−κ should hold to
bound the error probability of MVMS-ICP by ε.

Lemma 3.22 (Secrecy) Protocol 3-Round-VSS satisfies secrecy property.

Proof: Easy. Follows from Lemma 2.6 and the fact that f(x) is a degree one
polynomial and the adversary At has only one point on it. 2

Lemma 3.23 (Correctness) Protocol 3-Round-VSS satisfies correctness prop-
erty, except with probability ε.

Proof: We have to consider the case when D is honest. Since D (= P1) is honest,
either P2 or P3 is corrupted. Without loss of generality, let P2 be the corrupted

55

Figure 3.4: A 3-Round Sharing 2-Round Reconstruction (3, 1) Statistical VSS protocol.

3-Round-VSS(D, {P1, P2, P3}, s, ε)

Sharing Phase: Three Rounds

Round 1:

1. D chooses a random degree one polynomial f(x) such that f(0) = s.
2. For i = 1, 2, 3, D passes ICSig(D,Pi,P, si) having ε

2 error to party
Pi, where si = f(i).

Round 3: Every Pi receives ICSig(D, Pi,P, si) having ε
2 error.

Reconstruction Phase: Two Rounds

Round 1 and 2: For i = 1, . . . , 3, party Pi reveals ICSig(D,Pi,P, si) hav-
ing ε

2 error.

Local Computation (By Each Party)

1. If P2 and P3 are successful in revealing ICSig(D,P2,P, s2) and
ICSig(D, P3,P, s3) respectively, then assign REC = {P2, P3}.
Otherwise, let REC be the set of Pi’s who are successful in re-
vealing ICSig(D, Pi,P, si).

2. Let f(x) be the degree one polynomial defined by the si values
corresponding to the parties in REC. Output s = f(0) as the
secret and terminate.

party. Thus P3 will always be present in REC. From IC-Correctness3, every
ICSig(D,P2,P , s′2) with s′2 6= s2 revealed by P2 will be rejected, except with
probability ε

2
and P2 will not be included in REC. So it is assured that if P2 is in

REC then s2 = f(2), with probability (1− ε
2
). Now depending on the behavior

of P2, REC will contain either {P2, P3} or {P1, P3}. In both the cases, f(x) will
be interpolated back and s = f(0) will be taken as the secret, with probability
at least (1 − ε

2
). We can prove the above when P3 instead of P2 is corrupted.

Therefore our protocol satisfies correctness property, with probability at least
(1− 2 ε

2
) = (1− ε). Hence the lemma. 2

Lemma 3.24 (Strong Commitment) Protocol 3-Round-VSS satisfies strong com-
mitment property, except with probability ε.

Proof: We have to consider the case when D is corrupted. Notice that as t = 1
and D is corrupted, both P2 and P3 are honest here. So we define D’s committed
secret s as the constant term of the degree one polynomial say f(x) defined by the
s2 and s3 held by P2 and P3 respectively. Now by ICP-Correctness2, both P2

and P3 will be successful in revealing ICSig(D,P2,P , s2) and ICSig(D,P3,P , s3)
respectively, except with probability 2 ε

2
= ε. Thus REC will contain only P2 and

P3 and s will be reconstructed with probability (1− ε). 2

Theorem 3.25 There exists an efficient 3-round sharing, 2-round reconstruction
(3, 1) statistical VSS protocol.

56

Proof: Protocol 3-Round-VSS presented here achieves correctness and strong
commitment, except with error probability ε and also achieves perfect secrecy.
This follows from Lemma 3.22, 3.23 and 3.24. 2

It is to be noted that the number of rounds in reconstruction phase of 3-
Round-VSS is optimal from the results of [49] which proves the necessity (and
sufficiency) of two rounds in reconstruction phase for any VSS with n = 2t + 1
and t ≥ 1. But we can have a 3-round sharing 1-round reconstruction VSS if we
consider the adversary to be non-rushing (as shown in the next section).

3.5.1 3-round Sharing VSS with One Round of Reconstruction

If we restrict the adversary to a non-rushing adversary then the two rounds of re-
construction phase of protocol 3-Round-VSS can be collapsed into a single round.
This is because the reconstruction phase of protocol 3-Round-VSS is nothing but
the execution of Reveal of MVMS-ICP which can be achieved in single round when
adversary is non-rushing. Hence, we have the following theorem:

Theorem 3.26 If the adversary is non-rushing then there exists an efficient 3-
round sharing, 1-round reconstruction (3, 1) statistical VSS protocol.

3.6 In-efficient 4-round Sharing, 2-round Reconstruction
(2t + 1, t) Statistical VSS

In this section, we present a 4-round sharing 2-round reconstruction (2t + 1, t)
statistical VSS protocol that takes exponential communication and computation
complexity. In [91] it is shown that there exists a 4-round sharing, 1-round re-
construction (3t+1, t) perfect VSS. This shows that probabilistically relaxing the
conditions of VSS helps to increase the fault tolerance. Here the protocol ensures
that D always selects secret from F instead of F ∪NULL. That is, our protocol
satisfies the strong definition of statistical VSS (see Definition 3.4).

The Intuition: Let S1, . . . , SK be an enumeration of all K =
(

n
t+1

)
subsets of

n− t = t + 1 parties. In the sharing phase of our protocol (called 4-Round-VSS),
D additively shares the secret s into s1, . . . , sK where s1, . . . , sK are random,
subject to s = s1 + s2 + . . . + sK . D delivers si to all the t + 1 parties in set Si.
Next, the parties in Si communicate among themselves to check whether they all
received the same value from D. If there is any confliction between any pair of
parties in a set Si, then D is sure that at least one party in the pair is faulty
and therefore broadcasts si. Notice that when D is honest, this does not violate
secrecy property of VSS as there will be at least one set Si that contains all the
t + 1 honest parties and they will never conflict with each other (and therefore
D will never broadcast the share si for the set Si).

In the reconstruction phase, for all the sets for which D did not broadcast
the value si, D’s committed value for the set si will be reconstructed correctly
irrespective of whether D is honest or faulty. To ensure the above properties, our
protocol 4-Round-VSS uses IC signatures. The protocol is now given in Fig. 3.5
and 3.6.

Our protocol has an error probability of ε. To bound the error probability
by ε, the computation in our statistical VSS protocol is performed over a field

57

F = GF (2κ), where κ has to be determined using the relation ε ≥ n3K2−κ. This
is derived from the fact that in our VSS protocol, MVMS-ICP will be invoked
with ε

n2K
error probability and as mentioned in Chapter 2, ε ≥ n2−κ should hold

to bound error probability of MVMS-ICP by ε.

Figure 3.5: Sharing Phase of 4-round sharing 2-round reconstruction (2t + 1, t) statis-
tical VSS.

4-Round-VSS(D,P, s, ε)

Sharing Phase: Four Rounds

Round 1:

1. D additively shares s into s1, . . . , sK where s1, . . . , sK are random
subject to s = s1 + s2 + . . . + sK . Then D gives sk to every party
Pi in the subset Sk (which contains (t + 1) parties).

2. For each pair (Pi, Pj) from subset Sk for k = 1, . . . , K, party Pi

picks a random value rk
ij ∈ F and sends ICSig(Pi, Pj ,P, rk

ij) hav-
ing ε

n2K
error to Pj . The rk

ijs will be used by Pi and Pj to check
the equality of their common share sk handed over by D in the
subsequent rounds.

Round 2:

1. Every party Pi ∈ Sk broadcasts: (a) ak
ij = sk + rk

ij and (b) bk
ij =

sk + rk
ji for every party Pj ∈ Sk.

Round 3:

1. For every pair of parties (Pi, Pj) from subset Sk for k = 1, . . . , K, Pj

receives ICSig(Pi, Pj ,P, rk
ij) having ε

n2K
error from Pi. An ordered

pair (Pi, Pj) is called as conflicting pair if one of the following
holds:
• Corresponding to some subset Sk, party Pi has broadcasted rk

ij

in the Round 2 of Ver(Pi, Pj ,P, rk
ij ,

ε
n2K

).

• If ak
ij 6= bk

ji for some subset Sk.

Round 4:

1. For every conflicting pair (Pi, Pj), D broadcasts sk, the share for
subset Sk for all Sk containing the pair (Pi, Pj).

2. Let B = {Sk | D has broadcasted sk}. B contains the remaining
subsets. If B = ∅, then discard D.

Lemma 3.27 (Secrecy) Protocol 4-Round-VSS satisfies perfect secrecy.

Proof: We have to consider the case when D is honest. Since the number of
parties is 2t+1, there is one particular subset Sk containing all the (t+1) honest
parties. D will never broadcast the share sk corresponding to Sk as a pair of
honest parties will never be a conflicting pair. So the corrupted parties will not
know the share sk corresponding to subset Sk and hence s will be information
theoretically secure during the Sharing Phase. 2

58

Figure 3.6: Reconstruction Phase of 4-round sharing 2-round reconstruction (2t + 1, t)
statistical VSS.

4-Round-VSS(D,P, s, ε)

Reconstruction Phase: Two Rounds

Round 1 and 2: For every pair of parties (Pi, Pj) from subset Sk ∈ B, Pj

reveals ICSig(Pi, Pj ,P, rk
ij) having ε

n2K
error.

Local Computation (By Each Party):

1. Let sk be D’s commitment to subset Sk where:
(a) If Sk ∈ B: then sk is the one broadcasted by D during Round

4 of Sharing Phase.
(b) If Sk ∈ B: then sk is computed as follows:

i. Let GOODk be set of all Pi’s in Sk such that: (a) Pi is
successful in revealing ICSig(Pj , Pi,P, rk

ji) for every Pj ∈ Sk.
(b) sk

ji values for all Pj ∈ Sk are equal where sk
ji = bk

ij − rk
ji

and rk
ji is revealed by Pi in the reconstruction phase.

ii. For every Pi ∈ GOODk, let sk
i = sk

ji for some Pj ∈ Sk.

iii. Choose any Pi ∈ GOODk and assign sk = sk
i .

2. Compute D’s secret s as s =
∑K

k=1 sk.

Claim 3.28 Irrespective of whether D is honest or corrupted, for any subset
Sk ∈ B, the following will hold:

1. All honest party(ies) in Sk obtain the same share, say sk, from D in the
sharing phase.

2. In the reconstruction phase, sk will be considered as D’s commitment to Sk,
with probability at least (1− ε

K
).

Proof: The first part of the claim holds trivially if D is honest. If D is corrupted
and has distributed different shares to some pair of honest parties (Pi, Pj) in Sk,
then by the working of 4-Round-VSS, (Pi, Pj) will be a conflicting pair and
D has to broadcast sk, the share corresponding to the subset Sk. This implies
Sk ∈ B. This is a contradiction to our assumption that Sk ∈ B. Hence we have
proved the first part of the claim.

Now we will prove the second part of the claim. Let the honest party(ies)
in the set Sk receives sk from D in sharing phase. We will prove that sk will
be considered as D’s commitment to subset Sk in the reconstruction phase with
probability at least (1 − ε

K
), irrespective of whether D is honest or faulty. For

that it is enough to show that GOODk will not be ∅ (and will contain at least one
party) and for every party Pi ∈ GOODk, sk

i will be equal to sk with probability
at least (1− ε

K
).

To assert the statement stated above, we first show that an honest party Pi

in Sk will be included in GOODk with sk
i = sk with probability (1 − ε

nK
). Note

59

that honest Pi in Sk will be successful in revealing ICSig(Pj, Pi,P , rk
ji) for a

Pj ∈ Sk (with probability one when Pj is honest (by ICP-Correctness1); with
probability at least (1 − ε

n2K
) when Pj is corrupted (by ICP-Correctness2)).

In the worst case Sk may contain all the t corrupted parties. Therefore, honest
Pi in Sk will be successful in revealing ICSig(Pj, Pi,P , rk

ji) for all Pj ∈ Sk with
probability at least (1−t ε

n2K
) ≈ (1− ε

nK
). Thus we have the following: (a) honest

Pi in Sk will be successful in revealing ICSig(Pj, Pi,P , rk
ji) for every Pj ∈ Sk with

probability at least (1 − ε
nK

) ; and (b) sk
ji values for all Pj ∈ Sk will be equal

where sk
ji = bk

ij − rk
ji and rk

ji is revealed by Pi. The above implies that an honest

party Pi in Sk will be included in GOODk with sk
i = sk with probability (1− ε

nK
).

This proves that GOODk 6= ∅ as there is at least one honest party in a set Sk

(that contains t + 1 parties).
We now show that even a corrupted party Pi ∈ GOODk can ensure sk

i = sk 6=
sk, with probability at most ε

nK
. Let Pj be an honest party in Sk (possibly the only

honest party in Sk). In the sharing phase, Pi had received ICSig(Pj, Pi,P , rk
ji)

from Pj. Moreover, bk
ij broadcasted by Pi was equal to ak

ji = rk
ji + sk broad-

casted by Pj (otherwise (Pi, Pj) was a conflicting pair which further implies
Sk ∈ B; this is a contradiction). Now in reconstruction phase, Pi can reveal

ICSig(Pj, Pi,P , rk
ji) with probability ε

n2K
(by ICP-Correctness3) and thus he

can ensure sk
ji = bk

ij − rk
ji to be revealed where sk

ji 6= sk. As there can be O(t)

honest parties in Sk, corrupted Pi can ensure that sk
ji = bk

ij − rk
ji for every honest

Pj ∈ Sk, with probability O(t) ε
n2K

≈ ε
nK

. Hence a corrupted party Pi ∈ GOODk

can not ensure sk
i = sk 6= sk, with probability at least (1− ε

nK
). Now as there can

be O(t) corrupted parties in Sk, none of them will be able to ensure sk
i = sk 6= sk

(for different i), with probability at least (1 − O(t) ε
nK

) ≈ (1 − ε
K

). This shows

that for every party Pi ∈ GOODk, sk
i will be equal to sk with probability at least

(1− ε
K

). This proves that sk will be considered as D’s commitment to subset Sk

in the reconstruction phase with probability at least (1− ε
K

). 2

Lemma 3.29 (Correctness) Protocol 4-Round-VSS satisfies correctness prop-
erty, except with error probability ε.

Proof: We have to consider the case when D is honest. For every subset
Sk ∈ B, honest D will correctly broadcast sk during sharing phase. Also from
Claim 3.28, for every Sk ∈ B, honest D’s commitment sk for subset Sk will be
recovered correctly with probability at least (1 − ε

K
). As |B| can be as big as

K, D’s commitment sk for every Sk in |B| will be reconstructed correctly, with

probability at least (1 − K ε
K

) = (1 − ε). So D’s secret s =
∑K

k=1 sk will be
reconstructed correctly with probability at least (1− ε). 2

Lemma 3.30 (Strong Commitment) Protocol 4-Round-VSS satisfies strong com-
mitment property, except with error probability ε.

Proof: We have to consider the case when D is corrupted. Now in the sharing
phase D’s commitment to a subset Sk is as follows:

1. If Sk ∈ B: The sk broadcasted by D during the sharing phase.

2. If Sk ∈ B: The common value sk received from D by all the honest party(ies)
during sharing phase (from Claim 3.28, all honest parties in Sk ∈ B receive
same sk from D).

60

So the unique secret s committed by D during sharing phase is the sum of sk

values over all the subsets. Now by Claim 3.28, for an Sk ∈ B, D’s commitment
to Sk i.e sk will be recovered correctly with probability at least (1− ε

K
). Now it is

easy to see that D’s committed secret s will be reconstructed in the reconstruction
phase with probability at least (1 − ε) (following the argument given in Lemma
3.29). 2

Theorem 3.31 There exists an 4-round sharing, 2-round reconstruction (2t +
1, t) statistical VSS protocol.

Proof: Protocol 4-Round-VSS achieves correctness and strong commitment, ex-
cept with error probability ε and also achieves perfect secrecy. This follows from
Lemma 3.27, 3.29 and 3.30. 2

It is to be noted that the number of rounds in reconstruction phase of 4-Round-
VSS is optimal from the results of [49]. But we can have a 4-round sharing
1-round reconstruction VSS if we consider the adversary to be non-rushing (as
shown in the next section).

3.6.1 4-round Sharing VSS with One Round of Reconstruction

As in 3-Round-VSS, if we restrict the adversary to a non-rushing adversary then
the two rounds of reconstruction of protocol 4-Round-VSS can be collapsed into
a single round. Hence, we have the following theorem:

Theorem 3.32 If the adversary is non-rushing then there exists an in-efficient
4-round sharing 1-round reconstruction (2t + 1, t) statistical VSS protocol.

3.7 Efficient 5-round Sharing, 2-round Reconstruction (2t+
1, t) Statistical VSS

We defer the presentation of our efficient 5-round sharing and 2-round recon-
struction (2t + 1, t) statistical VSS scheme in the next Chapter (in Section 4.2
and 4.3). Our protocol will use IC signatures.

As in 3-Round-VSS and 4-Round-VSS, the number of rounds in reconstruction
phase of our 5-round sharing VSS is optimal from the results of [49]. But again
we can have a 5-round sharing 1-round reconstruction VSS if we consider the
adversary to be non-rushing.

3.7.1 5-round Sharing VSS with One Round of Reconstruction

As in 3-Round-VSS and 4-Round-VSS, if we restrict the adversary to a non-rushing
adversary then the two rounds of reconstruction phase of 5-round sharing VSS
can be collapsed into a single round. This is because, the reconstruction phase
of our VSS will consist of revelations of IC signatures which can be collapsed
into a single round in the presence of non-rushing adversary. Hence, we have the
following theorem:

Theorem 3.33 If the adversary is non-rushing then there exists an efficient 5-
round sharing 1-round reconstruction (2t + 1, t) statistical VSS protocol.

61

3.8 Lower Bounds for Statistical VSS

3.8.1 Lower Bound for 2-round Sharing Statistical VSS

We now prove the optimality of our 2-round sharing (3t + 1, t) statistical VSS
protocol, with respect to the resilience.

Theorem 3.34 There is no 2-round sharing (n, t) statistical VSS protocol with
n ≤ 3t, irrespective of the number of rounds in the reconstruction phase.

In fact we prove the following stronger result from which the above theorem
follows immediately.

Theorem 3.35 There is no 2-round sharing (n, t) statistical WSS protocol with
n ≤ 3t, irrespective of the number of rounds in the reconstruction phase.

To prove the above theorem, we use standard player partitioning arguments [91]
and prove the following lemma:

Lemma 3.36 There is no 2-round sharing (3, 1) statistical WSS protocol, irre-
spective of the number of rounds in the reconstruction phase.

We now prove Lemma 3.36 by contradiction. Let the set of parties be {P1, P2, P3}
with D = P1, and assume there exists a 2-round sharing protocol Π for statistical
WSS. Without loss of generality we assume that messages from round 2 onwards
in Π are broadcasted. This holds without loss of generality since the parties can
exchange random pads in the first round and then they can use these random
pads to unmask broadcasts in later rounds (this is a well known result [91]).

Let us now look at the structure of the sharing phase of Π. Let party Pi

start with random coin ri
3. In the first round, private messages are exchanged

between parties and also parties broadcast messages individually. The private
messages and broadcast messages of Pi are function of its random coin ri. We
denote the private message that Pi sent to Pj by rij, and the broadcast of party
Pi by αi. So given ri, we assume that Pi’s round 1 private messages can be
deterministically generated. Similarly, we may write αi(ri) to mean that given
ri, the broadcast message αi can be generated deterministically. Now recall that
round 2 messages are all broadcasts. Let the broadcast by party Pi in the second
round be denoted by βi. Technically, βis are functions of ri, {rji}, {αj(rj)} (for
j 6= i). So we may write βi(ri, {rji}, {αj(rj)} (for j 6= i)). At the end of the
second round, each party locally outputs his view of the sharing phase i.e all the
information (broadcasted as well as private) seen by that party so far. Following
is the formal definition of view Vi of a party Pi in protocol Π.

Definition 3.37 The view of a party Pi denoted by Vi in protocol Π consists of
the random coin ri of Pi and all the messages (private messages and broadcasts)
received by him during the sharing phase of Π.

The formal description of the sharing phase of protocol Π is given below:

1. P1, P2 and P3 participate in protocol Π with random coins r1, r2 and r3,
respectively. D has input s (implicitly defined by r1).

3ri’s are actually random variables here. For different executions of Π, they may take different
values.

62

2. Round 1

(a) Private messages: r12, r13, r21, r23, r31, r32.

(b) Broadcasts: α1(r1), α2(r2), α3(r3).

3. Round 2 broadcasts: β1(r1, r21, r31, α2(r2), α3(r3)),
β2(r2, r12, r32, α1(r1), α3(r3)),
β3(r3, r13, r23, α1(r1), α2(r2)).

4. Local outputs:

(a) V1 = (r1, r21, r31, α2, α3, β2, β3).

(b) V2 = (r2, r12, r32, α1, α3, β1, β3).

(c) V3 = (r3, r13, r23, α1, α2, β1, β2).

Without loss of generality, we assume that dealer’s input s is implicitly con-
tained in r1 (i.e., the dealer’s random coins). So far we have discussed about the
structure of the sharing phase of protocol Π.

Now let us fix how the reconstruction phase of Π would look like. According
to the definition of WSS protocol, the reconstruction phase can be simulated by
a function, say REC, which takes the views of the parties generated at the end
of sharing phase. In other words, given the views of the parties at the end of
the sharing phase, we can always define a function REC to simulate the actual
reconstruction phase (that may require any number of rounds in our context).
Let us now define REC formally.

Definition 3.38 The reconstruction function REC takes as input the set of views
of all the parties that participate in the reconstruction phase of protocol Π and
outputs (a) D’s committed secret when D is honest; (b) D’s committed secret
or NULL, when D is corrupted. Since all the honest parties participate in the
reconstruction phase, REC will have at least 2 input views. The corrupted parties
may input anything as their view. Let VH = {Vi|Pi is honest} and let VC =
{Vi|Pi is corrupted}. Let s be the fixed secret that D is committed to in the sharing
phase. Then REC satisfies the following with very high probability,

• For every possible value of VC, REC(VH , VC) = s when D is honest (from
correctness property) and REC(VH , VC) = s/NULL when D is corrupted
(from weak-commitment property).

For our purpose, we allow REC to internally simulate the behavior of all the
parties in the actual reconstruction phase of Π. That is, REC assumes that all the
parties (including those that deviated from the protocol in the sharing phase) act
honestly in the reconstruction phase. Of course this assumption does not stop
a corrupted party to input junk view to REC. What we mean by the previous
statements is that once all the inputs are fed to REC function, REC internally
simulates the honest behavior of the parties with the inputs.

We will now describe a real execution G of Π, where D is corrupted though
he does not behave that way during the communication of sharing phase. The
only corrupted behavior that D shows is when he inputs his view to REC. We
show that G does not satisfy weak commitment property. That is depending on

63

the view that D inputs to REC, the reconstructed secret may change. This will
in turn show that Π does not satisfy weak commitment property. This is because
we prove the above by considering an arbitrary execution G of Π. That is G can
be any execution of Π, where the break in weak commitment is possible.

The sharing phase of execution G is as follows, where D honestly follows
the steps of Π (though corrupted). We may denote the view of Pi by Vi(G) in
execution G.

1. P1, P2 and P3 participate in G with random coins rG
1 , rG

2 and rG
3 , respectively.

D has input sG (implicitly defined by rG
1).

2. Round 1

(a) Private messages: rG
12, r

G
13, r

G
21, r

G
23, r

G
31, r

G
32.

(b) Broadcasts: α1(r
G
1), α2(r

G
2), α3(r

G
3).

3. Round 2 broadcasts: β1(r
G
1 , rG

21, r
G
31, α2(r

G
2), α3(r

G
3)),

β2(r
G
2 , rG

12, r
G
32, α1(r

G
1), α3(r

G
3)),

β3(r
G
3 , rG

13, r
G
23, α1(r

G
1), α2(r

G
2)).

4. Local outputs:

(a) V1(G) = (rG
1 , rG

21, r
G
31, α2, α3, β2, β3).

(b) V2(G) = (rG
2 , rG

12, r
G
32, α1, α3, β1, β3).

(c) V3(G) = (rG
3 , rG

13, r
G
23, α1, α2, β1, β2).

Now we claim the following:

Claim 3.39 REC(V ?
1 (G), V ?

2 (G),♣) = sG, with very high probability, where

1. V ?
1 (G) = (rG

1 , rG
21, r

G
31, α2, α3, β2, β

?
3)

2. V ?
2 (G) = (rG

2 , rG
12, r

G
32, α1, α3, β1, β

?
3)

and ♣ can be anything including V3(G) and β?
3 can be anything including β3.

Proof: To show that our claim is true, let us consider an execution G′ where D
is honest and P3 is corrupted; P1, P2 and P3 have the same random coins as in
execution G. But in round 2, corrupted P3 broadcasts β?

3 which can be anything
including β3. So the sharing phase of G′ looks as follows:

1. P1, P2 and P3 participate in G with random coins rG
1 , rG

2 and rG
3 , respectively.

D has input sG (implicitly defined by rG
1).

2. Round 1

(a) Private messages: rG
12, r

G
13, r

G
21, r

G
23, r

G
31, r

G
32.

(b) Broadcasts: α1(r
G
1), α2(r

G
2), α3(r

G
3).

64

3. Round 2 broadcasts: β1(r
G
1 , rG

21, r
G
31, α2(r

G
2), α3(r

G
3)),

β2(r
G
2 , rG

12, r
G
32, α1(r

G
1), α3(r

G
3)),

β?
3 .

4. Local outputs:

(a) V1(G
′) = (rG

1 , rG
21, r

G
31, α2, α3, β2, β

?
3).

(b) V2(G
′) = (rG

2 , rG
12, r

G
32, α1, α3, β1, β

?
3).

(c) V3(G
′) = ♣ (♣ can be anything including V3(G)).

Now by correctness property of statistical WSS, REC(V1(G
′), V2(G

′), V3(G
′)) =

sG with very high probability. This shows that our claim is true. 2

Now let us consider another execution H which we show to be possible al-
ways as otherwise, we can prove that Π breaches perfect secrecy. In H, D = P1

starts with some random coin rH
1 that implicitly defines secret sH 6= sG and

satisfies rH
12 = rG

12 and α1(r
H
1) = α1(r

G
1). P2 has the same random coin rG

2

as in execution G. P3 has rH
3 such that rH

32 = rG
32, α3(r

H
3) = α3(r

G
3) and

β1(r
H
1 , rG

21, r
H
31, α2(r

G
2), α3(r

H
3)) = β1(r

G
1 , rG

21, r
G
31, α2(r

G
2), α3(r

G
3)). The sharing phase

of H is described as follows:

1. P1, P2 and P3 participate in G with random coins rH
1 , rG

2 and rH
3 , respec-

tively. D has input sH (implicitly defined by rH
1).

2. Round 1

(a) Private messages: rH
12 = rG

12, r
H
13, r

G
21, r

G
23, r

H
31, r

H
32 = rG

32.

(b) Broadcasts: α1(r
H
1) = α1(r

G
1), α2(r

G
2), α3(r

H
3) = α3(r

G
3).

3. Round 2 broadcasts: β1(r
H
1 , rG

21, r
H
31, α2, α3) = β1(r

G
1 , rG

21, r
G
31, α2, α3),

β2(r
G
2 , rG

12, r
G
32, α1, α3),

β3(r
H
3 , rH

13, r
G
23, α1, α2). β3 may or may not be equal to β3.

4. Local outputs:

(a) V1(H) = (rH
1 , rG

21, r
H
31, α2, α3, β2, β3).

(b) V2(H) = (rG
2 , rG

12, r
G
32, α1, α3, β1, β3).

(c) V3(H) = (rH
3 , rH

13, r
G
23, α1, α2, β1, β2).

We claim that H is a possible execution of Π. For this we just have to prove
that for every rH

1 (satisfying the properties mentioned above), there is always a
random coin rH

3 that ensures β1(r
H
1 , rG

21, r
H
31, α2, α3) = β1(r

G
1 , rG

21, r
G
31, α2, α3) along

with other constraints as mentioned above. We prove this in the following claim:

Claim 3.40 For every rH
1 representing a secret sH 6= sG, there is always a ran-

dom coin rH
3 that ensures β1(r

H
1 , rG

21, r
H
31, α2, α3) = β1(r

G
1 , rG

21, r
G
31, α2, α3).

65

Proof: We prove the claim by contradiction. Let for rH
1 there is no such rH

3

that can ensure β1(r
H
1 , rG

21, r
H
31, α2, α3) = β1(r

G
1 , rG

21, r
G
31, α2, α3). This implies that

whatever may be the value of rH
31, the above equation will never hold for rH

31. This
clearly violates the secrecy. This can be argued as follows. Let P2 be the cor-
rupted party in execution G described before and assume that it behaves passively
throughout. Then at the end of reconstruction, he will know that the secret is sG

for the execution G. Now he participates in H and sees that β1 (different from
β1) has been broadcasted by D as opposed to β1 in G. This allows P2 to guess
that in H, sG is not the secret that is shared. This breaches the perfect secrecy. 2

So we have proved that execution H is a possible execution of Π. Now we
show the following:

Claim 3.41 REC(V ?
1 (H), V ?

2 (G),♣) = sH , with very high probability, where

1. V ?
1 (H) = (rH

1 , rG
21, r

H
31, α2, α3, β2, β

?
3).

2. V ?
2 (G) = (rG

2 , rG
12, r

G
32, α1, α3, β1, β

?
3).

and ♣ can be anything including V3(H); and β?
3 can be anything including β3.

Proof: This can be shown following the same approach as used in Claim 3.39. 2

We again stress that the above two claims (i.e Claim 3.40 and 3.41) hold for
any choice of rH

1 and rH
3 satisfying the constraints mentioned before. Now we

are in a situation to show how corrupted D may give different inputs to REC in
execution G to force reconstruction of different secrets with very high probability.

Lemma 3.42 In execution G, the dealer D may give different inputs to REC to
force reconstruction of different secrets with very high probability.

Proof: D plays the following mental game after the completion of the sharing
phase of G. D selects some rH

1 such that it implicitly defines secret sH 6= sG

and satisfies rH
12 = rG

12 and α1(r
H
1) = α1(r

G
1). D also correspondingly finds rH

31

such that β1(r
H
1 , rG

21, r
H
31, α2(r

G
2), α3(r

H
3)) = β1(r

G
1 , rG

21, r
G
31, α2(r

G
2), α3(r

G
3)). By our

argument in Claim 3.40, there will be some rH
3 such that the rH

31 will make the
above equality hold. Note that D can always find such rH

31 by solving the equation
(for x) β1(r

H
1 , rG

21, x, α2(r
G
2), α3(r

H
3)) = β1(r

G
1 , rG

21, r
G
31, α2(r

G
2), α3(r

G
3)). Now in the

reconstruction phase, if D inputs his view as V1(G) = (rG
1 , rG

21, r
G
31, α2, α3, β2, β3),

then at a glance the input views to REC are as follows:

1. V1(G) = (rG
1 , rG

21, r
G
31, α2, α3, β2, β3).

2. V2(G) = (rG
2 , rG

12, r
G
32, α1, α3, β1, β3).

3. V3(G) = (rG
3 , rG

13, r
G
23, α1, α2, β1, β2).

Now in Claim 3.39, we may replace β?
3 by β3 and ♣ by V3(G) and therefore claim

that sG will be reconstructed with very high probability.
On the other hand, if D inputs his view as V1(G) = (rH

1 , rG
21, r

H
31, α2, α3, β2, β3),

then at a glance the input views to REC are as follows:

1. V1(G) = (rH
1 , rG

21, r
H
31, α2, α3, β2, β3).

2. V2(G) = (rG
2 , rG

12, r
G
32, α1, α3, β1, β3).

66

3. V3(G) = (rG
3 , rG

13, r
G
23, α1, α2, β1, β2).

Now in Claim 3.41, we may replace β?
3 by β3 and ♣ by V3(G) and therefore

claim that sH will be reconstructed with very high probability. Thus we have
shown that a corrupted D can always force during the reconstruction phase the
output of the protocol to be one of two secrets, thus violating the weak commit-
ment property. 2

From the above proof, we conclude that there does not exist a 2-round sharing
(3, 1) statistical WSS and hence 2-round sharing (3t, t) statistical WSS and finally
2-round sharing (3t, t) statistical VSS protocol, with any number of rounds in the
reconstruction phase. This implies that there does not exist a 2-round sharing
(n, t) statistical VSS (and WSS) protocol with n ≤ 3t, for any number of rounds
in the reconstruction phase.

3.8.2 Lower Bound for 1-round Sharing Statistical VSS

We now derive a non-trivial lower bound on the fault tolerance of any 1-round
sharing statistical VSS (with any number of rounds in reconstruction phase).

Theorem 3.43 1-round sharing statistical VSS is possible only if ((t = 1) and
(n ≥ 4)), irrespective of the number of rounds in reconstruction phase.

Proof: The impossibility of 1-round sharing (3, 1) statistical VSS with any
number of rounds in reconstruction, follows from Theorem 3.36, where it is proved
that VSS with 2-round sharing (and any number of rounds in reconstruction
phase) is impossible for n ≤ 3t (putting t = 1, we get our impossibility). Now we
show that for t ≥ 2 there does not exist any 1-round sharing (n, t) statistical VSS
protocol with n ≥ 4, irrespective of the number of rounds in the reconstruction
phase. We prove the above statement assuming t = 2 in Lemma 3.44.

Lemma 3.44 There does not exist any 1-round sharing (n, 2) statistical VSS
protocol with n ≥ 4, irrespective of the number of rounds in the reconstruction
phase.

Proof: We now prove this lemma by contradiction. Let the set of parties be
{P1, . . . , Pn}, and assume there exists a 1-round sharing protocol Π for statistical
VSS with D being any party other than P1 (this can be assumed without loss of
generality).

Let us now look at the structure of the sharing phase of Π. For this we will
almost stick to the notations used in Subsection 3.8.1 for 2-round sharing WSS
protocol Π. Let party Pi start with random coin ri

4. In the first round, private
messages are exchanged between parties and also parties broadcast messages
individually. The private messages and broadcast messages of Pi are function of
its random coin ri. We denote the private message that Pi sends to Pj by rij, and
the broadcast of party Pi by αi. So given ri, we assume that Pi’s round 1 private
messages can be deterministically generated. Similarly, we may write αi(ri) to
mean that given ri, the broadcast message αi can be generated deterministically.
At the end of the sharing phase, each party locally outputs his view of the sharing

4ri’s are actually random variables here. For different executions of Π, they may take different
values.

67

phase i.e all the information (broadcasted as well as private) seen by that party
so far (definition of view can be found in Definition 3.37 of subsection 3.8.1).

The formal description of the sharing phase of Π is given below:

1. P1, . . . , Pn participate in protocol Π with random coins r1, . . . , rn, respec-
tively. D has input s (implicitly defined by rD

5, where rD = ri if Pi is
D).

2. Round 1

(a) Private messages communicated by the parties.

i. Private messages of P1: r12, r13, . . . , r1n.

ii.

iii. Private messages of Pn: rn1, rn2, . . . , rn(n−1).

(b) Broadcasts: α1(r1), . . . , αn(rn).

3. Local outputs:

(a) V1 = (r1, r21, . . . , rn1, α2, . . . , αn).

(b) V2 = (r2, r12, r32, . . . , rn2, α1, α3, . . . , αn).

(c)

(d) Vn = (rn, r1n, . . . , r(n−1)n, α1, . . . , αn−1).

Without loss of generality, we assume that dealer’s secret s is implicitly con-
tained in rD (i.e., the dealer’s random coin). So far we have discussed about the
structure of the sharing phase of protocol Π.

Now let us fix how a reconstruction phase of Π would look like. According
to the definition of VSS protocol, the reconstruction phase can be simulated by
a function, say REC, which takes the views of the parties generated at the end
of sharing phase. In other words, given the views of the parties at the end of
the sharing phase, we can always define a function REC to simulate the actual
reconstruction phase (that may require any number of rounds in our context).
Let us now define REC formally6.

Definition 3.45 The reconstruction function REC takes as input the set of views
of all the parties that participate in the reconstruction phase of protocol Π and
outputs D’s committed secret irrespective of whether D is honest or corrupted.
Since all the honest parties participate in the reconstruction phase, REC will have
at least n − 2 input views. The corrupted parties may input anything as their
view. Let VH = {Vi|Pi is honest} and let VC = {Vi|Pi is corrupted}. Let s be the
fixed secret that D is committed to in the sharing phase. Then REC satisfies the
following with very high probability,

5From now onwards we distinguish D’s random coin by rD.
6This definition of REC will be slightly different from the one presented in subsection 3.8.1. This

is because in the current section we are dealing with VSS, whereas WSS was dealt with in subsection
3.8.1.

68

• For every possible value of VC, REC(VH , VC) = s (follows from correctness
property when D is honest; follows from strong commitment property when
D is corrupted).

For our purpose, we allow REC to internally simulate the behavior of all the
parties in the actual reconstruction phase of Π. That is, REC assumes that all the
parties (including those that deviated from the protocol in the sharing phase) act
honestly in the reconstruction phase. Of course this assumption does not stop
a corrupted party to input junk view to REC. What we mean by the previous
statements is that once all the inputs are fed to REC function, REC internally
simulates the honest behavior of the parties with the inputs.

We now start with a real execution G of Π where D’s secret is sG. We may
denote the view of Pi by Vi(G) in execution G.

1. P1, . . . , Pn participate in execution G with random coins rG
1 , . . . , rG

n , respec-
tively. D has input sG (implicitly defined by rG

D).

2. Round 1

(a) Private messages communicated by the parties.

i. Private messages of P1: rG
12, r

G
13, . . . , r

G
1n.

ii.

iii. Private messages of Pn: rG
n1, r

G
n2, . . . , r

G
n(n−1).

(b) Broadcasts: α1(r
G
1), . . . , αn(rG

n).

3. Local outputs:

(a) V1(G) = (rG
1 , rG

21, . . . , r
G
n1, α

G
2 , . . . , αG

n).

(b) V2(G) = (rG
2 , rG

12, r
G
32, . . . , r

G
n2, α

G
1 , αG

3 , . . . , αG
n).

(c)

(d) Vn = (rG
n , rG

1n, . . . , rG
(n−1)n, αG

1 , . . . , αG
n−1).

By the property of REC, we have the following claim:

Claim 3.46 REC(V1(G), . . . , Vn(G)) = sG, with very high probability.

Let V ?
i (G) is defined to be same as Vi(G) with rG

Di is replaced by any value

rG
Di. Now we show the following:

Claim 3.47 REC(V1(G), . . . , V ?
n (G)) = sG, with very high probability.

Proof: Let in G, the dealer D was honest and Pn was corrupted. At the end
of sharing phase, let Pn replaces rG

Dn (that he has received from D) by any value

rG
Dn in his view Vn(G) and inputs it to REC. By correctness of Π, function REC

should output sG with very high probability. This proves our claim. 2

Claim 3.48 REC(V1(G), . . . , V ?
n−1(G), V ?

n (G)) = sG with very high probability.

69

Proof: Let in G, the dealer D was corrupted and distributed rG
Di for all i =

1, . . . , n− 1 and rG
Dn (this can be any value) to Pn. Now if every party (including

D) behaves properly and inputs correct views then by Claim 3.47, sG will be
reconstructed. Now on the other hand, let Pn−1 becomes corrupted at the end
of sharing phase (apart from D) and replaces rG

D(n−1) (that he has received from

D) by any value rG
D(n−1) in his view Vn−1(G) and inputs it to REC. By strong

commitment property of Π, function REC should still output sG with very high
probability. This shows that our claim is true. 2

Like this we can proceed and prove the following claim.

Claim 3.49 REC(V1(G), V ?
2 (G), . . . , V ?

n−1(G), V ?
n (G)) = sG with very high prob-

ability.

Finally the above Claim clearly shows a violation of the secrecy property of
Π because it states that in any execution, where D gives message rG

D1 to P1, will
always output the secret sG at the end of the reconstruction phase. So if D is
honest and adversary passively corrupts P1 in such an execution, he will come to
know that the shared secret is sG, which is a violation of perfect secrecy property.
Lemma 3.44 now follows from the above discussion. 2

Note that the above proof for Lemma 3.44 does not hold for WSS due to the
fact that WSS requires only weak commitment, this prevents the argument that
all sequences of messages sent to the parties need to be reconstructed to the same
secret. In fact we can design a 1-round sharing, 2-round reconstruction (3t+1, t)
statistical WSS protocol. The protocol is presented in the next section.

3.9 Efficient 1-round Sharing, 2-round Reconstruction (3t+
1, t) Statistical WSS

We now design a 1-round sharing, 2-round reconstruction (3t + 1, t) statistical
WSS protocol. This shows that the bound given in Theorem 3.43 does not hold
for 1-round sharing statistical WSS. In perfect settings, any two or less round
sharing WSS protocol requires at least 4t + 1 parties [73]. Therefore, we see
that even in the case of WSS, probabilistically relaxing the conditions helps to
improve fault tolerance.

The Intuition: In the sharing phase of our WSS protocol (named as 1-Round-
WSS), D picks n + 1 random polynomials F (x), f1(x), . . . , fn(x) of degree t such
that F (0) is the secret s and fi(0) = F (i) for i = 1, . . . , n. D also selects n
random non-zero secret evaluation points α1, . . . , αn. To Pi, D delivers αi, fi(x)
and values of all the fj(x) polynomials at αi.

In the reconstruction phase, the parties reveal their polynomials and the values
(along with the secret evaluation point that they have) in Round 1 and Round
2 respectively. We then define two types of parties called affirmed and semi-
affirmed. A party Pi will be called as affirmed if there are at least 2t + 1 parties
whose values have matched with Pi’s broadcasted polynomial. Like wise, a party
Pi will be called as semi-affirmed if there are at least t+1 parties and at most 2t
parties whose values have matched with Pi’s broadcasted polynomial. It is easy
to show that when D is honest, then all the honest parties will be considered as

70

affirmed (as their polynomials will match with the values broadcasted by all the
2t + 1 honest parties) and no party can be considered as semi-affirmed with high
probability. The latter can be argued as follows: A corrupted party can rarely
broadcast a changed polynomial in Round 1 (other than what was handed over
to him by D in the sharing phase) that can match with the values of an honest
party broadcasted only in Round 2. Now in the reconstruction phase, a NULL
will be reconstructed when there are less than 2t + 1 affirmed parties or there is
at least one semi-affirmed party. Finally if the constant terms of the broadcasted
polynomials of the affirmed parties define a degree t polynomial F (x), then F (0) is
considered as the recovered secret. Otherwise, again NULL will be reconstructed.
The protocol is given in Fig. 3.7.

Our protocol has an error probability of ε. To bound the error probability
by ε, the computation in our statistical WSS protocol is performed over a field
F = GF (2κ), where κ has to be determined using the relation ε ≥ n22−κ. So we

have |F| ≥ n2

ε
.

Lemma 3.50 (Secrecy) Protocol 1-Round-WSS satisfies perfect secrecy.

Proof: We have to consider the case when D is honest. Without loss of gen-
erality, let At controls the first t parties during sharing phase. Then At knows
f1(x), . . . , ft(x) and hence f1(0), . . . , ft(0), which is insufficient to know F (x) and
hence F (0). Adversary will also know t distinct points on each fi(x). The points
on f1(x), . . . , ft(x) are already known to At and can be removed from his view.
Since degree of each fi(x) is t, adversary lacks one point on each ft+1(x), . . . , fn(x)
to completely know them and hence information theoretic security on F (0) = s
holds. 2

Claim 3.51 If D is honest, then a corrupted Pi producing f ′i(x) 6= fi(x) in Re-
construction Phase will be accepted by an honest Pj with probability at most
ε

n2 .

Proof: The proof follows from the fact that Pi produces f ′i(x) 6= fi(x) in Round
1 of Reconstruction Phase without knowing αj, vij, corresponding to honest
Pj. So Pi will be accepted by an honest Pj only if Pi can correctly guess αj such
that f ′i(αj) = fi(αj) = vij, which can happen with probability at most 1

|F| ≤ ε
n2

in our context. 2

Lemma 3.52 (Correctness) Protocol 1-Round-WSS satisfies correctness prop-
erty, except with error probability ε.

Proof: We have to consider the case when D is honest. Notice that if D
is honest, then all the honest parties (at least 2t + 1) will accept each other
and each honest Pi will be affirmed. If some corrupted Pi produces incorrect
f ′i(x) 6= fi(x), then from Claim 3.51, it can be accepted by an honest Pj with
probability at most ε

n2 . So some honest party may accept Pi, with probability
at most (2t + 1) ε

n2 ≈ ε
n
. This implies a corrupted Pi who produces incorrect

f ′i(x) 6= fi(x), will be accepted by at most t corrupted parties and hence Pi will
be neither semi-affirmed nor affirmed with probability at least (1 − ε

n
). Now

there are t corrupted parties who may broadcast wrong polynomials. So the
probability that none of them will be considered as semi-affirmed or affirmed is
(1− t ε

n
) ≈ (1− ε).

71

Figure 3.7: A 1-Round Sharing 2-Round Reconstruction (3t + 1, t) Statistical WSS

1-Round-WSS(D,P, s, ε)

Sharing Phase: One Round

1. D picks a random polynomial F (x) over F of degree t, such that F (0) =
s.

2. D chooses and sends to Pi the following:

(a) A random polynomial fi(x) over F of degree t, such that fi(0) =
F (i).

(b) A random non-zero element from F denoted by αi (all αi’s are
distinct).

(c) The values [v1i v2i . . . vni] such that vji = fj(αi).

Reconstruction Phase: Two Rounds

Round 1: Each Pi ∈ P broadcasts polynomial f ′i(x).

Round 2: Each Pi ∈ P broadcasts α′i and n values [v′1i v′2i . . . v′ni].

1. Party Pi is accepted by party Pj if v′ij = f ′i(α
′
j).

2. Party Pi is called affirmed if it is accepted by at least 2t + 1 parties
(possibly including itself) where as Pi is called semi-affirmed if it is
accepted by at least t + 1 and by at most 2t parties (possibly including
itself).

Local Computation (By Every Party):

1. If the number of affirmed parties is less than 2t+1 or the number
of semi-affirmed parties is more than zero, then output NULL.

2. Else consider f ′i(0)’s of all the affirmed parties and check whether
they interpolate a unique t degree polynomial, say F ′(x). If yes,
then output s′ = F ′(0), Else output NULL.

Therefore, with probability (1 − ε), number of semi-affirmed parties will be
zero and furthermore with the same probability all the corrupted parties who are
affirmed have broadcasted the correct polynomial (the one received from D in
sharing phase). Now it is easy to see that F (x) will be reconstructed correctly
and F (0) = s will be the output, with probability (1− ε). 2

Claim 3.53 If D is corrupted and the number of affirmed parties is at least 2t+1,
then at the end of the Sharing Phase of 1-Round-WSS, there was a unique secret
s∗ ∈ F ∪ {NULL} defined by f ′i(0) values of the honest affirmed parties.

Proof: Since the number of affirmed parties is at least 2t + 1, there are at least
t+1 honest affirmed parties. Now if the f ′i(0) values of the honest affirmed parties
define a unique degree t polynomial, say F ′(x), then the unique defined secret
s∗ = F ′(0). Otherwise s∗ is NULL. 2

72

Lemma 3.54 (Weak Commitment) Protocol 1-Round-WSS satisfies weak com-
mitment property.

Proof: We have to consider the case when D is corrupted. We first prove that
if D is corrupted, then he can not define two different set of affirmed parties,
say C1 and C2 (each of size at least 2t + 1), defining two different secrets, say
s1 and s2, such that in the reconstruction phase, depending upon the behavior
of the corrupted parties, he can force reconstruction of either s1 or s2. In other
words, in reconstruction phase if some set, say C of at least 2t + 1 affirmed
parties are obtained, then D must have uniquely fixed (defined) it during sharing
phase. The proof goes as follows: Assume that D had defined two different set of
affirmed parties, C1 and C2, each of size at least 2t+1. By this we mean that the
polynomials and the theirs values are distributed properly among the parties in
C1 (and C2 separately). Now each of the above sets contains at least t+1 honest
parties. Since n = 3t+1, C1 and C2 must have t+1 parties in common. Let Hcom

denote the set of common honest parties in C1 and C2. Notice that |Hcom| < t+1
should hold to ensure that C1 and C2 define two distinct secrets. Now assume
that during reconstruction phase, the corrupted D, along with the remaining t−1
corrupted parties, wants to force the reconstruction of the secret defined by C1.
We show that this is impossible and NULL will be reconstructed. The reason
is that in this case, every honest party Pi in C2 \ Hcom will be semi-affirmed, as
Pi will be accepted by all the honest parties (at least t + 1) in C2. Similarly,
if the corrupted D, along with the remaining t − 1 corrupted parties, wants to
force the reconstruction of the secret defined by C2, then again it will lead to
the reconstruction of NULL. The reason is that in this case, every honest party
Pi in C1 \ Hcom will be semi-affirmed, as Pi will be accepted by all the honest
parties (at least t + 1) in C1. This proves our claim that if some set, say C of
at least 2t + 1 affirmed parties is obtained in reconstruction phase, then D must
have uniquely defined (fixed) it during sharing phase.

Once the uniqueness of C is proved, we next proceed to show that either
the secret s∗ ∈ F ∪ {NULL} defined by honest parties in C (see Claim 3.53)
or NULL will be reconstructed. If s∗ = NULL, then irrespective of the f ′i(0)
corresponding to corrupted Pi ∈ C, NULL will be reconstructed. But if s∗ ∈ F,
then depending upon the f ′i(0) corresponding to corrupted Pi ∈ C, either s∗ or
NULL will be reconstructed. 2

Theorem 3.55 There exists an efficient 1-round sharing, 2-round reconstruction
(3t + 1, t) statistical WSS protocol.

Proof: Protocol 1-Round-WSS presented here achieves correctness, except with
error probability ε and also achieves weak commitment and secrecy without any
error. This follows from Lemma 3.50, 3.52 and 3.54. 2

3.9.1 1-round Sharing WSS with One Round of Reconstruction

It is interesting to note that if we restrict the adversary to a non-rushing adversary
then the two rounds of the reconstruction phase can be collapsed into a single
round. The two rounds are needed in order to force the adversary to commit to
the polynomials fi(x) of the faulty parties prior to seeing the evaluation points,
as this knowledge can enable the adversary to publish an incorrect polynomial
that is accepted by the honest parties, which would violate the correctness of the

73

protocol. However, if the adversary is non-rushing then this property is achieved
via the synchronicity of the step. Therefore, we have the following theorem:

Theorem 3.56 If the adversary At is non-rushing then there exists an efficient
1-round sharing 1-round reconstruction (3t + 1, t) statistical WSS protocol.

3.10 Efficient 3-round Sharing, 2-round Reconstruction
(2t + 1, t) Statistical WSS

Here we design a 3-round sharing, 2-round reconstruction (2t + 1, t) statistical
WSS protocol called 3-Round-WSS. In perfect settings, any three or more round
sharing WSS protocol requires at least 3t + 1 parties [73]. Therefore, we see
that even in the case of WSS, probabilistically relaxing the conditions helps to
improve fault tolerance.

The Intuition: To share a secret s, D chooses a degree t polynomial f(x)
with f(0) = s and delivers his IC signature on f(i) to party Pi. This prevents
a corrupted party from producing incorrect share during reconstruction phase
when D is honest. Hence it ensures correctness property of WSS. However
notice that if D is corrupted, then a corrupted Pi can forge D’s IC signature on
any value and produce it during reconstruction phase. Even then, the protocol
will satisfy the weak commitment property. The protocol is now given in Fig.
3.8.

Our protocol has an error probability of ε. To bound the error probability
by ε, the computation in our statistical WSS protocol is performed over a field
F = GF (2κ), where κ has to be determined using the relation ε ≥ n22−κ. This
is derived from the fact that in our WSS protocol, MVMS-ICP will be invoked
with ε

n
error probability and as mentioned in Chapter 2, ε ≥ n2−κ should hold to

bound error probability of MVMS-ICP by ε.

Lemma 3.57 (Secrecy) Protocol 3-Round-WSS satisfies secrecy property.

Proof: Easy. Follows from Lemma 2.6 and the fact that f(x) is a t degree
polynomial and At has only t points on it. 2

Lemma 3.58 (Correctness) Protocol 3-Round-WSS satisfies correctness prop-
erty, except with probability ε.

Proof: We have to consider the case when D is honest. It is easy to see that if D
is honest then all the honest Pi’s (at least t+1) will always be present in REC. For
every honest Pi ∈ REC, the revealed si will be equal to f(i) without any error.
Even for a corrupted Pi ∈ REC, the same will hold, except with probability ε

n
(by ICP-Correctness3). Now there can be at most t corrupted parties in REC.
Thus, except with probability t ε

n
≈ ε, si’s corresponding to all corrupted parties

in REC will be equal to f(i). This implies that si’s corresponding to all the
parties in REC will lie on degree t polynomial f(x) and hence s = f(0) will be
reconstructed by each honest party, except with probability ε. 2

Lemma 3.59 (Weak Commitment) Protocol 3-Round-WSS satisfies weak com-
mitment property, except with probability ε.

74

Figure 3.8: A 3-Round Sharing 2-Round Reconstruction (2t + 1, t) Statistical WSS

3-Round-WSS(D,P, s, ε)

Sharing Phase: Three Rounds

Round 1: D chooses a random degree t polynomial f(x) such that f(0) = s.
For i = 1, . . . , n, D passes ICSig(D,Pi,P, si) having ε

n error to party
Pi, where si = f(i).

Round 3: Pi receives ICSig(D, Pi,P, si) having ε
n error.

Reconstruction Phase: Two Rounds

Round 1 and 2: For i = 1, . . . , n, party Pi reveals ICSig(D,Pi,P, si) hav-
ing ε

n error.

Local Computation (By Each Party):

1. Let REC be the set of all Pi’s, such that Pi is successful in revealing
ICSig(D, Pi,P, si). If |REC| < t + 1, then output NULL.

2. Check whether si values corresponding to the parties in REC define
a unique degree t polynomial, say f(x). If yes then output s = f(0)
as the secret. Otherwise output NULL.

Proof: We have to consider the case when D is corrupted. Let H denote the
set of honest parties in P . As there are at least t+1 parties in H, let f(x) be the
polynomial defined by the si values held by the parties in H (on which they hold
IC signature of D). If f(x) is of degree t, then we define D’s committed secret as
s = f(0). Otherwise, we say that D has committed s = NULL. We now show
that in the reconstruction phase either s or NULL will be reconstructed, except
with probability ε.

We first claim that a party in H will be present in REC, except with proba-
bility ε

n
. This follows from ICP-Correctness2, according to which each honest

Pi will be successful in revealing ICSig(D, Pi,P , si), except with probability
ε
n
. Since |H| ≥ t + 1, all the honest parties will be present in REC, except

with probability ε. However, a corrupted Pi ∈ P may be successful in revealing
ICSig(D,Pi,P , si) for any si (as D is corrupted here) and can be included in
REC.

Now if D’s committed secret s = f(0), then depending on the values revealed
by corrupted parties in REC, either s or NULL will be reconstructed. However,
if D’s committed secret s = NULL, then irrespective of the values revealed by
the corrupted parties in REC, NULL will be reconstructed. Both the above
happens, except with probability ε. Hence the lemma. 2

Theorem 3.60 There exists an efficient 3-round sharing, 2-round reconstruction
(2t + 1, t) statistical WSS protocol.

Proof: Protocol 3-Round-WSS presented here achieves correctness and weak
commitment except with error probability ε and also achieves perfect secrecy.
This follows from Lemma 3.57, 3.58 and 3.59. 2

75

3.10.1 3-round Sharing WSS with One Round of Reconstruction

As in our VSS protocols, if we restrict the adversary to a non-rushing adversary
then the two rounds of reconstruction phase of protocol 3-Round-WSS can be
collapsed into a single round. Hence, we have the following theorem:

Theorem 3.61 If the adversary At is non-rushing then there exists an efficient
3-round sharing 1-round reconstruction (2t + 1, t) statistical WSS protocol.

3.11 Lower Bounds for Statistical WSS

We now prove the optimality of our 1-round and 2-round sharing (3t + 1, t)
statistical WSS protocol, with respect to the resiliency.

Theorem 3.62 There is no 1-round and 2-round sharing (n, t) statistical WSS
protocol with n ≤ 3t, irrespective of the number of rounds in the reconstruction
phase.

Proof: The proof for 2-round sharing (n, t) statistical WSS is provided in The-
orem 3.35. Now it is obvious that 1-round sharing (n, t) statistical WSS protocol
with n ≤ 3t will be impossible irrespective of the number of rounds in the recon-
struction phase. 2

We have proved the tightness of the above theorem by providing 1-round
sharing (3t + 1, t) statistical WSS protocol in section 3.9 and 2-round sharing
(3t + 1, t) statistical WSS in section 3.3.

We now prove the optimality of our 3-round sharing (2t+1, t) statistical WSS
protocol, with respect to the sharing rounds. It is well known that there does
not exist any (n, t) VSS (hence WSS) with n < 2t for any number of sharing as
well as reconstruction rounds. So the best we can hope for is (2t + 1, t) WSS
protocol. Now since Theorem 3.62 says that for 1-round as well as for 2-round
sharing WSS, 3t + 1 is minimum, it automatically follows that 3-round sharing
is optimal for 2t + 1.

3.12 Conclusion and Open Problems

We obtain the following insightful conclusions from this chapter: (a) Existing
lower bounds of perfect VSS and WSS can be circumvented by incorporating
negligible error probability; (b) Probabilistically relaxing the conditions of VSS
and WSS helps to increase the fault tolerance. This chapter leaves several inter-
esting open problems:

Open Problem 3 What is the lower bound on the total number of rounds in
VSS, i.e. sharing plus reconstruction?

This problem is also closely connected to the following question:

Open Problem 4 Is it possible to design a 2-round statistical VSS protocol
which satisfies the strong definition of statistical VSS mentioned in Definition
3.4?

76

If the above question is answered in affirmative, then it would immediately
result in a total of 3-round (3t + 1, t) statistical VSS protocol, as now the recon-
struction can be achieved in one round with the help of error correction. Another
interesting open problem is:

Open Problem 5 Does allowing negligible error probability in Secrecy property
of VSS (and WSS) brings any change in the round complexity of VSS and WSS
presented in this chapter?

Recently, [112] has reported an exponential 3-round sharing (and 2-round
reconstruction) (2t + 1, t) statistical VSS and a polynomial 4-round sharing (and
2-round reconstruction) (2t + 1, t) statistical VSS. Therefore, another left-out
open problem is:

Open Problem 6 Does there exist a polynomial 3-round sharing (2t + 1, t) sta-
tistical VSS with t > 1?

77

Chapter 4

Communication and Round
Efficient Statistical VSS

In the previous chapter, we were concerned on the round complexity of statis-
tical VSS and WSS protocols and therefore communication complexity was not
given much importance. In this chapter, we concentrate on designing statistical
VSS protocol that is simultaneously communication efficient as well as round
efficient. Specifically, here we design statistical VSS with optimal resilience i.e
with n = 2t + 1 parties (plus a broadcast channel is available) that achieves the
best known communication and round complexity in the literature. Our VSS
uses the ICP presented in Chapter 2 as the vital black box primitive. Though
our VSS is of independent interest, we use it to propose a new and robust multi-
plication protocol for generating multiplication triples (that will be used in our
MPC protocol) in the next chapter.

4.1 Introduction

4.1.1 Relevant Literature on Statistical VSS

VSS is a fundamental primitive used in many secure distributed computing pro-
tocols including MPC. Statistical VSS assuming n = 2t+1 parties and a common
broadcast channel was first reported in [138, 137]. Later more efficient statistical
VSS protocols with n = 2t + 1 are proposed in [48] and [49].

4.1.2 Our Network and Adversary Model

The network and adversary model is same as the one presented in in Section
2.1.2 of Chapter 2. Recall that the set of parties is denoted by P = {P1, . . . , Pn}
and t out of the n parties can be under the influence of a computationally un-
bounded powerful, Byzantine (active), rushing adversary, denoted as At. Apart
from pairwise secure channels, there is a physical broadcast channel available in
the network. In this chapter, we assume n = 2t + 1.

4.1.3 Contribution of This Chapter

Round complexity and communication complexity are the two important com-
plexity measures of any fault-tolerant distributed computing protocol such as
VSS. In this chapter, we look into both the complexity measures of statistical

78

VSS with optimal resilience and present a protocol that provides the best known
communication and round complexity so far in the literate. Our protocol can
deal with multiple secrets concurrently and thus can harness many advantages
offered by dealing with multiple secrets simultaneously. Thus the communication
complexity of our protocol for sharing multiple secrets simultaneously are better
than multiple executions of protocols for sharing single secret. Our statistical
VSS protocol satisfies the strong definition of statistical VSS (see Definition 3.4).

We now compare our VSS with the existing VSS of [138, 48, 49] and show its
superiority. All the three schemes of [138, 48, 49] are designed for single secret.
But they can be extended to deal with ` secrets in a straight forward manner by
` parallel invocations of the protocols. In Table 4.1, we compare our VSS scheme
with the existing statistical VSS schemes in terms of communication and round
complexity, where ε denotes the error probability of the protocols.

Table 4.1: Communication Complexity and Round Complexity of our statistical VSS
and Existing Statistical VSS Schemes with n = 2t + 1

Communication Complexity in bits Round Complexity # Secret

Ref. Sharing Rec. Sharing Rec.

[138] Private & Broadcast– Broadcast– at least 8 2 1
Ω(n4(log 1

ε
)3) Ω(n4(log 1

ε
)3)

[48] Private & Broadcast– Broadcast– 10 2 1
O(n3 log 1

ε
) O(n3 log 1

ε
)

[49] Private & Broadcast– Private– at least 16 2 b 1
O(n3 log 1

ε
) O(n2 log 1

ε
)a

This Private & Broadcast– Broadcast– 5 2 `
chapter O((`n2 + n3) log 1

ε
) O((`n2 + n3) log 1

ε
)

a This communication complexity is shown to be optimal in [49].
b The round complexity of 2 for the reconstruction phase of (2t + 1, t) statistical VSS is

shown to optimal in [49] when the adversary is assumed to be rushing (which is what we
have assumed in this work).

Our protocol uses the ICP presented in Chapter 2 as the main building block.
Though our VSS is of independent interest, we use it to propose a new and

novel multiplication protocol with robust fault handling mechanism for generating
multiplication triples (that will be used in our MPC protocol) in the next chapter.

Our statistical VSS protocol involves a negligible error probability of ε. To
bound the error probability by ε, all computation in our protocol are performed
over a finite field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n32−κ. This is derived from the fact that in our VSS protocol, MVMS-ICP
(the ICP of Chapter 2) will be invoked with ε

n2 error probability and as mentioned
in Chapter 2, ε ≥ n2−κ should hold to bound error probability of MVMS-ICP by
ε. So here each element from the field is represented by κ = log |F| = O(log n3

ε
) =

O(3 log n + log 1
ε
) = O(log 1

ε
) bits (the last equality in the sequence follows from

relation n = O(log 1
ε
)).

In order to bound the error probability of our VSS protocol by some specific
value of ε, we find out the minimum value of κ that satisfies ε ≥ n32−κ. This
value for κ will consequently determine the field F over which our protocol should
work.

79

4.1.4 The Road-map

For the sake of simplicity, we first present our VSS for a single secret (the main
idea behind our protocol will be clear from this protocol) in section 4.2 and then
extend it for multiple secrets in section 4.3. We conclude this chapter in section
4.4.

4.2 Statistical VSS For a Single Secret

In this section, we present a new statistical VSS protocol with n = 2t + 1 parties
that can share/commit a single secret. In the next section, we will further extend
this protocol to obtain a VSS which can deal with multiple secrets concurrently.
Our protocol follows strong definition of statistical VSS presented in Definition
3.4 and requires five rounds in the sharing phase and two rounds in the recon-
struction phase.

The Intuition: The high level idea of the protocol is as follows: D selects a
random symmetric bivariate polynomial F (x, y) of degree t in x and y, such that
F (0, 0) = s and sends fi(x) to party Pi. At the end the sharing phase, if D
is not discarded then every honest Pi holds a degree t polynomial fi(x) such
that for every pair of honest parties (Pi, Pj), fi(j) = fj(i). This implies that
if D is not discarded, then the fi(x) polynomials of the honest parties define
a symmetric bivariate polynomial F (x, y). Moreover in the protocol, we ensure
that no corrupted Pi will be able to disclose fi(x) 6= fi(x) in reconstruction
phase, with very high probability. Hence irrespective of whether D is honest
or corrupted, reconstruction of s = F (0, 0) is enforced, except with negligible
probability of ε. To achieve all the above properties, in our protocol, D gives
his IC Signature to individual parties. Concurrently every individual party also
gives his IC Signature to every other party. The protocol is somewhat inspired
by the VSS protocol of [48]. The formal details of our protocol are given in Fig.
4.1 and Fig. 4.2.

We now prove the properties of our VSS scheme.

Claim 4.1 An honest D will not be discarded in sharing phase, with probability
at least (1− ε).

Proof: If D is honest, then a pair of honest parties can never be a conflicting
pair. Now from the conditions stated in step 1 of Local Computation of 5VSS-
Share, it is clear that an honest D will be discarded if somehow any corrupted
party Pi (there are at most t such parties) is able to reveal ICSig(D,Pi,P , fi(j))
with fi(j) 6= fi(j) for any j ∈ {0, . . . , n}. We show that this can happen only
with probability at most ε.

By ICP-Correctness3, a corrupted Pi will be successful in revealing ICSig(D,
Pi,P , fi(j)) with fi(j) 6= fi(j), with probability ε′ = ε

n2 (recall that each IC
signature has ε′ = ε

n2 error). As there are t corrupted parties and n + 1 pos-
sible values for j, the event that some corrupted party will be able to reveal
ICSig(D,Pi,P , fi(j)) with fi(j) 6= fi(j) for some j may occur with probability
at most t(n + 1)ε′ ≈ ε. Hence the claim. 2

Claim 4.2 If D is not discarded in 5VSS-Share, then there exists a unique sym-
metric bivariate polynomial F (x, y) of degree t in both x and y, such that fi(x)

80

Figure 4.1: Sharing Phase of 5-Round Sharing, 2-Round Reconstruction (2t + 1, t)
Statistical VSS

5VSS(D,P, s, ε)

Sharing Phase — 5VSS-Share(D,P, s, ε): This will take five rounds

Round 1:

1. D chooses a random symmetric bivariate polynomial F (x, y) of degree t in both x
and y, such that F (0, 0) = s and sends ICSig(D, Pi,P, fi(j)) having ε′ = ε

n2 error
to Pi, for every j = 0, . . . , n, where fi(x) = F (x, i).

2. For i = 1, . . . , n, party Pi selects a random rij ∈ F and sends ICSig(Pi, Pj ,P, rij)
having ε′ = ε

n2 error to party Pj for all j = 1, . . . , n.

Round 2:

1. Party Pi broadcasts: (a) aij = fi(j) + rij , (b) bij = fi(j) + rji for j = 1, . . . , n.

Round 3:

1. Party Pi receives ICSig(D, Pi,P, fi(j)) having ε′ error from D for j = 0, . . . , n.

2. Party Pi receives ICSig(Pj , Pi,P, rji) having ε′ error from Pj for j = 1, . . . , n.

At the end of Round 3, a pair (Pi, Pj) is called as conflicting pair if one of the following
holds:

• If aij 6= bji.

• Pi had broadcasted rij during Round 2 of Ver(Pi, Pj ,P, rij , ε
′).

• D had broadcasted fi(j) during Round 2 of Ver(D, Pi,P, fi(j), ε
′).

Round 4:

1. For every conflicting pair (Pi, Pj), party Pi reveals ICSig(D, Pi,P, fi(j)) and party
Pj reveals ICSig(D, Pj ,P, fj(i)), each having ε′ error.

2. Pi reveals ICSig(D, Pi,P, fi(j)) for j = 0, . . . , n, each having ε′ error, if
(fi(0), . . . , fi(n)) do not define a degree t polynomial.

3. Both the above steps will continue in Round 5 as well because revealing IC signature
requires two rounds.

Local Computation at the end of Round 5 (By Every Party)

1. D will be discarded and the protocol will terminate here, if one of the following
happens:

• For a conflicting pair (Pi, Pj), both Pi and Pj are successful in revealing
ICSig(D, Pi,P, fi(j)) and ICSig(D, Pj ,P, fj(i)) respectively AND fi(j) 6=
fj(i).

• Some Pi is successful in revealing ICSig(D, Pi,P, fi(j)) for every j = 0, . . . , n
AND (fi(0), . . . , fi(n)) revealed by Pi, do not define a degree t polynomial.

2. If D is not discarded, then every Pi computes ICSig(Pj , Pi,P, bji − rji) (which is
same as ICSig(Pj , Pi,P, fj(i))), corresponding to every Pj , such that (Pi, Pj) is
not a conflicting pair. Accordingly every party computes verification information
corresponding to ICSig(Pj , Pi,P, fj(i)). (Follows from Linearity of IC Signature
presented in Section 2.5 of Chapter 2).

held by every honest Pi at the end of 5VSS-Share satisfies F (x, i) = fi(x) with
probability at least (1− ε).

Proof: Assuming that D is not discarded in 5VSS-Share, the above claim

81

Figure 4.2: Reconstruction Phase of 5-round sharing 2-round reconstruction (2t + 1, t)
statistical VSS

5VSS(D,P, s, ε)

Reconstruction Phase — 5VSS-Rec(D,P, s, ε): This will take two rounds

Round 1 and 2: If D is not discarded during 5VSS-Share, then every Pi reveals
ICSig(Pj , Pi,P, fj(i)), having ε′ error, such that (Pi, Pj) is not a conflicting
pair.

Local Computation at the end of Round 2 of 5VSS-Rec (By Every
Party)

1. Create a set REC. Add Pi to REC if:

• Pi is successful in revealing ICSig(Pj , Pi,P, fj(i)) for all Pj such
that (Pi, Pj) is not a conflicting pair AND

• (fi1, . . . , fin) define a degree t polynomial, say fi(x) where:
– fij is equal to fj(i) revealed by Pi in reconstruction phase when

(Pi, Pj) is not a conflicting pair;
– fij = fi(j) when (Pi, Pj) is a conflicting pair and Pi had

successfully revealed ICSig(D, Pi,P, fi(j)) during 5VSS-Share.

2. Reconstruct a symmetric bivariate polynomial of degree t in x and y,
say F (x, y), such that F (x, i) = fi(x) for every Pi ∈ REC.

3. Output s = F (0, 0).

follows if fi(x) held by every honest Pi is of degree t and for every honest pair
(Pi, Pj), fi(j) = fj(i) holds with probability at least (1 − ε). When D is honest
then above statement holds without any error probability; i.e ε = 0 when D is
honest. So for the rest of the proof, we assume D to be corrupted.

We now show that an honest Pi will hold a degree t polynomial fi(x) with
probability at least (1 − ε

n
). This will in turn assert that all the honest parties

(there are at least (t + 1) honest parties) will hold degree t polynomials with
probability at least (1 − (t + 1) ε

n
) ≈ (1 − ε). Let an honest Pi had received a

polynomial fi(x) of degree more than t from D. So in this case, Pi will reveal
ICSig(D,Pi,P , fi(j)) for every j = 0, . . . , n. Pi can successfully reveal the above
signatures with probability at least (1− ε′)n ≈ (1− nε′) ≈ (1− ε

n
) and thus with

probability (1 − ε
n
), Pi can prove that (fi(0), . . . , fi(n)) do not define degree t

polynomial. This will lead to discarding D in sharing phase which is a contradic-
tion. Hence with probability (1 − ε

n
), an honest Pi holds a degree t polynomial

fi(x).
Next we assert that for an honest pair (Pi, Pj), fi(j) = fj(i) will hold with

probability at least (1− ε′). We consider two cases:

1. (Pi, Pj) is not a conflicting pair: Here fi(j) = fj(i) will hold without any
error;

2. (Pi, Pj) is a conflicting pair: Here also fi(j) = fj(i) will hold good with

82

very high probability, as otherwise both Pi and Pj would have successfully
revealed ICSig(D,Pi, fi(j)) and ICSig(D, Pi, fj(i)) respectively (by ICP-
Correctness2) with probability at least (1 − ε′)2 ≈ (1 − 2ε′) ≈ (1 − ε′)
such that fi(j) 6= fj(i) and thus D would have been discarded which is a
contradiction.

As there are at least (t+1)2 honest pairs, for all honest pairs (Pi, Pj), fi(j) =
fj(i) will hold with probability at least (1− (t+1)2ε′) ≈ (1− ε). Hence the claim.
2

Remark 4.3 (D’s Commitment in 5VSS-Share) The polynomial F (x, y) de-
fined in Claim 4.2 is called D’s committed bivariate polynomial in protocol 5VSS-
Share. The value s = F (0, 0) is called D’s commitment in 5VSS-Share.

Claim 4.4 In protocol 5VSS-Rec, for all Pi ∈ REC, polynomial fi(x) satisfying
F (x, i) = fi(x) is reconstructed with probability at least (1− ε), where F (x, y) is
D’s committed bivariate polynomial in 5VSS-Share.

Proof: To prove the lemma, we show that for a Pi ∈ REC, fi(x) satisfying
F (x, i) = fi(x) is reconstructed with probability at least (1 − ε

n
). This will

assert that for all Pi ∈ REC, the above will hold with probability at least (1 −
|REC| ε

n
) ≈ (1− ε) (as |REC| ≥ t + 1). We now have two cases: (a) when Pi is

honest and (b) when Pi is corrupted.
So first consider an honest Pi ∈ REC. From the proof of Claim 4.2, Pi

holds fi(x) = F (x, i) in 5VSS-Share with probability at least (1 − ε
n
). At the

end of 5VSS-Share, Pi holds ICSig(Pj, Pi,P , fj(i)) for every Pj such that (Pi, Pj)
is not a conflicting pair. Now in 5VSS-Rec, by ICP-Correctness2, honest Pi

will successfully reveal ICSig(Pj, Pi,P , fj(i)) for a j (such that (Pi, Pj) is not
a conflicting pair) with probability at least (1 − ε′). Also for every Pj such that
(Pi, Pj) is a conflicting pair, Pi had successfully revealed ICSig(Pj, Pi,P , fi(j))
(without any error when D is honest, by ICP-Correctness1; with probability at
least (1− ε′) when D is corrupted, by ICP-Correctness2). Hence, in 5VSS-Rec,
for honest Pi, fij = fj(i) for all j with probability at least (1 − nε′) = (1 − ε

n
).

Hence the lemma holds for an honest Pi ∈ REC, irrespective of whether D is
honest or corrupted.

Now we show the lemma for a corrupted Pi ∈ REC. In 5VSS-Share, for every
honest Pj such that (Pi, Pj) is not a conflicting pair, Pi had received ICSig(Pj,
Pi,P , fj(i)) from Pj. Now in 5VSS-Rec, Pi must have revealed ICSig(Pj, Pi,P ,
fj(i)) for a j such that (Pi, Pj) is not a conflicting pair with probability at least
(1− ε′) (by ICP-Correctness3). Also for every honest Pj such that (Pi, Pj) is
a conflicting pair, Pi had successfully revealed ICSig(D, Pi,P , fi(j)) (in 5VSS-
Share) satisfying fi(j) = fj(i) as otherwise D would have been discarded. Hence
Pi has revealed ICSig(Pj, Pi,P , fj(i)) for all j with probability at least (1−nε′) ≈
(1 − ε

n
). This implies that in 5VSS-Rec for corrupted Pi, fij = fj(i) = fi(j) for

every honest Pj with probability at least (1 − ε
n
). Now since there are at least

(t + 1) honest parties and (fi1, . . . , fin) define a degree t polynomial fi(x), it
clearly implies that fi(x) = F (x, i) with probability (1− ε

n
). Hence the claim. 2

Lemma 4.5 (Secrecy) Protocol 5VSS satisfies perfect secrecy.

Proof: Here we have to consider D to be honest. Without loss of general-
ity, let P1, . . . , Pt be under the control of adversary. So adversary will learn

83

f1(x), . . . , ft(x). Now from ICP-Secrecy, for every pair of honest parties (Pi, Pj),
the values rij and rji will be unknown to the adversary. Hence aij, bij broadcasted
by Pi and aji, bji broadcasted by Pj do not reveal any information on fi(j) = fj(i).
Moreover, honest D will never broadcast fi(j) or fj(i) for honest Pi and Pj. So
from the properties of symmetric bivariate polynomial of degree t in x and y, ad-
versary will fall short by one point for uniquely reconstructing F (x, y) and hence
s = F (0, 0) will remain information theoretically secure. 2

Lemma 4.6 (Correctness) Protocol 5VSS satisfies correctness property with
probability at least (1− ε).

Proof: Here we have to consider the case when D is honest. By Claim 4.1,
honest D will never be discarded in sharing phase, except with probability ε.
Now by Claim 4.2, D will commit polynomial F (x, y) and by Claim 4.4 for all
Pi ∈ REC, fi(x) = F (x, i) will be reconstructed with probability at least (1− ε).
Moreover |REC| will be at least t + 1 as it will contain at least the honest
parties. So using fi(x) of the parties in REC, F (x, y) will be reconstructed with
probability at least (1− ε). 2

Lemma 4.7 (Strong Commitment) Protocol 5VSS satisfies strong commit-
ment property with probability at least (1− ε).

Proof: Here we have to consider the case when D is corrupted. If D is dis-
carded during sharing phase then strong commitment holds trivially, as every
party may assume some predefined default value s? as D’s commitment. On the
other hand, when D is not discarded, the proof follows from the same argument
as given in Lemma 4.6. 2

Theorem 4.8 Protocol 5VSS is an efficient (2t + 1, t) statistical VSS protocol.

Proof: This follows from Lemma 4.5, 4.6 and 4.7. 2

Theorem 4.9 In protocol 5VSS, the sharing phase protocol 5VSS-Share requires
5 rounds and the reconstruction phase protocol 5VSS-Rec requires 2 rounds.

Proof: Follows from the protocol steps presented in Fig. 4.1 and 4.2. 2

Theorem 4.10 Protocol 5VSS achieves the following communication complexity
bounds:

• Protocol 5VSS-Share requires both private as well as broadcast communica-
tion of O(n3 log 1

ε
) bits.

• Protocol 5VSS-Rec requires broadcast communication of O(n3 log 1
ε
) bits.

Proof: The communication complexity of 5VSS-Share follows from the fact that
there can be at most O(n2) executions of Gen and Ver with ` = 1. Similarly, the
communication complexity of 5VSS-Rec follows from the fact that there can be
at most O(n2) executions of Reveal with ` = 1 value. 2

The next two subsections are important for the next chapter where we use
our VSS as building block in our MPC.

84

4.2.1 The Output Generated by 5VSS-Share

At a glance the situation created at the end of 5VSS-Share is as follows (if D is
not discarded): There is some symmetric bivariate polynomial F (x, y) such that
every honest party Pi holds polynomial fi(x) = F (x, i) and every Pj holds an IC
signature on fj(i) from Pi as well as from D when (Pi, Pj) is not a conflicting
pair. For every other i such that (Pi, Pj) is a conflicting pair, the value fj(i)
is available publicly. For the ease of reference, we use the following definitions to
capture the output of 5VSS-Share:

Definition 4.11 (1d?-sharing) We say that a party P ∈ P has 1d?-shared (here
1d stands for one-dimensional) a secret s ∈ F among the parties in P, if the
following holds:

1. There exists degree t polynomial f(x) with f(0) = s;

2. The ith value on f(x), namely si = f(i), also called as ith share of s, is
either publicly known or otherwise party Pi ∈ P holds ICSig(P, Pi,P , si);

3. There can be at most t publicly known si values.

The 1d?-sharing of s is denoted by 〈s〉t. If some specific party P does the
sharing, then we denote it by 〈s〉Pt .

Now note that at the end of 5VSS-Share, every honest Pi has done 1d?-sharing
of value fi(0) using polynomial fi(x). Additionally, D has done 1d?-sharing of
value fi(0) using the same polynomial where fi(j) is public for every Pj such
that (Pi, Pj) is a conflicting pair (otherwise Pj holds ICSig(D,Pj,P , fi(j)) and
ICSig(Pi, Pj,P , fi(j))). Now we introduce the definition of 2d?-sharing.

Definition 4.12 (2d?-sharing) A value s ∈ F is 2d?-shared (here 2d stands for
two-dimensional) among the parties in P, denoted as 〈〈s〉〉t, if the following holds:

1. There exists degree t polynomials f(x), f1(x), . . . , fn(x), with f(0) = s;

2. For i = 1, . . . , n, fi(0) = f(i);

3. Every honest party Pi ∈ P holds a share si = f(i) of s and the polynomial
fi(x). Moreover, Pi has 1d?-shared the value si using polynomial fi(x).

If some specific party P does the sharing, then we denote it by 〈〈s〉〉Pt .

We can easily see that at the end of 5VSS-Share, the secret s = F (0, 0) is
2d?-shared by D where the f(x) in above definition is nothing but F (x, 0) and
fi(x) = F (x, i). We note that a secret s can be reconstructed robustly from
its 2d?-sharing using reconstruction phase protocol 5VSS-Rec. In protocol 5VSS-
Share, D also does 1d?-sharing of values fi(0), for i = 0, . . . , n, which is not
captured in the definition of of 2d?-sharing. In fact these sharings are not required
in 5VSS-Rec for the reconstruction of the secret. But we will use the 1d?-sharing
done by D in our multiplication protocol in order to either reconstruct fi(0) or
detect that D is faulty. This follows from the fact that a secret may not be
robustly reconstructed from its 1d?-sharing. But if the reconstruction fails then
it can be concluded that the party P who has done the 1d?-sharing is corrupted.

85

We will elaborate on this in the next chapter. Robust reconstruction of secret is
one major factor that differentiate between 1d?-sharing and 2d?-sharing. There
is another difference (between these two sharings) which will be pointed out in
the sequel.

There are Θ(n) and Θ(n2) underlying IC signatures in 1d?-sharing and 2d?-
sharing respectively. We now introduce the following definitions:

Definition 4.13 (1d?-sharing with ε Error) We say that a 1d?-sharing has ε
error, if each of its Θ(n) underlying IC signature has ε

n
error.

In Section 5.3.1 (of next chapter), we will show that if the 1d?-sharing of a
secret s has ε error, then s can be reconstructed from its 1d?-sharing, except
with error probability ε when the party P who has done the sharing is honest.
Additionally, if the secret is not reconstructed, then party P is corrupted except
with probability ε.

Definition 4.14 (2d?-sharing with ε Error) We say that a 2d?-sharing has ε
error, if each of its Θ(n2) underlying IC signature has ε

n2 error.

If a secret is 2d?-shared using protocol 5VSS-Share, executed with error prob-
ability ε, then the resultant 2d?-sharing will have ε error. From the proof of
Correctness and Strong Commitment properties of 5VSS (see Lemma 4.6
and 4.7), if the 2d?-sharing of a secret s has ε error, then s can be reconstructed
from its 2d?-sharing, except with probability ε, using protocol 5VSS-Rec. So we
have the following important theorem:

Theorem 4.15 Let 〈〈s〉〉t be a 2d?-sharing, having ε error. Then s can be cor-
rectly reconstructed from 〈〈s〉〉t, except with error probability ε.

4.2.2 Linearity Property of 1d?-sharing and 2d?-sharing

Linearity Property of 1d?-sharing: The 1d?-sharing satisfies linearity property.
Specifically, let P ∈ P be a party, who has done 1d?-sharing of q secrets, say
s1, . . . , sq. Moreover, let the following holds, which we call as condition for lin-
earity of 1d?-sharing: For i = 1, . . . , n, the IC signatures ICSig(P, Pi,P , s1

i), . . . ,
ICSig(P, Pi,P , sq

i) (possibly some of sj
i ’s are public) satisfy the condition of lin-

earity of IC signatures (recall from subsection 2.5 of Chapter 2), where s1
i , . . . , s

q
i

denotes the ith share of s1, . . . , sq respectively. Then the parties can compute
1d?-sharing of s = s1 + . . .+sq without doing any further communication. This is
achieved by asking each party Pi to compute ICSig(P, Pi,P , s1

i + . . . + sq
i) from

ICSig(P, Pi,P , s1
i), . . . , ICSig(P, Pi,P , sq

i) (this is possible as the signatures sat-
isfy the condition of linearity of IC signatures), where s1

i + . . . + sq
i denotes the

ith share of s. We capture this scenario by writing 〈s〉Pt =
∑q

i=1〈si〉Pt .
Notice that linearity property does not apply on 1d?-sharing when the sharings

are generated by different parties. That is, given 〈s1〉Pt and 〈s2〉Qt , where P and
Q are two different parties, then the parties cannot locally compute 1d?-sharing
of s1 + s2. This is because the underlying IC signatures in 〈s1〉Pt and 〈s2〉Qt will
not satisfy the condition of linearity of IC signatures, as stated in Note 2.14 at
the end of Section 2.5 of Chapter 2.

Linearity Property of 2d?-sharing: Now similar to the linearity property of 1d?-
sharing, 2d?-sharing also satisfies linearity property. Specifically, let P ∈ P

86

be a party, who has done 2d?-sharing of a number of secrets, say s1, . . . , sq.
Moreover, let the following holds, which we call as condition for linearity of
2d?-sharing: For every honest Pi, the 1d?-sharing 〈s1

i 〉Pi
t , . . . , 〈sq

i 〉Pi
t satisfies the

condition for linearity of 1d?-sharing. Here s1
i , . . . , s

q
i denotes the ith share of

s1, . . . , sq respectively. Then the parties can compute 2d?-sharing of s = s1 +
. . .+sq without doing any further communication. This is achieved by asking the
parties to locally compute 〈s1

i + . . . + sq
i 〉Pi

t from 〈s1
i 〉Pi

t , . . . , 〈sq
i 〉Pi

t for all i, where
s1

i + . . . + sq
i denotes the ith share of s = s1 + . . . + sq. We capture this scenario

by writing 〈〈s〉〉Pt =
∑q

i=1〈〈si〉〉Pt .
Notice that unlike 1d?-sharing, we can apply linearity property on 2d?-sharing

even when the sharings are generated by different parties, provided the underlying
1d?-sharing satisfies the condition for linearity of 1d?-sharing. More specifically,
let s1 and s2 be two values which are 2d?-shared by two different parties, say
P and Q; i.e., 〈〈s1〉〉Pt and 〈〈s2〉〉Pt are given. Moreover, for every honest Pi, let
the underlying 1d?-sharing 〈s1

i 〉Pi
t and 〈s2

i 〉Pi
t satisfies the condition for linearity

of 1d?-sharing. Then the parties can compute 2d?-sharing of s = s1 + s2 without
doing any further communication. This follows from the fact that the parties can
locally compute 〈s1

i + s2
i 〉Pi

t from 〈s1
i 〉Pi

t and 〈s2
i 〉Pi

t , where s1
i + s2

i denotes the ith

share of s = s1+s2. We capture this scenario by writing 〈〈s〉〉t = 〈〈s1〉〉Pt +〈〈s2〉〉Qt .

Before ending this section, we show that a linearly combined 1d?-sharing/2d?-
sharing will have ε error when each of the individual 1d?-sharing/2d?-sharing has
ε error.

Lemma 4.16 Assume that 〈s1〉Pt , . . . , 〈sq〉Pt are q different 1d?-sharing, each hav-
ing ε error. Let 〈s〉Pt =

∑q
j=1〈sj〉Pt . Then 〈s〉Pt will have ε error.

Proof: Since each of 〈s1〉Pt , . . . , 〈sq〉Pt has ε error, it implies that for every
i = 1, . . . , n, each IC signature ICSig(P, Pi,P , s1

i), . . . , ICSig(P, Pi,P , sq
i) will

have ε
n

error. This implies that ICSig(P, Pi,P , s1
i + . . . + sq

i) will have ε
n

error
(see Lemma 2.13). Now since 〈s〉Pt = 〈s1〉Pt + . . . + 〈sq〉Pt , it follows that 〈s〉Pt will
have ε error. 2

Now using similar argument as above, we can prove the following lemma:

Lemma 4.17 Assume that 〈〈s1〉〉t, . . . , 〈〈sq〉〉t are q different 2d?-sharing, each
having ε error. Let 〈〈s〉〉t =

∑q
j=1〈〈sj〉〉t. Then 〈〈s〉〉t will have ε error.

The above lemma implies that the individual sj’s as well as the sum value s can
be reconstructed from their corresponding 2d?-sharing, except error probability
ε.

In the next chapter, when we use linearity property of 1d?-sharing on a number
of 1d?-sharings, we assume that the condition for linearity of 1d?-sharing has been
satisfied. The same applies in case of 2d?-sharing as well.

4.3 Statistical VSS For Multiple Secrets

In this section, we present a statistical VSS protocol with n = 2t + 1 parties
that can share/commit ` secrets concurrently. This is the extension of the VSS

87

protocol presented in the previous section. Again our protocol follows strong
definition of statistical VSS presented in Definition 3.4.

We call our statistical VSS scheme as 5VSS-MS (here MS stands for multiple
secrets) that allows to share a secret S = (s1, . . . , s`), containing ` elements from
F. Protocol 5VSS-MS consists of two sub-protocols, namely 5VSS-MS-Share (pro-
tocol corresponding to sharing phase) and 5VSS-MS-Rec (protocol corresponding
to reconstruction phase). 5VSS-MS is a simple extension of 5VSS, presented in
previous section. While using ` executions of 5VSS-Share, one for each sl ∈ S,
D can share S with a private and broadcast communication of O(`n3 log 1

ε
) bits,

protocol 5VSS-MS-Share achieves the same task with a private and broadcast
communication of O((`n2 + n3) log 1

ε
) bits. This shows that executing a single

instance of 5VSS-MS dealing with multiple secrets concurrently is advantageous
over executing multiple instances of 5VSS dealing with single secret. Protocol
5VSS-MS is presented in Fig. 4.3 and Fig. 4.4.

Since protocol 5VSS-MS is simple extension of protocol 5VSS, the proofs for
the properties of 5VSS-MS will follow from the proofs of 5VSS. Hence to avoid
repetitions, we do not present them again. Instead, we just state the following
theorems.

Theorem 4.18 5VSS-MS is an efficient (2t + 1, t) statistical VSS scheme for
dealing with ` secrets concurrently.

Theorem 4.19 In 5VSS-MS, the sharing phase protocol 5VSS-MS-Share requires
5 rounds and the reconstruction phase protocol 5VSS-MS-Rec requires 2 rounds.

Theorem 4.20 Protocol 5VSS-MS achieves the following communication com-
plexity bounds:

• Protocol 5VSS-MS-Share requires private as well as broadcast communication
of O((`n2 + n3) log 1

ε
) bits.

• Protocol 5VSS-Rec requires broadcast communication of O((`n2 + n3) log 1
ε
)

bits.

Proof: The communication complexity of 5VSS-MS-Share follows from the fact
that it requires O(n2) executions of Gen and Ver, dealing with ` values. Simi-
larly, the communication complexity of 5VSS-MS-Rec follows from the fact that
it requires O(n2) executions of Reveal. 2

The next two subsections are important for the next chapter where we use
our VSS as building block in our MPC.

4.3.1 The Output Generated by 5VSS-MS-Share

Now similar to the way we have interpreted the output of 5VSS-Share, the output
of 5VSS-MS-Share can also be captured by the following definitions which are in
some sense extension of the definition of 1d?-sharing and 2d?-sharing respectively.

Definition 4.21 (1d(?,`)-sharing) We say that a party P has 1d(?,`)-shared S =
(s1, . . . , s`) ∈ F` among the parties in P, if the following holds:

1. There exists degree t polynomials f 1(x), . . . , f `(x) with f l(0) = sl, for l =
1, . . . , `;

88

Figure 4.3: Sharing Phase of (2t + 1, t) statistical VSS Scheme 5VSS-MS

5VSS-MS-Share(D,P, S = (s1, . . . , s`), ε)

Round 1:

1. For l = 1, . . . , `, D chooses a random symmetric bivariate polynomial
F l(x, y) of degree t in both x and y, such that F l(0, 0) = sl and sends
ICSig(D, Pi,P, (f1

i (j), . . . , f `
i (j))) having ε′ = ε

n2 error to Pi for every j = 0, . . . , n,

where f l
i (x) = F l(x, i).

2. For every Pj , party Pi selects ` random values r1
ij , . . . , r

`
ij and sends

ICSig(Pi, Pj ,P, (r1
ij , . . . , r

`
ij)) having ε′ error to Pj .

Round 2:

1. For l = 1, . . . , `, party Pi broadcasts: (a) al
ij = f l

i (j) + rl
ij , (b) bl

ij = f l
i (j) + rl

ji.

Round 3:

1. Party Pi receives ICSig(D, Pi,P, (f1
i (j), . . . , f `

i (j))) having ε′ error for every j =
0, . . . , n from D.

2. Party Pi receives ICSig(Pj , Pi,P, (r1
ji, . . . , r

`
ji)) having ε′ error from Pj , for j =

1, . . . , n.

A pair (Pi, Pj) is called as conflicting pair if one of the following holds:

• If al
ij 6= bl

ji for some l ∈ {1, . . . , `}.
• Pi had broadcasted (r1

ij , . . . , r
`
ij) during Round 2 of Ver(Pi, Pj ,P, (r1

ij , . . . , r
`
ij), ε

′).

• D had broadcasted (f1
i (j), . . . , f `

i (j)) during Round 2 of
Ver(D, Pi,P, (f1

i (j), . . . , f `
i (j)), ε′).

Round 4:

1. For every conflicting pair (Pi, Pj), Pi reveals ICSig(D, Pi,P, (f1
i (j), . . . , f `

i (j)))
and Pj reveals ICSig(D, Pj ,P, (f1

j (i), . . . , f `
j (i))), each having ε′ error.

2. Pi reveals ICSig(D, Pi,P, (f1
i (j), . . . , f `

i (j))) having ε′ error, for every j = 0, . . . , n
if (f l

i (0), . . . , f l
i (n)) do not define a degree t polynomial for some l ∈ {1, . . . , `}.

3. Both the above steps will continue in Round 5 as well.

Local Computation At the end of Round 5 (By Every Party)

1. D will be discarded, if one of the following happens:

• For a conflicting pair (Pi, Pj), both Pi and Pj are successful in reveal-
ing ICSig(D, Pi,P, (f1

i (j), . . . , f `
i (j))) and ICSig(D, Pj ,P, (f1

j (i), . . . , f `
j (i)))

respectively AND f l
i (j) 6= f l

j(i) for some l ∈ {1, . . . , `}.
• Pi is successful in revealing ICSig(D, Pi,P, (f1

i (j), . . . , f `
i (j))) for every j =

0, . . . , n AND (f l
i (0), . . . , f l

i (n)) revealed by Pi, do not define a degree t poly-
nomial for some l ∈ {1, . . . , `}.

2. If D is not discarded, then every Pi computes ICSig(Pj , Pi,P, (b1
ji − r1

ji, . . . , b
`
ji −

r`
ji) (which is same as ICSig(Pj , Pi,P, (f1

j (i), . . . , f `
j (i)))) for every Pj such that

(Pi, Pj) is not a conflicting pair. Every party computes verification information
corresponding to ICSig(Pj , Pi,P, (f1

j (i), . . . , f `
j (i))). (Follows from Linearity of IC

Signature presented in Section 2.5 of Chapter 2)

2. The ith values on the polynomials, namely (s1
i , . . . , s

`
i), where sl

i = f l(i) are
either publicly known or otherwise party Pi ∈ P holds ICSig(P, Pi,P , (s1

i , . . . ,
s`

i));

89

Figure 4.4: Reconstruction Phase of (2t + 1, t) statistical VSS Scheme 5VSS-MS

5VSS-MS-Rec(D,P, S, ε) — Two Rounds

Round 1 and 2: If D is not discarded in 5VSS-MS-Share, then every Pi reveals
ICSig(Pj , Pi,P, (f1

j (i), . . . , f `
j (i))) having ε′ error, such that (Pi, Pj) is not

a conflicting pair.

Local Computation at the end of Round 2 of 5VSS-MS-Rec (By Every
Party)

1. Create a set REC. Add Pi to REC if:

• Pi is successful in revealing ICSig(Pj , Pi,P, (f1
j (i), . . . , f `

j (i))) for
all Pj such that (Pi, Pj) is not a conflicting pair AND

• For l = 1, . . . , `, (f1
i1, . . . , f

l
in) define degree t polynomial, say f l

i (x)
where:
– f l

ij is equal to f l
j(i) revealed by Pi in reconstruction phase when

(Pi, Pj) is not a conflicting pair;
– f l

ij = f l
i (j) when (Pi, Pj) is a conflicting pair and Pi had

successfully revealed ICSig(D,Pi,P, (f1
i (j), . . . , f `

i (j))) during
5VSS-MS-Share.

2. For every l = 1, . . . , `, reconstruct a symmetric bivariate polynomial
of degree t in x and y, say F l(x, y), such that F l(x, i) = f l

i (x) for all
Pi ∈ REC.

3. Output sl = F l(0, 0) for all l = 1, . . . , `.

3. For at most t i’s (s1
i , . . . , s

`
i) are publicly known.

The 1d(?,`)-sharing of S is denoted by 〈S〉t. If some specific party P does the
sharing, then we denote it by 〈S〉Pt .

Notice that at the end of 5VSS-MS-Share, every honest Pi has done 1d(?,`)-
sharing of values (f 1

i (0), . . . , f `
i (0)) using polynomials f 1

i (x), . . . , f `
i (x). Apart

from this, D also has done 1d(?,`)-sharing of values (f 1
i (0), . . . , f `

i (0)) for all i =
1, . . . , n using the same polynomials.

Definition 4.22 (2d(?,`)-sharing) A set of values S = (s1, . . . , s`) ∈ F` is 2d(?,`)-
shared among the parties in P, denoted as 〈〈S〉〉t, if the following holds:

1. There exists degree t polynomials f l(x), f l
1(x), . . . , f l

n(x) with f l(0) = sl, for
l = 1, . . . , ` and for i = 1, . . . , n, f l

i (0) = f l(i);

2. Every honest party Pi ∈ P holds a share sl
i = f l(i) of sl and the polynomial

f l
i (x) for l = 1, . . . , `. Moreover Pi has 1d(?,`)-shared the values (s1

i , . . . , s
`
i)

using polynomials (f l
i (x), . . . , f `

i (x)), .

If some specific party P does the sharing, then we denote it by 〈〈S〉〉Pt .

90

As before, we can easily see that at the end of 5VSS-MS-Share, the secret
S = (s1, . . . , s`) with sl = F l(0, 0) is 2d(?,`)-shared by D where f l(x) = F l(x, 0)
and f l

i (x) = F l(x, i). The secret S can be reconstructed robustly from its 2d(?,`)-
sharing using the reconstruction phase protocol 5VSS-MS-Rec. Again as in the
case of 2d?-sharing, in the definition of 2d(?,`)-sharing, we do not capture D’s
1d(?,`)-sharing of (f 1

i (0), . . . , f `
i (0)) for every i = 1, . . . , n. These sharing are not

required in 5VSS-MS-Rec for the reconstruction of the secrets. But we will use
the 1d(?,`)-sharing done by D in our multiplication protocol in order to either
reconstruct (f 1

i (0), . . . , f `
i (0)) or detect that D is faulty. This again follows from

the fact that a secret can not be reconstructed robustly from its 1d(?,`)-sharing.
But if the reconstruction fails then it can be concluded that D who has done the
1d(?,`)-sharing is corrupted.

An inherent disadvantage of 2d(?,`)-sharing of some secret S is that reconstruc-
tion of individual elements of S is not permitted. That is, all the elements of S
will be reconstructed simultaneously even though a subset of the values in S is
desired to be reconstructed. As and when we require, we will show how to deal
with this problem.

There are Θ(n) and Θ(n2) underlying IC signatures in 1d(?,`)-sharing and
2d(?,`)-sharing respectively. We now give the following definitions:

Definition 4.23 (1d(?,`)-sharing with ε Error) We say that a 1d(?,`)-sharing
has ε error, if each of its Θ(n) underlying IC signature has ε

n
error.

We will show in Section 5.3.1 (of next chapter) that given 1d(?,`)-sharing of `
secrets having ε error, the ` secrets can be reconstructed from its 1d(?,`)-sharing,
except with error probability ε when the party P who has done the sharing is
honest. Additionally, if the secrets are not reconstructed, then except with error
probability ε, party P who has done the sharing is corrupted and all honest
parties will come to know this publicly.

Definition 4.24 (2d(?,`)-sharing with ε Error) We say that a 2d(?,`)-sharing
has ε error, if each of its Θ(n2) underlying IC signature has ε

n2 error.

If a 2d(?,`)-sharing is generated from 5VSS-MS-Share executed with error prob-
ability ε, then the resultant 2d(?,`)-sharing will have ε error. From the proof of
Correctness and Strong Commitment properties of 5VSS-MS, given 2d(?,`)-
sharing of ` secrets having ε error, the ` secrets can be reconstructed from its
2d(?,`)-sharing, except with error probability ε. Hence we have the following im-
portant theorem.

Theorem 4.25 Let 〈〈S〉〉t be a 2d(?,`)-sharing, having ε error. Then S can be
correctly reconstructed from 〈〈S〉〉t, except with error probability ε.

In the next section, we discuss the linearity property of 1d(?,`)-sharing and
2d(?,`)-sharing.

4.3.2 Linearity Property of 1d(?,`)-sharing and 2d(?,`)-sharing

Linearity Property of 1d(?,`)-sharing: Now similar to the linearity of 1d?-sharing,
1d(?,`)-sharing also satisfies linearity property. Specifically, let P ∈ P be a
party, who has done 1d(?,`)-sharing of q sets of ` secrets, say S1, . . . , Sq, where

91

Sj = (s1j, . . . , s`j). Moreover, let the following condition holds, which we call
as condition for linearity of 1d(?,`)-sharing: For i = 1, . . . , n, the IC signa-
tures ICSig(P, Pi,P , S1

i), . . . , ICSig(P, Pi,P , Sq
i) (possibly some of Sj

i ’s are pub-
lic) satisfy the condition of linearity of IC signatures (recall from Section 2.5
of Chapter 2), where S1

i , . . . , S
q
i denotes the ith share of S1, . . . , Sq respectively.

Then the parties can compute 1d(?,`)-sharing of S = S1 + . . . + Sq without do-
ing any further communication, where S = (s1, . . . , sq) and sl =

∑q
j=1 slj. This

is achieved by asking each party Pi to compute ICSig(P, Pi,P , S1
i + . . . + Sq

i)
from ICSig(P, Pi,P , S1

i), . . . , ICSig(P, Pi,P , Sq
i) (this is possible as the signa-

tures satisfy the condition of linearity of IC signatures), where S1
i + . . . + Sq

i

denotes the ith share of S. We capture this scenario by writing 〈S〉Pt =
∑q

i=1〈Si〉Pt .
Again as in the case of 1d?-sharing, linearity property does not apply on 1d?-

sharing when the sharings are generated by different parties. That is, given 〈S1〉Pt
and 〈S2〉Qt , where P and Q are two different parties, then the parties cannot lo-
cally compute 1d?-sharing of S1+S2. This is because the underlying IC signatures
in 〈S1〉Pt and 〈S2〉Qt will not satisfy the condition of linearity of IC signatures, as
stated in Note 2.14 at the end of Section 2.5 of Chapter 2.

Linearity Property of 2d(?,`)-sharing: Now similar to the linearity property of
2d?-sharing, 2d(?,`)-sharing satisfies linearity property. Specifically, let P ∈ P
be a party, who has done 2d(?,`)-sharing of a number of secrets, say S1, . . . , Sq

each containing ` values. Moreover, let the following condition holds which we
call as condition for linearity of 2d(?,`)-sharing: For every honest Pi, the 1d(?,`)-
sharing 〈S1

i 〉Pi
t , . . . , 〈Sq

i 〉Pi
t satisfies the condition for linearity of 1d(?,`)-sharing.

Here S1
i , . . . , S

q
i denotes the ith share of S1, . . . , Sq respectively. Then the parties

can compute 2d(?,`)-sharing of S = S1 + . . . + Sq without doing any further
communication. This is achieved by asking the parties to locally compute 〈S1

i +
. . . + Sq

i 〉Pi
t from 〈S1

i 〉Pi
t , . . . , 〈Sq

i 〉Pi
t for all i, where S1

i + . . . + Sq
i denotes the ith

share of S. We capture this scenario by writing 〈〈S〉〉Pt =
∑q

i=1〈〈Si〉〉Pt .
Unlike 1d(?,`)-sharing, we can apply linearity property on 2d(?,`)-sharing even

when the sharings are generated by different parties, provided the underlying
1d(?,`)-sharing satisfies the condition for linearity of 1d(?,`)-sharing. More specifi-
cally, let S1 and S2 be secrets (each containing ` values) which are 2d(?,`)-shared
by two different parties, say P and Q; i.e., 〈〈S1〉〉Pt and 〈〈S2〉〉Pt are given. More-
over, for every honest Pi, let the underlying 1d(?,`)-sharing 〈S1

i 〉Pi
t and 〈S2

i 〉Pi
t

satisfies the condition for linearity of 1d(?,`)-sharing. Then the parties can com-
pute 2d(?,`)-sharing of S = S1 + S2 without doing any further communication.
That is 〈〈S〉〉t = 〈〈S1〉〉Pt + 〈〈S2〉〉Qt is doable.

Finally before ending this section, we prove the following lemmas.

Lemma 4.26 Assume that 〈S1〉Pt , . . . , 〈Sq〉Pt are q different 1d(?,`)-sharing, each
having ε error. Let 〈S〉Pt =

∑q
j=1〈Sj〉Pt . Then 〈S〉Pt will have ε error.

Proof: The proof is similar to the proof of Lemma 4.16. 2

Lemma 4.27 Assume that 〈〈S1〉〉t, . . . , 〈〈Sq〉〉t are q different 2d(?,`)-sharing, each
having ε error. Let 〈〈S〉〉t =

∑q
j=1〈〈Sj〉〉t. Then 〈〈S〉〉t will have ε error.

The above lemma implies that the individual Sj’s as well as the sum value S
can be reconstructed from their corresponding 2d(?,`)-sharing, except with error
probability ε.

92

In the next chapter, when we use linearity property of 1d(?,`)-sharing on a
number of 1d(?,`)-sharings, we assume that the condition for linearity of 1d(?,`)-
sharing has been satisfied. The same applies in case of 2d(?,`)-sharing as well.

4.4 Conclusion and Open Problems

In this chapter, we designed statistical VSS with optimal resilience i.e with n =
2t+1 parties that achieves the best known communication and round complexity
in the literature. So a natural open question is:

Open Problem 7 Can we improve the round and communication complexity of
statistical VSS with optimal resilience over the complexities that we provided in
this chapter?

93

Chapter 5

Statistical MPC with Optimal
Resilience Minimizing both
Round and Communication
Complexity

In this chapter, we focus on statistical MPC with optimal resilience (i.e n = 2t+1
parties) in synchronous network (assuming the availability of a broadcast channel,
in addition to point to point secure channel between every two parties).

The round and communication complexity are the most important complex-
ity measures of MPC protocols in synchronous networks. A proper balance of
both the complexity measures is essential from the perspective of practical im-
plementation of MPC protocol. So far communication complexity wise the best
known optimally resilient statistical MPC is reported in [12]. The protocol of
[12] achieves O(n2 log 1

ε
) bits of private communication 5 per multiplication gate

at the cost of high round complexity of O(n2D), where D is the multiplicative
depth of the arithmetic circuit representing function f . On the other hand, round
complexity wise best known optimally resilient statistical MPC protocols are pre-
sented in [4, 5] and [138]6. The protocols of [4, 5] and [138] have round complex-
ity of O(D). But unfortunately, these MPC protocols require broadcasting7 of
Ω(n5(log 1

ε
)4) bits per multiplication gate8.

In this work, we focus to balance both the complexity measures of statistical
MPC. With this aim in mind, we present a new optimally resilient statistical
MPC that acquires a round complexity of O(D) and broadcasts O(n3 log 1

ε
) bits

per multiplication gate. Hence our protocol maintains the round complexity
of most round efficient protocol while improving the communication complex-
ity. Moreover, for all functions with constant multiplicative depth, our protocol
achieves constant round complexity while most communication efficient MPC of
[12] requires O(n2) rounds.

The key tools of our new MPC are the ICP presented in Chapter 2, the

5Communication over secure channels.
6We have considered MPC protocols with polynomial (in n and log 1

ε
) communication complexity.

Constant round MPC can be achieved following the approach of [3] but at the expense of exponential
blow-up in communication complexity.

7Communication over broadcast channel
8The authors of [49] claimed to have an optimally resilient statistical MPC protocol with round

complexity of O(D) and communication complexity of O(n4 log 1
ε
) bits of broadcast per multiplication

gate, without providing exact implementation details.

94

statistical VSS protocol presented in Chapter 4 and a new, robust multiplica-
tion protocol for generating multiplication triples (that uses our VSS protocol of
Chapter 4 as building block).

5.1 Introduction

5.1.1 Definition of MPC

MPC [151] allows a set of n parties P = {P1, . . . , Pn} to securely compute an
agreed function f , even if some of the parties are under the control of a centralized
active adversary. More specifically, assume that f can be expressed as f : Fn →
Fn and party Pi has input xi ∈ F, where F is a finite field. Now MPC ensures
the following:

1. Correctness: At the end of the computation of f , each honest Pi gets
yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior of
the corrupted parties.

2. Secrecy: Moreover, the adversary should not get any information about
the input and output of the honest parties, other than what can be inferred
from the input and output of the corrupted parties.

In any general MPC protocol, the function f is specified by an arithmetic cir-
cuit over F, consisting of input, linear (e.g. addition), multiplication, random and
output gates. We denote the number of gates of each type by cI , cA, cM , cR and
cO, respectively. Among all the different types of gate, the evaluation/computation
of a multiplication gate requires the most communication complexity. So the com-
munication complexity of any general MPC is usually given in terms of the com-
munication complexity per multiplication gate [14, 13, 12, 52, 126].

5.1.2 The Relevant Literature on MPC

MPC protocol tolerating an active (i.e Byzantine) adversary controlling at most
t out of n parties is possible if and only if t < n

3
[20]. This bound on resilience

is optimal for error free computation. MPC without any error in computation
is called as perfectly secure MPC (or in short perfect MPC). If a negligible error
probability is allowed in the computation and a common broadcast channel is
available then the resilience can be improved to t < n

2
[138, 4, 6]. MPC with

negligible error probability in computation is called as statistically secure MPC
(or in short statistical MPC). Moreover, statistical MPC designed with exactly
n = 2t + 1 parties (in the presence of a broadcast channel, along with point to
point communication between every two parties) is said to have optimal resilience.

5.1.3 Statistical MPC with Optimal Resilience

Statistical MPC with optimal resilience was first reported in [138] and in [4]
independently. Subsequently, statistical MPC protocols with optimal resilience
are reported in [138, 4, 3, 6, 48, 49, 12]. The main tools for designing any
statistical MPC with optimal resilience are:

1. ICP [138, 48], which provides a way to authenticate information in the
presence of computationally unbounded powerful active adversary;

95

2. VSS [43, 138, 48, 49], which allows a party to share/commit some secret
such that the secret can be later reconstructed robustly;

3. ABC protocol [6], where a party proves C = A.B after committing A, B
and C;

4. Multiplication protocol, where the parties generate sharing of c from the
sharing of a and b satisfying c = ab and

5. Fault handling mechanism in multiplication protocol which is to be executed
when some corrupted party(ies) is (are) detected to misbehave during mul-
tiplication protocol.

The optimally resilient statistical MPC protocols reported so far [138, 4, 6,
48, 49, 12] differ from each other in different implementations of the above tools.
In the following, we briefly discuss about each of the above tools along with the
citations of corresponding works.

Before doing that, we would like to clarify that in our discussion we have
considered statistical MPC protocols with optimal resilience, having polynomial
(in n and κ = O(log 1

ε
), where ε is the error probability) communication com-

plexity and polynomial (in n and D, where D is the multiplicative depth of the
circuit) round complexity. Applying the methods of [3], the number of rounds
of MPC can be reduced to constant but at the expense of exponential blow-up
in communication complexity. Hence, we will not consider the work of [3] in our
discussion.

ICP is already discussed in detail in Chapter 2. We just recall that ICP was
first introduced by Rabin et al. [138, 137] in order to design a statistical VSS
protocol. Subsequently, a more efficient ICP was reported in [48].

VSS is a fundamental primitive used in many secure distributed computing
protocols including MPC. Statistical VSS assuming n = 2t + 1 parties and a
common broadcast channel is already discussed in Chapter 4. We just recall the
following: Statistical VSS assuming n = 2t + 1 parties and a common broadcast
channel was first reported in [138, 137]. Later more efficient statistical VSS
protocols with n = 2t + 1 are proposed in [48] and [49].

In ABC protocol, a party who is committed, in some manner, to values a, b,
and c, demonstrates in zero-knowledge that a, b, and c satisfy c = ab without
revealing their values and any other extra information. ABC protocol is an
important tool used in multiplication protocol of MPC. It uses VSS as a black
box. There are three different ABC protocols presented in [138], [4, 6] and [48]
among which the protocol of [48] is the most efficient and simple. While ABC
protocol of [48] requires O(1) invocations of VSS, both the protocols of [138]
and [4, 6] require O(κ) invocations of VSS where κ = log 1

ε
and ε is the error

probability of the ABC and MPC protocol.
In multiplication protocol, given sharing of a and b, parties have to compute

sharing of c where c = ab. Multiplication protocol is a major component of
MPC protocol. It is generally accomplished by n invocations to ABC protocol
along with some additional techniques. Though ABC protocols of [138] and [4, 6]
are different, [138] and [4, 6] adapt almost the same techniques of polynomial
randomization and degree reduction proposed by [20] to generate random sharing
of c. Later [93] proposed an elegant method of generating random sharing of c
using Vandermonde matrix. This idea later evolved to the more simpler idea of
using Langrange’s Interpolation formula (see [46] for more details).

96

Fault handling mechanism in multiplication protocol deals with the way the
multiplication protocol reacts when some corrupted party is caught being misbe-
having. It is generally achieved in three ways. If a party is detected to be faulty,
then

1. In the first approach, the party is eliminated from computation from the
time it was detected as corrupt and all the shared values are re-shared using
lesser degree polynomial and after this the computation goes on [4]. Here
the overhead is the cost of re-sharing each of the value that were shared at
the time of fault detection;

2. In the second approach, the values possessed by the corrupted party are
reconstructed and then all the parties publicly simulate the task of the
corrupted party for the remaining execution of the protocol [138]. The
overhead here is the cost of reconstructing the values of the corrupted party;

3. In yet another approach, the party is eliminated from computation and the
computation restarts from the beginning. Here the overhead is the repetitive
executions of same protocol [48].

Now depending on the implementation of the above techniques along with
implementation of required sub-protocols, we may decide which of the three tech-
niques will lead to better communication and round complexity.

So far in the literature, there are mainly two paradigms for designing MPC
protocol:

1. Input-Computation-Output Paradigm: This paradigm is alternatively known
as Share-Compute-Reveal paradigm [5]. As per this paradigm, an MPC
protocol is structured into three phases, namely Input, Computation and
Output Phase. The parties secretly share their inputs in Input Phase, run
sub-protocols to evaluate gates (mainly addition and multiplication) of a
bounded fan-in arithmetic circuit that expresses the function f in Compu-
tation phase, and reveal the final secret representing the output to appro-
priate parties in Output phase. The MPC protocols of [20, 41, 138, 4, 48]
follow this paradigm.

2. Preparation-Input-Computation-Output Paradigm: This outstanding round-
reducing paradigm was proposed by Beaver [5]. In brief, this paradigm
simplifies the evaluation of multiplication gate during computation phase by
performing some tasks well in advance in Preparation Phase (also called as
preprocessing phase). This new technique of evaluating multiplication gate
is more popularly known as Beaver’s Circuit Randomization Technique [5]).
According to this paradigm, sharing of cM multiplication triples (xi, yi, zi)
(xi and yi are random and zi = xiyi) is generated in preparation phase, every
multiplication gate is associated with one multiplication triple and later
during computation phase each multiplication gate is evaluated using its
associated multiplication triple at the cost of reconstructions of two sharing.
The protocol used for evaluating multiplication gate in Input-Computation-
Output Paradigm can be used to generate sharing of zi from the sharing
of xi and yi. But the advantage of this paradigm over the previous one is
that in this paradigm we can generate all the cM multiplication triples in
parallel where as in previous paradigm the multiplication gates have to be

97

evaluated sequentially as per the dependency relation of the circuit. As a
result, if M is the number of rounds required to perform multiplication, then
MPC designed following Input-Computation-Output paradigm will require
O(MD) rounds, where as MPC following Preparation-Input-Computation-
Output paradigm will require only O(M +D) rounds, as the reconstruction
of shared values requires only constant number of rounds.

After the invention of Preparation-Input-Computation-Output paradigm,
it has been used frequently in many MPC protocols that appeared subse-
quently [98, 101, 49, 12, 52, 14].

In comparison to the other optimally resilient statistical MPC protocols, the
MPC protocol of [12] has received slightly different treatment. So we emphasize
on it with little bit more detail. In line with the existing statistical MPC proto-
cols, the authors of [12] have designed ICP, VSS, ABC and multiplication pro-
tocols and used Preparation-Input-Computation-Output paradigm in their MPC
protocol. But contrary to the existing MPC protocols, all the above primitives
are designed in dispute control framework (a generalization of player elimination
framework introduced by [98]) where the implementations of the primitives are
non-robust as they fail when at least one corrupted party misbehaves. In case
of failure, the protocols output a dispute which is a pair of parties with at least
one of them is guaranteed to be corrupted. During the course of the protocol,
the parties keep track of disputes that arise among them, and the ongoing com-
putation is adjusted such that known disputes cannot arise again. To keep the
communication complexity low, the computation of each of the phases has been
divided into n2 segments. Each segment is executed in a non-robust manner,
where a segment fails when one of the protocols invoked in it has failed with a
dispute as output. If the computation of a segment passes then the next segment
is taken up for computation; otherwise the same segment is recomputed again
with the mechanism to prevent existing dispute to happen again. As there can
be at most nt = O(n2) possible pair of parties with at least one party in a pair
being corrupted, there are O(n2) possible disputes and thus the segments may
fail O(n2) times in total.

Now Table 5.1 summarizes the communication complexity and round com-
plexity of known statistical MPC protocols with optimal resilience. In all these
protocols, the computation is assumed to be done over a finite field F = GF (2κ),
where ε = 2−Ω(κ) and ε is the error probability. Thus each field element is repre-
sented by κ = O(log 1

ε
) bits.

5.1.4 Our Motivation and Contribution

Round complexity and communication complexity are the two important com-
plexity measures of any fault-tolerant distributed computing protocol such as
MPC. In distributed systems, communication is usually expensive, and protocols
designed for practical use must use as few rounds of communication, with as small
messages as possible. Analyzing Table 5.1, we find that researchers have reduced
the communication complexity of MPC protocol considerably but at the expense
of high round complexity [48, 49, 12]. This trend is undesirable if we ever hope
to implement MPC protocols in practice. So motivated to design MPC protocol
that minimizes both round and communication complexity simultaneously, we
present a new statistical MPC protocol with optimal resilience, that achieves a

98

Table 5.1: Communication Complexity and Round Complexity of Existing statistical
MPC protocols with Optimal Resilience.

Reference Communication Complexity Round
in bits Complexity

[138] Private: Ω(cMn5(log 1
ε)

4); Broadcast: Ω(cMn5(log 1
ε)

4) O(D)

[4, 6] Private: Ω(cMn5(log 1
ε)

4); Broadcast: Ω(cMn5(log 1
ε)

4) O(D)

[48] Private: O(cMn5 log 1
ε); Broadcast: O(cMn5 log 1

ε) O(nD)

[49]a Private: O(cMn5 log 1
ε); Broadcast: O(cMn5 log 1

ε) O(n +D)

[12] Private: O(cMn2 log 1
ε); Broadcast: O(n3 log 1

ε) O(n2D)

a The authors have actually claimed to have a protocol with a communication com-
plexity of O(cMn4κ) bits (private communication plus broadcast) and round com-
plexity of O(D) without providing any details.

communication complexity of O(cMn3 log 1
ε
) bits for both private and broadcast

communication while maintaining a round complexity of O(D). At the heart of
our new statistical MPC protocol are:

1. The ICP presented in Chapter 2, that provides the best known round and
communication complexity in the literature.

2. The statistical VSS presented in Chapter 4, that provides the best known
round and communication complexity in the literature.

3. An efficient and novel multiplication protocol with robust fault handling
mechanism (that uses our statistical VSS of Chapter 4 as building block).

Our statistical MPC protocol involves a negligible error probability of ε in
correctness property. To bound the error probability by ε, all computation in
our protocol are performed over a finite field F = GF (2κ), where κ has to be
determined using the relation ε ≥ n32−κ ·max(n2, (2cM + cO)). We assume that
n = poly(cM , cO, cA, cI). Any field element from field F can be represented by κ
bits, where κ = log |F| = O(log 1

ε
) (this can be derived using n = O(log 1

ε
) and

n = poly(cM , cO, cA, cI)).
In order to bound the error probability of our MPC protocol by some spe-

cific value of ε, we find out the minimum value of κ that satisfies ε ≥ n32−κ ·
max(n2, (2cM + cO)). This value for κ will consequently determine the field F
over which our protocol should work.

5.1.5 Our Network and Adversary Model

The network and adversary model is same as the one presented in in Section
2.1.2 of Chapter 2. Recall that the set of parties is denoted by P = {P1, . . . , Pn}
and t out of the n parties can be under the influence of a computationally un-
bounded powerful, Byzantine (active), rushing adversary, denoted as At. Apart
from pairwise secure channels, there is a physical broadcast channel available in
the network. In this chapter, we assume n = 2t + 1.

99

5.1.6 The Road-map

Section 5.2 briefly discusses the overview of our statistical MPC protocol. Subse-
quently, Section 5.3, Section 5.4, Section 5.5 and Section 5.6 present the protocols
for our proposed MPC protocol. Specifically, Section 5.3 contains our robust mul-
tiplication protocol. Lastly, we conclude this chapter in Section 5.7.

5.2 Overview of Our Statistical MPC Protocol

Our statistical MPC protocol is a sequence of following three phases: preparation
phase, input phase and computation phase. In the preparation phase, 2d?-sharing
(recall from Chapter 4) of cM +cR random multiplication triples will be generated.
A triple (a, b, c) is called random multiplication triple if a and b are random and
c = ab holds. Our preparation phase requires only constant number of rounds.
Each multiplication gate and random gate of the circuit will be associated with a
2d?-sharing of random multiplication triple. In the input phase the parties 2d?-
share their inputs. In the computation phase, based on the inputs of the parties,
the actual circuit will be computed gate by gate, such that the outputs of the
intermediate gates are always kept as secret and are properly 2d?-shared among
the parties. Due to the linearity of the used 2d?-sharing, the parties can locally
evaluate linear gates without doing any communication. Each multiplication
gate will be evaluated with the help of the multiplication triple associated with
it, using the so called Beaver’s circuit randomization technique [5].

In the preparation phase efficient multiplication protocol with robust fault
handling has been used to generate multiplication triples. Our multiplication
protocol is new and uses several subtle ideas to achieve its goal.

5.3 Preparation Phase

In the preparation phase, we generate 2d?-sharing of cM + cR random multipli-
cation triples ((ak, bk, ck) ; k = 1, . . . , cM + cR), where ck = akbk. Moreover, each
of the sharing will have ε

(2cM+cO)
error (the reason for the selection of error will

be clear later during the discussion of Computation phase; Also recall Definition
4.14 for the interpretation of the statement). We will proceed step by step. First
using our multiplication protocol, we will generate 2d(?,cM+cR)-sharing of all the
a’s, namely 〈〈A〉〉t where A = (a1, . . . , acM+cR) and likewise 〈〈B〉〉t and 〈〈C〉〉t
where B = (b1, . . . , bcM+cR) and C = (c1, . . . , ccM+cR). After that we will generate
separate 2d?-sharing of each of the individual values from the above 2d(?,cM+cR)-
sharings and thereby meet our requirement. We would like to clarify that in our
multiplication protocol we could have generated 2d?-sharing of ak and bk directly
using 5VSS-Share (that deals with single secret; presented in Chapter 4) and then
compute 2d?-sharing of ck from 2d?-sharing of ak and bk. But this will require
more communication complexity than our roundabout approach of generating
2d?-sharing of these values.

5.3.1 Multiplication Protocol With Robust Fault Handling

Before presenting our multiplication protocol, we describe a few tools/sub-protocols
which will be used as building blocks for our multiplication protocol.

100

5.3.1.1 Generating Random 2d(?,`)-Sharing

Here we present a protocol called Random which allows the parties in P to jointly
generate 2d(?,`)-sharing of ` random values, i.e 〈〈r1, . . . , r`〉〉t, about which At will
have no information. The sharing 〈〈r1, . . . , r`〉〉t will have ε

n
error. The protocol

generates the sharing, except with error probability ε (we distinguish between
the error associated with the sharing and the error probability of the protocol).

To bound the error probability by ε, the computation of Random is performed
over a field F = GF (2κ), where κ has to be determined using the relation ε ≥
n42−κ. This is derived from the fact that Random invokes 5VSS-MS-Share with
ε
n

error probability and as mentioned in Section 4.3 (of Chapter 4), ε ≥ n32−κ

should hold to bound the error probability of 5VSS-MS by ε. The protocol is now
given in Fig. 5.1.

Figure 5.1: Protocol for Generating 2d(?,`)-sharing of ` random values.

〈〈r1, . . . , r`〉〉t = Random(P, `, ε)

1. Each Pi ∈ P selects ` random elements r1i, . . . , r`i from F and then invokes
5VSS-MS-Share(Pi,P, (r1i, . . . , r`i), ε

n) to generate 〈〈r1i, . . . , r`i〉〉Pi
t having ε

n
error.

2. Let Pass denote the set of parties Pi in P such that 5VSS-MS-
Share(Pi,P, (r1i, . . . , r`i), ε

n) is executed successfully without Pi being dis-
carded.

3. If |Pass| ≥ t + 1, all the parties in P jointly compute 〈〈r1, . . . , r`〉〉t =∑
Pi∈Pass〈〈r1i, . . . , r`i〉〉Pi

t , where rl =
∑

Pi∈Pass rli, for l = 1, . . . , `.

Lemma 5.1 Protocol Random satisfies the following properties:

1. Correctness: Except with probability ε, Random outputs correct 2d(?,`)-
sharing of ` random values, having ε

n
error.

2. Secrecy: The ` values whose 2d(?,`)-sharing is generated by the protocol will
be completely random and unknown to At.

Proof: Correctness: As each instance of 5VSS-MS-Share is invoked with
error parameter ε

n
, corresponding to each party Pi in Pass, 〈〈r1i, . . . , r`i〉〉Pi

t will

have ε
n

error. Now as 〈〈r1, . . . , r`〉〉t =
∑

Pi∈Pass〈〈r1i, . . . , r`i〉〉Pi
t , it follows from

Lemma 4.27 that 〈〈r1, . . . , r`〉〉t will have ε
n

error. Moreover the ` values shared
by every honest party are random and there exists at least one honest party in
Pass. This implies that the values r1, . . . , r` are random.

Now we show that Random will generate its output except with error proba-
bility ε. An honest Pi will be able to produce 〈〈r1i, . . . , r`i〉〉Pi

t (having ε
n

error)
except with error probability ε

n
. This is because with probability at most ε

n
,

honest Pi might get discarded during 5VSS-MS-Share (see Claim 4.1) in which
case Pi will not be included in Pass. Since there are t + 1 honest parties, none
of them will figure in Pass with probability (t + 1) ε

n
≈ ε. This will result in

|Pass| ≤ t and hence output will not be computed, with probability at most ε.

101

Hence, except with probability ε, Random will generate its desired output.

Secrecy: From the Secrecy property of 5VSS-MS-Share, the values which are
2d(?,`)-shared by an honest party are completely random and are unknown to
At. Pass will definitely contain at least one honest party. Now since addition
preserves randomness, r1, . . . , r` will be completely random and unknown to At.
This proves Secrecy property. 2

Lemma 5.2 Protocol Random has the following bounds:

1. Round Complexity: Five Rounds.

2. Communication Complexity: Private and broadcast communication of
O((`n3 + n4) log 1

ε
) bits.

Proof: There are n parallel invocations of 5VSS-MS-Share and each invocation
requires five rounds (see Theorem 4.19) and communication of O((`n2+n3) log 1

ε
)

bits, both private as well as broadcast (see Theorem 4.20). Hence the lemma. 2

5.3.1.2 Public Reconstruction of 1d(?,`)-sharing of ` Values

Let P ∈ P be a party, who has done 1d(?,`)-sharing of a set of ` values, say
s1, . . . , s`. That is 〈s1, . . . , s`〉Pt is given. Moreover, let the 1d(?,`)-sharing has ε
error. Then we present a protocol called Rec that tries to publicly reconstruct
s1, . . . , s` from 〈s1, . . . , s`〉Pt .

By the definition of 1d(?,`)-sharing having ε error, either Pi holds IC signature
of P on the ith shares of the secrets, where the IC signature will have ε

n
error or

the ith shares are publicly known. By the definition of 1d(?,`)-sharing, at most t
such shares may be publicly known. That is, for i = 1, . . . , n, either party Pi holds
ICSig(P, Pi,P , (s1

i , . . . , s
`
i)), having ε

n
error or (s1

i , . . . , s
`
i) is publicly known with

the restriction that at most t such shares are public. Essentially, in protocol Rec
the IC signatures held by the parties will be revealed. Then we check whether
the values that are correctly revealed (from IC signature) and the values that are
public already lie on a degree-t polynomial which should ideally hold according
to the definition of 1d(?,`)-sharing.

This protocol works over a field that was used by the protocol that generates
the given 1d(?,`)-sharing. Protocol Rec has the following features:

1. If P is honest then except with probability at most ε, the protocol will
succeed to publicly reconstruct s1, . . . , s`;

2. If the protocol fails to reconstruct the secrets then with probability at least
(1− ε), party P is corrupted and every honest party will come to know that
P is corrupted.

The protocol is formally given in Fig. 5.2.

Lemma 5.3 Given 〈s1, . . . , s`〉Pt having ε error, protocol Rec reconstructs the
secrets (s1, . . . , s`) except with probability ε, when P is honest. On the other
hand, if the protocol fails to reconstruct the secrets then except with probability ε,
party P is corrupted.

102

Figure 5.2: Public Reconstruction of ` Values that are 1d(?,`)-shared by some party P .

Rec(P, `, 〈s1, . . . , s`〉Pt , ε)

1. Given 〈s1, . . . , s`〉Pt having ε error, either party Pi holds
ICSig(P, Pi,P, (s1

i , . . . , s
`
i)) having ε

n error, where sl
i denotes ith share

of sl OR (s1
i , . . . , s

`
i) is known publicly.

2. Each party Pi holding ICSig(P, Pi,P, (s1
i , . . . , s

`
i)), reveals

ICSig(P, Pi,P, (s1
i , . . . , s

`
i)) having ε

n error.

3. Each party Pj either reconstruct sl for l = 1, . . . , ` or decide that P is
corrupted as follows:

(a) For l = 1, . . . , `, consider sl
i values corresponding to all Pi’s, who are

successful in revealing the IC signature in step 2 and the sl
i values

which are already public and check whether they define a unique degree
t polynomial. If yes then the constant term of the degree t polynomial
is taken as sl. Otherwise, P is decided to be corrupted.

Proof: Since 〈s1, . . . , s`〉Pt has ε error, it implies that either party Pi holds
ICSig(P, Pi,P , (s1

i , . . . , s
`
i)), having ε

n
error or (s1

i , . . . , s
`
i) is already public. Also

by the definition of 1d(?,`)-sharing, at most for t i’s, (s1
i , . . . , s

`
i) are public. Now

we have the following two cases:

1. Party P is honest: In this case, each Pi who has succeeded to reveal IC signa-
ture will reveal correct ICSig(P, Pi,P , (s1

i , . . . , s
`
i)) irrespective of whether

it is honest or corrupted. Therefore the sl
i values will lie on degree t poly-

nomial and thus the secrets will be reconstructed correctly.

However the above event has ε error probability. This is because, a corrupted

Pi may reveal ICSig(P, Pi,P , (s1
i , . . . , s

`
i)) with probability ε

n
(according

to ICP-Correctness3). Consequently, any one of the corrupted parties
(there are at most t corrupted parties) may reveal incorrect IC signature
with probability at most t ε

n
≈ ε (in which case, sl

i values will not lie on
degree t polynomial). Therefore an honest P may be proved as corrupted,
with probability ε. Stating in other way, when the parties decides P to be
corrupted, then it is true, with probability (1− ε).

2. Party P is corrupted: In this case, each honest Pi will be able to successfully
reveal correct ICSig(P, Pi,P , (s1

i , . . . , s
`
i)), except with error probability ε

n
from ICP-Correctness2. As there are at least t+1 honest parties, except
with probability (t + 1) ε

n
≈ ε, all honest parties will successfully reveal cor-

rect IC signatures and therefore the sl
i values revealed by them will lie on

degree-t polynomials. However, since P is corrupted, a corrupted Pi in col-

laboration with the corrupted P can reveal any ICSig(P, Pi,P , (s1
i , . . . , s

`
i)).

Now if the sl
i values revealed by corrupted Pi’s along with the sl

i values
revealed by honest Pi’s lie on a degree-t polynomial, then sl will be recon-
structed. Otherwise, everybody will come to know that party P is cor-
rupted. 2

103

Lemma 5.4 Protocol Rec has the following bounds:

1. Round Complexity: Two rounds.

2. Communication Complexity: Broadcast of O((`n + n2) log 1
ε
) bits.

Proof: Follows from the following facts: (a) In Rec, there are Θ(t) parallel
executions of Reveal; (b) Reveal requires two rounds and O((` + n) log 1

ε
) bits of

broadcast. 2

5.3.1.3 ABC Protocol – Proving c = ab

Consider the following problem: let P ∈ P has generated 〈(a1, . . . , a`)〉Pt and
〈(b1, . . . , b`)〉Pt , each having ε

n
error. Now P wants to generate 〈〈(c1, . . . , c`)〉〉Pt ,

having ε error, where cl = albl for l = 1, . . . , `. Moreover, during this process,
an honest P does not want to leak any additional information about al, bl and
cl. Furthermore, if P is corrupted, then he may intentionally fail to generate the
above output in which case every body will know that party P is corrupted.

We propose a protocol ProveCeqAB to achieve the above task. The protocol
generates the correct output, except with error probability ε. The idea of the
protocol is inspired from [48] with the following modification: we make use of our
protocol 5VSS-MS (instead of their statistical VSS protocol), which provides us
with high efficiency, both in terms of communication and round complexity.

We explain the idea of the protocol with a single pair (a, b). With respect to a
single pair, the problem becomes like this: P has already 1d?-shared a and b using
degree-t polynomials, say fa(x) and fb(x). Now he wants to generate 2d?-sharing
of c, where c = ab, without leaking any additional information about a, b and c.
To achieve this goal, P first selects a random non-zero β ∈ F and generates 2d?-
sharing of c, β and d = βb. Let fc(x), fβ(x) and fd(x) are polynomials implicitly
used for sharing c, β and d. All the parties in P then jointly generate a random
value r. P then broadcasts the polynomial F (x) = rfa(x) + fβ(x). Every party
locally checks whether the appropriate linear combination of his shares lies on
the broadcasted polynomial F (x). If it does not satisfy then the party reveals
P ’s signature on the shares of a and β. If the signatures are valid and indeed the
party’s value does not lie on F (x), then all the parties will conclude that P fails
to prove c = ab and the protocol terminates here.

Otherwise, P again broadcasts G(x) = F (0)fb(x) − fd(x) − rfc(x). As be-
fore every party locally checks whether the appropriate linear combination of his
shares lies on the broadcasted polynomial G(x). If it does not satisfy then the
party reveals P ’s IC signature on the shares of b, d and c. If the signatures
are valid and indeed the party’s value does not lie on G(x), then all parties will
conclude that P fails to prove c = ab and the protocol terminates here. Oth-

erwise every party checks whether G(0)
?
= 0. If so then everybody accepts the

2d?-sharing of c as valid 2d?-sharing of ab. It is easy to check that G(0) will be
zero when P behaves honestly.

If a corrupted P shares c 6= ab, then the probability that G(0) = 0 holds
is negligible because of the random r. This can be argued as follows: G(0) =
F (0)b−d−rc = (ra+β)b−d−rc = rab−rc+βb−d = r(ab−c)+βb−d. Now if
P shares c 6= ab and d 6= βb, then q = r(ab− c) + βb− d will be non-zero, except
for only one value of r. But since r is randomly generated, the probability that
r is that value is 1

|F| which is negligibly small. The secrecy follows from the fact

104

that F (0) is randomly distributed and G(0) = 0. Protocol ProveCeqAB extends
the above idea for ` pairs (al, bl).

ProveCeqAB works on a field F which was used for protocol Random i.e
F = GF (2κ), where κ has to be determined using the relation ε ≥ n42−κ.
This comes from the following facts: Since ProveCeqAB invokes Random with
ε error probability, ε ≥ n42−κ should hold. Moreover, ProveCeqAB invokes
5VSS-MS-Share with ε error probability which enforces ε ≥ n32−κ. Therefore,
ε ≥ max(n42−κ, n32−κ) = n42−κ should hold for ProveCeqAB. Now the protocol
is formally given in Fig. 5.3.

Lemma 5.5 Protocol ProveCeqAB satisfies the following properties:

1. Correctness: If P is honest, then except with probability ε, P will be able
to generate 〈〈(c1, . . . , c`)〉〉Pt . If P is corrupted and the protocol succeeds then
except with probability ε, P has generated 〈〈(c1, . . . , c`)〉〉Pt , where cl = albl,
for l = 1, . . . , `. Moreover, irrespective of whether P is honest or corrupted,
if 〈〈(c1, . . . , c`)〉〉Pt is generated in the protocol then it will have ε error.

2. Secrecy: If P is honest then al, bl, cl will be information theoretically
secure for all l = 1, . . . , `.

Proof: Correctness: Notice that if at all 〈〈(c1, . . . , c`)〉〉Pt is generated in the
protocol, then it will have ε error, irrespective of whether P is honest or cor-
rupted. This is because 〈〈(c1, . . . , c`)〉〉Pt is generated by executing 5VSS-MS-
Share(P,P , C, ε).

Next we show that if P is honest, then P would be successfully able to gener-
ate 〈〈(c1, . . . , c`)〉〉Pt , except with probability ε. If P is honest, then except with
error probability ε, he will not be discarded in 5VSS-MS-Share(P,P , C, ε), 5VSS-
MS-Share(P,P ,B, ε) and 5VSS-MS-Share(P,P ,D, ε). The parties will jointly gen-
erate r, except with probability ε. Now from the protocol steps, it is clear that
an honest party P may fail to prove c = ab, if some corrupted party Pi can
forge one of the following IC signatures: ICSig(P, Pi,P , (fa1(i), . . . , fa`(i))),
ICSig(P, Pi,P , (fβ1(i), . . . , fβ`(i))), ICSig(P, Pi,P , (fb1(i), . . . , fb`(i))), ICSig
(P, Pi,P , (fc1(i), . . . , fc`(i))) and ICSig(P, Pi,P , (fd1(i), . . . , fd`(i))). Since (a1,
. . . , a`) and (b1, . . . , b`) are 1d(?,`)-shared and each of these sharings has ε

n
error,

it implies that each of ICSig(P, Pi,P , (fa1(i), . . . , fa`(i))) and ICSig(P, Pi,P ,
(fb1(i), . . . , fb`(i))) will have ε

n2 error. Therefore a corrupted Pi can forge ICSig

(P, Pi,P , (fa1(i), . . . , fa`(i))) or ICSig(P, Pi,P , (fb1(i), . . . , fb`(i))) with proba-
bility at most ε

n2 . On the other hand, since (β1, . . . , β`), (c1, . . . , c`) and (d1, . . . , d`)

are 2d(?,`)-shared and each one of these sharing has ε error, it implies that each
of ICSig(P, Pi,P , (fβ1(i), . . . , fβ`(i))), ICSig(P, Pi,P , (fc1(i), . . . , fc`(i))) and
ICSig(P, Pi,P , (fd1(i), . . . , fd`(i))) will have ε

n2 error. Hence a corrupted Pi can

forge ICSig(P, Pi,P , (fβ1(i), . . . , fβ`(i))) or ICSig(P, Pi,P , (fc1(i), . . . , fc`(i)))
or ICSig(P, Pi,P , (fd1(i), . . . , fd`(i))) with probability at most ε

n2 . Now as there
can be t corrupted parties, any one of them can do the above forgeries with proba-
bility at most t ε

n2 ≈ ε
n
. Hence overall, if P is honest, then P would be successfully

able to generate 〈〈(c1, . . . , c`)〉〉Pt , except with probability ε.
Finally, we show that if a corrupted P has generated 〈〈(c1, . . . , c`)〉〉Pt , then ex-

cept with probability ε, cl = albl for l = 1, . . . , `. This follows from the fact that if
a corrupted P has generated 〈〈(c1, . . . , c`)〉〉Pt , then ql = 0 for all l = 1, . . . , `. Now
notice that ql = plbl−dl−rcl = (ral+βl)bl−blβl−rcl = r(albl−cl)+βlbl−dl. Now

105

Figure 5.3: Protocol to Generate 2d(?,`)-sharing of (c1, . . . , c`) where cl = albl for
l = 1, . . . , `.

〈〈c1, . . . , c`〉〉Pt = ProveCeqAB(P,P, 〈a1, . . . , a`〉Pt , 〈b1, . . . , b`〉Pt , ε)

1. Party P does the following:

(a) Select ` non-zero random elements β1, . . . , β`. For l = 1, . . . , `, let cl =
albl and dl = blβl. Let B = (β1, . . . , β`), C = (c1, . . . , c`) and D =
(d1, . . . , d`).

(b) Invoke 5VSS-MS-Share(P,P, C, ε), 5VSS-MS-Share(P,P,B, ε) and 5VSS-
MS-Share(P,P,D, ε). For l = 1, . . . , `, let al, bl, cl, βl and dl are implic-
itly shared using degree-t polynomials fal(x), fbl(x), fcl(x), fβl(x) and
fdl(x) respectively.

2. If P is discarded during any of the three 5VSS-MS-Share protocols, then every
party concludes that P fails to prove c = ab and protocol terminates here.

3. Now all the parties in P jointly generate a random number r. This is done as
follows: first the parties in P execute the protocol Random(P, 1, ε) to generate
〈〈r〉〉t. Then the parties execute 5VSS-Rec to publicly reconstruct r from 〈〈r〉〉t.

4. Now P broadcasts the polynomials F l(x) = rfal(x) + fβl(x) for l = 1 . . . , `
and Gl(x) = plfbl(x)− fdl(x)− rfcl(x) for l = 1 . . . , `, where pl = F l(0).

5. Party Pi ∈ P checks whether F l(i) ?= rfal(i) + fβl(i) for l = 1, . . . , `.
If the test fails for at least one l, then Pi raises a complaint and reveals
ICSig(P, Pi,P, (fa1(i), . . . , fa`(i))) and ICSig(P, Pi,P, (fβ1(i), . . . , fβ`(i)))
if the values are not public already. If a complaint is raised, then all parties
publicly check whether F l(i) ?= rfal(i) + fβl(i) for l = 1, . . . , `, using the
revealed values (revealed from the IC signatures) or the public values (in case
they were public). If the test fails for at least one l, then every party concludes
that P fails to prove c = ab and protocol terminates here.

6. Now party Pi ∈ P checks whether Gl(i) ?= plfbl(i) − fdl(i) − rfcl(i) for
l = 1, . . . , `. If the test fails for at least one l, then Pi raises a complaint and re-
veals ICSig(P, Pi,P, (fb1(i), . . . , fb`(i))), ICSig(P, Pi,P, (fc1(i), . . . , fc`(i)))
and ICSig(P, Pi,P, (fd1(i), . . . , fd`(i))) if the values are not public. If a com-
plaint is raised, then all parties publicly check whether Gl(i) ?= plfbl(i) −
fdl(i) − rfcl(i) for l = 1, . . . , `, using the revealed values (revealed from the
IC signatures) or the public values (in case they were public). If the test fails
for at least one l, then every party concludes that P fails to prove c = ab and
protocol terminates here.

7. Every player checks whether ql = Gl(0) ?= 0 for l = 1, . . . , `. If the test fails
for at least one l, then every party concludes that P fails to prove c = ab
and protocol terminates here. Otherwise P has proved that cl = albl for
l = 1, . . . , `.

106

if P shares cl 6= albl and/or dl 6= βlbl, then the value ql = r(albl−cl)+βlbl−dl will
be non-zero, except for only one value of r. But since r is randomly generated,
the probability that r is that value is 1

|F| ≤ ε
n4 ≤ ε. Therefore if P has generated

〈〈(c1, . . . , c`)〉〉Pt , then except with probability ε, cl = albl for l = 1, . . . , `.

Secrecy: We now prove the secrecy of al, bl, cl for all l = 1, . . . , ` when P is
honest. From the secrecy property of 5VSS-MS-Share and property of 1d(?,`)-
sharing, al, bl and cl will remain secure. Now we will show that both pl and ql

will not leak any information about al, bl and cl. Clearly pl = (ral + βl) will
look completely random to the adversary as βl is randomly chosen. Furthermore
ql = 0 and hence ql does not leak any information on al, bl and cl. Hence the
lemma. 2

Lemma 5.6 Protocol ProveCeqAB achieves the following:

1. Round Complexity: Fifteen rounds.

2. Communication Complexity: Private and Broadcast communication
of O((`n2 + n4) log 1

ε
) bits.

Proof: Step 1 requires five rounds (invokes three instances of 5VSS-MS-Share
in parallel). Step 3 requires seven rounds (invokes one instance of Random and
then one instance of 5VSS-Rec). Step 4 requires one round. Step 5 and 6 can be
executed in parallel (may invoke several instances of Reveal in parallel) and they
require at most two rounds together. Step 7 involves only local computation.
Hence in total ProveCeqAB requires at most fifteen rounds. The communication
complexity can be verified easily. 2

5.3.1.4 Robust Multiplication Protocol

We now finally present our protocol called Mult, which allows the parties to
generate 〈〈a1, . . . , a`〉〉t, 〈〈b1, . . . , b`〉〉t and 〈〈c1, . . . , c`〉〉t, where al’s and bl’s are
random and cl = albl for l = 1, . . . , `. Moreover, each one of the 2d(?,`)-sharing
will have ε

n
error. For simplicity, we first explain the idea of the protocol to

generate a single triple 〈〈a〉〉t, 〈〈b〉〉t and 〈〈c〉〉t.
To generate random 〈〈a〉〉t and 〈〈b〉〉t, we invoke two parallel executions of

protocol Random with ` = 1. We call these executions as Randoma and Randomb

respectively. Before proceeding further, let us closely look into Randoma and
Randomb. In Randoma, each party Pi would have executed 5VSS-MS-Share as
a dealer with ` = 1 to generate 〈〈aPi〉〉Pi

t , where aPi is a random element from
F. Similarly, in Randomb, each party Pi would have executed 5VSS-MS-Share
as a dealer with ` = 1 to generate 〈〈bPi〉〉Pi

t , where bPi is a random element
from F. Recall that Passa (Passb) denote the set of parties whose instance of
5VSS-MS-Share as a dealer is successful in Randoma (Randomb). Thus everyone
has computed 〈〈a〉〉t =

∑
Pi∈Passa

〈〈aPi〉〉Pi
t and 〈〈b〉〉t =

∑
Pi∈Passb

〈〈bPi〉〉Pi
t . This

implies that every party Pi holds ai =
∑

Pj∈Passa
a

Pj

i and bi =
∑

Pj∈Passb
b
Pj

i . Here

ai and bi are the ith shares of a and b respectively, likewise a
Pj

i and b
Pj

i are ith

share of aPj and bPj respectively. Moreover, the parties hold 〈aPj

i 〉Pj

t and 〈bPj

i 〉Pj

t ,
for i = 1, . . . , n (see section 4.3.1) for every Pj in Passa and Passb respectively.

Furthermore, the parties hold 〈ai〉Pi
t and 〈bi〉Pi

t for i = 1, . . . , n.

107

Now to generate 〈〈c〉〉t, we use the following idea from [48]: every party Pi

computes aibi and generates 〈〈aibi〉〉Pi
t from 〈ai〉Pi

t and 〈bi〉Pi
t , by executing Prove-

CeqAB. Notice that at most t corrupted parties may fail to generate 〈〈aibi〉〉Pi
t .

Since a1b1, . . . , anbn are n points on a 2t degree polynomial, say C(x), whose
constant term is c, by Lagrange interpolation formula [46], c can be computed
as c =

∑n
i=1 ri(aibi) where ri =

∏n
j=1,j 6=i

−j
i−j

. The vector (r1, . . . , rn) is called

recombination vector [46] which is public and known to every party. So we write
c = Lagrange(a1b1, . . . , anbn) =

∑n
i=1 ri(aibi). Now all parties can compute

〈〈c〉〉t = Lagrange(〈〈a1b1〉〉P1
t , . . . , 〈〈anbn〉〉Pn

t), to obtain the desired output. No-
tice that since C(x) is of degree 2t, we need all the Pi’s to successfully generate
〈〈aibi〉〉Pi

t (a 2t degree polynomial requires 2t + 1 points on it to be interpolated
correctly) in order to successfully generate 〈〈c〉〉t using the above mechanism.
Even if a single corrupted party Pi fails to generate 〈〈aibi〉〉Pi

t , the above tech-
nique will fail. To make Mult robust, we reconstruct ai and bi publicly when Pi

fails to generate 〈〈aibi〉〉Pi
t in ProveCeqAB. All the parties then proceeds with the

above mentioned computation assuming aibi as a zero degree polynomial.
The ai and bi for a corrupted Pi who has failed to generate 〈〈aibi〉〉Pi

t in
ProveCeqAB, can be publicly reconstructed as follows. As explained earlier,

ai =
∑

Pj∈Passa
a

Pj

i and bi =
∑

Pj∈Passb
b
Pj

i . Moreover, the parties hold 〈aPj

i 〉Pj

t

and 〈bPj

i 〉Pj

t . So we first try to publicly reconstruct a
Pj

i and b
Pj

i corresponding to
every Pj in Passa and Passb respectively, using protocol Rec. From the proper-

ties of protocol Rec, corresponding to every honest Pj, the values a
Pj

i and b
Pj

i will
be reconstructed correctly with very high probability. However, corresponding to

a corrupted Pj, Rec may not output a
Pj

i and b
Pj

i , in which case, everybody will
come to know that Pj is corrupted. Like this, there can be at most t corrupted

Pj’s, corresponding to which the protocol Rec may fail to output a
Pj

i and/or b
Pj

i .
Let C be the set of such corrupted parties. Now corresponding to the parties in C,
everyone computes 〈〈∑Pj∈C aPj〉〉t, 〈〈

∑
Pj∈C bPj〉〉t and use protocol 5VSS-Rec to

publicly reconstruct
∑

Pj∈C aPj and
∑

Pj∈C bPj . Once
∑

Pj∈C aPj and
∑

Pj∈C bPj are

known publicly, the ith shares of these values, namely
∑

Pj∈C a
Pj

i and
∑

Pj∈C b
Pj

i are

also publicly known. Now everyone computes ai =
∑

Pj∈(Passa\C) a
Pj

i +
∑

Pj∈C a
Pj

i

and bi =
∑

Pj∈(Passb\C) b
Pj

i +
∑

Pj∈C b
Pj

i . Our protocol Mult (given in Fig. 5.4)

follows the above ideas for ` pairs concurrently.
Mult works on a field F = GF (2κ), where κ has to be determined using the

relation ε ≥ n52−κ. This is because, Mult invokes ProveCeqAB with ε
n

error
probability.

Lemma 5.7 Protocol Mult satisfies the following properties:

1. Correctness: Except with probability ε, the protocol correctly outputs
(〈〈a1, . . . , a`〉〉t, 〈〈b1, . . . , b`〉〉t, 〈〈c1, . . . , c`〉〉t) where each of the three 2d(?,`)-
sharing will have ε

n
error. Moreover, for l = 1, . . . , `, cl = albl.

2. Secrecy: The adversary will have no information about (ak, bk, ck), for
k = 1, . . . , `.

Proof: Correctness: First of all, if at all 〈〈a1, . . . , a`〉〉t, 〈〈b1, . . . , b`〉〉t and
〈〈c1, . . . , c`〉〉t are generated, they will have ε

n
error. This follows from the Cor-

rectness of protocol Random and the fact that 〈〈c1, . . . , c`〉〉t is computed as the
linear combination of at least t + 1 2d(?,`)-sharing, each having ε

n
error.

108

Figure 5.4: Robust Multiplication Protocol.

(〈〈a1, . . . , a`〉〉t, 〈〈b1, . . . , b`〉〉t, 〈〈c1, . . . , c`〉〉t) = Mult(P, `, ε)

1. The parties invoke Random(P, `, ε) twice in parallel to generate 〈〈a1, . . . , a`〉〉t and
〈〈b1, . . . , b`〉〉t, each having ε

n
error. These two executions are denoted by Randoma and

Randomb.

2. Let Passa (Passb) denote the set of parties whose instances of 5VSS-MS-Share as a dealer
are successful in Randoma (Randomb). Then we have

(a) In Randoma, Pi ∈ Passa had generated 〈〈a1i, . . . , a`i〉〉Pi
t having ε

n
error.

(b) Similarly, in Randomb, Pi ∈ Passb had generated 〈〈b1i, . . . , b`i〉〉Pi
t having ε

n
error.

(c) According to the steps of Random, al =
∑

Pj∈Passa
alj and bl =

∑
Pj∈Passb

blj , for

l = 1, . . . , `.

(d) Let al
i and bl

i denote the ith share of al and bl respectively. Clearly al
i =∑

Pj∈Passa
alj

i and bl
i =

∑
Pj∈Passb

blj
i , where alj

i and blj
i are ith shares of alj and

blj .

(e) 〈a1
i , . . . , a

`
i〉Pi

t and 〈b1
i , . . . , b

`
i〉Pi

t are available for all honest Pi’s and each of these
sharing has ε

n2 error.

3. Party Pi invokes ProveCeqAB(Pi,P, 〈a1
i , . . . , a

`
i〉Pi

t , 〈b1
i , . . . , b

`
i〉Pi

t , ε
n
) to generate

〈〈c1
i , . . . , c

`
i〉〉Pi

t having ε
n

error.

4. Let Fail be the set of parties Pi who failed during their instance of ProveCeqAB. We
reconstruct a1

i , . . . , a
`
i and b1

i , . . . , b
`
i publicly for every Pi ∈ Fail by executing the following

steps. We describe the steps with respect to a1
i , . . . , a

`
i only. Similar steps should be

executed for b1
i , . . . , b

`
i .

(a) For every Pi ∈ Fail, we first try to reconstruct a1j
i , . . . , a`j

i corresponding to each

Pj ∈ Passa from 〈a1j
i , . . . , a`j

i 〉
Pj
t , having ε

n2 error, which is generated by Pj in
Randoma.

i. For each Pj ∈ Passa, the parties execute Rec(P, `, 〈a1j
i , . . . , a`j

i 〉
Pj
t , ε

n2) to either

publicly reconstruct a1j
i , . . . , a`j

i or detect Pj as corrupted.

ii. Let Ci denote the set of all Pj ’s who are detected to be corrupted in their

respective instance of Rec(P, `, 〈a1j
i , . . . , a`j

i 〉
Pj
t , ε

n2).

(b) Let C = ∪Pi∈FailCi.

(c) The parties execute 5VSS-MS-Rec(P, 〈〈∑Pj∈C a1j , . . . ,
∑

Pj∈C a`j〉〉t, ε
n
) to publicly

reconstruct
∑

Pj∈C a1j , . . . ,
∑

Pj∈C a`j (the probability used in argument of 5VSS-

MS-Rec comes from the fact that each of 〈〈a1j , . . . , a`j〉〉Pj
t has ε

n
error; thus

〈〈∑Pj∈C a1j , . . . ,
∑

Pj∈C a`j〉〉t will have ε
n

error).

(d) Every party computes al
i =

∑
Pj∈C alj

i +
∑

Pj∈(Passa\C) alj
i for every Pi ∈ Fail.

5. Every party finds cl
i = al

ib
l
i for every Pi ∈ Fail.

6. All the parties compute: 〈〈c1, . . . , c`〉〉t =
∑

(P\Fail) ri〈〈c1
i , . . . , c

`
i〉〉Pi

t +∑
Pi∈Fail ri(c

1
i , . . . , c

`
i), where (r1, . . . , r2t+1) represents the recombination vector

[46].

We now show that Mult will be able to generate its output except with prob-
ability ε. To assert the error probability of Mult, we compute and show that the
error probability of the following two events are ε:

1. All the parties in P \ Fail has generated correct 〈〈c1
i , . . . , c

`
i〉〉Pi

t : We
show that this event has an error probability of ε. Every Pi who is successful

109

in ProveCeqAB will generate 〈〈c1
i , . . . , c

`
i〉〉Pi

t , except with error probability
ε
n

(see Lemma 5.5). Since |P \ Fail| ≥ t + 1 (all the t + 1 honest Pi’s will
be present in P \Fail, except with error probability ε; follows from Lemma
5.5), all the parties in P \Fail has generated correct 〈〈c1

i , . . . , c
`
i〉〉Pi

t , except
with probability (t + 1) ε

n
≈ ε. Hence

∑
Pi∈(P\Fail) ri〈〈c1

i , . . . , c
`
i〉〉Pi

t will be
generated correctly, except with probability ε.

2. For every party Pi in Fail, a1
i , . . . , a

`
i and b1

i , . . . , b
`
i will be recon-

structed correctly: We now show that this event also has an error prob-
ability ε. Consequently, it implies that

∑
Pi∈Fail ri(c

1
i , . . . , c

`
i) will be gen-

erated correctly except with probability ε. This case together with the
previous case will complete our proof.

First we compute the error probability involved in reconstructing a1
i , . . . , a

`
i ,

corresponding to all Pi ∈ Fail. Same argument will follow for b1
i , . . . , b

`
i .

There are two events to be accounted here (first event has an error proba-
bility ε and the second event has error probability ε

n
):

(a) The values a1j
i , . . . , a`j

i corresponding to all Pj ∈ Passa \ C and all
Pi ∈ Fail will be reconstructed correctly: Recall that for reconstruct-
ing a1

i , . . . , a
`
i , we tried to reconstruct a1j

i , . . . , a`j
i corresponding to each

Pj ∈ Passa from 〈a1j
i , . . . , a`j

i 〉Pj

t generated by Pj in Randoma. Notice

that since 〈〈a1j, . . . , a`j〉〉Pj

t has ε
n

error, it implies that 〈a1j
i , . . . , a`j

i 〉Pj

t

will have ε
n2 error. Now since |Passa \ C| ≥ t + 1 (because all hon-

est parties in Passa will also be present in Passa \ C with very high

probability), the values a1j
i , . . . , a`j

i corresponding to all Pj ∈ Passa \ C
will be reconstructed correctly, except with probability (t + 1) ε

n2 ≈ ε
n

(follows from Lemma 5.3).

Now since there can be at most t Pi’s in Fail, it implies that except
with probability t ε

n
≈ ε, the values a1j

i , . . . , a`j
i corresponding to all Pj’s

in Passa \ C and all Pi’s in Fail will be reconstructed correctly.

(b) The values
∑

Pj∈C a1j
i , . . . ,

∑
Pj∈C a`j

i for all Pi ∈ Fail will be recon-

structed correctly: Recall that the parties execute
5VSS-MS-Rec(P , 〈〈∑Pj∈C a1j, . . . ,

∑
Pj∈C a`j〉〉t, ε

n
) to publicly reconstruct∑

Pj∈C a1j, . . . ,
∑

Pj∈C a`j. The reconstruction will be successful, ex-

cept with error probability ε
n
. This follows from the fact that each of

〈〈a1j, . . . , a`j〉〉Pj

t are generated in 5VSS-MS-Share(Pj,P , (a1j, . . . , a`j〉〉t, ε
n
)

with error parameter ε
n

and therefore 〈〈∑Pj∈C a1j, . . . ,
∑

Pj∈C a`j〉〉t will

have ε
n

error. Thus
∑

Pj∈C a1j, . . . ,
∑

Pj∈C a`j will be reconstructed cor-

rectly except with error probability ε
n
.

Once
∑

Pj∈C a1j, . . . ,
∑

Pj∈C a`j and all a1j
i , . . . , a`j

i corresponding to all Pj ∈
Passa \ C are publicly known, the parties can publicly reconstruct a1

i , . . . , a
`
i cor-

responding to each Pi ∈ Fail. Thus parties can reconstruct
∑

Pi∈Fail ri(c
1
i , . . . , c

`
i)

correctly, except with probability ε + ε
n
≈ ε.

Now as 〈〈c1, . . . , c`〉〉t =
∑

Pi∈(P\Fail) ri〈〈c1
i , . . . , c

`
i〉〉Pi

t +
∑

Pi∈Fail ri(c
1
i , . . . , c

`
i),

the error probability in generating the above is ε + ε ≈ ε.

110

Secrecy: From the secrecy property of Random, the values (a1
i , . . . , a

`
i) and

(b1
i , . . . , b

`
i) are completely random and unknown to At. Now According to the se-

crecy of protocol ProveCeqAB, (c1
i , . . . , c

`
i), (a1

i , . . . , a
`
i) and (b1

i , . . . , b
`
i) will remain

secure for every honest Pi. Now if a corrupted Pi fails to generate 〈〈c1
i , . . . , c

`
i〉〉Pi

t

in ProveCeqAB, then we reconstruct a1
i , . . . , a

`
i and b1

i , . . . , b
`
i which are already

known to adversary. In fact all the values that are publicly reconstructed in
the protocol are already known to adversary. Now as 〈〈c1, . . . , c`〉〉t is generated
by taking linear combination of 〈〈c1

i , . . . , c
`
i〉〉Pi

t ’s (in which at least t + 1 set of
c1
i , . . . , c

`
i are unknown to At), the secrecy of c1, . . . , c` is guaranteed. 2

Lemma 5.8 Protocol Mult has the following bounds:

1. Round Complexity: Twenty four rounds.

2. Communication Complexity: Private and broadcast communication of
O((`n3 + n5) log 1

ε
) bits.

Proof: Step 1 requires five rounds (invokes two instances of Random in parallel).
Step 3 requires fifteen rounds (invokes n parallel instances of ProveCeqAB). Step 4
requires four rounds (invokes several instances of Rec in parallel and then several
instances of 5VSS-MS-Rec in parallel). In total Mult requires twenty four rounds.
The communication complexity of Mult can be verified easily. 2

5.3.2 Conversion From 2d(?,`)-sharing to ` Individual 2d?-sharing

In the previous section, we have generated 2d(?,`)-sharing of random multiplication
triples, namely 〈〈a1, . . . , a`〉〉t, 〈〈b1, . . . , b`〉〉t and 〈〈c1, . . . , c`〉〉t, each having ε

n
error. But recall that the goal of Preparation phase was to generate 2d?-sharing of
each of the a, b and c values, namely (〈〈al〉〉t, 〈〈bl〉〉t, 〈〈cl〉〉t), where l = 1, . . . , cM +
cR, with each 2d?-sharing having ε

(2cM+cO)
error. It is to be noted that there are

two issues that need to be handled to attain the goal of Preparation phase: (a)
generation of 2d?-sharing of individual secrets from 2d(?,`)-sharing; (b) change
of error i.e given 2d(?,`)-sharing with ε

n
error, we have to generate 2d?-sharings

having ε
(2cM+cO)

error.

The first issue is necessary to handle due to the following reason: In prepara-
tion phase, generating sharing of individual values is essential as otherwise due
to the inherent limitation of 2d(?,`)-sharing (as mentioned in subsection 4.3.1), an
attempt to reconstruct a single value out of those ` secrets will reveal the entire
set of values. This is certainly undesirable as this may lead to breach of secrecy
in the following way: recall that we stated in the overview of our statistical MPC
that one multiplication triple (each value is 2d?-shared) will be associated with
each multiplication gate of the circuit and the gate will be computed with the
help of it using two reconstructions; Now if we associate the multiplication triple
while they are still 2d(?,`)-shared, reconstruction for the first multiplication gate
will disclose all other multiplication triples. Thus the separation of the secrets
are necessary.

The second issue has to be ensured to bound the error probability of Com-
putation phase by ε (details are provided in section 5.5). Hence at this juncture,
we require a technique to convert a 2d(?,`)-sharing of ` values having error ε to `
separate 2d?-sharing of same values having error δ, while maintaining the secrecy
of those values. In this section, we attempt the same and devise a protocol called

111

Convert to achieve the above goal. Assuming that the given 2d(?,`)-sharing has
ε error, protocol Convert generates each of the individual 2d?-sharing having δ
error.

Protocol Convert works on a field F = GF (2κ), where κ has to be determined
using relation ε ≥ n32−κ as well as δ ≥ n32−κ. This is because, Convert uses
MVMS-ICP with ε

n2 as well as δ
n2 error probability. So here κ = O(log 1

max(ε,δ)
).

The protocol is formally given in Fig. 5.5.

Figure 5.5: Protocol for converting 2d(?,`)-sharing to ` separate 2d?-sharing.

(〈〈s1〉〉t, . . . , 〈〈s`〉〉t) = Convert(P, `, 〈〈s1, . . . , s`〉〉t, ε, δ)

Let Si = (s1
i , . . . , s

`
i) be the ith shares of S = (s1, . . . , s`) and Sij = (s1

ij , . . . , s
`
ij) be

the jth share-share of Si = (s1
i , . . . , s

`
i). Now given 〈〈s1, . . . , s`〉〉t having ε error, it

implies that corresponding to honest Pi, either Sij is publicly known or honest Pj

holds ICSig(Pi, Pj ,P, Sij) having ε
n2 error. So for every pair of parties (Pi, Pj),

party Pi and Pj do the following communication:

1. If Sij is known in public, then parties Pi and Pj do not communicate any-
thing.

2. Otherwise, Pi sends ICSig(Pi, Pj ,P, sl
ij) having δ

n2 error to Pj for all l ∈
{1, . . . , `}. Upon receiving ICSig(Pi, Pj ,P, sl

ij) having δ
n2 error from Pi for

all l ∈ {1, . . . , `}, party Pj now checks if sl
ij = sl

ij for all l ∈ {1, . . . , `}.

3. For every l for which the above test fails, Pj reveals ICSig(Pi, Pj ,P, sl
ij)

having δ
n2 error. Pj also reveals ICSig(Pi, Pj ,P, Sij) having ε

n2 error.

4. If Pj has successfully revealed ICSig(Pi, Pj ,P, sl
ij) and ICSig(Pi, Pj ,P, Sij)

and indeed there is a mismatch for lth value, then all parties ignore all the
information received so far from Pi regarding 〈〈sl〉〉t.

Lemma 5.9 Protocol Convert achieves the following properties:

1. Correctness: Given 〈〈s1, . . . , s`〉〉t having ε error, the protocol produces
〈〈sl〉〉t having δ error for l = 1, . . . , `, except with probability max(ε, δ).

2. Secrecy: The values s1, . . . , s` remain secure.

Proof: Correctness: It is clear that if at all 〈〈sl〉〉t is generated, then it will
have δ error, as each of its underlying IC signature, namely ICSig(Pi, Pj,P , sl

ij)

will have δ
n2 error.

Next we show that protocol Convert will generate ` 2d?-sharing, except with
probability max(ε, δ). First notice that for every honest pair (Pi, Pj), Pj will

correctly receive ICSig(Pi, Pj,P , sl
ij) with sl

ij = sl
ij for all l ∈ {1, . . . , `}. Now

for an l ∈ {1, . . . , `}, the sharing 〈〈sl〉〉t will not be generated if some corrupted

Pj is able to accuse some honest Pi by revealing ICSig(Pi, Pj,P , sl
ij) as well

as ICSig(Pi, Pj,P , Sij) such that sl
ij 6= sl

ij. In this case Pi’s signatures with

112

respect to 〈〈sl〉〉t will be ignored by everybody. This will violate definition of
2d?-sharing as it demands that corresponding to every honest Pi, every other
honest Pj should hold ICSig(Pi, Pj,P , sl

ij) or the value sl
ij should be public. But

a corrupted Pj can accuse honest Pi and make every body ignore Pi’s informa-
tion for some l ∈ {1, . . . , `} with probability only max(ε

n2 ,
δ
n2), as Pj can forge

ICSig(Pi, Pj,P , sl
ij) with probability δ

n2 or ICSig(Pi, Pj,P , Sij) with probability
ε

n2 . Now as there can be (t + 1)t pairs with one honest and one corrupted party,
the probability that some honest party is accused by some corrupted party is at
most max(ε, δ).

Secrecy: Secrecy follows from the secrecy of protocol MVMS-ICP and due to the
fact that the revealed values are already known to adversary. 2

Lemma 5.10 Protocol Convert has the following bounds:

1. Round Complexity: Five Rounds.

2. Communication Complexity: Private and broadcast communication of
O(`n3 log 1

max (δ,ε)
) bits.

Proof: Convert executes several instances of Gen, Ver and Reveal in the se-
quence. Therefore, it requires five rounds. Communication complexity is easy to
verify. 2

5.3.3 Preparation Phase — Main Protocol

Here we present the protocol for preparation phase (called as PreparationPhase)
where 2d?-sharing of cM + cR random multiplication triples ((ak, bk, ck) ; k =
1, . . . , cM + cR) are generated, each having ε

(2cM+cO)
error.

PreparationPhase works on a field F = GF (2κ), where κ has to be determined
using the relation ε ≥ n32−κ ·max(n2, (2cM +cO)). Since PreparationPhase invokes
Mult with ε error probability, ε ≥ n52−κ should hold. Similarly, since Prepara-
tionPhase invokes Convert with ε

n
and ε

(2cM+cO)
error probability, ε ≥ n42−κ as well

as ε ≥ (2cM+cO)n32−κ should hold. Therefore, ε ≥ max(n52−κ, (2cM+cO)n32κ) =
n32−κ ·max(n2, (2cM + cO)). Here κ = O(log 1

ε
), because of n = O(log 1

ε
) and the

assumption n = poly(cM , cO, cA, cI).

Lemma 5.11 Except with error probability of ε, protocol PreparationPhase pro-
duces correct 2d?-sharing of (cM + cR) secret multiplication triples, where each
sharing has ε

(2cM+cO)
error.

Proof: The error probability of ε of protocol PreparationPhase comes from the
executions of Mult and Convert. The output sharings will have ε

(2cM+cO)
error.

This follows from the Correctness of Convert. 2

Lemma 5.12 Protocol PreparationPhase achieves the following:

1. Round Complexity: Twenty Nine Rounds.

2. Communication Complexity: Private and broadcast communication of
O((cM + cR)n3 + n5) log 1

ε
) bits.

113

Figure 5.6: Protocol for generating 2d?-sharing of cM +cR random multiplication triples
((al, bl, cl) ; l = 1, . . . , cM + cR).

{(〈〈al〉〉t, 〈〈bl〉〉t, 〈〈cl〉〉t); l = 1, . . . , cM + cR} = PreparationPhase(P, ε)

1. Parties execute protocol Mult(P, cM + cR, ε) to generate
〈〈a1, . . . , acM+cR〉〉t, 〈〈b1, . . . , bcM+cR〉〉t, 〈〈c1, . . . , ccM+cR〉〉t, each having
ε
n error.

2. Parties execute

(a) Convert(P, cM + cR, 〈〈a1, . . . , acM+cR〉〉t, ε
n , ε

(2cM+cO)), to generate
(〈〈a1〉〉t, . . . , 〈〈acM+cR〉〉t), each having ε

(2cM+cO) error;

(b) Convert(P, cM + cR, 〈〈b1, . . . , bcM+cR〉〉t, ε
n , ε

(2cM+cO)), to generate
(〈〈b1〉〉t, . . . , 〈〈bcM+cR〉〉t), each having ε

(2cM+cO) error and

(c) Convert(P, cM + cR, 〈〈c1, . . . , ccM+cR〉〉t, ε
n , ε

(2cM+cO)), to generate
(〈〈c1〉〉t, . . . , 〈〈ccM+cR〉〉t), each having ε

(2cM+cO) error.

3. All the parties output (〈〈al〉〉t, 〈〈al〉〉t, 〈〈cl〉〉t); l = 1, . . . , cM +cR, each having
ε

(2cM+cO) error.

Proof: Step 1 requires twenty four rounds (invokes one instance of Mult). Step 2
requires five rounds (invokes three instances of Convert in parallel). Therefore the
round complexity of PreparationPhase is twenty nine rounds. The communication
complexity of PreparationPhase can be verified easily. 2

5.4 Input Phase

The goal of the Input Phase is to generate 2d?-sharing of the inputs of each party,
where every sharing has ε

max(n2,(2cM+cO))
error. Assume that Pi ∈ P has ci inputs

with ci = O(n). So total number of input gates cI =
∑n

i=1 ci. Now in Input Phase,
each Pi on having inputs si1, . . . , sici , execute 5VSS-Share(Pi,P , sil, ε

max(n2,(2cM+cO))
)

for all l = 1, . . . , ci. If Pi is discarded during 5VSS-Share(Pi,P , sil, ε
max(n2,(2cM+cO))

),

then everyone assumes ci predefined values on behalf of Pi.
InputPhase works on a field F = GF (2κ), where κ has to be determined using

the relation ε ≥ n32−κ ·max(n2, (2cM + cO)). This is the same field that Prepara-
tionPhase worked on. Since InputPhase invokes 5VSS-Share with ε

max(n2,(2cM+cO))

error probability, we require ε ≥ n32−κ · max(n2, (2cM + cO)). The protocol is
given in Fig. 5.7.

Lemma 5.13 Except with error probability of at most ε, protocol InputPhase pro-
duces correct 2d?-sharing of all the inputs of the honest parties, where each sharing
will have ε

max(n2,(2cM+cO))
error.

Proof: Every honest party will generate 2d?-sharing of all its inputs, except with
error probability εci

max(n2,(2cM+cO))
. Since there are at least t + 1 honest parties, all

114

Figure 5.7: Protocol for generating 2d?-sharing of the inputs of each party.

(〈〈si1〉〉t, . . . , 〈〈sici〉〉t; i = 1, . . . , n) = InputPhase(P, ε)

1. Every party Pi on having inputs si1, . . . , sici , execute 5VSS-
Share(Pi,P, sil, ε

max(n2,(2cM+cO))
) for all l = 1, . . . , ci.

2. If Pi is discarded during 5VSS-Share(Pi,P, sil, ε
max(n2,(2cM+cO))

), then every-
one assumes ci predefined values on behalf of Pi.

of them will generate 2d?-sharing of all their inputs, except with error probability
εcH

max(n2,(2cM+cO))
, where cH is the sum of ci’s corresponding to honest parties. Now

we have εcH

max(n2,(2cM+cO))
≈ ε since ci = O(n) and thus cH = O(n2). 2

Lemma 5.14 Protocol InputPhase has the following bounds:

1. Round Complexity: Five Rounds.

2. Communication Complexity: Private and broadcast communication of
O((cIn

3 + n5) log 1
ε
) bits.

5.5 Computation Phase

Once Preparation Phase and Input Phase are over, the computation of the circuit
(of the agreed upon function f) proceeds gate-by-gate. First, to every random
and every multiplication gate, a prepared 2d?-shared random multiplication triple
(generated during Preparation Phase) is assigned. A gate (except output gate)
g is said to be evaluated if a 2d?-sharing 〈〈x〉〉t is computed for the gate using
the 2d?-sharing of the inputs of the gate. Note that all the random and input
gates will be evaluated as soon as we assign 2d?-shared random triples (generated
in Preparation Phase) and 2d?-shared inputs (generated in Input Phase) to
them respectively. A gate is said to be in ready state, when all its input gates
have been evaluated. In the Computation Phase, the circuit evaluation pro-
ceeds in rounds where in each round all the ready gates will be evaluated in
parallel. Evaluation of input and random gates do not require any communica-
tion. Due to linearity of 2d?-sharing, linear gates can be evaluated without any
communication.

For evaluating a multiplication gate, we use Beaver’s Circuit Randomization
technique [5]. Let x and y be the inputs of a multiplication gate, such that
parties hold 〈〈x〉〉t and 〈〈y〉〉t. Moreover, let (〈〈a〉〉t, 〈〈b〉〉t, 〈〈c〉〉t) be the multipli-
cation triple (generated during Preparation Phase), which is associated with
the multiplication gate. Now the parties want to generate 〈〈z〉〉t, where z = xy.
Moreover, if x and y are unknown to At, then x, y and z should be still unknown
to At. This can be done using Beaver’s Circuit Randomization technique as fol-
lows: xy can be written as xy = ((x− a) + a)((y − b) + b). Let α = (x− a) and
β = (y− b). The parties compute 〈〈α〉〉t and 〈〈β〉〉t. Then the parties reconstruct
α and β. For this the parties execute protocol 5VSS-Rec. Once α and β are
known to everyone, the parties compute 〈〈z〉〉t = αβ + α〈〈b〉〉t + β〈〈a〉〉t + 〈〈c〉〉t.

115

The secrecy of x, y and z follows from the fact a, b are completely random and
unknown to At [5]. As soon as an output gate becomes ready, the input to the
output gate is reconstructed by every party by executing protocol 5VSS-Rec. The
protocol for Computation Phase is given in Fig. 5.8. This protocol works on
the same field that was used by both PreparationPhase and InputPhase.

Figure 5.8: Protocol for computing the circuit.

ComputationPhase(P, ε)

If a gate is in ready state, compute the gate in the following way depending on the
type of the gate:
Input Gate: 〈〈s〉〉t = IGate(〈〈s〉〉t)

1. No computation is performed here. Simply output 〈〈s〉〉t.
Random Gate: 〈〈a〉〉t = RGate(〈〈a〉〉t, 〈〈b〉〉t, 〈〈c〉〉t)

1. No computation is performed here. Simply output 〈〈a〉〉t.
Addition Gate: 〈〈z〉〉t = AGate(〈〈x〉〉t, 〈〈y〉〉t)

1. Compute and output 〈〈z〉〉t = 〈〈x〉〉t + 〈〈y〉〉t.
Multiplication Gate: 〈〈z〉〉t = MGate(〈〈x〉〉t, 〈〈y〉〉t, (〈〈a〉〉t, 〈〈b〉〉t, 〈〈c〉〉t))

1. Let 〈〈x〉〉t and 〈〈y〉〉t are the inputs to the multiplication gate and
(〈〈a〉〉t, 〈〈b〉〉t, 〈〈c〉〉t) is the random multiplication triple assigned to it.

2. Parties compute 〈〈α〉〉t = 〈〈x〉〉t − 〈〈a〉〉t and 〈〈β〉〉t = 〈〈y〉〉t − 〈〈b〉〉t.
3. Parties invoke 5VSS-Rec to publicly reconstruct α and β from 〈〈α〉〉t and
〈〈β〉〉t respectively.

4. Parties compute 〈〈z〉〉t = αβ + α〈〈b〉〉t + β〈〈a〉〉t + 〈〈c〉〉t.
Output Gate: x = OGate(〈〈x〉〉t)

1. Parties invoke 5VSS-Rec to publicly reconstruct x from 〈〈x〉〉t and output x.

Lemma 5.15 Given 2d?-sharing of (cM + cR) secret multiplication triples, each
having ε

(2cM+cO)
error and 2d?-sharing of the inputs of the parties, each having

ε
max(n2,(2cM+cO))

error, protocol ComputationPhase correctly evaluates the circuit

gate-by-gate in a shared fashion and outputs the desired outputs, except with error
probability ε.

Proof: Each multiplication gate requires public reconstruction of two 2d?-
sharing, while each output gate requires public reconstruction of one 2d?-sharing.
Each such sharing will have at most ε

(2cM+cO)
error which is maximum of ε

(2cM+cO)

and ε
max(n2,(2cM+cO))

(this will follow from Linearity of 2d?-sharing). So throughout

the computation, reconstruction of secrets from their 2d?-sharing has to be done
at most 2cM + cO times. So in the worst case, the computation of the circuit will
generate correct output, except with error probability ε

(2cM+cO)
(2cM + cO) = ε.

116

Moreover, Preparation Phase and Input Phase will succeed, except with er-
ror probability ε. Hence Computation Phase will have an error probability of
ε. 2

Lemma 5.16 Protocol ComputationPhase achieves the following bounds:

1. Round Complexity: 2D Rounds, where D is multiplicative depth of the
circuit.

2. Communication Complexity: Private and broadcast communication of
O((cM + cO)n3 log 1

ε
) bits.

5.6 Statistical MPC Protocol

Now our new statistical MPC protocol for evaluating function f is: (1). Invoke
PreparationPhase(P , ε) and InputPhase(P , ε) parallely. (2). Invoke Computation-
Phase(P , ε). The protocol works on a field F = GF (2κ), where κ has to be
determined using the relation ε ≥ n32−κ ·max(n2, (2cM + cO)).

Theorem 5.17 Except with an error probability ε, our new statistical MPC pro-
tocol can correctly compute an agreed upon function, against an active adversary
At where n = 2t+1. During the protocol, adversary does not get any extra infor-
mation other than what can be inferred from the input and output of the corrupted
parties.

Theorem 5.18 Our statistical MPC protocol achieves the following:

1. Round Complexity: 29+2D+2 = O(D); 29: For preparation plus input
phase, 2D: For multiplications gates, 2: For output gates.

2. Communication Complexity: Private and Broadcast communication of
O(((cI + cR + cM + cO)n3 + n5) log 1

ε
) bits.

3. Computation Complexity: Poly(n, log 1
ε
, cI , cM , cA, cO, cR).

5.7 Conclusion and Open Problems

In this chapter, we presented a new optimally resilient statistical MPC whose
round complexity is O(D) and which broadcasts O(n3 log 1

ε
) bits per multipli-

cation gate. Hence our protocol maintains the round complexity of most round
efficient protocol while improving the communication complexity. Moreover, for
all functions with constant multiplicative depth, our protocol achieves constant
round complexity while most communication efficient MPC of [12] requires O(n2)
rounds.

The key building blocks of our new MPC are the novel ICP presented in
Chapter 2 and a VSS protocol presented in Chapter 4. Using our VSS protocol,
we propose a new and robust multiplication protocol for generating multiplication
triples. We leave the following as an interesting open question:

Open Problem 8 Can we further improve the communication and round com-
plexity of optimally resilient, statistical MPC protocol in synchronous network?

117

Chapter 6

Statistical Multiparty Set
Intersection

In information theoretic settings, a protocol for multiparty set intersection (MPSI)
allows a set of n parties, each having a set of size m to compute the intersection
of those sets, even though t out of the n parties are corrupted by an active adver-
sary having unbounded computing power. In this chapter, we re-visit the problem
of MPSI in information theoretic settings. In information theoretic settings, Li
et al. [116] have proposed an statistical MPSI protocol with n = 3t + 1 parties.
However, we show that the round and communication complexity of the protocol
in [116] is much more than what is claimed in [116].

We then propose a new statistical protocol for MPSI with n = 3t + 1 parties,
which significantly improves the ”actual” round and communication complexity of
the protocol given in [116]. To design our protocol, we use several tools including
a statistical VSS protocol, which are of independent interest.

Both the protocol of [116] and our proposed protocol have non-optimal re-
silience. So in this chapter, we also present a protocol for statistical MPSI with
optimal resilience; i.e., with n = 2t + 1. This protocol adapts some of the tech-
niques used in our proposed general statistical MPC protocol presented in Chap-
ter 5. To the best of our knowledge, this is the first ever MPSI protocol with
n = 2t + 1.

6.1 Introduction

6.1.1 Secure Multiparty Set Intersection (MPSI)

In information theoretic settings, a protocol for multiparty set intersection (MPSI)
allows a set of n parties, each having a set of size m to compute the intersection
of those sets, even though t out of the n parties are corrupted by an active or
Byzantine adversary At, having unbounded computing power. Specifically, let the
set of n parties be denoted by P = {P1, . . . , Pn}. Each party Pi has a private
data-set Si, containing m elements from a finite field F. The goal of an MPSI
protocol is to compute the intersection of these n sets, satisfying the following
properties, even in the presence of At:

1. Correctness: At the end of the protocol, each honest party correctly gets
the intersection of the n sets, irrespective of the behavior of At and

118

2. Secrecy: The protocol should not leak any extra information to the cor-
rupted parties, other than what is implied by the input of the corrupted
parties (i.e., the data-sets possessed by corrupted parties) and the final out-
put (i.e., the intersection of all the n data-sets).

MPSI problem is a specific instance of MPC problem and also it is an interesting
secure distributed computing problem by its own right. It has huge practical
applications such as online recommendation services, medical databases, data
mining etc. [84, 113].

6.1.2 Existing Literature on MPSI

The MPSI problem was first studied in cryptographic model in [84, 113], under
the assumption that At has bounded computing power. By representing the data-
sets as polynomials, the authors of [84, 113] reduced the set intersection problem
to the task of securely computing the common roots of n polynomials. The
reduction is as follows: Let S = {e1, . . . , em} be a set of size m, where ∀i, ei ∈ F.
Now set S can be represented by a polynomial f(x) of degree m, where f(x) =∏m

i=1(x − ei) = a0 + a1x + . . . + amxm. It is obvious that if an element e is a
root of f(x), then e is a root of r(x)f(x) too, where r(x) is a random polynomial
of degree m over F. Now for MPSI, party Pi represents his set Si, by a degree-
m polynomial f i(x) and supplies its m + 1 coefficients as his input, in a secure
manner. Then all the parties jointly and securely compute

F (x) = (r1(x)f 1(x) + r2(x)f 2(x) + . . . + rn(x)fn(x)) (6.1)

where r1(x), . . . rn(x) are n random, secret polynomials of degree m over F, jointly
generated by the n parties. Note that F (x) preserves all the common roots of
f 1(x), . . . , fn(x). Every element e ∈ (S1 ∩ S2 ∩ . . . ∩ Sn) is a root of F (x),
i.e. F (e) = 0. Hence after computing F (x) in a secure manner, it can be
reconstructed by every party, who locally checks if F (e) = 0 for every e in his
private set. All the e’s at which the evaluation of F (x) is zero form the intersection
set (S1 ∩ S2 ∩ . . .∩ Sn). In [113], it has been proved formally that F (x) does not
reveal any extra information to the adversary, other than what can be deduced
from (S1 ∩ S2 ∩ . . . ∩ Sn) and input set Si of the corrupted parties. This asserts
that the above method of solving MPSI problem perfectly maintains Secrecy
property (for the sake of completeness, we will prove this later in this chapter).
But it is to be noted that the above method satisfies Correctness only with
very high probability but not perfectly. The reason is that there may exist some
e′ ∈ F, such that F (e′) = 0, even though e′ 6∈ (S1 ∩ S2 ∩ . . . ∩ Sn). These e′ ∈ F
are the roots of F (x) that are not part of the intersection set, but may belong to
the private data-sets of some of the honest parties. In [113], it has been proved
formally that the roots of F (x) which are not part of intersection set, may belong
to the private data-sets of some of the honest parties with negligible probability.
For the sake of completeness, we will provide an elaborate proof for this later in
this chapter.

In [116], the authors presented the first information theoretically secure pro-
tocol for MPSI, assuming At to be computationally unbounded and n = 3t + 1.
Specifically, the authors have shown how to securely compute F (x) in the pres-
ence of a computationally unbounded At. Notice that, although not explicitly
stated in [116], the MPSI protocol of [116] involves a negligible error probability

119

in Correctness. This is due to the argument given above. Hence, the MPSI
protocol of [116] is statistical in nature, having a negligible error probability in
Correctness.

6.1.3 The Network and Adversary Model

An MPSI protocol is executed among a set of n parties, denoted by P = {P1, . . . ,
Pn}, among which at most t parties can be corrupted by a centralized adversary
At. In this chapter, we consider two cases: n = 3t + 1 as well as n = 2t +
1. We assume that each party is directly connected to every other party by a
secure channel. The underlying network is assumed to be synchronous. Any
protocol in such a network operates in a sequence of rounds. When n = 3t + 1,
then the availability of physical broadcast channel is optional. If a physical
broadcast channel is available in the system, then a broadcast will take one
round. Otherwise, we can simulate broadcast using a protocol (for example say
protocols of [89, 40]) among the parties in P , which will have the same effect as
a physical broadcast channel. The broadcast protocols of [89, 40] requires O(t)
rounds and private communication of O(n2`) bits to simulate broadcast for ` bit
message. But while we consider n = 2t + 1, we assume the explicit availability
of a physical broadcast (recall that it is necessary for any statistical MPC with
n = 2t + 1).

As in the previous chapters, the adversary that we consider is a static, thresh-
old, active and rushing adversary having unbounded computing power.

6.1.4 Our Motivation and Contribution

The authors in [116] claimed that their MPSI protocol takes six rounds and
communicates O(n4m2) elements from F1. However, we show that the round
and communication complexity of the MPSI protocol of [116] is much more than
what is claimed in [116]. We then propose a new, statistical protocol for MPSI
with n = 3t + 1 parties, which significantly improves the “actual” round and
communication complexity of the MPSI protocol given in [116]. The protocol
takes constant number of rounds, incurs a communication of O((m2n3 +n3) log 1

ε
)

bits, where each party has a set of size m and the protocol involves an error
probability of ε. The key tools of our new MPSI are a new statistical VSS and
few others special purpose protocols designed with 3t + 1 parties. Needless to
say, our VSS and other tools are of independent interest.

Both the protocol of [116] and our proposed protocol have non-optimal re-
silience. In fact, in [116], the authors have left it as an open problem to design
an MPSI protocol with optimal resilience; i.e., with n = 2t + 1. So in this chap-
ter, we also present a protocol for statistical MPSI with optimal resilience; i.e.,
with n = 2t + 1 (given a physical broadcast channel). This protocol adapts some
of the techniques used in our proposed statistical MPC protocol presented in
Chapter 5. The protocol takes constant number of rounds, incurs a communica-
tion of O((m2n4 + n5) log 1

ε
) bits. So our MPSI protocol with optimal resilience

requires a communication complexity that is n2 times more than the communi-
cation complexity of the MPSI protocol designed with n = 3t + 1. To the best of
our knowledge, this is the first ever MPSI protocol with n = 2t + 1.

1In [116], k is used to denote the size of each set.

120

6.1.5 The Road-map

In section 6.2, we give a correct estimate of the round and communication com-
plexity of the MPSI protocol of [116]. In section 6.3, we elaborately discuss about
our new MPSI protocol with n = 3t + 1. In section 6.4, we present a simple pro-
tocol for generating random values from field F. In section 6.5, we present our
new statistical VSS protocol. In section 6.7, we present a multiplication protocol
(an important tool for designing MPSI protocol), along with the required sub-
protocol for constructing the multiplication protocol. Subsequently in section 6.8,
we present our MPSI protocol with n = 3t + 1. Finally in section 6.9, we design
our MPSI with optimal resilience. We conclude the chapter with a concluding
remark in section 6.10.

6.2 Round and Communication Complexity of MPSI Pro-
tocol of [116]

In order to securely compute F (x) given in (6.1) against a computationally un-
bounded At, the MPSI protocol of [116] is divided into three phases: (a) Input
Phase, (b) Computation Phase and (c) Output Phase. We briefly recall the steps
performed in first two phases (which are the most expensive phases in terms of
round and communication complexity) and try to give a correct analysis of those
phases.

1. Input Phase: Here each party represents his private data-set Si as a poly-

nomial say, f i(x) and t-shares2 the coefficients of f i(x) among the n parties.
Moreover, each party also t-shares n(m + 1) random values which can be as-
sumed as the coefficients of n random polynomials, each of degree m. These
n(m + 1) random sharings are used to generate the sharings of the coefficients of
the secret random polynomials r1(x), . . . , rn(x). To achieve t-sharing, the parties
use a VSS protocol. A VSS protocol [43, 137, 91, 73, 109, 125], ensures that a
party (possibly corrupted) “consistently” and correctly t-shares a value. So in
the Input Phase of [116], each party executes (m+1) instances of VSS to share
the coefficients of f i(x). In addition, each party also invokes n(m + 1) instances
of VSS to generate t-sharing of the coefficients of n random polynomials, each
of degree m. So the total number of VSS instances invoked in Input Phase is
O(n2m).

Now, the authors in [116] claimed that the above steps requires two rounds,
where in the first round, each party does the sharing and in the second round
verification is done by all parties to ensure whether everybody has received correct
and consistent shares (see section 4.2 in [116]). However, no estimation is done
for the communication complexity of this phase. Now it is well known that the
minimum number of rounds taken by any VSS protocol (that does not involve
any error probability) with n = 3t + 1 is at least three [91, 73, 109]. Moreover,
the current best three round VSS protocol with n = 3t + 1 requires a private
communication and broadcast of O(n3) field elements [73, 109]. So far there is
no statistical VSS (VSS with negligible error probability) protocol for n = 3t + 1
with less than three rounds for generating t-sharing.

2We say that an element c ∈ F is t-shared among the n parties, if there exists a random polynomial
p(x) over F of degree t such p(0) = c and each (honest) party Pi has the share p(i).

121

Now using the VSS of [73, 109], the Input Phase will take at least three
rounds, with a private communication and broadcast of O(n5m) field elements.

2. Computation Phase: Given that the coefficients of f 1(x), . . . , fn(x), r1(x),
. . . , rn(x) are t-shared in the Input Phase, in the Computation Phase the
parties jointly try to compute F (x) = r1(x)f 1(x)+r2(x)f 2(x)+ . . .+rn(x)fn(x),
such that the coefficients of F (x) are t-shared. For this, the parties execute a
sequence of steps. But we recall only first two steps, which are crucial in the
communication and round complexity analysis of the Computation Phase.

During step 1, the parties locally multiply the shares of the coefficients of
ri(x) and f i(x), for i = 1, . . . , n. This results in 2t-sharing3 of the coefficients
of f i(x)ri(x) for i = 1, . . . , n. During step 2, each party invokes a re-sharing
protocol and converts the 2t-sharing of the coefficients of f i(x)ri(x) into t-sharing,
for i = 1, . . . , n. The re-sharing protocol enables a party to generate t-sharing of
an element, given the t′-sharing of the same element, where t′ > t. In [116], the
authors have called a re-sharing protocol, without giving the actual details and
claimed that the re-sharing and other additional verifications will take only three
rounds, with a private communication of O(n4m2) field elements (see section 4.2
of [116]). The authors in [116] have given the reference of [98] for the details of
re-sharing protocol. However, the protocol given in [98] is a protocol for general
secure MPC, which uses “circuit based approach” to securely evaluate a function.
Specifically, the MPC protocol of [98] assumes that the (general) function to be
computed is represented as an arithmetic circuit over F, consisting of addition,
multiplication, random, input and output gates. The re-sharing protocol of [98]
was used to evaluate a multiplication gate. But the protocol was non-robust in the
sense that it fails to achieve its goal when at least one of the parties misbehaves, in
which case the protocol outputs a pair of parties such that at least one of them is
corrupted. In fact, the MPC protocol of [98] takes Ω(t) rounds in the presence of
broadcast channel in the system.The authors in [116] have not mentioned what
will be the outcome of their protocol if the re-sharing protocol (whose details
they have not given) fails during the Computation Phase. In fact, computing
t-sharing of the coefficients of F (x) by using the ideas of best known general MPC
protocol with n = 3t + 1 [98, 52, 14] will require a communication complexity of
Ω(m2n2) field elements and round complexity of Ω(t) rounds in the presence of
a broadcast channel.

To summarize, a more accurate estimation of the round complexity and com-
munication complexity of the MPSI protocol of [116] in the presence of a physical
broadcast channel is as follows:

In the presence of a physical broadcast channel in the system, the
Input Phase of the MPSI protocol in [116] will require a private and
broadcast communication of Ω(n5m) field elements. Moreover, the
Computation Phase of the MPSI protocol in [116] will take Ω(t)
rounds and communication complexity of Ω(m2n2) field elements.

3We say that an element c ∈ F is 2t-shared among the n parties if there exists a polynomial p(x)
over F of degree 2t, such that p(0) = c and each (honest) party Pi has the share p(i).

122

6.3 Discussion on Our New MPSI Protocol with n = 3t+1

We propose a new, information theoretically secure MPSI protocol with n =
3t + 1, tolerating a computationally unbounded At. Our protocol is based on the
approach of solving the MPSI by securely computing the function given in (6.1).
Moreover, our protocol involves a negligible error probability in Correctness.
However, as mentioned in section 6.1, any protocol for MPSI, based on computing
the function in (6.1) will involve a negligible error probability in Correctness. In
Table 6.1, we compare the round complexity (RC) and communication complexity
(CC) of our MPSI protocol with the estimated RC and CC of the MPSI protocol
of [116] (as stated in previous section).

Table 6.1: Comparison of our MPSI protocol with the MPSI protocol of [116].

Reference CC in bits RC

Private Broadcast

[116] Ω((n5m + m2n2) log(|F|)) Ω(n5m log(|F|)) Ω(t)

This Chapter O((m2n3 + n4) log(|F|)) O((m2n3 + n4) log(|F|)) 37

From the table, we find that our MPSI protocol improves the estimated round
complexity and communication complexity of the MPSI protocol of [116].

6.3.1 Our MPSI Protocol with n = 3t + 1 vs. Existing General MPC
Protocols

The MPSI problem may be considered as a specific instance of general secure
MPC problem [151]. Recall that the generic function f in a MPC is represented
as an arithmetic circuit over the finite field F, consisting of five type of gates,
namely addition, multiplication, random, input and output. The number of gates
of these types are denoted by cA, cM , cR, cI and cO respectively. Any general MPC
protocol tries to securely evaluate the circuit gate-by-gate, keeping all the inputs
and intermediate results of the circuit as t-shared (see [19, 5, 6, 7, 20, 12, 13, 14,
41, 48, 52, 95, 93, 98, 101, 103, 104, 135, 138] and their references).

The MPSI problem can be solved using any general MPC protocol. However,
since a general MPC protocol does not exploit the nuances and the special prop-
erties of the problem, it is not efficient in general. Moreover, we do not know
how to customize the generic MPC protocols to solve MPSI problem in an opti-
mal fashion. However, we outline below a general approach and use the same to
estimate the complexity of MPSI protocols, that could have been derived from
general MPC protocols.

Assume that an MPSI protocol computes the function given in (6.1), using
general MPC protocol. The arithmetic circuit, representing the function in (6.1),
will roughly require the following number of gates:

1. cI = n(m + 1) input gates, as every party Pi inputs (m + 1) coefficients of
f i(x);

2. cR = n(m + 1) random gates, as n polynomials r1(x), . . . , rn(x) will have
n(m + 1) random coefficients in total;

3. cM = n(m + 1)2 multiplication gates. This is because computing ri(x)f i(x)
requires (m + 1)2 coefficient multiplications;

123

4. cO = 2m + 1 output gates, as 2m + 1 coefficients of F (x) should be output.

In Table 6.2, we give the round complexity (RC) and communication com-
plexity (CC) of best known general MPC protocols with n = 3t + 1, to securely
compute the function (6.1), represented by above number of gates.

Table 6.2: Comparison of our MPSI with the general MPC protocols that securely
compute (6.1).

Reference CC in bits RC

Private Broadcast

[20] O(n5m2 log(|F|)) O(n5m2 log(|F|)) O(1)

[98] O(n4m2 log(|F|)) O(n2 log(|F|)) O(n)

[52] O(n2m2 log(|F|)) O(n2 log(|F|)) O(n)

[14] O(n2m2 log(|F|)) O(n3 log(|F|)) O(n)

This chapter O((m2n3 + n4) log(|F|)) O((m2n3 + n4) log(|F|)) 37

From Table 6.2, we find that our protocol incurs much lesser communication
complexity than the protocol of [20], while keeping the round complexity same.
But the protocols of [98, 52, 14] provide slightly better communication complex-
ity than ours at the cost of increased round complexity. Round complexity and
communication complexity are two important parameters of any distributed pro-
tocol. Therefore, if we ever hope to practically implement MPSI protocols, then
we should look for a solution that tries to simultaneously minimize both these
parameters.

Though our main motive in this chapter is to present a clean solution for
MPSI, as a bi-product we have shown that our protocol simultaneously improves
both communication and round complexity, whereas existing general MPC proto-
cols (when applied to solve MPSI) improve only one of these two parameters.

6.3.2 The Working Field of our MPSI Protocol

Our statistical MPSI protocol involves a negligible error probability of ε in cor-
rectness property. To bound the error probability by ε, all the computations in
our protocol are performed over a finite field F = GF (2κ),where κ has to be de-
termined using the relation ε ≥ max(m2, n)n32−κ. We assume that n = poly(m).
Any field element from field F can be represented by κ bits, where κ = log |F| =
O(log 1

ε
) (this can be derived using n = O(log 1

ε
) and n = poly(m)).

In order to bound the error probability of our MPSI protocol by some specific
value of ε, we find out the minimum value of κ that satisfies ε ≥ max(m2, n)n32−κ.
This value for κ will consequently determine the field F over which our protocol
should work.

6.3.3 Overview of Our Protocol

As mentioned earlier, our MPSI protocol tries to securely compute the function
given in (6.1). Our protocol is divided into four phases, namely (a) Input Phase;
(b) Preparation Phase; (c) Computation Phase and (d) Output Phase. In the
Input phase, the parties t-share the coefficients of their input polynomials. In the

124

Preparation phase, the parties jointly generate the t-sharing of the secret random
ri(x) polynomials. To achieve the task in Input phase, we design a new statistical
VSS protocol, called VSS that uses MVMS-ICP presented in Chapter 2. Note that
we can not use our 2-round sharing 2-round reconstruction (3t + 1, t) statistical
VSS protocol, namely protocol 2-Round-VSS, presented in section 3.4 of Chapter
3 for our purpose here. This is because as mentioned in Chapter 3, protocol
2-Round-VSS follows weak definition of statistical VSS (see Definition 3.3) and
also it does not generate t-sharing of secret. Now the task in Preparation phase
is achieved by a sub-protocol called Random that uses VSS as building block.

In the Computation Phase, the parties generate the t-sharing of the coefficients
of ri(x)f i(x). For this, we use sub-protocol Mult, which is a combination of few
existing ideas from the literature and few new ideas presented in this chapter.
Finally, in the Output Phase, the coefficients of F (x) are reconstructed by each
party.

Most of the sub-protocols presented in this chapter, are designed to concur-
rently deal with ` ≥ 1 values. We can show that our sub-protocols, concurrently
dealing with ` values, are better in terms of communication complexity, than
` concurrent executions of the existing sub-protocols working with single value.
Thus, our sub-protocols harness the advantage offered by dealing with multiple
values concurrently.

6.4 Generation of a Random Value

We now present a protocol called RandomVector(P), which allows the parties in
P to jointly generate a random element from F. Protocol RandomVector uses the
four round perfect VSS protocol of [91] (see Fig 2 of [91]) as black box. The
perfect VSS with n = 3t+1 parties consists of two phases, namely Sharing Phase
and Reconstruction Phase. The Sharing Phase takes four rounds and allows a
dealer D (which can be any party from the set of n parties) to verifiably share
a secret s ∈ F by privately communicating O(n2 log |F|) bits and broadcasting
O(n2 log |F|) bits where |F| ≥ n. The Reconstruction Phase takes single round and
allows all the (honest) parties to reconstruct the secret s (shared by D in Sharing
Phase) by broadcasting O(n log |F|) bits in total. Notice that, in our context,
|F| = 2κ ≥ n. The protocol is given in Fig. 6.1.

Lemma 6.1 Protocol RandomVector generates a random value in five rounds.
The protocol privately communicates and broadcasts O(n3 log 1

ε
) bits.

Proof: Communication and round complexity is easy to see. The correctness
follows from the correctness of the four round perfect VSS of [91] and the above
discussion. 2

6.5 Statistical VSS with n = 3t + 1

In this section, we present a new statistical VSS protocol with n = 3t + 1 parties
that can share/commit ` secrets concurrently. It follows the strong definition of
VSS (see Definition 3.2) as opposed to protocol 2-Round-VSS of Chapter 3 that
follows only the weak definition of VSS (see Definition 3.1). Hence we can not
use protocol 2-Round-VSS for our purpose here. Our VSS protocol presented in
this section has an error probability of ε.

125

Figure 6.1: Protocol RandomVector: Generates a random value.

RandomVector(P)

1. Every party Pi ∈ P selects a random element ri from F.

2. Every party Pi ∈ P as a dealer invokes Sharing Phase of four round VSS
protocol of [91] with n = 3t + 1 for sharing ri.

3. For reconstructing the values ri (shared by Pi in Sharing Phase), the Recon-
struction Phase of four round VSS of [91] with n = 3t + 1 is invoked. Now
corresponding to every Pi ∈ P, the values ri are public.

4. Now parties compute r =
∑n

i=1 ri. It is clear that r will be a random value
from F.

To bound the error probability by ε, the computation in our statistical VSS
protocol is performed over a field F = GF (2κ), where κ has to be determined
using the relation ε ≥ max(`, n2)2−κ. In our VSS protocol, MVMS-ICP will be
invoked with ε

n
error probability and as mentioned in previous section ε ≥ n2−κ

should hold to bound error probability of MVMS-ICP by ε. This implies that
ε ≥ n22−κ. During the discussion of our protocol, we will show that ε should also
satisfy ε ≥ `2−κ to bound the error probability of our VSS protocol by ε. Combin-
ing both the relations we get, ε ≥ max(`, n2)2−κ. So here each element from the

field is represented by κ = log |F| = O(log max(`,n2)
ε

) = O(log n+log 1
ε
) = O(log 1

ε
)

bits (this follows from n = O(log 1
ε
) and our assumption that ` = poly(n)).

The Intuition: Informally, our VSS protocol called as VSS works as follows:
In the sharing phase, D on having ` secrets (s1, . . . , s`) chooses ` + 1 random
polynomials f 0(x), . . . , f `(x) over F, each of degree t, such that f 0(0) = s0 and
f l(0) = sl for l = 1, . . . , `. Here s0 is a random non-zero element from F. D then
hands over his IC signature on ith points of `+1 polynomials concurrently to party
Pi. After this, the parties jointly produce a non-zero random value z. Now D is
asked to broadcast a linear combination of the ` + 1 polynomials. Specifically, D
broadcasts f(x) =

∑`
l=0 f l(x)zl. Now each party Pi has ith value on each of the

f l(x) polynomials. Thus with those values Pi can compute yi =
∑`

l=0 f l(i)zl and
check whether indeed yi = f(i) holds or not. If the condition is not satisfied the
Pi reveals the IC signature received from D on the ith values of the polynomials
f l(x). If Pi is successful in revealing the IC signature and indeed yi 6= f(i),
then D is discarded (and therefore ` predefined values are taken as D’s secret).
Otherwise, everybody assumes that D has correctly committed ` secrets, with
very high probability. The protocol for sharing phase is formally given in Fig.
6.2.

Reconstruction phase of VSS (presented in Fig. 6.3) can be easily implemented
using Reed-Solomon Error correction algorithm (e.g. Berlekamp Welch Algorithm
[119]).

We now prove the properties of our VSS scheme.

Claim 6.2 An honest D will not be discarded in sharing phase protocol VSS-

126

Figure 6.2: Protocol VSS-Share: Sharing Phase of Protocol VSS.

VSS-Share(D,P, `, (s1, . . . , s`), ε)

1. D chooses a random, non-zero element s0 from F. Now for l = 0, . . . , `, D
picks a random polynomial f l(x) over F of degree t, with f l(0) = sl. For
i = 1, . . . , n, let Si = (s0

i , s
1
i , . . . , s

`
i), where sl

i = f l(i) for l = 0, . . . , `.

(a) D sends ICSig(D, Pi,P, Si) having ε
n error to party Pi.

(b) Every party Pi receives ICSig(D,Pi,P, Si) having ε
n error from D.

2. All the parties in P invoke RandomVector(P) to generate a random value
z ∈ F.

3. D broadcasts the polynomial f(x) =
∑`

l=0 f l(x)zl. If the polynomial f(x)
broadcasted by D is of degree more than t, then D is discarded and the
protocol terminates here.

4. Every party Pi computes yi =
∑`

l=0 sl
iz

l and checks whether f(i) ?= yi. If no,
then Pi reveals ICSig(D, Pi,P, Si) having ε

n error. If Pi succeeds to produce
the IC signature and f(i) 6= ∑`

l=0 sl
iz

l, then D is discarded and the protocol
terminates here.

Figure 6.3: Protocol VSS-Rec: Reconstruction Phase of Protocol VSS

VSS-Rec(P, (s1, . . . , s`), ε)

Each party Pi broadcasts his share sl
i of sl for all l = 1, . . . , `. The parties apply

error correction algorithm (e.g. Berlekamp Welch Algorithm [119]) to reconstruct
sl from the n shares.

Share, with probability at least (1− ε).

Proof: If D is honest, then he will never broadcast a polynomial f(x) of de-
gree more than t. Now it is clear that an honest D will be discarded if some-
how any corrupted party Pi (there are at most t such parties) is able to reveal

ICSig(D,Pi,P , Si) such that Si = (s0
i , . . . , s

`
i) and f(i) 6= ∑`

l=0 sl
iz

l. We show
that this can happen only with probability at most ε.

By ICP-Correctness3, a corrupted Pi will be successful in revealing ICSig
(D,Pi,P , Si) with Si 6= Si, with probability ε

n
(recall that each IC signature has

ε
n

error). As there are t corrupted parties, the event that some corrupted party

will be able to reveal ICSig(D,Pi,P , Si) with Si 6= Si may occur with probability
at most t ε

n
≈ ε. Hence the claim. 2

Claim 6.3 If D is not discarded in VSS-Share, then there exists ` + 1 unique
polynomials f 0(x), . . . , f `(x) each of degree t, such that for all l = 1, . . . , `, sl

i

held by every honest Pi at the end of sharing phase satisfies f l(i) = sl
i with

probability at least (1− ε).

127

Proof: Assuming that D is not discarded in VSS-Share, the above lemma holds
when D is honest without any error probability. We now consider the case, when
D is corrupted and for at least one l, the sl

i values held by the honest parties lie
on a polynomial of degree higher than t. Let H be the set of honest parties in P .
Moreover, let h0(x), . . . , h`(x) denote the minimum degree polynomial, defined by
the points on f 0(x), . . . , f `(x) respectively, held by the parties in H. Then accord-
ing to our assumption, degree of at least one of the polynomials h0(x), . . . , h`(x)
is more than t. Moreover, notice that the degree of h0(x), . . . , h`(x) can be at
most |H| − 1. This is because |H| distinct points can define a polynomial of
degree at most |H| − 1. Now the value yi of an honest Pi can be defined as

yi =
∑`

j=0 zjhj(i). Let hmin(x) be the minimum degree polynomial defined by
yi’s, corresponding to Pi ∈ H.

We next claim that if degree of at least one of h0(x), . . . , h`(x) is more than
t, then hmin(x) will be of degree more than t, with very high probability. This
will clearly imply that f(x) 6= hmin(x) (as f(x) is a polynomial of degree t) and
hence yi 6= f(i), for at least one Pi ∈ H which is a contradiction, as other wise
honest Pi would have revealed ICSig(Pi, D,P , Si), except with error probability
ε
n

and D would have been discarded.
So we proceed to prove that hmin(x) will be of degree more than t, when one

of h0(x), . . . , h`(x) has degree more than t. For this, we show the following:

1. We first show that hdef (x) = Σ`
j=0z

jhj(x) will of degree more than t with

probability at least (1− ε), if one of h0(x), . . . , h`(x) has degree more than
t.

2. We then show that hmin(x) = hdef (x), implying that hmin(x) will be of
degree more than t.

So we proceed to prove the first point. Assume that m is such that hm(x)
has maximal degree among h0(x), . . . , h`(x), and let tm be the degree of hm(x).
Then according to our assumption, tm > t. Also recall that tm < |H|. This is
because given |H| values (recall that h0(x), . . . , h`(x) are defined by the points
on polynomials f 0(x), . . . , f `(x), held by the honest parties in H), the maximum
degree polynomial that can be defined using them is |H|−1. Now each hi(x) can

be written as hi(x) = ci
tmxtm + ĥi(x) where ĥi(x) has degree lower than tm. Thus

hdef (x) can be written as:

hdef (x) = [c0
tmxtm + ĥ0(x)] + z[c1

tmxtm + ĥ1(x)] + . . . + z`[c`
tmxtm + ĥ`(x)]

= xtm(c0
tm + . . . + z`c`

tm) + Σ`
j=0z

jĥj(x)

= xtmctm + Σn
j=0z

jĥj(x)

By assumption cm
tm 6= 0. It implies that (c0

tm , . . . , c`
tm) is not a complete 0

vector. Hence ctm = c0
tm + . . . + z`c`

tm will be zero with probability `
|F|−1

≤
`ε

max(`,n2)
≤ ε (to bound `

|F|−1
by ε, we require ε ≥ `2−κ; that is why we had set

ε ≥ max(`, n2)2−κ). This is because (c0
tm , . . . , c`

tm) may be considered as the set
of coefficients of a degree-` polynomial, say µ(x), and hence the value ctm is the
value of µ(x) evaluated at x = z. Now ctm will be zero if z happens to be one
of the ` roots of µ(x) (since degree of µ(x) is at most `). Since z is generated

128

randomly from F \ {0}, independent of h0(y), . . . , h`(x), the probability that it is
a root of µ(x) is `

|F|−1
≤ ε. So with probability at least (1− ε), ctm , which is the

tthm coefficient of hdef (x) is non-zero. This implies that hdef (x) will be of degree
tm > t with probability (1 − ε). Notice that each yi of an honest Pi, will lie on
hdef (x).

Now we will show that hmin(x) = hdef (x) and thus hmin(x) has degree at
least tm, which is greater than t. So consider the difference polynomial dp(x) =
hdef (x) − hmin(x). Clearly, dp(x) = 0, for all x = i, where Pi ∈ H. Thus dp(x)
will have at least |H| roots. On the other hand, maximum degree of dp(x) could
be tm, which is at most |H|− 1. These two facts together imply that dp(x) is the
zero polynomial, implying that hdef (x) = hmin(x) and thus hmin(x) has degree
tm > t. 2

Remark 6.4 (D’s Commitment in VSS-Share) The polynomials f 1(x), . . . ,
f `(x) defined in Claim 6.3 are called D’s committed polynomials in protocol VSS-
Share. The values (s1, . . . , s`) with sl = f l(0) are called D’s commitment in
VSS-Share.

Claim 6.5 In protocol VSS-Rec, polynomial f l
i (x) for all l = 1, . . . , ` will be re-

constructed with probability at least (1− ε), where f 1(x), . . . , f `(x) are D’s com-
mitted polynomials in VSS-Share.

Proof: From Claim 6.3, D’s committed polynomials are of degree t with prob-
ability at least (1− ε). Now by the property of Error correction [119, 121], 3t+1
points on a degree-t polynomial, out of which at most t could be corrupted are
enough to correctly reconstruct the polynomial. Hence the polynomials will be
reconstructed correctly with probability at least (1− ε) as n = 3t + 1. 2

Lemma 6.6 (Secrecy) Protocol VSS-Share satisfies perfect secrecy.

Proof: Here we have to consider the case when D is honest. The adversary
At will know only t shares for each si, 0 ≤ i ≤ n from t corrupted parties under
its control. Now, f(0) =

∑`
l=0 slzl. This implies that the linear combination of

the secrets i.e
∑`

l=1 slzl is blinded with a random value s0, chosen by honest D.
Thus, f(0) will look completely random for At. This shows that s1, . . . , s` will
remain information theoretically secure from At.

Lemma 6.7 (Correctness) Protocol VSS satisfies correctness property with prob-
ability at least (1− ε).

Proof: Here we have to consider the case when D is honest. By Claim 6.2,
honest D will never be discarded in sharing phase, except with probability ε.
Now by Claim 6.3, D will commit polynomials f 1(x), . . . , f `(x) and by Claim 6.5
for all l = 1, . . . , `, f l(x) will be reconstructed with probability at least (1 − ε).
Hence sl = f l(0) for all l will be reconstructed with probability at least (1 − ε).
2

Lemma 6.8 (Strong Commitment) Protocol VSS satisfies strong commitment
property with probability at least (1− ε).

129

Proof: Here we have to consider the case when D is corrupted. If D is dis-
carded during sharing phase then strong commitment holds trivially, as every
party may assume ` predefined default values as D’s commitment. On the other
hand, when D is not discarded, the proof follows from the same argument as
given in Lemma 6.7. 2

Theorem 6.9 Protocol VSS is an efficient (3t + 1, t) statistical VSS protocol.

Proof: This follows from Lemma 6.6, 6.7 and 6.8. 2

Theorem 6.10 In protocol VSS, the sharing phase protocol VSS-Share requires
eight rounds and the reconstruction phase protocol VSS-Rec requires one round.

Proof: We first analyze the round complexity of VSS-Share. Step 1 and 2 of
VSS-Share can be executed in parallel. Step 1 requires three rounds (calls several
instances of Gen followed by several instances of Ver) and step 2 requires five
rounds (invokes one instance of RandomVector). Since step 1 and 2 are executed
in parallel, they will require five rounds. Step 3 requires one round and step 4
requires two rounds (may invoke Reveal). Hence in total VSS-Share requires eight
rounds.

It is easy to see that protocol VSS-Rec requires one round. 2

Theorem 6.11 Protocol VSS achieves following communication complexity bounds:

• VSS-Share requires both private as well as broadcast communication of O((`n+
n3) log 1

ε
) bits.

• Protocol VSS-Rec requires broadcast communication of O(`n log 1
ε
) bits.

Proof: The communication complexity of VSS-Share follows from the fact that
there are at most O(n) executions of Gen and Ver. Moreover VSS-Share invokes
one instance of RandomVector. The communication complexity of VSS-Rec fol-
lows from the fact that every party broadcasts ` elements from F. 2

6.5.1 The Output Generated by VSS-Share

At a glance the situation created at the end of VSS-Share is as follows (if D is not
discarded): There are ` degree t polynomials f 1(x), . . . , f `(x) such that every
honest party Pi holds values sl

i = f l(i), for l = 1, . . . , `. For the ease of reference,
we use the following definition to capture the output of VSS-Share:

Definition 6.12 (t-(1d)-sharing) We say that a secret s ∈ F is t-(1d)-shared
(here 1d stands for one-dimensional) among the parties in P, if the following
holds:

1. There exists degree t polynomial f(x) with f(0) = s;

2. The ith value on f(x), namely si = f(i), also called as ith share of s, is held
by party Pi ∈ P.

We denote this by [s]t. If a specific party P does the sharing then we denote it
by [s]Pt .

130

It is easy to see that D has t-(1d)-shared ` secrets s1, . . . , s` at the end of
VSS-Share. Moreover, given a t-(1d)-sharing of a secret, it can be reconstructed
using VSS-Rec (though the protocol has been designed to handle ` secrets, it can
be easily modified to handle one secret).

Notice that t-(1d)-sharing of each si (separately) can be produced using a per-
fect (i.e., without any error) VSS protocol with n = 3t+1 [91, 73, 109]. However,
this will involve more communication complexity (at least Ω(`n2)) than VSS-Share
which performs the same task with less communication complexity (but with a
negligible error probability).

Notation 6.13 We now define few notations which are used in subsequent sec-
tions (these notations are also commonly used in the literature of MPC). By
saying that parties in P compute (locally) ([y1]t, . . . , [y

`′]t) = ϕ([x1]t, . . . , [x
`]t)

(for any function ϕ : F` → F`′), we mean that each Pi computes (y1
i , . . . , y

`′
i) =

ϕ(x1
i , . . . , x

`
i), where xl

i and yl
i denote the ith shares of xl and yl respectively. Note

that applying an affine (linear) function ϕ to a number of t-(1d)-sharings, we get
t-(1d)-sharings of the outputs. So by adding two t-(1d)-sharings of secrets, we
get t-(1d)-sharing of the sum of the secrets, i.e. [a]t + [b]t = [a + b]t. However, by
multiplying two t-(1d)-sharings of secrets, we get 2t-(1d)-sharing of the product
of the secrets, i.e. [a]t[b]t = [ab]2t.

Now in the next section, we will present a simple protocol for generating t-
(1d)-sharing of a number of random secrets. The protocol uses VSS-Share as a
black box.

6.6 Generating Random t-(1d)-sharing

We now present a protocol called Random, which allows the parties in P to jointly
generate t-(1d)-sharing of ` random secrets, i.e [r1]t, . . . , [r

`]t, where each ri is a
random element from F. Moreover, the adversary will have no information about
the random elements.

Protocol Random is very simple. Here every party as a dealer initiates one
instance of VSS-Share to t-(1d)-share ` secrets, say (r1i, . . . , r`i). Let Pass be
the set of parties who are not discarded during their corresponding instances
of VSS-Share. Then every party locally computes [rl]t =

∑
Pi∈Pass[r

li]t for all
l = 1, . . . , `.

To bound the error probability by ε, the computation in protocol Random
is performed over a field F = GF (2κ), where κ has to be determined using the
relation ε ≥ max(`, n2)n2−κ. This is because Random invokes VSS-Share with ε

n
error probability and as mentioned in previous section, ε ≥ max(`, n2)2−κ should
hold to bound error probability of VSS by ε. Each element from the field is
represented by κ = log |F| = O(log 1

ε
) bits (this follows from n = O(log 1

ε
) and

our assumption that ` = poly(n)). Now the protocol is given in Fig. 6.4.

Lemma 6.14 Protocol Random satisfies the following properties:

1. Correctness: Except with probability ε, Random outputs correct t-(1d)-
sharing of ` random values.

2. Secrecy: The ` values whose t-(1d)-sharing is generated by the protocol will
be completely random and unknown to At.

131

Figure 6.4: Protocol Random: Generates t-(1d)-sharing of ` random secrets.

Random(P, `, ε)

1. Every party Pi ∈ P invokes VSS-Share(Pi,P, `, (r1i, . . . , r`i), ε
n) to t-(1d)-

share ` random elements r1i, . . . , r`i from F.

2. Let Pass be the set of parties who are not discarded in their instance of
VSS-Share.

3. If |Pass| ≥ 2t + 1, all the parties in P jointly compute [rl]t =
∑

Pi∈Pass[r
li]t

for l = 1, . . . , `.

Proof: Correctness: An honest Pi will be able to produce [r1i]Pi
t , . . . , [r`i]Pi

t ,
except with error probability ε

n
. This is because with probability at most ε

n
,

honest Pi might get discarded during VSS-Share (see Claim 6.2) in which case
Pi will not be included in Pass. Since there are 2t + 1 honest parties, none
of them will figure in Pass with probability (2t + 1) ε

n
≈ ε. This will result in

|Pass| ≤ t and hence output will not be computed, with probability at most ε.
Hence, except with probability ε, Random will generate its desired output.

Secrecy: From the Secrecy property of VSS-Share, the values which are t-
(1d)-shared by an honest party are completely random and are unknown to At.
Pass will definitely contain at least t + 1 honest party. Now since addition
preserves randomness, r1, . . . , r` will be completely random and unknown to At.
This proves Secrecy property. 2

Lemma 6.15 Protocol Random has the following bounds:

1. Round Complexity: Eight Rounds.

2. Communication Complexity: Private and broadcast communication of
O((`n2 + n4) log 1

ε
) bits.

Proof: There are n parallel invocations of VSS-Share and each invocation re-
quires eight rounds (see Theorem 6.10) and communication of O((`n + n3) log 1

ε
)

bits, both private as well as broadcast (see Theorem 6.11). Hence the lemma. 2

6.7 Multiplication Protocol

In this section, we present a multiplication protocol which allows the parties
to generate [a1]t, . . . , [a

`]t, [b
1]t, . . . , [b

`]t and [c1]t, . . . , [c
`]t, where al’s and bl’s are

random and cl = albl for l = 1, . . . , `. Before presenting our multiplication
protocol, we present two important protocols that will be used as building block
for our multiplication protocol.

6.7.1 Upgrading t-(1d)-sharing to t-(2d)-sharing

We start with the definition of t-(2d)-sharing of secret(s)4:

42d stands for two dimensional.

132

Definition 6.16 (t-(2d)-sharing) We say that a value s is t-(2d)-shared (here
2d stands for two dimensional) among the parties in P, if the following hold:

1. There exists degree t polynomials f(x), f 1(x), . . . , fn(x) with f(0) = s and
for i = 1, . . . , n, f i(0) = f(i) = si.

2. Every honest party Pi ∈ P holds a share si = f(i) of s, the polynomial
f i(x) and share-share sji = f j(i) for the share sj of every other (honest)
party Pj. In other words, s and every si such that Pi is honest is t-(1d)-
shared among the parties in P.

We denote t-(2d)-sharing of secret s by [[s]]t.

We now present a new protocol, called Upgrade1dto2d for upgrading t-(1d)-
sharing to t-(2d)-sharing. That is, given t-(1d)-sharing of ` secrets, namely
[s1]t, . . . , [s

`]t, Upgrade1dto2d outputs t-(2d)-sharing [[s1]]t, . . . , [[s
`]]t, except with

probability of (1− ε). Moreover, At learns nothing about the secrets during Up-
grade1dto2d.

To bound the error probability by ε, the computation in protocol Upgrade1dto2d
is performed over a field F = GF (2κ), where κ has to be determined using the
relation ε ≥ max(`, n2)n2−κ. This is because Upgrade1dto2d invokes Random with
ε error probability and VSS-Share with ε

n
error probability. Both of them enforces

that ε ≥ max(`, n2)n2−κ should hold. Each element from the field is represented
by κ = O(log 1

ε
) bits. Now the protocol is given in Fig. 6.5.

Lemma 6.17 Protocol Upgrade1dto2d satisfies the following properties:

1. Correctness: Except with probability ε, Upgrade1dto2d outputs correct t-
(2d)-sharing of ` values, given their t-(1d)-sharings.

2. Secrecy: The ` values whose t-(2d)-sharing is generated in protocol Up-
grade1dto2d, will remain unknown to At.

Proof: Correctness: First of all, in protocol Upgrade1dto2d, Random will
work correctly, except with probability ε. Now every honest party Pi will t-
(1d)-share the values (s0

i , s
1
i , . . . , s

`
i) without being discarded, except with error

probability ε
n
. Since there are 2t + 1 honest parties, all of them will generate

t-(1d)-sharing of their values without being discarded, except with probability
(2t + 1) ε

n
≈ ε.

Now we show that if a corrupted party Pc t-(1d)-shares values s0
c , s

1
c , . . . , s

`
c

with sl
c 6= sl

c for some l ∈ {0, 1, . . . , `}, then Pc will be detected to be corrupted
with probability at least (1 − ε

n
). For every honest party Ph, the value sh =

s0
h +

∑`
l=1 rlsl

h will be reconstructed correctly, where sh is the hth share of s =

s0+
∑`

l=1 rlsl. But for corrupted party Pc, the probability that sc = s0
c +

∑`
l=1 rlsl

c

will be equal to sc (which is the actual cth share of s) is only `
|F−1| . This is same as

the probability that two polynomials of degree ` with coefficients as (s0
c , . . . , s

`
c)

and (s0
c , . . . , s

`
c) have same value at random r. Notice that here r has to be

generated only after Pc generates the t-(1d)-sharing of (s0
c , . . . , s

`
c). Now since

ε ≥ max(`, n2)n2−κ, we have `
|F−1| ≤ `ε

max(`,n2)n
≤ ε

n
. Hence Reed-Solomon Error

correction algorithm will point sc as a corrupted share, in which case Pc will be
caught and his sharing will be ignored with probability (1− ε

n
). Now since there

133

Figure 6.5: Protocol Upgrade1dto2d: Generates t-(2d)-sharing of ` secrets given t-(1d)-
sharing of the same secrets.

Upgrade1dto2d(P, `, ([s1]t, . . . , [s`]t), ε)

1. All the parties invoke Random(P, 1, ε) to generate t-(1d)-sharing of a random
secret s0, i.e [s0]t. So party Pi has s0

i , the ith share of s0.

2. Now every Pi invokes VSS-Share(Pi,P, ` + 1, (s0
i , s

1
i , . . . , s

`
i),

ε
n) to gener-

ate [s0
i]t, [s

1
i]t, . . . , [s

`
i]t, where s0

i , s
1
i , . . . , s

`
i are the ith shares of secrets

s0, s1, . . . , s` respectively.

3. The parties in P jointly generate a random value r by invoking Protocol
RandomVector(P).

4. Now to detect the parties Pk (at most t), who have generated
[s0

k]t, [s
1
k]t, . . . , [s

`
k]t such that sl

k 6= sl
k for some l ∈ {0, 1, . . . , `}, all the parties

publicly reconstruct si = s0
i +

∑`
l=1 rlsl

i and s = s0 +
∑`

l=1 rlsl by executing
following steps:

(a) The parties in P compute [si]t = [s0
i]t +

∑`
l=1 rl[sl

i]t and invoke VSS-
Rec(P, [si]t) to publicly reconstruct si, for i = 1, . . . , n.

(b) Every party apply Reed-Solomon error correction algorithm (e.g.
Berlekamp Welch Algorithm [119]) on s1, . . . , sn, to recover s. Reed-
Solomon error correction algorithm also points out the corrupted shares.
Hence if si is pointed as a corrupted share, then [s0

i]t, [s
1
i]t, . . . , [s

`
i]t are

ignored by every party.

5. Output [[s1]]t, . . . , [[s`]]t.

are at most t corrupted parties who may generate wrong t-(1d)-sharings as above,
the probability that all of them will be caught is (1− t ε

n
) ≈ (1− ε).

Secrecy: It is easy to see that at any stage of the protocol, At learns not
more than t shares for each sl, 1 ≤ l ≤ `. Moreover, the publicly reconstructed
value s (which is equal to (s0 +

∑`
l=1 rlsl)) does not leak any information about

the secrets. This is because the linear combination of the secrets are blinded by
random s0 and thus s will look completely random to At. Hence all the secrets
will be secure. 2

Lemma 6.18 Protocol Upgrade1dto2d has the following bounds:

1. Round Complexity: Eighteen Rounds.

2. Communication Complexity: Private and broadcast communication of
O((`n2 + n4) log 1

ε
) bits.

Proof: Step 1 and step 2 require eight rounds each (invokes VSS-Share). So Step
1 and step 2 can be completed in sixteen rounds. Step 3 requires five rounds. Step
3 has to be completed one round after step 2. Now since step 3 requires five rounds
(invokes RandomVector), first four rounds of it can be executed in parallel with

134

the last 4 rounds of step 2. Hence computation up to step 3 can be completed
in seventeen rounds. Step 4 requires one round. Thus in total Upgrade1dto2d
requires eighteen rounds. The communication complexity of Upgrade1dto2d can
be verified easily. 2

Remark 6.19 (Comparison with Existing Protocols) In [12], the authors
reported a protocol to upgrade t-(1d)-sharing to t-(2d)-sharing, where n = 2t + 1.
However, the protocol is non-robust. That is, if all the n parties behave honestly,
then the protocol will perform the upgradation. Otherwise, the protocol will fail
to do the upgradation, but will output a pair of parties, of which at least one is
corrupted. On the other hand, our upgradation protocol is designed with n = 3t+1
and hence will always perform the upgradation successfully, irrespective of the
behavior of the corrupted parties.

6.7.2 An ABC protocol— Proving c = ab

Consider the following problem: let P ∈ P has properly generated [a1]t, . . . , [a
`]t

and [b1]t, . . . , [b
`]t. Now P wants to generate [c1]t, . . . , [c

`]t, where cl = albl for
l = 1, . . . , `. Moreover, during this process, an honest P does not want to leak
any additional information about al, bl and cl. Furthermore, if P is corrupted,
then he may intentionally fail to generate the above output in which case every
body will know that party P is corrupted.

We propose a protocol called ProveCeqAB to achieve the above task. The
protocol generates the correct output, except with error probability ε. The idea
of the protocol is inspired from [48] with the following modification: we make use
of our protocol VSS (instead of their statistical VSS protocol), which provides
us with high efficiency, both in terms of communication and round complexity.
In section 5.3 of previous chapter, a very similar idea has been presented for
n = 2t + 1 parties. Since here we have n = 3t + 1 parties, few things can be
simplified. Moreover, here we deal with t-(1d)-sharing of the values rather than
2d?-sharing/1d?-sharing used in section 5.3 of previous chapter. For the sake of
completeness and clarity, we discuss about the idea again with the simplifications
in the context of n = 3t + 1 parties.

We explain the idea of the protocol with a single pair (a, b). With respect to
a single pair, the problem becomes like this: P has already t-(1d)-shared a and
b. Now he wants to generate t-(1d)-sharing of c, where c = ab, without leaking
any additional information about a, b and c. To achieve this goal, P first selects a
random non-zero β ∈ F and generates t-(1d)-sharing of c, β and d = βb. All the
parties in P then jointly generate a random value r and computes t-(1d)-sharing
of p = ra+β and reconstructs p from its t-(1d)-sharing. The parties then compute
t-(1d)-sharing of q = pb− d− rc and reconstruct q from its t-(1d)-sharing. Every

party checks whether q
?
= 0. If so then everybody accepts the t-(1d)-sharing of

c as valid t-(1d)-sharing of ab. It is easy to check that q will be zero when P
behaves honestly.

If a corrupted P shares c 6= ab, then the probability that q = 0 holds is
negligible because of the random r. This can be argued as follows: q = pb− d−
rc = (ra + β)b− d− rc = rab− rc + βb− d = r(ab− c) + βb− d. Now if P shares
c 6= ab and d 6= βb, then q = r(ab− c) + βb− d will be non-zero, except for only
one value of r. But since r is randomly generated, the probability that r is that
value is 1

|F| which is negligibly small. The secrecy follows from the fact that p is

135

randomly distributed and q = 0. Protocol ProveCeqAB extends the above idea
for ` pairs (al, bl).

ProveCeqAB works on a field F which was used for protocol Random i.e F =
GF (2κ), where κ has to be determined using the relation ε ≥ max(`, n2)n2−κ.
This comes from the following facts: Since ProveCeqAB invokes Random with ε
error probability, ε ≥ max(`, n2)n2−κ should hold. Moreover, ProveCeqAB invokes
VSS-Share with ε error probability which enforces ε ≥ max(`, n2)2−κ. Therefore,
ε ≥ max(`, n2)n2−κ should hold for ProveCeqAB. Now the protocol is formally
given in Fig. 6.6.

Figure 6.6: Protocol ProveCeqAB: An ABC Protocol for proving c = ab.

ProveCeqAB(P,P, `, [a1]Pt , [b1]Pt , . . . , [a`]Pt , [b`]Pt)

1. P chooses a random non-zero ` length tuple (β1, . . . , β`) ∈ F`. In parallel, P
invokes

(a) VSS-Share(P,P, `, (c1, . . . , c`), ε) to generate t-(1d)-sharing of
(c1, . . . , c`),

(b) VSS-Share(P,P, `, (β1, . . . , β`), ε) to generate t-(1d)-sharing of
(β1, . . . , β`),

(c) VSS-Share(P,P, `, (d1, . . . , d`), ε) to generate t-(1d)-sharing of
(b1β1, . . . , b`β`), where dl = blβl.

If P is discarded in any of the three instances of VSS-Share, P fails to prove
c = ab and the protocol terminates here.

2. Now all the parties in P invoke RandomVector(P) to generate a random value
r ∈ F.

3. For every l ∈ {1, . . . , `}, all parties locally compute [pl]t = (r[al]Pt + [βl]Pt)
and invoke VSS-Rec(P, [pl]t) to reconstruct pl.

4. For every l ∈ {1, . . . , `}, the parties locally compute [ql]t =(
pl[bl]Pt − [dl]Pt − r[cl]Pt

)
and invoke VSS-Rec(P, [ql]t) to reconstruct ql.

5. The parties then check ql ?= 0. If not then every party concludes that P fails
to prove c = ab and the protocol terminates here. Otherwise P has proved
that c = ab.

Lemma 6.20 Protocol ProveCeqAB satisfies the following properties:

1. Correctness: If P is honest, then except with probability ε, P will be able
to generate [c1]Pt , . . . , [c`]Pt . If P is corrupted and the protocol succeeds then
except with probability ε, P has generated [c1]Pt , . . . , [c`]Pt , where cl = albl,
for l = 1, . . . , `.

2. Secrecy: If P is honest then al, bl, cl will be information theoretically
secure for all l = 1, . . . , `.

136

Proof: Correctness: We show that if P is honest, then P will generate
[c1]Pt , . . . , [c`]Pt , except with probability ε. If P is honest, then except with error
probability ε, he will not be discarded in any of the three instances of VSS-Share.
The parties will jointly generate r, except with probability ε. After this, it is
clear that an honest party P will never fail to prove c = ab as ql = 0 holds for all
l.

Now we show that if a corrupted P has generated [c1]Pt , . . . , [c`]Pt , then except
with probability ε, cl = albl for l = 1, . . . , `. If a corrupted P has proved c = ab,
then it must be the case that ql = 0 for all l = 1, . . . , `. Now ql = plbl−dl− rcl =
(ral +βl)bl− dl− rcl = ralbl− rcl +βlbl− dl = r(albl− cl)+βlbl− dl. Now ql = 0
for l = 1, . . . , ` will hold when one of the following three cases happens.

1. P shares cl = albl and dl = βlbl: If this is the case then cl = albl for
l = 1, . . . , ` without any error probability.

2. P shares cl 6= albl and dl = βlbl and r = 0: If this is the case, then
cl = albl for l = 1, . . . , `, except with error probability ε. This is because
r is generated randomly and therefore the probability that r = 0 is 1

|F| ≤
ε

max(`,n2)n
≤ ε. It is easy to see that ql will be non-zero in this case, except

when r = 0.

3. P shares cl 6= albl and dl 6= βlbl and r has a specific value: If this
is the case, then cl = albl for l = 1, . . . , `, except with error probability ε.
This is because, there is only one specific value of r for which the value
ql = r(albl − cl) + βlbl − dl will be zero even though cl 6= albl and dl 6= βlbl.
We prove this by contradiction. Let there are two unequal values r1 and r2

such that r1(a
lbl − cl) + βlbl − dl = 0 and r2(a

lbl − cl) + βlbl − dl = 0 holds
even though cl 6= albl and dl 6= βlbl. This implies that

r1(a
lbl − cl) + βlbl − dl = r2(a

lbl − cl) + βlbl − dl

⇒ r1(a
lbl − cl) = r2(a

lbl − cl)

⇒ r1 = r2, which is a contradiction to our assumption.

Hence there is only one value for r for which ql = r(albl− cl) + βlbl− dl will
be zero. But since r is randomly generated, the probability that r is that
value is 1

|F| ≤ ε
max(`,n2)n

≤ ε.

The above cases show that if ql = 0, then cl = albl, except with probability
ε. Therefore if P has generated [c1]Pt , . . . , [c`]Pt , then except with probability ε,
cl = albl for l = 1, . . . , `.

Secrecy: We now prove the secrecy of al, bl, cl for all l = 1, . . . , ` when P is
honest. From the secrecy property of VSS-Share and property of t-(1d)-sharing,
al, bl and cl will remain secure. Now we will show that both pl and ql will not leak
any information about al, bl and cl. Clearly pl = (ral + βl) will look completely
random to the adversary as βl is randomly chosen. Furthermore ql = 0 and hence
ql does not leak any information on al, bl and cl. Hence the lemma. 2

Lemma 6.21 Protocol ProveCeqAB achieves the following:

1. Round Complexity: Ten rounds.

137

2. Communication Complexity: Private and Broadcast communication
of O((`n + n3) log 1

ε
) bits.

Proof: Step 1 requires eight rounds (invokes three instances of VSS-Share in
parallel). Step 2 requires five rounds (invokes one instance of RandomVector).
Detailed observation confirms that step 1 and step 2 can be executed in parallel.
So step 1 and 2 require eight rounds in total. Step 3 and 4 require one round
each (invokes several instances of VSS-Rec). Hence in total ProveCeqAB requires
ten rounds.

The communication complexity can be verified easily. 2

6.7.3 Our Multiplication Protocol

Finally, we present a multiplication protocol, called Mult which allows the parties
to generate [c1]t, . . . , [c

`]t given [a1]t, . . . , [a
`]t and [b1]t, . . . , [b

`]t, where al’s and
bl’s are random and cl = albl for l = 1, . . . , `. For simplicity, we first explain the
idea of the protocol for a single triple [a]t, [b]t and [c]t.

Given [a]t, [b]t, parties first invoke Upgrade1dto2d to generate [[a]]t and [[b]]t.
Then every party Pi computes aibi and generates [aibi]

Pi
t by executing ProveCeqAB

(though the corrupted parties may fail to generate [aibi]
Pi
t), where ai and bi are the

ith shares of a and b. Since a1b1, . . . , anbn are n points on a 2t degree polynomial,
say C(x), whose constant term is c, by Lagrange interpolation formula [46], c can
be computed as c =

∑n
i=1 ri(aibi) where ri =

∏n
j=1,j 6=i

−j
i−j

. The vector (r1, . . . , rn)

is called recombination vector [46] which is public and known to every party. So
we write c = Lagrange(a1b1, . . . , anbn) =

∑n
i=1 ri(aibi). Now all parties compute

[c]t = Lagrange([a1b1]t, . . . , [anbn]t) =
∑n

i=1 ri[aibi]t, to obtain the desired output.
Notice that since C(x) is of degree 2t, we need 2t + 1 parties to successfully
generate aibi value (a 2t degree polynomial requires 2t + 1 points on it to be
interpolated correctly). So, even if t corrupted parties fail to generate [aibi]t, our
protocol will work. Our protocol Mult follows the above technique for ` pairs
simultaneously. Our protocol is motivated from the protocol of [48].

Mult works on a field F = GF (2κ), where κ has to be determined using
the relation ε ≥ max(`, n2)n22−κ. This is because Mult invokes ProveCeqAB
with ε

n
error probability and from previous section, ProveCeqAB requires ε ≥

max(`, n2)n2−κ to bound its error probability by ε. Now the protocol is formally
given in Fig. 6.7.

Lemma 6.22 Protocol Mult satisfies the following properties:

1. Correctness: Except with probability ε, the protocol correctly outputs ([c1]t,
. . . , [c`]t), given ([a1]t, . . . , [a

`]t) and ([b1]t, . . . , [b
`]t). Moreover, for l =

1, . . . , `, cl = albl.

2. Secrecy: The adversary will have no information about (ak, bk, ck), for
k = 1, . . . , `.

Proof: Correctness: Both the instances of Upgrade1dto2d will successfully
generate their outputs, except with probability ε. By Lemma 6.20, every honest
party Pi will generate [c1

i]t, . . . , [c
`
i]t, except with probability ε

n
. Therefore all the

honest Pi’s will generate [c1
i]t, . . . , [c

`
i]t, except with probability (2t + 1) ε

n
≈ ε.

Moreover, by Lemma 6.20, a corrupted party Pi who generated [cl
i]t has indeed

138

Figure 6.7: Protocol Mult: Generates [cl]t from [al]t and [bl]t for l = 1, . . . , `.

Mult(P, `, ([a1]t, [b1]t), . . . , ([a`]t, [b`]t), ε)

1. All the parties invoke

(a) Upgrade1dto2d(P, `, ([a1]t, . . . , [a`]t), ε) to generate [[a1]]t, . . . , [[a`]]t.

(b) Upgrade1dto2d(P, `, ([b1]t, . . . , [b`]t), ε) to generate [[b1]]t, . . . , [[b`]]t.

2. Each party Pi invokes ProveCeqAB(Pi,P, `, [a1
i]t, [b

1
i]t, . . . , [a

`
i]t, [b

`
i]t,

ε
n) to

produce [c1
i]t, . . . , [c

`
i]t such that cl

i = al
ib

l
i for l = 1, . . . , ` where al

i and bl
i

are the ith shares of al and bl. At most t (corrupted) parties may fail to
execute ProveCeqAB. For simplicity assume first 2t + 1 parties are successful
in executing ProveCeqAB.

3. Now for each l ∈ {1, . . . , `}, first (2t + 1) parties have produced
[cl

1]t, . . . , [c
l
(2t+1)]t. So for l = 1, . . . , `, parties in P compute [cl]t as follows:

[cl]t = Lagrange([cl
1]t, . . . , [c

(l)
2t+1]t).

shared cl
i = al

ib
l
i for all l, except with probability ε

n
. Since there can be at most t

corrupted Pi’s, the probability that all the corrupted parties who generated [cl
i]t

have indeed shared cl
i = al

ib
l
i for all l, is at least (1 − ε

n
)t ≈ (1 − t ε

n
) ≈ (1 − ε).

Hence [c1]t, . . . , [c
`]t) are generated correctly, except with probability ε.

Secrecy: Now according to the secrecy of protocol ProveCeqAB, (c1
i , . . . , c

`
i),

(a1
i , . . . , a

`
i) and (b1

i , . . . , b
`
i) will remain secure for every honest Pi. Now since

[c1]t, . . . , [c
`]t is generated by taking linear combination of [c1

i]
Pi
t , . . . , [c`

i]
Pi
t ’s (in

which at least t + 1 set of c1
i , . . . , c

`
i are unknown to At), the secrecy of c1, . . . , c`

is guaranteed. 2

Lemma 6.23 Protocol Mult has the following bounds:

1. Round Complexity: Twenty eight rounds.

2. Communication Complexity: Private and broadcast communication of
O((`n2 + n4) log 1

ε
) bits.

Proof: Step 1 requires eighteen rounds (invokes two instances of Upgrade1dto2d
in parallel). Step 2 requires ten rounds (invokes n parallel instances of ProveCe-
qAB). In total Mult requires twenty eight rounds. The communication complexity
of Mult can be verified easily. 2

6.8 Statistical MPSI Protocol with n = 3t + 1

We now present our statistical MPSI protocol with n = 3t+1. Our MPSI protocol
works on a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ max(m2, n)n32−κ. This follows from the fact that in the Computation Phase
of our MPSI protocol, Mult is invoked with ε probability and ` = n(m + 1)2.
The above relation between ε and κ also reflects the condition put by other

139

sub-protocols such as Random and VSS-Share (invoked in Preparation Phase and
Input Phase, respectively). Thus each field element from F can be represented by
κ = O(log 1

ε
) bits.

We first present the protocol for Input Phase and Preparation Phase, where
t-(1d)-sharing of the coefficients of ri(x) and f i(x) polynomials are generated.

Figure 6.8: Input and Preparation Phase of our statistical MPSI Protocol

Input Phase

1. Every Pi ∈ P represents his set Si = {e1
i , . . . , e

m
i } by a polynomial f i(x) of

degree m such that f i(x) = (x − e1
i) · · · (x − em

i) = a(0,i) + a(1,i)x + . . . +
a(m,i)xm.

2. Pi then invokes VSS-Share(Pi,P,m, (a(0,i), . . . , a(m−1,i)), ε
n) to generate

[a(0,i)]t, . . . , [a(m−1,i)]t. If Pi is discarded then t-(1d)-sharing of m default
values are assumed as Pi’s input. Moreover, since a(m,i) = 1 always, every
party in P assumes a predefined t-(1d)-sharing for 1, namely [1]t on behalf
of a(m,i) (see Remark 6.24).

Preparation Phase:

1. The parties in P invoke Random(P, n(m + 1), ε) to generate t-(1d)-sharings
of n(m + 1) values denoted by [b(0,i)]t, . . . , [b(m,i)]t for i = 1, . . . , n.

2. Now the parties assume that ri(x) = b(0,i) + b(1,i)x + . . . + b(m,i)xm for i =
1, . . . , n.

Remark 6.24 In any MPSI protocol that computes the intersection of the sets
of the parties using the function given in (6.1), At may disrupt the security of the
protocol by forcing a corrupted party to input a zero polynomial representing his
set. This is because At will then come to know the intersection of the sets of the
remaining parties at the end of computation of the protocol [116, 113]. So to stop
a corrupted party to input a zero polynomial, the authors of [116, 113] specified the
following trick. They have noticed that the coefficient of mth degree term in every
Pj’s polynomial f j(x) =

∏m
k=1(x− ek

j) is 1 always. Hence, every party assumes a

predefined [1]t on behalf of the mth coefficient of f j(x) polynomial of every party
(instead of allowing individual parties to t-(1d)-share the mth coefficient of their
f j(x) polynomial). This stops the corrupted parties to commit a zero polynomial.

Lemma 6.25 The protocol for Input and Preparation Phase satisfies the following
properties:

1. Correctness: Except with probability ε, Input Phase and Preparation Phase
produces correct t-(1d)-sharing for the coefficients of polynomials f i(x) and
ri(x) for all i = 1, . . . , n.

2. Secrecy: All the coefficients of f i(x) such that Pi is honest and all the
coefficients of ri(x) for all i = 1, . . . , n remain unknown to At.

140

Proof: Correctness: We first show that Input Phase will generate its correct
output, except with probability ε. An honest party Pi will correctly generate
t-(1d)-sharing of the coefficients of his polynomial f i(x) without being discarded,
with probability at least (1 − ε

n
). Therefore the probability that all the 2t + 1

honest parties will correctly generate t-(1d)-sharing of the coefficients of their
polynomial without being discarded, is at least (1− (2t + 1) ε

n
) ≈ (1− ε).

Moreover if a corrupted Pi has generated t-(1d)-sharing of m values (which
are supposed to be m coefficients of his input polynomial), then those sharing
are correct, with probability at least (1− ε

n
). Therefore the probability that the

sharings generated by all the corrupted parties are correct is at least (1− ε).
It is easy to see that Preparation Phase has an error probability of ε (because

Random has been invoked with error probability ε).

Secrecy: Secrecy follows from the secrecy property of VSS-Share and Random
protocol. 2

Lemma 6.26 Input and Preparation Phase has the following bounds:

1. Round Complexity: Eight rounds.

2. Communication Complexity: Private and Broadcast communication
of O((mn3 + n4) log 1

ε
) bits.

Proof: Input Phase and Preparation Phase can be executed in parallel. Since both
of them requires eight rounds, in total Input Phase and Preparation Phase require
eight rounds. The communication complexity can be obtained from the communi-
cation complexity of VSS-Share and Random by putting appropriate value of `. 2

After input and preparation phase, in the Computation Phase (given in Fig.
6.9) the parties jointly compute F (x) =

∑n
i=1 ri(x)f i(x) such that the coefficients

of F (x) are t-(1d)-shared. In Output Phase, the coefficients of F (x) are publicly
reconstructed. Then each party locally evaluates F (x) at each element of his
private set. All the elements at which F (x) = 0 belongs to the intersection of the
n sets, with very high probability.

Lemma 6.27 Given that Input Phase and Preparation Phase generate correct out-
puts, Computation Phase correctly outputs t-(1d)-sharing of the coefficients of
F (x) and Output Phase correctly reconstructs the coefficients of F (x) publicly,
except with probability ε.

Proof: Follows from Correctness of Mult and VSS-Rec. 2

Lemma 6.28 Computation Phase and Output Phase achieves the following bounds:

1. Round Complexity: Twenty Nine rounds in total.

2. Communication Complexity: Private and broadcast communication of
O((m2n3 + n5) log 1

ε
) bits.

Proof: Computation Phase requires twenty eight rounds and Output Phase re-
quires one round. Thus in total both the phases require twenty nine rounds.
Communication complexity can be verified easily. 2

141

Figure 6.9: Protocol for Computation Phase and Output Phase of our MPSI protocol.

Computation Phase

1. Let F i(x) = ri(x)f i(x) = c(0,i) + c(1,i)x + . . . + c(2m,i)x2m for i = 1, . . . , n.
For i = 1, . . . , n, to generate [c(0,i)]t, . . . , [c(2m,i)]t, the parties in P have to
first multiply the sharings of the coefficients of ri(x) and f i(x) and then they
have to perform appropriate additions. It is achieved in the following way:

(a) To generate [a(0,i)b(0,i)]t, [a(0,i)b(1,i)]t, . . . , [a(m,i)b(m−1,i)]t, [a(m,i)b(m,i)]t
(i.e the pairwise coefficient multiplication of ri(x) and f i(x)) for
all i, the parties invoke only one instance of Mult(P, n(m +
1)2, ([a(0,1)]t, [b(0,1)]t), ([a(0,1)]t, [b(1,1)]t), . . . , ([a(m,1)]t, [b(m,1)]t), . . . ,
([a(m,n)]t, [b(m,n)]t), ε) with ` = n(m + 1)2 (every coefficient of ri(x)
should be multiplied with every coefficient of f i(x) for all i).

(b) The parties compute the following for all i = 1, . . . , n.

• [c(0,i)]t = [a(0,i)b(0,i)]t,
• [c(1,i)]t = [a(0,i)b(1,i)]t + [a(1,i)b(0,i)]t,
• [c(2,i)]t = [a(0,i)b(2,i)]t + [a(2,i)b(0,i)]t + [a(1,i)b(1,i)]t,
• . . .,
• [c(2m,i)]t = [a(m,i)b(m,i)]t.

2. Let F (x) =
∑n

i=1 F i(x) = d(0) + d1x + . . . + d2mx2m. To generate
[d0]t, . . . , [d2m]t, the parties compute [dj]t =

∑n
i=1[c

(j,i)]t for j = 0, . . . , 2m.

Output Phase

1. The parties invoke VSS-Rec(P, [dj]t) to publicly reconstruct dj for j =
0, . . . , 2m. Thus the parties have reconstructed F (x) whose coefficients are
dj for j = 0, . . . , 2m.

2. Each Pi with his private set Si = {e1
i , . . . , e

m
i } locally checks whether F (ek

i)
?=

0 for k = 1, . . . , m. If F (ek
i) = 0, then Pi adds ek

i in a set Ii (initially Ii = ∅).
Pi outputs Ii as the intersection set S1 ∩ S2 . . . ,∩Sn.

We now show that F (x) (of (6.1)) does not leak any information other than
what can be derived from the inputs and outputs of the t corrupted parties. The
proof is taken from [113]. We also show that every honest party learns correct
I = S1 ∩ . . . ∩ Sn from F (x), except with probability at most ε. A very basic
outline of this proof is given in [113].

Lemma 6.29 F (x) of (6.1) does not leak any extra information to At, other than
what can be inferred by the data sets of the corrupted parties and the intersection
of the data sets of all the parties.

Proof: Let I be the intersection of the data sets of all the parties. Recall that
F (x) =

∑n
i=1 f i(x)ri(x). Now we can write F (x) as F (x) =

∏
a∈I(x − a)E(x).

Here E(x) =
∑n

i=1 gi(x)ri(x) where gi(x) =
∏

ek
i 6∈I(x− ek

i). It is easy to see that

gcd(g1(x), . . . , gn(x)) = 1 and deg(ri(x)) ≥ deg(gj(x)) for all i, j = 1, . . . , n. In

142

fact deg(ri(x)) = m and deg(gi(x)) ≤ m for all i = 1, . . . , n, where m is the size
of the data set of all the parties. We will now show that the polynomial E(x) will
be randomly distributed over F and therefore by learning F (x), the adversary
At will learn no extra information (regarding the private data-set of the honest
parties), other than the intersection of the data sets of all the parties i.e I. We
prove this in the Lemma 6.31. 2

Before proving Lemma 6.31, we prove the following lemma:

Lemma 6.30 Let g1(x) and g2(x) be two polynomials over F of same degree,
such that gcd(g1(x), g2(x)) = 1 and deg(gi(x)) ≤ m for all i = 1, 2. Let r1(x) and
r2(x) be two random polynomials over F such that deg(ri(x)) = m for all i = 1, 2.
Then the polynomial E(x) =

∑2
i=1 gi(x)ri(x) will be randomly distributed over F.

Proof: Let g1(x) and g2(x) be polynomials over F of same degree, such that
gcd(g1(x), g2(x)) = 1. Let r1(x) and r2(x) be two random polynomials over F
of same degree such that deg(ri(x)) ≥ deg(gj(x)), for all i, j = 1, 2. Moreover,
deg(ri(x)) = m and deg(gi(x)) ≤ m, for i = 1, 2. Furthermore, let E(x) =
g1(x)r1(x) + g2r2(x) and deg(gi(x)) = α. Evidently α ≤ m.

The outline of the proof is as follows:

1. Given any fixed polynomials g1(x), g2(x) and E(x), satisfying the above
given conditions, we first compute the number of (r1(x), r2(x)) pairs z over
F, such that g1(x)r1(x) + g2(x)r2(x) = E(x).

2. We next show that given any fixed polynomials g1(x) and g2(x), the total
number of all possible (r1(x), r2(x)) pairs over F, divided by z, is equal to
the number of all possible polynomials E(x) over F. This implies that, if
gcd(g1(x), g2(x)) = 1 and we choose the coefficients of r1(x), r2(x) uniformly
and independently from F, then coefficients of the result polynomial E(x)
are distributed uniformly and independently over F.

We now first determine the value of z, which is the number of (r1(x), r2(x))
pairs over F, such that g1(x)r1(x)+g2(x)r2(x) = E(x), for given g1(x), g2(x) and
E(x). Let us assume that for this particular E(x), there exists at least one pair

r1(x), r2(x) such that g1(x)r1(x) + g2(x)r2(x) = E(x). If there is another pair

pair r̂1(x), r̂2(x) such that g1(x)r̂1(x) + g2(x)r̂2(x) = E(x), then we have

g1(x)r1(x) + g2(x)r2(x) = g1(x)r̂1(x) + g2(x)r̂2(x)

=⇒ g1(x)(r1(x)− r̂1(x)) = g2(x)(r̂2(x)− r2(x)).

As gcd(g1(x), g2(x)) = 1, we may conclude that g1(x)|(r̂2(x) − r2(x)) (which

means g1(x) divides (r̂2(x) − r2(x))) and g2(x)|(r1(x) − r̂1(x)). Let p(x) be a

polynomial such that p(x) · g1(x) = (r̂2(x) − r2(x)) and p(x) · g2(x) = (r1(x) −
r̂1(x)). Notice that the polynomial p(x) will be of degree m − α, where α =
deg(g1(x)) = deg(g2(x)).

We next show the following for p(x):

1. We first show that each choice of polynomial p(x) of degree m−α, determines

exactly one unique pair (r̂1(x), r̂2(x)). such that g1(x)r̂1(x) + g2(x)r̂2(x) =
E(x);

143

2. We next show that there exist no pairs (r̂1(x), r̂2(x)) which is not determined

by any choice of polynomial p(x) of degree m−α, such that g1r̂1+g2r̂2 = E.

So we first show that each choice of polynomial p(x) of degree m− α, deter-

mines exactly one unique pair r̂1(x), r̂2(x) such that g1(x)r̂1(x) + g2(x)r̂2(x) =

E(x). Recall that by the property of p(x), we have r̂1(x) = r1(x)−g2(x)p(x) and

r̂2(x) = r2(x) + g1(x)p(x). Now as we have fixed g1(x), g2(x), r1(x) and r2(x), a

choice for p(x) will determine both r̂1(x) and r̂2(x). Moreover, if these assign-
ments were not unique, then there would exist another polynomial p′(x) of degree

m−α such that either r̂1(x) = r1(x)− g2(x)p(x) = r̂1(x) = r1(x)− g2(x)p′(x) or

r̂2(x) = r1(x) + g1(x)p(x) = r1(x) + g1(x)p′(x). These conditions further imply
that either g2(x)p(x) = g2(x)p′(x) or g1(x)p(x) = g1(x)p′(x) for some polynomials
p(x), p′(x), where p(x) 6= p′(x). But this is impossible.

We next show that there exist no pair (r̂1(x), r̂2(x)) such that g1(x)r̂1(x) +

g2(x)r̂2(x) = E(x), but still (r̂1(x), r̂2(x)) is not determined by any choice of the
polynomial p(x) of degree m − α. So let for different polynomials p(x), p′(x) of

degree m−α, we have p′(x)g2(x) = r1(x)− r̂1(x) and p(x)g1(x) = r̂2(x)− r2(x).

As we proved that g2(x)|(r1(x)−r̂1(x)) and g1(x)|(r̂2(x)−r2(x)), we can represent
g1(x) and g2(x) in the above fashion without any loss of generality. Then this
implies that

g1(x)(r1(x)− r̂1(x)) = g2(x)(r̂2(x)− r2(x))

=⇒ g1(x)(p′(x)g2(x)) = g2(x)(p(x)g1(x))

=⇒ p(x) = p′(x) which is a contradiction.

This implies that there exist no pair (r̂1(x), r̂2(x)) such that g1(x)r̂1(x) +

g2(x)r̂2(x) = E(x), but still (r̂1(x), r̂2(x)) is not determined by any choice of the
polynomial p(x) of degree m− α.

From the above discussion, we find that the number of polynomials p(x) of
degree m − α over F, is exactly equal to the number of (r1(x), r2(x)) pairs such
that g1(x)r1(x) + g2(x)r2(x) = E(x). As there are |F|m−α+1 such polynomials
p(x), we have z = |F|m−α+1.

We now show that the total number of (r1(x), r2(x)) pairs over F, divided by
z, is equal to the total number of polynomials of degree m + α + 1 over F. There

are total |F|2m+2 possible (r1(x), r2(x)) pairs over F. Now |F|2m+2

z
= |F|2m+2

|F|m−α+1 =

|F|m+α+1. But |F|m+α+1 denotes the total number of possible E(x) polynomials
over F. What this shows is the following: suppose we fix g1(x) and g2(x). Then
F2m+2 denotes the total space of pair of polynomials, each of degree m over F.
There will be |F|m−α+1 pair of polynomials in this total space, which will deter-

mine a specific E(x) polynomial. Like this, there can be |F|2m+2

|F|m−α+1 = |F|m+α+1

distinct E(x) polynomials which are possible by different choice of (r1(x), r2(x)).
This prove that E(x) is a random polynomial over F, because E(x) is a polyno-
mial of degree m + α over F and r1(x), r2(x) are random polynomials. 2

Now extending the above lemma for the case of n polynomials in a straight
forward way, we get the following lemma:

144

Lemma 6.31 Let there are n polynomials g1(x), . . . , gn(x) over F such that
gcd(g1(x), . . . , gn(x)) = 1. Let there are n randomly chosen polynomials r1(x),
. . . , rn(x) such that deg(ri(x)) ≥ deg(gj(x)) for all i, j = 1, . . . , n. Moreover,
deg(ri(x)) = m and deg(gi(x)) ≤ m for all i = 1, . . . , n. Then the polynomial
E(x) =

∑n
i=1 gi(x)ri(x) will be randomly distributed over F.

We next show that computing the intersection of the n sets by computing the
function in (6.1) will give the correct output, except with error probability ε.

Lemma 6.32 Let F (x) = f 1(x)r1(x) + . . . + fn(x)rn(x), where f i(x) is an m
degree polynomial representing the data set Si and ri(x) is a completely random
polynomial of degree m, for i = 1, . . . , n. Then every honest party learns correct
I = S1 ∩ . . . ∩ Sn from F (x), except with error probability at most ε.

Proof: We show that with very high probability, erroneous elements (which does
not belong to the intersection of the n sets) are not inserted into the intersection
set I of an honest party. From the proof of the previous lemma, we have F (x) =∑n

i=1 f i(x)ri(x) =
∏

a∈I(x− a)E(x), where the coefficients of E(x) are randomly

distributed over Fm+α+1 = F2m−|I|+1. The polynomial E(x) has degree 2m − |I|
and therefore it has same number of roots. Let P be the union of the private
data-sets of the honest parties. As there are 2t+ 1 honest parties, it implies that
|P | ≤ (2t + 1)m. Now an erroneous element e from F will enter into I of some
honest party, if e is the root of E(x) and simultaneously belongs to P .

We estimate the error probability of the above event crudely and show that the
error probability is negligible. An element e ∈ F is a root of E(x) with probability
2m−|I|
|F| . Moreover, e ∈ F belongs to P with probability at most |P |

|F| . Therefore,

e can be in I of some honest party with probability (2m−|I|)
|F|

|P |
|F| = (2t+1)m(2m−|I|)

|F|2 .

Now there can be at most 2m − |I| such e’s (as there are 2m − |I| roots of
E(x)). Any one of these e may enter into I of any honest party with probability

(2m − |I|) (2t+1)m(2m−|I|)
|F|2 . Putting the minimum value for I i.e |I| = 0 and value

of |F|, we get (2t+1)m3

|F|2 ≤ (2t+1)m3ε
(max(m2,n))2n6 ≤ m3ε

(max(m2,n))2n5 . Now irrespective of the

relation between m and n, m3ε
(max(m2,n2))2n3 ¿ ε will hold. 2

Finally we have the following theorem.

Theorem 6.33 In our statistical MPSI protocol (with n = 3t + 1) every party
learns the intersection set S1 ∩ S2 ∩ . . . ∩ Sn, except with probability at most
ε. That is our MPSI has ε error in Correctness. Moreover, At will not get
any extra information, other than what can be inferred from the data sets of the
corrupted parties and the intersection of the data sets of all the parties. The
protocol achieves the following bounds:

1. Round Complexity: Thirty seven rounds.

2. Communication Complexity: Private and broadcast communication of
O((m2n3 + n4) log 1

ε
) bits.

Proof: Correctness: Following the correctness of the four constituent phases,
it is implied that the polynomial F (x) will be reconstructed correctly, except
with probability ε. Now by Lemma 6.32, every honest party learns correct

145

I = S1 ∩ . . . ∩ Sn from F (x), except with probability at most ε.

Secrecy: Secrecy is asserted as follows: From the secrecy of the fours constituent
phases, it is easy to see that none of the intermediate sharing will be known to
At. Only F (x) will be disclosed and thus known to At. However, from Lemma
6.29, F (x) does not leak any extra information to At, other than what can be
inferred by the data sets of the corrupted parties and the intersection of the data
sets of all the parties.

The round complexity and communication complexity follows from the round
and communication complexity of Input Phase, Preparation Phase, Computation
Phase and Output Phase. 2

6.9 Statistical MPSI Protocol with Optimal Resilience

In this section, we present a statistical MPSI protocol with n = 2t + 1 parties
(i.e with optimal resilience) using the ideas presented for our statistical MPC
protocol in Chapter 5. Our MPSI protocol takes Θ(1) rounds, privately commu-
nicates and broadcasts O((m2n4 +n5) log 1

ε
) bits. So our MPSI protocol achieves

optimal resilience at the cost of a little bit higher communication complexity, in
comparison to the MPSI protocol presented in the previous section.

As in [116, 129], our MPSI protocol tries to securely evaluate the function
given in (6.1) and is divided into following four phases: Preparation Phase, In-
put Phase, Computation and Output Phase. The error probability of the overall
protocol is ε. To bound the error probability by ε, all the computations in our
protocol are performed over a finite field F = GF (2κ), where κ has to be de-
termined using the relation ε ≥ n42−κ · max(n,m2). The relationship between
κ and ε is derived from the relationship between ε and κ in our MPC protocol
presented in Chapter 5, by putting values of cM and cO (the value for cM and cO

are derived in the sequel). We assume that n = poly(m). Any field element from
field F can be represented by κ = log |F| = O(log 1

ε
) bits (this can be derived

using n = O(log 1
ε
) and n = poly(m)).

In order to bound the error probability of our MPSI protocol by some specific
values of ε, we find out the value of κ that satisfies ε ≥ n42−κ ·max(n,m2). This
value for κ will consequently determine the field F over which our protocol should
work.

6.9.1 Preparation Phase

Let for i = 1, . . . , n polynomial ri(x) be expressed as ri(x) = b(0,i) + b(1,i)x+ . . .+
b(m,i)xm. Each of the random coefficients of ri(x) polynomials can be interpreted
as a random gate. So there are cR = n(m + 1) random gates (n polynomials
r1(x), . . . , rn(x) have in total n(m+1) random coefficients). Also there are cM =
n(m+1)2 multiplication gates (computing ri(x)f i(x) requires (m+1)2 coefficient
multiplications). There will be at most (n(m + 1)2) additions of two values to
compute F (x). Hence cA = n(m+1)2. Finally as F (x) is a 2m degree polynomial,
it has 2m + 1 coefficients which need to be reconstructed/outputted. Hence
cO = 2m + 1. So in preparation phase we will generate 2d?-sharing of cR + cM =
n(m+1)+n(m+1)2 random multiplication triples, each having ε

(2cM+cO)
≈ ε

n(m+1)2

146

error, following the protocol for preparation phase (called as PreparationPhase) of
our statistical MPC protocol (presented in Chapter 5). Now consider the first cR

triples generated in preparation phase. The first component of these triples can
be directly interpreted as 〈〈b(0,i)〉〉t, . . . , 〈〈b(m,i)〉〉t for i = 1, . . . , n.

Theorem 6.34 Except with error probability ε, the protocol for Preparation Phase
produces correct 2d?-sharing of n(m+1)+n(m+1)2 secret multiplication triples,
each having ε

n(m+1)2
error. The protocol has

1. Round Complexity: Twenty nine rounds.

2. Communication Complexity: Private and Broadcast communication
of O((n4m2 + n5) log 1

ε
) bits.

Proof: The proof follows from Lemma 5.11 and 5.12 by substituting values of
cM , cR, cA and cO as specified above. 2

6.9.2 Input Phase

In the Input phase, every party Pi ∈ P represents his set Si = {e1
i , . . . , e

m
i } by a

polynomial f i(x) of degree m where f i(x) = (x− e1
i) . . . (x− em

i) = a0i + a1ix +
. . . + amixm. Since ami = 1 always, every party in P assumes 1 to be public
on behalf of ami, for i = 1, . . . , n (see Remark 6.24). Now for i = 1, . . . , n and
j = 0, . . . , m − 1, the parties generate 〈〈aji〉〉t having ε

max(n2,n(m+1)2)
error, by

executing the protocol for Input phase (i.e. InputPhase) of our statistical MPC
protocol (presented in Chapter 5), with cI = nm.

Theorem 6.35 Except with error probability ε, the protocol for Input Phase al-
lows party Pi to generate 2d?-sharings of all the coefficients of its polynomial
f i(x), where each sharing will have ε

max(n2,n(m+1)2)
error. The protocol has:

1. Round Complexity: Five rounds.

2. Communication Complexity: Private and broadcast communication of
O((n4m + n5) log 1

ε
) bits.

Proof: The proof follows from Lemma 5.13 and 5.14 by substituting cI = nm.
2

6.9.3 Computation and Output Phase

After Preparation and Input phase, the parties jointly compute the coefficients
of the polynomial F (x) =

∑n
i=1 rif i(x) in a shared manner. And finally the

coefficients of F (x) are reconstructed by each party. In the Output phase, each
party locally evaluates F (x) at each element of his private set. All the elements
at which F (x) = 0 belongs to the intersection of the n sets with very high
probability. The protocol for Computation and Output phase is given in Fig.
6.10.

Theorem 6.36 Except with error probability ε, our protocol for Computation
and Output phase computes intersection of the sets of individual parties with

1. Round Complexity: Four rounds.

147

Figure 6.10: Computation Phase and Output phase of our Statistical MPSI Protocol

Computation Phase

1. All the parties in P compute F i(x) = ri(x)f i(x) such that F i(x) = c(0,i) +
c(1,i)x + . . . + c(2m,i)x2m is a 2m degree polynomial and all its coefficients
c(0,i), . . . , c(2m,i) are correctly 2d?-shared. For i = 1, . . . , n, the coefficients of
all F i(x) are computed in parallel.

(a) All parties in P compute in parallel:

• 〈〈a(0,i)b(0,i)〉〉t = 〈〈a(0,i)〉〉t〈〈b(0,i)〉〉t,
• 〈〈a(0,i)b(1,i)〉〉t = 〈〈a(0,i)〉〉t〈〈b(1,i)〉〉t,
• . . .,
• 〈〈a(m,i)b(m,i)〉〉t = 〈〈a(m,i)〉〉t〈〈b(m,i)〉〉t.

For computing these products, we use the Beaver’s circuit randomiza-
tion technique, as used in our MPC protocol.

(b) All parties in P compute

• 〈〈c(0,i)〉〉t = 〈〈a(0,i)b(0,i)〉〉t,
• 〈〈c(1,i)〉〉t = 〈〈a(0,i)b(1,i)〉〉t + 〈〈a(1,i)b(0,i)〉〉t,
• 〈〈c(2,i)〉〉t = 〈〈a(0,i)b(2,i)〉〉t + 〈〈a(2,i)b(0,i)〉〉t + 〈〈a(1,i)b(1,i)〉〉t,
• . . .,
• 〈〈c(2m,i)〉〉t = 〈〈a(m,i)b(m,i)〉〉t.

2. All the parties in P compute F (x) =
∑n

i=1 F i(x) such that F (x) = d0+d1x+
. . .+d2mx2m is a 2m degree polynomial and all its coefficients d0, . . . , d2m are
correctly 2d?-shared. For this all parties in P compute 〈〈dj〉〉t =

∑n
i=1〈〈cji〉〉t

for j = 0, . . . , 2m.

Output Phase

1. The coefficients d0, . . . , d2m of F (x) are privately reconstructed by each party.
For that parties invoke protocol 5VSS-Rec (of Chapter 4), as in our statistical
MPC protocol presented in Chapter 5.

2. Each Pi with his private set Si = {e1
i , . . . , e

m
i } locally checks whether F (ek

i)
?=

0 for k = 1, . . . , m. If F (ek
i) = 0, the Pi adds ek

i in a set Ii (initially Ii = ∅).
Pi outputs Ii as the intersection set S1 ∩ S2 . . . ,∩Sn.

2. Communication Complexity: Private and broadcast communication of
O(n4m2 log 1

ε
) bits.

Proof: Follows from Lemma 5.15 and 5.16 by substituting cM = O(nm2),
cO = 2m + 1 and D = 1. 2

6.9.4 Our New MPSI with Optimal Resilience

Now our protocol for statistical MPSI with n = 2t + 1 is: (a) Invoke proto-
col for Preparation phase and Input phase in parallel; (c) Invoke protocol for

148

Computation and Output phase.

Theorem 6.37 In our statistical MPSI protocol (with n = 2t + 1) every party
learns the intersection set S1 ∩ S2 ∩ . . . ∩ Sn, except with probability at most
ε. That is our MPSI has ε error in Correctness. Moreover, At will not get
any extra information, other than what can be inferred by the data sets of the
corrupted parties and the intersection of the data sets of all the parties. The
protocol achieves the following bounds:

1. Round Complexity: Thirty three rounds.

2. Communication Complexity: Private and broadcast communication of
O((m2n4 + n5) log 1

ε
)) bits.

Proof: Correctness and Secrecy can be argued in the same way as done for
our MPSI protocol with n = 3t+1 parties. The round complexity and communi-
cation complexity follow from the round and communication complexity of Input
Phase, Preparation Phase, Computation Phase and Output Phase. 2

We will conclude this section with a comparison of our optimally resilient
MPSI with the MPSI protocols that may be derived from existing MPC protocols
with optimal resilience by substituting the number of gates as done in subsection
6.3.1.

6.9.5 Our MPSI Protocol with n = 2t + 1 vs. Existing General MPC
Protocols

Assume that an MPSI protocol computes the function given in (6.1), using gen-
eral MPC protocol. The arithmetic circuit, representing the function in (6.1),
will roughly require cM = n(m + 1)2 multiplication gates. This is because com-
puting ri(x)f i(x) requires (m + 1)2 coefficient multiplications. And since all the
multiplications can be evaluated in parallel, we have the multiplicative depth of
the circuit as one i.e D = 1.

Now in Table 6.3, we have summarized the communication complexity and
round complexity of MPSI protocols that may be derived from existing MPC
protocols with optimal resilience. This is done by putting cM = n(m + 1)2 and
D = 1 in the communication and round complexity of existing MPC protocols
with optimal resilience (i.e with n = 2t + 1).

From Table 6.3, we find that our protocol incurs much lesser communication
complexity than the protocol of [138, 4, 6, 48, 49] while achieving a round com-
plexity of same or less order. But the protocol of [12] provides slightly better
communication complexity than ours at the cost of increased round complexity.

6.10 Conclusion and Open Problems

In this chapter, we have presented a detailed analysis of the round complexity
and communication complexity of the statistical MPSI protocol of [116] and pre-
sented a new protocol with significant improvement over the same. Towards this,
we have designed a new statistical VSS protocol and new sub-protocols like Up-
grade1Dto2D. These protocols along with existing techniques from the literature,
led to our efficient statistical MPSI protocol. We have also designed a statistical

149

Table 6.3: Comparison of our MPSI with the general MPC protocols that securely
compute (6.1).

Reference Communication Complexity in bits Round Complexity

Private Broadcast

[138] Ω(m2n6(log 1
ε
)4) Ω(m2n6(log 1

ε
)4) O(1)

[4, 6] Ω(m2n6(log 1
ε
)4) Ω(m2n6(log 1

ε
)4) O(1)

[48] O(m2n6 log 1
ε
) O(m2n6 log 1

ε
) O(n)

[49] O(m2n6 log 1
ε
) O(m2n6 log 1

ε
) O(n)

[12] O(m2n3 log 1
ε
) O(n3 log 1

ε
) O(n2)

This chapter O((m2n4 + n5) log 1
ε
) O((m2n4 + n5) log 1

ε
) 33

MPSI protocol with optimal resilience. We now conclude this chapter with a few
open questions:

Open Problem 9 Can we improve the round complexity and communication
complexity of information theoretically secure MPSI protocol?

Open Problem 10 Can we design a perfect MPSI protocol using a direct method
(and without using circuit based approach of general MPC protocol)?

The later question calls for a new way of solving MPSI problem that is different
from the method followed in this thesis (based on finding common roots of n poly-
nomials). This is because the current method has an inherent error probability
involved, as mentioned in Subsection 6.1.2.

150

Part II

Results in Asynchronous
Network

151

Chapter 7

Efficient Asynchronous
Information Checking Protocols

In this chapter, we focus on Information Checking Protocol (ICP) in asynchronous
network, called as AICP (asynchronous ICP). Recall that ICP is a tool for authen-
ticating messages in the presence of computationally unbounded corrupted parties.
Much like the ICP in synchronous network is instrumental in constructing sta-
tistical VSS and WSS protocols, AICP is a vital building block for designing
statistical AVSS and AWSS protocols. Here we present two AICPs with slight
variations in their properties and communication complexity. Both the proto-
cols are highly efficient and they will be used for designing AVSS protocols with
different properties (details will appear in the next chapter). At the end of this
chapter, we present a discussion on our AICPs, comparing and contrasting their
properties and motivations. We also compare the protocols with the only known
existing AICP of [39].

7.1 Introduction

7.1.1 Existing Literature and Definition of Asynchronous ICP or AICP

The notion of ICP was first introduced by Rabin et al. [138] who have designed
an ICP in synchronous settings. The ICP of Rabin et al. was also used as a tool
by Canetti et al. [39] in asynchronous network for designing their Asynchronous
BA (ABA) scheme.

Canetti et al. [39] have defined AICP as a protocol executed among three
parties: a dealer D, an intermediary INT and a verifier R. The dealer D hands
over a secret value s to INT . At a later stage, INT is required to hand over s
to R and convince R that s is indeed the value which INT received from D. So
the basic definition of ICP involves only a single verifier R.

7.1.2 New Definition, Model, Structure and Properties of AICP

Similar to the extension that we have done for ICP in Chapter 2, we first extend
the basic definition of AICP so that it can deal with multiple verifiers and multiple
secrets simultaneously. Specifically, our AICP can deal with n verifiers denoted
by P and ` secrets concurrently. Moreover, we assume that dealer D and INT
belong to P . So now our AICP is executed among three entities: a dealer D ∈ P ,
an intermediary INT ∈ P and the entire set P acting as verifiers. The dealer D

152

hands over a secret S to INT . At a later stage, INT is required to hand over
S to the verifiers in P and convince the honest parties in P that S is indeed the
secret which INT received from D. Extending the AICP for multiple verifiers
and multiple secrets, will be later helpful in using AICP as a tool in our AVSS
and AWSS protocols.

As mentioned earlier, our multiple secret, multiple receiver AICP is useful in
the design of efficient protocols for statistical AVSS and AWSS. Statistical AVSS
is possible iff n ≥ 3t + 1 and for the design of statistical AVSS with optimal
resilience, we work with n = 3t + 1. As our AICPs is useful in such context,
we design our AICPs as well with n = 3t + 1. Now in this chapter, we use the
following network model.

7.1.2.1 The Network and Adversary Model for AICP

We assume that there are n parties (in this chapter, we will also call them as
verifiers), say P = {P1, . . . , Pn}, where every two parties are directly connected
by a secure channel and t out of the n parties can be under the influence of a
computationally unbounded Byzantine (active) adversary, denoted as At. Fur-
thermore, we assume n = 3t+1. Also D, INT ∈ P are two specific parties where
D is called as Dealer and INT is referred to as Intermediary. The adversary At

may corrupt D as well as INT . The Byzantine adversary At completely dictates
the parties under its control and can force them to deviate from a protocol, in
any arbitrary manner. The adversary At is static and thus can corrupt some t
parties before the start of the protocol. We assume At to be rushing [125, 91, 48],
who may choose to first listen all the messages sent to the corrupted parties by
the honest parties, before allowing the corrupted parties to send their messages.
The parties not under the influence of At are called honest or uncorrupted.

The underlying network is asynchronous, where the communication channels
between the parties have arbitrary, yet finite delay (i.e the messages are guar-
anteed to reach eventually). To model this, At is given the power to schedule
the delivery of all messages in the network. However, At can only schedule the
messages communicated between honest parties, without having any access to
the contents of the message.

7.1.2.2 The Structure of AICP

As in [39, 35], our AICP is also structured into sequence of following three phases:

1. Generation Phase: This phase is initiated by D. Here D hands over the
secret S containing ` elements from F to intermediary INT . In addition,
D sends some authentication information to INT and some verification
information to individual verifiers in P .

2. Verification Phase: This phase is initiated by INT to acquire an IC
Signature on S that will be later accepted by every honest verifiers in P .
Depending on the behavior of D (i.e whether honest or corrupted), INT
may or may not receive IC signature from D. When INT receives IC
signature, he decides to continue AICP and later participate in Revelation
Phase. On the other hand, when INT does not receive IC signature, he
aborts AICP and does not participate in Revelation Phase later. The
IC signature (when INT receives it), denoted by ICSig(D, INT,P , S) is

153

either S along with the authentication information which is held by INT
at the end of Verification Phase or only S.

3. Revelation Phase: This phase is carried out by INT (only when he re-
ceives ICSig(D, INT,P , S) from D by the end of Verification Phase)
and the verifiers in P . Revelation Phase can be presented in two flavors:

(a) Public Revelation of ICSig(D, INT,P , S) to all the verifiers in P : Here
all the verifiers can publicly verify whether INT indeed received IC
signature on S from D. If they are convinced then every verifier Pi sets
Reveali = S. Otherwise every Pi sets Reveali = NULL.

(b) Pα-private-revelation of ICSig(D, INT,P , S): Here INT privately re-
veals ICSig(D, INT,P , S) to only Pα, where Pα ∈ P . After do-
ing some checking, if Pα believes that INT indeed received IC sig-
nature on S from D then Pα sets Revealα = S. Otherwise Pα sets
Revealα = NULL.

In our ICP in synchronous network, we have mentioned and implemented only
Public Revelation of ICSig(D, INT,P , S). In all the applications of our ICP in
synchronous network (as shown in this thesis), we required only the Public Rev-
elation. But in asynchronous network, while we will require Public Revelation in
some instances, we will also require Pα-private-revelation in some other instances
(as will be demonstrated in the subsequent chapters).

7.1.2.3 The Properties of AICP

Any AICP should satisfy the following properties, assuming public revelation of
signature (these properties are almost same as the properties of AICP defined in
[39]). In the properties, ε denotes the error probability of AICP.

1. AICP-Correctness1: If D and INT are honest, then ICSig(D, INT,P , S)
will be accepted in Revelation Phase by each honest verifier.

2. AICP-Correctness2: If an honest INT holds an ICSig(D, INT,P , S) at
the end of Verification Phase, then ICSig(D, INT,P , S) will be accepted
in Revelation Phase by each honest verifier, except with probability ε.

3. AICP-Correctness3: If D is honest, then during Revelation Phase,
with probability at least (1 − ε), every ICSig(D, INT,P , S ′) with S ′ 6= S
produced by a corrupted INT will not be accepted by an honest verifier.

4. AICP-Secrecy: If D and INT are honest and INT has not started Rev-
elation Phase, then At will have no information about S.

For AICP with Pα-private-revelation in Revelation Phase, the above prop-
erties can be modified by replacing ”every/any honest verifier” with ”honest Pα”.

Both of our AICPs are presented with Public Revelation as well as Pα-private-
revelation; but later depending on our requirement (described in detail in sub-
sequent sections) we use one of the AICPs with Public Revelation, while other
AICP with Pα-private-revelation. For our protocols, we need a basic tool called
A-cast that allows any party in P to send some information identically to all the
parties in P .

154

7.2 A-cast: Asynchronous Broadcast

A-cast is an asynchronous broadcast primitive. It was introduced and elegantly
implemented by Bracha [29] with n = 3t + 1 parties.

Definition 7.1 (A-cast [35]) : Let Π be a protocol executed among the set of
parties P and initiated by a special party caller sender S ∈ P, having input m
(the message to be sent). Π is an A-cast protocol tolerating At if the following
hold, for every behavior of At and every input m:

1. Termination:

(a) If S is honest, then all honest parties in P will eventually terminate Π;

(b) If any honest party terminates Π, then irrespective of the nature of S
all honest parties will eventually terminate Π.

2. Correctness:

(a) If the honest parties terminate Π, then they do so with a common output
m∗;

(b) Furthermore, if the sender S is honest then m∗ = m.

For the sake of completeness, we recall Bracha’s A-cast protocol from [35]
and present it in Fig. 7.1. For convenience, we denote the protocol of [29] as
Bracha-A-cast(S,P ,M), where M is the message that the sender S wants to send
and |M | ≥ 1 (in bits).

Figure 7.1: Bracha’s A-cast Protocol with n = 3t + 1

Bracha-A-cast(S,P, M)

Code for the sender S (with input M): only S executes this code

1. Send message (MSG,M) privately to all the parties.

Code for party Pi: every party in P executes this code

1. Upon receiving a message (MSG, M), send (ECHO,M) privately to
all parties.

2. Upon receiving n− t messages (ECHO, M ′) that agree on the value of
M ′, send (READY, M ′) privately to all the parties.

3. Upon receiving t + 1 messages (READY, M ′) that agree on the value
of M ′, send (READY, M ′) privately to all the parties.

4. Upon receiving n− t messages (READY,M ′) that agree on the value of
M ′, send (OK, M ′) privately to all the parties, accept M ′ as the output
message and terminate the protocol.

155

Theorem 7.2 ([35]) Protocol Bracha-A-cast privately communicates O(|M |n2)
bits to A-cast a message M of size |M | bits.

Notation 7.3 (Convention for Using Bracha’s A-cast Protocol) In the rest
of the thesis, we use the following convention: By saying that ‘Pi A-casts M ’, we
mean that Pi as a sender, initiates Bracha-A-cast(Pi,P ,M). Then by saying that
‘Pj receives M from the A-cast of Pi’, we mean that Pj terminates the execution
of Bracha-A-cast(Pi,P ,M), with M as the output.

7.3 Our First AICP

In the following, we present an informal idea of our novel AICP called MVMS-
AICP-I and subsequently describe protocol MVMS-AICP-I in Fig. 7.2 and 7.3.
The protocol has a error probability of ε. To bound the error probability by ε,
our protocol works over a field F = GF (2κ), where κ has to be determined using
the relation ε ≥ nκ2−κ and the value of ε. Specifically the the minimum value of
κ that satisfies ε ≥ nκ2−κ will determine the field F. The relation between ε and
κ implies that we have |F| ≥ nκ

ε
. Now each element from the field is represented

by κ = log |F| = O(log 1
ε
) bits (this can be derived using n = O(log 1

ε
)).

The Intuition: D selects a random polynomial f(x) of degree ` + tκ, whose
first ` coefficients are the elements of S and delivers f(x) to INT . In addi-
tion, D privately gives the value of f(x) at κ random evaluation points to each
individual verifier. This distribution of information by D helps to achieve AICP-
Correctness3 property. Specifically, if D is honest, then a corrupted INT can-
not produce an incorrect f ′(x) 6= f(x) during Revelation Phase without being
detected by an honest verifier. This is because a corrupted INT will have no
information about the evaluation points of an honest verifier and hence with
very high probability, f ′(x) will not match with the evaluation points held by an
honest verifier.

The above distribution of information by D also maintains AICP-Secrecy
property. This is because the degree of f(x) is ` + tκ and At will know the value
of f(x) at most at tκ evaluation points.

However, a corrupted D might do the following: he may distribute f(x) to
INT and value of some other polynomial (different from f(x)) to each honest
verifier. To avoid this situation, INT and the verifiers interact in zero knowledge
fashion, using cut-and-choose technique to check the consistency of f(x) and the
values of f(x) held by individual verifier. The specific details of the cut-and-
choose, along with other formal steps of protocol MVMS-AICP-I are given in Fig.
7.2 and 7.3.

We now prove the properties of protocol MVMS-AICP-I considering the Pα-
private-revelation of ICSig(D, INT,P , S) (later MVMS-AICP-I will be used with
its Pα-private-revelation only). The proofs can be twisted little bit to obtain the
proofs for public revelations.

Lemma 7.4 (AICP-Correctness1) If D, INT and Pα are honest, then S will
be accepted by Pα.

Proof: If D is honest then he will honestly deliver f(x) to INT and its values
at κ points to individual verifier. So eventually, the condition stated in step 2(a)

156

Figure 7.2: Our First AICP with n = 3t + 1 Verifiers.

Protocol MVMS-AICP-I(D, INT,P, S, ε)

Generation Phase: Gen(D, INT,P, S, ε)

1. D selects a random `+ tκ degree polynomial f(x) whose lower order ` coeffi-
cients are the secrets in S = (s1, . . . , s`). D also picks nκ random, non-zero,
distinct evaluation points from F, denoted by αi

1, . . . , α
i
κ, for i = 1, . . . , n.

2. D privately sends f(x) to INT and the verification tags zi
1 =

(αi
1, a

i
1), . . . , z

i
κ = (αi

κ, ai
κ) to party Pi. Here ai

j = f(αi
j), for j = 1, . . . , κ.

Verification Phase: Ver(D, INT,P, S, ε)

1. Every verifier Pi randomly partitions the index set {1, . . . , κ} into two sets
Ii and Ii of equal size and sends Ii and zi

j for all j ∈ Ii to INT .

2. Local Computation (only for INT):

(a) For every verifier Pi from which INT has received Ii and corresponding
verification tags, INT checks whether for every j ∈ Ii, f(αi

j)
?= ai

j .

(b) If for at least 2t+1 verifiers, the above condition is satisfied, then INT
sets ICSig(D, INT,P, S) = f(x) and concludes that he has received
ICSig(D, INT,P, S) from D.

(c) If for at least t + 1 verifiers, the above condition is not satisfied, then
INT sets ICSig(D, INT,P, S) = NULL and concludes that he has
not received ICSig(D, INT,P, S) from D.

of Verification Phase will be satisfied for at least 2t + 1 verifiers and hence
INT , who is honest in this case will set ICSig(D, INT,P , S) = f(x). Now it is
easy to see that the condition stated in step 3(a) of protocol Reveal-Private will
be eventually satisfied, corresponding to the honest verifiers in P (there are at
least 2t+1 honest verifiers). Hence Pα, who is honest in this case, will eventually
accept ICSig(D, INT,P , S) at the end of Reveal-Private. 2

Lemma 7.5 (AICP-Correctness2) If an honest INT holds an ICSig(D, INT,
P , S) at the end of Verification Phase, then ICSig(D, INT,P , S) will be ac-
cepted in Reveal-Private by honest Pα, except with probability ε.

Proof: We have to consider the case when D is corrupted as otherwise the proof
will follow from Lemma 7.4. Since INT is honest and it holds an ICSig(D, INT,
P , S) at the end of Verification phase, INT has ensured that for at least
2t + 1 verifiers the condition specified in step 2(a) of Verification phase has
been satisfied. Let H be the set of honest verifiers among these 2t + 1 verifiers.
Note that |H| ≥ t + 1. To prove the lemma, we prove that corresponding to
each verifier in H, the condition stated in step 3(a) of Reveal-Private will be
satisfied with very high probability. Note that corresponding to a verifier Pi in
H, the condition stated in step 3(a) of Reveal-Private will fail if for all j ∈ I i,
f(αi

j) 6= ai
j. This implies that (corrupted) D must have distributed f(x) (to

157

Figure 7.3: Our First AICP with n = 3t + 1 Verifiers.

Protocol MVMS-AICP-I(D, INT,P, S, ε)

Revelation Phase:

Reveal-Private(D, INT,P, S, Pα, ε): Pα-private-revelation of ICSig(D, INT,P, S)

1. To party Pα, INT sends ICSig(D, INT,P, S) = f(x).

2. To party Pα, every verifier Pi sends the index set Ii and all zi
j such that

j ∈ Ii.

3. Local Computation (only for Pα):

(a) Upon receiving f(x) from INT and the values from verifier Pi, check
whether for some j ∈ Ii, f(αi

j)
?= ai

j .
(b) If for at least t + 1 verifiers the above condition is satisfied, then

accept ICSig(D, INT,P, S) and set Revealα = S, where S is the
lower order ` coefficients of f(x).

(c) If for at least 2t+1 verifiers the above condition is not satisfied, then
reject ICSig(D, INT,P, S) and set Revealα = NULL.

Reveal-Public(D, INT,P, S, ε): Public Revelation of ICSig(D, INT,P, S)

1. INT A-casts ICSig(D, INT,P, S) = f(x).

2. Code for Pi: (Every party in P executes this code.)

(a) Upon receiving f(x) from INT , check whether for some j ∈ Ii,
f(αi

j)
?= ai

j . If yes, A-cast Accept. Else A-cast Reject.
(b) If Accept is received from the A-cast of at least t + 1 verifiers, then

accept ICSig(D, INT,P, S) and set Reveali = S, where S is the
lower order ` coefficients of f(x).

(c) If Reject is received from the A-cast of at least 2t + 1 verifiers, then
reject ICSig(D, INT,P, S) and set Reveali = NULL.

INT) and zi
j (to Pi) inconsistently for all j ∈ I i and it so happens that Pi has

partitioned {1, . . . , κ} into I i and I i during Verification Phase, such that Ii

contains only inconsistent tuples (zi
j’s). Thus corresponding to a verifier Pi ∈ H,

the probability that the condition stated in step 3(a) of Reveal-Private fails is
same as the probability of Pi selecting all consistent (inconsistent) tuples in I i

(I i), which is 1

(κ
κ/2)

< 1
2κ ≤ ε

nκ
. Now as there are at least t + 1 parties in H,

except with probability (t + 1) ε
nκ
≈ ε

κ
< ε, Pα will eventually find step 3(a) of

Reveal-Private to be true for all parties inH and will accept ICSig(D, INT,P , S).
2

Lemma 7.6 (AICP-Correctness3) If D is honest, then during Reveal-Private,
with probability at least (1−ε), every ICSig(D, INT,P , S ′) with S ′ 6= S produced
by a corrupted INT will be rejected by honest verifier Pα.

Proof: It is easy to see that S ′ 6= S produced by a corrupted INT will be ac-
cepted by an honest Pα, if the condition stated in step 3(a) of Reveal-Private gets

158

satisfied corresponding to at least one honest verifier (for t corrupted verifiers,
the condition may always satisfy). However, the condition will be satisfied corre-
sponding to honest verifier Pi if corrupted INT can correctly guess a verification

tag zj
i for at least one j ∈ I i, which he can do with probability

κ
2

|F| ≤ ε
n
. Now

since there are at least 2t+1 honest verifiers, the probability that INT can guess
the above for some honest verifier is at most (2t + 1) ε

n
≈ ε. This implies that

with probability (1 − ε), for all the honest verifiers the condition stated in step
3(a) of Reveal-Private will not be satisfied. Thus, with probability at least (1− ε),
every ICSig(D, INT,P , S ′) with S ′ 6= S produced by a corrupted INT will be
rejected by honest verifier Pα. 2

Lemma 7.7 (AICP-Secrecy) If D and INT are honest and INT has not
started Reveal-Private, then S is information theoretically secure from At.

Proof: If D and INT are honest, then at the end of Verification Phase, At

will get tκ distinct values on f(x). However, f(x) is of degree ` + tκ and hence
the lower order ` coefficients of f(x) which are the elements of S will remain
information theoretically secure. 2

Lemma 7.8 (Communication Complexity of MVMS-AICP-I)

• Protocol Gen privately communicates O((` + n log 1
ε
) log 1

ε
) bits.

• Protocol Ver privately communicates O((n log 1
ε
) log 1

ε
) bits.

• Protocol Reveal-Private privately communicates O((` + n log 1
ε
) log 1

ε
) bits.

• Protocol Reveal-Public A-casts O((` + n log 1
ε
) log 1

ε
) bits.

Proof: In protocol Gen, D privately gives `+tκ field elements to INT and κ field
elements to each verifier. Since each field element can be represented by κ bits and
κ = O(log 1

ε
), protocol Gen incurs a private communication ofO((`+n log 1

ε
) log 1

ε
)

bits. In protocol Ver, every verifier privately sends κ
2

field elements to INT , thus

incurring a total private communication of O((n log 1
ε
) log 1

ε
) bits. In protocol

Reveal-Private, INT sends to Pα the polynomial f(x), consisting of ` + tκ field

elements, while each verifier sends I i and corresponding verification tags. So
Reveal-Private involves private communication of O((` + n log 1

ε
) log 1

ε
) bits. In

Reveal-Public, INT A-casts f(x) and the verifiers A-cast either Accept or Reject.
So Reveal-Public require A-cast communication of O((` + n log 1

ε
) log 1

ε
) bits. 2

Theorem 7.9 Protocol MVMS-AICP-I is an efficient AICP.

Proof: The theorem follows from Lemma 7.4, Lemma 7.5, Lemma 7.6 and
Lemma 7.7. 2

In the sequel, we present our second AICP.

7.4 Our Second AICP

We now present our second AICP called MVMS-AICP-II. The idea of MVMS-
AICP-II is very similar to the ICP presented in Chapter 2. Hence we directly

159

present the protocol in Fig. 7.4 and 7.5.

To bound the error probability by ε, our protocol MVMS-AICP-II operates over
field F = GF (2κ), where κ has to be determined using the relation ε ≥ n2−κ.
Hence we have |F| ≥ n

ε
and each element from the field is represented by κ =

log |F| = O(log 1
ε
) bits (this can be derived using n = O(log 1

ε
)).

Figure 7.4: Our second AICP with n = 3t + 1

Protocol MVMS-AICP-II(D, INT,P, S, ε)

Generation Phase: Gen(D, INT,P, S, ε)

1. D picks and sends the following to INT :

(a) A random degree-(` + t) polynomial F (x) over F, such that the lower
order ` coefficients of F (x) are elements of S.

(b) A random degree-(` + t) polynomial R(x) over F.

2. D privately sends the following to every verifier Pi:

(a) (αi, vi, ri), where αi ∈ F− {0} is random (all αi’s are distinct).

(b) vi = F (αi) and ri = R(αi).

The polynomials F (x), R(x) is called authentication information, while
for i = 1, . . . , n, the values (αi, vi, ri) are called verification information.

Verification Phase: Ver(D, INT,P, S, ε)

1. For i = 1, . . . , n, verifier Pi sends a Received-From-D signal to INT after
receiving (αi, vi, ri) from D.

2. Upon receiving Received-From-D from 2t + 1 verifiers, INT creates a
set ReceivedSet = {Pi | INT received Received-From-D signal from Pi}
(clearly |ReceivedSet| = 2t + 1). INT then chooses a random d ∈ F \ {0}
and A-casts (d,B(x), ReceivedSet), where B(x) = dF (x) + R(x).

3. D checks dvi + ri
?= B(αi) for every Pi ∈ ReceivedSet. If D finds any

inconsistency, he A-casts S. Otherwise D A-casts OK.

4. Upon receiving the A-cast of D, INT sets

(a) ICSig(D, INT,P, S) = F (x) if OK is received from the A-cast of D.

(b) ICSig(D, INT,P, S) = S if S is received from the A-cast of D.

From Fig. 7.4 and 7.5, it is clear that the idea of MVMS-AICP-II is very similar
to the ICP presented in Chapter 2. Hence the proofs for MVMS-AICP-II go in
the line of the proofs of the ICP in Chapter 2. For the sake of completeness,
we present all the proofs of MVMS-AICP-II in the sequel considering its public
revelation (later MVMS-AICP-II will be used with its public revelation only). The
proofs can be twisted little bit to obtain the proofs for Pα-private-revelation.

160

Figure 7.5: Our second AICP with n = 3t + 1

Protocol MVMS-AICP-II(D, INT,P, S, ε)

Revelation Phase:

Reveal-Public(D, INT,P, S, ε) : Public Revelation of ICSig(D, INT,P, S)

1. INT A-casts ICSig(D, INT,P, S).

2. On receiving ICSig(D, INT,P, S) from the A-cast of INT , verifier Pi ∈
ReceivedSet who indeed sent Received-From-D to INT during Ver, A-
casts Accept in the following conditions.

(a) If ICSig(D, INT,P, S) = S and the S A-casted by D during Ver is
same as ICSig(D, INT,P, S).

(b) If ICSig(D, INT,P, S) = F (x) and one of the following holds.
i. C1: vi = F (αi); OR
ii. C2: B(αi) 6= dvi + ri, where B(x) was A-casted by INT during

Ver.

Otherwise, Pi A-casts Reject.

Local Computation (By Every Verifier in P): If at least (t + 1) veri-
fiers from ReceivedSet have A-casted Accept during Reveal-Public then accept
ICSig(D, INT,P, S) and set Reveali = S. Else reject ICSig(D, INT,P, S)
and set Reveali = NULL.

Reveal-Private(D, INT,P, Pα, S, ε) :Pα-private-revelation of ICSig(D, INT,P, S)

1. INT sends ICSig(D, INT,P, S) to Pα.

2. Verifier Pi sends (αi, vi, ri) to Pα.

3. Local Computation by Pα.

(a) Upon receiving ICSig(D, INT,P, S) from INT and the values from
verifier Pi, accept Pi if
i. If ICSig(D, INT,P, S) = S and the S A-casted by D during Ver

is same as ICSig(D, INT,P, S).
ii. If ICSig(D, INT,P, S) = F (x) and one of the following holds.

A. C1: vi = F (αi); OR
B. C2: B(αi) 6= dvi+ri, where B(x) was A-casted by INT during

Ver.
Otherwise reject Pi.

(b) If at least t + 1 verifiers from ReceivedSet are accepted, then accept
ICSig(D, INT,P, S) and set Revealα = S, where S is lower order `
coefficients of f(x).

(c) If at least t + 1 verifiers from ReceivedSet are rejected, then reject
ICSig(D, INT,P, S) and set Revealα = NULL.

Claim 7.10 If D and INT are honest then D will never A-cast S during Ver.

161

Proof: Since D is honest, he will send the verification information (αi, vi, ri) to
verifier Pi in P . The honest verifiers (at least 2t+1) will eventually receive the ver-
ification information from D and will inform INT by sending Received-From-D

signal. Hence, the honest INT will eventually construct ReceivedSet and will
correctly A-cast (d,B(x), ReceivedSet) during Ver. So during Ver, D will find
B(αi) = dvi + ri for all Pi ∈ ReceivedSet. Thus D will never A-cast S during
Ver. 2

Lemma 7.11 (AICP-Correctness1) If D and INT are honest, then ICSig(D,
INT,P , S) produced by INT during Reveal-Public will be accepted by each honest
verifier.

Proof: For an honest D, (F (x), R(x)) held by honest INT and (αi, vi, ri)
held by honest verifier Pi in ReceivedSet will satisfy vi = F (αi) and ri =
R(αi). Moreover by previous claim, D will never A-cast S during Ver. Hence
ICSig(D, INT,P , S) = F (x). Now every honest verifier Pi in ReceivedSet will
A-cast Accept during Reveal-Public as C1 i.e vi = F (αi) will hold in protocol
Reveal-Public. Since there are at least t + 1 honest verifiers in ReceivedSet,
ICSig(D, INT,P , S) will be accepted by every honest verifier. 2

Claim 7.12 If (F (x), R(x)) held by an honest INT and (αi, vi, ri) held by an
honest verifier Pi ∈ ReceivedSet satisfy F (αi) 6= vi and R(αi) 6= ri, then except
with probability ε

n
, B(αi) 6= dvi + ri.

Proof: We first prove that for (F (x), R(x)) held by an honest INT and (αi, vi, ri)
held by honest verifier Pi ∈ ReceivedSet, there is only one non-zero d for which
B(αi) = dvi + ri, even though F (αi) 6= vi and R(αi) 6= ri. For otherwise, assume
there exists another non-zero element e 6= d, for which B(αi) = evi + ri is true,
even if F (αi) 6= vi and R(αi) 6= ri. This implies that (d − e)F (αi) = (d − e)vi

or F (αi) = vi, which is a contradiction. Now since d is randomly chosen by hon-
est INT only after D handed over (F (x), R(x)) to INT and (αi, vi, ri) to every
honest Pi ∈ ReceivedSet, a corrupted D has to guess d in advance during Gen to
make sure that B(αi) = dvi + ri holds. However, D can guess d with probability
at most 1

|F|−1
≈ ε

n
. Hence only with probability at most ε

n
, corrupted D can make

B(αi) = dvi + ri, even though F (αi) 6= vi and R(αi) 6= ri. 2

Lemma 7.13 (AICP-Correctness2) If an honest INT holds an ICSig(D, INT,
P , S) at the end of Verification Phase, then ICSig(D, INT,P , S) will be ac-
cepted in Reveal-Public by each honest verifier, except with probability ε.

Proof: We prove the lemma considering D to be corrupted because when D is
honest, the lemma follows from Lemma 7.11. Now the proof can be divided into
following two cases:

1. ICSig(D, INT,P , S) = S: In this case, the lemma holds trivially, without
any error.

2. ICSig(D, INT,P , S) = F (x): Here, we show that except with probability
ε, each honest verifier in ReceivedSet will A-cast Accept during Reveal-
Public. So let Pi be an honest verifier in ReceivedSet. We now have the
following cases depending on the relation that holds between the information
held by INT (i.e (F (x), R(x))) and information held by the honest Pi ∈
ReceivedSet (i.e (αi, vi, ri)):

162

(a) F (αi) = vi: Here Pi will A-cast Accept without any error probability
as C1 (i.e F (αi) = vi) will hold.

(b) F (αi) 6= vi and R(αi) = ri: Here Pi will A-cast Accept without any
error probability, as C2 (i.e B(αi) 6= dvi + ri) will hold.

(c) If F (αi) 6= vi and R(αi) 6= ri: Here Pi will A-cast Accept except with
probability ε

n
, as condition C2 will hold, except with probability ε

n
(see

Claim 7.12).

As shown above, there is a negligible error probability of ε
n

with which an
honest Pi ∈ ReceivedSet may A-cast Reject when F (αi) 6= vi and R(αi) 6= ri

(i.e the third case). This happens if a corrupted D can guess the unique d in
Gen, corresponding to Pi and it so happens that INT also selects the same d
in Ver and therefore condition C2 does not hold good for Pi in Reveal-Public.
Now D can guess a di for each honest verifier Pi in ReceivedSet and if it
so happens that honest INT chooses d which is same as one of those t + 1
di’s guessed by D, then condition C2 will not be satisfied for the honest
verifier Pi for whom di = d and therefore Pi will broadcast Reject. This
may lead to the rejection of ICSig(D, INT,P , S), as t corrupted verifiers
may always broadcast Reject. But the above event can happen with error
probability t+1

|F|−1
= (t+1) ε

n
≈ ε. This is because there are t+1 di’s and INT

has selected some d randomly from F \ {0}. This implies that all honest
verifiers in ReceivedSet will A-cast Accept during Reveal, except with error
probability ε.

This completes the proof of the lemma. 2

Lemma 7.14 (AICP-Correctness3) If D is honest, then during Reveal-Public,
with probability at least (1−ε), every ICSig(D, INT,P , S ′) with S ′ 6= S produced
by a corrupted INT will not be accepted by an honest verifier.

Proof: Here again we have two cases. If ICSig(D, INT,P , S) = S, then the
lemma holds trivially from the protocol steps. So we now prove the lemma when
ICSig(D, INT,P , S) = F (x). Here a corrupted INT can produce S ′ 6= S by A-
casting F ′(x) 6= F (x) during Reveal-Public such that the lower order ` coefficients
of F ′(x) are the elements of S ′. We now claim that if INT does so, then except
with probability ε, every honest verifier Pi in ReceivedSet will A-cast Reject

during Reveal-Public. In the following, we show that the conditions for which an
honest verifier Pi in ReceivedSet would A-cast Accept are either impossible or
may happen with probability ε:

1. F ′(αi) = vi: Since Pi and D are honest, corrupted INT has no information
about αi, vi. Hence the probability that INT can ensure F ′(αi) = vi =
F (αi) is same as the probability with which INT can correctly guess αi,
which is at most 1

|F−1| ≈ ε
n

(since αi is randomly chosen by D from F).

2. B(αi) 6= dvi + ri: This case is never possible since D is honest. If B(αi) 6=
dvi + ri corresponding to Pi ∈ ReceivedSet, then honest D would have A-
casted S during Ver and hence ICSig(D, INT,P , S) would have been equal
to S, which is a contradiction to our assumption that ICSig(D, INT,P , S) =
F (x).

163

As shown above, there is a negligible error probability of ε
n

with which an
honest Pi may A-cast Accept, even if the corrupted INT produces F ′(x) 6= F (x).
This happens if the corrupted INT can guess αi corresponding to honest verifier
Pi ∈ ReceivedSet. Now there are t + 1 honest verifiers in ReceivedSet. A
corrupted INT can guess αi for any one of those t+1 honest verifiers and thereby
can ensure that F ′(αi) = vi holds for some honest Pi (which in turn implies Pi

will A-cast Accept). This will ensure that INT ’s ICSig(D, INT,P , S ′) will be
accepted, as t corrupted verifiers may always A-cast Accept. But the above event
can happen with probability at most t+1

|F|−1
= (t+1) ε

n
≈ ε. This asserts that every

ICSig(D, INT,P , S ′) with S ′ 6= S revealed by a corrupted INT will be rejected
by all honest verifiers with probability at least (1− ε). 2

Lemma 7.15 (AICP-Secrecy) If D and INT are honest and INT has not
started Reveal-Public, then At will have no information about S.

Proof: During Distr, At will know t distinct points on F (x) and R(x). Since
both F (x) and R(x) are of degree-(` + t), the lower order ` coefficients of both
F (x) and R(x) are information theoretically secure. During Ver, At will know d
and dF (x) + R(x). Since both F (x) and R(x) are random and independent of
each other, it still holds that the lower order ` coefficients of F (x) is information
theoretically secure. Also, if D and INT are honest, then D will never broadcast
S during Ver. Hence the lemma. 2

Lemma 7.16 (Communication Complexity of MVMS-AICP-II)

• Protocol Gen privately communicates O((` + n) log 1
ε
) bits.

• Protocol Ver requires A-cast of O((`+n) log 1
ε
) bits and private communica-

tion of O(n log n) bits.

• Protocol Reveal-Private privately communicates O((` + n) log 1
ε
) bits.

• Protocol Reveal-Public A-casts O((` + n) log 1
ε
) bits.

Proof: In protocol Gen, D privately gives `+ t field elements to INT and three
field elements to each verifier. Since each field element can be represented by
κ = O(log 1

ε
) bits, Gen incurs a private communication of O((`+n) log 1

ε
) bits. In

protocol Ver, every verifier privately sends Received-From-D signal to INT , thus
incurring a private communication of O(n) bits. In addition, INT A-casts B(x)
containing ` + t field elements, thus incurring A-cast of O((` + n) log 1

ε
) bits. In

protocol Reveal-Public, INT A-casts F (x), consisting of `+ t field elements, while
each verifier A-casts Accept/Reject signal. So Reveal-Public involves A-cast of
O((` + n) log 1

ε
) bits.

In protocol Reveal-Private, INT sends ICSig(D, INT,P , S) to Pα and indi-
vidual verifier sends their values to Pα privately. So Reveal-Private requires a
private communication of O((` + n) log 1

ε
) bits. 2

Theorem 7.17 Protocol MVMS-AICP-II is an efficient AICP.

Proof: The theorem follows from Lemma 7.11, Lemma 7.13, Lemma 7.14,
Lemma 7.15 and Lemma 7.16. 2

164

7.5 Discussion About MVMS-AICP-I and MVMS-AICP-II

Now if we consider MVMS-AICP-I with only Pα-private-revelation, then the com-
munication done in the protocol is only private communication (and no A-cast).
For our statistical AMPC (asynchronous MPC) with optimal resilience (presented
in Chapter 10), we require to design an optimally resilient statistical AVSS with
private reconstruction where a specific party (instead of all the parties) is allowed
to reconstruct the secret. Moreover, to bound the communication complexity by
certain bound, we require the A-cast communication complexity of the AVSS pro-
tocol to be independent of ` which is the number of secrets shared by the AVSS
protocol. Protocol MVMS-AICP-I serves our purpose in this case.

On the other hand, if we consider protocol MVMS-AICP-II with only public
revelation, then we see that the protocol has same A-cast and private communi-
cation. For our ABA (asynchronous BA) with optimal resilience (presented in
Chapter 9), we require an AVSS with public reconstruction that requires an AICP
with public revelation. We could use MVMS-AICP-I with public revelation for this
purpose. But this requires a communication complexity O((`+ t log 1

ε
) log 1

ε
) bits

of A-cast (and private communication) which is more that the A-cast communi-
cation of MVMS-AICP-II. Hence for ABA, we will use MVMS-AICP-II. Another
purpose of presenting both the AICPs is to display two different techniques to
achieve the same task.

7.6 Comparison of MVMS-AICP-I and MVMS-AICP-II with
Existing AICP of [39, 35]

As mentioned earlier, there is only one AICP so far [39, 35]. The AICP [39, 35]
is nothing but the ICP of [138] adopted in asynchronous network. The protocol
is also designed with single verifier and single secret. We may extend it to the
case of n verifiers and ` secrets easily. In Table 7.1 we list the communication
complexity of MVMS-AICP-I, MVMS-AICP-II and the protocol of [39, 35] extended
for n verifiers and ` secrets.

Table 7.1: Communication Complexity of protocol MVMS-AICP-I, MVMS-AICP-II and
Existing AICP of [39, 35] with n = 3t + 1 verifiers and ` secrets.

Ref. Gen Ver Reveal-Public Reveal-Private
[39, 35] Private– Private– Private–

O(`n(log 1
ε
)2) O(`n(log 1

ε
)2) — O(`n(log 1

ε
)2)

MVMS-AICP-I Private– Private– A-cast Private–
O((` + n log 1

ε
) log 1

ε
) O((` + n log 1

ε
) log 1

ε
) O((` + n log 1

ε
) log 1

ε
) O((` + n log 1

ε
) log 1

ε
)

MVMS-AICP-II Private– A-cast– A-cast– Private
O((` + n) log 1

ε
) O((` + n) log 1

ε
) O((` + n) log 1

ε
) O((` + n) log 1

ε
)

7.7 Definition and Notations for Using MVMS-AICP-I and
MVMS-AICP-II as Black Box

We now present the following definition:

165

Definition 7.18 (IC Signature with ε Error) An IC signature ICSig(D, INT,
P , S) for some secret S, is said to have ε error, if it satisfies the following:

1. AICP-Correctness1 without any error;

2. AICP-Correctness2 with error probability of at most ε;

3. AICP-Correctness3 with error probability of at most ε;

4. AICP-Secrecy without any error.

Notice that if an IC signature is generated in MVMS-AICP-I or MVMS-AICP-II
(which is executed with error probability ε), then the IC signature will have ε
error. This follows from the proofs of Lemma 7.4, 7.5, 7.6, 7.7 and Lemma 7.11,
7.13, 7.14, 7.15.

We use the following notation for using protocols MVMS-AICP-I and MVMS-
AICP-II as black boxes.

Notation 7.19 (Notation for Using MVMS-AICP-I/MVMS-AICP-II) Recall
that D and INT can be any party from P. In the subsequent chapters, we use
the following conventions. We say that:

1. Gen: “Pi sends ICSig(Pi, Pj,P , S) having ε error to Pj” to mean that Pi

acting as dealer D and considering Pj as INT , executes Gen(Pi, Pj,P , S, ε);

2. Ver: “Pi receives ICSig(Pj, Pi,P , S) having ε error from Pj” to mean that
Pi as INT has received ICSig(Pj, Pi,P , S) after executing Ver(Pj, Pi,P , S, ε);

3. Reveal-Private:

(a) “Pi reveals ICSig(Pj, Pi,P , S) having ε error to Pα” to mean Pi as
INT executes Reveal-Private(Pj, Pi,P , S, Pα, ε) along with the partici-
pation of the verifiers in P;

(b) “Pα completes revelation of ICSig(Pj, Pi,P , S) with Revealα = S” to
mean that Pα has successfully completed Reveal-Private(Pj, Pi,P , S, Pα, ε)
with Revealα = S.

4. Reveal-Public:

(a) “Pi reveals ICSig(Pj, Pi,P , S) having ε” to means Pi as INT executes
Reveal-Public(Pj, Pi,P , S, ε) along with the participation of the verifiers
in P.

(b) “Pk completes revelation ICSig(Pj, Pi,P , S) with Revealk = S ” to
mean that Pk as a verifier has successfully completed Reveal-Public(Pj, Pi,
P , S, ε) with Revealk = S.

7.8 Conclusion and Open Problems

In this chapter, we have extended the basic bare-bone definition of AICP, used by
Canetti et al. [35] to capture multiple verifiers and multiple secrets concurrently.
Then we have presented two AICPs that will be used in two different contexts,
namely in AMPC and ABA. We have shown that our AICPs are better than the
existing protocol in terms of communication complexity.

We conclude this chapter with an interesting open question:

166

Open Problem 11 Can we improve the communication complexity of MVMS-
AICP-I and MVMS-AICP-II when there are n = 3t + 1 verifiers?

Probably, if we can get a ICP (in synchronous network) with better complexity
than the one presented in Chapter 2 of this thesis, then we can adopt that protocol
to obtain a AICP with better complexity. More generally we may try to answer
the following question:

Open Problem 12 What is the communication complexity lower bound for AICP
with n = 3t + 1 verifiers?

167

Chapter 8

Efficient Statistical AVSS
Protocols With Optimal
Resilience

An AVSS is a two phase (Sharing, Reconstruction) protocol carried out among
n parties in the presence of a computationally unbounded active adversary, who
can corrupt up to t parties. We assume that every two parties in the network are
directly connected by a pairwise secure channel.

In this chapter, we present two novel statistical AVSS protocols with optimal
resilience; i.e. with n = 3t + 1. The protocols are designed to attain different
properties and are used in different contexts. While one of the protocols is used in
our ABA protocol with optimal resilience (presented in Chapter 9), the other one
is used in our AMPC with optimal resilience (presented in Chapter 10). Also, it is
important to note that the protocols are based on completely disjoint techniques.
There is only one statistical AVSS protocol with n = 3t + 1 in the literature
reported in [39]. Both our AVSS protocols show significant improvement over
the AVSS of [39] in terms of the communication complexity.

As a key tool for our statistical AVSS protocols, we construct protocols for
weaker notion of statistical AVSS called statistical asynchronous Weak Secret
Sharing or statistical AWSS in short. Our statistical AWSS protocols use the
AICPs presented in Chapter 7 as building blocks.

8.1 Introduction

Over the last three decades, active research has been carried out on VSS by
several researchers, and many interesting and significant results have been ob-
tained dealing with high efficiency, security against general adversaries, security
against mixed types of corruptions, long-term security, provable security, etc (see
[43, 55, 108, 9, 95, 20, 41, 62, 63, 137, 48, 21, 39, 138, 73, 91, 93, 109, 125, 12, 14,
98, 126, 50, 47, 35, 96, 28, 133, 66, 64, 8, 37, 22, 53, 92, 123, 145, 34, 97] and their
references). However, almost all of these solutions are for the synchronous model,
where it is assumed that every message in the network is delayed at most by a
given constant. This assumption is very strong because a single delayed message
would completely break down the overall security of the protocol. Therefore, VSS
protocols for the synchronous model are not suited for real world networks like
the Internet.

168

Hence a new line of research on VSS over asynchronous network has been
initiated. It is well known that asynchronous network models Internet more
appropriately than synchronous network. VSS protocols that are designed to
work over asynchronous network is called Asynchronous VSS or AVSS.

8.1.1 The Network and Adversary Model

In this chapter, we follow the network model of [35]. Specifically, we assume that
an AVSS protocol is carried out among a set of n parties, say P = {P1, . . . , Pn},
where every two parties are directly connected by a secure channel and t out of the
n parties can be under the influence of a computationally unbounded Byzantine
(active) adversary, denoted as At. We assume At to be rushing [125, 91, 48],
who may choose to first listen all the messages sent to the corrupted parties by
the honest parties, before allowing the corrupted parties to send their messages.
The parties not under the influence of At are called honest or uncorrupted. We
assume that there is a specific party in P , called the dealer D, who wants to share
the secret in AVSS protocol. Lastly in this chapter, we assume n = 3t + 1.

The underlying network is asynchronous, where the communication channels
between the parties have arbitrary, yet finite delay (i.e the messages are guar-
anteed to reach eventually). To model this, At is given the power to schedule
the delivery of all messages in the network. However, At can only schedule the
messages communicated between honest parties, without having any access to
the contents of the message. In asynchronous network, the inherent difficulty in
designing a protocol comes from the fact that when a party does not receive an
expected message then he cannot decide whether the sender is corrupted (and
did not send the message at all) or the message is just delayed in the network. So
a party can not wait to consider the values sent by all parties, as waiting for all of
them could turn out to be endless. Hence the values of up to t (potentially hon-
est) parties may have to be ignored. Due to this the protocols in asynchronous
network are generally involved in nature and require new set of primitives. For
an comprehensive introduction to asynchronous protocols, see [35].

8.1.2 Definitions

Informally, any AVSS scheme consists of a pair of protocols (Sh, Rec). Protocol
Sh 1 allows a special party called dealer (denoted as D), to share a secret s ∈ F
(an element from a finite field F) among a set of n parties in a way that allows for
a unique reconstruction of s by every party using protocol Rec 2. Moreover, if D
is honest, then the secrecy of s is preserved till the end of Sh. Any AWSS protocol
relaxes the strict condition of reconstructing the secret s to reconstructing either
the secret or NULL. Now we start with the formal definition of statistical AWSS.

Definition 8.1 (Statistical AWSS) Let (Sh, Rec) be a pair of protocols in
which a dealer D ∈ P shares a secret s using Sh among the n parties in P.
We say that (Sh, Rec) is an (n, t) statistical AWSS scheme if all the following
hold:

• Termination: With probability at least 1 − ε, the following requirements
hold:

1Sh is the protocol for sharing phase of AVSS scheme
2Rec is the protocol for reconstruction phase of AVSS scheme

169

1. If D is honest then each honest party will eventually terminate protocol
Sh.

2. If some honest party has terminated protocol Sh, then irrespective of
the behavior of D, each honest party will eventually terminate Sh.

3. If all honest parties have terminated Sh and invoked Rec, then each
honest party will eventually terminate Rec.

• Correctness: With probability at least 1 − ε, the following requirements
hold:

1. Correctness 1 (AWSS): If D is honest then each honest party upon
terminating Rec, outputs the shared secret s.

2. Correctness 2 (AWSS): If D is faulty and some honest party has
terminated Sh, then there exists a unique s′ ∈ F ∪ {NULL}, such that
each honest party upon terminating Rec will output either s′ or NULL.
This property is also called as weak-commitment.

• Secrecy: If D is honest and no honest party has begun executing protocol
Rec, then At has no information about s.

The definition of statistical AWSS does not stop some honest party to re-
construct the committed secret s′ and some other honest party to reconstruct
NULL, when D is corrupted.

We now present two different definitions of statistical AVSS: strong definition
of statistical AVSS (parallel to strong definition of statistical VSS in synchronous
network (see Definition 3.4 in Chapter 3)) and weak definition of AVSS (parallel
to the weak definition of statistical VSS in synchronous network (see Definition
3.3 in Chapter 3)).

Definition 8.2 (Strong definition of Statistical AVSS [19, 35]) It is same
as statistical AWSS except that Correctness 2 (AWSS) property is strength-
ened as follows:

• Correctness 2 (AVSS): If D is corrupted and some honest party has
terminated Sh, then there exists a fixed s′ ∈ F, such that each honest party
upon completing Rec, will output only s′.

Definition 8.3 (Weak definition of Statistical AVSS) It is same as statis-
tical AWSS except that Correctness 2 (AWSS) property is strengthened as
follows:

• Correctness 2 (AVSS): If D is corrupted and some honest party has
terminated Sh, then there exists a fixed s′ ∈ F ∪ NULL, such that each
honest party upon completing Rec, will output only s′.

Remark 8.4 So far in the literature of AVSS, weak definition of AVSS was never
introduced and used. It is the strong definition of AVSS which was prevalent. But
in this thesis, since we design protocol for both types, we felt that it is important
to distinguish between these two notions. In the sequel, we call an AVSS as strong
AVSS when it satisfies strong definition of AVSS and likewise we call an AVSS
as weak AVSS when it satisfies the weak definition of AVSS.

170

The difference between Strong and Weak Statistical AVSS: The differ-
ence between strong and weak statistical AVSS is as follows: In weak statistical
AVSS, a corrupted dealer D may get away with not committing a value/ secret
from field F; but in a strong statistical AVSS D is forced to commit a secret
from F. In this thesis, we will show that weak statistical AVSS is enough for con-
structing ABA, whereas we require strong statistical AVSS for designing AMPC
protocol. In case of weak statistical AVSS, we fix a predefined default value
s? ∈ F and when D commits NULL, then in reconstruction phase every party
assumes s? as the D’s committed secret. That is how we may interpret that D
has committed some secret from F. But as mentioned earlier, weak definition of
AVSS is not sufficient for AMPC (more discussion follows in subsequent chap-
ters). ♦

The above definitions of AWSS and AVSS can be extended for secret S con-
taining multiple elements (say ` with ` > 1) from F.

Remark 8.5 (AWSS and AVSS with Private Reconstruction) The defini-
tions of AWSS and AVSS as given above consider “public reconstruction”, where
all parties publicly reconstruct the secret in Rec. A common variant of these
definitions consider “private reconstruction”, where only some specific party, say
Pα ∈ P, is allowed to reconstruct the secret in Rec.

In this chapter, we present our protocols with both public and private recon-
struction.

8.1.3 Contribution of This Chapter

From [39], statistical AVSS tolerating At is possible iff n ≥ 3t + 1. Therefore,
any statistical AVSS with n = 3t + 1 parties is said to have optimal resilience.
The only known statistical AVSS protocol with optimal resilience is due to [39].
The AVSS scheme was designed to be used for constructing ABA protocol.

In this chapter, we present two new statistical AVSS schemes with optimal
resilience. Our protocols are designed with both public as well as private re-
construction. One protocol satisfies weak definition of AVSS and the other one
satisfies strong definition of AVSS. In Table 8.1, we compare the communication
complexity of our AVSS protocols with the AVSS of [39, 35]. The AVSS corre-
sponding to the middle row refers to the weak statistical AVSS and the AVSS
corresponding to the last row refers to the strong statistical AVSS.

As shown in Table 8.1, our AVSS protocols attain significantly better com-
munication complexity than the AVSS of [39] for any value of `.

Later we will show that the AVSS satisfying the definition of weak statistical
AVSS is sufficient for designing ABA and thus we will use our weak statistical
AVSS for constructing our ABA presented in Chapter 9. However, to be applica-
ble for AMPC, we require that AVSS should be strong statistical AVSS. Hence
we use our strong statistical AVSS for constructing statistical AMPC protocol
presented in Chapter 10.

In order to design our AVSS protocols, we first propose a new AWSS protocol
that uses AICP as black box. By using MVMS-AICP-I and MVMS-AICP-II (pre-
sented in Chapter 7) separately in the AWSS protocol, we obtain two different
AWSS protocols which are further used to design two different AVSS schemes.

171

Table 8.1: Comparison of our AVSS protocols with the exiting AVSS Protocol of [39, 35]
in terms of Communication Complexity.

Ref. Sharing Phase Private Reconstruction Public Reconstruction #
Secrets

[39] ? Private†– – Private– 1
O(n9(log 1

ε
)4) – O(n6(log 1

ε
)3)

A-cast– – A-cast–
O(n9(log 1

ε
)2 log n) – O(n6 log 1

ε
log n)

This Private– Private– Private– NIL `
chapter O((`n3 + n4) log 1

ε
) O((`n2 + n3) log 1

ε
)

A-cast– A-cast– NIL A-cast–
O((`n3 + n4) log 1

ε
) O((`n3 + n4) log 1

ε
)

This Private– Private– Private– NIL `
chapter O((`n3 + n4 log 1

ε
) log 1

ε
) O((`n3 + n4 log 1

ε
) log 1

ε
)

A-cast– A-cast– NIL A-cast–
O(n3 log(n)) O((`n3 + n4 log 1

ε
) log 1

ε
)

? Since the communication complexity analysis of the AVSS of [39] was never done before, we do the
same in section 8.7 of this chapter for the sake of completeness.

† Communication over private channels between pair of parties in P.

To bound the error probability by ε, our AVSS protocols work over a finite
Galois field F with F = GF (2κ), where κ has to be determined using the value of
ε and the relation between ε and κ. The exact relationship between κ and ε will
be different for two AVSS protocols and hence they are provided in respective
sections. We assume that ` = poly(κ, n). For both the protocols, each field
element from field F can be represented by κ = O(log 1

ε
) bits.

In order to bound the error probability of any of our AVSS protocol by some
specific value of ε, we find out the minimum value of κ that satisfies the relation
between κ and ε for that protocol. The value for κ will consequently determine
the field F over which the protocol should work.

8.1.4 The Road-map

In section 8.2, we briefly present the approaches used by the only known statistical
AVSS protocol of [39] and the approaches used by our protocols. In section 8.3,
we present our AWSS protocol. In section 8.4 and 8.5, we present our AVSS
protocols. We conclude this chapter with concluding remarks and open problems
in section 8.6. Since the communication complexity analysis of the AVSS of [39]
was never done before, we do the same in section 8.7.

8.2 Discussion on the Approaches used in the AVSS of
[39] and the Approaches used by our AVSS Protocols

In the following, we summarize the approaches used by the AVSS of [39] and the
approaches used by our protocols.

1. Approach of [39]: The authors of [39] have presented a series of proto-
cols for designing their AVSS scheme. They first designed AICP which is
used as a black box for another primitive Asynchronous Recoverable Shar-
ing (A-RS). Subsequently, using A-RS, the authors have designed an AWSS

172

scheme, which is further used to design a variation of AWSS called Two
& Sum AWSS. Finally using their Two & Sum AWSS, an AVSS scheme
was presented. Pictorially, the route taken by AVSS scheme of [39] is
as follows: AICP → A-RS → AWSS → Two & Sum AWSS → AVSS.
Since the AVSS scheme is designed on top of so many sub-protocols, it be-
comes highly communication intensive as well as very much involved. The
scheme requires a private communication of O(n9(log 1

ε
)4) bits and A-cast

of O(n9(log 1
ε
)2 log(n)) bits to share a single element from F (see the first

row of Table 8.1).

2. Approach of This Thesis: We used the following simpler route to design
our AVSS schemes: AICP → AWSS → AVSS. Moreover, due to the new
design approach used in our AICP, AWSS and AVSS protocols, our AVSS
protocols provide much better communication complexity than the AVSS
of [39] (as shown in last two rows of Table 8.1).

8.3 Statistical AWSS Protocol

For the sake of simplicity, we first present our AWSS protocol sharing a single
secret and then extend the protocol for multiple (i.e `) secrets. We will later
show that dealing with multiple secrets concurrently in a protocol provides with
better communication complexity than multiple executions of protocol dealing
with single secret. In our protocol, we use IC signatures in such a way that the
AICP can be replaced by either MVMS-AICP-I or MVMS-AICP-II (presented in
Chapter 7). Depending on which AICP is used will finally decide on the field F
over which all the computation of our AWSS should be carried out. Hence for
the time being, let us concentrate on the bare-bone structure of our AWSS and
later we will derive two protocols out of it by replacing the underlying AICP by
MVMS-AICP-I and MVMS-AICP-II.

8.3.1 AWSS Scheme for Sharing a Single Secret

We now present a novel AWSS scheme with n = 3t+1 called AWSS, consisting of
sub-protocols (AWSS-Share, AWSS-Rec-Private, AWSS-Rec-Public). While AWSS-
Share allows D to share a secret s, AWSS-Rec-Private enables private reconstruc-
tion of s or NULL by a specific party, say Pα ∈ P and likewise AWSS-Rec-Public
enables public reconstruction of either D’s shared secret or NULL. We call the
private reconstruction as Pα-weak-private-reconstruction. Moreover, if D is cor-
rupted, then s can be either from F or it can be NULL (in a sense explained
in the sequel). Our AWSS scheme is somewhat inspired by the WSS scheme of
[48] in synchronous settings, with several new ideas added to it, to deal with the
asynchrony of the network.

High Level Description of AWSS-Share: We follow the general strategy used
in [20, 48, 91, 73, 109] for synchronous settings for sharing the secret s with a
symmetric bivariate polynomial F (x, y) of degree-t in x and y, where each party Pi

gets the univariate polynomial fi(x) = F (x, i). In particular, in AWSS-Share, D
chooses a symmetric bivariate polynomial F (x, y) of degree-t in x and y such that
F (0, 0) = s. D then hands over ICSig(D, INT,P , fi(j)) for every j = 1, . . . , n to
Pi. This step implicitly implies that Pi will receive fi(x) from D. After receiving

173

these IC signatures from D, the parties then exchange IC signature on their
common values (a pair (Pi, Pj) has one common value, namely F (i, j); Pi has
fi(j) and Pj has fj(i) where F (i, j) = fi(j) = fj(i)). Then D, in conjunction
with all other parties, perform a sequence of communication and computation.
As a result of this, at the end of AWSS-Share, every party agrees on a set of 2t+1
parties, called WCORE, such that every party Pj ∈ WCORE is IC-committed
to fj(0) using fj(x) to a set of 2t+1 parties, called as OKPj. Pj is IC-committed
to fj(0) using fj(x) among the parties in OKPj only when every Pk ∈ OKPj

received (a) ICSig(D, Pk,P , fk(j)) and (b) ICSig(Pj, Pk,P , fj(k)) and ensures
fk(j) = fj(k) (this should ideally hold due to the selection and distribution of
symmetric bivariate polynomial). In some sense, we may view this as every
Pj ∈ WCORE is attempting to commit his received (from D) polynomial fj(x)
among the parties in OKPj (by giving his IC Signature on one point of fj(x) to
each party) and the parties in OKPj allowing him to do so after verifying that
they have got D’s IC signature on the same value of fj(x). We will show that
later in the reconstruction phase, every honest Pj’s (in WCORE) IC-commitment
will be reconstructed correctly irrespective of whether D is honest or corrupted.
Moreover, a corrupted Pj’s IC-commitment will be reconstructed correctly when
D is honest. But on the other hand, a corrupted Pj’s IC-commitment can be
reconstructed to any value when D is corrupted. These properties are at the
heart of our AWSS protocol.

Achieving the agreement (among the parties) on WCORE and corresponding
OKPjs is a bit tricky in asynchronous network. Even though these sets are
constructed on the basis of information that are A-casted by parties, parties
may end up with different versions of WCORE and OKPj’s while attempting
to generate them locally, due to the asynchronous nature of the network. We
solve this problem by asking D to construct WCORE and OKPjs based on A-
casted information and then ask D to A-cast the same. After receiving WCORE
and OKPjs from the A-cast of D, individual parties ensure the validity of these
sets by receiving the same A-cast using which D would have formed these sets.
A similar approach was used in the protocols of [1]. Protocol AWSS-Share is
formally presented in Fig. 8.1.

Before moving into the discussion and description of AWSS-Rec-Private and
AWSS-Rec-Public, we now define what we call as D’s AWSS-commitment.

Remark 8.6 (D’s AWSS-commitment) We say that D is AWSS-committed
to a secret s ∈ F in AWSS-Share if there is a unique degree-t univariate polynomial
f(x) such that f(0) = s and every honest Pi in WCORE receives f(i) from D
and IC-commits to f(i) among the parties in OKPi. Otherwise, we say that D
has committed NULL. An honest D always commits s from F as in this case
f(x) is f0(x)(= F (x, 0)), where F (x, y) is the symmetric bivariate polynomial
of degree-t in x and y chosen by honest D. Moreover, every honest party Pi in
WCORE receives f(i) = f0(i) which is same as fi(0) (this can be obtained from
fi(x)). But AWSS-Share can not ensure that corrupted D also commits s ∈ F.
This means that a corrupted D may distribute information to the parties such
that, polynomial f0(x) defined by the f0(i)(= fi(0)) values possessed by honest
Pi’s in WCORE may not be a degree-t polynomial. In this case we say D is
AWSS-committed to NULL.

Our discussion in the sequel will show that for a corrupted D, irrespective
of the behavior of the corrupted parties, either D’s AWSS-committed secret s

174

Figure 8.1: Sharing Phase of Protocol AWSS for single secret s with n = 3t + 1

Protocol AWSS-Share(D,P, s, ε)

Distribution: Code for D – Only D executes this code.

1. Select a random, symmetric bivariate polynomial F (x, y) of degree-t in
x and y, such that F (0, 0) = s. For i = 1, . . . , n, let fi(x) = F (x, i).

2. For i = 1, . . . , n, send ICSig(D, Pi,P, fi(j)) to Pi having ε′ = ε
n2 error

for each j = 1, . . . , n (Recall the notations for using our AICPs i.e
Notation 7.19 in Chapter 7).

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P, fi(j)) having ε′ error for each j =
1, . . . , n from D.

2. Check if (fi(1), . . . , fi(n)) defines degree-t polynomial. If yes then send
ICSig(Pi, Pj ,P, fi(j)) to Pj having ε′ error for all j = 1, . . . , n.

3. If ICSig(Pj , Pi,P, fj(i)) having ε′ error, is received from Pj and if
fi(j) = fj(i), then A-cast OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes this code.

1. For each Pj , build a set OKPj =
{Pk|D receives OK(Pk, Pj) from the A-cast of Pk}. When |OKPj | =
2t + 1, then Pj ’s IC-commitment on fj(0) is over (or we may say that
Pj is IC-committed to fj(0)) and add Pj in WCORE (which is initially
empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKPj for
all Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code for Pi

1. Wait to obtain WCORE and OKPj for all Pj ∈ WCORE from D’s
A-cast, such that |WCORE| = 2t + 1 and |OKPj | = 2t + 1 for each
Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈ WCORE. After
receiving all these OKs, accept the WCORE and OKPj ’s received from
D and terminate AWSS-Share.

(which belongs to F ∪ {NULL}) or NULL will be reconstructed by each honest
party in protocol AWSS-Rec-Private and AWSS-Rec-Public.

High Level Idea of AWSS-Rec-Private & AWSS-Rec-Public: In the recon-
struction phase, the parties in WCORE and corresponding OKPj’s are used
in order to reconstruct D’s AWSS-committed secret. Precisely, for every Pj ∈
WCORE, Pj’s IC-commitment (fj(0)) is reconstructed by asking every party
Pk ∈ OKPj to reveal ICSig(D, Pk,P , fk(j)) and ICSig(Pj, Pk,P , fj(k)) such
that fk(j) = fj(k) holds. Since there are at least t + 1 honest parties in OKPj,

175

eventually at least t + 1 fj(k)’s and fk(j)’s will be revealed with which fj(x) and
thus fj(0) will be reconstructed. Then fj(0)’s are used to construct the univariate
polynomial f0(x) that is committed by D during AWSS-Share.

Asking Pk ∈ OKPj to reveal D’s IC signature ensures that when D is honest,
then even for a corrupted Pj ∈ WCORE, the reconstructed polynomial fj(x)
will be same as the one handed over by D to Pj in sharing phase (that is a
corrupted Pj’s IC-commitment fj(0) will be reconstructed correctly). This helps
our AWSS protocol to satisfy Correctness 1 property of AWSS. Now asking
Pk in OKPj to reveal Pj’s signature ensures that even if D is corrupted, for an
honest Pj ∈ WCORE, the reconstructed polynomial fj(x) will be same as the
one received by Pj from D in AWSS-Share (that is an honest Pj’s IC-commitment
fj(0) will be reconstructed correctly even though D is corrupted). This helps to
ensure Correctness 2 property. Summing up, when at least one of D and Pj

is honest, Pj’s IC-commitment (i.e fj(0)) will be revealed properly. But when

both D and Pj are corrupted, Pj’s IC-Commitment can be revealed as any fj(0)
which may or may not be equal to fj(0). It is the later property that makes our
protocol to qualify as a AWSS protocol rather than a AVSS protocol. Protocol
AWSS-Rec-Private and AWSS-Rec-Public is formally given in Fig. 8.2.

We now prove the properties of our AWSS scheme, considering AWSS-Rec-
Public as the reconstruction phase protocol. The proofs can be twisted in a
straight forward manner for the case when AWSS-Rec-Private is considered as the
reconstruction phase protocol.

Lemma 8.7 (AWSS-Termination) Protocol AWSS satisfies termination prop-
erty.

Proof:

• Termination 1: When D is honest then eventually all honest parties will
receive desired IC signatures from D and will also eventually exchange IC
signatures on their common values and will A-cast OK for each other. Hence
every honest Pj will eventually complete his IC-commitment on fj(0) with
at least 2t + 1 honest parties in OKPj. So D will eventually include 2t + 1
parties in WCORE (of which at least t + 1 are honest) and A-cast the
same. Now by the property of A-cast, each honest party will eventually
receive WCORE from the A-cast of D. Finally, since honest D had included
Pj in WCORE after receiving the OK signals from the parties in OKPj’s,
each honest party will also receive the same and will eventually terminate
AWSS-Share.

• Termination 2: If an honest Pi has terminated AWSS-Share, then he must
have received WCORE and OKPj’s from the A-cast of D and verified their
validity. By properties of A-cast, each honest party will also receive the
same and will eventually terminate AWSS-Share.

• Termination 3: Since each instance of AICP is executed with an error
probability ε′ = ε

n2 , if Pi (acting as INT) is honest and has received an
IC signature, then IC signature produced by Pi during Reveal-Public will
be accepted by every honest party without any error probability when D
is honest (by AICP-Correctness1 and except with probability ε′ when D

176

Figure 8.2: Reconstruction Phase of AWSS Scheme for single secret s with n = 3t + 1

Protocol AWSS-Rec-Private(D,P, s, Pα, ε):
Pα-weak-private-reconstruction of s

Signature Revelation: Code for Pi — Every party executes this code

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then privately reveal
ICSig(D, Pi,P, fi(j)) and ICSig(Pj , Pi,P, fj(i)) to Pα, each having ε′

error.

Local Computation: Code for Pα — Only Pα executes this code

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-commitment, say fj(0)
as follows:

(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions hold:

i. Revelation of ICSig(D,Pk,P, fk(j)) and
ICSig(Pj , Pk,P, fj(k)) are completed with Revealα = fk(j)
and Revealα = fj(k); and

ii. fk(j) = fj(k).
(c) Wait until |V alidPj | = t+1. Construct a polynomial fj(x) passing

through the points (k, fj(k)) where Pk ∈ V alidPj . Associate fj(0)
with Pj ∈ WCORE.

2. Wait for fj(0) to be reconstructed for every Pj in WCORE.

3. Check whether the points (j, fj(0)) for Pj ∈ WCORE lie on a unique
degree-t polynomial f0(x). If yes, then set s = f0(0) and terminate
AWSS-Rec-Private. Else set s = NULL and terminate AWSS-Rec-
Private.

AWSS-Rec-Public(D,P, s, ε)

Signature Revelation: Code for Pi — Every party executes this code

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then publicly reveal
ICSig(D, Pi,P, fi(j)) and ICSig(Pj , Pi,P, fj(i)), each having ε′ error.

Local Computation: Code for Pi — Every party executes this code
Same as the Local Computation of Pα in AWSS-Rec-Private.

is corrupted (by AICP-Correctness2). Since for every Pj ∈ WCORE,
|OKPj| = 2t + 1, there are at least t + 1 honest parties in OKPj and
each of them may be present in V alidPj except with probability ε′. Thus
except with probability n2ε′ = ε, Pj’s IC-commitment will be reconstructed
for all Pj ∈ WCORE. Thus except with probability ε, each honest party
will terminate AWSS-Rec-Public after executing remaining steps of Local
Computation. 2

Lemma 8.8 (AWSS-Secrecy) AWSS satisfies secrecy property.

177

proof: We have to consider the case when D is honest. The proof follows
from the secrecy of our AICP protocol and properties of symmetric bivariate
polynomial of degree-t in x and y [46]. Specifically, without loss of generality, let
P1, . . . , Pt be under the control of At. So during the execution of AWSS-Share,
At will know f1(x), . . . , ft(x) and t points on ft+1(x), . . . , fn(x). However, At still
lacks one more point to uniquely interpolate F (x, y). Hence, s = F (0, 0) will be
information theoretically secure. 2

Lemma 8.9 (AWSS-Correctness) Protocol AWSS satisfies correctness prop-
erty.

Proof:

• Correctness 1: Here we have to consider the case when D is honest. We
show that D’s AWSS-commitment will be reconstructed correctly except
with probability ε. We prove the lemma by showing that when D is honest,
Pj’s IC-commitment fj(0) will be correctly reconstructed with probability
at least (1 − ε

n
) for every Pj ∈ WCORE, irrespective of whether Pj is

honest or corrupted. Consequently, as |WCORE| = 2t + 1, all the honest
parties will reconstruct f0(x) = F (x, 0) and hence the secret s = f0(0) with
probability at least (1− (2t + 1) ε′

n
) ≈ (1− ε). So we consider the following

two cases:

1. Consider an honest Pj in WCORE. From AICP-Correctness3, a

corrupted Pk ∈ OKPj can successfully produce ICSig(Pj, Pk,P , fj(k))

such that fj(k) 6= fj(k), with probability at most ε′. As there can be at
most t corrupted parties in V alidPj, except with probability tε′ = ε

n
,

the value fj(k) is same as fj(k) for all Pk ∈ V alidPj. Hence honest Pj’s
IC-commitment fj(0) will be correctly reconstructed with probability
at least (1− ε

n
).

2. Consider a corrupted Pj in WCORE. Now a corrupted Pk ∈ OKPj

will be able to produce ICSig(D, Pk,P , fk(j)) such that fk(j) 6= fk(j),
with probability ε′ due to AICP-Correctness3. Thus except with
probability tε′ = ε

n
, corresponding to each corrupted Pj ∈ WCORE,

the parties in V alidPj have produced correct points on fj(x).

• Correctness 2: Here we consider the case, when D is corrupted. Now
there are two cases: (a) D’s AWSS-committed secret s belongs to F; (b)
D’s AWSS-committed secret s is NULL. Whatever may be case, we show
that except with probability ε, each honest party will either reconstruct s
or NULL.

1. We first consider the case when s ∈ F. This implies that the fj(0)
values received by the honest Pj’s in WCORE lies on a degree-t poly-
nomial f0(x). Moreover every honest Pj in WCORE is IC-committed
to fj(0). We now show that in AWSS-Rec-Public, IC-commitment of all
honest parties in WCORE will be reconstructed correctly with proba-
bility at least (1− ε). So let Pj be an honest party in WCORE. Now
from AICP-Correctness3, a corrupted Pk ∈ OKPj can not produce

ICSig(Pj, Pk,P , fj(k)) such that fj(k) 6= fj(k) with probability at

178

least (1− ε′). Hence for honest Pj, fj(x) and thus fj(0) will be recon-
structed correctly with probability at least (1− (t+1)ε′) ≈ (1− ε

n
). As

there are at least t+1 honest parties in WCORE, the probability that
the above event happens for all honest parties in WCORE is (1− ε).

But for a corrupted Pj in WCORE, Pj’s IC-commitment can be re-

vealed to any value fj(0). This is because a corrupted Pk ∈ OKPj can

produce a valid signature of Pj on any fj(k) as well as a valid signature

of D (who is corrupted as well) on fk(j) = fj(k). Also the adversary
can delay the messages such that the values of corrupted Pk ∈ OKPj

are revealed (to parties) before the values of honest parties in OKPj.

Now if reconstructed fj(0) = fj(0) for all corrupted Pj ∈ WCORE,
then s will be reconstructed. Otherwise, NULL will be reconstructed.
However, since for all the honest parties of WCORE, IC-commitment
will be reconstructed correctly with probability at least (1− ε) (who in
turn define f0(x)), no other secret (other than s) can be reconstructed.

2. We next consider the second case when D’s AWSS-committed secret is
NULL. This implies that the points (j, fj(0)) corresponding to honest
Pj’s in WCORE do not define a unique degree-t polynomial. It is easy
to see that in this case, irrespective of the behavior of the corrupted
parties NULL will be reconstructed. This is because the points fj(0)
corresponding to each honest Pj ∈ WCORE will be reconstructed
correctly except with probability ε (following the argument given in
previous case).

2

Theorem 8.10 Protocol AWSS is a valid statistical AWSS scheme with n = 3t+1
for a single secret.

Proof: The proof follows from Lemma 8.7, Lemma 8.8 and Lemma 8.9. 2

8.3.1.1 Important Notation

The following notation will be used in our AVSS protocols irrespective of which
AICP is used to generate the underlying IC signatures in protocol AWSS.

Notation 8.11 In our AVSS schemes,

• We will invoke AWSS-Share as AWSS-Share(D,P , f(x), ε) to mean that D
commits to f(x) in AWSS-Share. Essentially here D is asked to choose
a symmetric bivariate polynomial F (x, y) of degree-t in x and y, where
F (x, 0) = f(x) holds. D then tries to give F (x, i) and hence F (0, i) = f(i)
to party Pi.

• AWSS-Rec-Private will be invoked as AWSS-Rec-Private(D,P , f(x), Pα, ε) to
enable the Pα-weak-private-reconstruction of f(x).

• AWSS-Rec-Public will be invoked as AWSS-Rec-Public(D,P , f(x), ε), which
allows the parties to reconstruct either f(x) or NULL.

179

8.3.2 AWSS Scheme for Sharing Multiple Secrets

In this section, we extend protocol AWSS to AWSS-MS consisting of sub-protocols
(AWSS-MS-Share, AWSS-MS-Rec-Private, AWSS-MS-Rec-Public) 3. Protocol AWSS-
MS-Share allows D ∈ P to concurrently share a secret S = (s1 . . . s`), containing
` elements. On the other hand, protocol AWSS-MS-Rec-Private allows a specific
party Pα ∈ P to reconstruct either S or NULL. Similarly, protocol AWSS-MS-
Rec-Public allows all the honest parties in P to reconstruct either S or NULL.

Notice that we could have executed protocol AWSS-Share ` times in parallel,
each sharing individual elements of S. However, this will require more com-
munication than our protocol AWSS-MS-Share for sufficiently large `. Similarly,
protocol AWSS-MS-Rec-Private (and AWSS-MS-Rec-Public) reconstructs all the `
secrets simultaneously, with a better communication complexity than individual
reconstruction of ` secrets separately.

The Intuition: The high level idea of protocol AWSS-MS-Share is similar to
AWSS-Share. For each sl, l = 1, . . . , `, the dealer D selects a random symmetric
bivariate polynomial F l(x, y) of degree-t in x and y, where F l(0, 0) = sl and gives
his IC signature on f l

i (1), . . . , f l
i (n) to party Pi, for i = 1, . . . , n. For this, D can

execute n instances of Gen, one for each f l
i (j), for j = 1, . . . , n (this approach was

used in AWSS-Share). However, this would require a total of `n instances of Gen
(each dealing with a single secret) to be executed by D for every party Pi. Instead
of this, a better solution would be to ask D to execute n instances of Gen, where
in the jth instance, D gives his IC signature collectively on (f 1

i (j), f 2
i (j), . . . , f l

i (j))
to party Pi.

Next each party Pi tries to IC-commit (f 1
i (0), . . . , f `

i (0)) simultaneously. For
this, every pair of parties Pi and Pj privately exchange (f 1

i (j), . . . , f `
i (j)) and

(f 1
j (i), . . . , f `

j (i)), along with their respective IC signature on these values. Again

notice that Pi and Pj pass on their IC signature collectively on (f 1
i (j), . . . , f `

i (j))
and (f 1

j (i), . . . , f `
j (i)) respectively. Next the parties pair-wise check whether

f l
i (j) = f l

j(i) for all l = 1, . . . , ` and if so they A-cast OK signal. After this,
the remaining steps (like WCORE construction, agreement on WCORE, etc)
are same as in AWSS-Share. So essentially, the differences between AWSS-Share
and AWSS-MS-Share are: (1) the way the parties give their IC signatures and
(2) the conditions required for A-casting OK signal. Protocol AWSS-MS-Share is
formally given in Fig. 8.3.

Remark 8.12 (D’s AWSS-commitment) We say that D is AWSS-committed
to S = (s1, . . . , s`) ∈ F` if for every l = 1, . . . , ` there is a unique degree-t
polynomial f l(x) such that f l(0) = sl and every honest Pi in WCORE receives
f l(i) from D and IC-commits f l(i) among the parties in OKPi. Otherwise, we
say that D is AWSS-committed to NULL. An honest D always AWSS-commits
S ∈ F` as in this case f l(x) = f l

0(x) = F l(x, 0), where F l(x, y) is the symmetric
bivariate polynomial of degree-t in x and y chosen by D. But AWSS-MS-Share
can not ensure that corrupted D also AWSS-commits S ∈ F`. This means that a
corrupted D may distribute information to the parties such that, polynomial f l

0(x)
defined by the f l

0(i)(= f l
i (0)) values possessed by honest Pi’s in WCORE may not

be a degree-t polynomial for some l. In this case we say D has AWSS-committed
NULL.

3Here MS stands for multiple secrets

180

Figure 8.3: Sharing Phase of Protocol AWSS-MS for Sharing S Containing ` ≥ 1 Secrets

AWSS-MS-Share(D,P, S = (s1 . . . s`), ε)

Distribution: Code for D – Only D executes this code.

1. For l = 1, . . . , `, select a random, symmetric bivariate polynomial
F l(x, y) of degree-t in x and y such that F l(0, 0) = sl. Let f l

i (x) =
F l(x, i), for l = 1, . . . , `.

2. For i = 1, . . . , n, send ICSig(D, Pi,P, (f1
i (j), . . . , f `

i (j))) having ε′ = ε
n2

error for each j = 1, . . . , n to Pi.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P, (f1
i (j), . . . , f `

i (j))) having ε′ error for
j = 1, . . . , n from D.

2. Check if (f l
i (1), . . . , f l

i (n)) defines degree-t polynomial for every l =
1, . . . , `. If yes then send ICSig(Pi, Pj ,P, (f1

i (j), . . . , f `
i (j))) having ε′

error to Pj for all j = 1, . . . , n.

3. If ICSig(Pj , Pi,P, (f1
j (i), . . . , f `

j (i))) having ε′ error, is received from Pj

and if f l
j(i) = f l

i (j) for all l = 1, . . . , `, then A-cast OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes this code.

1. For each Pj , build a set OKPj =
{Pi|D receives OK(Pi, Pj) from the A-cast of Pi}. When |OKPj | =
2t + 1, then Pj ’s IC-commitment on (f1

j (0), . . . , f `
j (0)) is over (or we

may say that Pj is IC-committed to (f1
j (0), . . . , f `

j (0))) and add Pj in
WCORE (which is initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKPj for
all Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code for Pi

1. Wait to obtain WCORE and OKPj for all Pj ∈ WCORE from D’s
A-cast, such that |WCORE| = 2t + 1 and |OKPj | = 2t + 1 for each
Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈ WCORE. After
receiving all these OKs, accept the WCORE and OKPj ’s received from
D and terminate AWSS-MS-Share.

Protocol AWSS-MS-Rec-Private and AWSS-MS-Rec-Public are straightforward
extensions of protocol AWSS-Rec-Private and AWSS-MS-Rec-Public and are given
in Fig. 8.4.

Since technique wise, protocol AWSS-MS is very similar to protocol AWSS, we
do not provide the proofs of the properties of protocol AWSS-MS for the sake of
avoiding repetition. Rather, we just state the following theorem.

Theorem 8.13 Protocol AWSS-MS is a valid statistical AWSS scheme with n =
3t + 1 for ` secrets.

181

Figure 8.4: Reconstruction Phases of AWSS-MS for Sharing S Containing ` Secrets

AWSS-MS-Rec-Private(D,P, S = (s1, . . . , s`), Pα, ε)
Pα-weak-private-reconstruction of S

Signature Revelation: Code for Pi — Every party executes this code

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then privately reveal
ICSig(D, Pi,P, (f1

i (j), . . . , f `
i (j))) and ICSig(Pj , Pi,P, (f1

j (i), . . . , f `
j (i)))

to Pα, each having ε′ error.

Local Computation: Code for Pα — Only Pα executes this code

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-commitment, say
(f1

j (0), . . . , f `
j (0)) as follows:

(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions hold:

i. Revelation of ICSig(D, Pk,P, (f1
k (j), . . . , f `

k(j))) and
ICSig(Pj , Pk,P, (f1

j (k), . . . , f `
j (k))) are completed with Re-

vealα = (f1
k (j), . . . , f `

k(j)) and Revealα = (f1
j (k), . . . , f `

j (k))
respectively; and

ii. f l
k(j) = f l

j(k), for l = 1, . . . , `.
(c) Wait until |V alidPj | = t + 1. For l = 1, . . . , `, construct a degree-

t polynomial f l
j(x) passing through the points (k, f l

j(k)) where Pk ∈
V alidPj . For l = 1, . . . , `, associate f l

j(0) with Pj ∈ WCORE.

2. Wait for f1
j (0), . . . , f `

j (0) to be reconstructed for every Pj in WCORE.

3. For l = 1, . . . , `, do the following:

(a) Check whether the points (j, f l
j(0)) for Pj ∈ WCORE lie on a unique

degree-t polynomial f l
0(x). If yes, then set sl = f l

0(0), else set sl =
NULL.

4. If sl = NULL for any l ∈ {1, . . . , `}, then output S = NULL and ter-
minate AWSS-MS-Rec-Private. Else output S = (s1, . . . , s`) and terminate
AWSS-MS-Rec-Private.

AWSS-MS-Rec-Public(D,P, S, ε)

Signature Revelation: Code for Pi — Every party executes this code

1. If Pi belongs to OKPj for some Pj ∈ WCORE,
then publicly reveal ICSig(D, Pi,P, (f1

i (j), . . . , f `
i (j))) and

ICSig(Pj , Pi,P, (f1
j (i), . . . , f `

j (i))), each having ε′ error.

Local Computation : Code for Pi — Every party executes this code
Same as the Local Computation of Pα in AWSS-MS-Rec-Private.

8.3.2.1 Important Notation

The following notation will be used in our AVSS protocols irrespective of which
AICP is used to generate the underlying IC signatures in protocol AWSS-MS.

182

Notation 8.14 (Notation for Using AWSS-MS) In our AVSS schemes,

• We will invoke AWSS-MS-Share as AWSS-MS-Share(D,P , (f 1(x), . . . , f `(x)), ε)
where D is asked to choose symmetric bivariate polynomials F 1(x, y), . . . ,
F `(x, y) each of degree-t in x and y such that F l(x, 0) = f l(x) holds for
l = 1, . . . , `. D then tries to give F l(x, i) and hence F l(0, i) = f l(i) to party
Pi, for l = 1, . . . , `.

• Similarly, AWSS-MS-Rec-Private will be invoked as AWSS-MS-Rec-Private(D,
P , (f 1(x), . . . , f `(x)), Pα, ε) to enable the Pα-weak-private-reconstruction of
(f 1(x), . . . , f `(x)).

• Similarly, AWSS-MS-Rec-Public will be invoked as AWSS-MS-Rec-Public(D,P ,
(f 1(x), . . . , f `(x)), ε) to enable public reconstruction of (f 1(x), . . . , f `(x)) or
NULL.

8.3.3 Deriving Two AWSS Protocols for Single Secret from Protocol
AWSS

We now derive two AWSS protocols with different communication complexity out
of protocol AWSS by substituting AICPs MVMS-AICP-I and MVMS-AICP-II. As
mentioned earlier, the usage of AICP will decide the field over which the derived
AWSS will work.

8.3.3.1 AWSS Protocol with MVMS-AICP-I as Building Block

In protocol AWSS, if the used IC signatures are generated using protocol MVMS-
ICP-I for ` = 1, then we obtain a AWSS protocol which we denote by AWSS-
I. Furthermore, the sub-protocols are denoted by (AWSS-I-Share, AWSS-I-Rec-
Private, AWSS-I-Rec-Public). Our protocol AWSS-I involves an error probability
of ε.

To bound the error probability by ε, the computation in AWSS-I is performed
over a field F = GF (2κ), where κ has to be determined using the relation ε ≥
n3κ2−κ. This is derived from the fact that in AWSS-I, MVMS-AICP-I is invoked
with ε

n2 error probability and as mentioned in section 7.3 of Chapter 7, ε ≥ nκ2−κ

should hold to bound error probability of MVMS-AICP-I by ε. So here each
element from the field is represented by κ = log |F| = O(log 1

ε
) bits (this can be

derived using n = O(log 1
ε
)).

We now present the communication complexity of protocol AWSS-I.

Lemma 8.15 (Communication Complexity of AWSS-I)

• Protocol AWSS-I-Share incurs a private communication of O(n3(log 1
ε
)2) bits

and A-cast of O(n2 log n) bits.

• Protocol AWSS-I-Rec-Private privately communicates O(n3(log 1
ε
)2) bits.

• Protocol AWSS-I-Rec-Public involves A-cast of O(n3(log 1
ε
)2) bits.

Proof: In AWSS-I-Share, there are O(n2) instances of Gen and Ver (of MVMS-
AICP-I), each dealing with one value (substituting ` = 1) and executed with an
error probability of ε′ = ε

n2 . From Theorem 7.8, this requires a private com-

munication of O(n3(log n2

ε
)2) = O(n3(log 1

ε
)2) bits, as n = O(log 1

ε
). Moreover,

183

there are A-cast of O(n2 log n) bits for OK signals (identity of each party can be
expressed by log n bits and an OK signal contains identity of two parties). In
addition, there is A-cast of WCORE containing the identity of 2t+1 parties and
OK sets corresponding to each party in WCORE, where each OK set contains
the identity of 2t + 1 parties. Now the identity of a party can be represented
by O(log n) bits. So in total, AWSS-I-Share incurs a private communication of
O(n3(log 1

ε
)2) bits and A-cast of O(n2 log n) bits.

In AWSS-I-Rec-Private, there are O(n2) instances of Reveal-Private of our
MVMS-AICP-I, each dealing with ` = 1 value. This requires a private com-
munication of O(n3(log 1

ε
)2) bits. Similarly, the communication complexity of

AWSS-I-Rec-Public follows from Theorem 7.8 and the fact that there are O(n2)
instances of Reveal-Public of our MVMS-AICP-I. 2

8.3.3.2 AWSS Protocol with MVMS-AICP-II as Building Block

In protocol AWSS, if the used IC signatures are generated using protocol MVMS-
ICP-II for ` = 1, then we obtain a AWSS protocol which we denote by AWSS-
II. Furthermore, the sub-protocols are denoted by (AWSS-II-Share, AWSS-II-Rec-
Private, AWSS-II-Rec-Public). Our protocol AWSS-II involves an error probability
of ε.

To bound the error probability by ε, the computation in AWSS-II is performed
over a field F = GF (2κ), where κ has to be determined using the relation ε ≥
n32−κ. This is derived from the fact that in AWSS-II, MVMS-AICP-II is invoked
with ε

n2 error probability and as mentioned in section 7.4 of Chapter 7, ε ≥ n2−κ

should hold to bound error probability of MVMS-AICP-II by ε. So here each
element from the field is represented by κ = log |F| = O(log 1

ε
) bits (this can be

derived using n = O(log 1
ε
)).

We now present the communication complexity of protocol AWSS-II.

Lemma 8.16 (Communication Complexity of AWSS-II)

• Protocol AWSS-II-Share incurs a private communication of O(n3 log 1
ε
) bits

and A-cast of O(n3 log 1
ε
) bits.

• Protocol AWSS-II-Rec-Private privately communicates O(n3 log 1
ε
) bits.

• Protocol AWSS-II-Rec-Public involves A-cast of O(n3 log 1
ε
) bits.

Proof: Follows from Theorem 7.16 and the proof of communication complexity
of AWSS-I. 2

8.3.4 Deriving Two AWSS Protocols for Multiple Secrets from Pro-
tocol AWSS-MS

8.3.4.1 AWSS Protocol with MVMS-AICP-I as Building Block

In protocol AWSS-MS, if the used IC signatures are generated using protocol
MVMS-ICP-I, then we obtain a AWSS protocol which we denote by AWSS-MS-I.
Furthermore, the sub-protocols are denoted by (AWSS-MS-I-Share, AWSS-MS-I-
Rec-Private, AWSS-MS-I-Rec-Public). Our protocol AWSS-MS-I involves an error
probability of ε.

184

To bound the error probability by ε, the computation in AWSS-MS-I is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n3κ2−κ. This is derived in the same way as done for AWSS-I.

We now present the communication complexity of protocol AWSS-MS-I.

Lemma 8.17 (Communication Complexity of AWSS-MS-I)

• Protocol AWSS-MS-I-Share privately communicates O((`n2 + n3 log 1
ε
) log 1

ε
)

bits and A-casts O(n2 log n) bits.

• Protocol AWSS-MS-I-Rec-Private privately communicates O((`n2 + n3 log 1
ε
)

log 1
ε
) bits.

• Protocol AWSS-MS-I-Rec-Public involves A-cast of O((`n2 + n3 log 1
ε
) log 1

ε
)

bits.

Proof: In AWSS-MS-I-Share, n2 instances of MVMS-AICP-I are executed. In
addition, there are n2 A-cast of OK(*,*) signals. This will require A-cast of
O(n2 log n) bits. So AWSS-MS-I-Share involves a private communication ofO((`n2+
n3 log 1

ε
) log 1

ε
) bits and A-casts of O(n2 log n) bits.

AWSS-MS-I-Rec-Private executesO(n2) instances of Reveal-Private of our MVMS-
AICP-I. This requires a private communication of O((`n2 + n3 log 1

ε
) log 1

ε
) bits.

Similarly, the communication complexity of AWSS-MS-I-Rec-Public follows from
Theorem 7.8 and the fact that it executes O(n2) instances of Reveal-Public of our
MVMS-AICP-I. 2

Now comparing the communication complexity of AWSS-MS-I and AWSS-I, we
find that AWSS-MS-I provides better communication complexity that ` parallel
execution of AWSS-I for ` individual secrets.

8.3.4.2 AWSS Protocol with MVMS-AICP-II as Building Block

In protocol AWSS-MS, if the used IC signatures are generated using protocol
MVMS-ICP-II, then we obtain a AWSS protocol which we denote by AWSS-MS-II.
Furthermore, the sub-protocols are denoted by (AWSS-MS-II-Share, AWSS-MS-II-
Rec-Private, AWSS-MS-II-Rec-Public). Our protocol AWSS-MS-II involves an error
probability of ε.

To bound the error probability by ε, the computation in AWSS-MS-II is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n32−κ. This is derived in the same way as done for AWSS-II.

We now present the communication complexity of protocol AWSS-MS-II.

Lemma 8.18 (Communication Complexity of AWSS-MS-II)

• Protocol AWSS-MS-II-Share incurs a private communication of O((`n2 +
n3) log 1

ε
) bits and A-cast of O((`n2 + n3) log 1

ε
) bits.

• Protocol AWSS-MS-II-Rec-Private privately communicates O((`n2+n3) log 1
ε
)

bits.

• Protocol AWSS-MS-II-Rec-Public involves A-cast of O((`n2 + n3) log 1
ε
) bits.

185

Proof: Follows from Theorem 7.16 and the proof of communication complexity
of AWSS-MS-I. 2

Now comparing the communication complexity of AWSS-MS-II and AWSS-
II, we find that AWSS-MS-II provides better communication complexity that `
parallel execution of AWSS-II for ` individual secrets.

8.4 Our Weak Statistical AVSS protocol

For the sake of simplicity, we first present our AVSS protocol sharing a single se-
cret and then extend the protocol for multiple (i.e `) secrets. We will later show
that dealing with multiple secrets concurrently in our protocol provides with bet-
ter communication complexity that multiple executions of protocol dealing with
single secret. We may use any one of the AWSS presented in the previous section
as a building block for our protocol. But we will use AWSS-II and correspond-
ing multiple secret AWSS AWSS-MS-II for our single and multiple secret version
of AVSS respectively. We dedicate a subsection at the end of this section to
state the reason for our choice. In the sequel, our AVSS protocols are described
without hinting on which AWSS is used, as the AWSS can be replaced by either
one of the two AWSS protocols described in the previous section. Lastly, our
weak statistical AVSS protocol is much simpler than our strong statistical AVSS
presented in the next section (it will be evident at the end of this chapter).

8.4.1 Our Weak Statistical AVSS Scheme for Sharing a Single Secret

In this section, we present our novel AVSS scheme called WAVSS4 consisting
of sub-protocols (WAVSS-Share, WAVSS-Rec-Private, WAVSS-Rec-Public). While
WAVSS-Share allows D to share a secret s, WAVSS-Rec-Public enables public
reconstruction of D’s shared secret and WAVSS-Rec-Private enables private re-
construction of D’s shared secret by some specific party say Pα ∈ P . Moreover,
if D is corrupted, then s can be either from F or it can be NULL (in a sense
explained in the sequel).

High Level Idea of WAVSS-Share: To design WAVSS-Share, we use the general
approach of [138, 137, 125, 73, 109] used in synchronous settings for designing VSS
using WSS as a black box. The high level idea of WAVSS-Share is as follows: D
selects a symmetric bivariate polynomial F (x, y) of degree-t in x and y, such that
F (0, 0) = s and sends fi(x) = F (x, i) to party Pi. Now the parties communicate
with each other to perform what we say commitment upon verification. Here each
party Pi is asked to commit the polynomial fi(x), that he has received from D.
However, Pi is allowed to commit fi(x), only after the parties have verified that
they have received same points on fi(x) from D as well as Pi. More formally,
to achieve commitment upon verification, party Pi, acting as a dealer, shares his
polynomial fi(x) by initiating an instance of AWSS-Share (see Notation 8.11 for
the meaning of sharing polynomial using AWSS-Share). Since party Pj receives

fi(j) from Pi as part of AWSS-Share, he can check whether fi(j)
?
= fj(i), as ideally

fi(j) = fj(i) should hold in case of honest D, Pi and Pj. A party Pj participates
in the remaining steps of the instance of AWSS-Share where Pi is the dealer, only if

4WAVSS stands for Weak statistical AVSS

186

fi(j) = fj(i) holds. Once commitment upon verification is over, the parties want
to agree on a set of at least 2t + 1 parties, denoted as V CORE, such that for
every Pj in V CORE, Pj’s instance of AWSS-Share terminates with a WCORE
set, denoted as WCOREPj and |V CORE∩WCOREPj | ≥ 2t+1. Informally, this
means that each party Pj ∈ V CORE has ’successfully’ committed his polynomial
fj(x) to at least 2t + 1 parties in V CORE, who have verified that they have
received correct points on fj(x). We will refer this commitment as Pj’s AWSS-
commitment on fj(x). It should be noted that AWSS-Commitment is strictly
stronger commitment than IC-commitment that was enforced in AWSS-Share.
These two commitments can be distinguished by the facts that when both D and
Pj are corrupted (a) AWSS-commitment ensures that reconstruction of AWSS-
commitment can not be changed to some other value other than NULL and
(b) IC-commitment can not ensure the same. The agreement on V CORE and
corresponding WCOREPj ’s is achieved using a mechanism, similar to the one
used in AWSS-Share for achieving agreement on WCORE and corresponding
OK sets. Protocol WAVSS-Share is formally presented in Fig. 8.5.

Remark 8.19 (D’s AVSS-commitment) We say that D has AVSS-committed
s ∈ F in WAVSS-Share if there is a unique symmetric bivariate polynomial F (x, y)
of degree-t in x and y, such that F (0, 0) = s and every honest Pi in V CORE
receives fi(x) = F (x, i) from D and AWSS-commits fi(0) using fi(x) among
the parties in WCOREPi. Otherwise, we say that D has committed NULL.
Notice that the above condition implies that there exist a unique degree-t univari-
ate polynomial f(x)(= f0(x) = F (x, 0)) such that f(0) = s and every honest
Pi ∈ V CORE receives f(i)(= f0(i) = fi(0)) from D. The value f(i) is re-
ferred as ith share of s. An honest D always AVSS-commits s from F as
he always chooses a proper symmetric bivariate polynomial F (x, y) and properly
distributes fi(x) = F (x, i) to party Pi. But AVSS-Share can not ensure that cor-
rupted D also commits s ∈ F. When a corrupted D commits NULL, the fi(x)
polynomials of the honest parties in V CORE do not define a symmetric bivari-
ate polynomial of degree-t in x and y. This further implies that there will be an
honest pair (Pγ, Pδ) in V CORE such that fγ(δ) 6= fδ(γ). When s = NULL, we
say that D’s AVSS-committed secret s is not meaningful.

In our following discussion, we show that irrespective of whether s is chosen
from F or it is NULL, s will be reconstructed in reconstruction phase, except
with probability ε.

High Level Idea of WAVSS-Rec-Public & WAVSS-Rec-Private: In WAVSS-
Rec-Public, D’s AVSS-committed secret is recovered with the help of the parties
in V CORE and WCOREPj ’s. Specifically, in the reconstruction phase, for every
Pj ∈ V CORE, AWSS-commitment on fj(x) is revealed by reconstructing it with
the help of the parties in WCOREPj . This is done by executing an instance of
AWSS-Rec with the parties in WCOREPj . This results in the reconstruction of
either fj(x) or NULL depending on whether Pj is honest or corrupted. Since
|V CORE| ≥ 2t + 1, for (at least t + 1) honest parties, fj(x)’s will be recovered
correctly. Now with the fj(x)’s, F (x, y) will be reconstructed. The formal details
of WAVSS-Rec-Public and WAVSS-Rec-Private are given in Fig. 8.6.

We now prove the properties of protocol WAVSS assuming WAVSS-Rec-Public
as the reconstruction phase protocol. The proofs can be twisted little bit for the
case when WAVSS-Rec-Private is assumed as the reconstruction phase protocol.

187

Figure 8.5: Sharing Phase of our Weak Statistical AVSS Scheme for Sharing a Single
Secret s with n = 3t + 1

WAVSS-Share(D,P, s, ε)

Distribution: Code for D — Only D executes this code

1. Select a random symmetric bivariate polynomial F (x, y) of degree-t in
x and y such that F (0, 0) = s and send fi(x) = F (x, i) to party Pi, for
i = 1, . . . , n.

Commitment upon Verification: Code for Pi — Every party, including D ex-
ecutes this code

1. Wait to obtain fi(x) from D.

2. If fi(x) is a degree-t polynomial then invoke AWSS-Share(Pi,P, fi(x), ε′)
(See Notation 8.11 for the syntax) with ε′ = ε

n . We call this instance of
AWSS-Share initiated by Pi as AWSS-Sharei.

3. As a part of the execution of AWSS-Sharej , wait to receive fj(i) from

Pj . Then check fi(j)
?= fj(i). If the test passes then participate in

AWSS-Sharej and act according to the remaining steps of AWSS-Sharej .

VCORE Construction: Code for D — Only D executes this code

1. If AWSS-Sharej is terminated, then denote corresponding WCORE and
OKPk sets by WCOREPj and OKP

Pj

k for every Pk ∈ WCOREPj . Add
Pj in a set V CORE (initially empty).

2. Keep updating V CORE, WCOREPj and corresponding OKP
Pj

k ’s for
every Pj ∈ V CORE upon receiving new A-casts of the form OK(., .)
(during AWSS-Sharej ’s), until for at least 2t + 1 Pj ∈ V CORE, the
condition |V CORE ∩WCOREPj | ≥ 2t + 1 is satisfied. Remove (from
V CORE) all Pj ∈ V CORE for whom the above condition is not satis-
fied.

3. A-cast V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k for ev-
ery Pk ∈ WCOREPj . Conclude that each Pj ∈ V CORE is AWSS-
committed to fj(x).

VCORE Verification & Agreement on VCORE: Code for Pi — Every
party executes this code

1. Wait to receive V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k

for every Pk ∈ WCOREPj from D’s A-cast.

2. Wait to terminate AWSS-Sharej corresponding to every Pj in V CORE.

3. Wait to receive OK(Pm, Pk) for every Pk ∈ WCOREPj and every Pm ∈
OKP

Pj

k , corresponding to every Pj ∈ V CORE.

4. Accept V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k for every
Pk ∈ WCOREPj and terminate WAVSS-Share.

188

Figure 8.6: Reconstruction Phase of our Weak Statistical AVSS Scheme for Sharing a
Single Secret s with n = 3t + 1

WAVSS-Rec-Private(D,P, s, Pαε)

Pα-weak-private-reconstruction of fj(x) for every Pj ∈ V CORE: (Code
for Pi)

1. Participate in AWSS-Rec-Private(Pj ,P, fj(x), Pα, ε′) for every Pj ∈
V CORE with WCOREPj and OKP

Pj

k for every Pk ∈ WCOREPj ,
where ε′ = ε

n . We denote AWSS-Rec-Private(Pj ,P, fj(x), Pα, ε′) by
AWSS-Rec-Privatej .

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either fj(x) or NULL from Pα-weak-
private-reconstruction. Add Pj ∈ V CORE to REC if fj(x) is obtained.

2. Wait until |REC| = t+1. For every pair (Pγ , Pδ) ∈ REC check fγ(δ) ?=
fδ(γ). If the test passes for every pair of parties then recover F (x, y)
using fj(x)’s corresponding to each Pj ∈ REC and reconstruct s =
F (0, 0). Else reconstruct s = NULL. Finally output s and terminate
WAVSS-Rec-Private.

WAVSS-Rec-Public(D,P, s, ε)

Public reconstruction of fj(x) for every Pj ∈ V CORE: (Code for Pi)

1. Participate in AWSS-Rec-Public(Pj ,P, fj(x), ε′) for every Pj ∈ V CORE

with WCOREPj and OKP
Pj

k for every Pk ∈ WCOREPj , where ε′ = ε
n .

We denote AWSS-Rec-Public(Pj ,P, fj(x), ε′) by AWSS-Rec-Publicj .

Local Computation: Code for Pi

For every Pj ∈ V CORE, obtain either fj(x) or NULL from public recon-
struction. Remaining code is same as the code for Pα presented above for
WAVSS-Rec-Private

Lemma 8.20 (AVSS-Termination) Protocols WAVSS satisfies termination
property of Definition 8.3.

Proof:

• Termination 1: Notice that in WAVSS-Share, D keeps on adding new par-
ties to WCOREPj in instance AWSS-Sharej, even after WCOREPj contains
2t + 1 parties. So if D is honest, then corresponding to every honest Pj,
2t + 1 honest parties will be eventually included in WCOREPj . Now even-
tually at least 2t + 1 honest parties will be included in V CORE, such that
|V CORE∩WCOREPj | ≥ 2t+1 for each Pj ∈ V CORE. Now from similar
argument given in Termination 1 of Lemma 8.7, all honest parties will

eventually agree on V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k

and will terminate WAVSS-Share.

189

• Termination 2: If some honest party has terminated WAVSS-Share then
it implies that he has received V CORE, WCOREPj for Pj ∈ V CORE and

OKP
Pj

k for every Pk ∈ WCOREPj from the A-cast of D and checked their
validity. So by the property of A-cast, every other honest party will also
eventually do the same and terminate WAVSS-Share.

• Termination 3: Follows from the fact that corresponding to each honest
Pj ∈ V CORE, every honest Pi will eventually terminate AWSS-Rec-Publicj

(from Termination 3 of Lemma 8.7), except with an error probability of
ε′. As there are at least t + 1 honest parties in V CORE, AWSS-Rec-Public
corresponding to all the honest parties will terminate with probability at
least (1− (t + 1)ε′) ≈ (1− ε). 2

Lemma 8.21 (AVSS-Correctness) Protocol WAVSS satisfies correctness prop-
erty of Definition 8.3.

Proof:

• Correctness 1: We have to consider the case when D is honest. If D is
honest then we prove that except with probability ε′, for every Pi ∈ REC,
Pi’s AWSS-Commitment will be reconstructed correctly. In other words,
AWSS-Rec-Publici will reconstruct fi(x) which is same as fi(x) selected
by honest D. For every honest Pi ∈ REC this is trivially true and fol-
lows from the Correctness1 of our AWSS scheme. We have to prove the
above statement for a corrupted Pi ∈ REC. If a corrupted Pi belongs to
REC, it implies that AWSS-Rec-Publici is successful (i.e., the output is non-
NULL) and AWSS-Sharei had terminated during WAVSS-Share, such that
|V CORE ∩WCOREPi| ≥ 2t+1. The above statements have the following
implications:

Pi must have agreed with the honest parties of WCOREPi with
respect to the common values given by D. This means that as
a part of AWSS-Sharei, Pi handed over fj(i) to an honest Pj (in
WCOREPi).

The above further implies that Pi must have committed (to the honest par-
ties in WCOREPi whose count is at least t+1) fi(x). Thus if AWSS-Rec-Publici

is successful, then except with probability ε′, fi(x) = fi(x). Since D is hon-
est, fi(x)’s corresponding to Pi ∈ REC will define F (x, y) = F (x, y). In
the worst case, there can be at most t corrupted parties in REC and hence
except with probability ε′t ≈ ε, fi(x)’s corresponding to each Pi ∈ REC will
define F (x, y) = F (x, y) and thus s = F (0, 0) = F (0, 0) will be recovered.

• Correctness 2: Here we have to consider the case when D is corrupted.
Now there are two cases: (a) D’s AVSS-committed secret s belongs to F; (b)
D’s AVSS-committed secret s is NULL. Whatever may be case, we show
that except with probability ε, each honest party will reconstruct s.

1. Let s = NULL. Now for every honest Pi ∈ V CORE, AWSS-Rec-Publici

will reconstruct fi(x) correctly and thus Pi will be added to REC, ex-
cept with error probability ε′. Consequently since there are at least
t + 1 honest parties in V CORE, all the honest parties from V CORE

190

will be added to REC except with error probability of nε′ = ε. Now
irrespective of the remaining (corrupted) parties included in REC, the

consistency checking (i.e., fγ(δ)
?
= fδ(γ)) will fail for some pair (Pγ, Pδ)

of honest parties and thus NULL will be reconstructed.

2. On the other hand, let s ∈ F (i.e meaningful) and s = F (0, 0). This
means that F (x, y) is defined by the fi(x)’s of the honest parties in
V CORE. This case now completely resembles with the case when D
is honest and hence the proof follows from the proof of Correctness
1 (presented above). 2

Lemma 8.22 (AVSS-Secrecy) Protocol WAVSS-Share satisfies secrecy prop-
erty of Definition 8.3.

proof: We have to consider the case when D is honest. Without loss of gener-
ality, let P1, . . . , Pt be under the control of At. It is easy to see that through out
WAVSS-Share, At will know f1(x), . . . , ft(x) and t points on ft+1(x), . . . , fn(x).
However, from the property of symmetric polynomial of degree-t in x and y [46],
the adversary At will lack one more point on F (x, y) to uniquely interpolate
F (x, y). Hence s = F (0, 0) will be information theoretically secure. 2

Theorem 8.23 Protocol WAVSS is a valid weak statistical AVSS scheme for a
single secret.

Proof: The proof follows from Lemma 8.20, Lemma 8.21 and Lemma 8.22. 2

Remark 8.24 Protocol WAVSS-Share does not force corrupted D to AVSS-commit
some meaningful secret (i.e., an element from F). Hence, the secret s, AVSS-
committed by a corrupted D can be either from F or NULL. We may assume
that if D’s AVSS-committed secret is NULL, then D has AVSS-committed some
predefined value s∗ ∈ F, which is known publicly. Hence in WAVSS-Rec-Public,
whenever NULL is reconstructed, every honest party replaces NULL by the pre-
defined secret s∗. Interpreting this way, we say that our AVSS scheme allows D
to AVSS-commit secret from F.

8.4.2 Deciding The Choice of AWSS Protocol

For our ABA protocol presented in Chapter 9, it is sufficient to design a weak
statistical AVSS with public reconstruction. Now let us analyze the communica-
tion complexity of our WAVSS protocol by substituting AWSS-I and AWSS-II.

Communication complexity of WAVSS using AWSS-I as a Black box:
Protocol WAVSS-Share incurs a private communication of O(n4(log 1

ε
)2) bits and

A-cast of O(n3 log n) bits (as WAVSS-Share invokes at most n instances of AWSS-
Share). Protocol WAVSS-Rec-Private incurs private communication ofO(n4(log 1

ε
)2)

bits (as WAVSS-Rec-Private invokes at most n instances of AWSS-Rec-Private).
Protocol WAVSS-Rec-Public incurs A-cast communication of O(n4(log 1

ε
)2) bits

(as WAVSS-Rec-Public invokes at most n instances of AWSS-Rec-Public).

Communication complexity of WAVSS using AWSS-II as a Black box:
Protocol WAVSS-Share incurs a private communication of O(n4 log 1

ε
) bits and

191

A-cast of O(n4 log 1
ε
) bits. Protocol WAVSS-Rec-Private incurs private communi-

cation of O(n4 log 1
ε
) bits. Protocol WAVSS-Rec-Public incurs A-cast communica-

tion of O(n4 log 1
ε
) bits.

So if we consider WAVSS with public reconstruction i.e (WAVSS-Share,WAVSS-
Rec-Public) then the total communication is better when AWSS-II is used as black
box (which is private communication and A-cast communication of O(n4 log 1

ε
)

bits). So we will consider AWSS-II as a black box for WAVSS and state the
communication complexity of WAVSS in the following theorem. Before that we
fix the field F over which WAVSS should work to bound the error probability by
ε.

To bound the error probability by ε, the computation in WAVSS is performed
over a field F = GF (2κ), where κ has to be determined using the relation ε ≥
n42−κ. This is derived from the fact that in WAVSS, AWSS-II is invoked with ε

n
error probability and as mentioned in subsection 8.4.1, ε ≥ n32−κ should hold to
bound error probability of AWSS-II by ε. So here each element from the field is
represented by κ = log |F| = O(log 1

ε
) bits.

Theorem 8.25 (Communication Complexity of WAVSS) Using AWSS-II as
building block, the communication complexity of protocol WAVSS becomes as fol-
lows

• Protocol WAVSS-Share incurs a private communication of O(n4 log 1
ε
) bits

and A-cast of O(n4 log 1
ε
) bits.

• Protocol WAVSS-Rec-Public incurs A-cast of O(n4 log 1
ε
) bits.

Proof: The proof follows from Lemma 8.16 and the fact that in WAVSS-Share,
there can be Θ(n) instances of AWSS-Share, each executed with an error proba-
bility of ε′ = ε

n
. Moreover, in WAVSS-Rec-Public there can be Θ(n) instances of

AWSS-Rec-Public. 2

8.4.3 Our Weak Statistical AVSS Scheme for Sharing Multiple Se-
crets

We now extend protocol WAVSS to WAVSS-MS5 consisting of sub-protocols (WAVSS-
MS-Share, WAVSS-MS-Rec-Private, WAVSS-MS-Rec-Pubic). Protocol WAVSS-MS-
Share allows D ∈ P to concurrently share a secret S = (s1 . . . s`), containing `
elements. Moreover, if D is corrupted then either S ∈ F`, where each element
of S belongs to F or S = NULL (in a sense explained in the sequel). Pro-
tocol WAVSS-MS-Rec-Public allows the parties in P to reconstruct S. Protocol
WAVSS-MS-Rec-Private allows a specific party in Pα ∈ P to reconstruct S.

A simple approach for sharing ` secrets would be to execute WAVSS-Share `
times in parallel, each sharing a single secret. From Theorem 8.25, this naive
approach would require a private communication and A-cast of O(`n4 log 1

ε
) bits.

On the other hand, protocol WAVSS-MS-Share shares all elements of S concur-
rently, requiring a private communication and A-cast of O((`n3 + n4) log 1

ε
) bits.

Thus for sufficiently large `, the communication complexity of WAVSS-MS-Share
is less than what would have been required by ` parallel executions of WAVSS-
Share. Similarly, protocol WAVSS-MS-Rec-Public reconstructs all the ` secrets

5Here MS stands for multiple secrets

192

simultaneously, incurring A-cast communication of O((`n3 +n4) log 1
ε
) bits which

is much better than ` parallel execution of WAVSS-Rec-Public for single secrets.

The Intuition: The high level idea of WAVSS-MS-Share is similar to WAVSS-
Share. Specifically, for each sl ∈ S, the dealer D selects a symmetric bivariate
polynomial F l(x, y) of degree-t in x and y, such that F l(0, 0) = sl and sends
f l

i (x) = F l(x, i) to party Pi. Then each party Pi is asked to AWSS-commit his
received polynomials f 1

i (x), . . . , f `
i (x). However, instead of executing ` instances

of AWSS-Share, one for committing each f l
i (x), party Pi executes a single instance

of AWSS-MS-Share to commit f 1
i (x), . . . , f `

i (x) simultaneously. It is this step,
which leads to the reduction in the communication complexity of WAVSS-MS-
Share. The remaining steps like V CORE construction, agreement on V CORE,
etc are similar to protocol WAVSS-Share. Protocol WAVSS-MS-Share is formally
presented in Fig. 8.7.

Remark 8.26 (D’s AVSS-commitment) We say that D has AVSS-committed
S = (s1, . . . , s`) ∈ F` in WAVSS-MS-Share if for every l = 1, . . . , ` there is a
unique degree-t symmetric bivariate polynomial F l(x, y) such that F l(0, 0) = sl

and every honest Pi in V CORE receives f l
i (x) = F l(x, i) from D and AWSS-

commits f l
i (0) using f l

i (x) among the parties in WCOREPi. Otherwise, we say
that D has committed NULL. Notice that the above condition implies that for
l = 1, . . . , ` there exist a unique degree-t univariate polynomial f l(x)(= f l

0(x) =
F l(x, 0)) such that f l(0) = sl and every honest Pi ∈ V CORE receives f l(i)(=
f l

0(i) = f l
i (0)) from D. The value f l(i) is referred as ith share of sl. An

honest D always commits sl from F as he always chooses a proper symmetric bi-
variate polynomial F l(x, y) and properly distributes f l

i (x) = F l(x, i) to party Pi.
But WAVSS-MS-Share can not ensure that corrupted D also commits sl ∈ F for
all l. When a corrupted D commits NULL, the f l

i (x) polynomials of the honest
parties in V CORE do not define a symmetric bivariate polynomial of degree-t
in x and y for at least one l. This further implies that there will be an honest
pair (Pγ, Pδ) in V CORE such that f l

γ(δ) 6= f l
δ(γ). If S belongs to F`, then it is

considered as meaningful.

Protocol WAVSS-MS-Rec-Private and WAVSS-MS-Rec-Public are straightfor-
ward extension of protocol WAVSS-Rec-Private and WAVSS-Rec-Public respec-
tively and they appear in Fig. 8.8.

We do not provide the proof of the properties of protocol WAVSS-MS, as it
will be the repetition of the proofs provided for protocol WAVSS. For the sake of
completeness, we state the following theorem.

Theorem 8.27 Protocol WAVSS-MS is a valid weak statistical AVSS scheme for
multiple secrets.

Remark 8.28 As mentioned earlier, Protocol WAVSS-MS-Share does not force
corrupted D to AVSS-commit some meaningful secret (i.e., S, containing ` ele-
ments from F). We may assume that if D’s AVSS-committed secret is NULL,
then D has AVSS-committed some predefined S∗ ∈ F`, which is known publicly.
Hence in WAVSS-MS-Rec, whenever NULL is reconstructed, every honest party
replaces NULL by the predefined S∗. Interpreting this way, we say that our AVSS
scheme allows D to AVSS-commit secret from F`.

193

Figure 8.7: Sharing Phase of Weak Statistical AVSS Scheme for Sharing a Secret S
Containing ` Elements

WAVSS-MS-Share(D,P, S = (s1, . . . , s`), ε)

Distribution: Code for D — Only D executes this code.

1. For l = 1, . . . , `, select a random symmetric bivariate polynomial F l(x, y) of degree-
t in x and y such that F l(0, 0) = sl and send f l

i (x) = F l(x, i) to party Pi, for
i = 1, . . . , n.

Commitment upon Verification: Code for Pi — Every party in P, including D, executes this
code.

1. Wait to obtain f1
i (x), . . . , f `

i (x) from D.

2. If f1
i (x), . . . , f `

i (x) are degree-t polynomials then as a dealer, execute AWSS-MS-
Share(Pi,P, (f1

i (x), . . . , f `
i (x)), ε′) (see Notation 8.14 for the syntax) such that ε′ = ε

n
.

We call this instance of AWSS-MS-Share initiated by Pi as AWSS-MS-Sharei.

3. As a part of the execution of AWSS-MS-Sharej , wait to receive f l
j(i), for l = 1, . . . , `

from Pj . Then check f l
i (j)

?
= f l

j(i). If the test passes for all l = 1, . . . , `
then participate in AWSS-MS-Sharej and act according to the remaining steps of
AWSS-MS-Sharej .

VCORE Construction: Code for D – Only D executes this code

1. If AWSS-MS-Sharej is terminated, then denote corresponding WCORE and OKPk

sets by WCOREPj and OKP
Pj

k for every Pk ∈ WCOREPj . Add Pj in a set
V CORE (initially empty).

2. Keep updating V CORE, WCOREPj and corresponding OKP
Pj

k ’s for every Pj ∈
V CORE upon receiving new A-casts of the form OK(., .) (during AWSS-MS-Sharej ’s),
until for at least 2t+1 Pj ∈ V CORE, the condition |V CORE∩WCOREPj | ≥ 2t+1
is satisfied. Exclude every other Pj ∈ V CORE not satisfying the above condition.

3. A-cast V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k for every Pk ∈
WCOREPj . Conclude that each Pj ∈ V CORE is AWSS-committed to
(f1

j (x), . . . , f `
j (x)).

VCORE Verification & Agreement on VCORE: Code for Pi — Every party in P, includ-
ing D, executes this code.

1. Wait to receive V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k for every
Pk ∈ WCOREPj from D’s A-cast, such that each of the sets are of size at least
2t + 1 and |V CORE ∩WCOREPj | ≥ 2t + 1.

2. Wait to terminate AWSS-MS-Sharej corresponding to every Pj in V CORE.

3. For every Pj ∈ V CORE, wait to receive OK(Pm, Pk) for every Pm ∈ OKP
Pj

k and Pk ∈
WCOREPj . Then accept V CORE, WCOREPj for Pj ∈ V CORE and OKP

Pj

k for
every Pk ∈ WCOREPj and terminate WAVSS-MS-Share.

8.4.4 Deciding The Choice of AWSS Protocol

Similar to what was carried out in subsection 8.4.2, here also we analyze the com-
munication complexity of WAVSS-MS while it uses AWSS-MS-I and AWSS-MS-II
as black box separately. In our ABA protocol we require a weak statistical AVSS
with public reconstruction. This information will be taken into account in our
decision for the choice of black box. That is, we will choose the black box as the
one which leads to better communication complexity when we consider WAVSS-

194

Figure 8.8: Reconstruction Phase of our Weak Statistical AVSS Scheme for Sharing
Secret S Containing ` Elements.

WAVSS-MS-Rec-Private(D,P, S = (s1, . . . , s`), Pα, ε)

Pα-weak-private-reconstruction of (f1
j (x), . . . , f `

j (x)) for every Pj ∈ V CORE:
(Code for Pi)

1. Participate in AWSS-MS-Rec-Private(Pj ,P, (f1
j (x), . . . , f `

j (x)), Pα, ε′)

for every Pj ∈ V CORE with WCOREPj and OKP
Pj

k

for every Pk ∈ WCOREPj , where ε′ = ε
n . We de-

note AWSS-MS-Rec-Private(Pj ,P, (f1
j (x), . . . , f `

j (x)), Pα, ε′) by
AWSS-MS-Rec-Privatej .

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either f1
j (x), . . . , f `

j (x) or NULL from
Pα-weak-private-reconstruction. Add Pj ∈ V CORE to REC if non-
NULL is obtained.

2. Wait until |REC| = t + 1. For l = 1, . . . , `, do the following:

(a) For every pair (Pγ , Pδ) ∈ REC check f l
γ(δ) ?= f l

δ(γ). If the test

passes for every pair of parties then recover F l(x, y) using f l
j(x)’s

corresponding to each Pj ∈ REC and reconstruct sl = F l(0, 0).
Else reconstruct sl = NULL.

3. For l = 1, . . . , `, if any sl = NULL then output S = NULL and
terminate WAVSS-MS-Rec-Private. Else output S = (s1, . . . , s`) and
terminate WAVSS-MS-Rec-Private.

WAVSS-Rec-Public(D,P, s, ε)

Public reconstruction of (f1
j (x), . . . , f `

j (x)) for every Pj ∈ V CORE: (Code
for Pi)

1. Participate in AWSS-MS-Rec-Public(Pj ,P, (f1
j (x), . . . , f `

j (x)), ε′)

for every Pj ∈ V CORE with WCOREPj and OKP
Pj

k

for every Pk ∈ WCOREPj , where ε′ = ε
n . We de-

note AWSS-MS-Rec-Public(Pj ,P, (f1
j (x), . . . , f `

j (x)), ε′) by
AWSS-MS-Rec-Publicj .

Local Computation: Code for Pi

For every Pj ∈ V CORE, obtain either (f1
j (x), . . . , f `

j (x)) or NULL from
public reconstruction. Remaining code is same as the code for Pα presented
above for WAVSS-MS-Rec-Private

MS with public reconstruction. In the sequel, we do the analysis and conclude
that using AWSS-MS-II as a black box for WAVSS-MS with public reconstruction
will give us better communication complexity than using AWSS-MS-I as a black
box.

195

Communication complexity of WAVSS-MS using AWSS-MS-I as a Black
box: Protocol WAVSS-MS-Share incurs a private communication of O((`n3 +
n4 log 1

ε
) log 1

ε
) bits and A-cast of O(n3 log n) bits (as WAVSS-MS-Share invokes at

most n instances of AWSS-MS-Share). Protocol WAVSS-Rec-Private incurs private
communication of O((`n3 +n4 log 1

ε
) log 1

ε
) bits (as WAVSS-Rec-Private invokes at

most n instances of AWSS-Rec-Private). Protocol WAVSS-Rec-Public incurs A-cast
communication of O((`n3 + n4 log 1

ε
) log 1

ε
) bits (as WAVSS-Rec-Public invokes at

most n instances of AWSS-Rec-Public).

Communication complexity of WAVSS-MS using AWSS-MS-II as a Black
box: Protocol WAVSS-MS-Share incurs a private communication of O((`n3 +
n4) log 1

ε
) bits and A-cast of O((`n3 + n4) log 1

ε
) bits. Protocol WAVSS-MS-Rec-

Private incurs private communication ofO((`n3+n4) log 1
ε
) bits. Protocol WAVSS-

MS-Rec-Public incurs A-cast communication of O((`n3 + n4) log 1
ε
) bits.

So if we consider WAVSS-MS with public reconstruction i.e (WAVSS-MS-Share,
WAVSS-MS-Rec-Public) then the total communication is better if AWSS-MS-II is
used as black box (which is private communication and A-cast communication
of O((`n3 + n4) log 1

ε
) bits). So we will consider AWSS-MS-II as a black box

for WAVSS-MS and state the communication complexity of WAVSS-MS in the
following theorem. Before that we fix the field F over which WAVSS-MS should
work to bound the error probability by ε.

To bound the error probability by ε, the computation in WAVSS-MS is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n42−κ. This is derived from the fact that in WAVSS-MS, AWSS-MS-II will be
invoked with ε

n
error probability and as mentioned in subsection 8.3.4, ε ≥ n32−κ

should hold to bound error probability of AWSS-MS-II by ε. So here each element
from the field is represented by κ = log |F| = O(log 1

ε
) bits.

Theorem 8.29 (Communication Complexity of WAVSS-MS) Using AWSS-
MS-II as building block, the communication complexity of WAVSS-MS becomes as
follows:

• Protocol WAVSS-MS-Share incurs a private communication of O((`n3 +
n4) log 1

ε
) bits and A-cast of O((`n3 + n4) log 1

ε
) bits.

• Protocol WAVSS-MS-Rec-Public incurs A-cast of O((`n3 + n4) log 1
ε
) bits.

Proof: The proof follows from Lemma 8.18 and the fact that in WAVSS-MS-
Share, there can be Θ(n) instances of AWSS-MS-Share, each executed with an
error probability of ε′ = ε

n
. Moreover, in WAVSS-MS-Rec-Public there can be

Θ(n) instances of AWSS-MS-Rec-Public. 2

From Theorem 8.29 and 8.25, we can conclude that dealing with multiple
secrets concurrently in a protocol provides with better communication complexity
that multiple executions of protocol dealing with single secret.

The protocol WAVSS-MS will be used in our ABA protocol presented in Chap-
ter 9. In the next section, we present another AVSS protocol which is a strong
statistical AVSS and hence we will use this for AMPC protocol in Chapter 10.

196

8.5 Our Strong Statistical AVSS protocol

For the sake of simplicity, we first present our strong AVSS protocol sharing a
single secret and then extend the protocol for multiple (i.e `) secrets. We will later
show that dealing with multiple secrets concurrently in our protocol provides with
better communication complexity that multiple executions of protocol dealing
with single secret. We may use any one of the AWSS presented in this chapter
as a building block for our protocol. But we will use AWSS-I and corresponding
multiple secret AWSS protocol AWSS-MS-I for our single and multiple secret
version of AVSS respectively. We dedicate a subsection at the end of this section
to state the reason for our choice. In the sequel, our AVSS protocols are described
without hinting on which AWSS is used, as the AWSS can be replaced by either
one of the two AWSS protocols described in Section 8.3. Lastly, our strong
statistical AVSS protocol is much more involved than our weak statistical AVSS
presented in the previous section.

8.5.1 Our Strong Statistical AVSS Scheme for Sharing a Single Secret

We now present an AVSS scheme called SAVSS consisting of three sub-protocols
(SAVSS-Share, SAVSS-Rec-Private, SAVSS-Rec-Public). SAVSS-Share allows D to
share a single secret from F. Protocol SAVSS-Rec-Private allows a specific party,
say Pα, to privately reconstruct D’s committed secret. We call the private re-
construction as Pα-private-reconstruction. While Pα-private-reconstruction can
always ensure that Pα reconstructs D’s committed secret with high probabil-
ity, Pα-weak-private-reconstruction (introduced in Section 8.3) could only ensure
that Pα reconstructs either D’s committed secret or NULL. Protocol SAVSS-
Rec-Public enables all the parties in P to reconstruct D’s committed secret.

Structurally, we divide SAVSS-Share into a sequence of following three phases.
Each of the phases will be eventually completed by every honest party when D
is honest. Moreover, if some honest party completes all the three phases then
eventually every other honest party will also complete all the three phases.

1. Commitment by D: Here D on having a secret s, commits the secret by
AWSS-committing n shares of s using n different instances of AWSS-Share
protocol.

2. Verification of D’s commitment: Here the parties verify whether indeed
D has committed a secret from F.

3. Re-commitment by Individual Parties: If the parties are convinced in
previous phase, then every party Pi re-commits his share of D’s committed
secret using an instance of AWSS-Share protocol.

While first two phases of SAVSS-Share are enough to ensure that D has committed
a secret from F, the sole purpose of third phase is to enable robust reconstruction
of D’s committed secret in SAVSS-Rec-Private and SAVSS-Rec-Public. That is,
if protocol SAVSS-Share stops after the second phase, then we may only ensure
that either D’s committed secret or NULL will be reconstructed in SAVSS-Rec-
Private and SAVSS-Rec-Public. This would violate the claim that SAVSS is an
AVSS scheme.

197

8.5.1.1 Commitment by D Phase

In this phase, D on having a secret s, selects a random bivariate polynomial
F (x, y) of degree-(t, t) (i.e degree-t in both x and y) such that F (0, 0) = s. Now
to party Pi, D passes fi(x) = F (x, i) and gi(y) = F (i, y). We refer fi(x) poly-
nomials as row polynomials and gi(y) polynomials as column polynomials. Now
D commits f1(x), . . . , fn(x) using n distinct invocations of AWSS-Share protocol
(see Notation 8.11 in Section 8.3.1 for the interpretation of committing polyno-
mial using AWSS-Share). During the course of executing these n instances of
AWSS-Share, a party Pi receives ith point on the polynomials f1(x), . . . , fn(x),
namely f1(i), . . . , fn(i) which should be n distinct points on gi(y). So Pi checks
whether gi(j) = fj(i) for all j = 1, . . . , n and informs this by A-casting a signal.
While executing the n instances of AWSS-Share, D employ a trick to guaran-
tee that all the n instances of AWSS-Share terminate with a common WCORE.
Once WCORE is agreed among all the honest parties in P , Commitment by
D Phase ends. The code for this phase is presented in Fig. 8.9.

We now prove the properties of Commitment by D Phase.

Lemma 8.30 In Code Commitment:

1. If D is honest then eventually he will generate a common WCORE of size
2t + 1 for all the n instances of AWSS-Share initiated by him. Moreover,
each honest party will eventually agree on the common WCORE.

2. If D is corrupted and some honest party has accepted the WCORE and
OKPjs received from the A-cast of D, then every other honest party will
also eventually accept the same.

Proof: In Code Commitment, D keeps on adding new parties in each WCOREi

and OKP i
j even after their cardinality reaches 2t + 1. So if D is honest, then

eventually he will include all the 2t + 1 honest parties in each WCOREi and
OKP i

j for every honest Pj. Moreover, each honest Pi will eventually A-cast
Matched-Column signal, as fj(i) = gi(j) will hold for all j = 1, . . . , n when D is
honest. Therefore, if D is honest then eventually he will find a common set of at
least 2t + 1 parties in the WCOREi of all the n instances of AWSS-Share, who
have A-cast Matched-Column signal. This common set of at least 2t + 1 parties
will form the common WCORE which D will A-cast. Similarly, corresponding to
each Pj ∈ WCORE, the honest D will eventually find a common set of at least
2t + 1 parties in OKP 1

j , . . . , OKP n
j . This common set of at least 2t + 1 parties

will constitute OKPj which D will A-cast. Now from the property of A-cast, each
honest party will eventually receive WCORE of size at least 2t+1 and OKPj of
size at least 2t + 1 for each Pj ∈ WCORE from the A-cast of D. Now it is easy
to see that each honest party will accept this common WCORE and OKPj for
each Pj ∈ WCORE, after executing the steps in [WCORE verification and
agreement]. This proves the first part.

If D is corrupted and some honest party, say Pi has accepted the WCORE
and OKPj’s received from the A-cast of D then it implies the following: Pi

has received OK(Pk, Pj) from the A-cast of Pk for every Pk ∈ OKPj and every
Pj ∈ WCORE for all the n executions of AWSS-Share. Moreover, Pi has also
received Matched-Column from A-cast of every Pj ∈ WCORE. Now from the
property of A-cast, every other honest party Pj will also eventually receive the
same OKs and Matched-Column and hence will accept the WCORE and OKPj

for each Pj ∈ WCORE.

198

Figure 8.9: Code for Commitment by D Phase

Code Commitment(D,P, s, ε)

i. Distribution by D: – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that F (0, 0) = s.

2. For i = 1, . . . , n, send row polynomial fi(x) = F (x, i) and column polynomial gi(y) =
F (i, y) to Pi.

3. For i = 1, . . . , n, initiate AWSS-Share(D,P, fi(x), ε′) (see Notation 8.11 for syntax)
for sharing fi(x), where ε′ = ε

n
.

ii. Code for Pi: – Every party in P, including D, executes this code

1. Wait to receive degree-t row polynomial fi(x) and degree-t column polynomial gi(y)
from D.

2. Participate in AWSS-Share(D,P, fj(x), ε′) by executing steps in [Verification:
Code for Pi] (of AWSS-Share) for all j = 1, . . . , n.

3. After the completion of step 1 of [Verification: Code for Pi] for all the n invo-
cations of AWSS-Share, check whether gi(j) = fj(i) holds for all j = 1, . . . , n. Here
fj(i) is obtained by Pi from D during the execution of first step of [Verification:
Code for Pi] of AWSS-Share(D,P, fj(x), ε′). If yes then A-cast Matched-Column and
execute the rest of the steps of AWSS-Share(D,P, fj(x), ε′), for all j = 1, . . . , n.

iii. WCORE Construction: Code for D – Only D executes this code.

1. Construct WCORE and corresponding OKPj ’s for each AWSS-Share(D,P, fi(x), ε′)
following the steps in [WCORE Construction] (of AWSS-Share). Denote them by
WCOREi and OKP i

j ’s.

2. Keep updating WCOREi’s and corresponding OKP i
j ’s. That is, even after

WCOREi reaches the size of 2t + 1, D keeps on adding new parties in WCOREi

and corresponding OK sets after receiving new A-cast of the form OK(*, *) in
AWSS-Share(D,P, fi(x), ε′).

3. Wait to obtain WCORE = ∩n
i=1WCOREi of size at least 2t + 1 and for every

Pj ∈ WCORE, OKPj = ∩n
i=1OKP i

j of size at least 2t+1, such that Matched-Column
is received from A-cast of every Pj ∈ WCORE .

4. A-cast WCORE and OKPj for every Pj ∈ WCORE.

iv. WCORE verification & Agreement: Code for Pi – Every party including D will execute
this code.

1. Wait to receive WCORE and OKPj for every Pj ∈ WCORE from A-cast of D, such
that |WCORE| ≥ 2t + 1 and each |OKPj | ≥ 2t + 1.

2. Wait to receive OK(Pk, Pj) from the A-cast of Pk for every Pk ∈ OKPj and every
Pj ∈ WCORE for all the n executions of AWSS-Share.

3. Wait to receive Matched-Column from A-cast of every Pj ∈ WCORE.

4. After receiving all desired OKs and Matched-Column signals, accept WCORE and
OKPj for every Pj ∈ WCORE received from A-cast of D and proceed to the next
phase (Verification of D’s Commitment Phase).

8.5.1.2 Verification of D’s Commitment Phase

After agreeing on WCORE and corresponding OKPj’s, in this phase, the parties
verify whether indeed D has committed a secret from F. For this, the parties
try to check whether there is a set R of size at least 2t + 1 and another set C
of size at least 2t + 1 (possibly different from R), such that for every Pi ∈ R
and every Pj ∈ C, fi(j) = gj(i) holds. If they can ensure that such sets exist

199

then it implies that the row and column polynomials of the honest parties in R
and C define a unique bivariate polynomial of degree-(t, t) and the constant term
of the polynomial is D’s committed secret. Checking for the existence of such
sets is quiet easy in synchronous settings, where the parties can simply pair-wise
exchange common values on their row and column polynomial, as done in several
synchronous VSS protocols [20, 91, 73, 109, 125]. However, doing the same is not
so straightforward in asynchronous settings, especially when we have only 3t + 1
parties.

To check the existence of the sets described above, the parties proceed as
follows: recall that in the Commitment by D phase, D is committed to
f1(x), . . . , fn(x) using n distinct instances of AWSS-Share. Now the parties exe-
cute AWSS-Rec-Private(D,P , fj(x),
Pj, ε

′) for enabling Pj-weak-private-reconstruction of fj(x). If Pj reconstructs

fj(x) from the execution of AWSS-Rec-Private and fj(x) is same as fj(x) received
from D in the previous phase, then Pj informs this to everyone by A-casting
Matched-Row signal. This is a public notification by Pj that the polynomial
committed by D in AWSS-Share(D,P , fj(x), Pj, ε

′) is same as the one which Pj

has privately received from D. Now if at least 2t + 1 parties, say R, A-cast
Matched-Row, then it implies that D is committed to a unique degree-(t, t) bi-
variate polynomial, say F (x, y) (hence a unique secret s = F (0, 0)) such that for
every honest Pi ∈ R, the row polynomial fi(x) held by Pi satisfies F (x, i) = fi(x)
and for every honest Pj ∈ WCORE, the column polynomial gj(y) held by Pj

satisfies F (j, y) = gj(y) (For proof see Lemma 8.31). The code for implementing
this phase is very easy and is given in Fig. 8.10.

Lemma 8.31 In Code Verification, if an honest party receives Matched-Row from
the A-cast of the parties in R, then in code Commitment, D is committed to
a unique degree-(t, t) bivariate polynomial F (x, y) (and hence to a secret s =
F (0, 0)) such that the row polynomial fi(x) held by every honest Pi ∈ R sat-
isfies F (x, i) = fi(x) and the column polynomial gj(y) held by every honest
Pj ∈ WCORE satisfies F (j, y) = gj(y). Moreover if D is honest then F (x, y) =
F (x, y) and hence s = s.

Proof: Let l and m be the number of honest parties in R and WCORE re-
spectively. As |WCORE| ≥ 2t + 1 and |R| ≥ 2t + 1, both l ≥ t + 1 and
m ≥ t + 1. For convenience, we assume P1, . . . , Pl and respectively P1, . . . , Pm

are the set of honest parties in R and WCORE. Now for every (Pi, Pj) with
Pi ∈ {P1, . . . , Pl} and Pj ∈ {P1, . . . , Pm}, fi(j) = gj(i) holds. This is due to
the fact that Pi has checked that D is indeed committed to fi(x) (by check-
ing fi(x) = fi(x), where fi(x) is obtained from Pi-weak-private-reconstruction
and fi(x) is obtained from D in Commitment). The above implies that honest
Pj ∈ WCORE has received fi(j) from D and checked gj(i) = fi(j) during the
execution of Commitment. We now claim that if fi(j) = gj(i) holds for every
(Pi, Pj) with Pi ∈ {P1, . . . , Pl} and Pj ∈ {P1, . . . , Pm} then there exists a unique
bivariate polynomial F (x, y) of degree-(t, t), such that for i = 1, . . . , l, we have
F (x, i) = fi(x) and for j = 1, . . . , m, we have F (j, y) = gj(y). The proof now
completely follows from the proof of Lemma 4.26 of [35].

Specifically, let V (k) denote k × k Vandermonde matrix, where ith column
is [i0, . . . , ik−1]T , for i = 1, . . . , k. Now consider the degree-t row polynomials
f1(x), . . . , ft+1(x) and let E be the (t + 1) × (t + 1) matrix, where Eij is the
coefficient of xj in fi(x), for i = 1, . . . , t + 1 and j = 0, . . . , t. Thus for i =

200

Figure 8.10: Code for Verification of D’s Commitment Phase

Code Verification(D,P, s, ε)

i. Pj-Weak-Private-Reconstruction of fj(x) for j = 1, . . . , n: Code for Pi

– Every party in P executes this code.

1. After agreeing on WCORE and corresponding OKPj ’s, partici-
pate in AWSS-Rec-Private(D,P, fj(x), Pj , ε

′), for j = 1, . . . , n, to
enable Pj-weak-private-reconstruction of fj(x). Notice that the
same WCORE and OKPj for Pj ∈ WCORE are used in each
AWSS-Rec-Private(D,P, fj(x), Pj , ε

′), for j = 1, . . . , n

2. At the completion of AWSS-Rec-Private(D,P, fi(x), Pi, ε
′), obtain either

degree-t polynomial fi(x) or NULL.

3. If fi(x) = fi(x), then A-cast Matched-Row.

ii. Code for D: — Only executes this code.

1. Wait to receive Matched-Row from A-cast of at least 2t + 1 parties, say
R.

2. A-cast the set R.

iii. Verification of D’s Commitment: Code for Pi – Every party in P executes
this code

1. Wait to receive R of size at least 2t + 1 from A-cast of D.

2. Wait to receive Matched-Row from A-cast of every party in R and then
proceed to third phase.

1, . . . , t + 1 and j = 1, . . . , t + 1, the (i, j)th entry in E · V (t+1) is fi(j).

Let H = ((V (t+1))T)
−1 ·E be a (t+1)× (t+1) matrix. Let for i = 0, . . . , t, the

(i + 1)th column of H be [ri0, ri1, . . . , rit]
T . Now we define a degree-(t, t) bivari-

ate polynomial F (x, y) =
∑i=t

i=0

∑j=t
j=0 rijx

iyj. Then from properties of bivariate
polynomial, for i = 1, . . . , t + 1 and j = 1, . . . , t + 1, we have

F (j, i) = (V (t+1))T ·H · V (t+1) = E · V (t+1) = fi(j) = gj(i)

This implies that for i = 1, . . . , t+1, the polynomials F (x, i) and fi(x) have same
value at t + 1 values of x. But since degree of F (x, i) and fi(x) is t, this implies
that F (x, i) = fi(x). Similarly, for j = 1, . . . , t + 1, we have F (j, y) = gj(y).

Next, we will show that for any t + 1 < i ≤ l, the polynomial fi(x) also lies
on F (x, y). In other words, F (x, i) = fi(x), for t + 1 < i ≤ l. This is easy to
show because according to theorem statement, fi(j) = gj(i), for j = 1, . . . , t + 1
and g1(i), . . . , gt+1(i) lie on F (x, i) and uniquely defines F (x, i). Since both fi(x)
and F (x, i) are of degree t, this implies that F (x, i) = fi(x), for t + 1 < i ≤ l.
Similarly, we can show that F (j, y) = gj(y), for t + 1 < j ≤ m. The second part
of the lemma is trivially true. 2

Lemma 8.32 In Code Verification, if D is honest then all honest parties will
eventually proceed to third phase, except with probability ε. Moreover, if D is

201

corrupted and some honest party proceeds to the third phase, then all other honest
party will also eventually proceed to the third phase.

Proof: If D is honest then every honest party Pi will eventually A-cast Matched-
Row signal, except with probability ε′. The reason is that every honest Pi will
privately reconstruct back fi(x) in AWSS-Rec-Private(D,P , fi(x), Pi, ε

′), except
with probability ε′. As there are at least 2t + 1 honest parties, except with
probability at most nε′ = ε, all honest parties will eventually A-cast Matched-Row
signal. Therefore, eventually there will be a set of 2t + 1 parties, say R, who will
A-cast Matched-Row signal. D will A-cast R and eventually every honest party
will receive R from A-cast of D and will eventually receive 2t + 1 Matched-Row

signal from the parties of R and will proceed to the third phase, except with
probability ε.

If D is corrupted and some honest party Pi proceeds to the third phase, then
it implies that Pi has received R from A-cast of D and then Matched-Row signal
from every party in R. So eventually all other honest parties will also receive R
and corresponding Matched-Row signals and will proceed to the third phase. 2

From Lemma 8.31, if the honest parties agree on R, then they are sure that D
is committed to a unique bivariate polynomial and thus a unique secret. Now
the question is: If the honest parties stop protocol SAVSS-Share after agreeing
on R, then is there any possible way of robustly reconstructing D’s secret in
reconstruction phase? Here we stop a moment and try to find the possibilities
for the above question. Our effort in this direction would also motivate the need
of the third phase of SAVSS-Share which is actually required to enable robust
reconstruction of D’s committed secret in the reconstruction phase i.e in SAVSS-
Rec-Private (and SAVSS-Rec-Public).

One possible way to reconstruct D’s committed secret s is to execute AWSS-
Rec-Private(D,P , fj(x), ∗, ε′) corresponding to every Pj ∈ R, which may disclose
fj(x) polynomials and using those polynomial the bivariate polynomial and thus
the secret s may be reconstructed. But this does not work, because when D is
corrupted, all instances of AWSS-Rec-Private may output NULL. So it seems
that most likely there is no way to robustly reconstruct D’s committed value s in
protocol SAVSS-Rec-Private (and SAVSS-Rec-Public), if SAVSS-Share stops after
second phase. Hence, we require the third phase which is described in the sequel.
Prior to the description of the third phase in the next section, we present the
following remark.

Remark 8.33 In the code Commitment, D executed n instances of AWSS-
Share for individually committing each fi(x). Later this allowed fi(x) to be pri-
vately reconstructed only by Pi during the code for Verification. If D executes a
single instance of AWSS-MS-Share for concurrently committing to f1(x), . . . , fn(x),
instead of n instances of AWSS-Share, then later in the code Verification, we
could not enable P1 to privately reconstruct f1(x), P2 to privately reconstruct
f2(x) and so on. This is because AWSS-MS-Rec-Private is designed in such a way
that it will allow Pα to privately reconstruct back all the n polynomials. This
would clearly breach the secrecy property of AVSS as every party will now come
to know all the n row polynomials.

202

8.5.1.3 Re-commitment by Individual Parties

The outline for this phase is as follows: If Pi A-casts Matched-Row in code Verifi-
cation, then Pi acts as a dealer to re-commit his row polynomial fi(x) by initiating
an instance of AWSS-Share. It is also enforced that if Pi attempts to re-commit
f ′i(x) 6= fi(x), then his re-commitment will not be terminated. Moreover, when D
is honest then an honest Pi will always be able to successfully re-commit fi(x).
Now SAVSS-Share terminates only when all the honest parties in P agree upon a
set of at least 2t + 1 parties, say V CORE, who have successfully re-committed
their polynomials. Now clearly, if SAVSS-Share terminates, then the robust re-
construction of D′s committed secret s is guaranteed with very high probability
later in reconstruction phase. This is because, the AWSS-Rec-Private instance of
an honest Pi ∈ V CORE will always reconstruct back fi(x). On the other hand,
AWSS-Rec-Private instance of a corrupted Pi ∈ V CORE will output either fi(x)
or NULL with probability at least (1− ε′). This guarantees the reconstruction of
at least t + 1 fi(x) polynomials which are enough to reconstruct D’s committed
bivariate polynomial and hence s. The protocol for this phase is given in Fig.
8.11.

Lemma 8.34 If D is honest then D will eventually generate V CORE of size
2t + 1, except with probability ε. Moreover each honest party will agree on this
V CORE. If D is corrupted and some honest party has accepted V CORE received
from D, then every other honest party will also eventually do the same.

Proof: From the proof of Lemma 8.32, if D is honest, then all honest parties (at
least 2t + 1) will eventually A-cast Matched-Row in code Verification, except with
probability ε. So except with probability ε, all these honest Pi’s will eventually
complete AWSS-Sharei as a dealer and thus will re-commit fi(x) successfully.
Therefore, D will eventually find a set of 2t + 1 Pi’s for which the conditions
stated in step 1 of [VCORE Construction] will be eventually satisfied. Hence
D will add all these 2t + 1 Pi’s in V CORE and A-cast the same. Now it is easy
to see that every honest party will agree on this V CORE after performing the
steps in [VCORE Verification & Agreement on VCORE].

If D is corrupted and some honest party Pi has accepted V CORE received
from D, then it implies that Pi has checked the validity of received V CORE by
performing the steps in [VCORE Verification & Agreement on VCORE].
Now it is easy to see that all other honest parties will also do the same and will
accept V CORE eventually. 2

Lemma 8.35 If V CORE is generated, then there exists a unique degree-(t, t)
bivariate polynomial F (x, y) such that every Pi ∈ V CORE is re-committed to
fi(x) = F (x, i). Moreover, if D is honest then F (x, y) = F (x, y).

Proof: By Lemma 8.31, there is a unique degree-(t, t) bivariate polynomial
F (x, y) such that the row polynomial of every honest Pi who has A-casted Matched-
Row, satisfies fi(x) = F (x, i). Since an honest party Pi who has re-committed his
row polynomial fi(x) in Re-commitment, has also A-casted Matched-Row in Verifi-
cation, fi(x) = F (x, i) satisfies for every honest Pi in V CORE. Now we show that
even a corrupted Pi ∈ V CORE has re-committed fi(x) satisfying fi(x) = F (x, i).

We prove this by showing that every honest Pj ∈ WCOREPi has received fi(j)
from Pi during AWSS-Sharei (and hence honest Pj is IC-committed to fi(j)). An
honest Pj belongs to WCOREPi implies that Pj belongs to ProbCORE of at

203

Figure 8.11: Code for ”Re-commitment by Individual Parties” Phase

Code Re-commitment(D,P, s, ε)

i. Code for Pi: — Every party executes this code.

1. If you have A-casted Matched-Row in Verification then as a dealer, initiate
AWSS-Share(Pi,P, fi(x), ε′) to re-commit fi(x) with ε′ = ε

n
. We denote this instance

by AWSS-Sharei.

2. If Pj has A-casted Matched-Row in Verification, then participate in AWSS-Sharej by
executing steps in [Verification: Code for Pi] (of AWSS-Share) in the following
way:

After the completion of step 1 of [Verification: Code for Pi], check whether
gi(j) = fj(i) holds, where fj(i) is obtained from the execution of AWSS-Sharej

and gi(y) was obtained from D during commitment by D phase. If yes then
participate in the remaining steps of [Verification: Code for Pi] corresponding to
AWSS-Sharej .

3. WCOREPi Construction for AWSS-Sharei: If Pi initiated AWSS-Sharei to re-
commit fi(x), then Pi as a dealer, constructs WCORE and corresponding OKPjs for
AWSS-Sharei in a slightly different way than what is described in AWSS-Share (these
steps also ensure that a corrupted Pi will not be able to re-commit fi(x) 6= fi(x)).

(a) Construct a set ProbCOREPi (= ∅ initially). Include Pj in ProbCOREPi

and A-cast (Pj , P robCOREPi) if at least 2t+1 A-casts of the form OK(., Pj) are
heard in the instance AWSS-Sharei.

(b) Construct WCOREPi . Add Pj in WCOREPi if both the following holds:

(A) Pj ∈ ProbCOREPi and

(B) If (Pj , P robCOREPk) is received from the A-cast of at least 2t + 1 Pk’s
who have A-casted Matched-Row.

(c) A-cast WCOREPi and OKPj for every Pj ∈ WCOREPi when |WCOREPi | =
2t + 1.

ii. VCORE Construction: Code for D — Only D executes this code

1. If WCOREPi and OKPj for every Pj ∈ WCOREPi are received from the A-cast of
Pi, then add Pi to V CORE after performing the following:

(a) Wait to receive (Pj , P robCOREPi) for every Pj ∈ WCOREPi from the A-cast
of Pi.

(b) Wait to receive (Pj , P robCOREPk) for every Pj ∈ WCOREPi from A-cast of
at least 2t + 1 Pk’s who have A-casted Matched-Row.

(c) Wait to receive OK(Pj , Pk) for every Pk ∈ OKPj in execution AWSS-Sharei.

2. A-cast V CORE when |V CORE| = 2t + 1.

iii. VCORE Verification & Agreement on VCORE: Code for Pi — Every party executes
this code

1. Wait to receive V CORE from the A-cast of D.

2. For every Pi ∈ V CORE, wait to receive WCOREPi and OKPj for every Pj ∈
WCOREPi from the A-cast of Pi.

3. Once received, check the validity of received WCOREPi ’s and OKPj ’s for every
Pj ∈ WCOREPi by following the same steps as in ii-1(a), ii-1(b) and ii-1(c).

4. After checking the validity, accept (i) V CORE; (ii) WCOREPi and correspond-
ing OKPj ’s for every Pi ∈ V CORE which are received in previous two steps and
terminate SAVSS-Share.

least 2t + 1 parties (who have A-casted Matched-Row) out of which at least t + 1
are honest. Let H be the set of these (t + 1) honest parties. So Pj’s column

204

polynomial gj(y) satisfies gj(k) = fk(j) for every Pk ∈ H (due to step i-(2) in
Re-commitment). This implies that gj(y) = F (j, y). Now honest Pj ∈ WCOREPi

implies that Pj belongs to ProbCORE of Pi as well which means Pj has ensured
gj(i) = fi(j) (due to step i-(2)) in Re-commitment.

Now the second part of the lemma is trivially true. 2

8.5.1.4 Protocol SAVSS

Now the protocols for our AVSS scheme is presented in Fig. 8.12.

Figure 8.12: Our Strong Statistical AVSS for Sharing Secret s with n = 3t + 1

Protocol SAVSS(D,P, s, ε)

SAVSS-Share(D,P, s, ε)

1. Replicate Code Commitment(D,P, s, ε).

2. Replicate Code Verification(D,P, s, ε).

3. Replicate Code Re-commitment(D,P, s, ε).

SAVSS-Rec-Private(D,P, s, Pα, ε): Pα-private-reconstruction of s:

Pα-weak-private-reconstruction of fj(x) for every Pj ∈ V CORE: (Code
for Pi)

1. Participate in AWSS-Rec-Private(Pj ,P, fj(x), Pα, ε′) for every Pj ∈
V CORE. We denote AWSS-Rec-Private(Pj ,P, fj(x), Pα, ε′) by
AWSS-Rec-Privatej

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either fj(x) or NULL from Pα-weak-
private-reconstruction. Add Pj ∈ V CORE to REC if fj(x) is obtained.

2. Wait until |REC| = t + 1. Construct bivariate polynomial F (x, y) such
that F (x, j) = fj(x) for every Pj ∈ REC. Compute s = F (0, 0) and
terminate SAVSS-Rec-Private.

SAVSS-Rec-Public(D,P, s, ε): Public reconstruction of s:

Public reconstruction of fj(x) for every Pj ∈ V CORE: (Code for Pi)

1. Participate in AWSS-Rec-Public(Pj ,P, fj(x), ε′) for every
Pj ∈ V CORE. We denote AWSS-Rec-Public(Pj ,P, fj(x), ε′) by
AWSS-Rec-Publicj

Local Computation: Code for Pi

Same code as presented above for Pα in SAVSS-Rec-Private.

In the following, we prove the properties of our AVSS scheme considering
SAVSS-Rec-Private as the reconstruction phase protocol. The proofs can be

205

twisted to obtain proofs for our AVSS considering SAVSS-Rec-Public as recon-
struction phase protocol.

Lemma 8.36 (AVSS-Termination) Protocol SAVSS satisfies termination prop-
erty of Definition 8.2.

Proof: Termination 1 and Termination 2 property follows from Lemma
8.30, Lemma 8.32 and Lemma 8.34. Termination 3 property is proved as fol-
lows: By Termination 3 and Correctness 1 of our AWSS scheme (see Lemma
8.7 and Lemma 8.9), AWSS-Sharei initiated by an honest Pi in V CORE during
Re-commitment, will reconstruct fi(x) in its reconstruction phase, except with
probability at most ε′ (In SAVSS, the AWSS schemes were executed with error
probability ε′ ≈ ε

n
). But AWSS-Sharei initiated by a corrupted Pi in V CORE,

may lead to the reconstruction of NULL in its reconstruction phase. Since
|V CORE| = 2t + 1, for at least t + 1 honest parties in V CORE, reconstruc-
tion of fi(x)’s will be successful, except with probability (t + 1)ε′ ≈ ε. This is
enough to reconstruct the secret s. Hence if all honest parties terminate SAVSS-
Share and every (honest) party starts SAVSS-Rec-Private, then an honest Pα will
eventually terminate SAVSS-Rec-Private with probability at least (1− ε). 2

Lemma 8.37 (AVSS-Secrecy) Protocol SAVSS satisfies secrecy property of Def-
inition 8.2.

Proof: We have to consider the case when D is honest. Without loss of gener-
ality, assume that P1, . . . , Pt are the parties under the control of At. So through-
out SAVSS-Share, At will know f1(x), . . . , ft(x), g1(y), . . . , gt(y) and t points on
ft+1(x), . . . , fn(x). Moreover, honest parties only exchange common values on
their row and column polynomials and by the secrecy property of AWSS-Share,
these values will be unknown to At. Hence by the property of bivariate poly-
nomial of degree-(t, t) [46], At will lack one more point to uniquely interpolate
F (x, y). Hence s = F (0, 0) will be information theoretically secure. 2

Lemma 8.38 (AVSS-Correctness) Protocol SAVSS satisfies correctness prop-
erty of Definition 8.2.

Proof: By Lemma 8.35, there is a unique degree-(t, t) bivariate polynomial
F (x, y) such that every Pi ∈ V CORE has re-committed fi(x) = F (x, i). More-
over, if D is honest then F (x, y) = F (x, y). Now by Lemma 8.9, in AWSS-Rec-
Privatei, except with probability ε′ the following will happen:

1. For every honest Pi ∈ V CORE, fi(x) will be reconstructed;

2. For every corrupted Pi ∈ V CORE, fi(x) or NULL will be reconstructed.

As |V CORE| = 2t+1, for at least t+1 parties Pi’s in V CORE, fi(x) will be
reconstructed with probability at least (1−(t+1)ε′) ≈ ε. Using those polynomials
F (x, y) and s = F (0, 0) will be reconstructed with probability 1 − ε. Moreover,
s = s = F (0, 0) if D is honest. 2

Theorem 8.39 Protocol SAVSS consisting of (SAVSS-Share, SAVSS-Rec-Private,
SAVSS-Rec-Public) constitutes a valid strong statistical AVSS scheme.

Proof: The proof follows from Lemma 8.36, Lemma 8.37 and Lemma 8.38. 2

206

Remark 8.40 (D’s commitment in SAVSS-Share) We say that D has com-
mitted secret s ∈ F in SAVSS-Share if there is a degree-t univariate polynomial,
f(x), such that f(0) = s and every honest Pi in V CORE receives f(i) from D
and commits to f(i) using AWSS-Share. In protocol SAVSS-Share, f(x) = f0(x) =
F (x, 0), where F (x, y) is D’s committed bivariate polynomial. When D is honest,
F (x, y) = F (x, y).

Notation 8.41 (Notation for Using SAVSS-Share and SAVSS-Rec-Private)
Later we will invoke SAVSS-Share as SAVSS-Share(D,P , f(x), ε) to mean that D
commits f(x) in SAVSS-Share. Essentially here D is asked to choose bivariate
polynomial F (x, y) of degree-(t, t) such that F (x, 0) = f(x) holds. Similarly,
SAVSS-Rec-Private will be invoked as SAVSS-Rec-Private(D,P , f(x), Pα, ε) to en-
able Pα-private-reconstruction of f(x).

8.5.2 Deciding The Choice of AWSS Protocol

For our AMPC protocol presented in Chapter 10, we require a strong statistical
AVSS with Pα-private-reconstruction. We now need to examine which AWSS will
fit better in this case in terms of communication complexity. For this we now
analyze the communication complexity of our SAVSS protocol by substituting
AWSS-I and AWSS-II.

Communication complexity of SAVSS using AWSS-I as a Black box:
Protocol SAVSS-Share incurs a private communication of O(n4(log 1

ε
)2) bits and

A-cast of O(n3 log n) bits (as it requires O(n) executions of AWSS-Share and
AWSS-Rec-Private). Protocol SAVSS-Rec-Private incurs private communication of
O(n4(log 1

ε
)2) bits (as it requires O(n) executions of AWSS-Rec-Private). Pro-

tocol SAVSS-Rec-Public incurs A-cast communication of O(n4(log 1
ε
)2) bits (as it

requires O(n) executions of AWSS-Rec-Public).

Communication complexity of SAVSS using AWSS-II as a Black box:
Protocol SAVSS-Share incurs a private communication of O(n4 log 1

ε
) bits and A-

cast of O(n4 log 1
ε
) bits. Protocol SAVSS-Rec-Private incurs private communica-

tion of O(n4 log 1
ε
) bits. Protocol SAVSS-Rec-Public incurs A-cast communication

of O(n4 log 1
ε
) bits.

So if we consider SAVSS with Pα-private-reconstruction i.e (SAVSS-Share,SAVSS-
Rec-Private) then the total communication is better when AWSS-I is used as
black box (which is private communication of O(n4(log 1

ε
)2) bits and A-cast of

O(n3 log n) bits). This is because for A-casting a single bit requires O(n2) bits
of private communication [29]. So communication complexity of SAVSS using
AWSS-II will be O(n6 log 1

ε
) bits of private communication. So we will consider

AWSS-I as a black box for SAVSS and state the communication complexity of
SAVSS in the following theorem. Before that we fix the field F over which SAVSS
should work to bound the error probability by ε.

To bound the error probability by ε, the computation in SAVSS is performed
over a field F = GF (2κ), where κ has to be determined using the relation ε ≥
n4κ2−κ. This is derived from the fact that in SAVSS, AWSS-I is invoked with ε

n
error probability and as mentioned in subsection 8.3.3, ε ≥ n3κ2−κ should hold

207

to bound error probability of AWSS-I by ε. So here each element from the field
is represented by κ = log |F| = O(log 1

ε
) bits.

Theorem 8.42 (Communication Complexity of SAVSS) Using AWSS-I as
building block, the communication complexity of SAVSS becomes as follows:

• Protocol SAVSS-Share incurs a private communication of O(n4(log 1
ε
)2) bits

and A-cast of O(n3 log n) bits.

• Protocol SAVSS-Rec-Private incurs a private communication of O(n4(log 1
ε
)2)

bits.

Proof: The proof follows from Lemma 8.15 and the fact that SAVSS-Share
invokes Θ(n) instances of AWSS-Share and AWSS-Rec-Private, each with an error
probability of ε′ = ε

n
. Moreover, WAVSS-Rec-Private invokes Θ(n) instances of

AWSS-Rec-Private. 2

8.5.3 Our Strong Statistical AVSS Scheme for Sharing Multiple Se-
crets

We now present a strong statistical AVSS scheme SAVSS-MS, consisting of proto-
cols (SAVSS-MS-Share, SAVSS-MS-Rec-Private,SAVSS-MS-Rec-Public). Protocol
SAVSS-MS-Share allows D to share a secret S = (s1, . . . , s`), consisting of ` > 1
elements from F. While using ` invocations of SAVSS-Share, one for each sl ∈ S,
D can share S with a private communication of O((`n4 log 1

ε
) log 1

ε
) bits and A-

cast of O(`n3 log n) bits, protocol SAVSS-MS-Share achieves the same task with a
private communication of O((`n3 + n4 log 1

ε
) log 1

ε
) bits and A-cast of O(n3 log n)

(independent of `) bits. This shows that executing a single instance of SAVSS-MS
dealing with multiple secrets concurrently is advantageous over executing multiple
instances of SAVSS dealing with single secret.

The structure of SAVSS-MS-Share is divided into same three phases as in
SAVSS-Share. The corresponding protocols are Commitment-MS, Verification-MS
and Re-commitment-MS. They are simple extension of the corresponding protocols
in SAVSS-Share and are presented in Fig. 8.13, Fig. 8.14 and Fig. 8.15.

Now protocol SAVSS-MS-Share(D,P , S, ε) consists of the code presented in
Commitment-MS(D,P , S, ε), Verification-MS(D,P , S, ε) and Re-commitment-MS(D,
P , S, ε) in this order. Protocol SAVSS-MS-Rec-Private(D,P , S, Pα, ε) and SAVSS-
MS-Rec-Public(D,P , S, ε) are very straight forward extension of SAVSS-Rec-Private
and SAVSS-Rec-Public. The protocol SAVSS-MS is presented in Fig. 8.16. The
proofs for the properties of the protocols dealing with multiple secrets will be
similar to the proofs of the protocols dealing with single secret.

Theorem 8.43 Protocol AVSS-MS consisting of (SAVSS-MS-Share, SAVSS-MS-
Rec-Private,SAVSS-MS-Rec-Public) constitutes a valid strong statistical AVSS scheme
for ` ≥ 1 secrets.

Remark 8.44 (D’s commitment in SAVSS-MS-Share) We say that D has
committed secret S ∈ F` in SAVSS-MS-Share if there are ` degree-t univariate poly-
nomials, f 1(x), . . . , f `(x), such that f l(0) = sl for l = 1, . . . , ` and every honest Pi

in V CORE receives (f 1(i), . . . , f `(i)) from D and commits to (f 1(i), . . . , f `(i))

using AWSS-MS-Share. In protocol SAVSS-MS-Share, f l(x) = f l
0(x) = F l(x, 0)

for every l = 1, . . . , `, where F 1(x, y), . . . , F `(x, y) are D’s committed bivariate

polynomial. When D is honest, F l(x, y) = F l(x, y) for l = 1, . . . , `.

208

Figure 8.13: Code for Commitment by D Phase for ` ≥ 1 secrets

Code Commitment-MS(D,P, S, ε)

i. Distribution by D: Code for D — Only D executes this code

1. Select ` random degree-(t, t) bivariate polynomials
F 1(x, y), . . . , F `(x, y) such that F l(0, 0) = sl for l = 1, . . . , `.

2. Send f l
i (x) = F l(x, i) and gl

i(y) = F l(i, y) for l = 1, . . . , ` to Pi, for
i = 1, . . . , n.

3. For i = 1, . . . , n, initiate AWSS-MS-Share(D,P, (f1
i (x), . . . , f `

i (x)), ε′)
(see Notation 8.14 for the syntax) for sharing (f1

i (x), . . . , f `
i (x)), where

ε′ = ε
n .

ii. Code for Pi: – Every party in P, including D, executes this code

1. Wait to receive degree-t polynomials f l
i (x) and gl

i(y) for l = 1, . . . , `
from D.

2. Participate in AWSS-MS-Share(D,P, (f1
j (x), . . . , f `

j (x)), ε′) by executing
steps in [Verification: Code for Pi] (of AWSS-MS-Share) for all j =
1, . . . , n.

3. After the completion of step 1 of [Verification: Code for Pi] for all
the n invocations of AWSS-MS-Share, check whether gl

i(j) = f l
j(i) holds

for all j = 1, . . . , n and l = 1, . . . , `, where f l
j(i) is obtained from the

execution of AWSS-MS-Share(D,P, (f1
j (x), . . . , f `

j (x)), ε′). If yes then
A-cast Matched-Column.

Rest of the steps are same as in Commitment.

Notation 8.45 (Notation for SAVSS-MS-Share and SAVSS-MS-Rec-Private)
Later we will invoke SAVSS-MS-Share as SAVSS-MS-Share (D,P , (f 1(x), . . . , f `(x)), ε)
to mean that D commits f 1(x), . . . , f `(x) in SAVSS-MS-Share. Essentially here
D is asked to choose bivariate polynomials F 1(x, y), . . . , F `(x, y), each of degree-
(t, t) such that F l(x, 0) = f l(x) holds for l = 1, . . . , `. Similarly, SAVSS-MS-Rec-
Private will be invoked as SAVSS-MS-Rec-Private(D,P , (f 1(x), . . . , f `(x)), Pα, ε)
to enable Pα-private-reconstruction of (f 1(x), . . . , f `(x)).

8.5.4 Deciding The Choice of AWSS Protocol

For our AMPC protocol presented in Chapter 10, we require a strong statisti-
cal AVSS with Pα-private-reconstruction. We now examine which AWSS will fit
better in this case in terms of communication complexity. For this we now an-
alyze the communication complexity of our SAVSS-MS protocol by substituting
AWSS-MS-I and AWSS-MS-II.

Communication complexity of SAVSS-MS using AWSS-MS-I as a Black
box: Protocol SAVSS-MS-Share incurs a private communication of O((`n3 +

209

Figure 8.14: Code for Verification of D’s Commitment Phase for ` ≥ 1 secrets

Code Verification-MS(D,P, S, ε)

i. Pj-Weak-Private-Reconstruction of (f1
j (x), . . . , f `

j (x)) for j = 1, . . . , n:
Code for Pi — Every party in P executes this code.

1. After agreeing on WCORE and corresponding OKPj ’s, par-
ticipate in AWSS-MS-Rec-Private(D,P, (f1

j (x), . . . , f `
j (x)), Pj , ε

′),
for j = 1, . . . , n, to enable Pj-weak-private-reconstruction of
(f1

j (x), . . . , f `
j (x)). Notice that same WCORE is used in each

AWSS-SS-Rec-Private(D,P, fj(x), Pj , ε
′), for j = 1, . . . , n

2. At the completion of AWSS-MS-Rec-Private(D,P, (f1
i (x), . . . , f `

i (x)), Pi, ε
′),

obtain either degree-t polynomials f1
i (x), . . . , f `

i (x) or NULL.

3. If f l
i (x) = f l

i (x) for all l = 1, . . . , `, then A-cast Matched-Row.

Rest of the steps are same as in Verification.

Figure 8.15: Code for ”Re-commitment by Individual Parties” Phase for ` ≥ 1 secrets

Code Re-commitment-MS(D,P, S, ε)

i. Code for Pi: — Every party executes this code

1. If you have A-casted Matched-Row in Verification-MS then ini-
tiate AWSS-MS-Share(Pi,P, (f1

i (x), . . . , f `
i (x), ε′) to re-commit

(f1
i (x), . . . , f `

i (x)), where ε′ = ε
n .

2. For each j, such that Pj has A-casted Matched-Row in Verification-MS,
participate in AWSS-MS-Share(Pj ,P, (f1

j (x), . . . , f `
j (x), ε′) by executing

steps in [Verification: Code for Pi] (of AWSS-MS-Share) in the fol-
lowing way:
After the completion of step 1 of [Verification: Code for
Pi], check whether gl

i(j) = f l
j(i) for l = 1, . . . , ` holds,

where (f1
j (i), . . . , f `

j (i)) are obtained from the execution of
AWSS-SS-Share(Pj ,P, (f1

j (x), . . . , f `
j (x), ε′) and (g1

i (y), . . . , g`
i (y))

was obtained from D in code Commitment-MS. If yes then participate
in the next steps in [Verification: Code for Pi] corresponding to
AWSS-MS-Share(Pj ,P, (f1

j (x), . . . , f `
j (x), ε′).

Rest of the steps are same as in Re-commitment except
that at every place AWSS-Share(Pi,P, fi(x), ε′) is replaced by
AWSS-MS-Share(Pi,P, (f l

i (x), . . . , f `
i (x)), ε′).

210

Figure 8.16: Our Strong Statistical AVSS for Sharing ` ≥ 1 Secrets with n = 3t + 1

Protocol SAVSS-MS(D,P, S, ε)

SAVSS-MS-Share(D,P, S, ε)

1. Replicate Code Commitment-MS(D,P, S, ε).

2. Replicate Code Verification-MS(D,P, S, ε).

3. replicate Code Re-commitment-MS(D,P, S, ε).

SAVSS-MS-Rec-Private(D,P, S, Pα, ε): Pα-private-reconstruction of S:

Pα-weak-private-reconstruction of (f1
j (x), . . . , f `

j (x)) for every Pj ∈
V CORE: Code for Pi

1. Participate in AWSS-MS-Rec-Private(Pj ,P, (f1
j (x), . . . , f `

j (x)), Pα, ε′)
for every Pj ∈ V CORE, where ε′ = ε

n .

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either (f1
j (x), . . . , f `

j (x)) or NULL
from Pα-weak-private-reconstruction. Add party Pj ∈ V CORE to
REC if non-NULL output is obtained.

2. Wait until |REC| = t + 1. Construct bivariate polynomial
F 1(x, y), . . . , F `(x, y) such that F l(x, j) = f l

j(x) for every Pj ∈ REC

and every l = 1, . . . , `. Compute sl = F l(0, 0) for every l = 1, . . . , ` and
terminate SAVSS-MS-Rec-Private.

SAVSS-Rec-Public(D,P, S, ε): Public reconstruction of S:

Public reconstruction of (f1
j (x), . . . , f `

j (x)) for every Pj ∈ V CORE: Code
for Pi

1. Participate in AWSS-MS-Rec-Public(Pj ,P, (f1
j (x), . . . , f `

j (x)), ε′)
for every Pj ∈ V CORE. We denote
AWSS-Rec-Public(Pj ,P, (f1

j (x), . . . , f `
j (x)), ε′) by AWSS-Rec-Publicj

Local Computation: Code for Pi

Same code as presented above for Pα in SAVSS-MS-Rec-Private.

n4 log 1
ε
) log 1

ε
) bits and A-cast of O(n3 log n) bits (as it requires O(n) executions

of AWSS-MS-Share and AWSS-MS-Rec-Private). Protocol SAVSS-MS-Rec-Private
incurs private communication of O((`n3 +n4 log 1

ε
) log 1

ε
) bits (as it requires O(n)

executions of AWSS-MS-Rec-Private). Protocol SAVSS-MS-Rec-Public incurs A-
cast communication ofO((`n3+n4 log 1

ε
) log 1

ε
) bits (as it requiresO(n) executions

of AWSS-MS-Rec-Public).

Communication complexity of SAVSS-MS using AWSS-MS-II as a Black

211

box: Protocol SAVSS-MS-Share incurs a private communication of O((`n3 +
n4) log 1

ε
) bits and A-cast of O((`n3 + n4) log 1

ε
) bits. Protocol SAVSS-MS-Rec-

Private incurs private communication of O((`n3+n4) log 1
ε
) bits. Protocol SAVSS-

MS-Rec-Public incurs A-cast communication of O((`n3 + n4) log 1
ε
) bits.

So if we consider SAVSS-MS with Pα-private-reconstruction i.e (SAVSS-MS-
Share,SAVSS-MS-Rec-Private) then the total communication is better when AWSS-
MS-I is used as black box (which is private communication ofO((`n3+n4 log 1

ε
) log 1

ε
)

bits and A-cast of O(n3 log n) bits). Now notice that the A-cast communication
is independent of ` in this case (which is required for our AMPC in order to
maintain its efficiency by certain bound). So we will consider AWSS-MS-I as a
black box for SAVSS-MS and state the communication complexity of SAVSS-MS
in the following theorem. Before that we fix the field F over which SAVSS-MS
should work to bound the error probability by ε.

We now fix the field F over which SAVSS-MS should work to bound the error
probability by ε. To bound the error probability by ε, the computation in SAVSS-
MS is performed over a field F = GF (2κ), where κ has to be determined using
the relation ε ≥ n4κ2−κ. This is derived from the fact that in SAVSS-MS, AWSS-
MS-I is invoked with ε

n
error probability and as mentioned in subsection 8.3.4,

ε ≥ n3κ2−κ should hold to bound error probability of AWSS-MS-I by ε. So here
each element from the field is represented by κ = log |F| = O(log 1

ε
) bits.

Theorem 8.46 (Communication Complexity of SAVSS-MS) Using AWSS-
MS-I as building block, the communication complexity of SAVSS-MS becomes as
follows:

• Protocol SAVSS-MS-Share incurs a private communication of O((`n3+n4 log 1
ε
)

log 1
ε
) bits and A-cast of O(n3 log n) bits.

• Protocol SAVSS-MS-Rec-Private private communication of O((`n3+n4 log 1
ε
)

log 1
ε
) bits.

Proof: The proof follows from Lemma 8.17 and the fact that SAVSS-MS-Share
invokes Θ(n) instances of AWSS-MS-Share and AWSS-MS-Rec-Private, each ex-
ecuted with an error probability of ε′ = ε

n
. Moreover, SAVSS-MS-Rec-Private

invokes Θ(n) instances of AWSS-MS-Rec-Private. 2

8.6 Conclusion and Open Questions

In this chapter, we presented two novel statistical AVSS protocols with optimal
resilience; i.e. with n = 3t + 1; one protocol for weak statistical AVSS and
the other for strong statistical AVSS. The weak statistical AVSS with its public
reconstruction will be used in our ABA protocol (in Chapter 9). On the other
hand, the strong statistical AVSS with its private reconstruction will be used in
our AMPC protocol (in Chapter 10). Our strong statistical AVSS protocol enjoys
the following properties:

1. The strong statistical AVSS makes sure that the shared value(s) always
belong to F even when D is corrupted.

2. The A-cast communication of our strong AVSS is independent of the number
of secrets i.e. `;

212

But as evident from the discussions, our strong statistical AVSS is much more
complicated than weak statistical AVSS. Nevertheless, both the AVSS protocols
show significant improvement over the only known statistical AVSS of [39] in
terms of the communication complexity. The protocols are also based on com-
pletely disjoint techniques. We conclude this chapter with the following open
question:

Open Problem 13 Can we design weak and strong statistical AVSS with lesser
communication complexity than that is reported in this chapter?

More generally, we may ask the following question.

Open Problem 14 What is the lower bound on the communication complexity
of statistical AVSS protocols with optimal resilience?

8.7 Appendix: Analysis of the Communication Complex-
ity of the AVSS Scheme of [39]

The communication complexity analysis of the AVSS protocol of [39] was not
reported anywhere so far. So we have carried out the same at this juncture. To do
so, we have considered the detailed description of the AVSS protocol of [39] given
in Canetti’s Thesis [35]. In [35], the AVSS is designed with public reconstruction.
To bound the error probability by ε, all the communication and computation
in the protocol of [39] is done over a finite field F, where |F| = GF (2κ) and
ε = 2−Ω(κ). Thus each field element can be represented by κ = O(log 1

ε
) bits.

To begin with, in the AICP protocol of [39], D gives O(κ) field elements to
INT and O(κ) field elements to verifier R. Though the AICP protocol of [35] is
presented with a single verifier, it is executed with n verifiers in protocol A-RS. In
order to execute AICP with n verifiers, D gives O(nκ) field elements to INT and
O(κ) field elements to each of the n verifiers. So the communication complexity
of AICP of [35] when executed with n verifiers is O(nκ) field elements and hence
O(nκ2) bits.

Now by incorporating their AICP protocol with n verifiers in Shamir secret
sharing [140], the authors in [39] designed an asynchronous primitive called A-RS,
which consists of two sub-protocols, namely A-RS-Share and A-RS-Rec. In the A-
RS-Share protocol, D generates n shares (Shamir shares) of a secret s and for
each of the n shares, D executes an instance of AICP protocol with n verifiers. So
the A-RS-Share protocol of [39] involves a private communication of O(n2κ2) bits.
In addition to this, the A-RS-Share protocol also involves an A-cast of O(log(n))
bits. In the A-RS-Rec protocol, the IC signatures given by D in A-RS-Share are
revealed, which involves a private communication of O(n2κ2) bits. In addition,
the A-RS-Rec protocol involves A-cast of O(n2 log(n)) bits.

Proceeding further, by incorporating their A-RS protocol, the authors in [39]
designed an AWSS scheme. The AWSS protocol consists of two sub-protocols,
namely AWSS-Share and AWSS-Rec. In the AWSS-Share protocol, D generates
n shares (Shamir shares [140]) of the secret and instantiate n instances of the
AICP protocol for each of the n shares. Now each individual party A-RS-Shares
all the values that it has received in the n instances of the AICP protocol. Since
each individual party receives a total of O(nκ) field elements in the n instances
of AICP, the above step incurs a private communication of O(n4κ3) bits and

213

A-cast of O(n2κ log(n)) bits. In the AWSS-Rec protocol, each party Pi tries to
reconstruct the values which are A-RS-Shared by each party Pj in a set Ei. Here
Ei is a set which is defined in the AWSS-Share protocol. In the worst case, the
size of each Ei is O(n). So in the worst case, the AWSS-Rec protocol privately
communicates O(n5κ3) bits and A-casts O(n5κ log(n)) bits.

The authors in [39] then further extended their AWSS-Share protocol to Two&
Sum AWSS-Share protocol, where each party Pi has to A-RS-Share O(nκ2) field el-
ements. So the communication complexity of Two& Sum AWSS-Share is O(n4κ4)
bits and A-cast of O(n2κ2 log(n)) bits.

Finally using their Two&Sum AWSS-Share and AWSS-Rec protocol, the au-
thors in [39] have deigned their AVSS scheme, which consists of two sub-protocols,
namely AVSS-Share and AVSS-Rec. In the AVSS-Share protocol, the most com-
munication expensive step is the one where each party has to AWSS-Rec O(n3κ)
field elements. So in total, the AVSS-Share protocol of [39] involves a communica-
tion complexity of O(n9κ4) bits and A-cast of O(n9κ2 log(n)) bits. The AVSS-Rec
protocol involves n instances of AWSS-Rec, resulting in a communication com-
plexity of O(n6κ3) bits and A-cast of O(n6κ log(n)) bits. As mentioned earlier,
κ = O(log 1

ε
). Replacing the value of κ, we obtain the following:

• AVSS-Share protocol of [39] requires a communication complexity of
O(n9(log 1

ε
)4) bits and A-cast of O(n9(log 1

ε
)2 log(n)) bits.

• AVSS-Rec protocol requires a communication complexity of O(n6(log 1
ε
)3)

bits and A-cast of O(n6(log 1
ε
) log(n)) bits.

214

Chapter 9

Efficient ABA with Optimal
Resilience for Short Message

An important variant of BA is Asynchronous Byzantine Agreement (ABA). An
ABA protocol is carried out among n parties in a completely asynchronous net-
work, where every two parties are directly connected by a secure channel and t
out of the n parties are under the control of a computationally unbounded Byzan-
tine (active) adversary At. The communication complexity of ABA is one of its
most important complexity measures. In this chapter, we present an efficient
ABA protocol whose communication complexity is significantly better than the
communication complexity of the existing ABA protocols in the literature. Our
protocol is optimally resilient and thus requires n = 3t+1 parties for its execution.

Specifically, the amortized communication complexity of our ABA protocol is
O(Cn4 log 1

ε
) bits for attaining agreement on a single bit, where ε denotes the

probability of non-termination and C denotes the expected running time of our
protocol. Conditioned on the event that our ABA protocol terminates, it does
so in constant expected time; i.e., C = O(1). We compare our result with most
recent optimally resilient, ABA protocols proposed in [39] and [1] and show that
our protocol gains by a factor of O(n7(log 1

ε
)3) over the ABA of [39] and by a

factor of O(n4 log n

log 1
ε

) over the ABA of [1].

As a key tool, we use the weak statistical AVSS designed in Chapter 8. The
common coin primitive is one of the most important building blocks for the
construction of ABA protocol. The only known efficient (i.e polynomial commu-
nication complexity) common coin protocol [67, 35] uses AVSS sharing a single
secret as a black-box. Unfortunately, the known common coin protocol does
not achieve its goal when multiple invocations of AVSS sharing single secret are
replaced by single invocation of AVSS sharing multiple secrets. Hence in this
chapter, we twist the existing common coin protocol to make it compatible with
our new AVSS that can share multiple secrets concurrently. As a byproduct,
our new common coin protocol is much more communication efficient than the
existing common coin protocol.

9.1 Introduction

The problem of Byzantine Agreement (BA) was introduced in [132] and since
then it has emerged as the most fundamental problem in distributed comput-
ing. It has been used as building block for several important secure distributed

215

computing tasks such as MPC [151, 95, 20, 138, 48, 98, 12, 111, 52, 14], VSS
[43, 138, 91, 73, 109] etc. The BA problem has been investigated extensively in
various models, characterized by the synchrony of the network, privacy of the
channels, computational power of the faulty parties and many other parameters
[68, 18, 29, 39, 35, 118, 72, 110, 2, 24, 25, 26, 30, 31, 32, 44, 56, 54, 57, 59, 60,
61, 74, 70, 71, 65, 67, 78, 86, 89, 114, 117, 134, 136, 150, 148, 149]. An interest-
ing and practically motivated variant of BA is ABA tolerating a computationally
unbounded malicious adversary. This problem has got relatively less attention in
comparison to the BA problem in synchronous network (see [118, 72] and their
references). Since asynchronous networks model the real life networks like In-
ternet more appropriately than synchronous networks, the fundamental problem
like BA is worthy of deep investigation over asynchronous networks.

9.1.1 The Network and Adversary Model

This is same as described in section 8.1.1. Recall that the set of parties is denoted
by P = {P1, . . . , Pn} and t out of the n parties can be under the influence of a
computationally unbounded Byzantine (active) adversary, denoted as At. We
emphasize that we use n = 3t + 1 in this chapter.

9.1.2 Definitions

We now formally define ABA. An ABA protocol allows the set of n parties in P ,
each having a private input binary value, to agree on a consensus value, despite
the presence of At.

Definition 9.1 (ABA [39]) : Let Π be an asynchronous protocol executed among
the set of parties P, with each party having a private binary input. We say that Π
is an ABA protocol tolerating At if the following hold, for every possible behavior
of At and every possible input:

1. Termination: All honest parties eventually terminate the protocol.

2. Correctness: All honest parties who have terminated the protocol hold
identical outputs. Furthermore, if all honest parties had the same input, say
ρ, then all honest parties output ρ.

Remark 9.2 The Termination property of A-cast (described in Chapter 7) is
weaker than that of ABA. In A-cast, it is not required that the honest parties
terminate the protocol if S is faulty; but in ABA, honest parties are required to
terminate the protocol always.

We now define (ε, δ)-ABA protocol, where both ε and δ are negligibly small
values (Recall the discussion presented in the beginning of section 1.5 for the
meaning of negligible) and are called as error probabilities of the ABA protocol.
Moreover, we have n = O(log 1

ε
) and n = O(log 1

δ
) (follows from the definition of

negligible, i.e ε ≤ 1
2αn and δ ≤ 1

2αn as mentioned in section 1.5).

Definition 9.3 ((ε, δ)-ABA) : An ABA protocol Π is called (ε, δ)-ABA if

1. Π satisfies Termination described in Definition 9.1, except with an error
probability of ε and

216

2. Conditioned on the event that every honest party terminates Π, protocol Π
satisfies Correctness property described in Definition 9.1, except with error
probability δ.

9.1.3 Relevant History of ABA

From [132, 118], any ABA protocol tolerating At is possible iff n ≥ 3t + 1. Thus
any ABA protocol designed with n = 3t + 1 is therefore called as optimally
resilient. By the seminal result of [71], any ABA protocol, irrespective of the
value of n, must have some non-terminating runs/executions, where some honest
party(ies) may not output any value and thus may not terminate at all. So
in any (ε, δ)-ABA protocol with non-zero ε, the probability of the occurrence
of a non-terminating execution is at most ε (these type of protocols are called
(1− ε)-terminating [39, 35]). On the other hand in any (0, δ)-ABA protocol, the
probability of occurrence of a non-terminating execution is asymptotically zero
(these type of protocols are called almost-surely terminating, a term coined by
Abraham et al. in [1]).

We now describe the chain of results that has appeared in the literature of
ABA. Rabin [136] and Ben-Or [18] presented ABA protocols with n ≥ 8t+1 and
n ≥ 5t + 1 respectively. Since, both these protocols were not optimally resilient,
researchers have tried to design ABA protocol with optimal resilience or close
to optimal resilience. In this direction the first attempt is by Bracha [29] who
reported an optimally resilient (0, 0)-ABA protocol. However, the protocol of
Bracha [29] requires exponential (Θ(2n)) expected time and exponential (Θ(2n))
communication complexity. Subsequently, Feldman and Micali [66] presented a
(0, 0)-ABA protocol which runs in constant expected time and requires polyno-
mial communication complexity (they actually extend their BA protocol in syn-
chronous settings [66] to asynchronous settings). However, the ABA protocol of
Feldman and Micali [66] is not optimally resilient and requires 4t+1 parties. So it
remained an open question whether there exists an optimally resilient ABA with
polynomial running time and communication complexity. Canetti and Rabin [39]
answered this question in affirmative and provided an (ε, 0)-ABA protocol that
offers optimal resilience, constant expected running time and polynomial com-
munication complexity. But it is to be noted that so far in the literature there
was no optimally resilient (0, 0)-ABA protocol with polynomial communication
complexity. This long standing open question was resolved by Abraham et al.
[1]. However, the protocol of [1] requires polynomial running time (as opposed
to constant expected running time achieved by the ABA protocols of [66, 39]).
Hence indeed there is an interesting open problem to come up with an optimally
resilient (0, 0)-ABA with constant expected running time and polynomial com-
munication complexity. In Table 9.1, we summarize the best known existing ABA
protocols.

Over a period of time, the techniques and the design approaches of ABA has
evolved spectacularly. In his seminal paper [136], Rabin reduced the problem of
ABA to that of a ’common coin’. Specifically, Rabin designed an ABA assuming
that the parties have access to a ’common coin’ (namely, a common source of ran-
domness). However Rabin did not provide any implementation of common coin.
In brief, common coin protocol allows the honest parties to output a common
random bit with some probability which we may call as success probability of
that common coin protocol. The first ever implementation of common coin was

217

Table 9.1: Summary of Best Known Existing ABA Protocols

Ref. Type Resilience Communication Expected Running
Complexity (CC) in bits Time (ERT)

[29] (0, 0)-ABA t < n/3 O(2n) C = O(2n)

[66, 67] (0, 0)-ABA t < n/4 Privatea: O(n4κ log |F|)b C = O(1)
A-castc: O(n4κ log |F|)

[39, 35] (ε, 0)-ABA t < n/3 Private: O(Cn11(log 1
ε
)4) C = O(1)

A-cast: O(Cn11(log 1
ε
)2 log n)

[1] (0, 0)-ABA t < n/3 Private: O(Cn6 log |F|) C = O(n2)
A-cast: O(Cn6 log |F|)

a Communication over private channels between pair of parties in P.
b Here F is the finite field over which the ABA protocol of [66, 67] works. It is enough

to have |F| ≥ n and therefore log |F| can be replaced by log n. In fact in the remaining
table, F bears the same meaning. Also here κ is the error parameter of the protocols.

c Total number of bits that needs to be A-casted.

done by Bracha [29]. However, the common coin protocol of [29] is very straight
forward. Essentially in Bracha’s common coin protocol every party tosses a coin
locally and then they hope that they all got the same value; clearly this happens
with probability which is exponentially small in the number of parties, namely
Θ(2−n) (so the success probability of Bracha’s common coin is Θ(2−n)). Con-
sequently the common coin of Bracha [29] while incorporated to design ABA
causes the ABA of [29] to run for exponential expected time and also calls for
exponential communication complexity. Bracha’s design approach of ABA using
common coin protocol provided an insightful implication which actually paved
the future path for designing efficient ABA protocol with constant expected run-
ning time: The expected running time of ABA is inversely proportional to the
success probability of common coin protocol. The above finding shows a natural
direction towards designing efficient common coin protocol with constant success
probability in order to construct an efficient ABA with constant expected running
time (following the design approach of Bracha).

That is what is exactly achieved by Feldman and Micali [66, 67], who are the
first to come up with a common coin protocol that has constant success prob-
ability in contrast to the exponential success probability of Bracha [29]. Using
the new common coin, the ABA of [66, 67] follows the same design approach of
Bracha and achieves constant expected running time and polynomial communi-
cation complexity. At the heart of the common coin protocol of [66] is an efficient
AVSS protocol. In fact, the essence of [66] is the reduction of the common coin
to that of implementing an AVSS protocol. Given an AVSS with n parties, the
common coin of [66] requires min (n, 3t + 1) parties for execution. In [67], Feld-
man et al. have designed an AVSS with n = 4t + 1 parties and using the AVSS,
they designed an ABA with 4t + 1 parties.

After that the researchers almost followed the same approach of reducing
the design of ABA to that of designing AVSS. To design an ABA with optimal
resilience i.e n = 3t+1, Canetti et al. [39] have designed an AVSS with n = 3t+1
for the first time in literature. As the AVSS had negligible error probability
in termination, the resultant ABA of [39] is of type (ε, 0) (in contrast to the
ABA of [29, 66] which are of type (0, 0)). Recently, Abraham et al. [1] have
reported a weaker variant of AVSS, named as shunning AVSS which was used to

218

design shunning common coin which is further used to design ABA protocol. The
shunning AVSS has no error probability in termination and thus the resultant
ABA of [1] is of type (0, 0). But the shunning AVSS satisfies all the properties
of AVSS only when all the parties including the corrupted ones behave according
to the protocol steps. On the other hand, when at least a single corrupted party
misbehaves, the shunning AVSS ensures at least one honest party will shun a
corrupted party from then onwards. Due to this property of shunning AVSS, the
ABA [1] protocol requires O(n2) expected running time (in contrast to constant
running time of the ABA protocol of [66, 39]). A more detailed discussion on the
ABA protocols of [39] and [1] is presented later.

9.1.4 The Motivation of Our Work

The communication complexity of BA protocol is one of its important param-
eters. In the literature, a lot of attention has peen paid to improve the com-
munication complexity of BA protocols in synchronous settings (see for example
[26, 44, 57, 134, 75]). Unfortunately, not too much attention has been paid to
design communication efficient ABA protocols with optimal resilience. Though
the communication complexity of the known optimally resilient ABA protocols
[39, 1] is polynomial in n and log 1

ε
, they involve fairly very high communication

complexity. Especially, though the AVSS (and hence ABA) protocol of [39] is
a seminal result, it is very much involved and complex in nature. In a real-life
distributed network, fast and communication efficient protocols find lot of ap-
plication. Naturally, designing optimally resilient, communication efficient, fast
ABA protocol which runs in constant expected time is an important and inter-
esting problem. Our result in this chapter marks a significant progress in this
direction. Above all our ABA protocol is reasonably simple.

9.1.5 Contribution of This Chapter

In this chapter, we present an optimally resilient, (ε, 0)-ABA protocol whose
amortized communication complexity for agreeing on a single bit is O(Cn4 log 1

ε
)

bits of private communication as well as A-cast, where C is the expected running
time of the protocol. Specifically, our ABA protocol requires private communica-
tion, as well as A-cast of O(Cn5 log 1

ε
) bits for reaching agreement on t+1 = Θ(n)

bits concurrently. Conditioned on the event that our ABA protocol terminates,
it does so in constant expected time; i.e., C = O(1).

We compare our ABA with the optimally resilient (ε, 0)-ABA protocol of [39]
which also has constant expected running time; i.e., C = O(1). The ABA of [39]
privately communicates O(Cn11(log 1

ε
)4) bits and A-casts O(Cn11(log 1

ε
)2 log n)

bits. So our ABA achieves a huge gain in communication complexity over the
ABA of [39], while keeping all other properties in place.

In another landmark work, Abraham et al. [1] proposed an optimally resilient
(0, 0)-ABA protocol which requires O(Cn6 log n) bits of private communication
as well as A-cast. But ABA protocol of Abraham et al. takes polynomial (C =
O(n2)) expected time to terminate. Our ABA enjoys the following merits over
the ABA of Abraham et al. [1]:

1. Our ABA is better in terms of communication complexity when (log 1
ε
) <

n4 log n.

219

2. Our ABA runs in constant expected time. However, we stress that our ABA
is of type (ε, 0) whereas ABA of [1] is of type (0, 0).

In Table 9.2, we compare and contrast our ABA protocol with the ABA
protocols of [39, 1].

Table 9.2: Comparison of Our ABA with Best Known Optimally Resilient ABA Pro-
tocols

Ref. Type Resilience Communication Expected Running
Complexity (CC) Time (ERT)

[39] (ε, 0) t < n
3 Private– O(Cn11(log 1

ε)
4) C = O(1)

A-cast– O(Cn11(log 1
ε)

2 log n)

[1] (0, 0) t < n
3 Private– O(Cn6 log n) C = O(n2)

A-cast– O(Cn6 log n)

This Chapter† (ε, 0) t < n
3 Private– O(Cn4(log 1

ε)) C = O(1)
A-cast– O(Cn4(log 1

ε))

† The communication complexity mentioned in the table is the amortized communica-
tion complexity of reaching agreement on a single bit message.

Our construction of ABA protocol employs the weak statistical AVSS scheme
with n = 3t + 1 presented in Chapter 8. Our AVSS shares multiple secrets
concurrently and brings forth several advantages of concurrently sharing multiple
secrets.

As discussed earlier in subsection 9.1.3, the common-coin protocol is a very
important building block of ABA protocol. Previously, AVSS sharing single se-
cret was used to design the only known common-coin protocol with polynomial
communication complexity [67, 35]. Informally, in the common coin protocol of
[67], each party Pi in P is asked to act as a dealer and share n random secrets
using AVSS. For this Pi invokes n parallel instances of AVSS as a dealer to share
n secrets in parallel. It is obvious that we can do better if Pi invokes single
instance of AVSS, which shares n secrets concurrently. However, our detailed
analysis of the existing common coin protocol shows that the above modification
does not lead to a correct solution for common coin protocol. Hence we bring
several new modifications to the existing common-coin protocol so that it can
use our new AVSS (that can share multiple secrets concurrently). As a result,
our new common coin protocol is more communication efficient than the existing
common coin protocol of [35, 39].

Our ABA protocol has error probability of ε in Termination. To bound the
error probability by ε, all our protocols work over a finite field F = GF (2κ), where
κ has to be determined using the relation ε ≥ 4n62−κ. Each field element can be
represented by κ = O(log 1

ε
) bits (this can be derived using n = O(log 1

ε
)). In

order to bound the error probability of our ABA protocol by some specific value
of ε, we find out the minimum value of κ that satisfies the relation between κ
and ε. The value for κ will consequently determine the field F over which the
protocol should work.

220

9.1.6 The Road-map

In section 9.2, we briefly discuss about the approaches used in the ABA protocols
of [39], [1] and this chapter. Then for the ease of presentation, we divide the
presentation of this chapter into two parts. In the first part presented in section
9.3, our focus is on a simple and clean presentation of an ABA for single bit. For
this we consider our statistical weak AVSS protocol for single secret presented in
Chapter 8. By incorporating this AVSS into the existing common coin protocol
[67, 35], we devise an ABA scheme which allows the parties to agree on a single
bit and requires private communication as well as A-cast of O(n6(log 1

ε
)) bits.

In the second part presented in section 9.4, we use our weak statistical AVSS
scheme for sharing multiple secrets concurrently. Considering this AVSS, we then
show how the existing common coin protocol of [67, 35] fails to achieve its goal, if
we replace multiple invocations of AVSS sharing single secret by single invocation
of our AVSS sharing multiple secrets. Subsequently we demonstrate how to
modify the common coin protocol of [67, 35] and present a new common coin
protocol that uses our AVSS sharing multiple secrets concurrently. Finally, using
this common coin protocol, we present our new ABA scheme whose amortized
communication cost of reaching agreement on a single bit is O(n4(log 1

ε
)) bits

of private as well as A-cast communication. We then conclude this chapter with
conclusion and open problems. Lastly, since the exact communication complexity
analysis of the ABA scheme of [39] was not done earlier, we carry out the same
in section 9.6 for the sake of completeness.

9.2 A Brief Discussion on the Approaches Used in the
ABA Protocols of [39, 1] and Current Chapter

We now briefly discuss the approach used in the optimally resilient ABA protocols
of [39], [1] and the current chapter.

Approach of the ABA of [39, 35]: The ABA protocol of Canetti et al. [39,
35] uses the reduction from AVSS to ABA. Hence they have first designed
an AVSS with n = 3t + 1. There are well known inherent difficulties in
designing AVSS with n = 3t+1 (see [39, 35]). To overcome these difficulties,
the authors in [39] used an approach to design their AVSS scheme which was
discussed in section 8.2 of Chapter 8. Just to recall, pictorially, AVSS scheme
of [39] is designed using the following route: ICP → A-RS → AWSS →
Two & Sum AWSS → AVSS. Since the AVSS scheme is designed on top of
so many sub-protocols, it becomes highly communication intensive as well
as very much involved. The exact communication complexity analysis of
the ABA scheme of [39] was not done earlier. For the sake of completeness,
we carry out the same in section 9.6.

Approach of the ABA of [1]: The ABA protocol of [1] used the same reduc-
tion from AVSS to ABA as in [39], except that the use of AVSS is replaced
by a variant of AVSS that the authors called shunning (asynchronous) VSS
(SVSS), where each party is guaranteed to terminate almost-surely. SVSS
is a slightly weaker notion of AVSS in the sense that if all the parties be-
have correctly, then SVSS satisfies all the properties of AVSS without any
error. Otherwise it does not satisfy the properties of AVSS but enables

221

some honest party to identify at least one corrupted party, whom the hon-
est party shuns from then onwards. The use of SVSS instead of AVSS in
generating common coin causes the ABA of [1] to run for O(n2) expected
time. The SVSS protocol requires private communication of O(n4 log(n))
bits and A-cast of O(n4 log(n)) bits.

Approach of the ABA of This chapter: Our ABA protocol also follows the
same reduction from AVSS to ABA as in [39]. In the course of designing
our ABA protocol, our first step is to design a communication efficient
AVSS protocol. Instead of following a fairly complex route taken by [39],
we follow a shorter and simpler route to design an AVSS scheme in Chapter
8: ICP → AWSS → AVSS. Beside this, we significantly improve each of
these building blocks by employing new design approaches. Also each of
the building blocks deals with multiple secrets concurrently and thus lead
to significant gain in communication complexity.

As mentioned earlier, the existing common coin protocol [67, 35] calls AVSS
dealing with single secret as a black box. Our detailed analysis of the exist-
ing common coin protocol shows that the common coin protocol does not
achieve its properties when the invocations of AVSS sharing single secret are
replaced by invocations of our AVSS sharing multiple secrets concurrently.
Hence, we have modified the existing common coin protocol so that it can
use our AVSS sharing multiple secrets as a building block. Together, this
lead to our efficient ABA protocol which we believe to be much simpler than
the ABA of [39].

9.3 Our ABA Protocol for Single Bit

In this section, we first design an ABA protocol for single bit using our weak
statistical AVSS protocol for single secret, presented in subsections 8.4.1 and
8.4.2 in Chapter 8. For this, we first recall the existing common coin protocol
with its AVSS instances replaced by our weak statistical AVSS protocol WAVSS
consisting of sub-protocols (WAVSS-Share,WAVSS-Rec-Public). Then we recall
and present the voting protocol from [35]. Finally, we recall the ABA protocol
from [35] that uses the common coin and voting protocol as building blocks.

9.3.1 Existing Common Coin Protocol Using Our AVSS Protocol

Here we first recall the definition of common coin and then recall the construction
of common coin protocol following the description of [35]. The common coin
protocol invokes many instances of AVSS scheme. In the following description
of our common coin protocol, we replace the AVSS scheme of [35] by our AVSS
scheme WAVSS. We start with the definition of common coin protocol.

Definition 9.4 (Common Coin [35]) Let π be an asynchronous protocol, where
each party has local random input and binary output. We say that π is a (1− ε)-
terminating, t-resilient common coin protocol if the following requirements hold
for every adversary At:

1. Termination: With probability at least (1 − ε), all honest parties termi-
nate.

222

2. Correctness: For every value σ ∈ {0, 1}, with probability at least 1
4

all
honest parties output σ.

The Intuition: The common coin protocol, referred as Common-Coin, consists
of two stages. In the first stage, each party acts as a dealer and shares n ran-
dom secrets, using n distinct instances of WAVSS-Share each with allowed error
probability of ε′ = ε

n2 . The ith secret shared by each party is actually associated
with party Pi. Once a party Pi terminates any t + 1 instances of WAVSS-Share
corresponding to the secrets associated with him, he A-casts the identity of the
dealers of these secrets. We say that these t + 1 secrets are attached to Pi and
later these t + 1 secrets will be used to compute a value that will be associated
with Pi.

Now in the second stage, after terminating the WAVSS-Share instances of all
the secrets attached to some Pi, party Pj is sure that a fixed (yet unknown)
value is attached to Pi. Once Pj is assured that values have been attached to
enough number of parties, he participates in WAVSS-Rec-Public instances of the
relevant secrets. This process of ensuring that there are enough parties that are
attached with values is the core idea of the protocol. Once all the relevant secrets
are reconstructed, each party locally computes his binary output based on the
reconstructed secrets, in a way described in the protocol presented in the sequel.
Protocol Common-Coin now appears in Fig. 9.1.

To bound the error probability by ε, the computation of Common-Coin is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n62−κ. This is derived from the fact that in Common-Coin, WAVSS is invoked
with ε

n2 error probability and as mentioned in subsection 8.4.2, ε ≥ n42−κ should
hold to bound error probability of WAVSS by ε. So here each element from the
field is represented by κ = log |F| = O(log 1

ε
) bits.

Let E be an event, defined as follows: All invocations of protocol WAVSS have
been terminated properly. That is, if an honest party has terminated WAVSS-
Share, then a value, say s′ is fixed. All honest parties will terminate the corre-
sponding invocation of WAVSS-Rec-Public with output s′. Moreover if dealer D
is honest then s′ is D’s shared secret. It is easy to see that event E occurs with
probability at least 1− n2ε′ = 1− ε.

We now state the following lemmas which are more or less identical to the
Lemmas 5.28-5.31 presented in [35]. For the sake of completeness, we recall all
of them with proofs.

Lemma 9.5 ([35]) All honest parties terminate Protocol Common-Coin in con-
stant time.

Proof: First we show that every honest party Pi will A-cast ”Reconstruct
Enabled” eventually. By the termination property of our AVSS protocol WAVSS
(see Lemma 8.20), every honest party will eventually terminate all the instances
of WAVSS-Share of every other honest party. As there are at least n − t honest
parties, for every honest party Pi, Ti will eventually contain at least t + 1 parties
(in fact n− t parties) and thus Pi will eventually A-cast ”Attach Ti to Pi”. So
eventually, Pi will receive ”Attach Tj to Pj” from every honest Pj. Now since
every party Pk that is included in Tj (of honest Pj) will be eventually included in
Ti (follows from the termination property of WAVSS; see Lemma 8.20), Tj ⊆ Ti

223

Figure 9.1: Existing Common Coin Protocol

Protocol Common-Coin(P, ε)

Code for Pi: — Every party executes this code

1. For j = 1, . . . , n, choose a random value xij and execute WAVSS-
Share(Pi,P, xij , ε

′) where ε′ = ε
n2 .

2. Participate in WAVSS-Share(Pj ,P, xjk, ε
′) for every j, k ∈ {1, . . . , n}. We

denote WAVSS-Share(Pj ,P, xjk, ε
′) by WAVSS-Sharejk.

3. Create a dynamic set Ti. Add party Pj to Ti if WAVSS-Share(Pj ,P, xjk, ε
′)

has been terminated for all k = 1, . . . , n. Wait until |Ti| = t+1. Then assign
Ti = Ti and A-cast ”Attach Ti to Pi”. We say that the secrets {xji|Pj ∈ Ti}
are attached to party Pi.

4. Create a dynamic set Ai. Add party Pj to Ai if

(a) ”Attach Tj to Pj” is received from the A-cast of Pj and

(b) Tj ⊆ Ti

Wait until |Ai| = n− t. Then assign Ai = Ai and A-cast ”Pi Accepts Ai”.

5. Create a dynamic set Si. Add party Pj to Si if

(a) ”Pj Accepts Aj” is received from the A-cast of Pj and

(b) Aj ⊆ Ai.

Wait until |Si| = n − t. Then A-cast ”Reconstruct Enabled”. Let Hi be
the current content of Ai.

6. Participate in WAVSS-Rec-Public(Pk,P, xkj , ε
′) for every Pk ∈ Tj of every

Pj ∈ Ai (note that some parties may be included in Ai after the A-cast of
”Reconstruct Enabled”. The corresponding WAVSS-Rec-Public are invoked
immediately). We denote WAVSS-Rec-Public(Pk,P, xkj , ε

′) by WAVSS-Rec-
Publickj .

7. Let u = d0.87ne. Every party Pj ∈ Ai is associated with a value, say
Vj which is computed as follows: Vj = (

∑
Pk∈Tj

xkj) mod u where xkj is
reconstructed back from WAVSS-Rec-Public(Pk,P, xkj , ε

′) (if NULL is recon-
structed in some instance of WAVSS-Rec-Public then some predefined value
x?

kj ∈ F will be taken as the secret; for details see Remark 8.24).

8. Wait until the values associated with all the parties in Hi are computed.
Now if there exits a party Pj ∈ Hi such that Vj = 0, then output 0. Otherwise
output 1.

will hold good. Therefore, every honest Pj will be eventually included in Ai.
Thus for an honest Pi, Ai will eventually be of size n− t and hence Pi will A-cast
”Pi Accepts Ai”. Now following the similar argument as above, we can show

224

that for an honest Pi, Si will eventually be of size n− t and hence Pi will A-cast
”Reconstruct Enabled”.

Now it remains to show that WAVSS-Rec-Public protocols invoked by any
honest party will be terminated eventually. Once this is proved, every honest
party will terminate protocol Common-Coin after executing the remaining steps
of Common-Coin such as computing Vi etc. By the previous argument given above,
if an honest party Pi receives ”Attach Tj to Pj” from Pj and includes Pj in Ai,
then eventually every other honest party will do the same. Hence if Pi invokes
WAVSS-Rec-Publickj for Pj ∈ Ai and Pk ∈ Tj, then eventually every other honest
party will also do the same. Now by the termination property of WAVSS (see
Lemma 8.20), every WAVSS-Rec-Publickj protocols will be terminated by every
honest party.

Given event E, all invocations of WAVSS-Share and WAVSS-Rec-Public termi-
nate in constant time. The black box protocol for A-cast terminates in constant
time. Thus protocol Common-Coin terminates in constant time. 2

Lemma 9.6 ([35]) In protocol Common-Coin, once some honest party Pj re-
ceives ”Attach Ti to Pi” from the A-cast of Pi and includes Pi in Aj, a
unique value Vi is fixed such that

1. Every honest party will associate Vi with Pi, except with probability 1− ε
n
.

2. Vi is distributed uniformly over [0, . . . , u] and is independent of the values
associated with the other parties.

Proof: Once some honest party Pj receives ”Attach Ti to Pi” from the A-cast
of Pi and includes Pi inAj, a unique value Vi is fixed. Here Vi = (

∑
Pk∈Ti

xki) mod u,
where xki is value that is shared by Pk as a dealer during the execution of WAVSS-
Shareki. According to the protocol steps eventually all the honest parties will
invoke WAVSS-Rec-Publicki corresponding to each Pk ∈ Ti and consequently each
honest party will reconstruct xki at the completion of WAVSS-Rec-Publicki, except
with probability ε′ (recall that each instance of AVSS scheme has an associated
error probability of ε′). Now since |Ti| = t + 1, every honest party will associate
Vi with Pi with probability at least 1− (t + 1)ε′ ≈ 1− ε

n
.

Now it remains to show that Vi is uniformly distributed over [0, . . . , u] and
is independent of the values associated with the other parties. An honest party
starts reconstructing the secrets attached to Pi (i.e starts invoking WAVSS-Rec-
Publicki for every Pk ∈ Ti) only after it receives ”Attach Ti to Pi” from the
A-cast of Pi. So the set Ti is fixed before any honest party invokes WAVSS-Rec-
Publicki for some k. The secrecy property of WAVSS-Share ensures that corrupted
parties will have no information about the value shared by any honest party until
the value is reconstructed after executing corresponding WAVSS-Rec-Public. Thus
when Ti is fixed, the values that are shared by corrupted parties corresponding
to Pi are completely independent of the values shared by the honest parties
corresponding to Pi. Now, each Ti contains at least one honest party and every
honest party’s shared secrets are uniformly distributed and mutually independent.
Hence the sum Vi is uniformly and independently distributed over [0, . . . , u]. 2

Lemma 9.7 ([35]) Once an honest party A-casts ”Reconstruct Enabled”, there
exists a set M such that:

1. For every party Pj ∈ M , some honest party has received ”Attach Tj to Pj”
from the A-cast of Pj.

225

2. When any honest party Pj A-casts ”Reconstruct Enabled”, then it will
hold that M ⊆ Hj.

3. |M | ≥ n
3
.

Proof: Let Pi be the first honest party to A-cast ”Reconstruct Enabled”. Then
let M = {Pk | Pk belongs to A′

ls of at least t+1 P ′
l s who belongs to Si when Pi

A-casted Reconstruct Enabled }. We now show the parties in M satisfies the
properties mentioned in the lemma.

It is clear that M ⊆ Hi. Thus party Pi has received ”Attach Tj to Pj” from
the A-cast of every Pj ∈ M . As Pi is assumed to be honest here, the first part of
the lemma is asserted.

We now prove the second part. An honest party Pj A-casts ”Reconstruct
Enabled” only when Sj contains n− t = 2t + 1 parties. Now note that Pk ∈ M
implies that Pk belongs to Al’s of at least t+1 Pl’s who belong to Si. This ensures
that there is at least one such Pl who belongs to Sj, as well as Si. Now Pl ∈ Sj

implies that Pj had ensured that Al ⊆ Aj. This implies that Pk ∈ M belongs to
Aj before party Pj A-casted ”Reconstruct Enabled”. Since Hj is the instance
of Aj at the time when Pj A-casts ”Reconstruct Enabled”, it is obvious that
Pk ∈ M belongs to Hj also. Using similar argument, it can be shown that every
Pk ∈ M also belong to Hj, thus proving the second part of the lemma.

Now we prove the third part of the lemma i.e |M | ≥ n
3
. A counting argument

is used for this purpose. Let m = |Si| at the time Pi A-casted ”Reconstruct
Enabled”. So we have m ≥ n − t. Now consider an n × n table Λi (relative to
party Pi), whose lth row and kth column contains 1 for k, l ∈ {1, . . . , n} iff the
following hold:

1. Pi has received ”Pl Accepts Al” from A-cast of Pl and included Pl in Si

before A-casting ”Reconstruct Enabled” AND

2. Pk ∈ Al

The remaining entries (if any) of Λi are left blank. Then M is the set of
parties Pk such that kth column in Λi contains 1 at least at t+1 positions. Notice
that each row of Λi contains 1 at n− t positions. Thus Λi contains 1 at m(n− t)
positions.

Let q denote the minimum number of columns in Λi that contain 1 at least at
t + 1 positions. We will show that q ≥ n

3
. The worst distribution of 1 entries in

Λi is letting q columns to contain all 1 entries and letting each of the remaining
n−q columns to contain 1 at t locations. This distribution requires Λi to contain
1 at no more than qm + (n − q)t positions. But we have already shown that Λi

contains 1 at m(n− t) positions. So we have

qm + (n− q)t ≥ m(n− t).

This gives q ≥ m(n−t)−nt
m−t

. Since m ≥ n− t and n ≥ 3t + 1, we have

q ≥ m(n− t)− nt

m− t
≥ (n− t)2 − nt

n− 2t

≥ (n− 2t)2 + nt− 3t2

n− 2t
≥ n− 2t +

nt− 3t2

n− 2t

≥ n− 2t +
t

n− 2t
≥ n

3

226

This shows that |M | = q ≥ n
3

2

Lemma 9.8 ([35]) Let ε ≤ 0.2 and assume that all the honest parties have ter-
minated protocol Common-Coin. Then for every value σ ∈ {0, 1}, with probability
at least 1

4
, all the honest parties output σ.

Proof: By Lemma 9.6, for every party Pi that is included in Aj of some hon-
est party Pj, there exists some fixed (yet unknown) value Vi that is distributed
uniformly and independently over [0, . . . , u] and with probability 1 − ε

n
all hon-

est parties will associate Vi with Pi. Consequently, as there are n2 instances of
WAVSS-Rec-Public, each with an error probability of ε′ = ε

n2 , with probability at
least 1− n2ε′ = (1− ε), all honest parties will agree on the value associated with
each one of the parties. Now we consider two cases:

• We now show that the probability of outputting σ = 0 by all honest parties
is at least 1

4
. Let M be the set of parties discussed in Lemma 9.7. Clearly

if Vj = 0 for some Pj ∈ M and all honest parties associate Vj with Pj,
then all the honest parties will output 0. The probability that for at least
one party Pj ∈ M , Vj = 0 is 1 − (1 − 1

u
)|M |. Now recall that we assumed

u = d0.87ne. Also |M | ≥ n
3

by Lemma 9.7. Therefore for all n > 4,

we have 1 − (1 − 1
u
)|M | ≥ 0.316. So, Prob(all honest parties output 0)

≥ 0.316× (1− ε) ≥ 0.25 = 1
4
.

• We now show that the probability of outputting σ = 1 by all honest parties
is at least 1

4
. It is obvious that if no party Pj has Vj = 0 and all honest

parties associate Vj with Pj, then all honest parties will output 1. The
probability of the first event is at least (1 − 1

u
)n ≥ e−1.15. Thus Prob(all

honest parties output 1) ≥ e−1.15 × (1− ε) ≥ 0.25 = 1
4
.

Hence the lemma. 2

Theorem 9.9 ([35]) Protocol Common-Coin is a (1− ε)-terminating, t-resilient
common coin protocol for n = 3t + 1 parties for every 0 < ε ≤ 0.2.

Proof: The Termination property (of Definition 9.4) follows from Lemma 9.5.
The Correctness property (of Definition 9.4) follows from Lemma 9.6, Lemma
9.7 and Lemma 9.8. 2

Due to the use of efficient AVSS scheme in the place of relatively inefficient
AVSS protocol of [35], protocol Common-Coin provides better communication
complexity than the common coin protocol presented in [35].

Theorem 9.10 Protocol Common-Coin privately communicates O(n6 log 1
ε
) bits

and A-casts O(n6 log 1
ε
) bits.

Proof: Easy. Follows from Theorem 8.25 and the fact that Common-Coin exe-
cutes at most n2 instances of WAVSS-Share and WAVSS-Rec-Public, each with an
error probability of ε

n2 . 2

9.3.2 Existing Voting Protocol

The Voting protocol is another requirement for the construction of ABA protocol.
In a Voting protocol, every party has a single bit as input. Roughly, Voting proto-
col tries to find out whether there is a detectable majority for some value among

227

the inputs of the parties. Here we recall the Voting protocol called Vote from [35].

The Intuition: Each party’s output in Vote protocol can take five different
forms:

1. For σ ∈ {0, 1}, the output (σ, 2) stands for ’overwhelming majority for σ’;

2. For σ ∈ {0, 1}, the output (σ, 1) stands for ’distinct majority for σ’;

3. Output (Λ, 0) stands for ’non-distinct majority’.

We will show that:

1. If all the honest parties have the same input σ, then all honest parties will
output (σ, 2);

2. If some honest party outputs (σ, 2), then every other honest party will out-
put either (σ, 2) or (σ, 1);

3. If some honest party outputs (σ, 1) and no honest party outputs (σ, 2) then
each honest party outputs either (σ, 1) or (Λ, 0).

The Vote protocol consists of three stages, having similar structure. In the
first stage, each party A-casts his input value, waits to receive n − t A-casts of
other parties, and sets his vote to the majority value among these inputs. In
the second phase, each party A-casts his vote (along with the identities of the
n− t parties whose A-casted inputs were used to compute vote), waits to receive
n − t A-casts of other votes that are consistent with the A-casted inputs of the
first phase, and sets his re-vote to the majority value among these votes. In
the third phase, each party A-casts his re-vote along with the identities of the
n − t parties whose A-casted votes were used to compute the re-vote, and
waits to complete n − t A-casts of other re-votes that are consistent with the
consistent votes of second phase. Now if all the consistent votes received by a
party agree on a value, σ, then the party outputs (σ, 2). Otherwise, if all the
consistent re-votes received by the party agree on a value, σ, then the party
outputs (σ, 1). Otherwise, the party outputs (Λ, 0). Protocol Vote is presented
formally in Fig. 9.2. In the protocol, we assume party Pi has input bit xi.

We now recall the proofs for the properties of protocol Vote from [35].

Lemma 9.11 ([35]) All the honest parties terminate protocol Vote in constant
time.

Proof: Every honest party Pi will eventually receive (input, Pj, xj) from the A-
cast of every honest Pj. Thus every honest Pi will eventually have |Ai| = n−t and
will A-cast (vote, Pi, Ai, ai). Now every honest party Pi will eventually receive
(vote, Pj, Aj, aj) from the A-cast of every honest Pj. Thus every honest Pi will
eventually have |Bi| = n − t and will A-cast (re-vote, Pi, Bi, bi). Now every
honest party Pi will eventually receive
(re-vote, Pj, Bj, bj) from the A-cast of every honest Pj. Thus every honest Pi

will eventually have |Ci| = n − t. Consequently, every honest Pi will terminate
the protocol in constant time. 2

Lemma 9.12 ([35]) If all the honest parties have the same input σ, then all the
honest parties will eventually output (σ, 2) in protocol Vote.

228

Figure 9.2: Existing Vote Protocol

Protocol Vote(P)

Code for Pi: — Every party executes this code

1. A-cast (input, Pi, xi).

2. Create a dynamic set Ai. Add (Pj , xj) to Ai if (input, Pj , xj) is received
from the A-cast of Pj .

3. Wait until |Ai| = n − t. Assign Ai = Ai. Set ai to the majority bit among
{xj | (Pj , xj) ∈ Ai} and A-cast (vote, Pi, Ai, ai).

4. Create a dynamic set Bi. Add (Pj , Aj , aj) to Bi if (vote, Pj , Aj , aj) is received
from the A-cast of Pj , Aj ⊆ Ai, and aj is the majority bit of Aj .

5. Wait until |Bi| = n − t. Assign Bi = Bi. Set bi to the majority bit among
{aj | (Pj , Aj , aj) ∈ Bi} and A-cast (re-vote, Pi, Bi, bi).

6. Create a set Ci. Add (Pj , Bj , bj) to Ci if (re-vote, Pj , Bj , bj) is received
from the A-cast of Pj , Bj ⊆ Bi, and bj is the majority bit of Bj .

7. Wait until |Ci| ≥ n− t. If all the parties Pj ∈ Bi had the same vote aj = σ,
then output (σ, 2) and terminate. Otherwise, if all the parties Pj ∈ Ci have
the same Re-vote bj = σ, then output (σ, 1) and terminate. Otherwise,
output (Λ, 0) and terminate.

Proof: Consider an honest party Pi. If all the honest parties have same input
σ, then at most t (corrupted) parties may A-cast σ as their input. Therefore,
it is easy to see every Pk (irrespective of whether honest or corrupted), who is
included in Bi must have A-casted his vote bk = σ. Hence honest Pi will output
(σ, 2). 2

Lemma 9.13 ([35]) If some honest party outputs (σ, 2), then every other honest
party will eventually output either (σ, 2) or (σ, 1) in protocol Vote.

Proof: Let an honest party Pi outputs (σ, 2). This implies that all the parties
Pj ∈ Bi had A-casted the same vote aj = σ. As the size of Bi is n− t = 2t + 1,
it implies that for every other honest Pj, it holds that |Bi ∩ Bj| ≥ t + 1. This
means that every other honest Pj is bound to A-cast re-vote bi as σ. Hence every
other honest party will eventually output either (σ, 2) or (σ, 1). 2

Lemma 9.14 ([35]) If some honest party outputs (σ, 1) and no honest party
outputs (σ, 2) then every other honest party will eventually output either (σ, 1) or
(Λ, 0) in protocol Vote.

Proof: Assume that some honest party Pi outputs (σ, 1). This implies that all
the parties Pj ∈ Ci had A-casted the same re-vote bj = σ. Since |Ci| ≥ n− t, in
the worst case there are at most t parties (outside Ci) who may A-cast re-vote
σ. Thus it is clear that no honest party will output (σ, 1). Now since the honest
parties in Ci had re-vote as σ, there must be at least t + 1 parties who have

229

A-casted their vote as σ. Thus no honest party can output (σ, 2) for which
at least n − t = 2t + 1 parties are required to A-cast their vote as σ. So we
have proved that no honest party will output from {(σ, 2), (σ, 1)}. Therefore the
honest parties will output either (σ, 1) or (Λ, 0). 2

Theorem 9.15 Protocol Vote involves A-cast of O(n2 log n) bits.

Proof: In protocol Vote, each party Pi A-casts Ai and Bi, each containing
the identity of n − t = 2t + 1 parties. Since the identity of each party can be
represented by log n bits, protocol Vote involves A-cast of O(n2 log n) bits. 2

9.3.3 The ABA Protocol for Single Bit

Once we have an efficient Common-Coin protocol and Vote protocol, we can de-
sign an efficient ABA protocol using the approach of [35]. The ABA protocol
proceeds in iterations where in each iteration every party computes a ’modified
input’ value. In the first iteration the ’modified input’ of party Pi is nothing but
the private input bit xi. In each iteration, every party executes two protocols
sequentially: Vote and Common-Coin. That is protocol Common-Coin is executed
only after the termination of Vote. If a party outputs {(σ, 2), (σ, 1)} in Vote pro-
tocol, then he sets his ’modified input’ for next iteration to σ, irrespective of the
value which is going to be output in Common-Coin. Otherwise, he sets his ’mod-
ified input’ for next iteration to be the output of Common-Coin protocol which
is invoked by all the honest parties in each iteration irrespective of whether the
output of Common-Coin is used or not. Once a party outputs (σ, 2), he A-casts σ
and once he receives t + 1 A-cast for σ, he terminates the ABA protocol with σ
as final output. The protocol is formally presented in Fig. 9.3.

Our protocol has ε error in Termination. To bound the error probability by
ε, the computation of ABA is performed over a field F = GF (2κ), where κ has to
be determined using the relation ε ≥ 4n62−κ. This is derived from the fact that
in ABA, Common-Coin is invoked with ε

4
error probability and as mentioned in

Section 9.3.1, ε ≥ n62−κ should hold to bound error probability of Common-Coin
by ε. So here each element from the field is represented by κ = log |F| = O(log 1

ε
)

bits.
We now state the following lemmas which are more or less identical to the

Lemmas 5.36-5.39 presented in [35]. For the sake of completeness, we recall all
of them with proofs.

Lemma 9.16 ([35]) In protocol ABA if all honest parties have input σ, then all
honest parties terminate and output σ.

Proof: If all honest parties have input σ, then by Lemma 9.12 every honest
party will output (y1,m1) = (σ, 2) upon termination of Vote and consequently
A-cast (Terminatewith σ) in the first iteration. Therefore every honest party will
eventually receive n− t A-cast of (Terminate with σ). Hence every honest party
will terminate ABA with σ as output. 2

Lemma 9.17 ([35]) In protocol ABA, if an honest party terminates with output
σ, then all honest parties will eventually terminate with output σ.

Proof: To prove the lemma, we show that if an honest party A-casts (Terminate
with σ), then eventually every other honest party will A-cast (Terminate with σ).

Let k be the first iteration when an honest party Pi A-casts (Terminate with σ).

230

Figure 9.3: Efficient ABA Protocol for Single Bit.

Protocol ABA(P, ε)

Code for Pi: Every party executes this code

1. Set r = 0. and v1 = xi.

2. Repeat until terminating.

(a) Set r = r +1. Invoke Vote(P) with vr as input. Wait to terminate Vote
and assign the output of Vote to (yr,mr).

(b) Invoke Common-Coin(P, ε
4) and wait until its termination. Let cr be the

output of Common-Coin.

(c) i. If mr = 2, set vr+1 = yr and A-cast (Terminate with vr+1). Partic-
ipate in only one more instance of Vote and only one more instance
of Common-Coin protocol. /* The purpose of this restriction is
to prevent the parties from participating in an unbounded number
of iterations before enough (Terminate with σ) A-casts are com-
pleted.*/

ii. If mr = 1, set vr+1 = yr.
iii. Otherwise, set vr+1 = cr.

(d) Upon receiving t+1 (Terminate with σ) A-cast for some value σ, output
σ and terminate ABA.

Then we prove that every other honest party will A-cast (Terminate with σ)
either in kth iteration or in (k + 1)th iteration. Since honest Pi has A-casted
(Terminate with σ), it implies that yk = σ and mk = 2 and Pi has outputted
(σ, 2) in the Vote protocol invoked in kth iteration. By Lemma 9.13, every other
honest party Pj will output either (σ, 2) or (σ, 1) in the Vote protocol invoked
in kth iteration. In case Pj outputs (σ, 2), the it will A-cast (Terminate with σ)
in kth iteration itself. Furthermore every honest Pj will execute Vote with input
vk+1 = σ in the (k + 1)th iteration. So clearly, in (k + 1)th iteration every honest
party will have same input σ. Therefore by Lemma 9.12, every honest party will
output (σ, 2) in Vote protocol invoked in (k +1)th iteration. Hence all the honest
parties will A-cast (Terminate with σ) either in iteration k or iteration k + 1.

As all the honest parties will eventually A-cast (Terminate with σ), every
honest party will receive n − t A-casts of (Terminate with σ) and at most t A-
casts of (Terminate with σ). Therefore every honest party will eventually output
σ. 2

Lemma 9.18 ([35]) If all honest parties have initiated and completed some it-
eration k, then with probability at least 1

4
all honest parties have same value for

’modified input’ vk+1.

Proof: We have two cases here:

1. If all honest parties execute step 4(c) in iteration k, then they have set
their vk+1 as the output of protocol Common-Coin. So by the property of
Common-Coin, all the honest party have same vk+1 with probability at least
1
4
.

231

2. If some honest party has set vk+1 = σ for some σ ∈ {0, 1}, either in step
4(a) or step 4(b) of iteration k, then by Lemma 9.14 no honest party will set
vk+1 = σ in step 4(a) or step 4(b). Moreover, all the honest honest parties
will output σ from Common-Coin with probability at least 1

4
. Now the

parties starts executing Common-Coin, only after the termination of Vote.
Hence the outcome of Vote is fixed before Common-Coin is invoked. Thus
corrupted parties can not decide the output of Vote to prevent agreement.
Hence with probability at least 1

4
, all the honest parties will set vk+1 = σ.

2

Let Ck be the event that each honest party completes all the iterations he initiated
up to (and including) the kth iteration (that is, for each iteration 1 ≤ l ≤ k and
for each party P , if P initiated iteration l then he computes vl+1). Let C denote
the event that Ck occurs for all k.

Lemma 9.19 ([35]) Conditioned on the event C, all honest parties terminate
protocol ABA in constant expected time.

Proof: We first show that all the honest parties terminate protocol ABA within
constant time after the first instance of A-cast of (Terminate with σ) is initiated
by some honest party. Let the first instance of A-cast of (Terminate with σ) is
initiated by some honest party in iteration k. Then all the parties will participate
in Vote and Common-Coin protocols of all iterations up to iteration k + 1. Both
the executions can be completed in constant time. Moreover, by the proof of
Lemma 9.17 every honest party will A-cast (Terminate with σ) by the end of
iteration k + 1. These A-casts can be completed in constant time. Since an
honest party terminates ABA after completing t + 1 such A-casts, all the honest
parties will terminate ABA within constant time after the first instance of A-cast
of (Terminate with σ) is initiated by some honest party.

Now let the random variable τ be the count of number of iterations until the
first instance of A-cast of (Terminate with σ) is initiated by some honest party.
Obviously if no honest party ever A-casts (Terminate with σ) then τ = ∞. Now
conditioned on event C, all the honest parties terminate each iteration in constant
time. So it is left to show that E(τ |C) is constant. We have

Prob(τ > k|Ck) ≤ Prob(τ 6= 1|Ck)× . . .

× Prob(τ 6= k ∩ . . . ∩ τ 6= 1|Ck)

From Lemma 9.18, it follows that each one of the k multiplicands of the right
hand side of the above equation is at most 3

4
. Thus we have Prob(τ > k|Ck) ≤

(3
4
)k. Now it follows by simple calculation that E(τ |C) ≤ 16. 2

Lemma 9.20 ([35]) Prob(C) ≥ (1− ε).

Proof: We have

Prob(C) ≤
∑

k≥1

Prob(τ > k ∩ Ck+1|Ck)

≤
∑

k≥1

Prob(τ > k|Ck) · Prob(Ck+1|Ck ∩ τ > k)

232

From the proof of Lemma 9.18, we have Prob(τ > k|Ck) ≤ (3
4
)k. We will

now bound Prob(Ck+1|Ck ∩ τ ≥ k). If all the honest parties execute the kth

iteration and complete the kth invocation of Common-Coin, then all the honest
parties complete kth iteration. Protocol Common-Coin is invoked with termination
parameter ε

4
. Thus with probability 1− ε

4
, all the honest parties complete the kth

invocation of Common-Coin. Therefore, for each k, Prob(Ck+1|Ck ∩ τ ≥ k) ≤ ε
4
.

So we get

Prob(C) ≤
∑

k≥1

ε

4
(
3

4
)k = ε

The above equation implies that Prob(C) ≥ (1− ε). 2

Summing up, we have the following theorem.

Theorem 9.21 (ABA for Single Bit) Let n = 3t+1. Then for every 0 < ε ≤
0.2, protocol ABA is a (ε, 0)-ABA protocol for n parties. Given the parties termi-
nate, they do so in constant expected time. The protocol privately communicates
O(n6 log 1

ε
) bits and A-casts O(n6 log 1

ε
) bits.

Proof: The properties of ABA follows from Lemma 9.16, Lemma 9.17, Lemma
9.18 and Lemma 9.19. Let C be the expected number of time Common-Coin and
Vote protocol are executed in ABA protocol. Then from Theorem 9.10 protocol
ABA privately communicates O(Cn6 log 1

ε
) bits and A-casts O(Cn6 log 1

ε
) bits. As

C = O(1), the ABA protocol privately communicates O(n6 log 1
ε
) bits and A-casts

O(n6 log 1
ε
) bits. 2

9.4 Our Efficient ABA Protocol for Multiple Bits

Till now we have concentrated on the construction of efficient ABA protocol that
allows the parties to agree on a single bit. We now present another efficient
ABA protocol called ABA-MB 1, which achieves agreement on n− 2t = t + 1 bits
concurrently. Notice that we could execute protocol ABA (presented in Section
9.3.3) t + 1 times in parallel to achieve agreement on t + 1 bits. From Theorem
9.21, this would require a private communication as well as A-cast of O(n7 log 1

ε
)

bits. However surprisingly our protocol ABA-MB requires private communication
and A-cast of O(n5 log 1

ε
) bits for the same task. Consequently, in protocol ABA-

MB, the amortized cost to reach agreement on a single bit is O(n4 log 1
ε
) bits of

private and A-cast communication.
In real-life applications typically ABA protocols are invoked on long messages

rather than on single bit. Even in asynchronous multiparty computation (AMPC)
[21, 35, 13], where typically lot of ABA invocations are required, many of the
invocations can be parallelized and optimized to a single invocation with a long
message. Hence ABA protocols with long message are very relevant to many real
life situations. All existing protocols for ABA [136, 18, 29, 66, 67, 39, 35, 1, 127]
are designed for single bit message. A naive approach to design ABA for ` > 1
bit message is to parallelize ` invocations of existing ABA protocols dealing with
single bit. This approach requires a communication complexity that is ` times
the communication complexity of the existing protocols for single bit and hence
is inefficient. In this chapter, we provide a far better way to design an ABA with
multiple bits. For ` bits message with ` ≥ t + 1, we may break the message in to

1Here MB stands for multiple bits.

233

blocks of t + 1 bits and invoke one instance of our ABA-MB for each one of the
t + 1 blocks.

To design our protocol ABA-MB, we consider our weak statistical AVSS scheme
WAVSS-MS (consisting of sub-protocols (WAVSS-MS-Share,WAVSS-MS-Rec-Public))
to share ` ≥ 1 secrets simultaneously (presented in Sections 8.4.3 and 8.4.4 in
Chapter 8). Then we incorporate protocol WAVSS-MS in the common coin pro-
tocol presented in Section 9.3.1 and show that it does not work. After that we
present a new common coin protocol that can use WAVSS-MS a black box and
show that the new common coin is much more efficient than the common coin
that used WAVSS as a black box in Section 9.3.1. Finally, we construct our ABA
protocol using the new common coin (with a slight change due to the use of new
common coin.)

9.4.1 An Incorrect Common Coin Protocol

In Sections 8.4.3 and 8.4.4 in Chapter 8, we have presented an AVSS scheme
called WAVSS-MS (consisting of sub-protocols WAVSS-MS-Share, WAVSS-MS-
Rec-Public) that can share and reconstruct multiple secrets simultaneously and
therefore it is much more communication efficient than multiple executions of
AVSS scheme WAVSS for sharing and reconstructing single secret. In section
9.3.1, we had recalled Common-Coin protocol from [35] that uses our protocols
WAVSS-Share and WAVSS-Rec-Public as black box. Specifically, each party in
Common-Coin invokes n instances of protocol WAVSS-Share each sharing a sin-
gle secret. Simple thinking would suggest that those n instances of protocol
WAVSS-Share, each sharing a single secret could be replaced by more efficient sin-
gle instance of WAVSS-MS-Share, sharing n secrets simultaneously. This would
naturally lead to more efficient common coin protocol, which would further im-
ply more efficient ABA protocol. In the following, we do the same in protocol
Common-Coin-Wrong. But as the name suggests, we then show that this direct
replacement of WAVSS-Share by WAVSS-MS-Share without further modification
will lead to an incorrect common coin protocol (i.e Common-Coin-Wrong is not
a correct common coin protocol). In what follows, we first describe Common-
Coin-Wrong and then point out the exact property where Common-Coin-Wrong
deviates from Common-Coin. This will imply that Common-Coin-Wrong is not a
correct solution for a common coin protocol. Protocol Common-Coin-Wrong is
given in Fig. 9.4.

We now show that protocol Common-Coin-Wrong does not satisfy Lemma 9.6
which will further imply that Common-Coin-Wrong is not a correct common coin
protocol. Specifically though it is true that: once some honest party Pj receives
”Attach Ti to Pi” from the A-cast of Pi and includes Pi in Aj, a unique value
Vi is fixed such that any honest party will associate Vi with Pi; but now it is
no longer ensured that Vi is distributed uniformly over [0, . . . , u]. That is the
adversary At can decide Vi for up to t − 1 honest parties and thus those Vi are
no longer random and uniformly distributed over [0, . . . , u]. Consequently, At

can enforce some honest parties to always output 0, while other honest parties
may output σ ∈ {0, 1} with probability at least 1

4
. This will strictly violate the

property of common coin that every honest party should output σ ∈ {0, 1} with
probability at least 1

4
.

Let Pi be an honest party. We now describe a specific behavior of At in
Common-Coin-Wrong which would allow At to decide Vi to be 0 and thus make

234

Figure 9.4: An Incorrect Common Coin protocol obtained by replacing WAVSS-Share
and WAVSS-Rec-Public by WAVSS-MS-Share and WAVSS-MS-Rec-Public respectively in
Protocol Common-Coin

Protocol Common-Coin-Wrong(P, ε)

Code for Pi: — Every party in P executes this code.

1. For j = 1, . . . , n, choose a random value xij and execute WAVSS-MS-
Share(Pi,P, (xi1, . . . , xin), ε′) where ε′ = ε

n .

2. Participate in WAVSS-MS-Share(Pj ,P, (xj1, . . . , xjn), ε′) for every j ∈
{1, . . . , n}. We denote WAVSS-MS-Share(Pj ,P, (xj1, . . . , xjn), ε′) by WAVSS-
MS-Sharej .

3. Create a dynamic set Ti. Add party Pj to Ti if WAVSS-MS-
Share(Pj ,P, (xj1, . . . , xjn), ε′) has been completed. Wait until |Ti| = t + 1.
Then assign Ti = Ti and A-cast ”Attach Ti to Pi”. We say that the secrets
{xji|Pj ∈ Ti} are the secrets attached to party Pi.

4. Create a dynamic set Ai. Add party Pj to Ai if the following holds:

(a) ”Attach Tj to Pj” is received from the A-cast of Pj and

(b) Tj ⊆ Ti.

Wait until |Ai| = n− t. Then assign Ai = Ai and A-cast ”Pi Accepts Ai”.

5. Create a dynamic set Si. Add party Pj to Si if the following holds:

(a) ”Pj Accepts Aj” is received from the A-cast of Pj and

(b) Aj ⊆ Ai.

Wait until |Si| = n − t. Then A-cast ”Reconstruct Enabled”. Let Hi be
the current content of Ai.

6. Participate in WAVSS-MS-Rec-Public(Pk,P, (xk1, . . . , xkn), ε′) for every Pk ∈
Tj of every Pj ∈ Ai (Note that some parties may be included in Ai af-
ter the A-cast of ”Reconstruct Enabled”. The corresponding WAVSS-
MS-Rec-Public are invoked immediately). We denote WAVSS-MS-Rec-
Public(Pk,P, (xk1, . . . , xkn), ε′) by WAVSS-MS-Rec-Publick.

7. Let u = d0.87ne. Every party Pj ∈ Ai is associated with a value, say Vj

which is computed as follows: Vj = (
∑

Pk∈Tj
xkj) mod u where xkj is recon-

structed back after executing WAVSS-MS-Rec-Public(Pk,P, (xk1, . . . , xkn), ε′)
(if NULL is reconstructed in instance WAVSS-MS-Rec-Publick then some pre-
defined values (x?

k1, . . . , x
?
kn) ∈ Fn will be taken as the secrets; for details see

Remark 8.28).

8. Wait until the values associated with all the parties in Hi are computed.
Now if there exits a party Pj ∈ Hi such that Vj = 0, then output 0. Otherwise
output 1.

235

honest Pi to output 0 (this can be extended for t − 1 honest Pis) whereas the
remaining honest parties output σ ∈ {0, 1} with probability at least 1

4
. It is

known that there are t parties under the control of At. The specific behavior is
given in Fig. 9.5.

The Reason for the Problem: The adversary behavior specified in Fig. 9.5
become possible due to the fact that a corrupted party is able to commit his
secrets for party Pi even after knowing what other parties has committed for Pi.
This was strictly controlled in Common-Coin, where a corrupted party did not
have any information about the secrets committed by other parties for Pi, while
committing his own secret for Pi. In Common-Coin, secrets associated with Pi

(that is the secrets corresponding to Ti) were disclosed only after Ti was fixed.
This was possible as every party Pk ∈ Ti committed their secrets independently
using different instance of WAVSS-Share. Thus as per requirement, corresponding
WAVSS-Rec-Public was invoked to reconstruct the desired secret.

The above is not possible in Common-Coin-Wrong, because of simultaneous
commitment and disclosure of n secrets in our WAVSS-MS-Share and WAVSS-MS-
Rec-Public. So a party Pl containing Pk in Tl may A-cast ”Reconstruct Enabled”
early and starts executing Pk’s instance of WAVSS-MS-Rec-Public. This process
will disclose the desired secret xkl; but at the same time it will disclose other
undesired secrets assigned to other parties. Now later the adversary may always
schedule messages such that Pi includes such Pk’s in Ti and some other corrupted
parties who have seen the secrets committed by Pk for Pi and then has committed
his own secrets. This clearly shows that the adversary can completely control the
final output of Pi by deciding the value to be associated with Pi.

The above problem can be eliminated if we can ensure that no corrupted
party can ever commit any secret after a single honest party starts reconstructing
secrets. This is what we have achieved in our new common coin protocol presented
in the next section.

9.4.2 A New and Efficient Common Coin Protocol for Multiple Bits

In this section, we show how to twist protocol Common-Coin, so that it can handle
the problem described in the previous section and can still use protocols WAVSS-
MS-Share and WAVSS-MS-Rec-Public as black-boxes. Before that we first extend
the basic definition of common coin for multiple bit binary output.

Definition 9.22 (Multi-Bit Common Coin) Let π be an asynchronous pro-
tocol, where each party has local random input and ` bit output, where ` ≥ 1. We
say that π is a (1− ε)-terminating, t-resilient, multi-bit common coin protocol if
the following requirements hold for every adversary At:

1. Termination: With probability (1− ε), all honest parties terminate.

2. Correctness: For every l = 1, . . . , `, all honest parties output σl with
probability at least 1

4
for every value of σl ∈ {0, 1}.

The Intuition: We now present a multi-bit common coin protocol, called Common-
Coin-MB. Protocol Common-Coin-MB goes almost in the same line as Common-
Coin-Wrong except that we add some more steps and modify some of the steps
due to which the corrupted parties are forced to commit/share their secrets much
before they can reconstruct and access anybody elses’ secrets. Thus contrary to

236

Figure 9.5: Specific Adversary Behavior in Protocol Common-Coin-Wrong

Possible Behavior of At in
Protocol Common-Coin-Wrong(P, ε)

1. Except a single corrupted party Pj , At asks all the remaining t − 1 cor-
rupted parties to participate in Common-Coin-Wrong honestly. Pj is asked
to honestly participate in the instances of WAVSS-MS-Share and WAVSS-
MS-Rec-Public initiated by every other party acting as a dealer. But Pj is
directed to hold back his invocation of WAVSS-MS-Share as a dealer.

2. At being the scheduler in the network, stops all the messages sent to Pi and
sent by Pi, except the messages related to Pi’s instance of WAVSS-MS-Share
and WAVSS-MS-Rec-Public (this will not stop Pi to be part of anybody else’s
Tj), until the following happens:

(a) n−t−1 honest parties (except Pi) and t−1 corrupted parties (except Pj)
carry out steps of Common-Coin-Wrong honestly, construct respective
sets, A-cast ”Reconstruct Enabled” and start invoking corresponding
WAVSS-MS-Rec-Publick protocols.

(b) This way the n secrets of each of n−t−1 honest parties (except Pi) and
t−1 corrupted parties will be revealed. /* It is to be noted that the cor-
rupted parties can successfully reconstruct secrets in WAVSS-MS-Rec-
Public by behaving honestly even if the honest Pi does not participate
in WAVSS-MS-Rec-Public.*/

(c) Now At constructs a set Ti of size t + 1 containing any t honest parties
whose shared values (xk1, . . . , xkn) are already disclosed to him plus
corrupted party Pj .

(d) Now At selects xji such that Vi = (
∑

Pk∈Ti
xkj) mod u = 0 and asks

Pj to invoke WAVSS-MS-Sharej with xji as the secret assigned to Pi.

3. At now schedules the messages to Pi such that Pi A-casts ”Attach Ti to Pi”
and eventually includes Pi in Ai. So clearly Hi will contain Pi and hence Pi

will output 0 since Vi is 0.

237

protocol Common-Coin-Wrong, the values associated with every party Pi are now
indeed random and are uniformly distributed over [0, . . . , u].

Precisely, we do the following in Common-Coin-MB. Each party acts as a
dealer and shares n random secrets, using a single instance of WAVSS-MS-Share
with allowed error probability of ε′ = ε

n
. The ith secret shared by each party is

associated with party Pi. Now a party Pi adds a party Pj to Ti, only when at
least n−t parties have terminated Pj’s instance of WAVSS-MS-Share. Recall that
in Common-Coin-Wrong, a party Pi adds a party Pj to Ti, when he himself has
terminated Pj’s instance of WAVSS-MS-Share. After that party Pi constructs Ti,
Ai and Si and A-cast Ti, Ai and ”Reconstruct Enabled” in the same way as
performed in Common-Coin-Wrong, except a single difference that here Pi ensures
Ti to contain n − t parties (contrary to t + 1 parties in Common-Coin-Wrong).
The reason for enforcing |Ti| = n− t is to obtain multiple bit output in protocol
Common-Coin-MB and will be clear in the sequel. Now what follows is the most
important step of Common-Coin-MB. Party Pi starts participating in WAVSS-
MS-Rec-Public of the parties who are in his Ti only after receiving at least n− t
”Reconstruct Enabled” A-casts. Moreover party Pi halts execution of all the
instances of WAVSS-MS-Share corresponding to the parties not in Ti currently
and later resume them only when they are included in Ti. This step along with
the step for constructing Ti will ensure the desired property that in order to be
part of any honest party’s Ti, a corrupted party must have to commit his secrets
well before the first honest party receives n− t ”Reconstruct Enabled” A-casts
and starts reconstructing secrets. This ensures that a corrupted party who is in Ti

of any honest party had no knowledge what so ever about the secrets committed
by other honest parties at the time he commits to his own secrets.

Let us see, how our protocol steps achieve the above task. Let Pi be the
first honest party to receive n − t ”Reconstruct Enabled” A-casts and start
invoking reconstruction process. Also let Pk be a corrupted party who belongs
to Tj of some honest party Pj. This means that at least t + 1 honest parties
have already terminated WAVSS-MS-Share instance of Pk (this is because Pj has
added Pk in Tj only after confirming that n − t parties have terminated Pk’s
instance of WAVSS-MS-Share). This further means that there is at least one
honest party, say Pα, who terminated Pk’s instance of WAVSS-MS-Share before
A-casting ”Reconstruct Enabled” (because if it not the case, then the honest
party Pα would have halted the execution of Pk’s instance of WAVSS-MS-Share for
ever and would never terminate it). This indicates that Pk is already committed
to his secrets before the first honest party receives n− t ”Reconstruct Enabled”
A-casts and starts the reconstruction. A more detailed proof is given in Lemma
9.24.

Another important feature of protocol Common-Coin-MB is that it is a multi-
bit common coin protocol. This is attained by using the ability of Vandermonde
matrix [141, 52] for extracting randomness. As a result, we could associate n−2t
values with each Pi, namely Vi1, . . . , Vi(n−2t) in Common-Coin-MB, while a single
value Vi was associated with Pi in Common-Coin. This leads every party to output
` = n − 2t bits in protocol Common-Coin-MB. We will show that the amortized
communication cost of generating a single bit output in protocol Common-Coin-
MB is far better than the communication cost of Common-Coin. As described in
the subsequent sections, this is a definite move towards the improvement of the
communication complexity of ABA protocol. We now briefly recall Vandermonde
matrix and then present protocol Common-Coin-MB.

238

Vandermonde Matrix and Randomness Extraction [141, 52]: Let β1, . . . , βc

be distinct and publicly known elements. We denote an (r × c) Vandermonde
matrix by V (r,c), where for i = 1, . . . , c, the ith column of V (r,c) is (β0

i , . . . , β
r−1
i)T .

The idea behind extracting randomness using V (r,c) is as follows: without loss of
generality, assume that r > c. Moreover, let (x1, . . . , xr) be such that:

1. Any c elements of it are completely random and are unknown to adversary
At.

2. The remaining r− c elements are completely independent of the c elements
and also known to At .

Now if we compute (y1, . . . , yc) = (x1, . . . , xr)V , then (y1, . . . , yc) is a random
vector of length c unknown to At, extracted from (x1, . . . , xr) [141, 52]. This
principle is used in protocol Common-Coin-MB, which is given in Fig. 9.6. ♦

To bound the error probability by ε, the computation of Common-Coin-MB
is performed over a field F = GF (2κ), where κ has to be determined using the
relation ε ≥ n62−κ. This is derived from the fact that in Common-Coin-MB,
WAVSS-MS is invoked with ε

n2 error probability and as mentioned in Section
8.4.4, ε ≥ n42−κ should hold to bound error probability of WAVSS-MS by ε. So
here each element from the field is represented by κ = log |F| = O(log 1

ε
) bits.

Let E be an event, defined as follows: All invocations of WAVSS-MS have
been terminated properly. That is, if an honest party has terminated WAVSS-MS-
Share, then n values, say (s′1, . . . , s

′
n) are fixed. All honest parties will terminate

the corresponding invocation of WAVSS-MS-Rec-Public with output (s′1, . . . , s
′
n).

Moreover if dealer D is honest then (s′1, . . . , s
′
n) is D’s shared secrets. It is easy

to see that event E occurs with probability at least 1− nε′ = 1− ε.
We now prove the properties of protocol Common-Coin-MB.

Lemma 9.23 All honest parties terminate Protocol Common-Coin-MB in con-
stant time.

Proof: We structure the proof in the following way. We first show that assuming
every honest party has A-casted ”Reconstruct Enabled”, every honest party
will terminate protocol Common-Coin-MB in constant time. Then we show that
there exists at least one honest party who will A-cast ”Reconstruct Enabled”.
Consequently, we prove that if one honest party A-casts ”Reconstruct Enabled”,
then eventually every other honest party will do the same.

So let us first prove the first statement. Assuming every honest party has A-
casted ”Reconstruct Enabled”, it will hold that eventually every honest party
Pi will receive n− t A-casts of ”Reconstruct Enabled” from n− t honest parties
and will invoke WAVSS-MS-Rec-Public corresponding to every party in Ti. Now
it remains to show that WAVSS-MS-Rec-Public protocols invoked by every honest
party Pi will be terminated eventually. It clear that a party Pk that is included in
Ti of some honest party Pi will be eventually included in Tj of every other honest
party Pj. Hence if Pi participates in WAVSS-MS-Rec-Publick, then eventually
every other honest party will do the same and thus WAVSS-MS-Rec-Publick will
be completed by every body. Now every honest party will terminate protocol

239

Figure 9.6: Multi-Bit Common Coin Protocol using Protocol WAVSS-MS-Share and
WAVSS-MS-Rec-Public as Black-Boxes

Protocol Common-Coin-MB(P, ε)

Code for Pi: — All parties execute this code

1. For j = 1, . . . , n, choose a random value xij and execute WAVSS-MS-
Share(Pi,P, (xi1, . . . , xin), ε′) where ε′ = ε

n
.

2. Participate in WAVSS-MS-Share(Pj ,P, (xj1, . . . , xjn), ε′) for every j ∈ {1, . . . , n}. We de-
note WAVSS-MS-Share(Pj ,P, (xj1, . . . , xjn), ε′) by WAVSS-MS-Sharej .

3. Upon terminating WAVSS-MS-Sharej , A-cast ”Pi terminated Pj”.

4. Create a dynamic set Ti. Add party Pj to Ti if ”Pk terminated Pj” is received from the
A-cast of at least n − t Pk’s. Wait until |Ti| = n − t. Then assign Ti = Ti and A-cast
”Attach Ti to Pi”. We say that the secrets {xji|Pj ∈ Ti} are the secrets attached to
party Pi.

5. Create a dynamic set Ai. Add party Pj to Ai if

(a) ”Attach Tj to Pj” is received from the A-cast of Pj and

(b) Tj ⊆ Ti.

Wait until |Ai| = n− t. Then assign Ai = Ai and A-cast ”Pi Accepts Ai”.

6. Create a dynamic set Si. Add party Pj to Si if

(a) ”Pj Accepts Aj” is received from the A-cast of Pj and

(b) Aj ⊆ Ai.

Wait until |Si| = n − t. Then A-cast ”Reconstruct Enabled”. Let Hi be the current
content of Ai.

Halt all the instances of WAVSS-MS-Sharej for all Pj who are are not yet included in
current Ti. Later resume all such instances of WAVSS-MS-Sharej ’s if Pj is included in Ti.

7. Wait to receive ”Reconstruct Enabled” from A-cast of at least n−t parties. Participate in
WAVSS-MS-Rec-Public(Pk,P, (xk1, . . . , xkn), ε′) for every Pk ∈ Ti. We denote WAVSS-MS-
Rec-Public(Pk,P, (xk1, . . . , xkn), ε′) by WAVSS-MS-Rec-Publick. Notice that as on when
new parties are added to Ti, Pi participates in corresponding WAVSS-MS-Rec-Public.

8. Let u = d0.87ne. Every party Pj ∈ Ai is associated with n − 2t values, say
Vj1, . . . , Vj(n−2t) in the following way. Let xkj for every Pk ∈ Tj has been recon-
structed. Let Xj be the n − t length vector consisting of {xkj | Pk ∈ Tj}. Then set
(vj1, . . . , vj(n−2t)) = Xj · V (n−t,n−2t), where V (n−t,n−2t) is an (n − t) × (n − 2t) Vander-
monde Matrix. Now Vjl = vjl mod u for l = 1, . . . , n − 2t (if NULL is reconstructed in
instance WAVSS-MS-Rec-Publick then some predefined values (x?

k1, . . . , x
?
kn) ∈ Fn will be

taken as the secrets; for details see Remark 8.28).

9. Wait until n − 2t values associated with all the parties in Hi are computed. Now for
every l = 1, . . . , n−2t if there exits a party Pj ∈ Hi such that Vjl = 0, then set 0 as the lth

binary output; otherwise set 1 as the lth binary output. Finally output the n − 2t length
binary vector.

Common-Coin-MB after executing the remaining steps of Common-Coin-MB such
as computing Vi1, . . . , Vi(n−2t) etc. Given event E, all invocations of WAVSS-
MS-Rec-Public terminate in constant time. The black box protocol for A-cast
terminates in constant time. This proves the first statement.

We next show that there is at least one honest party who will A-cast ”Reconstr-
uct Enabled”. So assume that Pi is the first honest party to A-cast ”Reconstruct
Enabled”. We will first show that this event will always take place. First notice
that till Pi A-cast ”Reconstruct Enabled”, no honest party would halt any in-

240

stance of WAVSS-MS-Share. By the termination property of WAVSS-MS-Share,
every honest party will eventually terminate the instance of WAVSS-MS-Share
of every other honest party. Hence for every honest party Pj, every honest Pi

will eventually receive A-cast of ”Pk terminated Pj” from n − t honest Pk’s.
Thus as there are at least n − t honest parties, for every honest party Pi, Ti

will eventually contain at least n− t parties and hence Pi will eventually A-cast
”Attach Ti to Pi”. Furthermore eventually Pi will receive ”Attach Tj to Pj”
from every honest Pj. Now it is obvious that every party Pk included in Tj will be
eventually included in Ti and thus Tj ⊆ Ti will hold good. Therefore, every honest
Pj will be eventually included in Ai. Thus for an honest Pi, Ai will eventually
be of size n − t and hence Pi will A-cast ”Pi Accepts Ai”. Now following the
similar argument as above, we can show that for an honest Pi, Si will eventually
be of size n− t and hence Pi will A-cast ”Reconstruct Enabled”. After this, Pi

may stop executing at most t instances of WAVSS-MS-Share corresponding to t
parties.

Now we show that every other honest party Pj will also A-cast ”Reconstruct
Enabled” eventually. It is easy to see that every party that is included in Ti

will also be included in Tj eventually. Now as Pi has already ensured that
Ti contains at least n − t parties, the same will hold good for Pj and Pj will
eventually A-cast ”Attach Tj to Pj”. Furthermore, as Pi has already received
”Attach Tj to Pj” from at least n − t parties and checked that Tj ⊆ Ti, even-
tually the same will hold for Pj and he will A-cast ”Pj Accepts Aj”. Following
similar argument as above, Pj will A-cast ”Reconstruct Enabled”.

Given event E, all invocations of WAVSS-MS-Share terminate in constant time.
The black box protocol for A-cast terminates in constant time. Thus every hon-
est party will A-cast ”Reconstruct Enabled” in constant time. Hence protocol
Common-Coin-MB terminates in constant time. 2

We now prove the following important lemma, which is at the heart of proto-
col Common-Coin-MB. The lemma shows that the specific adversary behavior as
specified in Fig. 9.5 is not applicable in protocol Common-Coin-MB.

Lemma 9.24 Let a corrupted party Pk is included in Tj of an honest Pj in
protocol Common-Coin-MB. Then the values shared by Pk in WAVSS-MS-Sharek

are completely independent of the values shared by the honest parties.

Proof: Let Pi be the first honest party to receive A-cast of ”Reconstruct
Enabled” from at least n − t parties and start participating in WAVSS-MS-Rec-
Public corresponding to each party in Ti. To prove the lemma, we first assert
that a corrupted party Pk will never be included in Tj of any honest Pj if Pk

invokes his WAVSS-MS-Share only after Pi starts participating in WAVSS-MS-
Rec-Public corresponding to each party in Ti. We prove this by contradiction.
Let Pi has received ”Reconstruct Enabled” from the set of parties B1 with
|B1| ≥ n − t. Moreover, assume Pk invokes his WAVSS-MS-Share only after Pi

received ”Reconstruct Enabled” from the parties in B1 and starts participating
in WAVSS-MS-Rec-Public corresponding to each party in Ti. Furthermore, assume
that Pk is still in Tj of an honest Pj. Now Pk ∈ Tj implies that Pj must have
received ”Pm terminated Pk” from A-cast of at least n − t Pm’s, say B2. Now
|B1∩B2| ≥ n−2t and thus the intersection set contains at least one honest party,
say Pα, as n = 3t + 1. This implies that honest Pα ∈ B1 and must have termi-
nated WAVSS-MS-Sharek before A-casting ”Reconstruct Enabled”. Otherwise

241

Pα would have halted the execution of WAVSS-MS-Sharek and would never A-cast
”Pα terminated Pk” (see step 6 in the protocol). This further implies that Pk

must have invoked WAVSS-MS-Sharek before Pi starts participating in WAVSS-
MS-Rec-Public protocols. But this is a contradiction to our assumption.

Hence if the corrupted Pk is included in Tj of any honest Pj then he must have
invoked WAVSS-MS-Sharek before any WAVSS-MS-Rec-Public has been invoked by
any honest party. Thus Pk will have no knowledge of the secrets shared by honest
parties when he chooses his own secrets for WAVSS-MS-Sharek. Hence the lemma.
2

Lemma 9.25 In protocol Common-Coin-MB, once some honest party Pj receives
”Attach Ti to Pi” from the A-cast of Pi and includes Pi in Aj, n−2t unique
values Vi1, . . . , Vi(n−2t) are fixed such that

1. Every honest party will associate Vi1, . . . , Vi(n−2t) with Pi, except with prob-
ability ε.

2. Each of Vi1, . . . , Vi(n−2t) is distributed uniformly over [0, . . . , u] and indepen-
dent of the values associated with the other parties.

Proof: Once some honest party Pj receives ”Attach Ti to Pi” from the A-cast
of Pi and includes Pi in Aj, n− 2t unique values Vi1, . . . , Vi(n−2t) are fixed. Here
Vi1, . . . , Vi(n−2t) are defined following the step 8 of the protocol. We now prove
the first part of the lemma. According to the lemma condition, Pi ∈ Aj. This
implies that Ti ⊆ Tj. So honest Pj will participate in WAVSS-MS-Rec-Publick

corresponding to each Pk ∈ Ti. Moreover, eventually Ti ⊆ Tk and Pi ∈ Ak will be
true for every other honest Pk. So, every other honest party will participate in
WAVSS-MS-Rec-Publick corresponding to each Pk ∈ Ti. Now by the property of
WAVSS-MS-Rec-Public, each honest party will reconstruct xki at the completion
of WAVSS-MS-Rec-Publick, except with probability ε′ (recall that each instance
of WAVSS-MS-Share, WAVSS-MS-Rec-Public has an associated error probability
of ε′ in termination). Thus, with probability 1 − (n − t)ε′ ≈ 1 − ε, every honest
party will associate Vi1, . . . , Vi(n−2t) with Pi.

We now prove the second part of the lemma. By Lemma 9.24, when Ti

is fixed, the values that are shared by corrupted parties in Ti are completely
independent of the values shared by the honest parties in Ti. Now, each Ti

contains at least n − 2t honest parties and every honest partys’ shared secrets
are uniformly distributed and mutually independent. Hence by the property of
Vandermonde matrix the values vi1, . . . , vi(n−2t) are completely random and thus
Vi1, . . . , Vi(n−2t) are uniformly and independently distributed over [0, . . . , u]. 2

Lemma 9.26 In protocol Common-Coin-MB, once an honest party A-casts
”Reconstruct Enabled”, there exists a set M such that:

1. For every party Pj ∈ M , some honest party has received ”Attach Tj to Pj”
from the A-cast of Pj.

2. When any honest party Pj A-casts ”Reconstruct Enabled”, then it will
hold that M ⊆ Hj.

3. |M | ≥ n
3
.

Proof: The proof directly follows from the proof of Lemma 9.7 2

242

Lemma 9.27 Let ε ≤ 0.2 and assume that all honest parties have terminated
protocol Common-Coin-MB. Then for every l ∈ {1, . . . , n− 2t}, all honest parties
output σl with probability at least 1

4
for every value of σl ∈ {0, 1}.

Proof: By Lemma 9.25, for every party Pi that is included in Aj of some honest
party Pj, there exists some fixed (yet unknown) values Vi1, . . . , Vi(n−2t) that are
distributed uniformly over [0, . . . , u] and with probability (1−ε) all honest parties
will associate those n− 2t with Pi. Consequently, with the same probability, all
the honest parties will agree on the value associated with each one of the parties
(as there are n instances of WAVSS-Rec-Public, each with an error probability of
ε′ = ε

n
). Now for every lth bit, we may run the same argument as given in the

proof of Lemma 9.8. 2

Theorem 9.28 Protocol Common-Coin-MB is a (1 − ε)-terminating, t-resilient
multi-bit common coin protocol with n − 2t = t + 1 bits output for n = 3t + 1
parties for every 0 < ε ≤ 0.2.

Proof: The Termination property (of Definition 9.22) follows from Lemma
9.23. The Correctness property (of Definition 9.22) follows from Lemma 9.24,
Lemma 9.25, Lemma 9.26 and Lemma 9.27. 2

Theorem 9.29 Protocol Common-Coin-MB privately communicates O(n5 log 1
ε
)

bits and A-casts O(n5 log 1
ε
) bits.

Proof: Easy. This follows from Theorem 8.29 (that states the communica-
tion complexity of WAVSS-MS in Section 8.4.4 in Chapter 8) and the fact that
Common-Coin-MB executes n instances of WAVSS-MS-Share and WAVSS-MS-Rec-
Public with ` = n secrets and having an error probability of ε

n
. 2

Above theorem clearly leads to the following corollary.

Corollary 9.29.1 The amortized communication cost of generating a single bit
output in protocol Common-Coin-MB is O(n4 log 1

ε
) bits of private communication

and A-cast.

The above corollary shows that the amortized communication complexity of gen-
erating single bit output in Common-Coin-MB is O(n2) times better than the
communication cost of Common-Coin. In the next section, we use Common-Coin-
MB to design an ABA protocol where the parties starts with a initial input of
n− 2t = t + 1 bits and reach agreement on t + 1 bits concurrently.

9.4.3 Final ABA Protocol for Achieving Agreement on t+1 Bits Con-
currently

Using our multi-bit common coin protocol, we now construct an ABA protocol,
which allows the parties to reach agreement on multiple bits. Specifically, we
design protocol ABA-MB, which attains agreement on n− 2t = t + 1 bits concur-
rently. So initially every party has a private input of n− 2t bits. Let the n− 2t
bit input of Pi be denoted by xi1, . . . , xi(n−2t).

The Intuition: The high level idea of the protocol ABA-MB is similar to protocol
ABA (given in Section 9.3.3). The ABA protocol proceeds in iterations where in

243

each iteration every party computes his ’modified input’, consisting of n−2t bits.
In the first iteration the ’modified input’ of party Pi is nothing but the private
input bits of Pi. In each iteration, every party executes the following protocols
sequentially:

1. n− 2t parallel instances of Vote protocol, one corresponding to each bit of
the ’modified input’;

2. A single instance of Common-Coin-MB.

Notice that the parties participate in the instance of Common-Coin-MB, only
after terminating all the n−2t instances of Vote protocol. Now corresponding to
lth bit of his ’modified input’, every party does the following computation: If the
party outputs (σl, 2) or (σl, 1) in the lth instance of Vote protocol, then he sets
the lth bit of his ’modified input’ for next iteration to σl, irrespective of the lth

bit which is going to be output in Common-Coin-MB. Otherwise, he sets the lth

bit of his ’modified input’ for next iteration to be the lth bit, which is the output
of Common-Coin-MB protocol. In case the party outputs (σl, 2), he A-casts (σl, l)
and once he receives t+1 A-casts for (σl, l), he concludes that agreement is reached
for the lth bit and therefore sets σl as the lth output bit and performs no further
computation related to lth bit except for participating in the Common-Coin-MB
instance of subsequent iterations. Finally, if a party concludes that agreement is
reached on all the t+1 bits, he terminates the protocol ABA-MB. So essentially, in
protocol ABA-MB, the parties parallely perform almost similar computation as in
ABA, corresponding to each of the t+1 bits. However, instead of executing n−2t
instances of Common-Coin protocol, the parties execute only a single instance of
Common-Coin-MB, which leads to the reduction in the communication complexity
of protocol ABA-MB. The protocol is formally given in Fig. 9.7.

Our protocol has ε error in Termination. To bound the error probability by
ε, the computation of ABA-MB is performed over a field F = GF (2κ), where κ
has to be determined using the relation ε ≥ 4n62−κ. This is derived from the fact
that in ABA-MB, Common-Coin-MB is invoked with ε

4
error probability and as

mentioned in subsection 9.4.2, ε ≥ n62−κ should hold to bound error probability
of Common-Coin-MB by ε. So here each element from the field is represented by
κ = log |F| = O(log 1

ε
) bits.

We now prove the properties of protocol ABA-MB.

Lemma 9.30 In protocol ABA-MB, if all the honest parties have input σ1, . . . , σn−2t,
then all the honest parties terminate and output σ1, . . . , σn−2t.

Proof: Directly follows from Lemma 9.16 and protocol steps. 2

Lemma 9.31 If some honest party terminates protocol ABA-MB with output
σ1, . . . , σn−2t, then all honest parties will eventually terminate ABA-MB with out-
put σ1, . . . , σn−2t.

Proof: To prove the lemma, it is enough to show that for every l = 1, . . . , n−2t,
if an honest party terminates ABA-MB with output σl, then all honest parties
will eventually terminate ABA-MB with output σl. However, this follows from
the proof of Lemma 9.17. 2

244

Figure 9.7: ABA Protocol to Reach Agreement on n− 2t = t + 1 Bits

Protocol ABA-MB(P, ε)

Code for Pi: — Every party executes this code

1. Set r = 0. For l = 1, . . . , n− 2t, set v1l = xil.

2. Repeat until terminating.

(a) Set r = r + 1. Participate in n− 2t instances of Vote protocol, with vrl

as the input in the lth instance of Vote protocol, for l = 1, . . . , n − 2t.
Set (yrl,mrl) as the output of the lth instance of Vote protocol.

(b) Wait to terminate all the n − 2t instances of Vote protocol. Then
invoke Common-Coin-MB(P, ε

4) and wait until its termination. Let
cr1, . . . , cr(n−2t) be the output of Common-Coin-MB.

(c) For every l ∈ {1, . . . , n − 2t} such that agreement on lth bit is not
achieved, do the following in parallel:

i. If mrl = 2, then set v(r+1)l = yrl and A-cast
(”Terminate with v(r+1)l”, l). Participate in only one more
instance of Vote corresponding to lth bit with v(r+1)l as the input.
Participate in only one more instance of Common-Coin-MB if
(”Terminate with v(r+1)l”, l) is A-casted for all l = 1, . . . , n− 2t.

ii. If mrl = 1, set v(r+1)l = yrl.
iii. Otherwise, set v(r+1)l = crl.

(d) Upon receiving (”Terminate with σl”, l) from the A-cast of at least t+1
parties, for some value σl, output σl as the lth bit and terminate all the
computation regarding lth bit. In this case, we say that agreement on
lth bit is achieved.

(e) Terminate ABA-MB when agreement is achieved on all l bits, for l =
1, . . . , n− 2t.

Lemma 9.32 If all honest parties have initiated and completed some iteration
k, then with probability at least 1

4
, all honest parties will have same value for

’modified input’ v(k+1)l, for every l = 1, . . . , n− 2t.

Proof: Follows from the proof of Lemma 9.18. 2

We now recall event Ck and C from section 9.3.3. Let Ck be the event that each
honest party completes all the iterations he initiated up to (and including) the
kth iteration (that is, for each iteration 1 ≤ r ≤ k and for each party P , if P
initiated iteration r then he computes v(r+1)l for every lth bit). Let C denote the
event that Ck occurs for all k.

Lemma 9.33 Conditioned on event C, all honest parties terminate protocol ABA-
MB in constant expected time.

Proof: Let the first instance of A-cast of (”Terminate with σl”, l) is initiated
by some honest party in iteration τl. Following Lemma 9.17, every other honest

245

party will A-cast (”Terminate with σl”, l) in iteration τl + 1. Now it is true that
agreement on lth bit will be achieved within constant time after (τl+1)th iteration
(this is because the A-casts can be completed in constant time). Let m be such
that τm is the maximum among τ1, . . . , τn−2t. We first show that all honest parties
will terminate protocol ABA-MB within constant time after some honest party
initiates the first instance of A-cast (”Terminate with σm”,m). Since the first
instance of A-cast of (”Terminate with σm”,m) is initiated by some honest party
in iteration τm, all the parties will participate in Vote and Common-Coin-MB in
iteration τm + 1. Both the executions can be completed in constant time. More-
over, by Lemma 9.17 every honest party will A-cast (”Terminate with σm”,m)
by the end of iteration τm + 1. The A-casts can be completed in constant time.
Moreover, it is to be noted that for all other bits l, agreement will be reached
either before reaching agreement on mth bit or within constant time of reaching
agreement on mth bit. Hence all honest parties will terminate ABA-MB within
constant time after the first instance of A-cast of (”Terminate with σm”,m) is
initiated by some honest party in iteration τm.

Now conditioned on event C, all honest parties terminate each iteration in
constant time. So it is left to show that E(τm|C) is constant. We have

Prob(τm > k|Ck) ≤ Prob(τm 6= 1|Ck)×
. . . ×Prob(τm 6= k ∩ . . . ∩ τm 6= 1|Ck)

From the Lemma 9.32, it follows that each one of the k multiplicands of the
right hand side of the above equation is at most 3

4
. Thus we have Prob(τm >

k|Ck) ≤ (3
4
)k. Now simple calculation gives E(τm|C) ≤ 16. 2

Lemma 9.34 Prob(C) ≥ (1− ε).

Proof: Follows from the proof of Lemma 9.20. 2

Summing up, we have the following theorem.

Theorem 9.35 (ABA for t + 1 Bits) Let n = 3t + 1. Then for every 0 < ε ≤
0.2, protocol ABA-MB is a t-resilient, (ε, 0)-ABA protocol for n parties. Given
the parties terminate, they do so in constant expected time. The protocol allows
the parties to reach agreement on t + 1 bits simultaneously and involves private
communication and A-cast of O(n5 log 1

ε
) bits.

Corollary 9.35.1 Protocol ABA-MB requires an amortized communication com-
plexity of O(n4 log 1

ε
) bits (private communication plus A-cast) for reaching agree-

ment on a single bit.

9.5 Conclusion and Open Problems

We have presented a novel, constant expected time, optimally resilient, (ε, 0)-
ABA protocol whose communication complexity is significantly better than the
so far best known existing ABA protocols of [39, 1] (though the ABA protocol
of [1] has a strong property of being almost surely terminating) with optimal
resilience. Here we summarize the key factors that have contributed to the gain
in the communication complexity of our ABA protocol:

246

• A shorter route: ICP → AWSS → AVSS → ABA,

• Improving each of the building blocks by introducing new techniques and

• By exploiting the advantages of dealing with multiple secrets concurrently
in each of these blocks.

A few interesting open problems that are left here are:

Open Problem 15 How to further improve the communication complexity of
ABA protocols with optimal resilience?

Open Problem 16 Can we design an almost surely terminating, optimally re-
silient, constant expected time ABA protocol?

9.6 APPENDIX: Analysis of the Communication Com-
plexity of the ABA Scheme of [39, 35]

The communication complexity analysis of the ABA protocol of [39, 35] was not
reported anywhere so far. So we have carried out the same at this juncture. Since
AVSS is the main building block of the protocol, we require to know the com-
munication complexity of the AVSS of [39, 35]. The analysis of communication
complexity of the AVSS of [39, 35] was performed in section 8.7 of Chapter 8.
We recall the complexity figures here:

• AVSS-Share protocol of [39] requires a communication complexity of
O(n9(log 1

ε
)4) bits and A-cast of O(n9(log 1

ε
)2 log(n)) bits.

• AVSS-Rec protocol requires a communication complexity of O(n6(log 1
ε
)3)

bits and A-cast of O(n6(log 1
ε
) log(n)) bits.

Now in the common coin protocol, each party in P acts as a dealer and invokes
n instances of AVSS-Share to share n secrets. So the communication complexity
of the common protocol of [39] is O(n11(log 1

ε
)4) bits of private communication

and O(n11(log 1
ε
)2 log(n)) bits of A-cast. Now in the ABA protocol of [39], AVSS-

Share protocol is called for C = O(1) expected time. Hence the ABA protocol
of [39] involves a private communication of O(n11(log 1

ε
)4) bits and A-cast of

O(n11(log 1
ε
)2 log(n)) bits.

247

Chapter 10

Efficient Statistical AMPC with
Optimal Resilience

In this chapter, we design a statistical AMPC protocol with optimal resilience i.e
n = 3t + 1. Our protocol privately communicates O(n5(log 1

ε
)) bits per multipli-

cation gate, where ε is the error probability. There is only one optimally resilient
statistical AMPC protocol in the literature reported in [21]. The protocol of
[21] privately communicates Ω(n11(log 1

ε
)4) bits and A-casts Ω(n11(log 1

ε
)2 log(n))

bits per multiplication gate. Thus our AMPC protocol significantly improves the
communication complexity of only known optimally resilient statistically secure
AMPC protocol of [21].

As a key tool of our AMPC, we design a new primitive called Asynchronous
Complete Secret Sharing (ACSS). ACSS uses the strong statistical AVSS pre-
sented in Chapter 8 as a vital building block. Our ACSS may be used in many
other applications and thus is of independent interest.

10.1 Introduction

The MPC problem has been studied extensively over synchronous networks [3, 5,
6, 7, 20, 12, 14, 9, 36, 41, 48, 49, 52, 95, 93, 98, 100, 102, 11, 101, 103, 104, 120, 138,
126, 153]. However, MPC in asynchronous network has got comparatively less
attention, due to its inherent hardness. Since asynchronous networks model real
life networks like Internet more appropriately than synchronous networks, fun-
damental problems like MPC is worthy of deep investigation over asynchronous
networks.

10.1.1 Network and Adversary Model

This is same as described in section 8.1.1. Recall that the set of parties is denoted
by P = {P1, . . . , Pn} and t out of the n parties can be under the influence of a
computationally unbounded Byzantine (active) adversary, denoted as At. We
emphasize that we use n = 3t + 1 in this chapter.

10.1.2 Definitions

Asynchronous MPC or AMPC: An AMPC protocol allows the parties in
P to securely compute an agreed function f , even in the presence of At. More

248

specifically, assume that the agreed function f can be expressed as f : Fn → Fn

and party Pi has input xi ∈ F. Then the following should hold:

1. Correctness: At the end of the protocol, each honest Pi gets yi ∈ F, where
(y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior of At.

2. Secrecy: Moreover, At should not get any information about the input
and output of the honest parties, other than what can be inferred from the
input and output of the corrupted parties.

3. Termination: Every honest party should eventually terminate the pro-
tocol.

In any general AMPC protocol, the function f is specified by an arithmetic
circuit over F, consisting of input, linear (e.g. addition), multiplication, random
and output gates. We denote the number of gates of these types in the circuit by
cI , cA, cM , cR and cO respectively. Among all the different type of gates, evaluation
of a multiplication gate requires the maximum communication complexity. So
the communication complexity of any general AMPC protocol is usually given in
terms of the communication complexity per multiplication gate [14, 13, 12, 52,
106].

Definition 10.1 A statistically secure (statistical in short) AMPC protocol in-
volves a negligible error probability of ε in correctness and/or termination.
However, note that there is no compromise in secrecy property.

Typically, VSS is used as a tool for generating t-(1d)-sharing (for the definition
of t-(1d)-sharing see Definition 6.12) of secret. That is, at the end of sharing
phase, each honest party holds his share of the secret such that shares of all
honest parties constitute distinct points on a degree-t polynomial. Such VSS
protocols are reported in [20, 109]. On the other hand, there are VSS schemes
that do not generate t-(1d)-sharing of secret at the end of sharing phase. They
only ensure that a unique secret is shared / committed (during sharing phase)
which will be uniquely reconstructed during reconstruction phase. Such schemes
are presented in [73, 39]. Even the weak statistical AVSS and strong statistical
AVSS protocols presented in Chapter 8 do not generate t-(1d)-sharing of secret(s).
So we call a VSS scheme as Complete Secret Sharing (CSS) scheme if it generates
t-(1d)-sharing of secret(s). More formally, we have the following definition for
Statistical Asynchronous Complete Secret Sharing (ACSS):

Definition 10.2 (Statistical ACSS) Let (Sh, Rec) be a pair of protocols in
which a dealer D ∈ P shares a secret s using Sh. We say that (Sh1, Rec2) is
a t-resilient statistical ACSS scheme if it satisfies termination, correctness
and secrecy property of strong statistical AVSS (see Definition 8.2). In addi-
tion, ACSS achieves the following Completeness property at the end of Sh with
probability at least (1− ε):

• Completeness: If some honest party terminates Sh, then there exists a
random degree-t polynomial f(x) over F, with f(0) = s′ such that each
(honest) party Pi ∈ P will eventually hold his share si = f(i) of secret s′.
Moreover, if D is honest, then s′ = s.

1Sh is the protocol for sharing phase of ACSS scheme
2Rec is the protocol for reconstruction phase of ACSS scheme

249

The above definition of statistical ACSS can be extended for secret S contain-
ing multiple elements (say ` with ` > 1) from F.

Remark 10.3 (ACSS with Private Reconstruction) The definition of ACSS
as given above consider “public reconstruction”, where all parties publicly recon-
struct the secret in Rec. A common variant of the definition consider “private
reconstruction”, where only some specific party, say Pα ∈ P, is allowed to recon-
struct the secret in Rec. As per our requirement in this chapter, we present our
ACSS schemes with both private as well as public reconstruction.

10.1.3 Relevant History of Statistical Asynchronous MPC

From [21], statistically secure AMPC is possible iff n ≥ 3t+1. In this chapter, we
concentrate on statistical AMPC with optimal resilience, i.e., with n = 3t+1. The
communication complexity per multiplication gate of existing statistical AMPC
protocols are given in Table 10.1.

Table 10.1: Existing Statistical AMPC Protocols.

Reference Resilience Communication Complexity in bits
Per Multiplication Gate

[21] t < n/3 (optimal) Private– Ω(n11(log 1
ε)

4);
A-cast– Ω(n11(log 1

ε)
2 log(n))

[135] t < n/4 (non-optimal) Private– O(n4(log 1
ε))

From Table 10.1, we find that the only known statistical AMPC with optimal
resilience (i.e., with n = 3t+1), involves very high communication complexity (the
communication complexity analysis of the AMPC of [21] was not done earlier and
for the sake of completeness, we carry out the same in section 10.4). Recently [51]
presented an efficient MPC protocol over networks that have a synchronization
point (the network is asynchronous before and after the synchronization point)
and hence we do not compare it with our AMPC protocol, which is designed over
completely asynchronous settings. Also we do not compare our protocol with
the known cryptographically secure AMPC (where the adversary has bounded
computing power) protocols presented in [105] and [106].

10.1.4 Contribution of This Chapter

We design an optimally resilient statistical AMPC protocol that privately com-
municates O(n5(log 1

ε
)) bits per multiplication gate. Thus our AMPC protocol

significantly improves the communication complexity of only known optimally
resilient statistically secure AMPC protocol of [21].

For designing our AMPC protocol, we need a tool to generate t-(1d)-sharing
of secrets. For this we propose an ACSS scheme which in turn uses our strong
statistical AVSS protocol presented in Chapter 8.

Our AMPC protocol has error probability of ε. To bound the error probability
by ε, all our protocols work over a finite field F = GF (2κ), where κ has to be
determined using the relation ε ≥ 2n72−κ max(4n, κ). Each field element can
be represented by κ = O(log 1

ε
) bits (this can be derived using n = O(log 1

ε
)).

250

In order to bound the error probability of our AMPC protocol by some specific
value of ε, we find out the minimum value of κ that satisfies the relation between
κ and ε. The value for κ will consequently determine the field F over which the
protocol should work.

10.1.5 The Road-map

Section 10.2 presents our ACSS protocol in detail (for simplicity, subsection 10.2.2
presents ACSS sharing single secret and Section 10.2.3 extends the ACSS for
multiple secrets). Section 10.3 talks about the primitives that are used for our
AMPC. Some of the primitives are constructed using our ACSS protocol. Section
10.4 presents a discussion on the approaches used in the AMPC of [21] (the
protocol with which we compare our protocol) and the AMPC presented in this
chapter. Next section 10.5 describes another important protocol that is to be
used in our AMPC and that uses ACSS as black box. Subsequently, sections
10.6, 10.7, 10.8 and 10.9 are dedicated for our AMPC protocol. Lastly, this
chapter ends with concluding remark and a set of interesting open questions in
section 10.10

10.2 Statistical ACSS

For the sake of simplicity, we first present our ACSS protocol sharing a single
secret and then extend the protocol for multiple (i.e `) secrets. We will show that
dealing with multiple secrets concurrently in our ACSS protocol provides with
better communication complexity than multiple executions of protocol dealing
with single secret. Prior to our discussion, we present the existing tool that will
be used in our ACSS protocols.

10.2.1 Tool Used for our Statistical ACSS

Apart from A-cast that was recalled in Chapter 7, we require the following tool
for our ACSS.

Online Error Correction (OEC): Let s be a secret which is t-(1d)-shared
among the parties in P by a degree-t polynomial f(x). So f(0) = s. Let Pα ∈ P
be a specific party, who wants to reconstruct s. Towards this every party Pi

sends his share si of s to Pα. The shares may reach Pα in any arbitrary order.
Moreover, up to t of the shares may be incorrect or missing. In such a situation, by
applying OEC on the received si’s, party Pα can get the interpolation polynomial
f(x) and reconstruct the secret s = f(0) in an online fashion. The OEC method
uses the properties of Reed-Solomon error correcting codes [119] and enables
Pα to recognize when the received shares define a unique degree-t interpolation
polynomial.

Since OEC is a very well known asynchronous primitive, we avoid giving
complete details here. The interested reader can refer [35] for complete details.

10.2.2 Statistical ACSS for Sharing a Single Secret

So we now present an ACSS scheme called ACSS, which consists of sub-protocols
(ACSS-Share, ACSS-Rec-Private, ACSS-Rec-Public). Protocol ACSS-Share allows

251

D to generate t-(1d)-sharing of a secret s ∈ F. Given t-(1d)-sharing of secret
s, protocol ACSS-Rec-Private allows a specific party in P , say Pα, to privately
reconstruct s. On the other hand, ACSS-Rec-Public allows every party in P to
reconstruct D’s committed secret s.

Protocol ACSS uses the strong statistical AVSS protocol called SAVSS (consist-
ing of sub-protocols (SAVSS-Share, SAVSS-Rec-Private)) for sharing single secret,
presented in Sections 8.5.1 and 8.5.2 of Chapter 8. Notice that though protocol
SAVSS (and also SAVSS-MS) is an AVSS scheme, it is not an ACSS scheme as
it does not achieve completeness property. The reason is that only the hon-
est parties in V CORE receive their respective shares of the committed secret in
protocol SAVSS-Share. But it may happen that potentially t honest parties are
not present in V CORE. This may cause that all the honest parties do not hold
their shares of committed secret at the end of SAVSS-Share.

The Intuition: The high level idea of ACSS-Share is similar to SAVSS-Share.
But now in ACSS-Share, we use SAVSS-Share as a black-box, in place of AWSS-
Share. It is this change which helps ACSS to achieve completeness property. We
now show that SAVSS-Share which uses AWSS-Share as a black box may not
output t-(1d)-sharing of D’s committed secret. Subsequently, we also point out
how ACSS-Share overcome this problem by using SAVSS-Share as a black-box.

So let us consider protocol SAVSS-Share when D is corrupted and also assume
that D is committed to a unique secret and thus a unique bi-variate polynomial
F (x, y) of degree-(t, t). But in spite of this, we could only ensure that every hon-
est Pi who A-casts Matched-Row signal, holds the corresponding row polynomial
fi(x) = F (x, i) (recall that we referred fi(x) polynomials as row polynomials and
gi(y) = F (i, y) polynomials as column polynomials; see Section 8.5) and hence
his share fi(0) of the secret s = F (0, 0). However, it is possible that there are
potential t honest Pi’s who have not A-casted Matched-Row signal due to the re-
construction of NULL from Pi-weak-private-reconstruction during Verification
of D’s Commitment Phase. Also a corrupted D may not even pass on F (x, i)
or may pass some wrong polynomial other than F (x, i) to these Pi’s. So in this
case t potential honest parties may not hold shares of secret s.

On the other hand, SAVSS-Share is used as a black-box in ACSS-Share. This
overcomes the above problem because now D would commit each fi(x) using
SAVSS-Share, instead of AWSS-Share. So once it is ensured that D is committed to
a unique bi-variate polynomial F (x, y) of degree-(t, t), by the property of SAVSS-
Rec-Private, each honest Pi ∈ P would successfully reconstruct fi(x) = F (x, i)
and hence his share fi(0) of the secret s = F (0, 0). Protocol ACSS-Share is
provided in Fig. 10.1. Protocol ACSS-Rec-Private and ACSS-Rec-Public uses OEC
(Online Error Correction method) and are presented in Fig. 10.2.

To bound the error probability by ε, the computation of ACSS is performed
over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n5κ2−κ. This is derived from the fact that in ACSS, protocol SAVSS is in-
voked with ε

n
error probability and as mentioned in subsection 8.5.2, ε ≥ n4κ2−κ

should hold to bound error probability of SAVSS by ε. So here each element from
the field is represented by κ = log |F| = O(log 1

ε
) bits.

We now prove the properties of ACSS.

Lemma 10.4 In protocol ACSS-Share:

252

Figure 10.1: Protocol ACSS-Share for Sharing Secret s with n = 3t + 1

Protocol ACSS-Share(D,P, s, ε)

i. Distribution by D: Code for D – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that
F (0, 0) = s.

2. For i = 1, . . . , n, send gi(y) = F (i, y) to party Pi. We call gi(y) as ith

column polynomial.

3. For i = 1, . . . , n, initiate SAVSS-Share(D,P, fi(x), ε′) (See Notation 8.41
for the syntax) for sharing fi(x), where fi(x) = F (x, i) and ε′ = ε

n . We
call fi(x) as ith row polynomial. We refer SAVSS-Share(D,P, fi(x), ε′) by
SAVSS-Sharei.

ii. Code for Pi: – Every party in P, including D, executes this code

1. Wait to receive degree-t column polynomial gi(y) from D.

2. Participate in SAVSS-Sharej for all j = 1, . . . , n.

3. If fj(i) is received from D during SAVSS-Sharej then check whether
gi(j) = fj(i). When the test passes for all j = 1, . . . , n, then A-cast
Matched-Column.

iii. CCORE Construction: Code for D – Only D executes this code.

1. For i = 1, . . . , n, construct V CORE for SAVSS-Share(D,P, fi(x), ε′). De-
note it by V COREi.

2. For i = 1, . . . , n, keep updating V COREi even after |V COREi| = 2t + 1.
Wait to obtain CCORE = ∩n

i=1V COREi of size at least 2t + 1 such that
Matched-Column is received from A-cast of every Pj ∈ CCORE .

3. A-cast CCORE.

iv. CCORE Verification & Agreement: Code for Pi

1. Wait to receive CCORE from the A-cast of D.

2. Check whether CCORE is a valid V CORE for SAVSS-Sharej for every
j = 1, . . . , n (by following the steps 2-4 as specified under [VCORE
Verification & Agreement on VCORE: Code for Pi] in code Re-
commitment of SAVSS-Share). If yes then wait to receive Matched-Column
from A-cast of every Pj ∈ CCORE and then accept CCORE.

v. Pj-private-reconstruction of fj(x) for j = 1, . . . , n: Code for Pi

1. If CCORE is a valid V CORE for SAVSS-Sharej for every j =
1, . . . , n, then participate in SAVSS-Rec-Private(D,P, fj(x), Pj , ε

′), for
j = 1, . . . , n, to enable Pj-private-reconstruction of fj(x). We refer
SAVSS-Rec-Private(D,P, fj(x), Pj , ε

′) as SAVSS-Rec-Privatej . Notice that
CCORE is used as VCORE in each SAVSS-Rec-Privatej , for j = 1, . . . , n.

2. At the completion of SAVSS-Rec-Privatei, obtain degree-t polynomial fi(x).

3. Assign si = fi(0). Output si as ith share of s and terminate ACSS-Share.

253

Figure 10.2: Protocol ACSS-Rec-Private and ACSS-Rec-Public for Reconstructing Secret
s privately and publicly (respectively) with n = 3t + 1

ACSS-Rec-Private(D,P, s, Pα, ε): Pα-private-reconstruction of s:

i. Code for Pi: – Every party in P executes this code.

1. Privately send si, the ith share of s to Pα.

ii. Code for Pα: – Only Pα ∈ P executes this code.

1. Apply OEC on received shares of s to reconstruct s and terminate
ACSS-Rec-Private.

ACSS-Rec-Public(D,P, s, ε): Public reconstruction of s:

i. Code for Pi – Every party in P executes this code.

1. Privately send si, the ith share of s to every party Pj ∈ P.

2. Apply OEC on received shares of s to reconstruct s and terminate
ACSS-Rec-Public.

1. If D is honest then eventually he will generate a CCORE of size 2t + 1
except with probability ε. Moreover, each honest party will eventually agree
on CCORE.

2. If D is corrupted and some honest party has accepted the CCORE received
from the A-cast of D, then every other honest party will eventually accept
CCORE.

Proof: In ACSS-Share if D is honest then from the proof of Lemma 8.34, an hon-
est party may be added in each V COREi except with probability ε′ = ε

n
(recall

that each instance of SAVSS-Share has an associated error probability of ε′ = ε
n
).

So even though there are no common corrupted parties among V COREi’s, even-
tually all the honest parties will be common among n V COREi’s with proba-
bility at least 1 − (2t + 1)ε′ ≈ 1 − ε. Moreover, each honest Pi will eventually
A-cast Matched-Column signal, as fj(i) = gi(j) will hold for all j = 1, . . . , n
when D is honest. It may be possible that some corrupted parties are also
added in each V COREi. Moreover those corrupted parties may even A-cast
Matched-Column signal. So except with probability ε, at some point of time
CCORE = ∩n

i=1V COREi will contain at least 2t + 1 parties who have A-casted
Matched-Column signal. So honest D will find CCORE and A-cast the same.
Now it is easy to see that each honest party will accept CCORE after receiving
it from A-cast of D and verifying its’ validity after following steps in iv(2) of
protocol ACSS-Share.

If D is corrupted and some honest party, say Pi has accepted CCORE received
from the A-cast of D, then Pi must have checked the condition specified in iv(2)
of protocol ACSS-Share. The same will hold for all other honest parties who will
eventually accept CCORE. 2

254

Lemma 10.5 In ACSS-Share, if the honest parties agree on CCORE, then it
implies that D is committed to a unique degree-(t, t) bivariate polynomial F (x, y)
such that each row polynomial fi(x) committed by D in SAVSS-Sharei satisfies
F (x, i) = fi(x) and the column polynomial gj(y) held by every honest Pj ∈
CCORE satisfies F (j, y) = gj(y). Moreover if D is honest then F (x, y) =
F (x, y).

Proof: The proof follows from the same argument as given in Lemma 8.31. 2

Lemma 10.6 In ACSS-Share, if the honest parties agree on CCORE, then even-
tually all honest parties will get their share of D’s committed secret s, except with
probability at most ε. That is, protocol ACSS-Share will generate t-(1d)-sharing
of s except with probability ε. Moreover if D is honest then s = s.

Proof: From the previous lemma, if the honest parties agree on CCORE then it
implies that D is committed to a unique degree-(t, t) bivariate polynomial F (x, y)
such that each row polynomial fi(x) committed by D in SAVSS-Share(D,P , fi(x), ε′)
satisfies F (x, i) = fi(x). Now from the properties of SAVSS-Rec-Private, Pi-
private-reconstruction of fi(x) will enable honest Pi to obtain fi(x) and hence
his share fi(0), except with probability ε′. As there are 2t + 1 honest parties in
P , all honest parties will obtain their share of the secret s = F (0, 0), except with
probability (2t + 1)ε′ ≈ ε. Hence the secret s = F (0, 0) will be t-shared by the
degree-t polynomial F (x, 0), except with probability at most ε. 2

Lemma 10.7 (ACSS-Termination) Protocol ACSS satisfies termination prop-
erty of Definition 10.2.

Proof: Termination 1 and Termination 2 follows from Lemma 10.4 and
Lemma 10.6. Termination 3 follows from Lemma 10.6 and properties of OEC.
2

Lemma 10.8 (ACSS-Secrecy) Protocol ACSS satisfies secrecy property of Def-
inition 10.2.

Proof: Here we have to consider the case when D is honest. Without loss of
generality, assume that P1, . . . , Pt are the parties under the control of At. So
during ACSS-Share, At will know f1(x), . . . , ft(x), g1(y), . . . , gt(y) and t points on
ft+1(x), . . . , fn(x). From the secrecy property of SAVSS-Share (Lemma 8.37), At

will have no information about ft+1(0), . . . , fn(0) during the execution of corre-
sponding instances of SAVSS-Share. So from the properties of bi-variate polyno-
mial of degree-(t, t) [46], the adversary At will lack one more point to uniquely
interpolate F (x, y) during ACSS-Share. Hence hence the secret s = F (0, 0) will
remain information theoretically secure from At. 2

Lemma 10.9 (ACSS-Correctness) Protocol ACSS satisfies correctness prop-
erty of Definition 10.2.

Proof: Follows from Lemma 10.4, Lemma 10.5, Lemma 10.6 and from the
properties of OEC. 2

Lemma 10.10 (ACSS-Completeness) Protocol ACSS satisfies completeness
property of Definition 10.2.

255

Proof: Follows from Lemma 10.6. 2

Theorem 10.11 Protocol ACSS consisting of (SAVSS-Share, ACSS-Rec-Private,
AVSS-Rec-Public) constitutes a valid statistical ACSS scheme for sharing a single
secret.

Proof: Follows from Lemma 10.7, Lemma 10.9, Lemma 10.8 and Lemma 10.10.
2

Theorem 10.12 (Communication Complexity of ACSS)

• Protocol ACSS-Share privately communicates O(n5(log 1
ε
)2) bits and A-casts

O(n4 log n) bits.

• Protocol ACSS-Rec-Private incurs a private communication of O(n log 1
ε
)

bits.

• Protocol ACSS-Rec-Public incurs a private communication of O(n2 log 1
ε
)

bits.

Proof: The communication complexity of ACSS-Share follows from Theorem
8.42 (that states the communication complexity of SAVSS) and the fact that in
ACSS-Share, there are n executions of SAVSS-Share and SAVSS-Rec-Private, each
with an error parameter of ε

n
. In ACSS-Rec-Private, each party sends his share to

Pα, incurring a total communication cost of O(n log 1
ε
) bits. In ACSS-Rec-Public,

each party sends his share to every other party, incurring a total communication
cost of O(n2 log 1

ε
) bits. 2

10.2.3 Statistical ACSS for Sharing Multiple Secrets

We now present an ACSS scheme ACSS-MS, consisting of sub-protocols (ACSS-
MS-Share, ACSS-MS-Rec-Private, ACSS-MS-Rec-Public). Protocol ACSS-MS-Share
allows D to generate t-(1d)-sharing of secret S = (s1, . . . , s`), consisting of ` > 1
elements from F. While D can ACSS-share S using ` executions of ACSS-Share,
one for each sl ∈ S, with a private communication of O((`n5 log 1

ε
) log 1

ε
) bits

and A-cast of O(`n4 log(n)) bits, protocol ACSS-MS-Share achieves the same
task with a private communication of O((`n4 + n5 log 1

ε
) log 1

ε
) bits and A-cast

of O(n4 log(n)) (independent of `) bits. This shows that executing a single in-
stance of ACSS-MS dealing with multiple secrets concurrently is advantageous
over executing multiple instances of ACSS dealing with single secret. Protocol
ACSS-MS-Share is provided in Fig. 10.3. Protocol ACSS-MS-Rec-Private and
ACSS-MS-Rec-Public are presented in Fig. 10.4.

Protocol ACSS uses the strong statistical AVSS protocol called SAVSS-MS
(consisting of sub-protocols (SAVSS-MS-Share, SAVSS-MS-Rec-Private)) for shar-
ing multiple secrets, presented in Sections 8.5.3 and 8.5.4 of Chapter 8.

To bound the error probability by ε, the computation of ACSS-MS is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n5κ2−κ. This is derived from the fact that in ACSS-MS, protocol SAVSS-MS
is invoked with ε

n
error probability and as mentioned in Section 8.5.4, ε ≥ n4κ2−κ

should hold to bound error probability of SAVSS-MS by ε. So here each element
from the field is represented by κ = log |F| = O(log 1

ε
) bits.

The proof of the properties of ACSS-MS can be directly extended from the
proof of the properties of ACSS.

256

Figure 10.3: Protocol ACSS-MS-Share for Sharing Secret S Containing ` Elements with
n = 3t + 1

Protocol ACSS-MS-Share(D,P, S, ε)

i. Distribution by D: Code for D: – Only D executes this code

1. Select ` random degree-(t, t) bivariate polynomials F 1(x, y), . . . , F `(x, y) such that
F l(0, 0) = sl for l = 1, . . . , `.

2. For i = 1, . . . , n, send gl
i(y) = F l(i, y) for l = 1, . . . , ` to Pi. We call polynomials

g1
i (y), . . . , g`

i (y) as ith column polynomials.

3. For i = 1, . . . , n, initiate SAVSS-MS-Share(D,P, (f1
i (x), . . . , f `

i (x)), ε′) (See Nota-
tion 8.45 for the syntax) for sharing (f1

i (x), . . . , f `
i (x)), where f l

i (x) = F l(x, i) and
ε′ = ε

n
. We call polynomials f1

i (x), . . . , f `
i (x) as ith row polynomials. We refer

SAVSS-MS-Share(D,P, (f1
i (x), . . . , f `

i (x)), ε′) as SAVSS-MS-Sharei

ii. Code for Pi: – Every party in P, including D, executes this code

1. Wait to receive degree-t polynomials gl
i(y) for l = 1, . . . , ` from D.

2. Participate in SAVSS-MS-Sharej for all j = 1, . . . , n.

3. If (f1
j (i), . . . , f `

j (i)) is received from D during SAVSS-MS-Sharej then check whether
gl

i(j) = f l
j(i) holds for all l = 1, . . . , `. When the test passes for all j = 1, . . . , n, then

A-cast Matched-Column.

iii. CCORE Construction: Code for D – Only D executes this code.

1. For i = 1, . . . , n, construct V CORE for SAVSS-MS-Sharei. Denote it by V COREi.

2. For i = 1, . . . , n, keep updating V COREi, even after |V COREi| = 2t + 1. Wait to
obtain CCORE = ∩n

i=1V COREi of size at least 2t + 1 such that Matched-Column

is received from A-cast of every Pj ∈ CCORE.

3. A-cast CCORE.

iv. CCORE Verification & Agreement: Code for Pi – Every party including D will execute
this code.

1. Wait to receive CCORE from the A-cast of D.

2. Check whether CCORE is a valid V CORE for SAVSS-MS-Sharej for every j =
1, . . . , n (by following the steps 2-4 as specified under [VCORE Verification &
Agreement on VCORE: Code for Pi] in protocol Re-commitment-MS).

v. Pj-private-reconstruction of (f1
j (x), . . . , f `(x)) for j = 1, . . . , n: Code for Pi

1. If CCORE is a valid V CORE for SAVSS-MS-Sharej for every j = 1, . . . , n,
then participate in SAVSS-MS-Rec-Private(D,P, (f1

j (x), . . . , f `
j (x)), Pj , ε

′), for j =
1, . . . , n, to enable Pj-private-reconstruction of (f1

j (x), . . . , f `
j (x)). We refer

SAVSS-MS-Rec-Private(D,P, (f1
j (x), . . . , f `

j (x)), Pj , ε
′) by SAVSS-MS-Rec-Privatej .

Notice that CCORE is used as VCORE in each SAVSS-MS-Rec-Privatej , for j =
1, . . . , n.

2. At the completion of SAVSS-MS-Rec-Privatei, obtain degree-t polynomials
(f1

i (x), . . . , f `
i (x)).

3. Assign sl
i = f l

i (0). Output (s1
i , . . . , s

`
i) as ith share of (s1, . . . , s`) and terminate

ACSS-MS-Share.

Theorem 10.13 Protocol ACSS-MS consisting of sub-protocols (ACSS-MS-Share,
ACSS-MS-Rec-Private, ACSS-MS-Rec-Public) is a valid statistical ACSS scheme
for sharing ` ≥ 1 secrets.

Theorem 10.14 (Communication Complexity of ACSS-MS)

257

Figure 10.4: Protocol ACSS-MS-Rec-Private and ACSS-MS-Rec-Public for Reconstruct-
ing Secret S privately and publicly (respectively) with n = 3t + 1

ACSS-MS-Rec-Private(D,P, S, Pα, ε): Pα-private-reconstruction of S:

i. Code for Pi: – Every party in P executes this code.

1. Privately send s1
i , . . . , s

`
i , the ith shares of s1, . . . , s` (respectively) to

party Pα ∈ P.

ii. Code for Pα: – Only Pα ∈ P executes this code.

1. For l = 1, . . . , `, apply OEC on received shares of sl to reconstruct sl

and terminate ACSS-MS-Rec-Private.

ACSS-MS-Rec-Public(D,P, S, ε): Public reconstruction of S:

i. Code for Pi: – Every party in P executes this code.

1. Privately send s1
i , . . . , s

`
i , the ith shares of s1, . . . , s` (respectively) to

every party Pj ∈ P.

2. For l = 1, . . . , `, apply OEC on received shares of sl to reconstruct sl

and terminate ACSS-MS-Rec-Public.

• Protocol ACSS-MS-Share privately communicates O((`n4 + n5 log 1
ε
) log 1

ε
)

bits and A-casts O(n4 log n) bits.

• Protocol ACSS-MS-Rec-Private incurs a private communication of O(`n log 1
ε
)

bits.

• Protocol ACSS-MS-Rec-Public incurs a private communication of O(`n2 log 1
ε
)

bits.

Proof: The communication complexity of ACSS-MS-Share follows from Theorem
8.46 (that states the communication complexity of SAVSS-MS) and from the fact
that O(n) instances of SAVSS-MS-Share and SAVSS-MS-Rec-Private each with `
secrets may be executed in ACSS-MS-Share.

In ACSS-MS-Rec-Private, each party sends his shares of ` secrets to Pα, in-
curring a total communication cost of O(`n log 1

ε
) bits. In ACSS-Rec-Public, each

party sends his shares of ` secrets to every other party, incurring a total commu-
nication cost of O(`n2 log 1

ε
) bits. 2

Notation 10.15 (Notation for Using ACSS-MS) In the subsequent sections,
we will invoke ACSS-MS-Share as ACSS-MS-Share (D,P , (f 1(x), . . . , f `(x)), ε) to
mean that D commits to f 1(x), . . . , f `(x) in ACSS-MS-Share. Essentially here
D is asked to choose bivariate polynomials F 1(x, y), . . . , F `(x, y), each of degree-
(t, t), such that F l(x, 0) = f l(x) holds for l = 1, . . . , `. As a result of this execu-
tion, each honest party Pi will get the shares f 1(i), . . . , f `(i). Similarly, ACSS-MS-
Rec-Private will be invoked as ACSS-MS-Rec-Private(D,P , (f 1(x), . . . , f `(x)), Pα, ε)

258

to enable Pα ∈ P to privately reconstruct (f 1(x), . . . , f `(x)). Similarly, ACSS-MS-
Rec-Public will be invoked as ACSS-MS-Rec-Public(D,P , (f 1(x), . . . , f `(x)), ε) to
enable each party in P to reconstruct (f 1(x), . . . , f `(x)).

10.3 Primitives Used in Our AMPC Protocol

In addition to the ACSS scheme proposed by us, our AMPC protocol also uses a
well known primitive called Agreement on Common Subset (ACS) [13, 21].

Agreement on Common Subset (ACS) [13, 21]: It is an asynchronous prim-
itive presented in [19, 21]. It outputs a common set, containing at least n − t
parties, who correctly shared their values. Moreover, each honest party will
eventually get a share, corresponding to each value, shared by the parties in the
common set. Actually, ACS calls n instances of ABA protocol. To maintain
an error probability of ε, each ABA should be invoked with ε

n
error probability.

So, if we consider our ABA presented in Chapter 9, then this requires a total
communication complexity of O(n6 log 1

ε
) bits of A-cast or O(n8 log 1

ε
) bits pri-

vate communication (This is because A-cast of ` bit message requires `n2 bits of
private communication; see Theorem 7.2). Also ACS protocol has to work on
field F = GF (2κ) where κ has to be determined using the relation ε ≥ 4n72−κ.
This is because our ABA enforces ε ≥ 4n62−κ to maintain error probability ε.

In our AMPC protocol, we use another simple protocol RNG very frequently, that
allows the parties in P to jointly generate a random, non-zero element r ∈ F.
The protocol uses our ACSS scheme and the ACS protocol as black-boxes.

Random Number Generation (RNG): The protocol for random number
generation works as follows: each Pi ∈ P shares a random non-zero ri ∈ F using
ACSS-Share with an error probability ε

n
. The parties then run ACS with error

parameter ε to agree on a common set, say C of at least 2t + 1 parties who did
proper sharing of their random values. Once C is agreed upon, ACSS-Rec-Public
is executed for every Pi ∈ C in order to reconstruct back Pi’s committed secret.
Now every party in P locally add the committed secret of every Pi ∈ C. It is
easy to see that the sum value is random. We call this protocol as RNG. Protocol
RNG will have an error probability of ε. The protocol privately communicates
O(n6(log 1

ε
)2) bits (because of ACSS) and A-casts O(n6 log 1

ε
) bits (because of

ACS). Moreover RNG needs to work on a field F = GF (2κ), where κ has to be
determined using the relation ε ≥ max(4n72−κ, n6κ2−κ) ⇒ ε ≥ n62−κ max(4n, κ).
This is because of ACS and ACSS.

10.4 The Approach Used in the AMPC of [21] and Cur-
rent Chapter

AMPC of [21]: The AMPC protocol of [21] consists of input phase and com-
putation phase. In input phase every party Pi shares (or commits to) his input
xi. All the parties then decide on a common set of n− t parties (using ACS) who
have done proper sharing of their input. Once this is done, in the computation
phase the arithmetic circuit representing f is computed gate by gate, such that
the intermediate gate outputs are always kept as secret and are properly shared

259

among the parties, following the approach of [20]. Now for sharing/committing
inputs, a natural choice is to use AVSS protocol which can be treated as a form
of commitment, where the commitment is held in a distributed fashion among
the parties. Before [21], the only known statistical AVSS scheme with n = 3t + 1
was due to [39]. But it is shown in [21] that the use of the AVSS protocol of [39]
for committing inputs (secrets), does not allow to compute the circuit robustly in
a straight-forward way. This is because for robust computation of the circuit, it
is to be ensured that at the end of AVSS sharing phase, every honest party should
have access to share of the secret. Unfortunately the AVSS of [39] does not guar-
antee the above property, which we may refer as ultimate property. This very
reason motivated Ben-Or et al. [21] to introduce a new asynchronous primitive
called Ultimate Secret Sharing (USS) which not only ensures that every honest
party has access to his share of the secret, but also offers all the properties of
AVSS. Thus [21] presents an USS scheme with n = 3t+1 using the AVSS protocol
of [39] as a building block. Essentially, in the USS protocol of [21], every share of
the secret is committed using AVSS of [39] which ensures that each honest party
Pi can have an access to the ith share of secret by means of private reconstruction
of AVSS. A secret s that is shared using USS is called ultimately shared. Now
in the input phase of AMPC in [21], parties ultimately share their inputs. Then
in the computation phase, for every gate (except output gate), ultimate sharing
of the output is computed from the ultimate sharing of the inputs, following the
approach of [20, 138].

Now we carry out the communication complexity analysis for the AMPC of
[21]. The analysis of communication complexity of the AVSS of [39, 35] is per-
formed in section 8.7 of Chapter 8. The sharing phase of the AVSS involves a
private communication of Ω(n9(log 1

ε
)4) bits and A-cast of Ω(n9(log 1

ε
)2 log(n))

bits, for sharing a single secret. As the sharing phase of the USS scheme of [21]
requires n invocations to the sharing phase of AVSS of [39], it incurs a private
communication of Ω(n10(log 1

ε
)4) bits and A-cast of Ω(n10(log 1

ε
)2 log(n)) bits. Fi-

nally in the AMPC protocol, each multiplication requires n invocations to the
sharing phase of USS. So evaluation of each multiplication gate incurs a private
communication of Ω(n11(log 1

ε
)4) and A-cast of Ω(n11(log 1

ε
)2 log(n)) bits.

AMPC of Current Chapter: Our statistical AMPC protocol follows the pre-
processing model of [5] and proceeds in a sequence of three phases: preparation
phase, input phase and computation phase. Every honest party will eventually
complete each phase with very high probability. We call a triple (a, b, c) as a
random multiplication triple if a, b are random and c = ab. In the preparation
phase, t-(1d)-sharing of cM+cR random multiplication triples are generated. Each
multiplication and random gate of the circuit is associated with a multiplication
triple. In the input phase the parties t-(1d)-share (commit to) their inputs and
then agree on a common subset of n− t parties (using ACS) who correctly shared
their inputs. In the computation phase, the actual circuit will be computed gate
by gate, based on the inputs of the parties in common set. Due to the linearity
of the used secret-sharing, the linear gates can be computed locally. Each multi-
plication gate will be evaluated using the circuit randomization technique of [5]
with the help of the associated multiplication triple (generated in preparation
phase).

For committing/sharing secrets, we use our ACSS scheme. There is a slight
definitional difference between the USS of [21] and our ACSS, though both of

260

them offer all the properties of AVSS. While USS of [21] ensures that every
honest party has access to share of secret (but may not hold the share directly),
our ACSS ensures that every honest party holds his share of secret. This property
of ACSS is called completeness property as mentioned in the definition of ACSS
(see Definition 10.2). The advantages of ACSS over USS are as follows:

1. It makes the computation of the gates very simple;

2. Reconstruction phase of ACSS is very simple, efficient and can be achieved
using OEC of [35].

Apart from these advantages, our ACSS is strikingly better than USS of [21] in
terms of communication complexity. While sharing phase of our ACSS privately
communicates O((`n4 + n5 log 1

ε
) log 1

ε
) bits and A-casts O(n4 log n) bits to share

` secrets concurrently, the sharing phase of USS in [21] privately communicates
Ω(n10(log 1

ε
)4) bits and A-casts Ω(n10(log 1

ε
)2 log(n)) bits to share only one secret.

Prior to our discussion on AMPC protocol, we design another important pro-
tocol for generating t-(2d)-sharing (the definition of t-(2d)-sharing has been pre-
sented in Definition 6.16) that uses our ACSS scheme as a building block. This
protocol will also be used as building block in our AMPC protocol.

10.5 Generating t-(2d)-Sharing

From the definition of t-(2d)-sharing (see Definition 6.16), we see that the t-(2d)-
sharing of s implies that s as well as its shares are individually t-(1d)-shared.
Now we present a protocol t-(2d)-Share which allows a special party D ∈ P to si-
multaneously generate t-(2d)-sharing of ` ≥ 1 elements from F, namely s1, . . . , s`.
In protocol t-(2d)-Share, the following happen with probability at least (1 − ε):
(a) If D is honest, then every honest party will eventually terminate t-(2d)-Share;
(b) Moreover, if D is corrupted and some honest party has terminated t-(2d)-
Share, then eventually every other honest party will also terminate t-(2d)-Share;
(c) Furthermore, if some honest party has terminated t-(2d)-Share, then it implies
that D has done correct t-(2d)-sharing of s1, . . . , s`.

The intuition: The high level idea of the protocol is as follows: D selects a
random value s0 ∈ F and hides each si (where i = 0, . . . , `) in the constant
term of a random degree-t polynomial qi(x). D then t-(1d)-shares the secret
S0 = (s0, . . . , s`), as well as their ith shares Si = (q0(i), . . . , q`(i)). The parties
then jointly employ a verification technique to ensure that D indeed t-(1d)-shared
Si for i = 1, . . . , n which are the shares of S0. A similar verification technique was
used in [12] in synchronous settings. The secret s0 is used to ensure the secrecy of
s1, . . . , s` during the verification process. After verification, the polynomials used
for t-(1d)-sharing Si are privately reconstructed by Pi, thus completing the t-
(2d)-sharing of s1, . . . , s`. The above idea is implemented in protocol t-(2d)-Share
which is given in Fig. 10.5.

To bound the error probability by ε, the computation of t-(2d)-Share is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n62−κ max(4n, κ). This is derived from the fact that in t-(2d)-Share,

1. ACSS-MS is invoked with ε
n+1

error probability and as mentioned in Section

10.2.3, ε ≥ n5κ2−κ should hold to bound error probability of ACSS-MS by
ε and

261

2. RNG is invoked with error probability ε and this enforces ε ≥ n62−κ max(4n, κ).

So here each element from the field is represented by κ = log |F| = O(log 1
ε
) bits.

We now prove the properties of protocol t-(2d)-Share.

Lemma 10.16 Protocol t-(2d)-Share satisfies the following properties:

1. Termination: If D is honest, then except with probability ε, all hon-
est parties will eventually terminate t-(2d)-Share. Moreover if some honest
party has terminated t-(2d)-Share, then every honest party will eventually
terminate t-(2d)-Share, except with probability ε.

2. Correctness: If some honest party has terminated the protocol then except
with probability ε, it is ensured that D has done correct t-(2d)-sharing of
s1, . . . , s`.

3. Secrecy: If D is honest then s1, . . . , s` will remain secure.

Proof: Termination: When D is honest, every ACSS-MS-Sharei initiated
by honest D will terminate with its desired output (t-(1d)-sharings) except with
probability ε′. Therefore all the n+1 instances of ACSS-MS-Sharei will terminate
with their desired output (i.e., t-(1d)-sharing of S0, . . . , Sn), except with proba-
bility ε′(n+1) ≈ ε. Since t-(1d)-sharing of S0, . . . , Sn are generated properly, the
verification steps specified in t-(2d)-Share will pass. Subsequently, n instances
of ACSS-MS-Rec-Private are executed in order to complete t-(2d)-sharing of S.
Due to the property of ACSS-MS-Rec-Private, each honest Pi will correctly re-
construct the required information corresponding to t-(2d)-sharing of S, namely
q0
i (x), . . . , q`

i (x) and will terminate t-(2d)-Share except with probability ε′. As
there are at least 2t + 1 honest parties, except with probability (2t + 1)ε′ ≈ ε, all
honest parties will eventually terminate t-(2d)-Share with correct t-(2d)-sharing
of s1, . . . , s`. This completes the proof of the first part of Termination property.
We now proceed to prove second part of the Termination property.

Let Pi be an honest party who has terminated protocol t-(2d)-Share. This
implies that Pi has reconstructed q0

i (x), . . . , q`
i (x) from ACSS-MS-Rec-Privatei.

This further means there is at least one honest party who checked that the pub-
lic verification has passed and participated in every ACSS-MS-Rec-Privatej for
j = 1, . . . , n. As the verification process is public, every other honest party
will eventually see that the verification passes and then they will participate in
ACSS-MS-Rec-Privatej for j = 1, . . . , n. Now by the termination property of
ACSS-MS-Rec-Private, all honest Pjs will terminate ACSS-MS-Rec-Privatej, out-
put q0

j (x), . . . , q`
j(x) and finally terminate protocol t-(2d)-Share, except with prob-

ability nε′ ≈ ε.

Correctness: Here we consider two cases: (a) when D is honest; (b) when D is
corrupted.

1. When D is honest, then correctness follows from the proof of the first part
of termination property.

2. Now we consider D to be corrupted. For i = 0, . . . , n, ACSS-MS-Sharei

ensures that D has correctly t-(1d)-shared Si, except with probability ε′ (by

Completeness property of ACSS-MS). But it may happen that Si which
is t-(1d)-shared by D in ACSS-MS-Sharei, is not the correct ith shares of S0.

262

Figure 10.5: Protocol t-(2d)-Share for Generating t-(2d)-sharing of S = (s1, . . . , s`),
n = 3t + 1

Protocol t-(2d)-Share(D,P, S, ε)

Sharing by D: Code for D — Only D executes this code

1. Select a random s0 and ` + 1 degree-t random polynomials
q0(x), . . . , q`(x) such that for l = 0, . . . , `, ql(0) = sl. Let sl

i = ql(i)
and Si = (q0(i), . . . , q`(i)) for i = 0, . . . , n. So S0 = (s0, . . . , s`) and
Si = (s0

i , . . . , s
`
i).

2. For l = 0, . . . , ` and i = 1, . . . , n, select random degree-t polynomials
ql
i(x), such that ql

i(0) = ql(i) = sl
i. Let Sij = (q0

i (j), q
1
i (j), . . . , q

`
i (j)) =

(s0
ij , s

1
ij , . . . , s

`
ij), for j = 1, . . . , n.

3. Invoke ACSS-MS-Share(D,P, (q0(x), q1(x), . . . , q`(x)), ε′), where ε′ =
ε

n+1 , for generating t-(1d)-sharing of S0. Denote this instance of ACSS-
MS-Share by ACSS-MS-Share0. During ACSS-MS-Share0, party Pj re-
ceives the shares Sj for j = 1, . . . , n.

4. For i = 1, . . . , n, invoke ACSS-MS-
Share(D,P, (q0

i (x), q1
i (x), . . . , q`

i (x)), ε′), where ε′ = ε
n+1 , for generating

t-(1d)-sharing of Si. Denote this instance of ACSS-MS-Share by
ACSS-MS-Sharei. During ACSS-MS-Sharei, party Pj receives the
share-shares Sij , for j = 1, . . . , n.

Verification: Code for Pi — Every party in P executes this code

1. Upon completion of ACSS-MS-Sharej for all j ∈ {0, . . . , n}, participate
in protocol RNG to generate random r with error probability ε.

2. Wait to terminate RNG with r as output. Compute s∗i =
∑`

l=0 rlsl
i

which is the ith share of s∗ =
∑`

l=0 rlsl. In addition, for j = 1, . . . , n,
locally compute s∗ji =

∑`
l=0 rlsl

ji which is the ith share-share of s∗j .

3. Participate in ACSS-MS-Rec-Public(D,P, (s∗, s∗1, . . . , s
∗
n), ε) to publicly

reconstruct s∗, s∗1, . . . , s
∗
n. This results in every party reconstructing

q∗(x) and q∗1(x), . . . , q∗n(x) with q∗(0) = s∗ and q∗i (0) = s∗i .

4. Check whether for i = 1, . . . , n, q∗(i) ?= q∗i (0). If yes proceed to the
next step assuming that D has done proper t-(1d)-sharing of Sj for
j = 0, . . . , n.

Private reconstruction of polynomials used for sharing Sj by Pj: Code
for Pi — Every party in P executes this code

1. For j = 1, . . . , n, participate in ACSS-MS-Rec-Private(D,P, Sj , Pj , ε
′)

for enabling Pj to privately reconstruct the polynomials q0
j (x), . . . , q`

j(x)
which were used by D to share Sj . We refer ACSS-MS-Rec-
Private(D,P, Sj , Pj , ε

′) by ACSS-MS-Rec-Privatej .

2. Wait to privately reconstruct degree-t polynomials q0
i (x), . . . , q`

i (x) from
ACSS-MS-Rec-Privatei and terminate t-(2d)-Share.

263

Assume that D has t-(1d)-shared Sj 6= Sj in ACSS-MS-Sharej, for some j ∈
{1, . . . , n}. This implies that in ACSS-MS-Sharej, D has used polynomials

q0
j (x), . . . , q`

j(x) to share Sj, such that for at least one l ∈ {0, . . . , `}, ql
j(0) 6=

ql(j) = sl
j. That is, ql

j(0) = sl
j 6= sl

j. Now consider q∗j (0) = s0
j + rs1

j +

. . . + rlsl
j + . . . + r`s`

j. We claim that with very high probability q∗(j) 6=
q∗j (0). The probability that q∗(j) = q∗j (0) is same as the probability that

two different degree-` polynomials with coefficients (s0
j , . . . , s

l
j, . . . , s

`
j) and

(s0
j , . . . , s

l
j, . . . , s

`
j) respectively, intersect at a random value r. Since any two

degree-` polynomial can intersect each other at most at ` values, r has to be
one of these ` values. But r is chosen randomly after the completion of all
ACSS-MS-Sharej for j = 0, . . . , n (so during executions of ACSS-MS-Sharei’s,
D is unaware of r). So the above event can happen with probability at most
`
|F| ≈ ε. Thus with probability at least 1 − ε, q∗(j) 6= q∗j (0) and hence no

honest party will terminate the protocol if D has t-(1d)-shared Sj 6= Sj for
some j. So if some honest party has terminated t-(2d)-Share, then corrupted
D must have attempted to t-(1d)-share correct Si in each ACSS-MS-Sharei,
for i = 1, . . . , n. Now rest of the proof will follow from the proof of part 1
of Correctness.

Secrecy: When D is honest, ACSS-MS-Share0 does not leak any information
on s1, . . . , s` (from the secrecy property of ACSS-MS-Share). Later s∗ = q∗(0)
does not leak any information about s1, . . . , s` during verification process, as s0

is randomly chosen by D and therefore s∗ will look completely random for the
adversary At. 2

Lemma 10.17 Protocol t-(2d)-Share privately communicates O((`n5 + n6 log 1
ε
)

log 1
ε
) bits and A-casts O(n6 log 1

ε
) bits.

Proof: Follows from the fact that in protocol t-(2d)-Share, there are n + 1
instances of ACSS-MS-Share, one instance of RNG, one instance of ACSS-MS-
Rec-Public and n instances of ACSS-MS-Rec-Private. 2

10.6 Preparation Phase

Here we generate t-(1d)-sharing of cM + cR secret random multiplication triples
(ak, bk, ck), such that for k = 1, . . . , cM +cR, ck = akbk. For this we first generate t-
(2d)-sharing of secret random doubles ([[ak]]t, [[b

k]]t) for k = 1, . . . , cM +cR. Given
these random doubles, we generate t-(1d)-sharing of ck, for k = 1, . . . , cM + cR,
by adapting a technique from [48] which was given for synchronous settings.

10.6.1 Generating Secret Random t-(2d)-sharing

In section 10.5, we have presented a protocol called t-(2d)-Share which allows a
D ∈ P to generate t-(2d)-sharing of ` secrets. We now present a protocol called
Random-t-(2d)-Share which allows all the parties in P to jointly generate random
t-(2d)-sharing of ` secrets, unknown toAt. The protocol terminates and generates
its desired output except with probability ε. Random-t-(2d)-Share asks individual
party to act as dealer and t-(2d)-share `

n−2t
random secrets. Then we run ACS

protocol to agree on a common set of n−t parties who have correctly t-(2d)-shared

264

`
n−2t

random secrets. Now out of these n − t parties, at least n − 2t are honest.
Hence the secrets that are t-(2d)-shared by these n− 2t honest parties are truly
random and unknown toAt. So if we consider the `

n−2t
t-(2d)-sharing done by each

of the honest parties in common set, then we will get `
n−2t

∗ (n− 2t) = ` random
t-(2d)-sharing in total. For this, we use Vandermonde Matrix [52] and its ability
to extract randomness which was also exploited in [141, 52, 13] (Vandermonde
Matrix is recalled in Section 9.4.2 of Chapter 9). Protocol Random-t-(2d)-Share
is now presented in Fig. 10.6.

To bound the error probability by ε, the computation of Random-t-(2d)-Share
is performed over a field F = GF (2κ), where κ has to be determined using the
relation ε ≥ n72−κ max(4n, κ). This is derived from the fact that in Random-
t-(2d)-Share, protocol t-(2d)-Share is invoked with ε

n
error probability and as

mentioned in previous section, ε ≥ n62−κ max(4n, κ) should hold to bound error
probability of t-(2d)-Share by ε. So here each element from the field is represented
by κ = log |F| = O(log 1

ε
) bits.

Lemma 10.18 Protocol Random-t-(2d)-Share satisfies the following properties:

1. Termination: All honest parties eventually terminate the protocol with
probability at least (1− ε).

2. Correctness: The protocol outputs correct t-(2d)-sharing of ` values with
probability at least (1− ε).

3. Secrecy: The ` values whose t-(2d)-sharing is generated by the protocol will
be completely random and unknown to At.

Proof: Termination: By the Termination property of t-(2d)-Share (see
Lemma 10.16), every instance of t-(2d)-Share initiated by an honest Pi as a
dealer will be eventually terminated by all honest parties, except with proba-
bility ε′. Moreover, if an honest party terminates an instance of t-(2d)-Share
(initiated by some party), then eventually every other honest party will termi-
nate that instance of t-(2d)-Share , except with probability ε′. Now since there
are at least 2t + 1 honest parties, except with probability (2t + 1)ε′ ≈ ε, all in-
stances of t-(2d)-Share initiated by honest parties will be terminated by every
honest party. So eventually protocol ACS will output a common set C of size
n − t, except with probability ε, such that all instances of t-(2d)-Share initiated
by the parties in C will be eventually terminated by all honest parties in P . This
proves the Termination property.

Correctness: From the Correctness property of t-(2d)-Share (see Lemma
10.16), each instance of t-(2d)-Share initiated by a party in C will correctly gen-
erate t-(2d)-sharing of corresponding secrets, except with probability ε′. So with
probability at most (n − t)ε′ ≈ ε, all instances of t-(2d)-Share initiated by the
parties in C will correctly generate t-(2d)-sharing of corresponding secrets. Hence
except with probability ε, protocol Random-t-(2d)-Share will correctly generate
the t-(2d)-sharing of ` values. This proves the Correctness property.

Secrecy: From the Secrecy property of t-(2d)-Share (see Lemma 10.16), the
values which are t-2d-shared by an honest party using t-(2d)-Share are completely
random and are unknown to At. Now there are at least (n−t)−t = n−2t honest

265

Figure 10.6: Protocol for Collectively Generating t-(2d)-sharing of ` secrets, n = 3t+1

Protocol Random-t-(2d)-Share(P, `, ε)

Code for Pi: — Every party executes this code

1. Select L = `
n−2t random secret elements (s(i,1), . . . , s(i,L)). As a dealer,

invoke t-(2d)-Share(Pi,P, Si, ε′), with ε′ = ε
n , to generate t-(2d)-sharing

of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in t-(2d)-Share(Pj ,P, Sj , ε′).

Agreement on a Common Set: Code for Pi — Every party executes this code

1. Create a set Ci = ∅. Upon terminating t-(2d)-Share(Pj ,P, Sj , ε′), in-
clude Pj in Ci.

2. Take part in ACS with the set Ci as input.

Generation of Random t-(2d)-sharing: Code for Pi: — Every party executes
this code

1. Wait until ACS completes with output C containing n− t parties. For
every Pj ∈ C, obtain the ith shares s

(j,1)
i , . . . , s

(j,L)
i of Sj and ith share-

shares s
(j,1)
ki , . . . , s

(j,L)
ki of shares s

(j,1)
k , . . . , s

(j,L)
k , corresponding to each

Pk, for k = 1, . . . , n. Without loss of generality, let C = {P1, . . . , Pn−t}.
2. Let V denote an (n− t)×(n−2t) publicly known Vandermonde Matrix.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) =
(s(1,k), . . . , s(n−t,k))V .

(b) Locally compute ith share of r(1,k), . . . , r(n−2t,k) as
(r(1,k)

i , . . . , r
(n−2t,k)
i) = (s(1,k)

i , . . . , s
(n−t,k)
i)V .

(c) For each 1 ≤ j ≤ n, locally compute the ith share-share of share
(r(1,k)

j , . . . , r
(n−2t,k)
j) as (r(1,k)

ji , . . . , r
(n−2t,k)
ji) = (s(1,k)

ji , . . . , s
(n−t,k)
ji)V

and terminate Random-t-(2d)-Share.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denote the ` random
secrets which are t-(2d)-shared.

parties in C and hence the L values which are t-2d-shared by each them will be
completely random and unknown to At. Now from the randomness extraction
property of Vandermonde Matrix, the values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L)

will be completely random and unknown to At. This proves the Secrecy prop-
erty. 2

Lemma 10.19 Protocol Random-t-(2d)-Share privately communicates O((`n5 +
n7 log 1

ε
) log 1

ε
) bits and A-casts O(n6 log 1

ε
) bits.

Proof: The communication complexity follows from the fact that in protocol
Random-t-(2d)-Share, n instances of t-(2d)-Share, each dealing with `

n−2t
= `

Θ(n)

266

values and having an error probability of ε
n

are executed. This will require pri-

vate communication of O((`n5 + n7 log 1
ε
) log 1

ε
) bits and A-cast of O(n6 log 1

ε
)

bits. Moreover, the protocol requires one invocation of ACS which incurs A-cast
communication of O(n6 log 1

ε
) bits. 2

10.6.2 An ABC Protocol– Proving c = ab

The ABC protocol has been considered in synchronous network in Chapter 5 and
6. Here we design the protocol for asynchronous network, but the core techniques
are almost similar to the one used in synchronous network. So consider the fol-
lowing problem: let D ∈ P has t-(1d)-shared ` pair of values (a1, b1), . . . , (a`, b`).
Now D wants to t-(1d)-share c1, . . . , c` where cl = albl, for l = 1, . . . , `. Moreover,
during this process, D does not want to leak any additional information about
al, bl and cl. We propose a protocol ProveCeqAB to achieve this task in asyn-
chronous settings, following a technique proposed in [48] for synchronous settings.
In fact the idea for synchronous settings (following the technique of [48]) has been
presented in Section 6.7. Hence, we directly present the protocol in Fig. 10.7.

In protocol ProveCeqAB, if D is honest then al, bl and cl will remain informa-
tion theoretically secure. If D is honest, then every honest party will eventually
complete ProveCeqAB, and if some honest party has completed ProveCeqAB, then
all the honest parties will eventually complete ProveCeqAB.

To bound the error probability by ε, the computation of ProveCeqAB is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n52−κ max(4n, κ). This is derived from the fact that in ProveCeqAB,

1. ACSS-MS-Share is invoked with ε
3

error probability and as mentioned in
Section 10.2.3, ε ≥ n5κ2−κ should hold to bound error probability of ACSS-
MS by ε;

2. RNG is invoked with ε error probability and this enforces ε ≥ n52−κ max(4n, κ).

So here each element from the field is represented by κ = log |F| = O(log 1
ε
) bits.

Lemma 10.20 Protocol ProveCeqAB satisfies the following properties:

1. Termination: If D is honest then all honest parties will terminate the
protocol, except with probability ε. If some honest party terminates the pro-
tocol, then eventually every other honest party will terminate the protocol,
except with probability ε.

2. Correctness: If some honest party terminates the protocol, then except
with probability ε, D has t-(1d)-shared cl = albl, for l = 1, . . . , `.

3. Secrecy: If D is honest then al, bl, cl will be information theoretically
secure for all l = 1, . . . , `.

Proof: Termination: When D is honest, all three instances of ACSS-MS-Share
will terminate and correctly generate t-(1d)-sharing of B, C and Λ with proba-
bility at least (1 − 3 ε

3
) = (1 − ε). Consequently in verification steps, both the

instances of ACSS-MS-Rec-Public will terminate and reconstruct proper values
with probability at least 1− ε. Now it follows that the condition specified in step
4 under Verifying whether cl = al.bl: of the protocol will pass with probability

267

Figure 10.7: Protocol for Generating t-(1d)-sharing of [c1]t = [a1]t.[b1]t, . . . , [c`]t =
[a`]t.[b`]t, n = 3t + 1

Protocol ProveCeqAB(D,P, [a1]t, . . . , [a`]t, [b1]t, . . . , [b`]t, ε)

Sharing by D:

1. Code for D:

(a) Select ` non-zero random elements β1, . . . , β`. For l = 1, . . . , `, let
cl = albl and dl = blβl. Let B = (β1, . . . , β`), C = (c1, . . . , c`) and
Λ = (d1, . . . , d`).

(b) Invoke ACSS-MS-Share(D,P,B, ε
3), ACSS-MS-Share(D,P, C, ε

3) and
ACSS-MS-Share(D,P, Λ, ε

3).

2. Code for Pi: Participate in the ACSS-MS-Share protocols initiated by
D to obtain the ith share (β1

i , . . . , β`
i), (c1

i , . . . , c
`
i) and (d1

i , . . . , d
`
i) of

B, C and Λ respectively.

Verifying whether cl = al.bl: Code for Pi — Every party executes this code

1. Once the three instances of ACSS-MS-Share initiated by D are termi-
nated, participate in protocol RNG to jointly generate a random non-
zero value r with error probability ε.

2. For l = 1, . . . , `, locally compute pl
i = ral

i + βl
i, the ith share pl = ral +

βl. Participate in ACSS-MS-Rec-Public(D,P, (p1, . . . , p`), ε) to publicly
reconstruct pl for l = 1, . . . , `.

3. Upon reconstruction of pl’s, locally compute ql
i = plbl

i − dl
i − rcl

i for
l = 1, . . . , `, to get the ith share of ql = plbl − dl − rcl. Participate in
ACSS-MS-Rec-Public(D,P, (q1, . . . , q`), ε) to publicly reconstruct ql for
l = 1, . . . , `.

4. Upon reconstruction of ql’s, locally check whether for l = 1, . . . , `, ql ?=
0. If yes then terminate ProveCeqAB.

at least 1 − ε. Hence when D is honest then the protocol will terminate with
probability at least 1− ε. If some honest party has terminated the protocol, then
ql = 0 has been satisfied for all l. Every other honest party will also check the
same and terminate the protocol.

Correctness: If some honest party terminates the protocol, then it implies
that ql = 0 for all l = 1, . . . , `. Now notice that ql = plbl − dl − rcl =
(ral + βl)bl − blβl − rcl = ralbl − rcl + βlbl − dl = r(albl − cl) + βlbl − dl. Now if
corrupted D shares cl 6= albl and dl 6= βbl, then ql = r(albl − cl) + βlbl − dl will
be non-zero, except for only one value of r. But since r is randomly generated,
the probability that r is that value is 1

|F| < ε which is negligibly small. Thus if

some honest party terminates the protocol, then with probability (1− ε), D has
t-(1d)-shared al, bl and cl satisfying cl = albl for all l = 1, . . . , `.

268

Secrecy: We now prove the secrecy of al, bl, cl for all l = 1, . . . , ` when D is
honest. From the secrecy property of ACSS-MS-Share, al, bl, cl will remain secure
after their t-(1d)-sharing. Now we will show that both pl and ql will not leak any
information about al, bl, cl. Clearly pl = (ral + βl) will look completely random
to adversary At as βl is randomly chosen. Furthermore ql = 0 and hence ql does
not leak any information on al, bl, cl. Hence the lemma. 2

Lemma 10.21 Protocol ProveCeqAB privately communicates O((`n4 + n6 log 1
ε
)

log 1
ε
) bits and A-casts O(n6 log 1

ε
) bits.

Proof: The proof follows from the following facts: ProveCeqAB invokes (a) Θ(1)
instances of ACSS-MS-Share and ACSS-MS-Rec-Public (this will require private
communication of O((`n4 +n5 log 1

ε
) log 1

ε
) bits and A-cast of O(n4 log n) bits) (b)

And one instance of RNG (this requires private communication of O(n6(log 1
ε
)2)

bits and A-cast of O(n6 log 1
ε
) bits). 2

10.6.3 Generating Multiplication Triples: The Main Protocol For
Preparation Phase

We now outline protocol PreparationPhase which generates t-(1d)-sharing of cM +
cR random multiplication triples. We explain the idea for a single triplet (a, b, c).
First, Random-t-(2d)-Share is invoked to generate t-(2d)-sharing of (a, b) which
results in Pi holding ith share of a and b, namely ai and bi respectively. Now if
each Pi locally computes ei = aibi, then this results in 2t-(1d)-sharing of c. But
we want each (honest) Pi to hold ci, where (c1, . . . , cn) is the t-(1d)-sharing of
c. For this we adapt a technique given in [93] for synchronous settings: Each Pi

invokes ProveCeqAB to t-(1d)-share ei. Now an instance of ACS will be executed
to agree on a common set of n−t = 2t+1 parties whose instances of ProveCeqAB
has been terminated. For simplicity let this set contains P1, . . . , P2t+1. Since
e1, . . . , e2t+1 are 2t + 1 distinct points on a degree-2t polynomial, say C(x) where
C(0) = c (and C(i) = ei for i = 1, . . . , 2t+1), by Lagrange interpolation formula
[46], c can be computed as c =

∑2t+1
i=1 riei where ri =

∏2t+1
j=1,j 6=i

x−j
i−j

. The vector

(r1, . . . , r2t+1) is called recombination vector [46] and is known publicly. Now
to get t-(1d)-sharing of c, Pj locally computes cj =

∑2t+1
i=1 rieij where eij is jth

share of ei. By the properties of ProveCeqAB, each Pi in common set has indeed
t-(1d)-shared ei = aibi with very high probability. So by performing the above
computation, correct t-(1d)-sharing of c = ab will be generated with very high
probability. Moreover, a, b and c will remain secure. Protocol PreparationPhase
is now given in Fig. 10.8.

To bound the error probability by ε, the computation of PreparationPhase is
performed over a field F = GF (2κ), where κ has to be determined using the
relation ε ≥ 2n72−κ max(4n, κ). This is derived from the fact that in Prepara-
tionPhase,

1. Random-t-(2d)-Share is invoked with ε
2

error probability and as mentioned in
Section 10.6.1, ε ≥ n72−κ max(4n, κ) should hold to bound error probability
of Random-t-(2d)-Share by ε;

2. ProveCeqAB is invoked with ε
n

error probability and as mentioned in Sec-
tion 10.6.2, ε ≥ n62−κ max(4n, κ) should hold to bound error probability of
ProveCeqAB by ε.

269

Figure 10.8: Protocol for Generating t-(1d)-sharing of cM + cR secret random multiple
triples

Protocol PreparationPhase(P, ε)

Code for Pi: — Every party executes this code

1. Participate in two instances of Random-t-(2d)-Share(P, cM + cR, ε
2)

to generate t-(2d)-sharing of a1, . . . , acM+cR and b1, . . . , bcM+cR . Ob-
tain the ith shares a1

i , . . . , a
cM+cR
i , b1

i , . . . , b
cM+cR
i and share-shares

a1
ji, . . . , a

cM+cR
ji , b1

ji, . . . , b
cM+cR
ji , for j = 1, . . . , n.

2. Let ck = akbk, for k = 1, . . . , cM + cR. Upon termina-
tion of both the instances of Random-t-(2d)-Share, invoke
ProveCeqAB(Pi,P, [a1

i]t, . . . , [a
cM+cR
i]t, [b1

i]t, . . . , [b
cM+cR
i]t, ε

n) as a
dealer, to generate t-(1d)-sharing of c1

i , . . . , c
cM+cR
i , where ck

i is the ith

share of ck. We refer the instance of ProveCeqAB initiated by Pi as
ProveCeqABi.

3. For j = 1, . . . , n, participate in ProveCeqABj .

Agreement on a Common Set: Code for Pi — Every party executes this code

1. Create a set Ci = ∅. Upon completing ProveCeqABj initiated by Pj as
a dealer, add Pj in Ci.

2. Take part in ACS with the set Ci as input.

Generation of t-(1d)-sharing of c1, . . . , ccM+cR: Code for Pi — Every party ex-
ecutes this code

1. Wait until ACS completes with output C containing 2t + 1 parties. For
simplicity, assume that C = {P1, . . . , P2t+1}.

2. For k = 1, . . . , cM +cR, locally compute ck
i =

∑2t+1
j=1 rjc

k
ji the ith share of

ck = r1c
k
1 + . . . + r2t+1c

k
2t+1, where (r1, . . . , r2t+1) is the publicly known

recombination vector.

So here each element from the field is represented by κ = log |F| = O(log 1
ε
) bits.

We now prove the properties of protocol PreparationPhase.

Lemma 10.22 Protocol PreparationPhase satisfies the following properties:

1. Termination: All honest parties will eventually terminate PreparationPhase,
except with probability ε.

2. Correctness: The protocol correctly outputs t-(1d)-sharing of cM +cR mul-
tiplication triples, except with probability ε.

3. Secrecy: The adversary At will have no information about (ak, bk, ck), for
k = 1, . . . , cM + cR.

270

Proof: Termination: Following the termination property of Random-t-(2d)-
Share, both the instances of Random-t-(2d)-Share will terminate except with prob-
ability 2 ε

2
= ε. Now ProveCeqABj invoked by an honest Pj will be eventually

terminated by all honest parties, except with probability ε
n
. Moreover, if some

honest party terminates protocol ProveCeqABj for any Pj, then eventually every
other honest party will terminate the protocol, except with probability ε

n
. Now

since there are at least 2t+1 honest parties, except with probability (2t+1) ε
n
≈ ε,

at least 2t+1 instances of ProveCeqAB will be eventually terminated by all honest
parties. So eventually, all honest parties will agree on a common set C containing
n − t parties, except with probability ε, such that the instances of ProveCeqAB
initiated by every party in C is terminated by all honest parties in P . Once this
is done, every party will terminate protocol PreparationPhase after doing location
computation. So all honest parties will terminate protocol PreparationPhase with
probability at least (1− ε).

Correctness: Follows from the correctness property of protocol Random-t-(2d)-
Share and ProveCeqAB.

Secrecy: Follows from the secrecy property of protocol Random-t-(2d)-Share and
ProveCeqAB. 2

Lemma 10.23 Protocol PreparationPhase privately communicates O(((cM+cR)n5+
n7 log 1

ε
) log 1

ε
) bits and A-casts O(n7 log 1

ε
) bits.

Proof: Follows from the fact that the protocol invokes n instances of ProveCe-
qAB (this requires private communication of O(((cM +cR)n5 +n7 log 1

ε
) log 1

ε
) bits

and A-cast of O(n7 log 1
ε
) bits) and two instances of Random-t-(2d)-Share (this re-

quires private communication of O(((cM + cR)n5 +n7 log 1
ε
) log 1

ε
) bits and A-cast

of O(n6 log 1
ε
) bits) and one instance of ACS (this requires A-cast of O(n6 log 1

ε
)

bits). 2

10.7 Input Phase

In protocol InputPhase, each Pi acts as a dealer to t-(1d)-share his input Xi

containing ci values. So cI =
∑n

i=1 ci, where cI is the number of input gates in
the circuit. The parties then agree on a set of at least n− t parties (whose inputs
will be taken into consideration for computation), by executing an ACS. Protocol
InputPhase is now presented in Fig. 10.9.

To bound the error probability by ε, the computation of InputPhase is per-
formed over a field F = GF (2κ), where κ has to be determined using the relation
ε ≥ n6κ2−κ. This is derived from the fact that in InputPhase, ACSS-MS is invoked
with ε

n
error probability and as mentioned in Section 10.2.3, ε ≥ n5κ2−κ should

hold to bound error probability of ACSS-MS by ε. So here each element from the
field is represented by κ = log |F| = O(log 1

ε
) bits.

Lemma 10.24 Protocol InputPhase satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol,
except with probability ε.

271

Figure 10.9: Protocol for Input Phase, n = 3t + 1

Protocol InputPhase(P, ε)

Secret Sharing: Code for Pi — Every party executes this code

1. On input Xi, invoke ACSS-MS-Share(Pi,P, Xi,
ε
n) as a dealer to generate

t-(1d)-sharing of Xi.

2. For every j = 1, . . . , n, participate in ACSS-MS-Share(Pj ,P, Xj ,
ε
n).

Agreement on a Common Set: Code for Pi — Every party executes this code

1. Create a set Ci = ∅. Upon completing ACSS-MS-Share(Pj ,P, Xj ,
ε
n)

invoked by Pj as a dealer, add Pj in Ci.

2. Participate in ACS with the set Ci as input.

3. Output common set C containing n − t parties and local shares of all
inputs corresponding to parties in C.

2. Correctness: The protocol correctly outputs t-(1d)-sharing of inputs of the
parties in agreed common set C, except with probability ε.

3. Secrecy: The adversary At will have no information about the inputs of
the honest parties in set C.

Proof: The proof follows from the properties of ACSS-MS-Share. 2

Lemma 10.25 Protocol InputPhase privately communicates O((cIn
4+n6 log 1

ε
) log 1

ε
)

bits and A-casts O(n6 log 1
ε
) bits.

Proof: Follows from the following facts: InputPhase invokes (a) n instances of
ACSS-MS with ` = ci for i = 1, . . . , n (this requires private communication of
O((cIn

4 + n6 log 1
ε
) log 1

ε
) bits and A-cast of O(n4 log n)) (b) one instance of ACS

(this requires A-cast communication of O(n6 log 1
ε
) bits). 2

10.8 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated
gate by gate, where all inputs and intermediate values are t-(1d)-shared among
the parties. As soon as a party holds his shares of the input values of a gate, he
joins the computation of the gate.

Due to the linearity of t-(1d)-sharing, linear gates can be computed locally by
applying the linear function to the shares, i.e. for any linear function c = f(a, b),
the sharing [c]t is computed by letting every party Pi to compute ci = f(ai, bi),
where ai, bi and ci are the ith shares of a, b and c respectively. With every random
gate, one random triple (from the preparation phase) is associated, whose first
component is directly used as outcome of the random gate. With every mul-
tiplication gate, one random triple (from the preparation phase) is associated,

272

which is then used to compute t-(1d)-sharing of the product, following the circuit
randomization technique of Beaver [5]. Given a pre-generated random multipli-
cation triple (which is already correctly t-(1d)-shared) Circuit Randomization [5]
allows to evaluate a multiplication gate at the cost of two public reconstructions.
Let z = xy, where x, y are the inputs of the multiplication gate. Now z can be
expressed as z = ((x − a) + a)((y − b) + b) = (α + a)(β + b), where (a, b, c) is
a random multiplication triple. So given ([a]t, [b]t, [c]t), [z]t can be computed as
[z]t = αβ + α[b]t + β[a]t + [c]t after reconstructing α and β publicly. The security
follows from the fact that α and β are random, for a random (a, b, c). Protocol
ComputationPhase is now presented in Fig. 10.10.

To bound the error probability by ε, the computation of ComputationPhase is
performed over the same field of PreparationPhase i.e F = GF (2κ), where κ has
to be determined using the relation ε ≥ 2n72−κ max(4n, κ) (this condition also
accommodates the condition requires for InputPhase). So here each element from
the field is represented by κ = log |F| = O(log 1

ε
) bits.

Figure 10.10: Protocol for Computation Phase (Evaluating the Circuit), n = 3t + 1

Protocol ComputationPhase(P, ε)

For every gate in the circuit: Code for Pi — Every party executes this code
Wait until the ith share of each of the inputs of the gate is available. Now depending
on the type of the gate, proceed as follows:

1. Input Gate: [s]t = IGate([s]t): There is nothing to be done here.

2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute zi = LGate(xi, yi, . . .),
the ith share of z = LGate(x, y, . . .), where xi, yi, . . . denotes ith share of
x, y,

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, ([ak]t, [bk]t, [ck]t)):

(a) Let ([ak]t, [bk]t, [ck]t) be the random triple associated with the multipli-
cation gate.

(b) Compute αi = xi− ai and βi = yi− bi, the ith share of α = (x− a) and
β = (y − b) respectively.

(c) Participate in ACSS-Rec-Public to reconstruct α and β.

(d) Upon reconstructing α and β, compute zi = αβ +αbi +βai + ci, the ith

share of z = αβ + αb + βa + c = xy.

4. Random Gate: [r]t = RGate([ak]t, [bk]t, [ck]t): Let ([ak]t, [bk]t, [ck]t) be the
random triple associated with the random gate. Compute ri = ak

i as the ith

share of r.

5. Output Gate: x = OGate([x]t): Participate in ACSS-Rec-Public to recon-
struct x.

Lemma 10.26 Given that protocol PreparationPhase and InputPhase satisfy their

273

properties specified in Lemma 10.22 and Lemma 10.24 respectively, Protocol Com-
putationPhase satisfies the following with probability at least (1− ε):

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: Given t-(1d)-sharing of cM + cR secret random triples, the
protocol computes the outputs of the circuit correctly and privately.

Proof: Given that protocol PreparationPhase and InputPhase satisfy their Ter-
mination property specified in Lemma 10.22 and Lemma 10.24 respectively,
termination of protocol ComputationPhase follows from the finiteness of the cir-
cuit representing function f and the termination property of ACSS-Rec-Public.
Protocol PreparationPhase terminates with proper t-(1d)-sharing of cM +cR secret
random triples, except with probability ε. Also protocol InputPhase terminates
with proper t-(1d)-sharing of the inputs of the parties in common set C, except
with probability ε. Hence protocol ComputationPhase will correctly compute the
circuit and eventually terminate with probability at least (1− ε). 2

Lemma 10.27 Protocol ComputationPhase privately communicates O(n2(cM +
cO) log 1

ε
) bits.

Proof: Follows from the fact that in protocol ComputationPhase, 2cM + cO

instances of ACSS-Rec-Public are executed, corresponding to cM multiplication
gates and cO output gates. 2

10.9 The New Statistical AMPC Protocol with Optimal
Resilience

Now our new AMPC protocol called AMPC for evaluating function f which
is represented by a circuit containing cI , cL, cM , cR and cO input, linear, mul-
tiplication, random and output gates respectively, is as follows: (1). Invoke
PreparationPhase(P , ε); (2). Invoke InputPhase(P , ε); (3). Invoke Computation-
Phase(P , ε).

To bound the error probability by ε, the computation of AMPC is performed
over the same field of PreparationPhase i.e. F = GF (2κ), where κ has to be
determined using the relation ε ≥ 2n72−κ max(4n, κ). So here each element from
the field is represented by κ = log |F| = O(log 1

ε
) bits.

Theorem 10.28 Let n = 3t + 1. Then protocol AMPC satisfies the following
properties:

1. Termination: Except with probability ε, all honest parties will eventually
terminate the protocol.

2. Correctness: Except with probability ε, the protocol correctly computes the
outputs of the circuit.

3. Secrecy: The adversary At will get no extra information other than what
can be inferred by the input and output of the corrupted parties.

4. Communication Complexity: The protocol privately communicates O((cIn
4+

cMn5 + cRn5 + cOn2 + n7 log 1
ε
) log 1

ε
) bits, A-casts O(n7 log 1

ε
) bits.

Proof: The proof follows from the properties of protocol Preparation Phase,
Input Phase and Computation Phase. 2

274

10.10 Conclusion and Open Problems

In this chapter, we have presented a new ACSS scheme which is an essential
building block of statistical AMPC protocol with optimal resilience (i.e., with
n = 3t + 1). In fact, our ACSS scheme is the first ACSS scheme in the literature
(in asynchronous settings) with n = 3t+1 (The perfect AVSS protocols of [35, 13]
with n = 4t + 1 are in fact ACSS protocols). Our ACSS when employed for de-
signing AMPC results in significant improvement over the only known statistical
AMPC protocol of [21] (which does not employ any ACSS). The design approach
of our ACSS are novel and first of their kind. We complete this chapter with the
following interesting open problem:

Open Problem 17 How to further reduce the communication complexity of our
ACSS scheme which may lead to further reduction in the communication com-
plexity of AMPC?

275

Chapter 11

Efficient Statistical AVSS
Protocol With Non-Optimal
Resilience and Perfect AVSS
With Optimal Resilience

Since AVSS serves as one of the main building blocks for AMPC and ABA,
naturally it has got attention from researchers. In this chapter, we focus on
AVSS and make a major contribution towards it. It is known that statistical
AVSS is possible iff n ≥ 3t+1 and on the other hand perfect AVSS is possible iff
n ≥ 4t + 1. Thus a statistical AVSS with n = 3t + 1 and likewise a perfect AVSS
protocol with n = 4t + 1 is said to have optimal resilience.

In this chapter, we design two AVSS protocols with 4t + 1 parties in which
one is statistical (and thus have non-optimal resilience) and the other one is
perfect along with being optimally resilient. Both our AVSS protocols are based
on completely disjoint techniques. Yet, both our AVSSs achieve some interesting
property that is never achieved before by any AVSS with 4t + 1 parties. In
Chapter 10, we presented an ACSS scheme with n = 3t + 1 that outputs t-(1d)-
sharing of secret(s). Our AVSSs in this chapter achieve beyond that and are
capable of generating τ -(1d)-sharing of secret(s) for any t ≤ τ ≤ 2t with much
less communication complexity than the ACSS of Chapter 10. When we have
n = 4t + 1 parties, τ -(1d)-sharing tremendously simplifies the computation of
multiplication gate in an AMPC protocol. In the next chapter, the statistical
AVSS and the perfect AVSS are respectively used for constructing our statistical
AMPC and perfect AMPC with n = 4t + 1. There we show how our AVSS
protocols simplify computation of a multiplication gate.

A different interpretation of the newly achieved property of our AVSS proto-
cols reveals that the amortized cost of sharing a single secret using our AVSSs is
only O(n log |F|) bits. This is a clear improvement over the best known optimally
resilient perfect AVSS of [13] whose amortized cost of sharing a single secret is
O(n2 log |F|) bits. In fact the AVSS of [13] was the best known AVSS among all
protocols for AVSS with n = 4t + 1 in terms of communication complexity.

Lastly, we emphasize that our AVSS protocols are of independent interest as
AVSS has lot of other applications in ABA and many other distributed computing
tasks apart from AMPC.

276

11.1 Introduction

11.1.1 The Network and Adversary Model

This is same as described in Section 8.1.1. Here we recall that the set of parties
is denoted by P = {P1, . . . , Pn} and t out of the n parties can be under the
influence of a computationally unbounded Byzantine (active) adversary, denoted
as At. We emphasize that we use n = 4t + 1 in this chapter.

11.1.2 The Definitions

For the current as well as next two chapters we will talk about AVSS that satisfies
strong definition i.e even corrupted D is bound to commit secrets only from field
F. Hence here we override the definitions presented in Chapter 8 and present
clean definition for perfect and statistical AVSS that will be valid for next two
chapters as well.

Definition 11.1 (Perfect AVSS [19, 35]) Let (Sh,Rec) be a pair of protocols
in which a dealer D ∈ P shares a secret s from a finite field F using Sh. We say
that (Sh, Rec) is a t-resilient AVSS scheme with n parties if the following hold
for every possible At:

1. Termination:

(a) If D is honest then each honest party will eventually terminate protocol
Sh.

(b) If some honest party has terminated protocol Sh, then irrespective of
the behavior of D, each honest party will eventually terminate Sh.

(c) If all the honest parties have terminated Sh and all the honest parties
invoke protocol Rec, then each honest party will eventually terminate
Rec.

2. Correctness:

(a) If D is honest then each honest party upon completing protocol Rec,
outputs the shared secret s.

(b) If D is faulty and some honest party has terminated Sh, then there
exists a fixed s ∈ F, such that each honest party upon completing Rec,
will output s.

3. Secrecy: If D is honest and no honest party has begun Rec, then At has
no information about s.

We now define statistical AVSS.

Definition 11.2 (Statistical AVSS) This is same as the definition of Perfect
AVSS (presented above), except that Termination and Correctness hold with
probability (1− ε) for some negligibly small error probability ε.

The above definitions of AVSS can be extended for secret S containing mul-
tiple elements (say ` with ` > 1) from F.

Typically in applications like AMPC, sharing phase protocol of AVSSs are
used to generate t-(1d)-sharing (for the definition of t-(1d)-sharing, see Definition
6.12) of secrets. Generalizing for t, we derive the following definition:

277

Definition 11.3 (τ-(1d)-sharing) A value s ∈ F is said to be τ -(1d)-shared
among the set of parties P if the following holds:

• there exists a random degree-τ polynomial f(x) over F, with f(0) = s and

• each (honest) party Pi ∈ P holds si = f(i), called ith share of secret s.

The vector of all |P| shares of s is called a τ -(1d)-sharing of s and is denoted by
[s]τ .

Notice that a secret can be τ -(1d)-shared among any subset of P , say P ,
provided that |P| ≥ τ−t+1. The t-(1d)-sharing not only eases the computation of
the circuit in an AMPC protocol, but the implementation of reconstruction phase
of AVSS can be directly achieved using Online Error Correcting (OEC) technique
proposed by [39, 35]. The sharing phase protocol of existing optimally resilient,
perfect AVSS protocols [19, 13] directly outputs t-(1d)-sharing of secrets. On the
other hand, some of the existing optimally resilient, statistical AVSS protocols
were further used as black box to design some special protocols that generate
t-(1d)-sharing of secrets (for example the ACSS in previous chapter). But so far
there is no AVSS scheme for n = 4t+1 that is designed to generate τ -(1d)-sharing
of secrets where τ > t. This is exactly what our AVSS protocols (with n = 4t+1)
achieve and thus using our AVSS we can generate 2t-(1d)-sharing of secrets. The
use of 2t-(1d)-sharing in AMPC simplifies lot of computation for multiplication
gate as shown in [13] (this will be discussed later in the next chapter).

11.1.3 Relevant Literature

1. Perfect AVSS: From [19, 35], perfect AVSS is possible iff n ≥ 4t+1. Hence,
we call any perfect AVSS protocol with n = 4t + 1 as optimally resilient,
perfect AVSS protocol. Such AVSS protocols are proposed in [19, 35, 13].

2. Statistical AVSS: Statistical AVSS is possible iff n ≥ 3t + 1 [39, 21]. To
the best of our knowledge, the AVSS protocols of [39, 21] and the protocols
presented in this thesis in Chapter 8 are the only known optimally resilient,
statistical AVSS protocols (i.e., with n = 3t + 1).

11.1.4 Contribution of This Chapter

In this chapter, we design two AVSS protocols with 4t+1 parties in which one is
statistical and the other is perfect along with being optimally resilient. Both the
AVSS protocols can generate τ -(1d)-sharing of secret for any τ , where t ≤ τ ≤ 2t.
They are the first AVSS of their kind in the literature as prior to our work, there
is no AVSS that can generate τ -(1d)-sharing for τ > t. Specifically, our AVSS
protocols can generate τ -(1d)-sharing of ` ≥ 1 secrets from F concurrently, with
a communication cost of O(`n2 log |F|) bits, where F is a finite field. In Table
11.1, we compare our AVSS with the existing AVSS protocols with n = 4t + 1
that generate t-(1d)-sharing of secrets.

Now it is to be noted that every τ -(1d)-sharing hides (τ + 1 − t) values that
are completely unknown to the adversary. So a different interpretation leads us
to say that our AVSS protocols share `(τ + 1− t) secrets simultaneously with a
communication cost of O(`n2 log |F|) bits. Putting τ = 2t (the maximum value of
τ), we notice that the amortized cost of sharing a single secret using our AVSSs

278

Table 11.1: Comparison of our AVSS protocols with Existing AVSS Protocols. CC:
Communication Complexity

Reference Type # Secrets Sharing CC
Generated In Bits

[19] Perfect 1 Only t-(1d)-sharing O(n3 log(|F|))
[13] Perfect ` ≥ 1 Only t-(1d)-sharing O(`n2 log(|F|))

This chapter Statistical ` ≥ 1 τ -(1d)-sharing, for O(`n2 log(|F|))
any t ≤ τ ≤ 2t

This chapter Perfect ` ≥ 1 τ -(1d)-sharing, for O(`n2 log(|F|))
any t ≤ τ ≤ 2t

is only O(n log |F|) bits. This is a clear improvement over the AVSS of [13] whose
amortized cost of sharing a single secret is O(n2 log |F|) bits.

Our statistical AVSS generates τ -(1d)-sharing by exploring several features of
bivariate polynomial of different degrees in x and y and several other interesting
observations.

To design our perfect AVSS, we exploit several interesting unexplored proper-
ties of (n, t)-star (a graph theoretic concept presented in section 4.4.2 of [35]) in
conjunction with some properties of bivariate polynomial with different degree in
variable x and y. The (n, t)-star was used to design an optimally resilient perfect
AVSS protocol in [35] (the details of (n, t)-star are presented in Section 11.5 of
current chapter). While the properties of (n, t)-star that our AVSS explores were
not required in the AVSS of [35] (which generates only t-(1d)-sharing of secrets),
our AVSS uses them for the first time for generating τ -(1d)-sharing of secrets,
where t ≤ τ ≤ 2t.

Our protocols for perfect AVSS work on a field F with |F| ≥ n. Hence ev-
ery element from F can be represented by log |F| = O(log n) bits. On the other
hand, for statistical AVSS, we use two fields called ground field and extension
field, which are defined as follows:

The Ground Field and The Extension Field: The field F that is used in perfect
AVSS is denoted as ground field. Most of the computation of statistical AVSS
is performed over this field. We also fix an extension field E ⊃ F to be smallest
extension for which |E| ≥ 2κ = 1

ε
, where ε is the error parameter. Each element

of E can be represented using O(κ) = O(log 1
ε
) bits. We call E as Extension

Field. Some of the computation of our statistical AVSS is performed over E so
as to bound the error probability of the protocols by ε.

11.1.5 The Motivation for Presenting our AVSS Schemes

Our AVSS schemes share the following common properties:

1. Both the protocols are designed with n = 4t + 1;

2. Both the protocols have almost same communication complexity;

3. Both the schemes achieve τ -(1d)-sharing for any t ≤ τ ≤ 2t.

279

However, one protocol is statistical (thus has non-optimal resilience) while
the other one is perfect (thus has optimal resilience). Technique wise, both the
AVSS schemes are completely independent. The main reason to present two
different schemes is to show the difference in these techniques. We strongly believe
that by suitable modifications to the techniques used in our statistical AVSS,
we can further reduce its communication complexity while still maintaining its
properties.

11.1.6 The Common Primitives Used for Both of our AVSS Schemes

Apart from A-cast that was recalled in Chapter 7, we need Online Error Correc-
tion (OEC) technique as the main tool for our AVSS protocols. We have discussed
it in Section 10.2.1 of Chapter 10, specifically with respect to t-(1d)-sharing. Here
we generalize and present it with respect to τ -(1d)-sharing.

11.1.6.1 Online Error Correction (OEC)

Let s be a secret which is τ -(1d)-shared among a set of parties P ⊆ P , by a
τ -degree polynomial f(x), where τ < (|P| − 2t). Let Pα ∈ P be a party, called
as receiver, who wants to privately reconstruct s. This is done as follows: every
party Pi ∈ P sends his share si of s to Pα. The shares may reach Pα in any
arbitrary order. Moreover, up to t of the shares may be incorrect or missing. To
reconstruct f(x), Pα applies OEC technique [19] on the received si’s. Informally,
OEC enables Pα to recognize when the received shares define a unique degree-τ
interpolation polynomial. Specifically, Pα waits to receive τ + t + 1 τ -consistent
shares from the parties in P , such that these τ + t + 1 shares lie on a unique
τ -degree polynomial f(x). Once Pα receives these values, he interpolates f(x),
outputs s and terminates. For details, see [19, 35].

Theorem 11.4 ([35, 13]) Let s ∈ F be a secret, which is τ -(1d)-shared among
a set of parties P ⊆ P, where τ < (|P|−2t). Then using OEC, any party Pα ∈ P
can privately reconstruct s. This requires private communication of O(n log |F|)
bits.

11.1.7 The Road-map

In Section 11.2 and 11.3, we present our statistical AVSS with n = 4t+1 parties.
For simplicity, we first present the protocol dealing with single secret in Section
11.2 and then extend it to the case of multiple secrets in Section 11.3. Section
11.4 states a different interpretation of our statistical AVSS sharing multiple
secrets. Subsequently Section 11.5 recalls the notion of (n, t)-star, the algorithm
for finding (n, t)-star and the properties of the algorithm. Next we present our
perfect AVSS with n = 4t + 1 parties in Section 11.6 and 11.7. Again similar to
the case of statistical AVSS, we present the protocol dealing with single secret
in Section 11.6 and then extend it to the case of multiple secrets in Section 11.7.
Section 11.8 states a different interpretation of our perfect AVSS sharing multiple
secrets (parallel concept of what is stated for our statistical AVSS in Section 11.4).
Finally this chapter ends with concluding remarks and open questions in Section
11.9.

280

11.2 Statistical AVSS For Sharing a Single Secret

We now present a novel, statistical AVSS scheme with n = 4t + 1, called St-
AVSS consisting of a pair of protocols, (St-AVSS-Share,St-AVSS-Rec). Protocol
St-AVSS-Share allows a dealer D ∈ P (dealer can be any party from P) to generate
τ -(1d)-sharing of a single secret from F, where t ≤ τ ≤ 2t. Protocol St-AVSS-
Rec reconstructs the secret, given its τ -(1d)-sharing. Protocol St-AVSS has error
probability of ε, meaning it satisfies Termination and Correctness of AVSS,
except with error probability ε. Structurally, we divide protocol St-AVSS-Share
into a sequence of following three phases:

1. Distribution Phase: Here D, on having a secret s, distributes information
to the parties in P .

2. Verification & Agreement on CORE Phase: Here the parties in P
jointly perform some computation and communication in order to verify
consistency of the information distributed by D in the previous phase. In
case of successful verification, all the honest parties agree on a set of at
least 3t+1 parties, called CORE, satisfying certain properties (given in the
sequel).

3. Generation of τ-(1d)-sharing Phase: In this phase, only the parties in
CORE communicate to every party in P and every party performs local
computation (on the data received from the parties in CORE) to finally
generate the τ -(1d)-sharing of secret s.

Each of the phases will be eventually completed by every honest party when
D is honest. An honest party will terminate St-AVSS-Share, if it successfully
completes the last phase, namely Generation of τ-(1d)-sharing Phase. If D is
honest then each honest party will eventually terminate the last phase. Moreover,
if D is corrupted and some honest party terminates the last phase, then each
honest party will also eventually terminate the last phase (and hence St-AVSS-
Share).

11.2.1 Distribution Phase

Here D on having a secret s, selects a random bivariate polynomial F (x, y) over
F of degree-(τ, t) (i.e degree τ in x and t in y), such that F (0, 0) = s. Let
fi(x) = F (x, i) and pi(y) = F (i, y). While all fi(x) polynomials are of degree-τ ,
all pi(y) polynomials are of degree-t. We will call the fi(x) polynomials as row
polynomials and pi(y) polynomials as column polynomials. Now D sends fi(x) to
party Pi. In this phase, D also distributes some more information which will be
used to keep his secret secure during Verification & Agreement on CORE
phase. Precisely, D distributes the shares of (t + 1)n random polynomials of
degree-t which will be used for blinding purpose in Verification & Agreement
on CORE phase. We refer these polynomials as blinding polynomials. The
reason for taking (t + 1)n blinding polynomials will be clear in the next section.
The protocol for Distribution phase, called as St-Distr is given in Fig. 11.1.

Before proceeding further, we would like to mention a few interesting points
about protocol St-Distr. The bivariate polynomial F (x, y), selected by D, has
degree-(τ, t). This results in each row polynomial to be of degree-τ and each
column polynomial to be of degree-t. On the other hand, all the existing AVSS

281

Figure 11.1: First Phase of Protocol St-AVSS-Share: Distribution Phase

Protocol St-Distr(D,P, s, τ, ε)

Code for D: Only D executes this code

1. Select a random bivariate polynomial F (x, y) of degree-(τ, t), such that
F (0, 0) = s. For i = 0, . . . , n, let fi(x) = F (x, i) and pi(y) = F (i, y).

2. Select (t + 1)n degree-t, random, distinct blinding polynomials, over F,
denoted by b(Pi,1)(y), . . . , b(Pi,t+1)(y) for i = 1, . . . , n.

3. For i = 1, . . . , n, send the following to party Pi:

(a) Row polynomial fi(x) of degree-τ ;
(b) For j = 1, . . . , n, the shares b(Pj ,1)(i), . . . , b(Pj ,t+1)(i).

protocols (which generates only t-(1d)-sharing), based on the approach of bivari-
ate polynomial, selects the degree of both x and y to be t [35, 13]. In subsequent
phases, we create a situation, where the parties have to only reconstruct the
column polynomials using the help of the parties in CORE, to complete the τ -
(1d)-sharing. So even though the row polynomials may have degree more than t,
the parties need not have to bother about reconstructing them.

We now describe Verification & Agreement on CORE phase. If Veri-
fication & Agreement on CORE phase is successful, then the secret s will
be τ -(1d)-shared using degree-τ polynomial f0(x) = F (x, 0) in Generation of
τ-(1d)-sharing phase.

11.2.2 Verification & Agreement on CORE Phase

As it is clear from the description of protocol St-Distr, if D behaves honestly then
the row polynomials (i.e fi(x)’s) held by the honest parties in P , should define a
unique degree-(τ, t) bivariate polynomial F (x, y). But for a corrupted D, we must
ensure that the above holds by enforcing some verification mechanism. While it
may be difficult to ensure that the row polynomials of all the honest parties in
P define a unique degree-(τ, t) bivariate polynomial (due to asynchrony of the
network), it is easier to ensure the same for the honest parties in a set of at
least 3t + 1 parties, say CORE (CORE ⊆ P). In fact, this is what this phase
attempts to achieve. The verification mechanism and the construction of CORE
is the crux of St-AVSS-Share. More clearly, CORE has the following property:

Definition 11.5 (Properties of CORE) CORE(⊆ P) is a set of at least 3t+1
parties such that the row polynomials (received in Distribution Phase) of the
honest parties in CORE define a unique bivariate polynomial, say F (x, y), of
degree-(τ, t). Moreover, if D is honest, then F (x, y) = F (x, y), where F (x, y)
was chosen by D in Distribution Phase.

An Informal Description of the Current Phase: In our verification mecha-
nism, every party has dual responsibility: (a) it acts as a verifier to verify consis-
tency of the information distributed by D; (b) it also co-operates as a party, with

282

other verifiers, in order to enable successful completion of the verification mech-
anism initiated by them. So, we first concentrate on the part of communication
and computation that is to be carried out with respect to a single verifier, say V
(here V can be any party from P). The goal of this part of communication and
computation is to decide on a set of at least 3t + 1 parties, say AgreeSetV , such
that if V is honest, then AgreeSetV should satisfy all the desirable properties of
CORE. In other words, AgreeSetV can be an eligible candidate for CORE, for
an honest V . To implement this, we design protocol Single-Verifier (given in Fig.
11.2). In the protocol if V is honest and some AgreeSetV is generated, then it
is ensured that for j = 1, . . . , n, the jth point on row polynomials of all honest
parties in AgreeSetV define some degree-t polynomial pj(y) with high probability
(Lemma 11.8). This further implies that the row polynomials held by the honest
parties in AgreeSetV define a unique degree-(τ, t) bivariate polynomial with high
probability (Lemma 11.9). We use the following notation in Single-Verifier:

Notation 11.6 Given ρ polynomials, C = {c1(y), . . . , cρ(y)} and a vector R =
(ζ1, . . . , ζρ) of length ρ, we define c(y) as the polynomial obtained by the lin-
ear combination of the polynomials in C with respect to R. That is, c(y) =∑ρ

i=1 ζi.ci(y). We express this by: c(y) = LCP(C, R) (LCP denotes Linear Com-
bination of Polynomials). Similarly, we define c = LCV(C, R) (LCV denotes
Linear Combination of Values), where C = {c1, . . . , cρ} (set of ρ values) and
c =

∑ρ
i=1 ζi.ci

We now prove the following lemmas for Protocol Single-Verifier.

Lemma 11.7 In protocol Single-Verifier, if V and D are honest, then eventually
for some β ∈ {1, . . . , t + 1}, AgreeSet(V,β) with |AgreeSet(V,β)| ≥ 3t + 1 will be
generated.

Proof: For an honest D, every honest party in P will eventually send Received-

From-D to V . Moreover, from protocol steps, V will A-cast distinct ReceivedSet(V,β)

at most t + 1 times. This is because ReceivedSet(V,1) ≥ 3t + 1 and n = 4t + 1.
These facts together imply that eventually there will be a β ∈ {1, . . . , t + 1},
such that ReceivedSet(V,β) will contain all 3t + 1 honest parties. Moreover, each
honest party from such ReceivedSet(V,β) will eventually enter into AgreeSet(V,β)

when D is honest. So eventually |AgreeSet(V,β)| will be at least 3t + 1 for some
β. 2

Lemma 11.8 In protocol Single-Verifier, if V is honest and some AgreeSet(V,β)

(containing at least 3t + 1 parties) has been generated, then the following holds
with probability at least (1− ε):

1. For all j = 1, . . . , n, the jth point on the row polynomials fi(x)s, held by the
honest parties in AgreeSet(V,β), define degree-t polynomial pj(y).

2. Moreover, the points on blinding polynomial b(V,β)(y) held by the honest
parties in AgreeSet(V,β) will also lie on a degree-t polynomial.

Proof: If D is honest, then the lemma will be true, without any error. Hence
we consider the case when D is corrupted. Let H(V,β) denote the set of honest par-
ties in AgreeSet(V,β). First of all, since V is honest, he A-casts random r(V,β) only
after listening Received-From-D signal from all the parties in ReceivedSet(V,β).

283

Figure 11.2: Steps to be executed with respect to a Single Verifier

Protocol Single-Verifier(V,P, s, τ, ε)

i. Code for Pi: Every party in P, including D and V , executes this code.

1. Wait to receive fi(x) and b(Pj ,1)(i), . . . , b(Pj ,t+1)(i) for j = 1, . . . , n from
D.

2. After receiving, check whether fi(x) is a degree-τ polynomial. If yes,
then privately send a Received-From-D signal to V .

ii. Code for V : Only V executes this code.

1. Wait to obtain Received-From-D signal from 3t + 1 parties. Put
the identities of these 3t + 1 parties in a set ReceivedSet(V,1).
Select a random value r(V,1) from extension field E and A-cast
(r(V,1), ReceivedSet(V,1)).

2. After the previous step, for every new receipt of Received-From-D
signal from Pα 6∈ ReceivedSet(V,β−1) such that 1 < β ≤ t + 1, con-
struct ReceivedSet(V,β) = ReceivedSet(V,β−1) ∪ {Pα}, select a random
r(V,β) ∈ E \ {r(V,1), . . . , r(V,β−1)} and A-cast (r(V,β), ReceivedSet(V,β)).

iii. Code for D: Only D executes this code.

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V , then A-
cast the polynomial E(V,β)(y), where E(V,β)(y) = LCP(E , R). Here E =
{b(V,β)(y), p1(y), . . . , pn(y)} and R = (1, r(V,β),

(
r(V,β)

)2
, . . . ,

(
r(V,β)

)n
).

iv. Code for Pi: Every party in P executes this code.

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V , then
check if Pi ∈ ReceivedSet(V,β). If yes, then A-cast e

(V,β)
i =

LCV(∆i, R), where ∆i = {b(V,β)(i), fi(1), . . . , fi(n)} and R =
(1, r(V,β),

(
r(V,β)

)2
, . . . ,

(
r(V,β)

)n
).

2. Say that party Pj agrees with D with respect to
(r(V,β), ReceivedSet(V,β)), where β ∈ {1, . . . , t + 1}, if all the fol-
lowing hold:

(a) E(V,β)(y) A-casted by D is a degree-t polynomial,
(b) Pj ∈ ReceivedSet(V,β) and

(c) e
(V,β)
j = E(V,β)(j), where e

(V,β)
j , E(V,β)(y) and

(r(V,β), ReceivedSet(V,β)) are received from the A-casts of Pj ,
D and V respectively.

3. With respect to (r(V,β), ReceivedSet(V,β)), when there are 3t + 1 Pj ’s
who agree with D, add them in a set AgreeSet(V,β).

284

Thus D has no knowledge of r(V,β), when he distributes the row polynomials and
points on blinding polynomial b(V,β)(y) to the (honest) parties in ReceivedSet(V,β).

Let b(V,β)(y) denote the minimum degree polynomial, defined by the points on
b(V,β)(y), held by the parties in H(V,β). Similarly, let p1(y), . . . , pn(y) denote the
minimum degree column polynomials, defined by the points on the row polynomi-
als, held by the parties in H(V,β). For convenience, we use a uniform notation for
these n+1 polynomials. We denote them by h0(y), . . . , hn(y), respectively. Then

the value e
(V,β)
i , A-casted by Pi ∈ H(V,β) is defined as e

(V,β)
i =

∑n
j=0

(
r(V,β)

)j
hj(i).

We now claim that with probability at least (1−ε), all of h0(y), . . . , hn(y) have
degree-t. On the contrary, if we assume that at least one of these polynomials
has degree more than t, then we can show that the minimum degree polynomial,

say hmin(y), defined by e
(V,β)
i ’s for Pi ∈ H(V,β) will be of degree more than t,

with probability at least (1− ε). This will clearly imply E(V,β)(y) 6= hmin(y) and

hence e
(V,β)
i 6= E(V,β)(i) for at least one Pi ∈ H(V,β). This is a contradiction as

e
(V,β)
i = E(V,β)(i) holds for every Pi ∈ Agree(V,β) and H(V,β) ⊆ Agree(V,β). This

shows that our claim is true.
So we proceed to prove that hmin(y) will be of degree more than t with prob-

ability at least (1− ε), when one of h0(y), . . . , hn(y) has degree more than t. For
this, we show the following:

1. We first show that hdef (y) = Σn
j=0

(
r(V,β)

)j
hj(y) will be of degree more than

t with probability at least (1− ε), if one of h0(y), . . . , hn(y) has degree more
than t.

2. We then show that hmin(y) = hdef (y), implying that hmin(y) will be of
degree more than t.

To prove the first point, assume that one of h0(y), . . . , hn(y), has degree more
than t. Let m be such that hm(y) has maximal degree among h0(y), . . . , hn(y), and
let tm be the degree of hm(y). Then according to the condition, tm > t. Note that
tm < |H(V,β)|. This is because given |H(V,β)| values (recall that h0(y), . . . , hn(y)
are defined by the points on the row polynomials, held by the honest parties
in H(V,β)), the maximum degree polynomial that can be defined using them is

|H(V,β)|− 1. Now each hi(y) can be written as hi(y) = ci
tmytm + ĥi(y) where ĥi(y)

has degree lower than tm. Thus hdef (y) can be written as:

hdef (y) = [c0
tmytm + ĥ0(y)] + r(V,β)[c1

tmytm + ĥ1(y)] + . . . +
(
r(V,β)

)n
[cn

tmytm + ĥn(y)]

= ytm(c0
tm + . . . +

(
r(V,β)

)n
cn
tm) + Σn

j=0

(
r(V,β)

)j
ĥj(y)

= ytmctm + Σn
j=0

(
r(V,β)

)j
ĥj(y) where ctm = c0

tm + . . . +
(
r(V,β)

)n
cn
tm

By assumption cm
tm 6= 0. It implies that the vector (c0

tm , . . . , cn
tm) is not a complete

0 vector. Hence ctm = c0
tm + . . . +

(
r(V,β)

)n
cn
tm will be zero with probability

n
|E|−(β−1)

≈ 2−Ω(κ) ≈ ε (which is negligible), where β ≤ t + 1. This is because

the vector (c0
tm , . . . , cn

tm) may be considered as the set of coefficients of a n degree
polynomial, say µ(x), and hence the value ctm is the value of µ(x) evaluated at
r(V,β). Now ctm will be zero if r(V,β) happens to be one of the n roots of µ(x)
(since degree of µ(x) is at most n). Now since r(V,β) is chosen randomly from
E \ {r(V,1), . . . , r(V,β−1)} by V , independent of the polynomials h0(y), . . . , hn(y),

285

the probability that it is a root of µ(x) is n
|E|−(β−1)

≈ 2−Ω(κ) ≈ ε. So with very

high probability of (1 − ε), ctm that is the tthm coefficient of hdef (y) is non-zero.

This implies that hdef (y) will be of degree at least tm > t. Notice that each e
(V,β)
i

(A-casted by Pi), corresponding to every Pi ∈ H(V,β) will lie on hdef (y).
Now we show that hmin(y) = hdef (y) and thus hmin(y) has degree at least

tm > t. So consider the difference polynomial dp(y) = hdef (y)−hmin(y). Clearly,
dp(y) = 0, for all y = i, where Pi ∈ H(V,β). Thus dp(y) will have at least |H(V,β)|
roots. On the other hand, maximum degree of dp(y) could be tm, which is at most
|H(V,β)| − 1. These two facts together imply that dp(y) is the zero polynomial,
implying that hdef (y) = hmin(y) and thus hmin(y) has degree tm > t. 2

Lemma 11.9 In protocol Single-Verifier, if V is honest and AgreeSet(V,β) (con-
taining at least 3t + 1 parties) has been generated, then there exists a unique
degree-(τ, t) bivariate polynomial F (x, y) such that row polynomial fi(x) held by
every honest Pi ∈ AgreeSet(V,β) satisfies F (x, i) = fi(x) with probability at least
(1− ε). Moreover, if D is honest then F (x, y) = F (x, y).

Proof: Let l be the number of honest parties in AgreeSet(V,β). As |AgreeSet(V,β)| ≥
3t+1, we have l ≥ 2t+1. Without loss of generality, we assume that P1, . . . , Pl are
the honest parties in AgreeSet(V,β), holding the row polynomials f1(x), . . . , fl(x)
respectively. Since V is honest and some AgreeSet(V,β) (containing at least 3t+1
parties) has been generated, then from Lemma 11.8 with probability at least
(1 − ε), there are n degree-t column polynomials p1(y), . . . , pn(y) such that for
every (i, j) with i ∈ {1, . . . , l} and j ∈ {1, . . . , n}, we have fi(j) = pj(i). We
now claim that if this is the case, then there exists a unique bivariate polynomial
F (x, y) of degree-(τ, t) over F, such that for i = 1, . . . , l, we have F (x, i) = fi(x)
and for j = 1, . . . , n, we have F (j, y) = pj(y). The proof is very similar to the
proof of Lemma 4.26 of [35].

Let V (k) denote k×k Vandermonde matrix, where ith column is [i0, . . . , ik−1]T ,
for i = 1, . . . , k. Now consider the row polynomials f1(x), . . . , ft+1(x) and let E
be the (t + 1) × (τ + 1) matrix, where Eij is the coefficient of xj in fi(x), for
i = 1, . . . , t + 1 and j = 0, . . . , τ . Thus for i = 1, . . . , t + 1 and j = 1, . . . , τ + 1,
the (i, j)th entry in E · V (τ+1) is fi(j).

Let H = ((V (t+1))T)
−1 ·E be a (t+1)×(τ +1) matrix. Let for i = 0, . . . , τ , the

(i + 1)th column of H be [ri0, ri1, . . . , rit]
T . Now we define a degree-(τ, t) bivari-

ate polynomial F (x, y) =
∑i=τ

i=0

∑j=t
j=0 rijx

iyj. Then from properties of bivariate
polynomial, for i = 1, . . . , t + 1 and j = 1, . . . , τ + 1, we have

F (j, i) = (V (t+1))T ·H · V (τ+1) = E · V (τ+1) = fi(j) = pj(i)

This implies that for i = 1, . . . , t+1, the polynomials F (x, i) and fi(x) have same
value at τ + 1 values of x. But since degree of F (x, i) and fi(x) is τ , this implies
that F (x, i) = fi(x). Similarly, for j = 1, . . . , τ + 1, we have F (j, y) = pj(y).

Next, we will show that for any t + 1 < i ≤ l, the polynomial fi(x) also lies
on F (x, y). In other words, F (x, i) = fi(x), for t + 1 < i ≤ l. This is easy to
show because according to theorem statement, fi(j) = pj(i), for j = 1, . . . , τ + 1

and p1(i), . . . , pτ+1(i) lie on F (x, i) and uniquely defines F (x, i). Since both fi(x)
and F (x, i) are of degree τ , this implies that F (x, i) = fi(x), for t + 1 < i ≤ l.
Similarly, we can show that F (j, y) = pj(y), for τ + 1 < j ≤ n.

It is easy to see that if D is honest, then fi(x) = fi(x) and pi(y) = pi(y) and
therefore F (x, y) = F (x, y). 2

286

Lemma 11.10 If D is honest then s will be secure in protocol Single-Verifier.

Proof: Without loss of generality, let At controls P1, . . . , Pt. So At will know
f1(x), . . . , ft(x) and hence t points on p1(y), . . . , pn(y). At will also learn E(V,β)(y)
for β = 1, . . . , t + 1 and t points on b(V,1)(y), . . . , b(V,t+1)(y). But each E(V,β)(y) is
linear combination of b(V,β)(y), p1(y), . . . , pn(y). As b(V,β)(y) is completely random
and independent of p1(y), . . . , pn(y), E(V,β)(y) will be completely random for At.
Moreover for every β ∈ {1, . . . , t + 1}, distinct b(V,β)(y) is used. The rest now
follows from the properties of degree-(τ, t) bivariate polynomial. 2

So far, we concentrated on the communication that is to be carried out with
respect to a single V . We proved that if V is honest then Single-Verifier can
provide with a candidate solution for CORE (see Lemma 11.7-11.9). But as we do
not know the exact identities of honest parties, we can not pick an AgreeSet(V,∗)

for an honest V and assign that as CORE. Thus CORE construction requires
a more involved trick. Informally, we execute Single-Verifier for every V ∈ P
and compute CORE based on AgreeSet(∗,∗)’s by exploring several important
observations.

Remark 11.11 (Need for n(t + 1) Blinding Polynomials in St-Distr) Recall
that in protocol St-Distr, D has selected n(t + 1) blinding polynomials. The rea-
son for this is as follows: From the proof of Lemma 11.7, a single verifier V
will A-cast at most t + 1 ReceivedSet(V,β)’s. Now, from Lemma 11.10, in or-
der to maintain the secrecy of s, distinct b(V,β)(y) should be used for computing
E(V,β)(y) for every β ∈ {1, . . . , t + 1}. Now in Verification and Agreement
on CORE phase, each of the n parties will act as a verifier and execute protocol
Single-Verifier. Hence D should select n(t + 1) blinding polynomials.

Before presenting our protocol for Verification & Agreement on CORE
phase, we capture several important observations in terms of the following lemmas
which will help to grasp the part of code used for constructing CORE.

Lemma 11.12 For an honest V , the row polynomials held by honest parties
in AgreeSet(V,β) and AgreeSet(V,γ) with β 6= γ, define same degree-(τ, t) bivariate
polynomial.

Proof: By Lemma 11.9, for an honest V , the row polynomials held by honest
parties in AgreeSet(V,β) as well as in AgreeSet(V,γ) define unique degree-(τ, t)

bivariate polynomials, say F (x, y) and F̂ (x, y) respectively with probability at

least (1− ε). Now F (x, y) = F̂ (x, y), as they have at least t + 1 row polynomials
in common corresponding to at least t+1 common honest parties in AgreeSet(V,β)

and AgreeSet(V,γ), who define a unique bivariate polynomial of degree-(τ, t). 2

Lemma 11.13 For any two honest verifiers Vα, Vδ, the row polynomials of hon-
est parties in any AgreeSet(Vα,β), AgreeSet(Vδ,γ) with β, γ ∈ {1, . . . , t + 1} define
same degree-(τ, t) bivariate polynomial.

Proof: The proof for this lemma is almost same as lemma 11.12 and therefore
follows from Lemma 11.9 and the fact that there are at least t + 1 common
honest parties in AgreeSet(V,β) and AgreeSet(V,γ), whose row polynomials define
the same bivariate polynomial. 2

Now the protocol for Verification & Agreement on CORE Phase is given in
Fig. 11.3.

We now prove the properties of protocol St-Ver-Agree.

287

Figure 11.3: Second Phase of Protocol St-AVSS-Share: Verification & Agreement
on CORE phase

Protocol St-Ver-Agree(D,P, s, τ, ε)

Verification and CORE Construction:

i. Code for Pi: This code is executed by every party including D

1. Execute Single-Verifier(Pα,P, s, τ, ε) for every verifier Pα ∈ P in parallel.

2. Add a verifier Pα to a set V alidV erifier if at least one AgreeSet(Pα,β)

for some β ∈ {1, . . . , t + 1} has been generated.

3. Check whether |V alidV erifier| ≥ t+1 and in case of ’yes’ perform the
following computation:

(a) For every Pα ∈ V alidV erifier, compute AgreeSetPα =
∪βAgreeSet(Pα,β).

(b) Compute COREi = {Pj | Pj belongs to AgreeSetPα

for at least t+1 P ′
αs in V alidV erifier}.

(c) Wait for new updates (such as generation of new set AgreeSet(Pα,β),
expansion of existing AgreeSet(Pα,β)’s etc.) and repeat the same
computation (i.e steps 2-3((a),(b))) to update COREi for every
new update.

ii. Code for D: This code is executed only by D

1. A-cast CORE = CORED as soon as |CORED| = 3t + 1.

Agreement on CORE: Code for Pi:

1. Wait to receive CORE from the A-cast of D such that |CORE| = 3t+1.

2. Wait until CORE ⊆ COREi and then accept CORE.

Lemma 11.14 The row polynomials held by the honest parties in CORE define
a unique degree-(τ, t) bivariate polynomial, say F (x, y) with probability at least
(1− ε). Moreover, when D is honest then F (x, y) = F (x, y).

Proof: By the construction of CORE, every party in CORE is guaranteed to
be present in AgreeSet of at least one honest verifier. By Lemma 11.12, corre-
sponding to an honest verifier Pα, the row polynomials held by the honest parties
in AgreeSetPα define a unique degree-(τ, t) bivariate polynomial, say F (x, y),
with probability at least (1 − ε). Moreover, by Lemma 11.13, the row polyno-
mials held by the honest parties in the union of AgreeSetPα ’s, corresponding to
all honest Pα’s, also define F (x, y) with probability at least (1− ε). This implies
that the row polynomials held by the honest parties in CORE, define F (x, y)
with probability at least (1− ε).

It is easy to see that for an honest D, F (x, y) = F (x, y) where F (x, y) was the
polynomial chosen by D in St-Distr. Moreover for an honest D, the row polyno-
mials held by the honest parties in CORE define F (x, y) without any error. 2

288

Once the parties agree on a CORE set, generation of τ -(1d)-sharing requires n
private reconstructions using OEC technique. We do that in Generation of
τ-(1d)-sharing phase which is discussed in the sequel.

11.2.3 Generation of τ-(1d)-sharing Phase

Assuming that the honest parties in P have agreed upon a CORE, protocol
St-Gen generates τ -(1d)-sharing in the following way: From the properties of
CORE, the row polynomials of honest parties in CORE define a unique degree-
(τ, t) bivariate polynomial say F (x, y) with probability at least (1 − ε), such
that each honest party Pi in CORE possesses fi(x) = F (x, i). So the jth point
on fi(x) polynomials, corresponding to all honest Pi’s in CORE define degree-t
polynomial pj(y) = F (j, y). Furthermore, |CORE| ≥ 3t + 1. So the parties
in CORE can enable each Pj ∈ P to privately reconstruct pj(y) by applying
standard OEC technique [35, 13]. Informally, OEC allows any party Pα ∈ P to
privately reconstruct a value v in asynchronous settings, which is shared among
a set of parties P ⊆ P using a τ -degree polynomial, where τ < |P| − 2t [35, 13]
(recall from Section 11.1.6). Once this is done, Pj can output pj(0) = f0(j) as

the jth share of s, which is now τ -(1d)-shared using degree-τ polynomial f0(x) =
F (x, 0).

Figure 11.4: Third Phase of protocol St-AVSS-Share: Generation of τ-(1d)-sharing

Protocol St-Gen(D,P, s, τ, ε)

Code for Pi: Every party executes this code

1. If Pi ∈ CORE, then for j = 1, . . . , n, privately send fi(j) to party Pj .

2. Apply OEC on fj(i)’s received from Pj ’s belonging to CORE to pri-
vately reconstruct degree-t polynomial pi(y) and hence pi(0).

3. Output si = f0(i) = pi(0) as the ith share of D’s secret and terminate
St-Gen. D’s secret s = f0(0) is now τ -(1d)-shared among the parties in
P using degree-τ polynomial f0(x).

Lemma 11.15 Assuming that every honest party has agreed on CORE, St-Gen
will generate τ -(1d)-sharing of of secret s = F (0, 0) with probability at least (1−ε).
If D is honest, then s = s where s is D’s secret in St-Distr.

Proof: From Lemma 11.14, the row polynomials held by the honest parties in
CORE define a unique degree-(τ, t) bivariate polynomial, say F (x, y) with prob-
ability at least (1− ε). This also implies that the ith point on fj(x) polynomials,
corresponding to all honest Pj’s in CORE define degree-t polynomial pi(y) for
all i = 1, . . . , n with probability at least (1− ε). So party Pi can apply OEC on
fj(i) values received from the parties in CORE and correctly interpolate pi(y)

and obtain pi(0) with probability at least (1− ε). Now f0(i) = pi(0) holds by the

289

property of bivariate polynomial. So s = f0(0) = F (0, 0) is now τ -(1d)-shared
using degree-τ polynomial f0(x) where every honest Pi ∈ P holds f0(i), the ith

share of s with probability at least (1− ε).
When D is honest then F (x, y) = F (x, y) and thus s = s. Hence s will be

τ -(1d)-shared among the parties using polynomial f0(x) = F (x, 0). Notice that
in this case the τ -(1d)-sharing will be generated without any error. 2

11.2.4 Protocol St-AVSS: Statistical AVSS Sharing a Single Secret

Now our final statistical AVSS scheme is given in Fig. 11.5.

Figure 11.5: Protocol St-AVSS

Protocol St-AVSS-Share(D,P, s, τ, ε)

1. D executes St-Distr(D,P, s, τ, ε).

2. Every party Pi participates in St-Ver-Agree(D,P, s, τ, ε).

3. If CORE is generated and agreed upon, then every Pi participates in St-
Gen(D,P, s, τ, ε) and terminate St-AVSS-Share after terminating St-Gen.

Protocol St-AVSS-Rec(D,P, s, τ, ε)
i. Code for Pi:

1. Privately send si, the ith share of the secret to every Pj ∈ P.

2. Apply OEC on received sj ’s, reconstruct the secret and terminate St-AVSS-
Rec.

We now prove the properties of our statistical AVSS scheme.

Lemma 11.16 (AVSS-Termination) Protocol St-AVSS satisfies termination
property of Definition 11.2 with probability at least (1− ε).

Proof:Termination 1: We first prove Termination 1 which says that if D is
honest then every honest party must terminate St-AVSS-Share eventually. Termi-
nation 1 will hold without any error probability. If D is honest then AgreeSetPα

of every honest verifier Pα can eventually contain all the honest parties (at least
3t + 1) from P . Thus CORE can eventually contain all honest parties in P and
will be accepted by every honest party. The rest now follows from the protocol
steps, properties of CORE and OEC.

Termination 2: We now prove Termination 2 which says that if D is cor-
rupted and some honest Pi has terminated St-AVSS-Share, then all honest parties
will eventually terminate St-AVSS-Share. Termination 2 will hold good with
probability at least (1− ε). If D is corrupted and some honest Pi has terminated
St-AVSS-Share, then it implies that Pi has received CORE from the A-cast of
D, checked its validity and accepted it. Moreover Pi has finally computed si

290

in protocol St-Gen. From the protocol steps of St-Ver-Agree and properties of
A-cast every other honest party will also eventually accept CORE after receiving
it from the A-cast of D. Now from Lemma 11.14, the row polynomials held by
the honest parties in CORE define a unique degree-(τ, t) bivariate polynomial
with probability at least (1 − ε). Hence in St-Gen, every other honest party Pj

will compute sj (the jth share of secret) with probability at least (1 − ε) and
terminate St-AVSS-Share with the same probability.

Termination 3: Finally, we proceed to prove Termination 3 which says that if
every honest party terminates St-AVSS-Share and starts St-AVSS-Rec, then every
honest party will eventually terminate St-AVSS-Rec. Termination 3 will hold
with probability at least (1−ε). From Lemma 11.15, protocol St-Gen will generate
correct τ -(1d)-sharing of a secret with probability at least (1− ε). Now since the
generated τ -(1d)-sharing is correct with probability at least (1 − ε), every party
Pi will correctly reconstruct the secret in St-AVSS-Rec with probability at least
(1− ε). 2

Lemma 11.17 (AVSS-Secrecy) Protocol St-AVSS satisfies secrecy property
of Definition 11.2.

Proof: We have to consider the case when D is honest. By Lemma 11.10, the
polynomials E(Pα,β) A-casted in St-Ver-Agree are completely random to At and
hence can be ignored. Moreover at the end of St-AVSS-Share, a party Pi holds
fi(x) and pi(y). Now by property of bivariate polynomial of degree-(τ, t), τ−t+1
coefficients of F (x, y) will remain secure, where F (x, y) is the polynomial used
by D to hide his secret s. So s = F (0, 0) will be secure from At. 2

Lemma 11.18 (AVSS-Correctness) Protocol St-AVSS satisfies correctness
property of Definition 11.2 with probability at least (1− ε).

Proof: Correctness 1: We first prove Correctness 1. By Termination 1
of St-AVSS (see Lemma 11.16), for an honest D, CORE will always be agreed
upon among all the honest parties in P . Moreover, by Lemma 11.14 the row
polynomials of the honest parties in CORE define degree-(τ, t) bivariate polyno-
mial F (x, y) without any error when D is honest. Now by Lemma 11.15, secret
s = F (0, 0) will be τ -(1d)-shared among the parties in P without any error prob-
ability. Hence in St-AVSS-Rec, the parties will correctly reconstruct back s using
OEC technique.

Correctness 2: If D is corrupted and the honest parties in P terminates St-
AVSS-Share, then St-Gen has generated τ -(1d)-sharing of a secret s with probabil-
ity at least (1− ε). Since the generated τ -(1d)-sharing is correct with probability
(1 − ε), in St-AVSS-Rec every party will reconstruct the secret with probability
(1− ε). 2

Theorem 11.19 Protocol St-AVSS consisting of sub-protocols (St-AVSS-Share,
St-AVSS-Rec) constitutes a valid statistical AVSS scheme according to Definition
11.2.

Proof: Follows from Lemma 11.16, Lemma 11.17 and Lemma 11.18. 2

291

Theorem 11.20 (Communication Complexity of St-AVSS)

• Protocol St-AVSS-Share privately communicates O(n3 log(|F|)) and A-casts
O(n3 log 1

ε
) bits, where log 1

ε
= log(|E|).

• Protocol St-AVSS-Rec privately communicates O(n2 log(|F|)) bits.

Proof: In St-Distr, D privately communicates O((nτ + n3) log(|F|)) bits. Since
t ≤ τ ≤ 2t, τ = O(n). In St-Ver-Agree, the parties A-cast O(n3 log(|F|)+n2 log 1

ε
)

bits. In St-Gen and St-AVSS-Rec, parties privately communicate O(n2 log |F|)
bits. As log(|F|) ≤ log 1

ε
, overall parties perform private communication of

O(n3 log(|F|)) bits and A-cast of O(n3 log 1
ε
) bits. 2

11.3 Statistical AVSS For Sharing Multiple Secrets

We now present a statistical AVSS scheme, called St-AVSS-MS (here MS stands
for multiple secrets) consisting of pair of protocols (St-AVSS-MS-Share,St-AVSS-
MS-Rec). Protocol St-AVSS-MS-Share allows a dealer D ∈ P to generate τ -(1d)-
sharing of secret S = (s1, . . . , s`), consisting of ` > 1 elements from F, where
t ≤ τ ≤ 2t. Notice that we assume ` to satisfy ` = poly(n, log 1

ε
). Protocol

St-AVSS-MS-Rec reconstructs the secret S, given its τ -(1d)-sharing.
Notice that we can generate τ -(1d)-sharing of S by concurrently executing

protocol St-AVSS-Share (given in the previous section) ` times, once for each
sl ∈ S. This would require private communication of O(`n3 log(|F|)) bits and
A-cast of O(`n3 log 1

ε
) bits. However, our protocol St-AVSS-MS-Share achieves

the same task with a private communication of O((`n2 + n3) log |F|) bits and
A-cast of O(n3 log 1

ε
) bits. It is to be noted that the A-cast communication of

St-AVSS-MS-Share protocol is independent of `. This shows that executing a
single instance of St-AVSS-MS-Share dealing with multiple secrets concurrently
is advantageous over executing multiple instances of St-AVSS-Share dealing with
single secret.

The structure of St-AVSS-MS-Share is divided into same three phases as in St-
AVSS-Share. The corresponding protocols are St-Distr-MS, Single-Verifier-MS, St-
Ver-Agree-MS and St-Gen-MS. Protocols St-Distr-MS and St-Gen-MS are straight
forward extension of St-Distr and St-Gen respectively for ` values. Protocol Single-
Verifier-MS (and hence St-Ver-Agree-MS) is also extension of Single-Verifier (and
hence St-Ver-Agree) for ` values with the following difference: Instead of A-casting
` linear combination of polynomials corresponding to ` secrets, the dealer D A-
casts only one linear combination of polynomials corresponding to all the ` secrets.
In response, every party A-casts only one linear combination of values, instead of
` linear combination of values. It is this crucial step, which results in the A-cast
communication of St-AVSS-MS-Share to be independent of `. The protocols are
given in Fig. 11.6, Fig. 11.7, Fig. 11.8, Fig. 11.9 and Fig. 11.10. The proofs for
the properties of the protocols follow from the proofs of the protocols dealing with
single secret (presented in previous section). For the sake of avoiding repetition,
we do not provide any proof for these protocols. Rather, we give the final theorem
stating that St-AVSS-MS is a valid statistical AVSS protocol and then present the
theorem on the communication complexity of protocol St-AVSS-MS.

Theorem 11.21 Protocol St-AVSS-MS consisting of sub-protocols (St-AVSS-MS-
Share, St-AVSS-MS-Rec) constitutes a valid statistical AVSS scheme for ` secrets.

292

Figure 11.6: First Phase of Protocol St-AVSS-MS-Share: Distribution Phase

Protocol St-Distr-MS(D,P, S = (s1, . . . , s`), τ, ε)

Code for D: Only D executes this code

1. Select ` random, bivariate polynomials F 1(x, y), . . . , F `(x, y) of degree-
(τ, t) over F, such that F l(0, 0) = sl for l = 1, . . . , `. Let f l

i (x) = F l(x, i),
pl

i(y) = F l(i, y) for 0 ≤ i ≤ n and l = 1, . . . , `.

2. Select (t + 1)n degree-t, random, distinct blinding polynomials over F,
denoted by b(Pj ,1)(y), . . . , b(Pj ,t+1)(y) for j = 1, . . . , n.

3. For i = 1, . . . , n, send the following to party Pi:

(a) Row polynomials f l
i (x) for l = 1, . . . , `;

(b) For j = 1, . . . , n, the shares b(Pj ,1)(i), . . . , b(Pj ,t+1)(i).

Theorem 11.22 (Communication Complexity of St-AVSS-MS)

• Protocol St-AVSS-MS-Share privately communicates O((`n2+n3) log |F|) bits
and A-casts O(n3 log 1

ε
) bits.

• Protocol St-AVSS-MS-Rec privately communicates O(`n2 log |F|) bits.

Proof: In St-Distr-MS, D privately communicates O((`nτ + n3) log |F|) bits.
Since t ≤ τ ≤ 2t, τ = O(n). In St-Ver-Agree-MS, the parties A-cast O(n3 log |F|+
n2 log 1

ε
) bits. In St-Gen-MS and St-AVSS-MS-Rec, the parties privately commu-

nicate O(`n2 log |F|) bits. As log(|F|) ≤ log 1
ε
, overall the protocol involves a

private communication of O((`n2 +n3) log |F|) bits and A-cast of O(n3 log 1
ε
) bits.

2

11.4 A Different Interpretation of Protocol St-AVSS-MS

In St-AVSS-MS-Share, every secret sl for l = 1, . . . , ` is τ -(1d)-shared using degree-
τ polynomial f l

0(x) = F l(x, 0). Now by the Secrecy proof of St-AVSS, given in
Lemma 11.17, we can claim that (τ + 1)− t coefficients of f l

0(x) are information
theoretically secure for every l = 1, . . . , `. This implies that St-AVSS-MS-Share
shares `(τ + 1 − t) secrets with a private communication of O(`n2 log |F|) bits
and A-cast of O(n3 log 1

ε
) bits. As the A-cast communication is independent of

`, we may ignore it and conclude that the amortized cost of sharing a single
secret using St-AVSS-MS-Share is only O(n log |F|). This is because by setting
τ = 2t (which is the maximum value of τ), we see that St-AVSS-MS-Share can
share `(t + 1) = Θ(`n) secrets by privately communicating O(`n2 log |F|) bits.
Now putting it in other way, D can share `(t + 1) secrets using St-AVSS-MS-
Share by choosing a random polynomial f l

0(x) (of degree τ = 2t) with lower order
t + 1 coefficients as secrets and then choosing a random degree-(τ, t) bivariate
polynomial F l(x, y) with F l(x, 0) = f l

0(x) for l = 1, . . . , ` and finally executing
St-AVSS-MS-Share with F 1(x, y), . . . , F `(x, y).

293

Figure 11.7: Steps to be executed with respect to a Single Verifier for multiple secrets

Protocol Single-Verifier-MS(V,P, S, τ, ε)

i. Code for Pi: Every party in P, including D and V , executes this code.

1. Wait to receive the following from D:

(a) For l = 1, . . . , `, the row polynomial f l
i (x);

(b) For j = 1, . . . , n, the shares b(Pj ,1)(i), . . . , b(Pj ,t+1)(i).

2. After receiving, check whether f l
i (x) is a degree-τ polynomial for all l =

1, . . . , `. If yes, then privately send a Received-From-D signal to V .

ii. Code for V : Only V executes this code.

1. Wait to obtain Received-From-D signal from 3t + 1 parties. Put the
identities of these 3t+1 parties in a set ReceivedSet(V,1). Select a random
value r(V,1) ∈ E and A-cast (r(V,1), ReceivedSet(V,1)).

2. After the previous step, for every new receipt of Received-From-D sig-
nal from Pα 6∈ ReceivedSet(V,β−1) such that 1 < β ≤ t + 1, con-
struct ReceivedSet(V,β) = ReceivedSet(V,β−1) ∪ {Pα}, select a random
r(V,β) ∈ E \ {r(V,1), . . . , r(V,β−1)} and A-cast (r(V,β), ReceivedSet(V,β)).

iii. Code for D: Only D executes this code.

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V ,
then A-cast the polynomial E(V,β)(y) = LCP(E , R). Here
E = {b(V,β)(y), p1

1(y), . . . , p1
n(y), . . . , p`

1(y), . . . , p`
n(y)} and R =

(1, r(V,β),
(
r(V,β)

)2
, . . . ,

(
r(V,β)

)`n
).

iv. Code for Pi: Every party in P executes this code.

1. If (r(V,β), ReceivedSet(V,β)) is received from the A-cast of V , then do the
following:

(a) Check if Pi ∈ ReceivedSet(V,β). If yes, then
A-cast e

(V,β)
i = LCV(∆i, R), where ∆i =

{b(V,β)(i), f1
i (1), . . . , f1

i (n), . . . , f `
i (1), . . . , f `

i (n)} and R =
(1, r(V,β),

(
r(V,β)

)2
, . . . ,

(
r(V,β)

)`n
).

2. Say that party Pj agrees with D with respect to
(r(V,β), ReceivedSet(V,β)) if all the following holds:

(a) E(V,β)(y) is a degree-t polynomial,
(b) Pj ∈ ReceivedSet(V,β) and

(c) e
(V,β)
j = E(V,β)(j) where e

(V,β)
j , E(V,β)(y) and

(r(V,β), ReceivedSet(V,β)) are received from the A-casts of Pj ,
D and V respectively.

3. With respect to (r(V,β), ReceivedSet(V,β)), when there are 3t+1 Pj ’s who
agree with D, add all of them in a set AgreeSet(V,β).

294

Figure 11.8: Second Phase of Protocol St-AVSS-MS-Share: Verification & Agree-
ment on CORE phase

Protocol St-Ver-Agree-MS(D,P, S, τ, ε)

Here, in step i(1) of St-Ver-Agree, Pi invokes Single-Verifier-MS(Pα,P, S, τ, ε) in-
stead of Single-Verifier. The rest of the steps are same as in Protocol St-Ver-Agree.

Figure 11.9: Third Phase of protocol St-AVSS-MS-Share: Generation of τ-(1d)-
sharing Phase

Protocol St-Gen-MS(D,P, S = (s1, . . . , s`), τ, ε)

Code for Pi:

1. If Pi ∈ CORE, then privately send f l
i (j) to party Pj for l = 1, . . . , `

and j = 1, . . . , n.

2. Apply OEC on f l
j(i)’s received from Pj ’s belonging to CORE to pri-

vately reconstruct degree-t polynomials pl
i(y)’s, for l = 1, . . . , `.

3. For l = 1, . . . , `, output sl
i = f l

0(i) = pl
i(0) as the ith share of D’s secret

sl and terminate St-Gen-MS. D’s secret sl = f l
0(0) is now τ -(1d)-shared

using degree-τ polynomial f l
0(x).

11.5 Finding (n, t)-star Structure in a Graph

We now describe an existing solution for a graph theoretic problem, called finding
(n, t)-star in an undirected graph G = (V, E). Our perfect AVSS protocol exploits
several interesting properties of (n, t)-star. An (n, t)-star in G = (V,E) with
V = P = {P1, . . . , Pn} is defined as follows:

Definition 11.23 ((n, t)-star[35, 19]) Let G be an undirected graph with the n
parties in P as its vertex set. We say that a pair (C,D) of sets with C ⊆ D ⊆ P
is an (n, t)-star in G, if the following hold:

1. |C| ≥ n− 2t;

2. |D| ≥ n− t;

3. For every Pj ∈ C and every Pk ∈ D the edge (Pj, Pk) exists in G.

Ben-Or et al. [19] have presented an elegant and efficient algorithm for finding
an (n, t)-star in a graph of n nodes, provided that the graph contains a clique of
size n − t. The algorithm, called Find-STAR outputs either an (n, t)-star or the
message star-Not-Found. Whenever the input graph contains a clique of size
n− t, Find-STAR always outputs an (n, t)-star in the graph.

295

Figure 11.10: Protocol St-AVSS-MS

Protocol St-AVSS-MS-Share(D,P, S = (s1, . . . , s`), τ, ε)

1. D executes S-Distr-MS(D,P, s, τ, ε).

2. Every party Pi participates in St-Ver-Agree-MS(D,P, s, τ, ε).

3. If CORE is agreed upon then every Pi participates in St-Gen-MS(D,P, s, τ, ε)
and terminate St-AVSS-MS-Share after terminating St-Gen-MS.

Protocol St-AVSS-MS-Rec(D,P, S, τ, ε)

i. Code for Pi:

1. For l = 1, . . . , `, privately send sl
i, the ith share of sl to every Pj ∈ P.

2. For l = 1, . . . , `, apply OEC on received sl
j ’s, reconstruct sl and termi-

nate St-AVSS-MS-Rec.

Actually, algorithm Find-STAR takes the complementary graph G of G as
input and tries to find (n, t)-star in G where (n, t)-star is a pair (C,D) of sets with
C ⊆ D ⊆ P , satisfying the following conditions:

1. |C| ≥ n− 2t;

2. |D| ≥ n− t;

3. There are no edges between the nodes in C and nodes in C ∪ D in G.

Clearly, a pair (C,D) representing an (n, t)-star in G, is an (n, t)-star in G.
Recasting the task of Find-STAR in terms of complementary graph G, we say that
Find-STAR outputs either an (n, t)-star, or a message star-Not-Found. When-
ever, the input graph G contains an independent set of size n − t, Find-STAR
always outputs an (n, t)-star. For simple notation, we denote G by H. The al-
gorithm Find-STAR is presented in Fig. 11.11 and its properties are presented in
the sequel for ready access. The proofs recorded below are taken from [35].

Lemma 11.24 ([35]) If Find-STAR outputs (C,D) on input graph H, then (C,D)
is a (n, t)-star in H.

Proof: Clearly, if Find-STAR outputs (C,D) then |C| ≥ n− 2t and |D| ≥ n− t,
and C ⊆ D. We now show that for every Pi ∈ C and every Pj ∈ D, the nodes Pi

and Pj are not neighbors in H.
On the contrary, assume that Pi ∈ C and Pj ∈ D, such that (Pi, Pj) is an edge

in H. As Pj ∈ D, we must have Pj 6∈ B. By the definition of B, we have Pj 6∈ N
(if Pi ∈ C and Pj ∈ N , then Pj ∈ B). Furthermore, Pi ∈ C ⊆ N . Thus, both
Pi and Pj are unmatched. Consequently, the edge (Pi, Pj) can be added to the
maximum matching to create a larger matching, which is a contradiction. 2

296

Figure 11.11: Algorithm For Finding (n, t)-star
.

Algorithm Find-STAR(H)

1. Find a maximum matching M in H. Let N be the set of matched nodes
(namely, the endpoints of the edges in M), and let N = P \N .

2. Compute output as follows (which could be either (n, t)-star or a message
star-Not-Found):

(a) Let T = {Pi ∈ N |∃Pj , Pk s.t (Pj , Pk) ∈ M and (Pi, Pj), (Pi, Pk) ∈ E}.
T is called the set of triangle-heads.

(b) Let C = N \ T .

(c) Let B be the set of matched nodes that have neighbors in C. So B =
{Pj ∈ N |∃Pi ∈ C s. t. (Pi, Pj) ∈ E}.

(d) Let D = P\B. If |C| ≥ n−2t and |D| ≥ n−t, output (C,D). Otherwise,
output star-Not-Found.

Lemma 11.25 ([35]) Let H be a graph with P as its vertex set, containing an
independent set of size n− t. Then algorithm Find-STAR always outputs a (n, t)-
star, say (C,D), in H.

Proof: We show that if H contains an independent set of size n − t, then
Find-STAR can always find |C| and |D| to be large enough (i.e |C ≥ n − 2t| and
|D| ≥ n− t) to output a (n, t)-star (C,D).

We first show that |C| ≥ n− 2t. Let I ⊆ P be an independent set in H, and
let I = P \ I. Since the size of I is n − t, we have |I| ≤ t. Let F = I \ C. We
show that |F | ≤ |I|. Consequently, we have |C| ≥ |I| − |F | ≥ n − 2t. To prove
that |F | ≤ |I|, we show a one-to-one correspondence φ : F → I. Let Pi ∈ F .
Since Pi 6∈ C, we have either Pi ∈ N or Pi ∈ T .

Case I: Pi ∈ N . Then let φ(Pi) be the node matched to Pi in M . Clearly,
φ(Pi) ∈ I: otherwise, we had an edge (Pi, φ(Pi)) where both Pi and φ(Pi)
are in an independent set.

Case II: Pi ∈ T . By the definition of T , node Pi has two neighbors, Pj and Pk,
such that (Pj, Pk) ∈ M . Arbitrarily set φ(Pi) = Pj. Clearly, both Pj and
Pk are in I.

We now show that φ is one-to-one. Consider two distinct nodes, Pl and Pm from
F . We have three cases:

Case 1: Pl, Pm ∈ N . In this case, φ(Pl) 6= φ(Pm) since M is a matching.

Case 2: Pl ∈ N and Pm ∈ T . Since Pm ∈ T , there exists an edge between Pm

and the node matched to φ(Pm). Since, Pl ∈ N , the node matched to φ(Pl)
is Pl. Now assume that φ(Pl) = φ(Pm). Thus, (Pl, Pm) is an edge in H,
which is a contradiction, as Pl and Pm are in the independent set I.

297

Case 3: Pl, Pm ∈ T . Assume φ(Pl) = φ(Pm). Let Pa be the node matched
to φ(Pm) in M . Both Pl and Pm are neighbors of both φ(Pm) and Pa.
However, in this case the matching M is not maximum since, for instance,
M \ {(φ(Pm), Pa)} ∪ {(φ(Pm), Pl), (Pa, Pm)} is a larger matching.

Now, it remains to show that |D| ≥ n − t. Recall that D = P \ B. We
show that |B| ≤ |M |. Since H contains an independent set of size n − t, we
have |M | ≤ t. Thus, |D| = n − |B| ≥ n − |M | ≥ n − t. To prove |B| ≤ |M |,
we show that at most one of the endpoints of every edge (Pa, Pb) ∈ M is in B.
On the contrary let both Pa and Pb have neighbors in C, and let Pc, Pd ∈ C be
the neighbors of Pa and Pb, respectively. Surely, Pc 6= Pd (otherwise, Pc was a
triangle-head and we had Pc ∈ C). However, in this case M is not maximum,
since, M \ {(Pa, Pb)} ∪ {(Pa, Pc), (Pb, Pd)} is a certainly larger matching. 2

11.6 Perfect AVSS for Sharing a Single Secret

We now present a novel AVSS scheme, called Pf-AVSS (perfect AVSS), consisting
of pair of protocols, (Pf-AVSS-Share,Pf-AVSS-Rec). The protocol Pf-AVSS-Share
allows a dealer D ∈ P (dealer can be any party from P) to τ -(1d)-share a single
secret from F, among the parties in P , where t ≤ τ ≤ 2t. Protocol Pf-AVSS-Rec
allows the parties in P to reconstruct the secret, given its τ -(1d)-sharing. The
structure of Pf-AVSS-Share is divided into a sequence of following three phases.
If D is honest then eventually all the three phases will be terminated by all
honest parties in P . The sharing phase of our statistical AVSS protocol St-AVSS-
Share presented earlier in this chapter is also structured into the same three
phases. However, the implementation of all the three phases of our perfect AVSS
is completely different from that of statistical AVSS. More importantly, the last
two phases of the statistical AVSS involves a negligible error probability, whereas
the implementation of all the three phases are perfect (error free) in all respects
for our perfect AVSS.

1. Distribution Phase: As the name suggests, in this phase, D on having a
secret s, distributes information to the parties in P .

2. Verification & Agreement on CORE Phase: Here parties jointly per-
form some computation and communication in order to verify consistency
of the information distributed by D in Distribution Phase. In case of suc-
cessful verification, all honest parties agree on a set of at least 3t+1 parties
called CORE, satisfying certain property (mentioned in the sequel).

3. Generation of τ-(1d)-sharing Phase: If CORE is agreed upon in the
previous phase, then here every party performs local computation on the
data received (during Verification & Agreement on CORE Phase)
from the parties in CORE to finally generate the τ -(1d)-sharing of secret s.

An honest party will terminate Pf-AVSS-Share, if it successfully completes the
last phase, namely Generation of τ-(1d)-sharing Phase. If D is honest then
each honest party will eventually terminate the last phase. Moreover, if D is
corrupted and some honest party terminates the last phase, then each honest
party will also eventually terminate the last phase (and hence Pf-AVSS-Share).

We now focus on the details of each of the aforementioned phases of protocol
Pf-AVSS-Share in order.

298

11.6.1 Distribution Phase

Here D on having a secret s, selects a random bivariate polynomial F (x, y) of
degree-(τ, t) (i.e., the degree of the polynomial in x is τ and the degree of the
polynomial in y is t), such that F (0, 0) = s and sends fi(x) = F (x, i) and
pi(y) = F (i, y) to party Pi. We will call the degree-τ fi(x) polynomials as row
polynomials and degree-t pi(y) polynomials as column polynomials. The protocol
is given in Fig. 11.12.

Figure 11.12: First Phase of Protocol Pf-AVSS-Share: Distribution by D Phase

Protocol Pf-Distr(D,P, s, τ)

Code for D: Only D executes this code

1. Select a random bivariate polynomial F (x, y) of degree-(τ, t) over F,
such that F (0, 0) = s.

2. Send fi(x) = F (x, i) and pi(y) = F (i, y) to party Pi, for i = 1, . . . , n.

Notice that unlike protocol St-Distr (used in St-AVSS presented in Section
11.2), D gives both row and column polynomials to respective parties in protocol
Pf-Distr. Also D does not use blinding polynomials, as in St-Distr. The blinding
polynomials were used in St-AVSS to probabilistically check the consistency of the
information distributed by D. However, Pf-AVSS being a perfect AVSS scheme,
we do not use any probabilistic checks to verify the consistency of the information
distributed by D. Rather we employ completely different mechanism, as will be
shown in the sequel.

In the next section, we describe Verification & Agreement on CORE
Phase. If this phase is successful, then at the end of Generation of τ-(1d)-
sharing Phase, the secret s will be τ -(1d)-sharing among the parties using degree-
τ polynomial f0(x) = F (x, 0).

11.6.2 Verification & Agreement on CORE Phase

The goal of this phase is to check the existence of a set of parties called CORE.
If a CORE exists then every honest party will agree on CORE, where CORE
is defined as follows

Definition 11.26 (Property of CORE:) CORE is a set of at least 3t+1 par-
ties such that the row polynomials (received in Distribution Phase) of the hon-
est parties in CORE define a unique bivariate polynomial say, F (x, y) of degree-
(τ, t). Moreover, if D is honest, then F (x, y) = F (x, y), where F (x, y) was chosen
by D in Distribution Phase.

The property of CORE ensures that for every j ∈ {1, . . . , n}, the jth point on
row polynomials of honest parties in CORE define degree-t column polynomial
pj(y) = F (j, y). So once CORE is constructed and agreed upon by each honest
party then pj(0) can be privately reconstructed by Pj with the help of the parties
in CORE by using OEC [35]. This will generate τ -(1d)-sharing of s = F (0, 0),

299

where s will be τ -(1d)-sharing using degree-τ polynomial f0(x) = F (x, 0) and each
(honest) Pj will have his share f0(j) = pj(0) of s. Moreover, if D is honest, then
s = s as F (x, y) = F (x, y). Note that even though the degree of row polynomials
is more than t (if τ > t), we create a situation where parties need not have to
reconstruct them. To obtain the shares corresponding to τ -(1d)-sharing of s, the
parties need to reconstruct degree-t column polynomials only. This is one of the
crucial steps of our AVSS.

Notice that in our statistical AVSS also, CORE has same properties as above.
However, in our statistical AVSS, we used probabilistic checks to check the consis-
tency of the information delivered by D and generated CORE with high proba-
bility. However, in our perfect AVSS, we check the consistency of the information
delivered by D without using any probabilistic checks. In fact, we use completely
different techniques. As a result, we can generate CORE without any error. We
now give an outline of this phase.

Outline of Current Phase: Here the parties upon receiving row and column
polynomials (from D), interact with each other to check the consistency of their
common values (on their polynomials). After successfully verifying the consis-
tency, parties A-cast OK signals. Using these signals, a graph with the parties as
vertex set is formed and applying Find-STAR on the graph, a sequence of distinct
(n, t)-stars are obtained. The reason for constructing a sequence of (n, t)-stars
will be clear in the sequel.

The row polynomials of the honest parties in C component of each (n, t)-star
in the above graph defines a unique bivariate polynomial of degree-(τ, t). For
every generated (n, t)-star, D tries to find whether CORE can be generated from
it. The generation process of CORE attempts to use several interesting features
of (n, t)-star (mainly its C component). Specifically, we show that:

(a) If D is honest and C component of some (n, t)-star (C,D) contains at least
2t+1 honest parties, then CORE will be eventually generated from (C,D);

(b) If D is honest, then eventually some (n, t)-star (C,D) will be generated,
where C will contain at least 2t + 1 honest parties. However, dealer D may
not know which (n, t)-star it is.

The above two important properties of (n, t)-star in our context are at the heart
of our perfect AVSS protocol. In addition to this, we also show the following:

(c) If CORE is generated from some (n, t)-star (C,D) (irrespective of whether
D is honest or corrupted), then the row polynomials of the honest parties
in CORE, as well as the honest parties in C define the same bivariate
polynomial of degree-(τ, t).

To check whether CORE can be generated from an (n, t)-star (C,D), we use
the following idea: First of all, we note that the following holds for the honest
parties in C (even though the identities of the honest are not known): the row
polynomials of the honest parties in C define a unique bivariate polynomial of
degree-(τ, t), say F (x, y). Then we try to find out how many other parties are
there whose row polynomials also lie on F (x, y). For this, we first list all such
Pj’s whose column polynomial is pairwise consistent with the row polynomial of
at least 2t + 1 parties in C. This we can do by finding all such Pj’s, who have
at least 2t + 1 neighbors in C. All such Pj’s are put in a list F . Informally,

300

the column polynomial of each Pj in F will lie on F (x, y). This is because, Pj’s
column polynomial is of degree-t and it is consistent with row polynomials of at
least t + 1 honest parties in C, where the row polynomials define F (x, y).

We next list all such Pj’s, whose row polynomial is pair-wise consistent with
column polynomial of at least τ + t+1 parties in F . This can be done by finding
all such Pj’s, who have at least τ + t + 1 neighbors in F . We put all such Pj’s in
a list E . Informally, the row polynomial of each Pj in E will lie on F (x, y). This
is because, Pj’s row polynomial is of degree-τ and it is consistent with column
polynomials of at least τ + 1 honest parties in F , where the column polynomials
define F (x, y). If both E and F contain at least (probably different) 3t+1 parties,
then we assign E as CORE.

The above process of generating E and F from the corresponding (n, t)-star is
done for many distinct (n, t)-stars that are present in the graph. The generation
of many (n, t)-stars in our case is essential as the C component of the first (n, t)-
star may not contain at least 2t + 1 honest parties and hence may never lead to
CORE (by employing the above mechanism). This implies that if our protocol
stops after generating the first (n, t)-star then the protocol may not terminate even
for an honest D. However, as mentioned earlier, if D is honest and if we keep
on generating a sequence of distinct (n, t)-stars after every update in the graph,
then eventually a (n, t)-star will be generated, whose C component will contain
at least 2t + 1 honest parties (and hence by employing the above mechanism we
can generate CORE). Moreover, we will show that this will not take infinite
iterations, as the maximum number of distinct (n, t)-stars that can generated in
the graph is O(n2).

Finally, before presenting the protocol for this phase, we stress that existing
AVSS of [19] need not generate a sequence of (n, t)-stars because it has to generate
only t-(1d)-sharing. Hence the AVSS of [19] stops after generating the first (n, t)-
star and then using the D component of the generated (n, t)-star, it could generate
t-(1d)-sharing of s (for details see [35]). The steps of this phase are given in
protocol Pf-Ver-Agree that appear in Fig. 11.13.

We now prove the properties of protocol Pf-Ver-Agree.

Lemma 11.27 For any (n, t)-star (C,D) in graph Gk of honest Pk, the row poly-
nomials held by honest parties in C define a unique bivariate polynomial of degree-
(τ, t), say F (x, y), such that column polynomial pj(y) held by every honest Pj ∈ D
satisfies pj(y) = F (j, y). Moreover, if D is honest, then F (x, y) = F (x, y).

Proof: For any (n, t)-star (C,D), |C| ≥ n − 2t and |D| ≥ n − t. So C and D
contain at least n − 3t ≥ t + 1 and n − 2t ≥ 2t + 1 honest parties, respectively.
Let l and m be the number of honest parties in C and D respectively where
l ≥ t + 1 and m ≥ 2t + 1. Without loss of generality, we assume P1, . . . , Pl,
respectively P1, . . . , Pm are the set of honest parties in C and D. Now by the
construction of (n, t)-star, for every pair of honest parties (Pi, Pj) with Pi ∈ C
and Pj ∈ D, the row polynomial fi(x) of honest Pi and the column polynomial

pj(y) of honest Pj satisfy fi(j) = pj(i). We now claim that the above statement
implies that there exists a unique bivariate polynomial F (x, y) of degree-(τ, t),
such that for i = 1, . . . , l, we have F (x, i) = fi(x) and for j = 1, . . . , m, we have
F (j, y) = pj(y). The proof is similar to the proof of Lemma 11.9. 2

Lemma 11.28 For an honest D, an (n, t)-star (Cβ,Dβ) with Cβ containing at
least 2t + 1 honest parties will be generated eventually.

301

Figure 11.13: Second Phase of Protocol Pf-AVSS-Share: Verification & Agreement
on CORE phase

Protocol Pf-Ver-Agree(D,P, s, τ)

i. Code for Pi: Every party Pi ∈ P (including D) executes this code.

1. Wait to receive row polynomial fi(x) of degree-τ and column polynomial pi(y) of
degree-t from D. Upon receiving, send fij = fi(j) and pij = pi(j) to party Pj , for
j = 1, . . . , n.

2. Upon receiving fji and pji from Pj , check if fi(j)
?
= pji and pi(j)

?
= fji. If both the

equalities hold, A-cast OK(Pi, Pj).

3. Construct an undirected graph Gi with P as vertex set. Add an edge (Pj , Pk) in
Gi upon receiving (a) OK(Pk, Pj) from the A-cast of Pk and (b) OK(Pj , Pk) from the
A-cast of Pj .

ii. Code for D: Only D executes this code.

1. For every new receipt of some OK(∗, ∗) update GD. If a new edge is added to GD,
then execute Find-STAR(GD). Let there are α ≥ 0 distinct (n, t)-stars that are found
in the past from different executions of Find-STAR(GD).

(a) Now if an (n, t)-star is found from the current execution of Find-STAR(GD) that
is distinct from all the previous α (n, t)-stars obtained before, do the following:

i. Call the new (n, t)-star as (Cα+1,Dα+1).

ii. Create a list Fα+1 as follows: Add Pj to Fα+1 if Pj has at least 2t + 1
neighbors in Cα+1 in GD.

iii. Create a list Eα+1 as follows: Add Pj to Eα+1 if Pj has at least τ + t + 1
neighbors in Fα+1 in GD.

iv. For every γ, with γ = 1, . . . , α update Fγ and Eγ :

A. Add Pj to Fγ , if Pj 6∈ Fγ and Pj has at least 2t + 1 neighbors in Cγ in
GD.

B. Add Pj to Eγ , if Pj 6∈ Eγ and Pj has at least τ + t + 1 neighbors in Fγ

in GD.

(b) If no (n, t)-star is found or an (n, t)-star that has been already found in the past
is obtained, then execute step (a).iv(A-B) to update existing Fγ ’s and Eγ ’s.

(c) Now let β be the first index among already generated {(E1,F1), . . . , (Eδ,Fδ)}
such that both Eβ and Fβ contains at least 3t + 1 parties (Note that if step
(a) is executed, then δ = α + 1; else δ = α). Assign CORE = Eβ and A-cast
((Cβ ,Dβ), (Eβ ,Fβ)).

iii. Code for Pi: Every party Pi ∈ P (including D) executes this code.

1. Wait to receive ((Cβ ,Dβ), (Eβ ,Fβ)) from the A-cast of D, such that both Eβ and Fβ

contains at least 3t + 1 parties.

2. Wait until (Cβ ,Dβ) becomes a valid (n, t)-star in Gi.

3. Wait until every party Pj ∈ Fβ has at least 2t + 1 neighbors in Cα in Gi.

4. Wait until every party Pj ∈ Eβ has at least τ + t + 1 neighbors in Fα in Gi.

5. Accept CORE = Eβ .

Proof: For an honest D, eventually the edges between each pair of honest parties
will vanish from the complementary graph GD. So the edges in GD will be either
(a) between an honest and a corrupted party OR (b) between a corrupted and
another corrupted party. Let β be the first index, such that (n, t)-star (Cβ,Dβ)
is generated in GD, when GD contains edges of above two types only. Now, by

302

construction of Cβ (see Algorithm Find-STAR), it excludes the parties in N (set
of parties that are endpoints of the edges of maximum matching M) and T (set
of parties that are triangle-head). An honest Pi belonging to N implies that
(Pi, Pj) ∈ M for some Pj and hence Pj is corrupted (as the current GD does not
have edge between two honest parties). Similarly, an honest party Pi belonging
to T implies that there is some (Pj, Pk) ∈ M such that (Pi, Pj) and (Pj, Pk) are
edges in GD. This clearly implies that both Pj and Pk are surely corrupted. So
for every honest Pi outside Cβ, at least one (if Pi belongs to N , then one; if Pi

belongs to T , then two) corrupted party also remains outside Cβ. As there are at
most t corrupted parties, Cβ may exclude at most t honest parties. But still Cβ

is bound to contain at least 2t + 1 honest parties.
We now show that the above event happens after finite number of steps. We

prove this by showing that an honest D may compute O(n2) distinct (n, t)-stars
in GD. This is because D applies Find-STAR on GD every time after an edge
is added to GD and there can be O(n2) edges in GD. Now (Cβ,Dβ) with Cβ

containing at least 2t + 1 parties will be one among these O(n2) (n, t)-stars. 2

Lemma 11.29 In protocol Pf-Ver-Agree, if D is honest, then eventually CORE
will be generated.

Proof: By Lemma 11.28, the honest D will eventually generate an (Cβ,Dβ) in
GD, with Cβ containing at least 2t+1 honest parties. Furthermore, if D is honest
then eventually there will be edges between every pair of honest parties in the
graph Gi of every honest Pi (including GD). Thus, as all honest parties in P will
have edges with the honest parties in Cβ, they will be eventually added to Fβ.
Similarly, as all honest parties in P will have edges with the honest parties in
Fβ, they will be eventually added to Eβ. Hence |Eβ| ≥ n − t and |Fβ| ≥ n − t
will be satisfied and CORE will be obtained by honest D. 2

Lemma 11.30 If an honest Pi has accepted CORE, then the row polynomials of
the honest parties in CORE define a unique bivariate polynomial of degree-(τ, t).

Proof: If an honest Pi has accepted CORE, then he has received ((Cβ,Dβ), (Eβ,
Fβ)) from the A-cast of D and checked their validity with respect to his own graph
Gi. By Lemma 11.27, the row polynomials of the honest parties in Cβ define a
unique bivariate polynomial of degree-(τ, t), say F (x, y). So the row polynomial
held by an honest Pi ∈ C satisfies fi(x) = F (x, i). Now by the construction of
Fβ, every honest Pj ∈ Fβ has at least 2t + 1 neighbors in Cβ which implies that

fkj values received from at least 2t + 1 parties in Cβ lie on column polynomial
pj(y). This clearly implies pj(y) = F (j, y), as t + 1 out of these 2t + 1 values are
sent by honest parties in C, who define F (j, y).

Similarly, by construction of Eβ, every honest Pj ∈ Eβ has at least τ + t + 1
neighbors in Fβ which implies that pkj values received from at least τ + t + 1

parties in Fβ lie on fj(x). This implies that fj(x) = F (x, j), as at least τ + 1
out of these τ + t + 1 values are sent by honest parties in Fβ, who define F (x, j).
Hence row polynomials of the honest parties in CORE define F (x, y). 2

11.6.3 Generation of τ-(1d)-sharing Phase

Assuming that the honest parties in P have agreed upon a CORE, protocol Pf-
Gen generates τ -(1d)-sharing in the following way: From the properties of CORE,

303

the row polynomials of honest parties in CORE define a unique bivariate poly-
nomial say F (x, y) of degree-(τ, t), such that each honest party Pi in CORE
possesses fi(x) = F (x, i). So the jth point on fi(x) polynomials corresponding
to all honest Pi’s in CORE, define degree-t polynomial pj(y) = F (j, y). Fur-
thermore, |CORE| ≥ 3t + 1. So the parties in CORE can enable each Pj ∈ P
to privately reconstruct pj(y) using OEC [35] (also recall from Section 11.1.6).
Once this is done, every Pj can output pj(0) as the share of D’s committed secret.

Since f0(j) = pj(0), it follows that f0(0)(= F (0, 0)) will be τ -(1d)-sharing using

the degree-τ polynomial f0(x) = F (x, 0). Clearly if D is honest, D’s secret s
will be τ -(1d)-sharing using polynomial f0(x) = F (x, 0), as F (x, y) = F (x, y) for
honest D. The protocol is formally given in Fig. 11.14.

Figure 11.14: Third Phase of protocol Pf-AVSS-Share: Generation of τ-(1d)-sharing

Protocol Pf-Gen(D,P, s, τ)

Code for Pi: Every party executes this code

1. Apply OEC technique [35] on fji’s received from every Pj in CORE (during
Protocol Pf-Ver-Agree) and reconstruct degree-t polynomial pi(y) and output
si = pi(0) = f0(i) as the ith share of s and terminate. s is now τ -(1d)-sharing
using degree-τ polynomial f0(x) = F (x, 0).

Lemma 11.31 Assume that every honest party has agreed on CORE where the
row polynomials of the honest parties in CORE define a unique bivariate poly-
nomial of degree-(τ, t), say F (x, y). Then protocol P-Gen will generate τ -sharing
of s = F (0, 0).

Proof: To achieve τ -(1d)-sharing of s using polynomial f0(x), party Pi should
hold f0(i) as ith share of s. Now f0(i) = pi(0) holds by the property of bivariate
polynomial. Also by property of CORE, the ith point on fj(x) polynomials,
corresponding to honest Pj’s in CORE define degree-t polynomial pj(y). So Pi

can apply OEC on fji’s received from the parties in CORE (during Protocol
Pf-Ver-Agree), reconstruct pj(y) and obtain pj(0) which is ith share of s. 2

11.6.4 Protocol Pf-AVSS-Share and Pf-AVSS-Rec

The protocol for our perfect AVSS scheme is given in Fig. 11.15.

Theorem 11.32 Protocol Pf-AVSS consisting of sub-protocols (Pf-AVSS-Share,
Pf-AVSS-Rec) constitute a valid perfect AVSS scheme for sharing a single secret
from F (according to Definition 11.1).

Proof: Termination: Part (1) of Termination says that if D is honest then
every honest party will terminate Pf-AVSS-Share eventually. By Lemma 11.29,
D will eventually generate CORE and A-cast the corresponding information i.e.
((Cβ,Dβ), (Eβ,Fβ)). By the property of A-cast (and as graph Gi is constructed
on the basis of A-casted information) every honest party will receive, verify the

304

Figure 11.15: Perfect AVSS protocol: Pf-AVSS

Protocol Pf-AVSS-Share(D,P, s, τ)

1. D executes Pf-Distr(D,P, s, τ);

2. Each party Pi participates in Pf-Ver-Agree(D,P, s, τ);

3. After agreeing on CORE, each party Pi participates in Pf-Gen(D,P, s, τ) and
terminates Pf-AVSS-Share after locally outputting the share corresponding to
D’s committed secret.

Protocol Pf-AVSS-Rec(D,P, s, τ)
Code for Pi:

1. Privately send si, the ith share of the secret to every Pj ∈ P.

2. Apply OEC on received sj ’s, reconstruct the secret and terminate Pf-AVSS-
Rec.

validity of D’s A-casted information with respect to his own graph Gi and agree
on the CORE. Now the proof for this part follows from Lemma 11.31.

Part (2) of Termination says that if an honest party terminated Pf-AVSS-
Share, then every other honest party will terminate Pf-AVSS-Share eventually. An
honest Pi has terminated the protocol implies that he has agreed on CORE. This
means that Pi has received and verified the validity of D’s A-casted information
with respect to his own graph Gi. The same will happen eventually for all other
honest parties. Hence they will agree on CORE. Now the proof follows from
Lemma 11.31.

Part (3) of Termination follows from the properties of CORE and OEC.

Correctness: If the honest parties terminate Pf-AVSS-Share, then it implies
that s(= F (0, 0)) is properly τ -(1d)-sharing among the parties in P (by Lemma
11.31), where F (x, y) is the unique bivariate polynomial of degree-(τ, t) defined
by the row polynomials of the honest parties in CORE. Moreover if D is honest
then F (x, y) = F (x, y) (follows from Lemma 11.27 and Lemma 11.30) and hence
s = s. Now the Correctness follows from the correctness of OEC.

Secrecy: Let At controls P1, . . . , Pt. So At will know f1(x), . . . , ft(x) and
p1(y), . . . , pt(y). Throughout the protocol, the parties exchange common val-
ues (on row and column polynomials), which do not add any extra information
to the view of At. Now by the property of bivariate polynomial of degree-(τ, t),
τ − t + 1 coefficients of f0(x) = F (x, 0) will remain secure, where F (x, y) is the
polynomial used by D to hide his secret s. So s = f0(0) = F (0, 0) will remain
secure. 2

Theorem 11.33

• Pf-AVSS-Share privately communicates O(n2 log |F|) bits and A-casts O(n2

log n) bits.

• Protocol Pf-AVSS-Rec privately communicates O(n2 log |F|).

305

Proof: In Pf-Distr, D privately communicates O(n2 log |F|) bits. In Pf-Ver-
Agree, the parties privately communicate O(n2 log |F|) bits. In addition, the
parties also A-cast OK(., .)s, which requires A-cast communication of O(n2 log n)
bits (each OK(., .) signal can be represented by O(log n) bits, as the signal contains
identity of two parties and the identify of any party from the set of n parties P
can be represented by log n bits). Furthermore, A-casting ((Cβ,Dβ), (Eβ,Fβ)))
by D requires A-casting of O(n log n) bits (the identify of a party can be repre-
sented by log n bits, as there are n different parties). In Pf-Gen, no communica-
tion is performed. So in total, Pf-AVSS-Share requires private communication of
O(n2 log |F|) bits and A-cast of O(n2) bits.

In Pf-AVSS-Rec, the parties in P send their shares to every party in P . So
Pf-AVSS-Rec requires O(n2 log |F|) bits of private communication. 2

11.7 Perfect AVSS for Sharing Multiple Secrets

We now present a perfect AVSS scheme, called Pf-AVSS-MS, consisting of pair
of protocols, namely (Pf-AVSS-MS-Share, Pf-AVSS-MS-Rec): Pf-AVSS-MS-Share
allows a dealer D ∈ P to τ -(1d)-share ` ≥ 1 secret(s) from F, denoted as S =
(s1, . . . , s`), among the parties in P , where t ≤ τ ≤ 2t; Pf-AVSS-MS-Rec allows
the parties to reconstruct the secrets, given their τ -(1d)-sharing. Notice that we
can generate τ -(1d)-sharing of S by concurrently executing protocol Pf-AVSS-
Share (given in the previous section) ` times, once for each si ∈ S. But this
will require a private communication of O(`n2 log |F|) and A-cast of O(`n2) bits.
However, our protocol Pf-AVSS-MS-Share requires a private communication of
O(`n2 log |F|) and A-cast of O(n2 log |F|) bits. Thus, the A-cast communication of
our Pf-AVSS-MS-Share protocol is independent of `. The idea behind protocol Pf-
AVSS-MS-Share is same as Pf-AVSS-Share. Protocol Pf-AVSS-MS-Share is divided
into a sequence of same three phases, as in Pf-AVSS-Share. We now present the
corresponding protocols in Fig. 11.16, Fig. 11.17 and Fig. 11.18.

Figure 11.16: First Phase of Protocol Pf-AVSS-MS-Share: Distribution by D Phase

Protocol Pf-Distr-MS(D,P, S = (s1, . . . , s`), τ)

Code for D: Only D executes this code

1. For l = 1, . . . , `, select a random bivariate polynomials F l(x, y) of degree-
(τ, t), such that F l(0, 0) = sl and send the row polynomial f l

i (x) = F l(x, i)
and column polynomial pl

i(y) = F l(i, y) to party Pi, for i = 1, . . . , n.

Remark 11.34 In protocol Pf-Ver-Agree-MS, in step i.(4), instead of A-casting
` OK(Pi, Pj) signals, party Pi A-casts a single OK(Pi, Pj) signal after verifying the
consistency of common values on all the ` row and column polynomials. It is this
step, which makes the A-cast communication of Pf-Ver-Agree-MS, independent
of `. A similar idea is also used in the AVSS scheme of [13], which generates
t-(1d)-sharing of ` secrets concurrently.

306

Figure 11.17: Second Phase of Protocol Pf-AVSS-MS-Share: Verification & Agree-
ment on CORE phase

Protocol Pf-Ver-Agree-MS(D,P, S = (s1, . . . , s`), τ)

i. Code for Pi: Every party Pi ∈ P (including D) executes this code.

1. Wait to receive f l
i (x) and pl

i(y) for all l = 1, . . . , `, from D.

2. Upon receiving, check whether (i) f l
i (x) is a degree-τ polynomial for all

l = 1, . . . , `; and (ii) pl
i(y) is a degree-t polynomial for all l = 1, . . . , `.

If yes, then send f l
ij = f l

i (j) and pl
ij = pl

i(j) for all l = 1, . . . , `, to Pj .

3. Upon receiving f1
ji, . . . , f

`
ji and p1

ji, . . . , p
`
ji from Pj , check if f l

i (j)
?= pl

ji

and f l
ji

?= pl
i(j) for all l = 1, . . . , `. If the equality holds, then confirm

the consistency by A-casting OK(Pi, Pj).

4. Construct an undirected graph Gi with P as vertex set. Add an edge
(Pj , Pk) in Gi upon receiving (a) OK(Pk, Pj) from the A-cast of Pk and
(b) OK(Pj , Pk) from the A-cast of Pj .

ii. Code for D: (Only D executes this code): Same as in Protocol Pf-Ver-Agree.

iii. Code for Pi: (Every party Pi ∈ P (including D) executes this code): Same
as in Protocol Pf-Ver-Agree.

Figure 11.18: Third Phase of protocol Pf-AVSS-MS-Share: Generation of τ-(1d)-
sharing Phase

Protocol Pf-Gen-MS(D,P, S = (s1, . . . , s`), τ)

Code for Pi: Every party executes this code

1. For l = 1, . . . , `, apply OEC technique on f l
ji’s received from every Pj in

CORE (during Protocol Pf-Ver-Agree) and reconstruct degree-t polynomial
pl

i(y) and output sl
i = pl

i(0) = f l
0(i) as the ith share of sl and terminate. sl

is now τ -(1d)-sharing using degree-τ polynomial f l
0(x).

Protocol Pf-AVSS-MS-Share and Pf-AVSS-MS-Rec are now given in the Fig.
11.19.

Theorem 11.35 Protocol Pf-AVSS-MS consisting sub-protocols (Pf-AVSS-MS-Share,
Pf-AVSS-MS-Rec) constitutes a valid perfectly secure AVSS scheme, which con-
currently shares ` ≥ 1 elements from F (according to Definition 11.1).

Theorem 11.36 (Communication Complexity of Pf-AVSS-MS)

307

Figure 11.19: Our Perfect AVSS protocol: Protocol Pf-AVSS-MS

Protocol Pf-AVSS-MS-Share(D,P, S = (s1, . . . , s`), τ)

1. D executes Pf-Distr-MS(D,P, S = (s1, . . . , s`), τ);

2. Each party Pi participates in Pf-Ver-Agree-MS(D,P, S = (s1, . . . , s`), τ);

3. After agreeing on CORE, each party Pi participates in Pf-Gen-MS(D,P, S =
(s1, . . . , s`), τ) and terminates Pf-AVSS-MS-Share after locally outputting the
shares corresponding to D’s committed secrets.

Protocol Pf-AVSS-MS-Rec(D,P, S = (s1, . . . , s`), τ)

1. For l = 1, . . . , `, each party Pi ∈ P privately sends the ith share of sl, namely
sl
i, to every party Pj ∈ P.

2. For l = 1, . . . , `, party Pi ∈ P applies OEC on the received sl
j ’s to privately

reconstruct sl and terminate Pf-AVSS-MS-Rec.

• Protocol Pf-AVSS-MS-Share privately communicates O(`n2 log |F|) bits and
A-casts O(n2 log n) bits.

• Protocol PAVSS-MS-Rec privately communicates O(`n2 log |F|) bits.

Proof: In Pf-Distr-MS, D privately communicates O(`n2 log |F|) bits. In Pf-
Ver-Agree, the parties privately communicate O(`n2 log |F|) bits. In addition, the
parties also A-cast OK(., .)s, which requires A-cast communication of O(n2 log n)
bits (each OK(., .) signal can be represented by O(log n) bits, as the signal contains
identity of two parties and the identify of any party from the set of n parties P
can be represented by log n bits). Furthermore, A-casting ((Cβ,Dβ), (Eβ,Fβ)))
by D requires A-casting of O(n log n) bits. In Pf-Gen-MS, no communication
is performed. So in total, Pf-AVSS-MS-Share requires private communication of
O(`n2 log |F|) bits and A-cast of O(n2) bits.

In Pf-AVSS-MS-Rec, the parties in P send their shares to every party in P .
So Pf-AVSS-MS-Rec requires O(n2 log |F|) bits of private communication. 2

11.8 A Different Interpretation of Protocol Pf-AVSS-MS

In Pf-AVSS-MS-Share, every secret sl for l = 1, . . . , ` is τ -(1d)-sharing using
degree-τ polynomial f l

0(x) = F l(x, 0), where t ≤ τ ≤ 2t. Now by the Secrecy
proof of Pf-AVSS-Share, given in Theorem 11.32, we can claim that (τ + 1) − t
coefficients of f l

0(x) are information theoretically secure for every l = 1, . . . , `.
This implies that Pf-AVSS-MS-Share shares `(τ + 1 − t) secrets with a private
communication of O(`n2 log |F|) bits and A-cast O(n2 log n) bits. As the A-cast
communication is independent of `, we may ignore it and conclude that the amor-
tized cost of sharing a single secret using Pf-AVSS-MS-Share is only O(n log |F|).
This is because by setting τ = 2t (the maximum value of τ), we see that Pf-
AVSS-MS-Share can share `(t + 1) = Θ(`n) secrets by privately communicating

308

O(`n2 log |F|) bits. Now putting it in other way, D can share `(t + 1) secrets us-
ing Pf-AVSS-MS-Share by choosing a random polynomial f l

0(x) (of degree τ = 2t)
with lower order t + 1 coefficients as secrets and then choosing a random degree-
(τ, t) bivariate polynomial F l(x, y) with F l(x, 0) = f l

0(x) for l = 1, . . . , ` and
finally executing Pf-AVSS-MS-Share with F 1(x, y), . . . , F `(x, y).

A similar interpretation holds for protocol St-AVSS-MS-Share as well (as pre-
sented in Section 11.4). However, recall that protocol St-AVSS-MS-Share gener-
ates τ -sharing of ` secrets with high probability and hence may involve a negligible
error probability. On the other hand protocol Pf-AVSS-MS-Share is perfect in all
respect and does not involve any error probability.

Finally, we now mention another application of Pf-AVSS-MS-Share which uses
the above interpretation. Using protocol Pf-AVSS-MS-Share, we can design an
ABA protocol with an amortized communication cost of O(n2 log |F|) bits for
reaching agreement on a single bit. To the best of our knowledge, there is only one
ABA with 4t+1 due to [66] which requires fairly high communication complexity
(though polynomial in n). We will elaborate on our ABA in Chapter 13.

Remark 11.37 The best known perfect AVSS of [13] requires an amortized cost
O(n2 log |F|) bits for sharing a single secret. Hence Pf-AVSS-MS-Share shows a
clear improvement over the AVSS of [13].

Remark 11.38 The idea of hiding multiple secrets in a single polynomial was
explored earlier in [83] in the context of passive adversary in synchronous network.
Doing the same in asynchronous network, in the presence of active adversary is bit
tricky and calls for new techniques. Though we can hide (τ +1−t) secrets in each
degree-τ polynomial f l

0(x) using protocol Pf-AVSS-MS-Share, we will hide only one
secret, namely sl in f l

0(x). This is because in our AMPC protocol (presented in
the next chapter), we require that each degree-τ polynomial hides only one secret.
However, hiding multiple secrets in a degree-τ polynomial will be useful in the
context of ABA, presented in Chapter 13.

11.9 Conclusion and Open Problems

In this chapter, we designed two AVSS protocols with 4t+1 parties in which one
is statistical (and thus have non-optimal resilience) and the other one is perfect,
along with being optimally resilient. Both our AVSS protocols are based on
completely disjoint techniques. Yet, both our AVSSs are capable of generating
τ -(1d)-sharing of secret(s) for any t ≤ τ ≤ 2t. When we have n = 4t + 1 parties,
τ -(1d)-sharing tremendously simplifies the computation of multiplication gate in
an AMPC protocol. In the next chapter, the statistical AVSS and the perfect
AVSS are used for constructing our statistical AMPC and perfect AMPC with
n = 4t + 1. There we show how our AVSS protocols simplify computation of a
multiplication gate.

We conclude this chapter which the following open questions:

Open Problem 18 Can we design statistical AVSS protocol (with non-optimal
resilience) with better communication complexity than what is reported here?

Open Problem 19 Can we design perfect AVSS protocol (with optimal resilience)
with better communication complexity than what is reported here?

309

Chapter 12

Efficient Statistical AMPC
Protocol With Non-Optimal
Resilience and Perfect AMPC
With Optimal Resilience

AMPC without any error in computation (also called as perfect AMPC) is pos-
sible iff n ≥ 4t + 1. When a negligible error probability of ε is allowed in the
computation, then the AMPC is called as statistical AMPC. Statistical AMPC
is possible iff n ≥ 3t + 1. In this chapter, our focus is on AMPC designed with
n = 4t + 1 parties, both with and without error in computation. Precisely, we
focus on the communication complexity of the AMPC protocols with n = 4t + 1
parties.

Communication complexity, being one of the important parameters of AMPC
protocol, drew quite a bit of attention and hence there are a number of attempts
to improve the communication complexity of AMPC protocols (both with error
and without error) with 4t + 1 parties. The latest such attempt is reported in
[107] where the authors presented a statistical AMPC protocol with n = 4t +
1 that communicates O(n2 log |F|) bits per multiplication gate, where F is the
finite field over which the computation of the protocol is carried out. However,
in this chapter we show that the protocol of [107] is not a correct statistical
AMPC. We then present a new, simple, statistical AMPC protocol with n =
4t + 1 which communicates O(n2 log |F|) bits per multiplication gate. Moving
a step forward, we also present a perfect AMPC protocol which communicates
O(n2 log |F|) bits per multiplication gate. Now it is important to note that not
only our perfect AMPC protocol is able to achieve the same communication
complexity as our statistical AMPC protocol, but also it is now optimally resilient
(that is, it is designed with n = 4t + 1 parties) which is not the case in our
statistical AMPC protocol. The best known perfect AMPC protocol with optimal
resilience [13] communicates O(n3 log |F|) bits per multiplication gate. Hence
our AMPC protocol provides the best communication complexity among all the
known AMPC protocols.

As a key tool for our statistical AMPC and perfect AMPC, we use our sta-
tistical AVSS and perfect AVSS respectively, presented in Chapter 11. In this
chapter, we reveal how τ -(1d)-sharing of secrets (that can be generated by our
AVSS protocols) simplifies the computation of multiplication gate of AMPC pro-
tocol, compared to the computation done for the same in AMPC protocol with

310

n = 3t + 1 parties presented in Chapter 10.

12.1 Introduction

12.1.1 The Network and Adversary Model

This is same as described in section 8.1.1. Here we recall that the set of parties
is denoted by P = {P1, . . . , Pn} and t out of the n parties can be under the
influence of a computationally unbounded Byzantine (active) adversary, denoted
as At. We emphasize that we use n = 4t + 1 in this chapter.

12.1.2 Definitions

Using our AVSS protocols as black box, we design another important protocol
to generate (t, 2t)-(1d)-sharing of secrets which will be used to evaluate multi-
plication gate of a circuit. The (t, 2t)-(1d)-sharing of a secret s is defined as
follows:

Definition 12.1 ((t, 2t)-(1d)-sharing) A value s is said to be (t, 2t)-(1d)-shared
among the parties in P, denoted as [s](t,2t), if s is both t-(1d)-shared and 2t-(1d)-
shared.

12.1.3 Relevant Literature on AMPC

Unlike MPC in synchronous networks, designing AMPC protocols has received
less attention due to their inherent difficulty. Since in this chapter, our focus
is on information theoretic security (that is achieved against adversary having
unbounded computing power), we channelize our focus mainly on AMPC proto-
cols that provides information theoretic security. Such AMPC protocols can be
categorized mainly into two types:

1. Perfect AMPC: An AMPC protocol which satisfies all the three proper-
ties, namely, correctness, secrecy and termination without any error
is called perfect AMPC. In [19], it is shown that perfect AMPC is possible
iff n ≥ 4t + 1. Thus any perfect AMPC designed with n = 4t + 1 is said
to be optimally resilient. Optimally resilient, perfect AMPC protocols are
reported in [19, 143, 13]. Among these, the AMPC protocol of [13] provides
the best communication complexity, which is O(n3 log(|F|)) = O(n3 log n)
bits per multiplication gate, where |F| ≥ n.

2. Statistical AMPC: An AMPC protocol which satisfies correctness AND/OR
termination condition except with negligible error probability of ε is called
statistical AMPC. However, notice that there is no compromise in secrecy
property. From [21], it is known that statistical AMPC is possible iff
n ≥ 3t + 1. Thus any statistical AMPC protocol designed with n = 3t + 1
is said to be optimally resilient. Optimally resilient, statistical AMPC are
reported in only [21] and in this thesis in Chapter 10. Among these, the
AMPC protocol of this thesis provides the better communication complexity
which is O(n5 log 1

ε
) bits per multiplication gate, where the protocol works

over a field F = GF (2κ) and each element of F is represented by κ = O(log 1
ε
)

bits.

311

In comparison to perfect AMPC, statistical AMPC protocols reported in the
literature have much more communication complexity. To achieve better commu-
nication complexity for the statistical AMPC protocols, researchers have tried to
design statistical AMPC with non-optimal resilience i.e with n = 4t + 1 parties.
Such AMPC protocols are reported in [135] and recently in [107]1. While the
AMPC of [135] achieves a communication complexity of O(n4 log 1

ε
) bits per mul-

tiplication gate, the AMPC of [107] claims to achieve communication complexity
of O(n2 log 1

ε
) bits per multiplication gate (in this chapter we show that AMPC

of [107] is not a correct statistical AMPC protocol). Both the AMPC protocols of
[135] and [107] are based on player elimination framework of [98], an important
technique introduced in synchronous network in order to reduce communication
complexity of MPC protocols.

The communication complexity (per multiplication gate) of known AMPC
protocols and the AMPC protocol presented in this thesis so far, is summarized
in Table 12.1.

Table 12.1: Communication complexity (CC) in bits per multiplication gate of known
AMPC protocols.

Reference Type Resilience CC in bits
[19, 35] Perfect t < n/4 (optimal) O(n6 log n)

[143] Perfect t < n/4 (optimal) Ω(n5 log n)

[13] Perfect t < n/4 (optimal) O(n3 log n)

[21] Statistical t < n/3 (optimal) Ω(n11(log 1
ε)

4)

Chapter 10 Statistical t < n/3 (optimal) O(n5 log 1
ε)

[135] Statistical t < n/4 (non-optimal) O(n4 log 1
ε)

[107] Statistical t < n/4 (non-optimal) O(n2 log 1
ε)

AMPC under cryptographic assumptions is possible iff n ≥ 3t + 1 [105, 106].
The best known AMPC under cryptographic assumptions is due to [106], which
communicates O(n2κ) bits per multiplication gate, where κ is the security pa-
rameter.

Recently in [15], the authors have designed communication efficient MPC pro-
tocols over networks that exhibit partial asynchrony (where the network is syn-
chronous up to certain point and becomes completely asynchronous after that).
In another work, Damg̊ard et al. [51] have reported efficient MPC protocol over
a network that assumes the concept of synchronization point; i.e,. the network
is asynchronous before and after the synchronization point. We will not consider
the protocols of [15] and [51] for further discussion as they are not designed in
completely asynchronous settings in which our AMPC protocols are proposed.

1Though it is not explicitly stated in [107], the AMPC protocol of [107] involves error probability
in termination and correctness

312

12.1.4 Contribution of This Chapter

In this chapter our focus is on AMPC with 4t+1 parties. Our main contributions
for AMPC are:

1. From Table 12.1, we find that the most communication efficient, statistical
AMPC protocol is due to [107]. However, we show that this protocol does
not satisfy the termination and correctness properties of statistical AMPC.

2. We then design a new statistical AMPC protocol with n = 4t + 1, which
communicates O(n2 log n) bits per multiplication gate. Our protocol is sim-
ple and achieves its goal without using player elimination framework of [98]
(which is used in [107]).

3. Finally we present a new, perfect AMPC protocol with n = 4t + 1 which
communicates O(n2 log n) bits per multiplication gate. Now it is important
to note that not only our perfect AMPC is able to achieve the same com-
munication complexity as our statistical AMPC, but it is now optimally
resilient. From Table 12.1, the best known perfect AMPC with optimal
resilience [13] communicates O(n3 log n) bits per multiplication. Hence our
AMPC protocol provides the best communication complexity among all the
known AMPC protocols.

For designing our AMPC protocols, we use our statistical and perfect AVSS
protocols presented in Chapter 11.

Our protocols for perfect AVSS and AMPC work on a field F with |F| ≥ n.
Hence every element from F can be represented by log |F| = O(log n) bits. On
the other hand, for statistical AVSS and AMPC, we use two fields called ground
field and extension field, which are defined as follows:

The Ground Field and The Extension Field: The field F that is used in perfect
AVSS and AMPC is denoted as ground field. Most of the computation of sta-
tistical AVSS and AMPC is performed over this field. We also fix an extension
field E ⊃ F to be smallest extension for which |E| ≥ 2κ = 1

ε
, where ε is the error

parameter. Each element of E can be represented using O(κ) = O(log 1
ε
) bits.

We call E as Extension Field. Moreover, without loss of generality, we assume
that n = poly(κ). Some of the computation of our statistical AVSS and AMPC
is performed over E so as to bound the error probability of the protocols by ε.

12.1.5 Primitives Used

In this chapter, we require A-cast (recalled in Chapter 7) and Online Error Cor-
rection (OEC) technique (recalled in Chapter 11). Apart from these, we require
ACS in our AMPC protocols. In the sequel we recall ACS protocol (it was very
briefly discussed in Section 10.3 of Chapter 10). A deeper understanding of the
protocol is necessary to understand the fault in statistical AMPC of Huang et al.
[107].

12.1.5.1 Agreement on a Common Subset (ACS)

ACS is an asynchronous primitive presented in [19, 21], which allows all (honest)
parties in P to agree on a common set of at least n−t parties, who will eventually
satisfy some property, say Q, where Q has the following characteristics:

313

1. It is known that every honest party will eventually satisfy Q.

2. Some corrupted parties may also satisfy Q.

3. If some honest Pj ∈ P knows that some party Pα ∈ P , satisfies Q, then
every other honest party in P will also eventually conclude that Pα satisfies
Q.

For example, consider the following scenario: suppose that all the parties in
P are asked to A-cast some value(s) and the property Q is whether a party has
A-casted the value(s) or not. It is easy to see that Q satisfies all the above three
characteristics. This is because (a) Every honest party will eventually A-cast the
value(s); (b) Some corrupted parties may also A-cast the value(s); (c) If some
honest Pj ∈ P knows that some Pα ∈ P satisfies Q, then it implies that Pj has
received the value(s) A-casted by Pα. So by the property of A-cast, every other
honest party in P will also eventually receive those values from Pα. In short, by
using ACS primitive, the (honest) parties can eventually agree on a set of n − t
parties who have broadcasted some value(s).

Another example of property Q could be that a party has AVSS-shared some
value(s). The idea behind ACS protocol is to execute n instances of ABA [35],
one on behalf of each party, to decide whether it will be in the common set.
For the sake of completeness, we present the protocol in Fig. 12.1. The current
description of protocol ACS is taken from [21].

Figure 12.1: Protocol for Agreement on a Common Subset with n = 4t + 1

Protocol ACS

Code for Party Pi: Every party in P executes this code

1. For each Pj ∈ P for whom you know that Q(j) = 1 (i.e., Pj sat-
isfies property Q), participate in ABAj with input 1. Here for j =
1, . . . , n, ABAj denotes the instance of asynchronous Byzantine Agree-
ment (ABA) executed with respect to Pj ∈ P to decide whether Pj will
be in the common set.

2. Upon terminating n − t instances of ABA with output 1, enter input
0 to all other instances of ABA, for which you haven’t entered a value
yet.

3. Upon terminating all the n ABA protocols, let your SubSeti be the set
of all indices j for which ABAj had output 1.

4. Output the set of parties corresponding to the indices in SubSeti and
terminate ACS.

Theorem 12.2 ([21]) Using protocol ACS, the (honest) parties in P can agree
on a common subset of at least n− t parties, who will eventually satisfy property
Q. The communication complexity of the protocol is O(poly(n)).

314

12.1.6 The Road-map

This chapter is organized as follows: Section 12.2 shows that AMPC protocol pre-
sented in [107] is not a correct statistical AMPC protocol. Section 12.3 presents
a statistical protocol for generating (t, 2t)-(1d)-sharing of multiple secrets. Sec-
tion 12.4 describes our statistical AMPC protocol. Next, section 12.5 presents a
perfect protocol for generating (t, 2t)-(1d)-sharing of multiple secrets and section
12.6 presents our perfect AMPC protocol. Lastly, we conclude this chapter in
section 12.7.

12.2 Statistical AMPC of Huang et al. [107]

We now recall the statistical AMPC protocol of [107] and show that it does not
satisfy the correctness and termination property of AMPC. The AMPC proto-
col of [107] is based on pre-processing model of [5]. Specifically, the AMPC proto-
col of [107] is divided into a sequence of three phases, namely Pre-computation
Phase or Preparation Phase, Input Phase and Computation & Output
Phase. We concentrate on Preparation Phase and show that it fails to satisfy
its correctness and termination property, as claimed in [107]. This will further
imply that the AMPC of [107] does not satisfy correctness and termination prop-
erty.

The goal of the Pre-Computation Phase is to generate cM random multi-
plication triples (a1, b1, c1), . . . , (acM , bcM , ccM), where for i = 1, . . . , cM , each ai, bi

and ci are t-(1d)-shared among the parties in P with ai and bi being random and
ci satisfying ci = ai · bi. For this, the authors used batch secret sharing scheme
(BSS) from [152]. In [152], the authors claimed that their BSS protocol correctly
generates cM random multiplication triples over F. Moreover, every honest party
will eventually terminate BSS. However, we will now show that their BSS scheme
does not satisfy any of these two properties. As a result, the AMPC protocol of
[107] (which uses the BSS scheme as a black box) does not satisfy correctness
and termination.

The BSS scheme of [152] is based on player elimination framework [98], where
the computation is divided into a sequence of segments. In order to show the
weakness in the BSS scheme of [152], we need not have to go into the details
of the player elimination framework. We concentrate only on the crucial steps
(presented in a simplified form for the ease of presentation) which are executed
in a segment to generate one t-(1d)-shared random multiplication triple (a, b, c).
The two main steps in the generation of such triple are as follows:

1. The parties in P jointly generate t-(1d)-sharing of random values a and b.

2. The parties in P jointly compute t-(1d)-sharing of c = ab.

The t-(1d)-sharing of a and b in the BSS scheme of [152] is generated by exe-
cuting the steps (presented in a simplified form for ease of presentation) presented
in Fig. 12.2.

From Fig. 12.2, we find that step (2) to check whether a and b are indeed t-
(1d)-shared among the parties in P will work if every (honest) Pi ∈ P holds ai and
bi eventually. Clearly, this is possible if every (honest) party Pi ∈ P eventually
receives fj(i) and gj(i) from every Pj ∈ C. In [152], the authors claimed that
by executing step (1) in Fig. 12.2, every (honest) Pi ∈ P will eventually receive

315

Figure 12.2: Steps for Generating t-(1d)-sharing of Random a and b in a Segment in
the BSS Scheme of Zheng et al. [152]

1. Generation of t-(1d)-sharing of a and b: Code for Party Pi ∈ P:

(a) Select two random degree-t polynomials fi(x) and gi(x) and send
fi(j), gi(j) to every Pj ∈ P. After sending, A-cast 1 to indicate that
you have finished the sharing.

(b) Participate in ACS protocol and input 1 in ABAj (in ACS) if you have
received 1 from the A-cast of Pj AND if you have privately received
fj(i), gj(i) from Pj .

(c) Let C be the common set which is output by the ACS protocol, where
|C| ≥ n− t.

(d) Compute ai =
∑

Pj∈C fj(i) and bi =
∑

Pj∈C gj(i), as ith share of a and
b.

2. Verifying whether indeed a and b are t-(1d)-shared among the par-
ties in P: Here the parties perform some computation to check whether a
and b are indeed shared using degree-t polynomials. If it is not the case then
the segment fails and parties execute another protocol for fault localization
(for details see [152]). However, the verification is carried out under the as-
sumption that every (honest) party Pi ∈ P will eventually possess the share
ai and bi of a and b respectively. For details, see [152].

fj(i) and gj(i) from every Pj ∈ C and hence will be able to compute ai and bi.
However, we now show that At may behave in such a way that every honest Pi

may wait indefinitely to compute ai and bi.
Without loss of generality, let the first n− t parties in P (i.e P1, . . . , Pn−t) be

honest and last t parties in P be corrupted. Now consider the following behavior
of a corrupted Pj ∈ P : Pj selects fj(x) and gj(x) of degree more than t and gives
points on fj(x), gj(x) to only first n − 2t honest parties and to the t corrupted
parties (but not to remaining t honest parties in P). But still Pj A-casts 1 to
indicate that he has sent the points to every party in P . Moreover, At schedules
the messages of Pj such that they reach to their respective receivers immediately,
without any delay. Now n−2t honest parties and t corrupted parties will input 1
(assuming the corrupted parties are behaving properly) in ABAj in ACS, as they
will receive points on fj(x) and gj(x) from Pj AND will also receive 1 from the
A-cast of Pj. So in ABAj, there are n − t inputs, with value 1. Now assuming
that all the parties including the corrupted parties behave properly in ABAj, the
property of ABA ensures that every party in P will terminate ABAj with output
1 and hence Pj will be present in the common set C. However, notice that the
last t honest parties (to whom Pj has not sent the points on fj(x) and gj(x)) did
not feed any input in ABAj. In fact, these honest parties will never receive their
respective points on fj(x) and gj(x), in spite of terminating ABAj with output
1. So even though a (corrupted) Pj is present in C, potentially t honest parties
may never receive their respective points on fj(x) and gj(x).

316

Now using similar strategy, another corrupted Pk ∈ C (Pk 6= Pj) may bar
another set of t honest parties in P , say the first t honest parties, to receive their
respective points on fk(x) and gk(x). In the worst case, there can be t corrupted
parties in C, who may follow similar strategy as explained above and can ensure
that every honest party in P waits indefinitely to receive their respective points
on polynomials, corresponding to some corrupted party (ies) in C. Thus every
honest Pi in P may wait indefinitely to compute ai and bi.

The Technical Problem and Possible Solution: From the description of ACS
(see section 12.1), it follows that ACS can be used to agree on a set of parties
who will eventually satisfy property Q, where Q should have the following char-
acteristic: if some honest Pi concluded that some party Pj satisfies Q, then every
other honest party will also eventually conclude that Pj satisfies Q. However, in
the steps given in Fig. 12.2, the parties use ACS to agree on a set of parties
satisfying some property P which does not satisfy the above characteristic of
Q. Specifically, in this case the property P is as follows: a party has selected
two degree-t polynomials, sent one point on them to every party and A-casted 1.
Now as explained above, a corrupted Pj may not give points to all honest parties
and can still A-cast 1. So even if some honest party may receive points on the
polynomials from Pj and concludes that Pj satisfies P , it does not mean that
every other honest party will also conclude the same, as they may never receive
values from Pj. It is this subtle property P in ACS, which causes the BSS scheme
of [152] and hence the AMPC of [107] to fail to satisfy the termination (and
Correctness) property.

A simple way to fix the above problem is to ask each Pj ∈ P to share two
random values, say aj and bj using Sh protocol of some AVSS and then use ACS
primitive to agree on a common set of n − t parties C whose instances of Sh
protocol will be eventually terminated by all (honest) parties in P . Then each
party Pi can locally compute ai =

∑
Pj∈C aj

i and bi =
∑

Pj∈C bj
i , where aj

i and bj
i

are ith share of aj and bj respectively. Now by termination property of AVSS,
every (honest) Pi ∈ P will eventually terminate Sh and thus will receive aj

i , b
j
i

corresponding to every Pj ∈ C and can compute ai and bi finally. However, the
current best AVSS protocol with n = 4t + 1 is due to [13], which requires a
communication cost of O(`n2 log(|F|) bits for concurrent sharing of ` secrets. If
this AVSS is used then the resultant AMPC protocol will have a communication
complexity of Ω(n3 log(|F|) bits per multiplications gate. Hence to achieve a com-
munication complexity of O(n2 log(|F|) bits per multiplication gate, we require a
different approach. We make an inroad towards this in next section by presenting
a statistical protocol that generates (t, 2t)-(1d)-sharing.

12.3 Statistical Protocol for Generating (t, 2t)-(1d)-sharing
of ` Secrets

We now present a novel protocol, called St-(t,2t)-(1d)-Share that allows a dealer
D ∈ P (dealer can be any party from P) to concurrently generate (t, 2t)-(1d)-
sharing of ` ≥ 1 secrets from F. We explain the idea of the protocol for a single
secret s. D invokes St-AVSS-MS-Share to t-(1d)-share s. Let f(x) be the degree-t
polynomial used to t-(1d)-share s. D also invokes St-AVSS-MS-Share to (2t− 1)-
(1d)-share a random value r chosen from F, which is independent of s. Let g(x)
be the degree-(2t− 1) polynomial used to (2t− 1)-(1d)-share r. Now it is easy to

317

see that h(x) = f(x) + xg(x) will be a degree-2t polynomial, such that h(0) = s.
So if every party Pi locally computes h(i) = f(i) + i · g(i), then this will generate
the 2t-(1d)-sharing of s. Protocol St-(t,2t)-(1d)-Share follows this principle for all
the ` secrets concurrently. The protocol is given in Fig. 12.3

Figure 12.3: Protocol for Generating (t, 2t)-(1d)-sharing of ` secrets Concurrently.

Protocol St-(t,2t)-(1d)-Share(D,P, S = (s1, . . . , s`), ε)

Code for D: Only D executes this code

1. Invoke St-AVSS-MS-Share(D,P, S = (s1, . . . , s`), t, ε) and St-AVSS-MS-
Share(D,P, R = (r1, . . . , r`), 2t − 1, ε), where the elements of R are
randomly chosen from F.

Code for Pi: Every party executes this code

1. Participate in St-AVSS-MS-Share(D,P, S = (s1, . . . , s`), t, ε) and St-
AVSS-MS-Share(D,P, R = (r1, . . . , r`), 2t− 1, ε).

2. Wait to terminate St-AVSS-MS-Share(D,P, S = (s1, . . . , s`), t, ε) with
ith shares of S = (s1, . . . , s`), say (ϕ1

i , . . . , ϕ
`
i). Wait to terminate St-

AVSS-MS-Share(D,P, R = (r1, . . . , r`), 2t− 1, ε) with ith shares of R =
(r1, . . . , r`), say (χ1

i , . . . , χ
`
i).

3. For l = 1, . . . , `, locally compute ψl
i = ϕl

i + i · χl
i, output ϕl

i and ψl
i

as ith share of s corresponding to t-(1d)-sharing and 2t-(1d)-sharing
respectively and terminate St-(t,2t)-(1d)-Share.

We now prove the properties of protocol St-(t,2t)-(1d)-Share.

Theorem 12.3 Protocol St-(t,2t)-(1d)-Share achieves the following properties:

1. Termination: (a) If D is honest, then all honest parties will eventually
terminate St-(t,2t)-(1d)-Share. (b) If D is corrupted and some honest party
terminates St-(t,2t)-(1d)-Share, then all honest parties will terminate the
protocol, except with probability ε.

2. Correctness: (a) If D is honest, then all the ` secrets are correctly (t, 2t)-
(1d)-shared among the parties in P. (b) If D is corrupted and the honest
parties terminate St-(t,2t)-(1d)-Share, then there are ` values, that are cor-
rectly (t, 2t)-(1d)-shared among the parties in P, except with probability ε.

3. Secrecy: At will have no information about the secrets of an honest D.

Proof: Termination: First part of termination follows from Termination
1 property of protocol St-AVSS-MS, following which, both the instances of St-
AVSS-MS-Share will be eventually terminated by every honest party when D is
honest. Hence every honest party will eventually terminate St-(t,2t)-(1d)-Share
after performing the local computations. Similarly, second part of termination
follows from Termination 2 of St-AVSS-MS.

318

Correctness: First part of correctness is asserted as follows: When D is hon-
est, then both the instances of St-AVSS-MS-Share will correctly generate t-(1d)-
sharing and (2t−1)-(1d)-sharing of secrets without any error. Now the rest follows
easily from the protocol steps. Now second part of correctness is proved as follows:
When D is corrupted and the honest parties terminate St-(t,2t)-(1d)-Share, then
both the instances of St-AVSS-MS-Share has correctly generated t-(1d)-sharing
and (2t − 1)-(1d)-sharing of secrets, each except with error probability at most
ε. Hence (t, 2t)-(1d)-sharing of ` values will be correctly generated, except with
probability at most ε.

Secrecy: From Secrecy property of St-AVSS-MS, the secret S will remain
secure after the execution of St-AVSS-MS-Share that generates the t-(1d)-sharing
of S. Now the way 2t-(1d)-sharing of S is computed maintains the secrecy of S.
Hence S remains secure in St-(t,2t)-(1d)-Share when D is honest. 2

Theorem 12.4 Protocol St-(t,2t)-(1d)-Share privately communicates O((`n2 +
n3) log |F|) bits and A-casts O(n3 log 1

ε
) bits.

Proof: Follows from Theorem 11.22 and the fact that St-(t,2t)-(1d)-Share in-
vokes two instances of St-AVSS-MS-Share. 2

12.4 Statistical AMPC Protocol with n = 4t + 1

Once we have an efficient protocol for generating (t, 2t)-(1d)-sharing, our AMPC
protocol proceeds in the same way as that of [13]. Specifically, our AMPC pro-
tocol is a sequence of three phases: preparation, input and computation. In
the preparation phase, corresponding to each multiplication and random gate, a
(t, 2t)-(1d)-sharing of random secret will be generated. So in total (t, 2t)-(1d)-
sharing of cM + cR random values will be generated. In the input phase the
parties t-(1d)-share their inputs and agree on a common set of at least n− t par-
ties who correctly t-(1d)-shared their inputs (every honest party will eventually
get shares of the inputs of the parties in the common set). In the computation
phase, based on the inputs of the parties in this common set, the actual circuit
will be computed gate by gate, such that the output of the intermediate gates are
always kept as secret and are t-(1d)-shared among the parties. Due to the linear-
ity of the used t-(1d)-sharing, the linear gates can be computed locally without
communication. Each multiplication gate will be evaluated with the help of the
(t, 2t)-(1d)-sharing associated with it. For this, we adapt a technique from [52]
used in synchronous settings, which is further used in AMPC of [13]. We now
describe each of the three phases of our protocol.

12.4.1 Preparation Phase

The goal of the preparation phase is to generate (t, 2t)-(1d)-sharing of cM + cR

secret random values. For this, we design a protocol called St-Preparation, that
asks each individual party to act as a dealer and (t, 2t)-share cM+cR

n−2t
random

values. Then an instance of ACS is executed to agree on a common set C of n− t
parties, who have correctly (t, 2t)-(1d)-shared cM+cR

n−2t
values. Out of these n − t

parties, at least n − 2t are honest, who have indeed (t, 2t)-(1d)-shared random

319

values, which are unknown toAt. So if we consider the (t, 2t)-(1d)-sharing done by
the honest parties (each of them has done cM+cR

n−2t
(t, 2t)-(1d)-sharing) in common

set C, then we will get cM+cR

n−2t
∗ (n − 2t) = cM + cR random (t, 2t)-(1d)-sharing.

For this, we use Vandermonde Matrix [52] and its ability to extract randomness
which has been exploited in [141, 52, 13]. A brief discussion on Vandermonde
Matrix was presented in Section 9.4.2 of Chapter 9.

We now present protocol St-Preparation in Fig. 12.4

Figure 12.4: Preparation Phase: Generation of (t, 2t)-(1d)-sharing of cM + cR secret
random values.

Protocol St-Preparation(P, ε)

Secret Sharing: Code for Pi: Every party executes this code

1. Select L = cM+cR
n−2t random secret elements (s(i,1), . . . , s(i,L)) from F. As

a dealer, invoke St-(t,2t)-(1d)-Share(Pi,P, Si, ε
n) to generate (t, 2t)-(1d)-

sharing of Si = (s(i,1), . . . , s(i,L)).

2. For j = 1, . . . , n, participate in St-(t,2t)-(1d)-Share(Pj ,P, Sj , ε
n).

Agreement on a Common Set: Code for Pi: Every party executes this code

1. Create a set Ci = ∅. Upon terminating St-(t,2t)-(1d)-
Share(Pj ,P, Sj , ε

n), include Pj in Ci.

2. Take part in ACS with the set Ci as input.

Generation of Random (t, 2t)-(1d)-sharing: Code for Pi: Every party exe-
cutes this code

1. Wait until ACS completes with output C containing n−t parties. Obtain
the ith shares ϕ

(j,1)
i , . . . , ϕ

(j,L)
i corresponding to t-(1d)-sharing of Sj and

ith shares φ
(j,1)
i , . . . , φ

(j,L)
i corresponding to 2t-(1d)-sharing of Sj for

every Pj ∈ C. Without loss of generality, let C = {P1, . . . , Pn−t}.
2. Let V denote a (n− t)× (n− 2t) publicly known Vandermonde Matrix.

(a) For every k ∈ {1, . . . , L}, let (r(1,k), . . . , r(n−2t,k)) =
(s(1,k), . . . , s(n−t,k))V .

(b) Locally compute ith shares corresponding to t-(1d)-sharing of
r(1,k), . . . , r(n−2t,k) as (ς(1,k)

i , . . . , ς
(n−2t,k)
i) = (ϕ(1,k)

i , . . . , ϕ
(n−t,k)
i)V .

(c) Locally compute ith shares corresponding to 2t-(1d)-sharing of
r(1,k), . . . , r(n−2t,k) as (σ(1,k)

i , . . . , σ
(n−2t,k)
i) = (φ(1,k)

i , . . . , φ
(n−t,k)
i)V

and terminate.

The values r(1,1), . . . , r(n−2t,1), . . . , r(1,L), . . . , r(n−2t,L) denote the cM+cR ran-
dom secrets which are (t, 2t)-(1d)-shared.

Lemma 12.5 Protocol St-Preparation satisfies the following properties:

320

1. Termination: All honest parties will eventually terminate St-Preparation,
except with probability ε.

2. Correctness: The protocol correctly outputs (t, 2t)-(1d)-sharing of cM + cR

multiplication triples, except with probability ε.

3. Secrecy: The adversary At will have no information about r(i,j), for i =
1, . . . , n− 2t and j = 1, . . . , cM+cR

n−2t
.

Proof: Termination: Here we first show that ACS will eventually output a set
C containing n− t parties (possibly containing some corrupted parties). Accord-
ing to the first part of Termination property of St-(t,2t)-(1d)-Share, all honest
parties will eventually terminate the instance of St-(t,2t)-(1d)-Share initiated by
every honest party. Now since there are at least 3t + 1 honest parties, even if the
instances initiated by corrupted parties do not terminate at all, ACS will output
a set C containing n− t = 3t + 1 parties. But nevertheless, it may happen that
C contains up to t corrupted parties as well.

Now we show that every honest party will eventually terminate the instance
of St-(t,2t)-(1d)-Share initiated by the parties in C and therefore will receive the
shares of the secrets shared by the parties in C eventually, except with error
probability at most ε. For all the honest parties in C, the above will hold with-
out any error probability. But there may be at most t corrupted parties in C.
The instance of St-(t,2t)-(1d)-Share initiated by each of the corrupted parties in
C will be terminated by every honest party, except with probability ε

n
. This fol-

lows from the second part of the Termination property of St-(t,2t)-(1d)-Share,
according to which if some honest party terminates St-(t,2t)-(1d)-Share, then all
honest parties will terminate the protocol, except with probability ε

n
when the

instance of St-(t,2t)-(1d)-Share is initiated by a corrupted party (remember that
in St-preparation, the instances of St-(t,2t)-(1d)-Share has been executed with er-
ror parameter ε

n
). Now as there can be at most t corrupted parties in C, for all

of them the instances initiated by them will be terminated by all honest parties
eventually, except with error probability t ε

n
≈ ε. Subsequently, the honest par-

ties perform all the computations with the shares as specified in the protocol and
finally terminate St-Preparation, except with error probability ε.

Correctness: According to the first part of Correctness of St-(t,2t)-(1d)-
Share, the (t, 2t)-(1d)-sharing generated by every honest party in C will be correct
without any error probability. For a corrupted party in C, the generated (t, 2t)-
(1d)-sharing of secrets will be correct, except with error probability ε

n
. Since

there can be at most t corrupted parties in C, for all of them, the generated
(t, 2t)-(1d)-sharing will be correct, except with error probability t ε

n
≈ ε. Hence

protocol St-Preparation will correctly output (t, 2t)-(1d)-sharing of cM + cR mul-
tiplication triples, except with probability ε.

Secrecy: Secrecy of St-Preparation follows from Secrecy of St-(t,2t)-(1d)-Share
and randomness extraction property of Vandermonde matrix [141, 52, 13]. 2

Lemma 12.6 Protocol St-Preparation privately communicating O(((cM +cR)n2+
n4) log |F|) bits, A-casts O(n4 log 1

ε
) bits and requires one invocation of ACS.

321

Proof: In protocol St-Preparation, each party executes an instance of St-(t,2t)-
(1d)-Share, by acting as a dealer, to (t, 2t)-(1d)-share L = cM+cR

n−2t
secrets. Substi-

tuting ` = L in Theorem 12.4, the total private communication of the protocol
is O ((Ln3 + n4) log(|F|)) bits. Since L = cM+cR

n−2t
and n − 2t = Θ(n), the total

private communication of the protocol will be O(((cM + cR)n2 + n4) log |F|) bits.
Moreover, the protocol will A-cast O(n4 log 1

ε
) bits and requires one invocation of

ACS. 2

12.4.2 Input Phase

In protocol St-Input, each Pi ∈ P acts as a dealer to t-(1d)-share his input Xi

containing ci elements from F. So total number of inputs cI =
∑n

i=1 ci. To achieve
this, party Pi t-(1d)-share his input Xi by acting as a dealer and executing St-
AVSS-MS-Share. The asynchrony of the network does not allow the parties to wait
for more than n − t = 3t + 1 parties to complete their instance of St-AVSS-MS-
Share. In order to agree on a common set of parties whose instance of St-AVSS-
MS-Share have terminated and whose inputs will be taken into consideration
for computation (of the circuit), one instance of ACS is invoked. At the end,
everyone considers the t-(1d)-sharing of all the inputs shared by parties, only in
the common set. Protocol St-Input is now presented in Fig. 12.5.

Figure 12.5: Input Phase: Generation of t-(1d)-sharing of the Inputs.

Protocol St-Input(P, ε)

Secret Sharing: Code for Pi: Every party executes this code

1. Having input Xi, invoke St-AVSS-MS-Share(Pi,P, Xi, t,
ε
n), as a dealer,

to generate t-(1d)-sharing of the values in Xi.

2. For every j = 1, . . . , n, participate in St-AVSS-MS-Share(Pj ,P, Xj , t,
ε
n).

Agreement on a Common Set: Code for Pi: Every party executes this code

1. Create a set Ci = ∅. Upon terminating St-AVSS-MS-
Share(Pj ,P, Xj , t,

ε
n), add Pj in Ci.

2. Participate in ACS with the set Ci as input.

Output Generation: Code for Pi:

1. Wait until ACS completes with output C containing n− t parties. Out-
put the shares corresponding to t-(1d)-sharing of the inputs of the par-
ties in C and terminate St-Input.

Lemma 12.7 Protocol St-Input satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol,
except with probability ε.

322

2. Correctness: The protocol correctly outputs t-(1d)-sharing of inputs of the
parties in agreed common set C, except with probability ε.

3. Secrecy: The adversary At will have no information about the inputs of
the honest parties in set C.

Proof: Termination: Here we first show that ACS will eventually output a set
C containing n− t parties (possibly containing some corrupted parties). Accord-
ing to the first part of Termination property of St-AVSS-MS-Share, all honest
parties will eventually terminate the instance of St-AVSS-MS-Share initiated by
every honest party. Now since there are at least 3t + 1 honest parties, even if the
instances of St-AVSS-MS-Share initiated by corrupted parties do not terminate at
all, ACS will output a set C containing n− t = 3t + 1 parties. But nevertheless,
it may happen that C contains up to t corrupted parties as well.

Now we show that every honest party will eventually terminate the instance
of St-AVSS-MS-Share initiated by the parties in C and therefore will receive the
shares of the secrets shared by the parties in C eventually, except with error prob-
ability at most ε. For all the honest parties in C, the above will hold without
any error probability. But there may be at most t corrupted parties in C. The
instance of St-AVSS-MS-Share initiated by each of the corrupted parties will be
terminated by every honest party, except with probability ε

n
. This follows from

the second part of the Termination property of St-AVSS-MS-Share, according
to which if some honest party terminates St-AVSS-MS-Share, then all honest par-
ties will terminate the protocol, except with probability ε

n
when the instance of

St-AVSS-MS-Share is initiated by a corrupted party (remember that in St-Input,
the instances of St-AVSS-MS-Share are executed with error parameter ε

n
). Now

as there can be at most t corrupted parties in C, for all of them the instances
initiated by them will be terminated by all honest parties eventually, except with
error probability t ε

n
≈ ε. Subsequently, the honest parties will terminate St-Input,

except with error probability ε.

Correctness: The t-(1d)-sharing generated by every honest party in C will be
correct without any error probability. For a corrupted party in C, the generated
t-(1d)-sharing of secrets will be correct, except with error probability ε

n
. Since

there can be at most t corrupted parties in C, for all of them, the generated
t-(1d)-sharing will be correct, except with error probability t ε

n
≈ ε. Hence proto-

col St-Input will correctly output t-(1d)-sharing of the values of the parties in C,
except with probability ε.

Secrecy: Secrecy follows from Secrecy of St-AVSS-MS-Share. 2

Lemma 12.8 Protocol St-Input privately communicates O((cIn
2 + n4) log |F|)

bits, A-casts O(n4 log 1
ε
) bits and requires one invocation of ACS.

Proof: Follows from the following facts: St-Input invokes (a) n instances of St-
AVSS-MS-Share with ` = ci for i = 1, . . . , n (this requires private communication
of O((cIn

2 + n4) log |F|) bits and A-cast of O(n4 log 1
ε
)) (b) one instance of ACS.

2

323

12.4.3 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated
gate by gate, where all inputs and intermediate values are t-(1d)-shared. As soon
as a party holds his shares of the input values of a gate, he joins the computation
of the gate. Due to the linearity of the used t-(1d)-sharing, linear gates can be
computed locally simply by applying the linear function to the shares. With
every random gate, one random (t, 2t)-(1d)-sharing (from the preparation phase)
is associated, whose t-(1d)-sharing is directly used as outcome of the random
gate. With every multiplication gate, one random (t, 2t)-(1d)-sharing (from the
preparation phase) is associated, which is then used to compute t-(1d)-sharing
of the product, following the technique of Damgard et al. [52] in synchronous
settings. Given a (t, 2t)-(1d)-sharing of a secret random value r (i.e., [r](t,2t)), the
technique of Damgard et al. [52] allows to evaluate a multiplication gate at the
cost of one reconstruction. The technique of [52] is as follows: Let z = xy, where
x, y are the inputs of the multiplication gate, such that x, y are t-(1d)-shared,
i.e. [x]t, [y]t. Moreover, let [r](t,2t) be the (t, 2t)-(1d)-sharing associated with the
multiplication gate, where r is a secret random value. Now for computing [z]t,
the parties compute [Λ]2t = [x]t.[y]t + [r]2t. Then Λ is privately reconstructed by
every Pi ∈ P . Now every party defines [Λ]t as the default sharing of Λ, e.g., the
constant degree-0 polynomial Λ and computes [z]t = [Λ]t − [r]t. The secrecy of z
follows from [52, 13]. The above approach is also used in the computation phase
of the AMPC protocol of [13]. We now present the protocol for computation
phase in Fig. 12.6.

Lemma 12.9 Given that protocol St-Preparation and St-Input satisfy their prop-
erties specified in Lemma 12.5 and Lemma 12.7 respectively, Protocol St-Computation
satisfies the following, except with probability at most ε:

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: Given t-(1d)-sharing of cM + cR secret random triples, the
protocol computes the outputs of the circuit correctly and privately.

Proof: Termination: Given that protocol St-Preparation and St-Input satisfy
their Termination property specified in Lemma 12.5 and Lemma 12.7 respec-
tively, termination of protocol St-Computation follows from the finiteness of the
circuit representing function f and the termination property of OEC.

Correctness: Protocol St-Preparation outputs proper t-(1d)-sharing of cM + cR

secret random triples, except with probability ε. Also protocol St-Input outputs
proper t-(1d)-sharing of the inputs of the parties in common set C, except with
probability ε. Hence protocol St-Computation will correctly compute the circuit
with probability at least (1− ε). 2

Lemma 12.10 Protocol St-Computation privately communicates O(n2(cM + cO)
log |F|) bits

Proof: Follows from the fact that in protocol St-Computation, 2cM +cO instances
of OEC are executed, corresponding to cM multiplication gates and cO output
gates. 2

324

Figure 12.6: Computation Phase: Evaluation the Circuit.

Protocol St-Computation(P, ε)

For every gate in the circuit: Code for Pi

Wait until ith share of each of the inputs of the gate is available. Now depending
on the type of gate, proceed as follows:

1. Input Gate: [s]t = IGate([s]t): Simply output si, the ith share of s.

2. Linear Gate: [z]t = LGate([x]t, [y]t, . . .): Compute and output zi =
LGate(xi, yi, . . .), the ith share of z = LGate(x, y, . . .), where xi, yi, . . . de-
notes ith share of x, y,

3. Multiplication Gate: [z]t = MGate([x]t, [y]t, [r](t,2t)):

(a) Let [r](t,2t) be the random (t, 2t)-(1d)-sharing associated with the multi-
plication gate. Also let (ϕ1, . . . , ϕn) and (φ1, . . . , φn) denote the t-(1d)-
sharing and 2t-(1d)-sharing of r, respectively.

(b) Compute Λi = xi.yi−φi the ith share of Λ which is now 2t-(1d)-shared.

(c) For j = 1, . . . , n, privately send Λi to party Pj . Apply OEC on received
Λj ’s to privately reconstruct Λ.

(d) Compute and output zi = Λ− ϕi, the ith share of z.

4. Random Gate: [R]t = RGate([r](t,2t)): Let [r](t,2t) be the random (t, 2t)-
(1d)-sharing associated with the random gate. Also let (ϕ1, . . . , ϕn) denote
the t-(1d)-sharing of r. Output Ri = ϕi as the ith share of R(= r).

5. Output Gate: x = OGate([x]t): If Pα is entitled to receive x then privately
send xi, the ith share of x to party Pα. If Pi is entitled to receive x then
apply OEC on received xj ’s and output x.

12.4.4 Our Statistical AMPC Protocol

Now our new statistical AMPC protocol called St-AMPC for evaluating function
f which is represented by a circuit containing cI , cL, cM , cR and cO input, linear,
multiplication, random and output gates, is: (1). Invoke St-Preparation(P , ε) (2).
Invoke St-Input(P , ε) (3). Invoke St-Computation(P , ε).

Theorem 12.11 Let n = 4t + 1. Then protocol St-AMPC satisfies the following
properties:

1. Termination: Except with probability ε, all honest parties will eventually
terminate the protocol.

2. Correctness: Except with probability ε, the protocol correctly computes the
outputs of the circuit.

3. Secrecy: The adversary At will get no extra information about the inputs of

325

the honest parties other than what can be inferred by the inputs and outputs
of the corrupted parties.

4. Communication Complexity: The protocol privately communicates O(((cI+
cM + cR + cO)n2 + n4) log |F|) bits, A-casts O(n4 log 1

ε
) bits and requires 2

invocations of ACS.

Proof: The proof follows from the properties of protocol St-Preparation, St-Input
and St-Computation. 2

In the sequel, we will present a protocol for perfect AMPC. For that we will
first present a perfect protocol for generating (t, 2t)-(1d)-sharing of ` secrets.

12.5 Perfect Protocol for Generating (t, 2t)-(1d)-sharing of
` Secrets

We now present a protocol called Pf-(t,2t)-(1d)-Share that allows a dealer D ∈ P
to concurrently generate (t, 2t)-(1d)-sharing of ` ≥ 1 secrets. Pf-(t,2t)-(1d)-Share
is exactly same as St-(t,2t)-(1d)-Share. The only difference is that Pf-(t,2t)-(1d)-
Share uses Pf-AVSS-MS-Share as black box and therefore does not involve any
error probability. So we just state the following theorem for Pf-(t,2t)-(1d)-Share:

Theorem 12.12 Protocol Pf-(t,2t)-(1d)-Share achieves the following properties:

1. Termination: (a) If D is honest, then all honest parties will eventually
terminate Pf-(t,2t)-(1d)-Share. (b) If D is corrupted and some honest party
terminates Pf-(t,2t)-(1d)-Share, then all honest parties will eventually ter-
minate Pf-(t,2t)-(1d)-Share.

2. Correctness: (a) If D is honest, then all the ` secrets are correctly (t, 2t)-
(1d)-shared among the parties in P. (b) If D is corrupted and the honest
parties terminate Pf-(t,2t)-(1d)-Share, then there are ` values, that are cor-
rectly (t, 2t)-(1d)-shared among the parties in P.

3. Secrecy: At will have no information about the secrets of an honest D.

Theorem 12.13 Protocol Pf-(t,2t)-(1d)-Share privately communicates O(`n2 log |F|)
bits and A-cast O(n2 log n) bits.

Proof: Follows from theorem 11.36 and the fact that Pf-(t,2t)-(1d)-Share invokes
two instances of Pf-AVSS-MS-Share. 2

12.5.1 Comparison with Existing Protocol for generating (t, 2t)-(1d)-
sharing

In [13] the authors presented a perfectly secure protocol, that privately commu-
nicates O(`n3 log |F|) bits and A-casts O(n2 log |F|) bits to generate (t, 2t)-(1d)-
sharing of ` secrets concurrently. Informally, the authors generated (t, 2t)-(1d)-
sharing of a single value in asynchronous settings from t-(1d)-sharing of 3t+1 ran-
dom values in asynchronous settings. This is done as follows: Let [r0]t, . . . , [r

3t]t
be t-(1d)-sharing of 3t + 1 random values. Let p(x) be the degree-t polynomial
whose t+1 coefficients are r0, . . . , rt. Let q(x) be the degree-2t polynomial whose
2t+1 coefficients are r0, rt+1 . . . , r3t. It is to be noted that both p(x) and q(x) have

326

common constant term (which is r0). Now the parties jointly perform some com-
putation such that every party Pi receives p(i) and q(i) at the end. This ensures
that r0 is (t, 2t)-(1d)-shared among the parties. In [13] the authors have gener-
ated t-(1d)-sharing of 3t+1 random values by using their AVSS scheme, incurring
a total private communication of O(n3 log |F|) bits and A-cast of O(n2 log(|F|))
bits. Thus the protocol of [13] requires a private communication of O(n3 log |F|)
bits and A-cast of O(n2 log(|F|)) bits to generate (t, 2t)-(1d)-sharing of a single
value.

Thus protocol Pf-(t,2t)-(1d)-Share gains a factor of Ω(n) in communication
complexity for generating (t, 2t)-sharing in comparison to the protocol of [13].
In fact, it is this gain of Ω(n), which helps our perfect AMPC protocol to gain
Ω(n) in communication complexity, compared to the AMPC of [13]. In Section
12.3, a protocol (St-(t,2t)-(1d)-Share) with same communication complexity as Pf-
(t,2t)-(1d)-Share was given for generating (t, 2t)-(1d)-sharing. However protocol
St-(t,2t)-(1d)-Share has negligible error probability in correctness and termi-
nation, where as Pf-(t,2t)-(1d)-Share involves no error probability.

12.6 Our Perfect AMPC Protocol Overview

Once we have an efficient protocol for generating (t, 2t)-(1d)-sharing, our perfect
AMPC protocol proceeds in the same way as our statistical AMPC and perfect
AMPC of [13]. Specifically, our AMPC protocol is a sequence of three phases:
preparation, input and computation. In the preparation phase, corresponding to
each multiplication and random gate, a (t, 2t)-(1d)-sharing of random secret will
be generated. In the input phase the parties t-(1d)-share their inputs and agree
on a common set of at least n− t parties who correctly t-(1d)-shared their inputs.
In the computation phase, based on the inputs of the parties in this common
set, the actual circuit will be computed gate by gate, such that the output of
the intermediate gates are always kept as secret and are t-(1d)-shared among the
parties. We now elaborate on each of the three phases.

12.6.1 Preparation Phase

Our protocol for Preparation phase, called as Pf-Preparation is same as protocol
St-Preparation except that it invokes Pf-(t,2t)-(1d)-Share in the place of St-(t,2t)-
(1d)-Share and therefore does not involve any error probability. So we just state
the following lemmas:

Lemma 12.14 Protocol Pf-Preparation satisfies the following properties:

1. Termination: All honest parties will eventually terminate Pf-Preparation.

2. Correctness: The protocol correctly outputs (t, 2t)-(1d)-sharing of cM + cR

multiplication triples.

3. Secrecy: The adversary At will have no information about r(i,j), for i =
1, . . . , n− 2t and j = 1, . . . , cM+cR

n−2t
.

Lemma 12.15 Protocol Pf-Preparation privately communicates O((cM+cR)n2 log |F|)
bits, A-casts O(n3 log n) bits and requires one invocation of ACS.

327

12.6.2 Input Phase

Our protocol for Input phase, called as Pf-Input is same as protocol St-Input
except that it invokes Pf-AVSS-MS-Share in the place of St-AVSS-MS-Share and
therefore does not involve any error probability. So we just state the following
lemmas:

Lemma 12.16 Protocol Pf-Input satisfies the following properties:

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: The protocol correctly outputs t-(1d)-sharing of inputs of the
parties in agreed common set C.

3. Secrecy: The adversary At will have no information about the inputs of
the honest parties in set C.

Lemma 12.17 Protocol Pf-Input privately communicates O(cIn
2 log |F|) bits, A-

casts O(n3 log n) bits and requires one invocation of ACS.

12.6.3 Computation Phase

Our protocol for Computation phase, called as Pf-Computation is same as protocol
St-Computation except that it does not involve any error probability. This is
because the protocols for the preparation phase and input phase does not involve
any error probability. Instead of repeating the protocol, we just state the following
lemmas:

Lemma 12.18 Given that protocol Pf-Preparation and Pf-Input satisfy their prop-
erties specified in Lemma 12.14 and Lemma 12.16 respectively, protocol Pf-Computation
satisfies the following:

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: Given t-(1d)-sharing of cM + cR secret random triples, the
protocol computes the outputs of the circuit correctly and privately.

Lemma 12.19 Protocol Pf-Computation privately communicates O((cMn2+cOn)
log |F|) bits

12.6.4 Our Perfect AMPC Protocol

Now our new perfect AMPC protocol called Pf-AMPC for evaluating function f
which is represented by a circuit containing cI , cL, cM , cR and cO input, linear,
multiplication, random and output gates, is: (1). Invoke Pf-Preparation(P) (2).
Invoke Pf-Input(P) (3). Invoke Pf-Computation(P).

Theorem 12.20 Let n = 4t + 1. Then protocol Pf-AMPC satisfies the following
properties:

1. Termination: All honest parties will eventually terminate the protocol.

2. Correctness: The protocol correctly computes the outputs of the circuit.

328

3. Secrecy: The adversary At will get no extra information about the inputs of
the honest parties other than what can be inferred by the inputs and outputs
of the corrupted parties.

4. Communication Complexity: The protocol privately communicates O(((cI+
cM + cR)n2 + cOn) log |F|) bits, A-casts O(n3 log n) bits and requires 2 invo-
cations of ACS.

Proof: The proof follows from the properties of protocol Pf-Preparation, Pf-Input
and Pf-Computation. 2

12.7 Conclusion and Open Problems

In summary, in this chapter we have focused on the communication complexity
of AMPC protocols with 4t + 1 parties. We have shown the following:

1. The statistical AMPC protocol proposed in [107] (the authors have claimed
the communication complexity of the protocol as O(n2 log |F|) bits per mul-
tiplication gate) is not correct.

2. We then propose a new statistical AMPC that communicates O(n2 log |F|)
bits per multiplication gate.

3. Finally, we propose a perfect AMPC that communicates O(n2 log |F|) bits
per multiplication gate. Our perfect AMPC protocol is optimally resilient
and improves the communication complexity of the best known perfectly
secure optimally resilient AMPC protocol of [13] by a factor of Ω(n).

We conclude this chapter with the following open question:

Open Problem 20 How to further reduce the communication complexity of AMPC
protocol with 4t + 1?

329

Chapter 13

Efficient Statistical ABA
Protocol With Non-Optimal
Resilience

In this chapter, we show another important application of the perfect AVSS pro-
tocol presented in Chapter 11 by designing an ABA protocol with n = 4t + 1. In
the previous chapter, we have used the perfect AVSS presented in Chapter 11 for
designing our perfect AMPC protocol that provides a communication complexity
of O(n2 log |F|) bits per multiplication gate (which we have shown to be the best
so far in the literature). Recall that, for designing AMPC in the previous chapter,
we used our perfect AVSS as a tool to generate t-(1d)-sharing and 2t-(1d)-sharing
of secrets. In this chapter, we use another property of our AVSS emphasized in
section 11.8 and present an efficient ABA protocol with n = 4t+1 whose commu-
nication complexity is significantly better than the communication complexity of
the only known existing ABA protocol of [66, 67] with n = 4t+1. Specifically, our
ABA achieves an amortized communication complexity of O(n2 log |F|) bits for
attaining agreement on a single bit, where F with |F| ≥ n denotes the finite field
over which our protocol performs all the computations. On the other hand, the
only known ABA with 4t + 1 proposed in [66, 67] communicates Ω(n4κ log |F|)
bits for single bit message, where κ is the error parameter. Like the ABA of
[66, 67], our protocol has constant expected running time and also our protocol
is almost-surely terminating and non-optimal in resilience.

Even though our protocol is non-optimal in resilience, it will find applications
in many distributed fault-tolerant protocols like AMPC that requires n = 4t + 1
parties for its error-free computation. It is well known that ABA acts as an useful
primitive in AMPC. ABA protocols with optimal resilience i.e n = 3t + 1 may
be adapted for n = 4t + 1 and can be used in AMPC with 4t + 1 parties. But
comparing our ABA for 3t + 1 (which provides the best known communication
complexity for optimally resilient ABA protocols) presented in Chapter 9, with
our ABA for 4t + 1, we see that the later provides better communication com-
plexity. Furthermore, while our ABA in Chapter 9 is (1 − ε)-terminating, our
ABA presented in this chapter is almost-surely terminating. Hence it is always
advantageous to use ABA designed with n = 4t+1 parties as black box in AMPC
protocols with n = 4t + 1 (and other fault tolerant protocols with n = 4t + 1).

330

13.1 Introduction

13.1.1 The Network and Adversary Model

This is same as described in section 8.1.1. Recall that the set of parties is denoted
by P = {P1, . . . , Pn} and t out of the n parties can be under the influence of a
computationally unbounded Byzantine (active) adversary, denoted as At. We
emphasize that we use n = 4t + 1 in this chapter.

13.1.2 Our Motivation and Contribution

The communication complexity of BA protocol is one of its important param-
eters. In the literature, a lot of attention has peen paid to improve the com-
munication complexity of BA protocols in synchronous settings (see for example
[26, 44, 57, 134, 75]). Unfortunately, not too much attention has been paid
to design communication efficient ABA protocols. Therefore, we have studied
the communication efficiency of ABA with optimal resilience in Chapter 9 and
presented efficient solution for the same. In this chapter, we study the commu-
nication efficiency of ABA with non-optimal resilience i.e with n = 4t + 1.

In this chapter, we present (0, 0)-ABA protocol with n = 4t + 1 whose amor-
tized communication complexity for agreeing on a single bit is O(n2 log |F|) bits
of private communication1 and A-cast, where F is the working field and |F| ≥ n.
Specifically, our ABA requires private communication and A-cast of O(n3 log |F|)
bits for reaching agreement on 2t+1 = Θ(n) bits concurrently. Our ABA protocol
requires constant expected running time.

We compare our ABA with the only known (0, 0)-ABA protocol of [66, 67]
with n = 4t + 1 which also has constant expected running time. The ABA of
[39] privately communicates as well as A-casts Ω(n4κ log |F|) bits, where κ is the
error parameter in correctness of the AVSS used by them. So our ABA shows
considerable gain (by a factor of Ω(n2κ)) in communication complexity over the
ABA of [66], while keeping all other properties in place. Moreover, our ABA
attains better communication complexity than the ABA protocols with optimal
resilience presented in Chapter 9.

As mentioned before, our efficient ABA will find applications in many dis-
tributed fault-tolerant protocols like AMPC that require n = 4t + 1 parties for
their error-free computation. The following reasons surely assert that choosing
our ABA with non-optimal resilience over our ABA with optimal resilience (pre-
sented in Chapter 9) in an AMPC with n = 4t + 1 is more appropriate: (a) our
ABA with n = 4t + 1 is much better in terms of communication complexity in
comparison to our ABA with optimal resilience; (b) our ABA with non-optimal
resilience is almost-surely terminating, whereas the ABA with optimal resilience
is (1− ε)-terminating.

Our construction of ABA protocol employs the perfect AVSS scheme with
n = 4t + 1 (called Pf-AVSS-MS) presented in Chapter 11. We use the property
of protocol Pf-AVSS-MS, mentioned in section 11.8. Specifically, the property
of protocol Pf-AVSS-MS is as follows: The sharing phase protocol Pf-AVSS-MS-
Share (of Pf-AVSS-MS) can commit to at most `(t + 1) secrets simultaneously
with a communication complexity of O(`n2 log |F|) bits and A-cast of O(n2 log n)
bits. We will substitute Pf-AVSS-MS-Share in the place of WAVSS-MS-Share in

1Communication over private channels

331

multi-bit common coin protocol presented in section 9.4.2 of Chapter 9. We will
show that our new common coin protocol obtained this way will satisfy all the
properties of multi-bit common coin protocol. Also our protocol will have no
error in termination due to the use of perfect AVSS protocol Pf-AVSS-MS, as
opposed to our common coin protocol presented in section 9.4.2 which was only
(1 − ε)-terminating. Apart from this our new common coin will achieve better
communication complexity. These two properties will lead to our new almost-
surely terminating (0, 0)-ABA with better communication complexity.

13.2 Our ABA protocol with Non-optimal Resilience

Our ABA with n = 4t + 1 follows the same approach of our ABA with optimal
resilience presented in section 9.4 of Chapter 9. We only modify the multi-bit
common coin protocol of section 9.4 by substituting our perfect AVSS called Pf-
AVSS-MS in the place of WAVSS-MS. Rest of the protocols i.e Vote and ABA-MB
presented in section 9.4 remain the same, except that both the protocols are now
executed with n = 4t+1 parties instead of n = 3t+1 and in ABA-MB, we replace
Common-Coin-MB by our new common coin protocol.

13.2.1 A New and Efficient Common Coin Protocol for Multiple Bits
with n = 4t + 1

We now present our multi-bit common coin protocol with n = 4t + 1 for the sake
of completeness. Recall that in our multi-bit common coin protocol (of section
9.4), every party Pi ∈ P has to share n values and later these n values may have
to be reconstructed. In section 9.4, the sharing phase of our proposed statistical
AVSS protocol, called WAVSS-MS, has been used by Pi to simultaneously share
n values and later the reconstruction phase of protocol WAVSS-MS has been used
to reconstruct these values.

Now recall from section 11.8 that the sharing phase protocol Pf-AVSS-MS-
Share can commit to `(t + 1) secrets simultaneously with a private communi-
cation complexity of O(`n2 log |F|) bits and A-cast of O(n2 log n) bits (section
11.8 also talks about how this can be achieved). Hence every Pi has to in-
voke Pf-AVSS-MS-Share with ` = 4. This will allow Pf-AVSS-MS-Share to share
`(t+1) = 4(t+1) = 4t+1+3 = n+3 secrets in which parties may ignore the last
three secrets and consider first n secrets. This will require a private communica-
tion and A-cast of O(n2 log |F|) bits (as |F| ≥ n). We can then use Pf-AVSS-MS-
Rec (the reconstruction phase protocol) for reconstruction of those n values which
will require private communication of O(n2 log |F|) bits. In the sequel, we will in-
voke Pf-AVSS-MS-Share and Pf-AVSS-MS-Rec in the following way: Pf-AVSS-MS-
Share(Pi,P , (xi1, . . . , xin)) to mean that Pi commits to n secrets, (xi1, . . . , xin) us-
ing Pf-AVSS-MS-Share; similarly Pf-AVSS-MS-Rec(Pi,P , (xi1, . . . , xin)) is invoked
to reconstruct the n values. Now our common coin protocol, called Common-Coin-
MB-Non-Op is same as Common-Coin-MB of section 9.4 where all the instances
of sharing phase of AVSS (i.e WAVSS-MS-Share) is now replaced by Pf-AVSS-
MS-Share and reconstruction phase of AVSS (i.e WAVSS-MS-Rec-public) is now
replaced by Pf-AVSS-MS-Rec. For the sake of completeness, we now present our
protocol Common-Coin-MB-Non-Op in Fig. 13.1.

Now slight modifications of the proofs of protocol Common-Coin-MB (in sec-
tion 9.4.2) will lead to the proofs of protocol Common-Coin-MB-Non-Op. Hence,

332

Figure 13.1: Multi-Bit Common Coin Protocol using Protocol Pf-AVSS-MS-Share and
Pf-AVSS-MS-Rec as Black-Boxes

Protocol Common-Coin-MB-Non-OP(P)

Code for Pi: — All parties execute this code

1. For j = 1, . . . , n, choose a random value xij and execute Pf-AVSS-MS-
Share(Pi,P, (xi1, . . . , xin)).

2. Participate in Pf-AVSS-MS-Share(Pj ,P, (xj1, . . . , xjn)) for every j ∈ {1, . . . , n}. We denote
Pf-AVSS-MS-Share(Pj ,P, (xj1, . . . , xjn)) by Pf-AVSS-MS-Sharej .

3. Upon terminating Pf-AVSS-MS-Sharej , A-cast ”Pi terminated Pj”.

4. Create a dynamic set Ti. Add party Pj to Ti if ”Pk terminated Pj” is received from the
A-cast of at least n − t Pk’s. Wait until |Ti| = n − t. Then assign Ti = Ti and A-cast
”Attach Ti to Pi”. We say that the secrets {xji|Pj ∈ Ti} are the secrets attached to
party Pi.

5. Create a dynamic set Ai. Add party Pj to Ai if

(a) ”Attach Tj to Pj” is received from the A-cast of Pj and

(b) Tj ⊆ Ti.

Wait until |Ai| = n− t. Then assign Ai = Ai and A-cast ”Pi Accepts Ai”.

6. Create a dynamic set Si. Add party Pj to Si if

(a) ”Pj Accepts Aj” is received from the A-cast of Pj and

(b) Aj ⊆ Ai.

Wait until |Si| = n − t. Then A-cast ”Reconstruct Enabled”. Let Hi be the current
content of Ai.

Halt all the instances of Pf-AVSS-MS-Sharej for all Pj who are are not yet included in
current Ti. Later resume all such instances of Pf-AVSS-MS-Sharej ’s if Pj is included in Ti.

7. Wait to receive ”Reconstruct Enabled” from A-cast of at least n− t parties. Participate
in Pf-AVSS-MS-Rec(Pk,P, (xk1, . . . , xkn), ε′) for every Pk ∈ Ti. We denote Pf-AVSS-MS-
Rec(Pk,P, (xk1, . . . , xkn), ε′) by Pf-AVSS-MS-Reck. Notice that as on when new parties are
added to Ti, Pi participates in corresponding Pf-AVSS-MS-Rec.

8. Let u = d0.87ne. Every party Pj ∈ Ai is associated with n − 2t values, say
Vj1, . . . , Vj(n−2t) in the following way. Let xkj for every Pk ∈ Tj has been recon-
structed. Let Xj be the n − t length vector consisting of {xkj | Pk ∈ Tj}. Then set
(vj1, . . . , vj(n−2t)) = Xj · V (n−t,n−2t), where V (n−t,n−2t) is an (n − t) × (n − 2t) Vander-
monde Matrix. Now Vjl = vjl mod u for l = 1, . . . , n− 2t.

9. Wait until n − 2t values associated with all the parties in Hi are computed. Now for
every l = 1, . . . , n−2t if there exits a party Pj ∈ Hi such that Vjl = 0, then set 0 as the lth

binary output; otherwise set 1 as the lth binary output. Finally output the n − 2t length
binary vector.

we only state the following theorems. Before that we stress that Common-Coin-
MB-Non-Op will not be (1−ε)-terminating as protocol Common-Coin-MB. This is
because Common-Coin-MB-Non-Op uses Pf-AVSS-MS that has no error in termi-
nation property. So Common-Coin-MB-Non-Op will have no error in termination.

Theorem 13.1 Protocol Common-Coin-MB-Non-Op is a t-resilient multi-bit com-
mon coin protocol with n− 2t = 2t + 1 bits output for n = 4t + 1 parties.

Theorem 13.2 Protocol Common-Coin-MB-Non-Op privately communicates O(n3

log |F|) bits and A-casts O(n3 log |F|) bits.

333

Proof: Follows from the fact that Common-Coin-MB-Non-Op requires at most
n invocations of Pf-AVSS-MS-Share and Pf-AVSS-MS-Rec protocols. 2

13.2.2 Final ABA Protocol for Achieving Agreement on 2t + 1 bits
Concurrently with n = 4t + 1

Now our ABA is same as protocol ABA-MB presented in section 9.4.3 with proto-
col Common-Coin-MB is being replaced by Common-Coin-MB-Non-Op. Protocol
Vote presented in Chapter 9 for n = 3t + 1 can be extended for n = 4t + 1. Now
due to the substitution of protocol Common-Coin-MB-Non-Op that has no error in
termination, our new ABA called ABA-MB-Non-Op is almost-surely terminating.
Furthermore, since Common-Coin-MB-Non-Op is better in terms of communica-
tion complexity than Common-Coin-MB, protocol ABA-MB-Non-Op attains better
communication complexity than ABA-MB. Hence we now present the following
theorem:

Theorem 13.3 (ABA for 2t + 1 Bits) Let n = 4t + 1. Then protocol ABA-
MB-Non-Op is a t-resilient, (0, 0)-ABA protocol for n parties.The protocol termi-
nates in constant expected time. The protocol allows the parties to reach agree-
ment on 2t+1 bits simultaneously and involves private communication and A-cast
of O(n3 log |F|), where |F| ≥ n.

Corollary 13.3.1 Protocol ABA-MB-Non-Op requires an amortized communi-
cation complexity of O(n2 log |F|) bits (private communication plus A-cast) for
reaching agreement on a single bit, where |F| ≥ n.

13.3 Conclusion

In this chapter we have designed an efficient ABA protocol with non-optimal
resilience. Our ABA provides significantly better communication complexity than
the only known ABA with 4t + 1 proposed in [66, 67]. Our ABA also shows an
important application of our perfect AVSS designed in Chapter 11. We conclude
this chapter with the following natural open question:

Open Problem 21 Can we improve the communication complexity of ABA pro-
tocol with n = 4t + 1 parties over the one presented in this chapter?

334

Chapter 14

Communication Optimal
Multi-Valued A-cast and ABA
with Optimal Resilience

Broadcast (BC) and Byzantine agreement (BA) are considered as the most fun-
damental primitives for fault-tolerant distributed computing and cryptographic
protocols. An important variant of BC and BA are Asynchronous BC and ABA,
respectively. Asynchronous Broadcast (known as A-cast) and ABA are used as
a building block in many asynchronous distributed cryptographic tasks, such as
AMPC, AVSS etc. The A-cast and ABA protocols are carried out among n
parties, pairwise connected by private and secure channels, where t out of the
n parties can be under the influence of a Byzantine (active) adversary, having
unbounded computing power.

Though all existing protocols for A-cast and ABA are designed for a single bit
message, in real life applications typically A-cast and ABA are invoked on long
message rather than on single bit. Therefore, it is important to design efficient
multi-valued A-cast and ABA protocols (i.e protocols with long message) which
extract several advantages offered by directly dealing with long messages and are
far better than multiple invocations to existing protocols for single bit [72, 75].
In this chapter, we design new and highly efficient multi-valued A-cast and ABA
protocols for long messages, based on access to the existing A-cast and ABA
protocols for short messages. In brief, we present the following results:

1. For an error parameter κ, we design a new, multi-valued A-cast protocol
with n = 3t + 1 that requires a private communication of O(`n) bits for an
` bit message, where ` is sufficiently large (the exact bound on ` is mentioned
later in this chapter). Our A-cast protocol uses the existing A-cast protocol
of [29] as a black box for smaller size message. The protocol of [29] is the
only known protocol for A-cast and it requires a private communication of
O(n2) bits for a single bit message where n = 3t + 1.

2. For an error parameter κ, we design a new, multi-valued ABA protocol
with n = 3t + 1, which requires a private communication of O(`n) bits to
agree on an ` bit message, where ` is sufficiently large (the exact bound
on ` is mentioned later in this chapter). Our protocol uses the best known
communication efficient ABA protocol presented in Chapter 9 of this thesis
as a black box, which requires a private communication of O(n7κ) bits to
agree on a (t + 1) bit message.

335

3. We also note that both our A-cast and ABA protocols are communication
optimal, optimally resilient (i.e designed with n = 3t + 1) and are strictly
better than existing protocols in terms of communication complexity for
sufficiently large `.

Our protocols are based on several new ideas. Fitzi et al. [75] are the first
to design communication optimal multi-valued Byzantine Agreement (BA) pro-
tocols for large message with the help of BA protocols for smaller message, in
synchronous network. Achieving the same in asynchronous network was left as
an interesting open question in [75]. Our results in this chapter marks a signif-
icant progress on the open problem by giving protocols with a communication
complexity of O(`n) bits for large `. Moreover, to the best of our knowledge,
ours is the first ever attempt to design multi-valued A-cast and ABA protocols,
using existing A-cast and ABA protocols (for small messages) as a black-box.

14.1 Introduction

The problem of Broadcast (BC) and Byzantine Agreement (BA) (also popularly
known as consensus) were introduced in [132] and since then they have emerged
as the most fundamental problems in distributed computing. They have been
used as building blocks for several important secure distributed computing tasks
such as MPC [3, 19, 5, 6, 7, 20, 12, 13, 14, 21, 9, 36, 41, 48, 49, 52, 95, 93, 98, 101,
103, 104, 135, 138, 143, 126], VSS [43, 55, 108, 9, 95, 20, 41, 62, 63, 137, 48, 21, 39,
138, 73, 91, 93, 109, 125, 12, 14, 98, 126, 50, 47, 35, 96, 28, 133, 66, 64, 8, 37, 22,
53, 92, 123, 145, 34, 97] etc. In practice, BC and BA are used in almost any task
that involves multiple parties, like voting, bidding, secure function evaluation,
threshold key generation etc.

Both BC and BA protocols are executed among a set P of n parties, who
are connected to each other by pairwise secure channel. In brief, a BC protocol
allows a special party in P , called sender, to send some message identically to
all other parties in P , such that even when the sender is corrupted, all honest
parties in P output the same message. The challenge lies in achieving the above
task despite the presence of t faulty parties in P including the sender, who may
deviate from the protocol arbitrarily. BA problem is slightly different from BC.
BA among a set P of n parties, each having an input value, allows them to reach
agreement on a common value even if t out of the n parties are faulty and try to
prevent agreement among the non-faulty parties. The faulty behavior may range
from simple mistakes to total breakdown to skillful adversarial talent. Attaining
agreement on a common value is difficult as one does not know whom to trust. It
is known that BC and BA in information theoretic settings tolerating t Byzantine
faulty parries is possible iff n ≥ 3t + 1 [132, 72].

BC and BA are so closely related that they are mutually reducible, i.e, given
a BC protocol, we can always design a BA protocol using BC as black box and
vice versa [72, 75]. Given a BA protocol, a BC protocol can be constructed as
follows: First, the sender sends the message m to every party in P . Then, the
parties use the BA protocol to reach agreement on m. On the other hand, given
a BC protocol, a BA protocol can be constructed as follows: First, every party
Pi in P broadcasts his message mi to all the parties using an instance of BC
protocol. Then every party outputs the message that he has received most often.
Note that the later reduction from BC to BA requires n invocations to the BC

336

protocol in order to realize a BA protocol.
The BC and BA problems have been investigated extensively in various mod-

els, characterized by the synchrony of the network, privacy of the channels, com-
putational power of the faulty parties and many other parameters [68, 18, 29, 39,
35, 118, 72, 110, 2, 24, 25, 26, 30, 31, 32, 44, 56, 54, 57, 59, 60, 61, 74, 70, 71, 65,
67, 78, 86, 89, 114, 117, 134, 136, 150, 148, 149]. But most of the emphasis was
on the study of BC and BA in synchronous settings [68, 72, 110, 2, 24, 25, 31, 26,
44, 56, 54, 57, 59, 60, 61, 74, 70, 71, 65, 67, 78, 86, 89, 114, 117, 150, 148, 149],
where almost all aspects of these problems has been studied. While the works
of [69, 115, 87, 58, 122, 26, 25] focus on deriving round complexity lower bounds
and designing round optimal protocols for BC and BA problems, the works of
[57, 24, 23, 44, 75] deal with deriving communication complexity lower bounds
and designing communication optimal protocols. But the limitations with the
BC and BA protocols in synchronous settings are that they assume that the de-
lay in the transmission of every message in the network is bounded by a fixed
constant. Though these protocols are theoretically impressive, the above as-
sumption is a very strong assumption in practice. This is because a delay in the
transmission of even a single message may hamper the overall property of the
protocol. Therefore, BC in asynchronous network, known as A-cast and BA in
asynchronous network, known as ABA have been introduced and studied in the
literature [18, 136, 29, 32, 30, 66, 39, 35, 1, 134]. In this chapter, we study A-cast
and ABA problem, specifically the communication complexity of these problems.
In the sequel, we first present the model that we use for our work and the formal
definitions of A-cast and ABA. Subsequently, we will present the literature survey
on A-cast and ABA. Lastly, we will elaborate on our contribution in this chapter.

14.1.1 The Network and Adversary Model

This is same as described in section 8.1.1. Here we recall that the set of parties
is denoted by P = {P1, . . . , Pn} and t out of the n parties can be under the
influence of a computationally unbounded Byzantine (active) adversary, denoted
as At. We emphasize that we use n = 3t + 1 in this chapter.

14.1.2 Definitions

We now formally define A-cast (Though A-cast was defined in Chapter 7, we
repeat it here for ease of reference), ABA and their variants.

Definition 14.1 (A-cast [35]) : Let Π be a protocol executed among the set of
parties P and initiated by a special party caller sender S ∈ P, having input m
(the message to be sent). Π is an A-cast protocol tolerating At if the following
hold, for every behavior of At and every input m:

1. Termination:

(a) If S is honest, then all honest parties in P will eventually terminate Π;

(b) If any honest party terminates Π, then all honest parties will eventually
terminate Π.

2. Correctness:

337

(a) If the honest parties terminate Π, then they do so with a common output
m∗;

(b) Furthermore, if the sender S is honest then m∗ = m.

We now define (ε, δ)-A-cast protocol, where both ε and δ are negligibly small
values (Recall the discussion presented in the beginning of section 1.5 for the
meaning of negligible) and are called as error probabilities of the A-cast protocol.
Moreover, we have n = O(log 1

ε
) and n = O(log 1

δ
) (follows from the definition of

negligible, i.e ε ≤ 1
2αn and δ ≤ 1

2αn as mentioned in section 1.5).

Definition 14.2 ((ε, δ)-A-cast) : An A-cast protocol Π is called (ε, δ)-A-cast
protocol if :

1. Π satisfies Termination described in Definition 14.1, except with an error
probability of ε and

2. Conditioned on the event that every honest party terminates Π, protocol
Π satisfies Correctness property described in Definition 14.1, except with
error probability δ.

Both A-cast and (ε, δ)-A-cast can be executed for long messages. A-cast and
(ε, δ)-A-cast for long messages are referred as multi-valued A-cast and multi-valued
(ε, δ)-A-cast respectively.

The definition of ABA and (ε, δ)-ABA are given in Section 9.1 of Chapter 9.
As in the case of A-cast, both ABA and (ε, δ)-ABA can be executed for long

message and these type of ABA protocols will be referred as multi-valued ABA
and multi-valued (ε, δ)-ABA, respectively. The important parameters of any A-
cast and ABA protocol are: (a) Resilience (b) Communication Complexity (c)
Computational Complexity: and (d) Running Time (A detailed description of
these parameters is provided in Chapter 1).

14.1.3 The History of Asynchronous Broadcast or A-cast

The only known protocol for A-cast is due to Bracha [29] and the protocol is a
(0, 0)-A-cast protocol. The A-cast protocol of [29] was used as a black box in
the ABA protocol of [29]. The (0, 0)-A-cast protocol of [29] was designed with
n = 3t + 1 (this is optimal since in synchronous network, BC tolerating At is
possible iff n ≥ 3t + 1) and requires a communication complexity of O(n2) bits
to A-cast a single bit message in constant running time. To the best of our
knowledge, there is no (ε, δ)-A-cast protocol for non-zero ε and/or δ.

14.1.4 The History of Asynchronous Byzantine Agreement (ABA)

From [132, 118], any ABA protocol tolerating At is possible iff n ≥ 3t + 1. Thus
any ABA protocol designed with n = 3t+1 parties is called as optimally resilient.
A detailed literature survey on ABA was presented in Section 9.1 of Chapter 9. In
Table 14.1, we just summarize the best known existing ABA protocols including
the ABA protocols presented in Chapter 9.

338

Table 14.1: Summary of Best Known Existing ABA Protocols

Ref. Type Resilience Communication Expected Running
Complexity (CC) in bits Time (ERT)

[29] (0, 0)-ABA t < n/3 O(2n) C = O(2n)

[66, 67] (0, 0)-ABA t < n/4 O((nt + t7) log |F|)a C = O(1)

[39, 35] (ε, 0)-ABA t < n/3 Privateb: O(Cn11(log κ)4) c C = O(1)

A-castd: O(Cn11(log κ)2 log n)

[1] (0, 0)-ABA t < n/3 Private: O(Cn6 log |F|) C = O(n2)
A-cast: O(Cn6 log |F|)

Chapter 9 (ε, 0)-ABA t < n/3 Private: O(Cn6 log κ) C = O(1)
A-cast: O(Cn6 log κ)

Chapter 9 Multi-valued e t < n/3 Private: O(Cn5 log κ) C = O(1)
(ε, 0)-ABA A-cast: O(Cn5 log κ)

a Here F is the finite field over which the ABA protocol of [66, 67] works. It is enough to have
|F| ≥ n and therefore log |F| can be replaced by log n. In fact in the remaining table, F bears
the same meaning.

b Communication over private channels between pair of parties in P.
c In this table, κ is the error parameter of protocols.
d Total number of bits that needs to be A-casted.
e This protocol reaches agreement on (t + 1) bits concurrently. Therefore, the amortized com-

munication complexity for reaching agreement on a single bit is only O(Cn4 log κ) bits of
private as well as A-cast communication.

14.1.5 Multi-valued A-cast and ABA: Motivation of Our work

A-cast and ABA are the most important primitives in asynchronous distributed
computing. However, in real-life applications typically A-cast and ABA proto-
cols are invoked on long messages (whose size can be in gigabytes) rather than
on single bit. Even in AMPC [21, 35, 13], where typically lot of A-cast and
ABA invocations are required, many of the invocations can be parallelized and
optimized to a single invocation with a long message. Hence A-cast and ABA
protocols with long message, called multi-valued A-cast and ABA, are very rele-
vant to many real life situations. All existing protocols for A-cast [29] and ABA
[136, 18, 29, 66, 67, 39, 35, 1, 127] are designed for single bit message. A naive
approach to design multi-valued A-cast and ABA for ` > 1 bit message is to
parallelize ` invocations of existing A-cast and ABA protocols dealing with sin-
gle bit. This approach requires a communication complexity that is ` times the
communication complexity of the existing protocols for single bit and hence is
inefficient.

In synchronous network, researchers have tried to design multi-valued broad-
cast and BA protocol by making use of existing broadcast and BA protocol for
small message, as a black-box. Turpin and Coan [150] are the first to report a
multi-valued BC protocol based on the access to a BC protocol for short message
(a brief description of how the reduction works can be found in [75, 72]). Recently,
following the same approach, Fitzi et al. [75] have designed communication opti-
mal BC and BA protocols for large message. While all existing synchronous BA
protocols required a communication cost of Ω(`n2) bits, the BA protocols of [75]
require a communication complexity of O(`n + poly(n, κ)) bits to agree on an `
bit message. For a sufficiently large `, the communication complexity expression
reduces to O(n`), which is a clear improvement over Ω(`n2). Moreover, in [75]

339

the authors have shown that their BA protocols are communication optimal for
large `. A brief discussion on the approach used in [75] for designing BA protocol
is presented in section 14.3 of this chapter. However, the BA protocols of [75]
involve a negligible error probability of 2−Ω(κ) in Correctness.

Designing communication optimal multi-valued A-cast and ABA protocols for
large message based on the application of existing A-cast and ABA protocols for
smaller message was left as an interesting open question in [75]. In this chapter,
we make significant progress on the open question posed in [75], by designing
communication optimal multi-valued A-cast and ABA protocols for sufficiently
large messages. To the best of our knowledge, ours is the first ever attempt to
design multi-valued A-cast and ABA protocols.

14.1.6 Contribution of This Chapter

In this chapter, we present communication optimal, optimally resilient, multi-
valued A-cast and ABA protocols for long message, using the existing A-cast
and ABA protocols for short message as black-box. Our protocols maintain the
resilience of underlying black box protocols. However, even though the under-
lying black box protocols involve error probability in at most one property, our
multi-valued protocols introduce negligible error probability in both the prop-
erties namely, Termination and Correctness. In summary, our contributions
are:

1. A communication optimal, optimally resilient (ε, δ)-A-cast protocol with n =
3t + 1 that requires a communication complexity of O(`n + n4 + n3κ) bits
for an ` bit message. Our A-cast protocol uses the existing A-cast protocol
of [29] as a black box for smaller size message. The protocol of [29] is the
only known protocol for A-cast and it requires a private communication of
O(n2) bits for a single bit message where n = 3t + 1. For sufficiently large
` (i.e., ` = ω(n2(n + κ))), the communication complexity of our protocol is
O(`n) bits, which is strictly better than the only known A-cast protocol of
[29] in terms of communication complexity.

2. A communication optimal, optimally resilient (ε, δ)-ABA protocol (i.e. with
n = 3t + 1) that attains a communication complexity of O(`n + n10κ +
n7κ2) bits to agree on an ` bit message. Our protocol uses the best known
communication efficient ABA protocol presented in Chapter 9 of this thesis
as a black box, which requires a private communication of O(n7κ) bits to
agree on a (t+1) bit message. For any ` = ω(n9κ+n6κ2), the communication
complexity of our protocol becomes O(`n) bits which is strictly better than
all exiting ABA protocols.

In our protocol, we use player-elimination framework introduced in [98] in
the context of MPC. So far player-elimination was used only in MPC and
AMPC and hence our result shows the first non-MPC application of the
technique. Apart from this, we use a novel idea to expand a set of t+1 par-
ties, with all the honest party(ies) in it holding a common message m, to a
set of 2t+1 parties with all honest parties in it holding m. Moreover, the ex-
pansion process requires a communication complexity of O(`n + poly(n, κ))
bits, where |m| = `. We hope that this technique may be useful in designing
protocol for many other form of consensus/Byzantine Agreement problems

340

in asynchronous network that aim to achieve good communication complex-
ity.

3. In [75], it is shown that any BC or BA protocol in synchronous networks
with t ∈ Ω(n), requires a communication complexity of Ω(n`) bits for an `
bit message. Obviously, this lower bound holds for asynchronous networks
as well. Now it is easy to see that our protocols for A-cast and ABA are
communication optimal for any ` = ω(n2(n + κ)) and ` = ω(n9κ + n6κ2),
respectively.

The bound on ` for which our ABA is communication optimal, is depen-
dent on the communication complexity of our black box ABA protocol for
small message. So invention of a better ABA protocol (for small messages)
than the ABA of Chapter 9 in terms of communication complexity would
naturally lead to better bound on ` (for which our ABA protocol will be
communication optimal). But designing such efficient ABA protocol is be-
yond the scope of this chapter.

In Table 14.2 and 14.3, we summarize the properties of our protocols and
corresponding black box protocols. For multi-valued A-cast protocol, we use the
only known A-cast protocol of [29] as black box. On the other hand, for multi-
valued ABA we use the ABA protocol presented in Chapter 9 as the black box
protocol. From Table 14.1, we find that the communication complexity of the
ABA protocol of Chapter 9 is O(Cn5 log κ) bits for both private as well as A-cast
communication. Now simulating the A-cast by the A-cast protocol of [29], we find
that the ABA protocol of Chapter 9 requires a private communication of O(n7κ)
bits, to agree on a t + 1 bit message.

In Table 14.2, we also specify the lower bound on the value of ` for which
our protocols are optimal and are strictly better than existing protocols. Though
we have taken the best known protocols from literature to use as black box, we
could have used any existing protocol. In Table 14.2 and 14.3, ERT stands for
Expected Running Time and CC stands for Communication Complexity in bits.

Table 14.2: Our Contribution

Primitive This Chapter Lower Bound on `

Type Resilience CC ERT
A-cast (ε, δ) t < n/3 O(`n + n4 + n3κ) O(1) ω(n2(n + κ))
ABA (ε, δ) t < n/3 O(`n + n10κ + n7κ2) O(n2) ω(n9κ + n6κ2)

Table 14.3: Corresponding Black box Protocols and their Properties.

Primitive Exiting Best Known Protocols (used as black box)
Ref. Type Resilience CC ERT

A-cast [29] (0, 0) t < n/3 O(n2) O(1)
ABA Chapter 9 (ε, 0) t < n/3 O(n7κ) O(1)

To bound the error probability of Termination by ε and Correctness by
δ, our protocols for A-cast and ABA work over a finite Galois field F with F =

341

GF (2κ), where κ has to be determined using the relations ε ≥ n`2−κ

κ
and δ ≥

n2`2−κ

κ
. We assume that ` = poly(κ, n) and ε ≤ δ

n
. Now any field element from

field F can be represented by κ bits. In order to bound the error probability of
our A-cast or ABA protocol by some specific values of ε and δ, we find out the
minimum value of κ that satisfies ε ≥ n`2−κ

κ
and the minimum value of κ that

satisfies δ ≥ n2`2−κ

κ
. Then we take the minimum of the two values of κ as the

final value for κ. The final value for κ will consequently determine the field F
over which the protocol should work.

14.1.7 The Road-map

This chapter has mainly two sections, one for our A-cast and another for our
ABA protocol. Section 14.2 presents our (ε, δ)-A-cast protocol and Section 14.3
presents our (ε, δ)-ABA protocol. Inside each section we present the tools that
are used to design respective protocol. Finally, we conclude this chapter with
concluding remarks and open problems in section 14.4.

14.2 Communication Optimal (ε, δ)-A-cast Protocol

Since our A-cast protocol is conceptually simpler than our ABA protocol, we first
present our (ε, δ)-A-cast protocol in this section and then we will describe our
(ε, δ)-ABA protocol in the next section. In addition, we use certain techniques
in our A-cast protocol which will be applicable in our ABA protocol as well.
So presenting these techniques in the context of A-cast will help to understand
the same in the context of ABA. Our new (ε, δ)-A-cast protocol designed with
n = 3t + 1, called Optimal-A-cast, allows a party S ∈ P to identically send his
message m ∈ {0, 1}`, to every (honest) party in P . Now before presenting our
protocol, we briefly describe existing tools used in it.

14.2.1 Tools Used

14.2.1.1 Bracha’s (0, 0)-A-cast Protocol

Bracha’s (0, 0)-A-cast protocol is already recalled in Chapter 7. For the ease of
easy reference, we state the communication complexity of the protocol, named as
Bracha-A-cast.

Theorem 14.3 ([35]) Protocol Bracha-A-cast privately communicates O(|M |n2)
bits to A-cast an |M | bit message.

For this chapter we use a different convention for using the protocol.

Notation 14.4 (Convention for Using Bracha’s A-cast Protocol) In the rest
of the chapter, we use the following convention: By saying that ‘Pi Bracha-A-casts
M ’, we mean that Pi as a sender, initiates Bracha-A-cast(Pi,P ,M). Then by say-
ing that ‘Pj receives M from the Bracha-A-cast of Pi’, we mean that Pj terminates
the execution of Bracha-A-cast(Pi,P ,M), with M as the output.

342

14.2.1.2 Hash Function [75, 40]

A keyed hash function Uκ maps arbitrary strings in {0, 1}∗ to κ bit string with
the help of a κ bit random key. So Uκ : {0, 1}∗ → {0, 1}κ. The function Uκ can
be implemented as follows: Let m and r be the input to Uκ, where m is a ` bit
string that need to be hashed/mapped and r is the hash key selected from F.
Without loss of generality, we assume that ` = poly(κ). Then m is interpreted
as a polynomial fm(x) over F, where the degree of fm(x) is d`/κe − 1. For this,
m is divided into blocks of κ bits and each block of κ bits is interpreted as an
element from F. Then these field elements are considered as the coefficients of
fm(x) over F. Finally, Uκ(m, r) = fm(r). It is easy to see that fm(r) belongs to
F.

Theorem 14.5 (Collision Theorem [75]) Let m1 and m2 be two different `
bit messages. Then the probability that Uκ(m1, r) = Uκ(m2, r) for a randomly

chosen hash key r is `2−κ

κ
(≤ ε

n
≤ δ

n2).

Proof: Assume that m1 and m2 are represented by polynomials f1(x) and f2(x)
respectively, each having degree d`/κe − 1. Now Uκ(m1, r) = Uκ(m2, r) implies
that f1(r) = f2(r) holds for random r. We now compute the error probability
with which the above event i.e f1(r) = f2(r) may happen. First, we note that
polynomials f1(x) and f2(x) may intersect each other (i.e they evaluate to the
same value) in at most d`/κe − 1 values which is same as the degree of the
polynomials. Now if the randomly selected r happens to be one among these
d`/κe − 1 values, then the event f1(r) = f2(r) and consequently Uκ(m1, r) =
Uκ(m2, r) will hold. But the event that r is one among these d`/κe − 1 values

can happen with error probability (d`/κe − 1) 1
|F| ≈ `2−κ

κ
(≤ ε

n
≤ δ

n2). Hence the

theorem. 2

14.2.1.3 Finding (n, t)-star Structure in a Graph [35, 19]

The definition (n, t)-star along with an algorithm for finding it in an undirected
graph, has been described in Section 11.5 of Chapter 11. The algorithm is named
as Find-STAR(H) where H denotes the complementary graph of G in which we
want to find the (n, t)-star. For ease of reference, we just re-state the following
lemmas for algorithm Find-STAR(H).

Lemma 14.6 ([35]) If Find-STAR outputs (C,D) on input graph H, then (C,D)
is an (n, t)-star in H.

Lemma 14.7 ([35]) Let H be a graph with P as its vertex set, containing an
independent set of size n−t. Then algorithm Find-STAR always outputs an (n, t)-
star, say (C,D), in H.

Lemma 14.8 ([35]) The computational complexity of Algorithm Find-STAR is
polynomial.

14.2.2 Protocol Optimal-A-cast

We now present our (ε, δ)-A-cast protocol called Optimal-A-cast. Protocol Optimal-
A-cast consists of the following three phases:

343

1. Distribution Phase: Here S sends the message to all the parties in P .

2. Verification & Agreement on CORE Phase: Here the parties jointly
perform some computation in order to verify the consistency of the messages
received from S. In case of successful verification, the honest parties agree
on a set of at least n − t = 2t + 1 parties called CORE1, such that the
honest parties in CORE have received same message from S with very high
probability.

3. Output Phase: Here the (honest) parties in CORE propagate the com-
mon message held by them (which they have received from S) to all other
(honest) parties in P \ CORE.

Informal Description of First Two Phases: Informally, in Distribution Phase,
S sends his message m to every party in P . In Verification & Agreement
on CORE Phase, party Pi on receiving a message, say mi from S, computes n
hash values of mi corresponding to n distinct random hash keys, say ri1, . . . , rin

chosen from F. To enable Pj to check whether Pj’s received message mj is same
as Pi’s received message mi, party Pi privately sends rij and Vij = Uκ(mi, rij) to
Pj. Party Pj, on receiving these values from Pi, checks whether Vij = Uκ(mj, rij)
(for honest S and Pi, it should hold). Pj Bracha-A-casts a confirmation signal
OK(Pj, Pi) if the above check passes. Now based on the confirmation signals, a
graph with the parties in P as vertex set is formed and applying Find-STAR on
the graph, an (n, t)-star (C,D) is obtained. The (C,D) is then agreed among all
the parties and D component of it is taken as CORE.

Achieving the agreement (among the honest parties) on a common (C,D)
is a bit tricky in asynchronous network. Even though the confirmations are
Bracha-A-casted by parties, parties may end up with different versions of (C,D)
while attempting to generate them locally, due to the asynchronous nature of the
network. We solve this problem by asking S to first compute (C,D) after receiving
enough confirmations and then Bracha-A-cast (C,D). After receiving (C,D) from
the Bracha-A-cast of S, individual party checks if the received (C,D) is indeed
a valid (n, t)-star and then sets CORE = D. The protocols for Distribution
Phase and Verification & Agreement on CORE Phase are presented in
Fig. 14.1. Before outlining Output Phase, we prove Lemma 14.9-14.11.

Lemma 14.9 For a pair of honest parties (Pi, Pj), if Pi Bracha-A-casts OK(Pi, Pj)
and Pj Bracha-A-casts OK(Pj, Pi), then mi = mj, except with error probability of
at most ε

n
or δ

n2 .

Proof: It is easy to see that the lemma is true without any error if S is honest.
So we prove the lemma when S is corrupted. Since an honest Pi Bracha-A-casted
OK(Pi, Pj) and an honest Pj Bracha-A-casted OK(Pj, Pi), it must be the case that

the tests Vji
?
= Uκ(mi, rji) and Vij

?
= Uκ(mj, rij) have passed for Pi and Pj,

respectively. By Collision Theorem (see Theorem 14.5), the above statement
implies that mi = mj, except with probability at most ε

n
or δ

n2 , as the hash keys
rij and rji are completely random and unknown to corrupted S. 2

1Here the property and definition of CORE is completely different from the property of CORE used
in some of the previous chapters in the context of AVSS.

344

Figure 14.1: Protocols for First Two Phases of Optimal-A-cast: Distribution Phase
and Verification & Agreement on CORE Phase

First two Phases of Protocol Optimal-A-cast(S,P,m, ε, δ)

Protocol Distribution(S,P, m, ε, δ): Distribution Phase
Code for S: Send m to every Pi ∈ P over the private channels.

Protocol Verification(S,P,m, ε, δ): Verification & Agreement on CORE Phase
i. Code for Pi: This code will be executed by every party in P, including S.

1. Wait to receive a message containing ` bits from S. Denote it by mi.

2. Upon receiving mi, choose n random, distinct hash keys (ri1, . . . , rin) from
F. For j = 1, . . . , n, compute Vij = Uκ(mi, rij) and send (rij ,Vij) to party
Pj .

3. Upon receiving (rji,Vji) from Pj , check whether Vji
?= Uκ(mi, rji). If yes,

then Bracha-A-cast OK(Pi, Pj).

4. Construct an undirected graph Gi with P as vertex set. Add an edge (Pj , Pk)
in Gi upon receiving

(a) OK(Pk, Pj) from the Bracha-A-cast of Pk and

(b) OK(Pj , Pk) from the Bracha-A-cast of Pj .

ii. Code for S: This code will be executed only by S.

1. For every new receipt of some OK(∗, ∗) from some Bracha-A-cast, update GS .
If a new edge is added to GS , then execute Find-STAR(GS) on current GS .
If this is the first time when Find-STAR(GS) returns an (n, t)-star (C,D),
then stop any further computation and Bracha-A-cast (C,D). Finally assign
CORE = D and CORE = P \CORE. If no (n, t)-star is found so far, then
wait to receive more OK(∗, ∗)’s and repeat the above computation until an
(n, t)-star is obtained.

iii. Code for Pi: This code will be executed by every party in P, including S.

1. Wait to receive (C,D) from the Bracha-A-cast of S such that |C| ≥ n−2t and
|D| ≥ n− t.

2. After receiving (C,D), wait to receive all OK(∗, ∗)’s and keep updating Gi,
until (C,D) becomes a valid (n, t)-star in Gi. After that, assign CORE = D
and CORE = P \ CORE.

3. Assign m∗ = mi if Pi ∈ CORE. Here m∗ is the message which will be agreed
upon by all the honest parties in P at the end of Optimal-A-cast.

345

Lemma 14.10 If S is honest, then the (honest) parties will eventually agree
on CORE of size at least 2t + 1. Moreover, if one honest party decides on
CORE, then every honest party will eventually decide on same CORE even for
a corrupted S.

Proof: An honest S will send identical m to every party in P . Hence for every
pair of honest parties (Pi, Pj), Pi and Pj will eventually Bracha-A-cast OK(Pi, Pj)
and OK(Pj, Pi), respectively. Hence the nodes corresponding to honest parties will
eventually form a clique (independent set) of size at least 2t+1 in Gi (Gi) graphs
of every honest Pi. However, it may be possible that some corrupted parties are
also present in the clique. But what ever may be the case, by Lemma 14.7, S will
eventually find an (n, t)-star (C,D) in GS and will Bracha-A-cast the same. Now
by the property of Bracha-A-cast, eventually every honest party Pi will receive
(C,D) from S and also the OK signals such that (C,D) will be a valid (n, t)-star
in Gi. Hence every honest party will agree on (C,D) and therefore will agree on
CORE = D as well.

For the second part of lemma, suppose some honest party Pi has decided on
a CORE. This implies that Pi has received (C,D) from the Bracha-A-cast of S,
such that (C,D) is a valid (n, t)-star in Gi. By the property of Bracha-A-cast,
the same will eventually happen for every other honest Pj, who will eventually
receive (C,D) from S and the corresponding OK signals such that (C,D) becomes
a valid (n, t)-star in graph Gj. 2

Lemma 14.11 All honest parties in CORE (if it is constructed) will possess
same message m∗, except with error probability at most ε or δ

n
. Moreover if S is

honest then m∗ = m.

Proof: It is trivial to show that if S is honest then every honest party in CORE
will possess m∗ = m. So we consider the case when S is corrupted. Recall that
CORE = D for an (n, t)-star (C,D). By property of (n, t)-star, |C| ≥ n−2t which
is at least t+1 in our case. So there is at least one honest party in C, say Pi. Now
the honest Pi has edges with every party in D which implies that Pi’s message
mi is equal to the message mj of every honest Pj in D which in turn implies that
all the honest parties in D or CORE possess same message.

We now estimate the error probability of the above event. From Lemma 14.9,
Pi’s message mi is identical to the message mj of an honest party Pj in D, except
with probability at most ε

n
or δ

n2 . Therefore, Pi’s message mi is identical to the
messages of all the honest parties in D, except with probability at most |H| ε

n
or

|H| δ
n2 , where H is the set of honest parties in D. Now since |H| ≥ n− 2t = t+1,

we have |H| ε
n
≈ ε and |H| δ

n2 ≈ δ
n
. This proves that honest parties in D = CORE

hold common m∗, except with probability at most ε or δ
n
. 2

Informal Description of Output Phase: Once the parties agree on CORE, with
all honest parties in it holding some common m∗, we need to ensure that m∗

propagates to all (honest) parties in CORE = P \ CORE, in order to reach
agreement on m∗. This is achieved in Output Phase (presented in Fig. 14.2)
with the help of the parties in CORE. A simple solution could be to ask each
party in CORE to send his m∗ to all the parties in CORE, who can wait to
receive t+1 same m∗ and then accept m∗ as the message. This solution will work
as there are at least t + 1 honest parties in CORE. But clearly, this requires

346

a communication complexity of O(`n2) bits (which violates out promised bound
for Optimal-A-cast). Hence, we adopt a technique proposed in [75] for designing
a BA protocol in synchronous settings with n = |P| = 2t + 1 parties. Now the
technique proposed in [75] requires a set of parties, say H ⊂ P such that all
the honest parties in H hold the same message and the majority of the parties
in H are honest. Under this condition the technique allows the set of honest
parties in P \H to obtain the common message of the honest parties in H with a
communication cost of O(`n) bits. In our context CORE has all the properties
of H. Hence we adopt the technique of [75] in our context in the following way:
Every Pi ∈ CORE sets d = t + 1 and c = d `+1

d
e and transforms his message m∗

into a polynomial p(x) of degree d − 1 over GF (2c). Now if somehow a party
Pj ∈ CORE receives d values on p(x), then he can interpolate p(x) and receive
m∗. For this, party Pi ∈ CORE sends ith value on p(x), namely pi = p(i) to
every Pj ∈ CORE. As the corrupted parties in CORE may send wrong pi, party
Pj should be able to detect correct values. For this, every party Pi ∈ CORE also
sends hash values of (p1, . . . , pn) for a random hash key to every Pj ∈ CORE.
Now Pj can detect ’clean’ (or correct) values with the help of the hash values and
eventually Pj will receive d ’clean’ values (possibly from d = t + 1 honest parties
in CORE) using which he can compute m∗.

Figure 14.2: Protocol for Last Phase of Optimal-A-cast: Output Phase

Last phase of Protocol Optimal-A-cast(S,P,m, ε, δ)

Protocol Output(S,P,m, ε, δ): Output Phase
i. Code for Pi: Every party in P will execute this code.

1. If Pi ∈ CORE, do the following to help the parties in CORE to compute
m∗:

(a) Set d = t + 1 and c = d `+1
d e.

(b) Interpret m∗ as a polynomial p(x) of degree d−1 over GF (2c). For this,
divide m∗ into blocks of c bits and interpret each block as an element
from GF (2c). These elements from GF (2c) are the coefficients of p(x).

(c) Send pi = p(i) to every Pj ∈ CORE, where pi is computed over GF (2c).

(d) For every Pj ∈ CORE, choose a random distinct hash key Rij from
F and send (Rij ,Xij1, . . . ,Xijn) to Pj , where for k = 1, . . . , n, Xijk =
Uκ(pk, Rij). Here, to compute Xijk, interpret pk as a c bit string.

(e) Terminate this protocol with m∗ as output.

2. If Pi ∈ CORE, do the following to compute m∗:

(a) Call pk received from party Pk ∈ CORE as ’clean’ if there are at least
t + 1 Pj ’s in CORE, corresponding to which Xjik = Uκ(pk, Rji) holds,
where (Rji,Xji1, . . . ,Xjin) is received from Pj ∈ CORE.

(b) Wait to receive d ’clean’ pk’s and upon receiving, interpolate d−1 degree
polynomial p(x) using those ’clean’ values, interpret m∗ from p(x) and
terminate this protocol with m∗ as output.

347

Lemma 14.12 If the parties agree on CORE, then every honest party in P will
eventually terminate protocol Output, except with probability at most ε.

Proof: We show that the lemma holds without any error probability when S is
honest and with error probability ε, when S is corrupted.

1. S is honest: Let ECORE and ECORE be the events that the honest parties in
CORE and CORE (respectively) terminate. We show that Prob(ECORE) =
Prob(ECORE) = 1. From the steps of the protocol Output, the parties in
CORE will always terminate after performing the steps as mentioned in
step 1(a)-1(d) of the protocol. Hence Prob(ECORE) = 1 holds.

To show that Prob(ECORE) = 1, consider an honest party Pi in CORE.
Clearly, Pi will terminate if it receives d = t+1 ’clean’ values eventually. To
assert that Pi will indeed receive d = t + 1 ’clean’ values, we first show that
the value pk received from every honest Pk in CORE will be considered as
’clean’ by Pi. Consequently, since there are t + 1 honest parties in CORE,
Pi will eventually receive t + 1 ’clean’ values even though the corrupted
parties in CORE never send any value to Pi. As the honest parties in
CORE have common m∗, they will generate same p(x) and therefore same
pk = p(k). Hence, Xjik = Uκ(pk, Rji) will hold, with respect to (Rji,Xjik)
of every honest Pj in CORE. As there at least d = t + 1 honest parties
in CORE, this proves that pk received from honest Pk ∈ CORE will be
considered as ’clean’ by Pi. This proves Prob(ECORE) = 1.

Finally, we have

Prob(Every honest party in P terminate) = Prob(ECORE ∩ ECORE)

= Prob(ECORE) · Prob(ECORE)

= 1 · 1 = 1

2. S is Corrupted: Here we show that Prob(ECORE) = 1 and Prob(ECORE) =
(1−ε). Consequently, we will have Prob(Every honest party in P terminates)
= 1·(1−ε) = (1−ε). As in the case of honest S, the parties in CORE will al-
ways terminate even when S is corrupted. This asserts that Prob(ECORE) =
1. But on the other hand, here Prob(ECORE) = (1−ε). The reason is: From
the previous case (i.e. when S is honest), if all the honest parties in CORE
holds common m∗, then Prob(ECORE) = 1 holds; but the parties in CORE
holds common m∗, except with probability ε (from Lemma 14.11). So,
we have Prob(ECORE) = Prob(honest parties in CORE hold common m∗)·
Prob(ECORE | honest parties in CORE hold common m∗) = (1 − ε).1 =
(1 − ε). Hence, every honest party in P will eventually terminate protocol
Output, except with probability at most ε.

Hence the lemma. 2

Lemma 14.13 Conditioned on the event that all the honest parties terminate
Output, every honest party in P will output m∗ in protocol Output, except with
probability at most δ. Moreover, if S is honest then m∗ = m.

Proof: We consider the following cases, namely (a) when S is honest and (b)
when S is corrupted.

348

• S is honest: Consider the following two events, ECORE and ECORE, where
ECORE is the event that all the honest parties in CORE output same m∗ and
ECORE is the event that all the honest parties in CORE output same m∗ =
m. We now assert that Prob(ECORE) = 1 and Prob(ECORE|ECORE) =
(1− δ).

1. Prob(ECORE) = 1: This follows from Lemma 14.11. Moreover, here
m∗ = m, where m is the message of S.

2. Prob(ECORE|ECORE) = (1− δ): Here we show that every honest Pi ∈
CORE will output m∗, except with probability δ

n
. This will assert that

all the honest parties in CORE will output same m∗, except with error
probability |H| δ

n
where H is the set of honest parties in CORE. As

|H| can be at most t, we have |H| δ
n
≈ δ.

So let Pi ∈ CORE be an honest party. Now the pk value of each honest
Pk ∈ CORE will be eventually considered as ’clean’ value by honest
Pi. This is because there are at least t + 1 honest parties in CORE,
who hold same m∗ and therefore same p(x) (and hence p(k)) when S
is honest. So Xjik = Uκ(pk, Rji) will hold, with respect to (Rji,Xjik)
of every honest Pj in CORE. A corrupted Pk ∈ CORE may send
pk 6= pk to Pi, but pk will not be considered as a ’clean’ value with
probability at least (1− δ

n2). This is because, in order to be considered
as ’clean’ value, pk should satisfy Xjik = Uκ(pk, Rji) with respect to
(Rji,Xjik) of at least t + 1 Pj’s from CORE. The test will fail with

respect to an honest party from CORE with probability c2−κ

κ
≈ δ

n3

according to Collision Theorem (see Theorem 14.5; putting ` = c,
where c = d l+1

d
e = d l+1

t
e). Thus though the test may pass with respect

to all corrupted parties in CORE (at most t), the test will fail for every
honest party from CORE with probability (1− δ

n3)
|H|, where H is the

set of honest parties in CORE. Now since |H| can be Θ(t), we have
(1− δ

n3)
|H| ≈ (1− |H| δ

n3) ≈ (1− δ
n2). Now the probability that none of

the wrong pk 6= pk sent by corrupted Pks in CORE will be considered
as ’clean’ by honest Pi is (1− δ

n2)
Θ(t) ≈ (1−Θ(t) δ

n2) ≈ (1− δ
n
) (as there

can be at most Θ(t) corrupted parties in CORE). Hence, honest Pi

will reconstruct p(x) using d ’clean’ values (which he is bound to get
eventually), except with probability δ

n
.

It is easy to see that m∗ = m here.

Finally, we have

Prob(Each honest party in P holds m∗) = Prob(ECORE ∩ ECORE)

= Prob(ECORE) · Prob(ECORE|ECORE)

= 1 · (1− δ) = (1− δ)

• S is corrupted: Here also we consider same two events ECORE and ECORE

and show that Prob(ECORE) = (1− δ
n
) and Prob(ECORE|ECORE) = (1− δ).

1. Prob(ECORE) = (1− δ
n
): Follows from Lemma 14.11.

2. Prob(ECORE|ECORE) = (1−δ): Follows from the case when S is honest.

349

So we have, Prob(Every honest party in P holds m∗) = (1− δ
n
) · (1− δ) ≈

(1− δ).

Hence the lemma holds irrespective of when S is honest or corrupted. 2

Now our new (ε, δ)-A-cast protocol called Optimal-A-cast is presented in Fig. 14.3.

Figure 14.3: Protocol Optimal-A-cast: Communication Optimal A-cast protocol.

Optimal-A-cast(S,P,m, ε, δ)

1. Execute Distribution(S,P,m, δ, ε);

2. Execute Verification(S,P,m, ε, δ);

3. Execute Output(S,P,m, ε, δ).

4. Terminate Optimal-A-cast after terminating Output.

We now prove the properties of protocol Optimal-A-cast.

Theorem 14.14 Protocol Optimal-A-cast is a (ε, δ)-A-cast protocol with ε ≥ n`2−κ

κ

and δ ≥ n2`2−κ

κ
.

Proof: Termination: Termination (a) is asserted as follows: If S is honest
then by Lemma 14.10 all honest parties will agree on CORE eventually and by
Lemma 14.12, every honest party in P will terminate eventually. Now Termi-
nation (b) is proved as follows: If an honest party terminates protocol Optimal-
A-cast, then it implies that it has terminated Output which in turn implies it
has agreed on some CORE. Now by Lemma 14.10, if some honest party agrees
on some CORE, then every other honest party will agree on the same CORE
eventually. Now by Lemma 14.12, if every honest party agrees on CORE, then
all the honest party will terminate Output (and thus Optimal-A-cast), except with
probability ε.

Correctness: Completely follows from Lemma 14.13. 2

Theorem 14.15 Optimal-A-cast requires a private communication of O(`n+n4+
n3κ) bits.

Proof: Protocol Distribution requires `n bits of private communication. Protocol
Verification requires O(n2κ) bits of private communication and O(n2) bits of
Bracha-A-cast (which in turn requires O(n4) bits of private communication). So
Verification privately communicates O(n2κ + n4) bits. Protocol Output requires
O(n2c + n3κ) bits of private communication. Now O(n2c + n3κ) = O(n` + n3κ)
as c = d `+1

d
e = d `+1

t+1
e and n = Θ(t). So protocol Optimal-A-cast requires a private

communication of O(`n + n4 + n3κ) bits. 2

350

14.3 Communication Optimal (ε, δ)-ABA Protocol

We now present a novel, optimally resilient, communication optimal (ε, δ)-ABA
protocol with n = 3t + 1, called Optimal-ABA. The protocol allows the honest
parties in P , each having input message of ` bits, to reach agreement on a common
message m∗ ∈ {0, 1}` containing ` bits. Moreover, if all the honest parties have
same input m, then all the honest parties agree on m. We first describe the
existing tools used in Optimal-ABA.

14.3.1 Tools Used

14.3.1.1 AVSS

So far the best known communication efficient statistical AVSS with n = 3t +
1 for dealing with single secret is SAVSS (consisting of sub-protocols (SAVSS-
Share,SAVSS-Rec-Private)) presented in Chapter 8 of this thesis. We will use this
protocol for our ABA. Assuming ρ to be the error probability of protocol SAVSS)
and protocol SAVSS works over F = GF (2κ), the communication complexity of
protocol SAVSS is recalled as follows:

Theorem 14.16 (Communication Complexity of SAVSS)

• Protocol SAVSS-Share incurs a private communication of O(n4κ2) bits and
A-cast of O(n3 log n) bits.

• Protocol SAVSS-Rec-Private incurs a private communication of O(n4κ2) bits
for Pα-private-reconstruction.

After simulating the A-cast with the protocol of [29], we find that SAVSS-Share
requires a private communication O(n4(κ2+n log n)) bits to commit a secret from
F.

14.3.1.2 Agreement on a Common Subset (ACS)

Though ACS has been discussed in Chapter 12, we recast it as per the requirement
of this chapter and present an elaborate discussion on it. In our (ε, δ)-ABA
protocol, we come across the following situation: There exists a set of parties
R ⊆ P with |R| ≥ t + 1, such that each party in R is asked to A-cast (or
SAVSS-Share) some value(s). The following discussion holds for both A-cast and
SAVSS-Share. While the honest parties inR will eventually do the A-cast (SAVSS-
Share), the corrupted parties in R may or may not do the same. So the (honest)
parties in P want to agree on a common set T ⊂ R, with 1 ≤ |T | ≤ |R| − t,
such that A-cast (SAVSS-Share) instance of each party in T will be eventually
terminated by the (honest) parties in P . For this, the parties use ACS primitive
(stands for Agreement on Common Subset), presented in [21]. For the sake of
completeness, the ACS protocol, along with its properties is given in Fig. 14.4.

Theorem 14.17 ([21]) Using protocol ACS, the (honest) parties in P can agree
on a common subset T of R containing 1 ≤ |T | ≤ |R|−t parties, whose instances
of A-cast (SAVSS-Share) will be eventually terminated by all the (honest) parties
in P.

351

Figure 14.4: Protocol for Agreement on a Common Subset with n = 3t + 1

T = Protocol ACS(R, |T |)
Assumption: For the ease of presentation, we assume that R contains
the first |R| parties from P.

Code for Party Pi: Each party in P executes this code

1. For each Pj ∈ R whose instance of A-cast (SAVSS-Share) is terminated by
you, participate in ABAj with input 1. Here for j = 1, . . . , |R|, ABAj

denotes the instance of ABA executed on behalf of Pj ∈ R to decide whether
Pj ∈ T .

2. Upon terminating |T | instances of ABA with output 1, enter input 0 to all
other instances of ABA, for which you haven’t entered a value yet.

3. Upon terminating all the |R| ABA protocols, let your SubSeti be the set of
all indices j for which ABAj had output 1.

4. Let Ti be the set of |T | parties corresponding to smallest |T | indices in
SubSeti. Output Ti and terminate ACS.

Proof: We first show that at least |T | ABAs terminate with output 1. Suppose
some honest party Pi ∈ P has entered a 0 value into some ABAj in step 2 of the
protocol. This means that at least |T | ABAs terminated with output 1. This is
what we want to show. So assume that no honest party has entered a 0 value
to any of the |R| ABAs. Since every honest Ph ∈ R will initiate his instance
of A-cast (SAVSS-Share), by the termination property of A-cast (SAVSS-Share),
every honest party in P will eventually terminate this instance of A-cast (SAVSS-
Share). In other words, the input of all honest parties to ABAh will be eventually
1. So by the correctness property of ABA, the output of ABAh will be 1. As
this is true with respect to every honest party in R and since there are at least
|R| − t honest parties in R, at least |T | ABAs will eventually terminate with
output 1. This is because |T | ≤ |R| − t.

Next we show that all |R| ABAs will eventually terminate. As |T | ABAs will
eventually terminate with output 1, all the honest parties will eventually enter
an input to the remaining ABAs and thus they will also eventually terminate.

It is clear from the protocol that once an honest party in P terminates Protocol
ACS, he has a proper subset T of R and from the properties of ABA, it follows
that all the honest parties in P will agree on the same T .

Finally, it remains to be shown that every honest party in P will eventually
terminate the instance of A-cast (SAVSS-Share), initiated by every Pj ∈ T . This
is true because Pj ∈ T implies that ABAj must have terminated with output
1, which further implies that at least one honest party in P , say Pi, must have
entered 1 as his input in ABAj. Now Pi must have entered 1 as his input in
ABAj because Pi has terminated the A-cast (SAVSS-Share) of Pj. Now by the
termination property of A-cast (SAVSS-Share), every other honest party will
also eventually terminate the A-cast (SAVSS-Share) of Pj. 2

352

Theorem 14.18 The communication complexity of protocol ACS is same as that
of |R| executions of ABA protocol.

As shown in Fig. 14.4, protocol ACS protocol uses |R| instances of ABA
protocol. If we use the best known communication efficient (ρ, 0)-ABA of Chapter
9 of this thesis (we use ρ instead of ε in order to avoid confusion), then we get
a (|R|ρ, 0)-ACS protocol. The reason is that the ABA protocol corresponding to
each Pi ∈ R will terminate with probability (1 − ρ) and therefore all the ABA
protocols corresponding to all the parties in R will terminate with probability
(1 − ρ)|R| ≈ (1 − |R|ρ) implying that the ACS protocol will terminate with
probability (1−|R|ρ). Evidently, to obtain (ρ, 0)-ACS protocol, we can invoke the
ABA of Chapter 9 with error parameter ρ

R . Since there is no error in correctness
of the ABA of Chapter 9, there will not be any error in correctness of our ACS
protocol.

Notation 14.19 (Convention for Using ACS Protocol) We will invoke our
(ρ, 0)-ACS as Patra-ACS(R, |T |, ρ) to agree on T . We will set appropriate value
for ρ as per the requirement in our communication optimal ABA protocol.

Now we estimate the communication complexity of protocol Patra-ACS. Ac-
cording to Theorem 14.18, the communication complexity of Patra-ACS will be
same as that of |R| executions of the ABA protocol of Chapter 9. Assuming that
ρ = 2−Ω(κ) and the multi-valued (ρ, 0)-ABA of Chapter 9 works over field F, it
requires O(Cn5 log κ) bits of private as well as A-cast communication for reach-
ing agreement on t + 1 bit message. Now simulating the A-cast by the A-cast
protocol of [29], we find that the ABA protocol of Chapter 9 requires a private
communication of O(n7κ) bits, to agree on a t + 1 bit message. But in ACS, we
require an ABA protocol that can reach agreement on a single bit. So we use the
multi-valued ABA protocol of Chapter 9 in the ACS protocol in the following
manner: Every party inputs t + 1 bits in each ABAj, such that the first bit is
the actual input and the remaining t bits are always 0. This allows us to use
the multi-valued ABA protocol of Chapter 9 in the ACS protocol. So our ACS
protocol will require a private communication of O(|R|n7κ) bits. Thus we have
the following theorem:

Theorem 14.20 Using the multi-valued (ρ, 0)-ABA protocol of Chapter 9 as
block-box, protocol Patra-ACS requires private communication of O(|R|n7κ) bits.

14.3.2 Approach used in the BA protocol of [75]

Before presenting protocol Optimal-ABA, we briefly recall the approach used in
[75] for designing the communication optimal multi-valued BA protocol in syn-
chronous settings. The following description will help to compare and contrast
the techniques used in BA of [75] and our ABA protocol. Moreover, this will also
help to discern the comparative difficulties in achieving certain tasks in asyn-
chronous network rather than in a synchronous network.

The protocol of [75] requires n = 2t + 1 parties. So |P| = 2t + 1. The
BA protocol was structured into three stages: (a) Checking, (b) Consolidation
and (c) Claiming Stage. In the Checking Stage, the parties in P compare their
respective messages and jointly determine an accepting subset Pacc ⊆ P of size
at least n − t, such that all ’accepting’ parties hold the same message, and all

353

(honest) parties holding this message are ’accepting’. This stage can be aborted
when inconsistencies among honest parties are detected. If this stage is not
aborted then the BA protocol proceeds to Consolidation Stage where the parties
in Pacc help to decide on a happy subset Pok ⊆ P , such that all ’happy’ parties
hold the same message, and the majority of ’happy’ parties are honest. Also
this stage may be aborted in case of inconsistencies among the honest parties’
inputs. Consolidation Stage is very important and introduces a few new ideas.
But a careful checking will reveal that the same ideas can not be implemented
in asynchronous network even in the presence of n = 3t + 1 parties. That is why
we introduce a new sets of ideas in our ABA protocol which is presented in the
next section. Finally, if Consolidation Stage is not aborted then BA protocol of
[75] proceeds to the last stage called Claiming Stage. In the Claiming Stage, the
parties in Pok distribute their common message to the unhappy parties i.e the
parties in P \ Pok. This stage will never be aborted and hence at the end every
party will output a common value. If the BA protocol aborts during Checking
and Consolidation Stages then every party decides on a predefined default value.

14.3.3 Protocol Optimal-ABA

We may design a naive ABA protocol as follows: Every party is asked to A-
cast their input message and then using Patra-ACS the parties agree on a set
of n − t = 2t + 1 parties, say T , whose A-casts have been terminated; if m∗

is the value received from the A-cast of the majority of the parties in T , then
everybody agrees on m∗; otherwise everybody agrees on predefined m†. But using
our communication optimal protocol Optimal-A-cast, this naive protocol requires
a communication of O(`n2 + n8κ) bits. So it is challenging to design ABA with
communication complexity of O(`n + poly(n, κ)) bits.

To meet the above challenge, our protocol Optimal-ABA uses the so-called
player-elimination framework, along with several novel ideas. So far player-
elimination [98] has been used only in the context of synchronous and asyn-
chronous MPC [98, 52, 14, 143, 135]. Ours is the first non-MPC application of
player-elimination. We would refer it by party-elimination, rather than player-
elimination in our context (as we use the term party in place of player). In the
party-elimination framework, the computation of Optimal-ABA is divided into t
segments, where in each segment the parties agree on an `

t
bit message, con-

sidering `
t

bits of their original input as the input message of the segment. In

particular, the parties divide their original message into t blocks, each of size `
t

bits and in αth segment Sα, the parties reach agreement on an `
t

bit message,

considering only the αth block as the input message. Each segment terminates
eventually with the parties having common output of `

t
bits; moreover if the hon-

est parties start a segment with the same block of `
t

bits, then they agree on that
common input.

The computation of a segment is carried out in a non-robust fashion, in the
sense that if all the parties including the corrupted parties behave according
to the protocol then the segment successfully achieves its task; otherwise the
segment may fail in which case it outputs a triplet of parties among which at
least one is corrupted. In the former case, the next segment will be taken up
for computation for reaching agreement with next block of `

t
bits as input. In

the later case, the same segment will be repeated among the set of parties after
excluding the parties in the triplet and this continues until the segment becomes

354

successful. It is to be noted that though the computations in a segment may be
done among a subset of parties from P (as parties in triplet might be eliminated
from P), the agreement in the segment is finally attained over all honest parties
in P . It is now easy to see that the t segments may fail at most t times in total
as t is the upper bound on the number of corrupted parties. After t failures, all
the corrupted parties will be removed and therefore there will be no more failure.

We denote the input of party Pi by mi ∈ {0, 1}`, which is divided into t
blocks, with αth block being denoted by miα, for α = 1, . . . , t. At the beginning
of our protocol, we initialize two dynamic variables n′ = n and t′ = t and one
dynamic set P ′ = P . P ′ denotes the set of non-eliminated parties and contains
n′ parties, out of which at most t′ can be corrupted. In every segment Sα the
computation is structured into three main phases: (a) Checking Phase, (b)
Expansion Phase and (c) Output Phase. The segment failure may occur
only in the second phase and hence only the first two phases of a segment may
be repeated several times (bounded by t); once the first two phases are successful
for a segment, the segment will always be successfully completed after robustly
executing the third phase. So at the end of segment Sα, every honest party will
agree on a common `

t
bits, denoted by m∗

α. Moreover if the honest parties start
with common input (i.e miα’s are equal for all honest parties), then m∗

α will be
same as that common input.

1. Checking Phase: Here the parties, on having private input message
of `

t
bits each (i.e miα’s), jointly perform some computation in order to

determine and agree on a set of t′ + 1 parties called P ′ch ⊆ P ′, such that
the honest parties in P ′ch hold a common `/t bit message, say m∗

α. In case
of failure due to the inconsistencies among the inputs of the honest parties,
parties abort any further computation for current segment and agree on a
predefined message m†

α. So in this case current segment terminates with all
honest parties agreeing on common output m∗

α = m†
α. On the other hand,

if P ′ch is generated and agreed among the parties, then the computation for
current segment proceeds to the next phase. It is to be noted that P ′ch will
be always obtained if the initial messages of the honest parties in P ′ are
same.

2. Expansion Phase: Here the parties in P ′ch on holding a common message
m∗

α help other parties to receive m∗
α. Specifically here the parties jointly

perform some computation in conjunction with the parties in P ′ch to expand
P ′ch to a set of 2t′ + 1 parties, denoted by P ′ex (with P ′ch ⊂ P ′ex ⊂ P ′)
such that all honest parties in P ′ex hold m∗

α. The expansion technique is
the most crucial and novel part of our protocol. But the computation of
this phase is non-robust and hence either one of the following is guaranteed:
(a) P ′ex is constructed successfully or (b) a triplet of parties (Pi, Pj, Pk) is
obtained, such that at least one of the three parties is corrupted. If the
former case happens, then parties proceed to execute Output Phase. If
the later case happens, then n′ and t′ are reduced by 3 and 1 respectively
and the current segment is repeated from the beginning with updated n′

and t′ and P ′ = P ′ \ {Pi, Pj, Pk}. Note that n′, t′ and P ′ always satisfy:
n′ = 3t′ + 1 and |P ′| = n′.

3. Output Phase: Here the parties in P ′ex help the parties in P \ P ′ex (not
P ′ \P ′ex) to learn the common `/t message m∗

α held by the honest parties in

355

P ′ex. After this phase, current segment terminates with common output m∗
α

and the parties proceed to the computation of next segment. The imple-
mentation of this phase is very similar to the implementation of Claiming
Stage of the BA protocol of [75]. The Output Phase of Optimal-A-cast
(as presented in previous section) adopts the technique used in Claiming
Phase of [75]. Hence Output Phase for our ABA is almost identical to the
Output Phase of Optimal-A-cast and is just the customized version of the
Output Phase of Optimal-A-cast in the current settings.

Now the overall structure of Optimal-ABA is given in Fig. 14.5.

Figure 14.5: Overall structure of Protocol Optimal-ABA.

Protocol Optimal-ABA(P , ε, δ)

Code for Pi: Every party in P executes this code.

1. Set n′ = n, t′ = t and P ′ = P.

2. Initialize α = 1.

3. While α ≤ t, do the following for segment Sα with input miα and with
current n′, t′ and P ′ to agree on m∗

α:

(a) Checking Phase: Participate in the code Checking, presented in Fig.
14.6 to determine and agree on P ′ch ⊆ P ′ of size t′ + 1 such that all the
honest parties in P ′ch hold common `

t bits, say m∗
α. If P ′ch is generated

then proceed to the next phase. Otherwise set m∗
α to some predefined

value m†
α ∈ {0, 1} `

t , set α = α + 1 and terminate the current segment
with output m∗

α.

(b) Expansion Phase: Participate in code, Expansion presented in Fig.
14.7 to expand P ′ch to contain 2t′ + 1 parties, denoted by P ′ex such
that P ′ch ⊂ P ′ex ⊆ P ′ and all honest parties in P ′ex hold m∗

α. If P ′ex is
generated successfully then proceed to next phase. Otherwise output a
triple (Pm, Pl, Pk), set n′ = n′− 3, t′ = t′− 1 and P ′ = P ′ \ {Pm, Pl, Pk}
and repeat the computation of the current segment.

(c) Output Phase: Participate in code Output presented in Fig. 14.2 and
output m∗

α upon termination, set α = α + 1 and terminate the current
segment.

4. Output m∗ which is the concatenation of m∗
1, . . . ,m

∗
t and terminate the pro-

tocol.

In the sequel, we will pursue an in-depth discussion on the implementation
and properties of each of the above three phases.

14.3.3.1 Checking Phase

The following description outlines the idea used for this phase. The aim of this
phase is to either agree on a set P ′ch of size t′+1 such that all the honest parties in

356

P ′ch hold common message, say m∗
α, or decide that such set may not exist. When

all the honest parties start with same input message then P ′ch can be always found
out and agreed upon. To achieve the above task, every party Bracha-A-casts a
(random key, hash value) pair corresponding to his message. The parties then
agree on a set I of n′− t′ parties whose Bracha-A-cast will be eventually received
by every honest party. This can be achieved using one instance of Patra-ACS.

Now every party Pi prepares a response vector −→vi , indicating whether the
hash value of every Pj ∈ I is indeed the hash value of his own message miα with
respect to Pj’s hash key (this should ideally be the case, when Pi and Pj are
honest and their input messages are identical, i.e miα = mjα). Pi Bracha-A-casts−→vi . Now the parties again agree on a set of n′− t′ parties, say J whose Bracha-A-
cast with their −→vi has been terminated. Now notice that if all honest parties start
with common input, then the vectors of the honest parties in J would be identical
and would have at least t′ + 1 1’s at the locations corresponding to the t′ + 1
honest parties in I. So now the parties try to find a set of at least t′ + 1 parties
in J , whose vectors are identical and have at least t′ + 1 1’s in them. If found,
then any subset of t′ + 1 parties from that set (say t′ + 1 parties with smallest
index) will be considered as P ′ch. It is easy to show that P ′ch will be obtained
always if the initial messages of the honest parties in P ′ are same. Moreover it
can also be shown that the honest parties in P ′ch hold common message, say m∗

α

with very high probability (see Lemma 14.22). But if P ′ch is not found, then the
honest parties know that their input messages are inconsistent and hence they
agree that such set can not be found. The steps performed so far are enough for
our current phase.

But we need to do some more task for the requirement of next phase i.e
Expansion Phase. In Expansion Phase, we require that every honest party
in P ′ should hold a distinct random hash key and hash value of the message
corresponding to every party in I, such that for every Pi ∈ I and Pj ∈ P ′ the
hash key and hash value that Pj has received from Pi should not be known to
anybody other than Pi and Pj. Though achieving this in synchronous network is
easy, it needs some amount of effort in asynchronous network. We do this in the
following way:

Party Pi ∈ P ′ selects n′ random hash keys from F (one corresponding
to every party in P ′) and commits jth (key, hash value) pair of his
message miα using two instances of SAVSS-Share, apart from Bracha-
A-casting a (random key, hash value) pair corresponding to his mes-
sage. Now the parties agree on a set of n′ − t′ parties, say I, whose
instance of Bracha-A-cast as well as n instances of SAVSS-Share has
been terminated. Now the ith (key, hash value) pair of every Pj ∈ I
is Pi-private-reconstructed only by Pi ∈ P ′, using SAVSS-Rec-Private.
This ensures that every (honest) party Pi ∈ P ′ receives ith (key, hash
value) pair of every Pj ∈ I, with the guarantee that the pair is known
only to Pi and Pj. Moreover now the parties continue the tasks for
current phase with the Bracha-A-casted information of the parties in
I in the same way as discussed before.

The code that implements this phase is given in Fig. 14.6.

Before proving the properties of code Checking, we define the following event:

357

Figure 14.6: Code for Checking Phase.

Checking

To avoid notational clutter, we assume that P ′ is the set of first n′ parties

Code for Pi ∈ P ′: Every party in P ′ executes this code

1. On having input miα,

(a) choose a random hash key ri from F and Bracha-A-cast (ri,Vi) where Vi =
Uκ(miα, ri);

(b) choose n′ random hash keys ri1, . . . , rin′ from F and commit (rij ,Vij) where
Vij = Uκ(miα, rij), by executing SAVSS-Share(Pi,P ′, rij ,

ε
n2) and SAVSS-

Share(Pi,P ′,Vij ,
ε

n2).

2. Participate in SAVSS-Share(Pj ,P ′, rjk,
ε

n2) and SAVSS-Share(Pj ,P ′,Vjk,
ε

n2) for
every Pj ∈ P ′ and k = 1, . . . , n′.

3. Participate in Patra-ACS(P ′, n′ − t′, ε
n) to agree on a set of n′ − t′ parties from

P ′, denoted as I, whose instance of Bracha-A-cast as well as all the 2n′ instances
of SAVSS-Share will be eventually terminated (by all honest parties in P ′).

4. Wait to receive (rj ,Vj) from the Bracha-A-cast of every Pj ∈ I.

5. Wait to terminate all 2n′ instances of SAVSS-Share of every party in
I. Participate in SAVSS-Rec-Private(Pj ,P ′, rjk, Pk,

ε
n2) and SAVSS-Rec-

Private(Pj ,P ′,Vjk, Pk,
ε

n2) for every Pj ∈ I and every Pk ∈ P ′ for Pk-private-
reconstruction of (rjk,Vjk).

6. Obtain (rji,Vji) pair from SAVSS-Rec-Private(Pj ,P ′, rji, Pi,
ε

n2) and SAVSS-Rec-
Private(Pj ,P ′,Vji, Pi,

ε
n2) corresponding to every Pj ∈ I.

7. Construct n length vector −→vi , where −→vi [j] =

⊥ If Pj 6∈ I
1 If Pj ∈ I and Vj = Uκ(miα, rj).
0 If Pj ∈ I and Vj 6= Uκ(miα, rj).

Bracha-A-cast −→vi .

8. Participate in Patra-ACS(P ′, n′−t′, ε
n) to agree on a set of n′−t′ parties from P ′,

denoted as J , whose Bracha-A-cast with an n length vector has been terminated.

9. Check whether there is a unique set of at least t′+1 parties in J such that their
vectors are identical and have at least t′ + 1 1’s in them (Note that this can be
done easily in polynomial time).

(a) If yes, then let P ′ch be the set containing exactly t′+1 parties (say the parties
with first t′+1 smallest indices) out of those parties. Let −→v be an n length
vector, where −→v [i] = 1 if the ith location of the vectors of all parties in P ′ch
is 1, otherwise −→v [i] = ⊥. Moreover, let I1 = {Pi ∈ I such that −→v [i] = 1}.
Assign m∗

α = miα if Pi ∈ P ′ch.

(b) If not, then decide that P ′ch can not be found.

358

Event E: Let E be an event in an execution of Checking, defined as follows: All
invocations of AVSS scheme initiated by the parties in I have been terminated
with correct output. More clearly, E means that all the invocations of AVSS
protocols initiated by the parties in I will satisfy termination property and cor-
rectness property. It is easy to see that event E occurs with probability at least
(1 − |I| ε

n2) ≈ (1 − ε
n
), as |I| = Θ(n) and each instance of the AVSS is executed

with error parameter ε
n2 . 2

In the sequel, all the lemmas for all the three phases are proved conditioned
on event E. Now before presenting our proofs, we discuss the way the proofs are
presented. For every phase, we first find the error probability of termination and
then find the error probability with which the phase will output its’ desired result
(i.e correctness of the phase), conditioned on the event that the phase terminates.

Lemma 14.21 (Termination of the Checking Phase) In a segment Sα, any
particular execution of Checking Phase will be terminated, except with proba-
bility ε

n
, where termination means the code either outputs a set P ′ch of size t′ + 1

or decide that such set can not be constructed.

Proof: Conditioned on event E, an execution of Checking Phase will always
terminate if both the executions of Patra-ACS terminates and all the instances
of Bracha-A-cast terminate. Since Bracha-A-cast has no error in termination and
each execution of Patra-ACS terminates, except with error probability ε

n
, an ex-

ecution of Checking Phase will terminate, except with probability ε
n
. 2

Lemma 14.22 (Correctness of the Checking Phase) In any particular ex-
ecution of Checking Phase in a segment Sα, the honest parties in P ′ch (if it is
found) hold a common message m∗

α, except with error probability of at most δ
n2 .

Moreover, if the honest parties start Sα with common message mα, then P ′ch will
always be found with m∗

α = mα.

Proof: We prove the first part of the lemma. If P ′ch contains exactly one honest
party, then first part is trivially true with m∗

α being the input message of the
sole honest party in P ′ch. So let P ′ch contain at least two honest parties. We
now show that the messages of every pair of honest parties (Pi, Pj) in P ′ch are
same. Recall that the response vectors −→vi and −→vj of Pi and Pj are identical
and have at least t + 1 1’s in them. Moreover, I1 contains all Pk’s such that−→vi [k] = −→vj [k] = 1. Evidently, |I1| ≥ t+1. So there is at least one honest party in
I1, say Pk, such that −→vi [k] = −→vj [k] = 1. This implies that Vk = Uκ(miα, rk) and
Vk = Uκ(mjα, rk) holds for Pi and Pj respectively, where Pi has received (Vk, rk)
from Pk (by Bracha-A-cast) and Pj has received (Vk, rk) from Pk (by Bracha-A-
cast). Now by Collision Theorem (see Theorem 14.5), it easily follows that
miα = mkα and mjα = mkα, except with probability at most δ

n3 (replacing ` by `
n

in Theorem 14.5). Consequently miα = mjα, except with probability at most δ
n3 .

Now let us fix an honest party, say Pi in P ′ch. If Pi’s value is equal to every
honest Pj’s value in P ′ch, then it means that all honest parties in P ′ch hold a
common message m∗

α. This happens except with error probability |H| δ
n3 , where

H is the set of honest parties in P ′ch. As |H| can be O(t), we have |H| δ
n3 ≈ δ

n2 .
We now prove the second part. When all honest parties start with same

input mα, the vectors of all honest parties in J will have 1 at the locations
corresponding to the honest parties in I. Since there are at least t′ + 1 honest

359

parties in both I and J , P ′ch can always be found and now it is easy to see that
all honest parties in P ′ch will hold mα. 2

14.3.3.2 Expansion Phase

If P ′ch is found and agreed upon in the previous phase, then the parties proceed
to expand P ′ch in order to obtain P ′ex. For that we first initiate K = P ′ch and
K = P ′ \ K. Then K will be expanded to contain 2t′ + 1 parties and we will
assign K to P ′ex when K contains 2t′ + 1 parties. We call the K containing t′ + 1
parties as ’initial’ K and likewise the K containing 2t′ + 1 parties as ’final’ K.
The expansion (transition from ’initial’ K to ’final’ K) takes place in a sequence
of t′ iterations. In each iteration, either K is expanded by one by including a
new party or in case of failure a conflict triplet is returned. In the later case, the
current segment fails and hence it is again repeated with renewed value of n′, t′

and P ′ (i.e after excluding the parties in the triplet from P ′).
So this phase starts as follows: First an injective mapping ϕ : K → K is

defined. Now a party Pi ∈ K sends his message m∗
α to party ϕ(Pi) ∈ K. A

party Pi ∈ K on receiving a message m∗
α from ϕ−1(Pi) ∈ K, calculates vector −→vi

with the (key, hash value) pair of the parties only in I1 (at all other locations
⊥ is placed) and with m∗

α as the message. Pi then Bracha-A-casts Matched-Pi if−→vi is identical to −→v (which was calculated in Checking). Otherwise let k be the
minimum index in −→vi such that −→vi [k] 6= −→v [k], then Pi Bracha-A-casts a conflict
triplet (ϕ−1(Pi), Pi, Pk). Clearly, one of the three parties in the triplet must be
corrupted. The parties now invoke an instance of Patra-ACS to agree on a single
party, say Pl from K whose Bracha-A-cast has been terminated. Such a party
from K can always be found as there exists at least one honest Pm ∈ K which
will be mapped to another honest Pl = ϕ(Pm) ∈ K and Pl will eventually receive
m∗

α from Pm and successfully Bracha-A-cast some message (see Lemma 14.24).
Now there are two cases. If (ϕ−1(Pl), Pl, Pk) is received from the Bracha-A-cast

of Pl, then the computation stops here and the triplet (ϕ−1(Pl), Pl, Pk) is returned.
If Matched-Pl is received from the Bracha-A-cast of Pl, then Pl is included in K
and excluded from K. Pl now finds a unique party from the set of parties in K
that are never mapped before (say the unmapped party with smallest index) and
sends m∗

α to it. Again the party who receives the message, calculates response
vector with the received message and Bracha-A-casts either a conflict triplet or
Matched signal. Then parties invokes an instance of Patra-ACS to agree on a
single party from K whose Bracha-A-cast has been terminated and this process
continues until either |K| becomes 2t′+1 or the segment is failed with some triplet
in some iteration. Though it is non-intuitive that in every iteration the parties
will be able to agree on a single party from K by executing Patra-ACS, this will
indeed happen and we prove this clearly in Lemma 14.24. If K becomes of size
2t′ + 1, it is assigned to P ′ex. The code for this phase is given in Fig. 14.7.

We now prove the properties of Expansion Phase.

Lemma 14.23 In a segment Sα, in any iteration of while loop (in an execution
of Expansion Phase), no two different parties in K are mapped to the same
party in K. Also in case while loop is completed with K containing 2t′ + 1
parties, only the last entrant in ’final’ K is not mapped to any party.

Proof: From the protocol steps, it is clear that a party in K is mapped only
once. Now we show that no pair (Pi, Pj) in K is mapped to same party. This

360

Figure 14.7: Code for the Expansion Phase.

Expansion

Code for Pi ∈ P ′: Every party in P ′ executes this code

1. Assign K = P ′ch and K = P ′ \ K.

2. Define an injective mapping ϕ : K → K where K = P ′ \ K as follows: the
party with smallest index in K is associated with the party with smallest
index in K. Let M = ϕ(K) (⊂ K, as |K| is exactly t′ + 1) be the set of
currently mapped partied in K. Let M = K \ M be the set of currently
unmapped partied in K.

3. If Pi ∈ K, then send m∗
α to ϕ(Pi).

4. If Pi ∈ K and has received message m∗
α from ϕ−1(Pi) ∈

K, then calculate vector −→vi of length n as follows: −→vi [j] =

⊥ If Pj 6∈ I1

1 If Pj ∈ I1 and Vji = Uκ(m∗
α, rji).

0 If Pj ∈ I1 and Vji 6= Uκ(mα, rji).
Recall that (rji,Vji) pair was ob-

tained by Pi in Checking from SAVSS-Rec-Private(Pj ,P ′, rji, Pi,
ε

n2) and
SAVSS-Rec-Private(Pj ,P ′,Vji, Pi,

ε
n2). If −→vi is identical to −→v then Bracha-

A-cast Matched-Pi; otherwise let k be the minimum index in −→vi such that−→vi [k] 6= −→v [k], then Bracha-A-cast (Pj , Pi, Pk), where Pj = ϕ−1(Pi).

5. while |K| < 2t′ + 1 do:

(a) Participate in an instance of Patra-ACS(M, 1, ε
n2) to agree on a single

party from M whose Bracha-A-cast has been terminated. Let the party
be Pl.

(b) If (Pm, Pl, Pk) is received from Bracha-A-cast of Pl, then stop any further
computation and output the triplet (Pm, Pl, Pk).

(c) If Matched-Pl is received from Bracha-A-cast of Pl, then set K = K ∪
{Pl}, K = K \ {Pl} and M = M\ {Pl}.

(d) Define a mapping, which maps Pl to the party in M with the smallest
index, say Pm. Set M = M\ {Pm} and M = M∪ {Pm}.

(e) If Pi = Pl, then send m∗
α to Pm.

(f) If Pi = Pm and Pi has received message m∗
α from Pl, then calculate

vector −→vi of length n in the same way as in step 4. If −→vi is identical
to −→v then Bracha-A-cast Matched-Pi; otherwise let k be the minimum
index in −→vi such that −→vi [k] 6= −→v [k], then Bracha-A-cast (Pl, Pi, Pk).

6. Set P ′ex = K. If Pi ∈ P ′ex, then consider m∗
α as the final message.

is true as ϕ is injective and also every time a party Pi from K is mapped to
a party Pk in M (set of unmapped parties), Pk is never mapped again as it is
immediately transferred to M (set of mapped parties).

Now we show that there will be enough number of parties in M to be mapped

361

in all iterations, except the last one. We consider the worse case, where the while
loop is executed completely for t′ iterations (as ’initial’ |K| is t′ + 1 and t′ more
parties have to enter to make ’final’ K of size 2t′+1) without outputting a triplet.
Now as per the protocol, at the beginning of the while loop, K = t′+1, K = 2t′,
M = t′ + 1 and M = 2t′ − (t′ + 1) = t′ − 1. In ith iteration, a party, say Pl

from M (hence from K) enters into K and gets mapped to an unmapped party
in M (hence in K). As a result: (a) |K| increases by 1, (b) |K| decreases by 1,
(c) |M| remains same and (d) |M| decreases by 1. So after t′ − 1 iterations, the
following hold: (a) |K| = 2t′, (b) |K| = t′ + 1, (c) |M| = t′ + 1 and (d) |M| = 0.
Hence only after the mapping done in (t′ − 1)th iteration, M becomes empty. In
the last iteration (t′th), another party from M (hence from K) is finally included
in K which need not be mapped to any more party as K becomes exactly 2t′ + 1
here. 2

Lemma 14.24 In a particular execution of Expansion Phase in a segment Sα,
|K| will increase by one with probability (1− ε

n2), in every iteration of while loop
until the while loop is completed due to |K| = 2t′+1 or broken due to the output
of triplet.

Proof: To prove the lemma, we show that in every iteration of the while loop,
the parties will be able to agree on a single party (using Patra-ACS) from K
(thus from M) (except with probability ε

n2 , as the instance of Patra-ACS may
not terminate with probability ε

n2), whose Bracha-A-cast will be terminated. In
other words, we assert that in every iteration of the while loop, there will exist
one party from K (and thus from) who will eventually Bracha-A-cast a response.
Moreover, this will be true, until the while loop is either over or broken due to
the output of triplet. For this, we claim that in every iteration of while loop,
there must be an honest party, say Pi, belonging to K, such that Pi is mapped to
another honest party, say Pj, belonging to K. Moreover, honest Pi’s message will
eventually reach to honest Pj, who will then Bracha-A-cast his response, which is
either an n length vector or triplet of parties.

At the time of entering into the loop for the first time, let among t′+1 parties
in K there are 0 ≤ c ≤ t′ corrupted parties. So the remaining t′ − c corrupted
parties are in ’initial’ K. In worst case, c corrupted parties and t′ − c honest
parties from K may be mapped to c honest parties and t′ − c corrupted parties,
respectively from K. Still K contains at least one honest party which is bound
to be mapped to another honest party from K, as there is no other unmapped
corrupted party in K. So our claim holds for first iteration. In general in ith

iteration, there are t′ + i parties in K out of which say c with 0 ≤ c ≤ t′ are
corrupted parties. So extending the previous argument for this general case,
there are i honest parties in K who are mapped to i honest parties in K. Among
these i mappings, i − 1 might correspond to previous i − 1 iterations. But still
one mapping is left for ith iteration. Now let the mapping be from honest Pj ∈ K
to honest Pk ∈ K.

So Pj’s message reaches to Pk eventually and Pk tries to prepare −→vk with
received message and the (key, hash value) of the parties in I1. Conditioned
on event E, Pk will receive the (key, hash value) of the parties in I1. Once Pk

prepares his vector, he Bracha-A-casts his response (which could be either signal
Matched-Pk, if −→vk = −→v or a triplet of parties if −→vk 6= −→v). If Pk’s response is
Matched-Pk, then |K| will be incremented by 1; otherwise, the loop will be broken
due to the output of a triplet. Hence the lemma. 2

362

Lemma 14.25 (Termination of the Expansion Phase) In a segment Sα, any
particular execution of Expansion Phase will terminate, except with error prob-
ability ε

n
, where termination means the code either outputs a triplet or a set P ′ex

of size 2t′ + 1.

Proof: From Lemma 14.24, in every iteration of the while loop, there will exist
one party from K who will eventually Bracha-A-cast a response. Now conditioned
on event E, the termination of an execution of Expansion Phase depends on the
termination of the invoked Patra-ACS protocols and the Bracha-A-casts. Bracha-
A-cast has no error in termination. An instance of Patra-ACS terminates, except
with probability ε

n2 . Since in an execution of Expansion Phase, there can be
at most t′ invocations of Patra-ACS (corresponding to t′ iterations of while loop),
all of them will terminate, except with probability t′ ε

n2 ≈ ε
n

(since t′ can be
O(t)). Therefore, an execution of Expansion Phase terminates, except with
probability ε

n
. 2

Lemma 14.26 (Correctness-I of Expansion Phase) In a particular execu-
tion of Expansion Phase in a segment Sα, all the honest parties in P ′ex (if
found) will hold a common message m∗

α, which was also the common message
held by the honest parties in P ′ch, except with probability δ

n2 . Moreover if the
honest parties start Sα with same input message mα, then m∗

α = mα.

Proof: Let Eex be the event that all the honest parties in P ′ex hold a common
message m∗

α. We have to show that Eex = (1 − δ
n2). Let Ech and Eex\ch be

two events defined as follows: Ech: All honest parties in P ′ch and hence in ’ini-
tial’ K hold a common message m∗

α; and Eex\ch: All honest parties in P ′ex \ P ′ch
hold a common message m∗

α. We now assert that Prob(Ech) = (1 − δ
n2) and

Prob(Eex\ch|Ech) = (1− δ
n2).

1. Prob(Ech) = (1− δ
n2): Follows from Lemma 14.22.

2. Prob(Eex\ch|Ech) = (1 − δ
n2): Let us consider party Pf , who is the first

honest party to enter into ’initial’ K during Expansion phase. Recall that
Pf enters into K (hence P ′ex) when it receives a message m∗

α from some
already existing (possibly corrupted) party Pj in K and Pf ’s generated −→vf

is identical to −→v . We claim that m∗
α = m∗

α with probability (1 − δ
n3). For

this consider an honest Pk ∈ K and an honest Pl in I1 with −→v [l] = 1 (there
is at least one such honest Pl as |I1| ≥ t′ + 1). By Collision Theorem,
mkα = mlα = m∗

α with probability at least (1 − δ
n3). Now since −→vf = −→v , it

implies that −→v f [l] = 1, as −→v [l] = 1. This further implies that m∗
α = mlα

with probability at least (1− δ
n3). This clearly implies that m∗

α = m∗
α holds,

with probability at least (1 − δ
n3). This is because the key and hash value

pair (rlf ,Vlf) is not known to anyone (including possibly corrupted Pj) other
than Pf and Pl. Hence with probability (1− δ

n3), Pf has received m∗
α from

Pj.

Now let Ps be the second honest party to enter into ’initial’ K during Ex-
pansion phase. Ps may receive its message either from Pf or from any
party belonging to ’initial’ K. If Ps receives the message from any party be-
longing to ’initial’ K, then using similar arguments as above, we can show
that its message will be m∗

α, except with error probability δ
n3 . On the other

363

hand, if Ps receives the message from Pf , then also its message will be m∗
α,

except with error probability δ
n3 .

In general, if an honest party Pi enters into ’initial’ K at sometime, then its
message will be equal to m∗

α, except with error probability (1− δ
n3). As there

can be Θ(t) honest parties to enter in this manner, all the honest parties
in P ′ex \ P ′ch hold a common message m∗

α, except with error probability
Θ(t) δ

n3 ≈ δ
n2 . Hence Prob(Eex\ch|Ech) = (1− δ

n2).

Now we have,

Prob(Eex) = Prob(Ech ∩ Eex\ch)
= Prob(Ech) · Prob(Eex\ch|Ech)

= (1− δ

n2
) · (1− δ

n2
)

= (1− δ

n2
)2 ≥ (1− 2

δ

n2
) ≈ (1− δ

n2
).

Hence the lemma. 2

Lemma 14.27 (Correctness-II of Expansion Phase) In a particular execu-
tion of Expansion Phase in a segment Sα, if a triplet (Pm, Pl, Pk) is Bracha-
A-casted by Pl then at least one of Pm, Pl and Pk is corrupted, except with error
probability δ

n3 where Pm ∈ K, Pl ∈ K and Pk ∈ I1.

Proof: Let Pm, Pl and Pk are honest, where Pm ∈ K, Pl ∈ K and Pk ∈ I1. Since
Pk ∈ I1, it implies that −→v (k) = 1 holds. Also Pm ∈ K implies that −→v m(k) = 1.
This further implies that m∗

α held by Pm is same as mkα held by Pk, except with
error probability δ

n3 (see Collision Theorem). Now during Expansion phase,
Pm sends his m∗

α to Pl and Pl computes −→v l with respect to the received m∗
α and

the pairs (rjl,Vjl), corresponding to every Pj ∈ I1. On computing −→v l, party Pl

will find that −→v l(k) = −→v (k), except with error probability δ
n3 . This is because

Pk is honest and hence Vkl is the hash value of mkα, with respect to the hash key
rkl. However, as shown above, m∗

α received by Pl from Pm is same as mkα, except
with error probability δ

n3 . So except with error probability δ
n3 , Pl will find that

Vkl = Uκ(m
∗
α, rkl). So except with error probability δ

n3 , Pl will not Bracha-A-cast
the triplet (Pm, Pl, Pk). So if at all Pl Bracha-A-cast the triplet (Pm, Pl, Pk), then
except with probability δ

n3 , at least one of Pm, Pl and Pk is corrupted. 2

14.3.3.3 Output Phase

Once the parties agree on P ′ex, with all honest parties in it holding some common
m∗

α, we need to ensure that m∗
α propagates to all (honest) parties in Pex = P\P ′ex,

in order to reach agreement on m∗
α. This is achieved in code Output (presented

in Fig. 14.8) with the help of the parties in P ′ex. A simple solution could be
to ask each party in P ′ex to send his m∗

α to all the parties in Pex, who can wait
to receive t′ + 1 same m∗

α and then accept m∗
α as the message. This solution

will work as there are at least t′ + 1 honest parties in P ′ex. But clearly, this
requires a communication complexity of O(`n) bits for each segment (and thus
O(`n2) bits for our ABA protocol; this violates out promised bound for ABA).
Hence we present the code Output which is almost identical to protocol Output
presented in section 14.2 and is just the customized version of protocol Output of
Optimal-A-cast in the current settings.

364

Figure 14.8: Code for Output Phase

Output

i. Code for Pi: Every party in P (not P ′) will execute this code.

1. If Pi ∈ P ′ex, do the following to help the parties in Pex = P \P ′ex to compute
m∗

α:

(a) Set d = t′ + 1 and c = d `+1
td e.

(b) Interpret m∗
α as a polynomial p(x) of degree d−1 over GF (2c). For this,

divide m∗
α into blocks of c bits and interpret each block as an element

from GF (2c). These elements from GF (2c) are the coefficients of p(x).

(c) Send pi = p(i) to every Pj ∈ Pex, where pi is computed over GF (2c).

(d) For every Pj ∈ Pex, choose a random distinct hash key Rij from F
and send (Rij ,Xij1, . . . ,Xijn) to Pj , where for k = 1, . . . , n, Xijk =
Uκ(pk, Rij). Here, to compute Xijk, interpret pk as a c bit string.

(e) Terminate this code with m∗
α as output.

2. If Pi ∈ Pex, do the following to compute m∗
α:

(a) Call pk received from party Pk ∈ P ′ex as ’clean’ if there are at least t′+1
Pj ’s in P ′ex, corresponding to which Xjik = Uκ(pk, Rji) holds, where
(Rji,Xji1, . . . ,Xjin) is received from Pj ∈ P ′ex.

(b) Wait to receive d ’clean’ pk’s and upon receiving, interpolate d−1 degree
polynomial p(x) using those ’clean’ values, interpret m∗ from p(x) and
terminate this protocol with m∗

α as output.

Lemma 14.28 (Termination of the Output Phase) An execution of Out-
put Phase in any segment Sα will terminate, except with error probability ε

n
.

Proof: Let Eex and Eex be the events that the honest parties in P ′ex and Pex

(respectively) terminate. Here we show that Prob(Eex) = 1 and Prob(Eex) =
(1− ε

n
). Consequently, we will have

Prob(Every honest party in P terminate) = Prob(Eex ∩ Eex)

= Prob(Eex) · Prob(Eex)

= 1 · (1− ε

n
) = (1− ε

n
).

From the steps of the code Output, the parties in P ′ex will always terminate
after performing the steps as mentioned in step 1(a)-1(d) of the code. This asserts
that Prob(Eex) = 1.

So we now have to prove that Prob(Eex) = (1− ε
n
). To show this, we first assert

that if all the honest parties in P ′ex holds common m∗
α, then Prob(EP′ex

) = 1 holds;

but the parties in P ′ex holds common m∗
α, except with probability ε

n
(from Lemma

14.26). So, we have Prob(Eex) = Prob(honest parties in P ′ex hold common m∗
α) ·

Prob(Eex | honest parties in P ′ex hold common m∗
α) = (1− ε

n
).1 = (1− ε

n
).

365

Now what is left is to show that Prob(Eex) = 1 when all the honest parties
in P ′ex hold common m∗

α. Consider an honest party Pi in Pex. Clearly, Pi will
terminate if it receives d = t′ + 1 ’clean’ values eventually. To assert that Pi will
indeed receive d = t′ + 1 ’clean’ values, we first show that the value pk received
from every honest Pk in P ′ex will be considered as ’clean’ by Pi. Consequently,
since there are t′+1 honest parties in P ′ex, Pi will eventually receive t′+1 ’clean’
values even though the corrupted parties in P ′ex never send any value to Pi. As
the honest parties in P ′ex have common m∗

α, they will generate same p(x) and
therefore same pk = p(k). Hence, Xjik = Uκ(pk, Rji) will hold, with respect to
(Rji,Xjik) of every honest Pj in P ′ex. As there at least d = t′ + 1 honest parties
in P ′ex, this proves that pk received from honest Pk ∈ P ′ex will be considered as
’clean’ by Pi. This proves Prob(Eex) = 1 when all the honest parties in P ′ex holds
common m∗

α. Hence the lemma. 2

Lemma 14.29 (Correctness of Output Phase) Every honest party in P will
output a common message m∗

α in an execution of Output Phase in a segment
Sα, except with error probability δ

n
. Moreover, if the honest parties start Sα with

same input mα, then m∗
α = mα.

Proof: Consider the following two events, Eex and Eex, where Eex is the
event that all the honest parties in P ′ex will output same m∗

α and Eex is the
event that all the honest parties in Pex will output same m∗

α. We now show that
Prob(Eex) = (1− δ

n2) and Prob(Eex|Eex) = (1− δ
n
).

1. Prob(Eex) = (1− δ
n2): Follows from Lemma 14.26.

2. Prob(Eex|Eex) = (1 − δ
n
): Here we show that every honest Pi ∈ Pex will

output m∗
α, except with probability δ

n2 . This will assert that all the honest

parties in Pex will output same m∗
α, except with error probability |H| δ

n2

where H is the set of honest parties in Pex. As |H| can be at most t, we
have |H| δ

n2 ≈ δ
n
.

So let Pi ∈ Pex be an honest party. Now the pk value of each honest
Pk ∈ P ′ex will be eventually considered as ’clean’ value by honest Pi. This
is because there are at least t′ + 1 honest parties in P ′ex, who hold same m∗

α

and therefore same p(x) (and hence p(k)). So Xjik = Uκ(pk, Rji) will hold,
with respect to (Rji,Xjik) of every honest Pj in P ′ex. A corrupted Pk ∈ P ′ex
may send pk 6= pk to Pi, but pk will not be considered as a ’clean’ value with
probability at least (1 − δ

n3). This is because, in order to be considered as
’clean’ value, pk should satisfy Xjik = Uκ(pk, Rji) with respect to (Rji,Xjik)
of at least t + 1 Pj’s from P ′ex. The test will fail with respect to an honest

party from P ′ex with probability c2−κ

κ
≈ δ

n4 according to Collision Theorem

(replacing ` by c in Theorem 14.5, where c = d `+1
td
e = d `+1

tt′ e). Thus though
the test may pass with respect to all corrupted parties in P ′ex (at most t),
the test will fail for every honest party from P ′ex with probability (1− δ

n4)
|H|,

where H is the set of honest parties in P ′ex. Now since |H| can be O(t), we
have (1− δ

n4)
|H| ≈ (1−|H| δ

n4) ≈ (1− δ
n3). Now the probability that none of

the wrong pk 6= pk sent by corrupted Pks in P ′ex will be considered as ’clean’
by honest Pi is (1 − δ

n3)
O(t) ≈ (1 − O(t) δ

n3) ≈ (1 − δ
n2) (as there can be at

most O(t) corrupted parties in P ′ex). Hence, honest Pi will reconstruct p(x)
using d ’clean’ values (which he is bound to get eventually), except with
probability δ

n2 .

366

So we have, Prob(Every honest party in P holds common m∗
α) = (1 − δ

n2) ·
(1− δ

n
) ≈ (1− δ

n
). The second part is easy to follow. 2

In the next section, we prove the properties of protocol Optimal-ABA.

14.3.3.4 Properties of Optimal-ABA

Lemma 14.30 In Optimal-ABA, in total there can be t segment failures. The
Checking Phase and Expansion Phase may be executed for at most 2t times.
But Output Phase may be executed at most t times, once for each segment.

Proof: As there are total t corrupted parties, in total there can be t segment
failures. These t failures may occur with respect to a single segment or may
be distributed across t segments. After t failures, all corrupted parties will be
removed from P and hence segment failure can not occur any more.

Since a segment may fail in Expansion Phase, there can be 2t executions of
Checking Phase and Expansion Phase of which at most t may be non-robust
executions (conflict triplet is found) and remaining t may be robust executions.
Since segment can not fail in Output Phase, this phase may be executed at
most t times, once for each segment. 2

Lemma 14.31 (Termination of Optimal-ABA) Protocol Optimal-ABA will ter-
minate eventually, except with error probability at most ε.

Proof: Let T denote the event that Optimal-ABA terminates. Likewise Tα

denotes the event that segment Sα terminates. From protocol Optimal-ABA, we
see that the segments are executed sequentially. That is, an honest party starts
executing segment Sα+1 only after it terminates segment Sα. We formalize this
by introducing a dependency relation between any two events, say E1 and E2: We
write E1 7→ E2 to mean that event E2 occurs, given that event E1 happens. Now
we see that in protocol Optimal-ABA, the following holds: T1 7→ T2 7→ · · · 7→ Tt.

It is clear that protocol Optimal-ABA terminates implies that all the t segments
S1, . . . ,St terminates and therefore we have

Prob(T) = Prob(Tt ∩ Tt−1 ∩ · · · ∩ T1)

= Prob(Tt|(Tt−1 ∩ · · · ∩ T1)) · Prob(Tt−1 ∩ · · · ∩ T1)

· · · · · · · · ·
= Prob(Tt|(Tt−1 ∩ · · · ∩ T1)) · Prob(Tt−1|(Tt−2 ∩ · · · ∩ T1)) · · ·Prob(T2|T1)

·Prob(T1)

So we now estimate each of the above probabilities in the last line of the above
equation. Let aα be the number of times Checking Phase and Expansion
Phase has been executed in segment Sα. By Lemma 14.30, t ≤ a1 + . . . +
at ≤ 2t. Recall that Output Phase will be executed only once in a segment.
We now estimate Prob(T1). If segment S1 terminates then it implies that all
the a1 instances of Checking Phase and Expansion Phase and the single
instance of Output Phase in S1 terminates. It also implies that event E (recall
from subsection describing Checking Phase) happens in all the a1 instances of
Checking Phase in S1. We now define the following notations:

367

• Ei: denotes the event that event E happens in the ith instance of Checking
Phase in segment S1, for i = 1, . . . , a1.

• Ci: denotes the event that ith instance of Checking Phase terminates in
segment S1, for i = 1, . . . , a1.

• Xi: denotes the event that ith instance of Expansion Phase terminates in
segment S1, for i = 1, . . . , a1.

• O: denotes the event that the single instance of Output Phase terminates
in S1.

In segment S1, the following dependency relation holds: E1 7→ C1 7→ X1 7→
E2 7→ · · · 7→ Ea1 7→ Ca1 7→ Xa1 7→ O. Now E1 occurs with probability (1 − ε

n
).

This follows from the fact that E occurs with probability (1− ε
n
). Moreover any

event in the above chain of events happens with probability (1 − ε
n
), given that

all the events before that event has happened. This follows from Lemma 14.21,
Lemma 14.25 and Lemma 14.28. Therefore, we may write

Prob(T1) = Prob(O ∩Xa1 ∩ Ca1 ∩ Ea1 ∩ · · · ∩X1 ∩ C1 ∩ E1)

= Prob(O|(Xa1 ∩ Ca1 ∩ Ea1 ∩ · · · ∩X1 ∩ C1 ∩ E1) ·
Prob(Xa1 ∩ Ca1 ∩ Ea1 ∩ · · · ∩X1 ∩ C1 ∩ E1)

· · · · · · · · ·
· · · · · · · · ·

= Prob(O|(Xa1 ∩ Ca1 ∩ Ea1 ∩ · · · ∩X1 ∩ C1 ∩ E1)) · · · ·
Prob(X1|(C1 ∩ E1)) · Prob(C1|E1) · Prob(E1)

= (1− ε

n
) · (1− ε

n
) · · · · · — (3a1 + 1) times.

= (1− ε

n
)3a1+1

Now it is easy to see that Prob(T2|T1) = (1− ε
n
)3a2+1 and in general Prob(Tα|(Tα−1∩

Tα−2 ∩ · · · ∩ T1)) = (1− ε
n
)3aα+1. Hence we can write

Prob(T) = Prob(Tt|(Tt−1 ∩ · · · ∩ T1)) · Prob(Tt−1|(Tt−2 ∩ · · · ∩ T1))

· · ·Prob(T2|T1) · Prob(T1)

= (1− ε

n
)3at+1 · · · (1− ε

n
)3a1+1

= (1− ε

n
)
∑t

α=1(3aα+1)

= (1− ε

n
)7t Putting

t∑
α=1

aα = 2t

≈ (1− 7t
ε

n
)

≈ (1− ε).

Hence the lemma. 2

Lemma 14.32 Conditioned on the event that segment Sα terminates, every hon-
est party outputs common m∗

α at the end of Sα, except with probability δ
n
. More-

over if the honest parties start Sα with same input message mα, then m∗
α = mα.

368

Proof: Sα may terminate at the end of Checking Phase or at the end of
Output Phase. If Sα terminates at the end of Checking Phase, then every
party assigns m∗

α = m†
α, where m†

α is a predefined value. Hence in this case the
first part of the lemma holds without any error.

Now let Sα terminates at the end of Output Phase. Let us define an event
Eo: Eo is the event that every party in P outputs common m∗

α at the end of
Output Phase of Sα. Now by Correctness of the Output Phase (Lemma
14.29), given event E, all honest parties in P will hold common m∗

α, except with
error probability δ

n
. So we have, Prob(Eo|E) ≥ (1− δ

n
). Now

Prob(Eo) = Prob(Eo|E) · Prob(E)

≥ (1− δ

n
)(1− ε

n
) ≥ 1− δ

n
− ε

n

≥ 1− δ

n
− δ

n2
as ε ≤ δ

n

≈ 1− δ

n

We now prove the second part of the lemma. If all the honest parties start
with same input mα then by Lemma 14.22, P ′ch will be constructed with the
honest parties in it holding mα. Then by Lemma 14.26, P ′ex will be constructed
with mα as the common message of the honest parties in it and finally every
honest party in P will agree on mα in Output Phase. 2

Lemma 14.33 (Correctness of Optimal-ABA) Conditioned on the event that
Optimal-ABA terminates, every honest party outputs common m∗ at the end of
Optimal-ABA, except with probability δ. Moreover if the honest parties start
Optimal-ABA with same input message m, then m∗ = m.

Proof: By Lemma 14.32, every honest party outputs common m∗
α at the end of

Sα, except with probability δ
n
, conditioned on the event that Sα terminates. As

there are t segments, for all the segments the above holds, except with probability
at most t δ

n
≈ δ. Since m∗ is the concatenation of m∗

1, . . . , m
∗
t , it follows that every

party agrees on common m∗, except with probability δ.
The second part of the lemma follows from the fact that if the honest parties

start Sα with same input message mα, then m∗
α = mα (by Lemma 14.32). 2

Theorem 14.34 Optimal-ABA is a (ε, δ)-ABA protocol.

Proof: Follows from Lemma 14.31 and Lemma 14.33. 2

Theorem 14.35 Protocol Optimal-ABA privately communicates O(`n + n10κ +
n7κ2) bits to agree on an ` bit message.

Proof: In Optimal-ABA, Checking Phase and Expansion Phase may be
executed for at most 2t times and Output Phase may be executed t times (by
Lemma 14.30). We now compute the communication complexity of a single execu-
tion of Checking Phase and Expansion Phase. In Checking Phase, there
are at most 2n′2 instances of SAVSS-Share and SAVSS-Rec-Private. Moreover,
there are two executions of Patra-ACS to agree on a set of parties of size t+1 and
n′ A-cast of n length response vectors. Since n′ = O(n), the total communication

369

complexity during one execution of Checking Phase is O(n8κ+n6(κ2+n log n))
bits.

During the execution of Expansion Phase, the most costly step in terms of
communication complexity is the execution of Patra-ACS, which will be executed
t′ times (the maximum number of iterations of while loop) in the while loop.
Since t′ = O(n), this step requires a communication complexity of O(n9κ) bits.
Moreover, during Expansion Phase each party in K will privately send his
`/t bit message to exactly one party in K to which it is mapped. As |K| =
O(n), this step requires a communication cost of O(n`/t) bits. So in total,
the communication complexity of a single execution of Checking Phase plus
Expansion Phase is O(n9κ + n6κ2 + n`/t) bits. So executing both the phases
2t = Θ(n) times require a communication complexity of O(`n+n10κ+n7κ2) bits.

A single execution of Output Phase requires O(n′2c + n′3κ) bits of private
communication. Now O(n′2c+n′3κ) = O(`+n′3κ) as c = d `+1

td
e = d `+1

tt′ e and n′ =
O(n), t′ = O(n). So t executions of Output Phase require a communication
complexity of O(n`+n4κ) bits. Thus the communication complexity of Optimal-
ABA is O(`n + n10κ + n7κ2) bits. 2

14.4 Conclusion and Open Problem

In this chapter, we presented communication optimal multi-valued A-cast and
ABA protocols for large message. Specifically, our protocols for A-cast and ABA
are communication optimal for any ` = ω(n2(n + κ)) and ` = ω(n9κ + n6κ2), re-
spectively. As far as our knowledge is concerned, we are the first to propose com-
munication optimal protocols for large message in asynchronous networks. Our
ABA protocol uses party-elimination framework and introduces a novel technique
to construct a set containing 2t + 1 parties with all honest parties in it holding a
common message m, from a set of t + 1 parties with all the honest party(ies) in
it holding m.

As mentioned before in this chapter, we can get a better bound on ` (for which
our ABA protocol is communication optimal) by replacing the black box ABA
of [127] by more communication efficient ABA protocol for small message. But
designing such efficient ABA protocol (which is also an important problem in its
own right) is beyond the scope of this chapter and we leave it as an interesting
open question. A slightly tougher problem would be to design communication
optimal A-cast and ABA protocols for all values of ` (if it is possible to design).
In summary, we have the following open question:

Open Problem 22 How to design communication optimal A-cast and ABA pro-
tocols for all values of `? or We may ask: Is it possible to design communication
optimal A-cast and ABA protocols for all values of `?

370

Part III

Summary, Discussions and
Future Directions

371

Chapter 15

Conclusion

In this chapter, we summarize our contribution in this thesis, draw several in-
sightful inferences from our investigations and then mention several problems for
future investigations.

15.1 Summary of Contributions

In this thesis, three related secure distributed computing problems were studied:
VSS, BA and MPC. We first briefly summarize our main achievements concerning
VSS:

• We have investigated the round complexity of statistical VSS in synchronous
network and have shown that the lower bounds for the round complexity
of perfect VSS can be circumvented by introducing a negligible probability
of error. We also have shown that the above can be concluded even for
the weaker notion of VSS, called WSS which is used as important building
block for VSS.

• We have designed statistical VSS protocol with optimal resilience in syn-
chronous network which reports the best known communication complexity
and round complexity so far in the literature.

• We have proposed several AVSS protocols both in perfect and statistical
category which show significant gain in communication complexity over the
existing protocols.

For designing our VSS protocols in synchronous and asynchronous network,
we have also investigated the complexity measures of ICP and have proposed
several protocols in both the networks. Our protocols are much more efficient
than the existing ICPs. An important feature of our VSS and ICP protocols
are that all of them can deal with multiple secrets concurrently (if necessary)
and thus harness many advantages of dealing with multiple secrets. Though here
we have used our ICPs and VSS protocols to design ABA, MPC and AMPC
protocols, they are of independent interest and they can be used in many other
applications.

We next summarize our contribution for BA. Our works in this thesis focus
on asynchronous BA or ABA.

• We have proposed a new optimally resilient ABA protocol for short mes-
sage that improves the communication complexity of existing ABA protocols

372

significantly. In that direction, we have twisted the existing common coin
protocol that can now use an AVSS protocol sharing multiple secrets con-
currently (the existing common coin protocol was capable of using an AVSS
for single secret only).

• We have also proposed communication optimal and optimally resilient A-
cast and ABA protocols for sufficiently long message (i.e both the protocols
communicates O(`n) bits for a message of size `).

Finally, the main achievements for MPC are as follows:

• Communication and round complexity being two most important param-
eters of MPC protocols, we have presented a statistical MPC protocol in
synchronous network that simultaneously minimizes the communication and
round complexity, while the existing protocols either focuses on reducing
communication complexity or round complexity at a time.

• We have studied a specific instance of MPC problem (in synchronous net-
work) called multiparty set intersection or MPSI problem. Here we have
shown the drawbacks of the existing MPSI protocol and proposed two new
protocols for the problem.

• In asynchronous network, we have proposed both statistical as well as per-
fect AMPC protocols. Our protocol for statistical AMPC with optimal
resilience shows a huge gain in communication complexity over the exist-
ing protocol. Even our perfect AMPC with optimal resilience gains over
the existing protocol in terms of communication complexity. Apart from
presenting protocols, we have also shown that the existing AMPC that re-
ported to have the best communication complexity (same as ours) is not a
correct AMPC protocol.

15.2 Insightful Inferences

• Our investigation on the round complexity of statistical VSS and WSS in
synchronous network has shown that the lower bounds for the round com-
plexity of VSS and WSS can be circumvented by introducing a negligible
probability of error. For instance, with 3t + 1 parties while perfect VSS
requires three rounds for sharing, statistical VSS requires only two rounds.

• In general, designing any interactive protocol in asynchronous network is
much more difficult and un-intuitive than designing protocol in synchronous
network. Also due to inherent difficulties, most of the interactive distributed
computing protocols are generally less fault tolerant and more communi-
cation intensive in asynchronous network than synchronous network. For
example, while perfect AVSS and AMPC is possible iff n ≥ 4t + 1, perfect
VSS and MPC is possible iff n ≥ 3t + 1. But unlike AVSS and AMPC,
both BA as well as ABA require n ≥ 3t + 1. Now it is natural to expect a
gap in communication complexity (or communication optimality) between
BA and ABA protocols with n = 3t + 1. But our result in this work shows
that asynchrony of the network seems to have no effect on communication
optimality as well. Fitzi et al. [75] designed a communication optimal (i.e

373

communicates O(`n) bits for a message of size `) BA for large message with
the help of BA protocols for smaller message in synchronous network. In
this work, we have achieved the same for ABA. Our ABA protocol for long
message extracts several advantages offered by directly dealing with long
messages. In our ABA, we use player-elimination framework introduced in
[98] in the context of MPC. So far player-elimination was used only in MPC
and AMPC and hence our result shows the first non-MPC application of
the technique.

• As mentioned in the previous item, perfect AVSS and AMPC is possible iff
n ≥ 4t + 1 parties, while perfect VSS and MPC is possible iff n ≥ 3t + 1.
So perfect AVSS and AMPC are less fault tolerant in comparison to per-
fect VSS and MPC. Thus we can at least work towards closing the gap
in communication complexity of the protocols in synchronous and asyn-
chronous network. In our work, we are almost able to close the gap between
perfect MPC and AMPC with optimal resilience. While the best known per-
fect MPC [14] requires communication of O(n log n) bits per multiplication
gate, our proposed perfect AMPC requires O(n2 log n) bits per multiplica-
tion gate (existing best known AMPC reported O(n3 log n)). So this urges
one to further investigate for closing the gap completely. For designing
our AMPC, we present a novel AVSS scheme that achieves an interesting
property which is first of its kind.

• Similar to perfect case mentioned before, statistical AVSS and AMPC are
less fault tolerant than statistical VSS and MPC. But unlike perfect case,
there was a huge gap in communication complexity between statistical MPC
and AMPC with optimal resilience (statistical MPC: O(n2 log 1

ε
) bits per

multiplication gate [12]; statistical AMPC: Ω(n11(log 1
ε
)4) bits per multipli-

cation gate [21]). In this work, we have significantly reduced this gap by
presenting a statistical AMPC that communicates O(n5 log 1

ε
) bits per mul-

tiplication gate. But compared to perfect case, statistical case requires more
effort in order to close the gap. The key primitive of our AMPC is ACSS
which is designed using AVSS as the vital component. The only existing
optimally resilient statistical AVSS of [39] uses many black box primitives
for its design and due to the use of many primitives, the protocol is very
involved and communication intensive. For our statistical AVSS, we not
only reduced the number of used black-box primitives, but we also pro-
vide efficient implementation of our primitives. Put together, our proposed
statistical AVSS protocol is far better than the existing protocol of [39].

• We have studied a specific instance of MPC problem called multiparty set
intersection or MPSI problem and provided customized solutions for the
same. From our investigation, we conclude that though MPSI can be solved
using general MPC protocol, but a general MPC may not give as efficient
solution as a specific solution to these problems may provide. This is be-
cause, the specific solution takes into account subtleties of the problems
and accordingly finds efficient solution. Hence the well-motivated specific
instances of MPC, e.g. set union, cardinality, matching etc, may be looked
at individually in order to obtain customized solutions.

• Our proposed optimally resilience statistical VSS (in synchronous network)
reporting the best known communication and round complexity employs an

374

important primitive called ICP. In this work, we have extended the existing
definition of ICP to a multi-verifier and multi-secret ICP and proposed a
protocol for the same which turns out to be the best one in the literature in
terms of both communication and round complexity. Using our new multi-
verifier and multi-secret ICP (along with several other new techniques),
our VSS is able share multiple secrets concurrently and is far better that
multiple execution of protocols for single secret. Finally using our VSS for
multiple secrets we are able to design a synchronous MPC that minimizes
the communication and round complexity simultaneously, where existing
MPC protocols try to minimize one complexity measure at a time.

15.3 Future Works and Future Directions

Several open problems have been mentioned in-text throughout the thesis. How-
ever, all these are what are not yet solved within the purview and viewpoint of
this thesis. In this section, we provide some future directions that are beyond
this work’s viewpoint. We note that there are several ways to look beyond this
work and they can be categorized as

1. Future Work of Type I: Future work that increases the scope of the
results and that weakens the set of assumptions made in this thesis.

2. Future Work of Type II: Future work that incorporates several con-
cepts from across the fields like game theory to redefine the concept of our
concerned problem.

We briefly discuss about the above items in the sequel.

15.3.1 Future Work of Type I

15.3.1.1 Incomplete Network

In this thesis, we restricted our network to complete network. But in real life
it is quite impractical to have an underlying network as complete graph where
every two parties can communicate between them though their private and secure
channel. There have been very little attempt to characterize, find feasibility
conditions and feasible solutions for the distributed computing problems like VSS,
BA and MPC over graphs of smaller degree [55, 138, 16, 17, 88]. Thus it is very
important to pursue further research in incomplete network model.

15.3.1.2 Directed Network

We have restricted our underlying network to be undirected which means every
channel in the network provides bidirectional communication. Now if the net-
work is incomplete as well as the channels are unidirectional, then we may ask
the following questions: what are the conditions required for VSS, BA and MPC
to be possible or feasible? The problem of secure and reliable message transmis-
sion (where there are specific processors called sender and receiver in distributed
network such that the sender wants to send some message securely and reliably
to the receiver) have been studied in incomplete directed network in [144, 142].
Directed network is essential to model several practical situations. Hence it is
important to study VSS, BA and MPC in directed network.

375

15.3.1.3 Mobile Network

While the topology of the network is assumed to remain unchanged throughout
the runtime of the protocol in this thesis, such an assumption may not always
hold in practice. Thus, secure computation over mobile networks seems to be a
different proposition all together. We note that the ideas to deal with mobile ad-
versaries over static networks can be used to thwart static (or mobile) adversaries
in mobile networks (over the same set of parties) - this is because, the disappear-
ing of an edge can be treated as that edge being newly fail-stop corrupted, while
the reappearing of a new edge may be treated as the curing of that infected edge.

15.3.1.4 Hybrid Network

In this thesis we have considered purely synchronous or purely asynchronous
network. There can be networks that exercise properties of synchronous and
asynchronous network in many ways. In literature there are works on MPC,
VSS and BA over network that has several synchronous rounds in the beginning
and subsequently the network behaves in a complete asynchronous manner [15,
79]. There is another work on MPC where the network is assumed to have a
synchronization point, the network behaves as asynchronous network before and
after the point [51]. We may define practically motivated hybrid networks of
different types and study the problems in such networks.

15.3.1.5 Distributed Topology Information

In most situations we assume that every party is well aware of the topology of the
network used for communication (applicable for incomplete network). But unlike
the full-topological-knowledge model, a more realistic model is the one wherein
each party knows about all his neighbors in the network. Or sometimes, each
party knows up to two levels that is his neighbors’ neighbors, or may be up to
some constant number of levels. We remark that the design of secure protocols
with distributed topological information (like each party knowing the identity of
his neighbors alone) is several times more challenging and complex as compared
to their full-topological-information counterparts.

15.3.1.6 Fixed Fault Quality and Quantity

Not all basic fault-types are covered by our fault model and the models used so far
in the literature of VSS, BA, MPC. We have considered Byzantine adversary only
for this thesis. There are many works that deal with passive, mobile or mixed
adversary [20, 124, 33, 77, 99, 76, 2]. But there are other fault types that are
never explored in the literature. For example, the disruptive fault wherein data
integrity is lost without the adversary actually reading the data is not considered
in this thesis and even in the literature of VSS, BA, MPC.

15.3.2 Future Work of Type II

15.3.2.1 Rational Distributed Computing

Motivated by the desire to develop more realistic models of, and protocols for,
interactions between mutually distrusting parties, there has recently been signif-
icant interest in combining the approaches and techniques of game theory with

376

those of cryptographic protocol design. This inter-disciplinary area of research
is also called as Rational Cryptography. So we may further study rational dis-
tributed computing that would include rational VSS, BA and MPC. Broadly
speaking, in rational cryptography two directions are currently being pursued in
this area (we may recast the following in terms of VSS, BA and MPC problem):

1. Applying cryptography to game theory: Certain game-theoretic equilibria
are achievable if a trusted mediator is available. The question here is: to
what extent can this mediator be replaced by a distributed cryptographic
protocol run by the parties themselves?

2. Applying game-theory to cryptography: Traditional cryptographic models
assume some honest parties who faithfully follow the protocol, and some
arbitrarily malicious parties against whom the honest parties must be pro-
tected. Game-theoretic models propose instead that all parties are simply
self-interested (i.e., rational), and the question then is: how can we model
and design meaningful protocols for such a setting?

15.3.2.2 Quantum Distributed Computing

Quantum cryptography is different from traditional cryptographic systems in that
it relies more on physics, rather than mathematics, as a key aspect of its secu-
rity model. An important and unique property of quantum cryptography is the
ability of the two communicating users to detect the presence of any third party
trying to gain knowledge of the key. This results from a fundamental aspect of
quantum mechanics: the process of measuring a quantum system in general dis-
turbs the system. A third party trying to eavesdrop on the key must in some way
measure it, thus introducing detectable anomalies. By using quantum superposi-
tions or quantum entanglement and transmitting information in quantum states,
a communication system can be implemented which detects eavesdropping. If
the level of eavesdropping is below a certain threshold, a key can be produced
that is guaranteed to be secure (i.e. the eavesdropper has no information about),
otherwise no secure key is possible and communication is aborted. The security of
quantum cryptography relies on the foundations of quantum mechanics, in con-
trast to traditional public key cryptography which relies on the computational
difficulty of certain mathematical functions, and cannot provide any indication
of eavesdropping or guarantee of key security. There are already huge amount of
work on VSS, BA and MPC in quantum cryptography settings. We may further
study these problems.

377

List of Publications Related to This Thesis (In reverse
chronological order)

1. Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Communication
Efficient Perfectly Secure VSS and MPC in Asynchronous Networks with
Optimal Resilience. In D. J. Bernstein and T. Lange, editors, Advances in
Cryptology - AFRICACRYPT’10, Third International Conference in Cryp-
tology in Africa, Stellenbosch, South Africa, May 3-6, 2009, Proceedings,
volume 6055 of Lecture Notes in Computer Science, pages 184–202. Springer
Verlag, 2010. Full version communicated to Journal of ACM (JACM).

2. Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient Statis-
tical Asynchronous Verifiable Secret Sharing with Optimal Resilience. In
K. Kurosawa, editor, Fourth International Conference on Information The-
oretic Security, ICITS 2009, Shizuoka, Japan, December 3-6, 2009, Proceed-
ings, volume 5973 of Lecture Notes in Computer Science, Springer Verlag,
2009. Full version communicated to Journal of Information and Computa-
tion.

3. Arpita Patra, Ashish Choudhary and C. Pandu Rangan. Communication
Efficient Statistical Asynchronous Multiparty Computation with Optimal
Resilience. Accepted in The 5th International Conferences on Informa-
tion Security and Cryptology (INSCRYPT) 2009, December 12-15, 2009,
Beijing, China, Lecture Notes in Computer Science.

4. Arpita Patra, Ashish Choudhury, Tal Rabin, and C. Pandu Rangan. The
Round Complexity of Verifiable Secret Sharing Revisited. In S. Halevi, ed-
itor, Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Pro-
ceedings, volume 5677 of Lecture Notes in Computer Science, pages 487–504.
Springer Verlag, 2009.

5. Arpita Patra, Ashish Choudhary and C. Pandu Rangan. Efficient Asyn-
chronous Byzantine Agreement with Optimal Resilience. In L. Alvisi, edi-
tor, Proceedings of the 28th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2009, Calgary, Alberta, Canada, August 10-12,
pages 92-101, ACM Press, 2009. Full version communicated to Journal of
Distributed Computing.

6. Arpita Patra, Ashish Choudhary and C. Pandu Rangan. Round Effi-
cient Unconditionally Secure MPC and Multiparty Set Intersection with
Optimal Resilience. In Progress in Cryptology - INDOCRYPT 2009, 10th
International Conference on Cryptology in India, New Delhi, India, Decem-
ber 13-16, 2009. Proceedings, volume 5922 of Lecture Notes in Computer
Science, pages 398–417. Springer Verlog, 2009. Full version communicated
to Journal of Theoretical Computer Science.

7. Arpita Patra, Ashish Choudhary and C. Pandu Rangan. Information
Theoretically Secure Multi Party Set Intersection Re-visited. In M. J.
Jacobson Jr., V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in
Cryptography, 16th Annual International Workshop, SAC 2009, Calgary,
Alberta, Canada, August 13-14, 2009, Proceedings, volume 5867 of Lecture

378

Notes in Computer Science. Springer Verlag, 2009. Full version communi-
cated to Journal of Designs, Codes and Cryptography.

8. G. Sathya Narayanan, T. Aishwarya, Anugrah Agrawal, Arpita Patra,
Ashish Choudhary and C. Pandu Rangan. Multi Party Distributed Private
Matching, Set Disjointness and Cardinality Set Intersection with Informa-
tion Theoretic Security. In J. A. Garay, A. Miyaji and A. Otsuka, editors,
In Proc. of 8th International Conference on Cryptology and Network Secu-
rity (CANS) 2009, Kanazawa, Japan, December 12-14, 2009. Proceedings
volume 5888 of Lecture Notes in Computer Science, pages 21-40, Springer
Verlag, 2009.

9. Arpita Patra, Ashish Choudhary and C. Pandu Rangan. Round ef-
ficient unconditionally secure multiparty computation protocol. In D.
R. Chowdhury, V. Rijmen, and A. Das, editors, Progress in Cryptology -
INDOCRYPT 2008, 9th International Conference on Cryptology in India,
Kharagpur, India, December 14-17, 2008. Proceedings, volume 5365 of Lec-
ture Notes in Computer Science, pages 185–199. Springer Verlag, 2008.

10. Arpita Patra and C. Pandu Rangan. Communication Optimal Multi-
Valued Asynchronous Byzantine Agreement with Optimal Resilience. Cryp-
tology ePrint Archive, Report 2009/433, 2009.

11. Arpita Patra and C. Pandu Rangan. Communication Optimal Multi-
Valued Asynchronous Broadcast Primitive with Optimal Resilience. Sub-
mitted to Latincrypt, 2010.

12. Arpita Patra and C. Pandu Rangan. Communication Efficient Asyn-
chronous Byzantine Agreement. Submitted to PODC 2010.

13. Arpita Patra and C. Pandu Rangan. Communication and Round Efficient
Information Checking Protocol. Communicated to Information Processing
Letter Journal.

14. Jonathan Katz, Ranjit Kumaresan, Ashish Choudhary, Srivatsan Narayanan,
Arpita Patra, Ananth Raghunathan, C. Pandu Rangan. The Round Com-
plexity of Verifiable Secret Sharing: The Statistical Case. To be submitted.

379

Bibliography

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An Almost-surely Terminating
Polynomial Protocol for Asynchronous Byzantine Agreement with Optimal
Resilience. In R. A. Bazzi and B. Patt-Shamir, editors, Proceedings of
the Twenty-Seventh Annual ACM Symposium on Principles of Distributed
Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 405–
414. ACM Press, 2008.

[2] B. Altmann, M. Fitzi, and U. M. Maurer. Byzantine Agreement Secure
against General Adversaries in the Dual Failure Model. In P. Jayanti,
editor, Distributed Computing, 13th International Symposium, Bratislava,
Slavak Republic, September 27-29, 1999, Proceedings, volume 1693 of Lec-
ture Notes in Computer Science, pages 123–137. Springer Verlag, 1999.

[3] J. Bar-Ilan and D. Beaver. Non-Cryptographic Fault-Tolerant Computing
in Constant Number of Rounds of Interaction. In Proceedings of the Eighth
Annual ACM Symposium on Principles of Distributed Computing, August
14-16, 1989, Edmonton, Alberta, Canada, pages 201–209. ACM Press, 1989.

[4] D. Beaver. Multiparty Protocols Tolerating Half Faulty Processors. In
G. Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 560–572. Springer Verlag, 1989.

[5] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization.
In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings, volume 576 of Lecture Notes in
Computer Science, pages 420–432. Springer Verlag, 1991.

[6] D. Beaver. Secure Multiparty Protocols and Zero-knowledge Proof Systems
Tolerating a Faulty Minority. Journal of Cryptology, 4(4):75–122, 1991.

[7] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with Low
Communication Overhead. In A. Menezes and S. A. Vanstone, editors,
Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings, volume 537 of Lecture Notes in Computer Science, pages 62–
76. Springer Verlag, 1990.

[8] D. Beaver and S. Haber. Cryptographic Protocols Provably Secure Against
Dynamic Adversaries. In R. A. Rueppel, editor, Advances in Cryptology

380

- EUROCRYPT ’92, Workshop on the Theory and Application of Crypto-
graphic Techniques, Balatonfüred, Hungary, May 24-28, 1992, Proceedings,
volume 658 of Lecture Notes in Computer Science, pages 307–323. Springer
Verlag, 1992.

[9] D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure
Protocols (Extended Abstract). In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Mary-
land, USA, pages 503–513. ACM Press, 1990.

[10] D. Beaver and A. Wool. Quorum-Based Secure Multi-party Computation.
In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Espoo, Finland, May 31 - June 4, 1998. Proceeding,, volume 1403 of
Lecture Notes in Computer Science, pages 375–390. Springer Verlog, 1998.

[11] Z. Beerliová-Trub́ıniová, M. Fitzi, M. Hirt, U. M. Maurer, and V. Zikas.
MPC vs. SFE: Perfect Security in a Unified Corruption Model. In
R. Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings,
volume 4948 of Lecture Notes in Computer Science, pages 231–250. Springer
Verlag, 2008.

[12] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient Multi-party Computation
with Dispute Control. In S. Halevi and T. Rabin, editors, Theory of Cryp-
tography, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in
Computer Science, pages 305–328. Springer Verlag, 2006.

[13] Z. Beerliová-Trub́ıniová and M. Hirt. Simple and Efficient Perfectly-Secure
Asynchronous MPC. In K. Kurosawa, editor, Advances in Cryptology -
ASIACRYPT 2007, 13th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kuching, Malaysia, De-
cember 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer
Science, pages 376–392. Springer Verlag, 2007.

[14] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-Secure MPC with Linear
Communication Complexity. In R. Canetti, editor, Theory of Cryptography,
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA,
March 19-21, 2008, volume 4948 of Lecture Notes in Computer Science,
pages 213–230. Springer Verlag, 2008.

[15] Z. Beerliova-Trubiniova, M. Hirt, and J. B. Nielsen. Almost-Asynchronous
MPC with Faulty Minority. Cryptology ePrint Archive, Report 2008/416,
2008.

[16] A. Beimel. On Private Computation in Incomplete Networks. In A. Pelc and
M. Raynal, editors, Structural Information and Communication Complex-
ity, 12th International Colloquium, SIROCCO 2005, Mont Saint-Michel,
France, May 24-26, 2005, Proceedings, volume 3499 of Lecture Notes in
Computer Science, pages 18–33. Springer Verlog, 2005.

[17] Amos Beimel. On Private Computation in Incomplete Networks. Dis-
tributed Computing, 19(3):237–252, 2007.

381

[18] M. Ben-Or. Another Advantage of Free Choice: Completely Asynchronous
Agreement Protocols. In Proceedings of the Second Annual ACM SIGACT-
SIGOPS Symposium on Princiles of Distributed Computing, August 17-19,
1983, Montreal, Quebec, Canada, pages 27–30. ACM Press, 1983.

[19] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Compu-
tation. In Proceedings of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, 1993, pages 52–61. ACM Press, 1993.

[20] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10. ACM
Press, 1988.

[21] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous Secure Computations
with Optimal Resilience. In Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing, Los Angeles, Califor-
nia, USA, August 14-17, pages 183–192. ACM Press, 1994.

[22] J. C. Benaloh and J. Leichter. Generalized Secret Sharing and Monotone
Functions. In S. Goldwasser, editor, Advances in Cryptology - CRYPTO
’88, 8th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes
in Computer Science, pages 27–35. Springer Verlog, 1988.

[23] P. Berman, G. A. Garay, and K. J. Perry. Bit Optimal Distributed Con-
sensus. In Computer Science Research, 2009.

[24] P. Berman and J. A. Garay. Asymptotically Optimal Distributed Con-
sensus (Extended Abstract). In G. Ausiello, M. Dezani-Ciancaglini, and
S. R. D. Rocca, editors, Automata, Languages and Programming, 16th In-
ternational Colloquium, ICALP’89, Stresa, Italy, July 11-15, 1989, Pro-
ceedings, volume 372 of Lecture Notes in Computer Science, pages 80–94.
Springer, 1989.

[25] P. Berman and J. A. Garay. Cloture Votes: n/4-Resilient Distributed Con-
sensus in t+1 Rounds. Mathematical Systems Theory, 26(1):3–19, 1993.

[26] P. Berman, J. A. Garay, and K. J. Perry. Towards Optimal Distributed
Consensus (Extended Abstract). In Proceedings of 30th Annual Sympo-
sium on Foundations of Computer Science, Research Triangle Park, North
Carolina, 30 October - 1 November 1989, pages 410–415. IEEE Computer
Society, 1989.

[27] G. R. Blakley. Safeguarding Cryptographic Keys. In Proceedings of the
National Computer Conference, pages 313–317. American Federation of In-
formation Processing Societies, 1979.

[28] M. Blum, A. D. Santis, S. Micali, and G. Persiano. Noninteractive Zero-
Knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

382

[29] G. Bracha. An Asynchronous b(n − 1)/3c-resilient Consensus Protocol.
In Proceedings of the Third Annual ACM Symposium on Princiles of Dis-
tributed Computing, Vancouver, B. C., Canada, August 27-29, 1984, pages
154 – 162. ACM Press, 1984.

[30] G. Bracha. Asynchronous Byzantine Agreement Protocols. Information
and Computation, 75(2):130–143, 1987.

[31] G. Bracha. An O(log n) Expected Rounds Randomized Byzantine Generals
Protocol. Journal of ACM, 34(4):910–920, 1987.

[32] G. Bracha and S. Toueg. Asynchronous Consensus and Broadcast Protocols.
Journal of ACM, 32(4):824–840, 1985.

[33] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-Round Secure Com-
putation and Secure Autonomous Mobile Agents. In U. Montanari, José
D. P. Rolim, and E. Welzl, editors, Automata, Languages and Program-
ming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland,
July 9-15, 2000, Proceedings, volume 1853 of Lecture Notes in Computer
Science, pages 512–523. Springer Verlog, 2000.

[34] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous
Verifiable Secret Sharing and Proactive Cryptosystems. In V. Atluri, editor,
Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, Washingtion, DC, USA, November 18-22, 2002, pages
88–97. ACM Press, 2002.

[35] R. Canetti. Studies in Secure Multiparty Computation and Applications.
PhD thesis, Weizmann Institute, Israel, 1995.

[36] R. Canetti. Security and Composition of Multiparty Cryptographic Proto-
cols. Journal of Cryptology, 13(1):143–202, 2000.

[37] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Multi-
Party Computation. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 639–648. ACM Press, 1996.

[38] R. Canetti and A. Herzberg. Maintaining Security in the Presence of Tran-
sient Faults. In Y. Desmedt, editor, Advances in Cryptology - CRYPTO
’94, 14th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 21-25, 1994, Proceedings, volume 839 of Lecture Notes
in Computer Science, pages 425–438. Springer Verlog, 1994.

[39] R. Canetti and T. Rabin. Fast Asynchronous Byzantine Agreement with
Optimal Resilience. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Theory of Computing, pages 42–51. ACM Press, 1993.

[40] L. Carter and M. N. Wegman. Universal Classes of Hash Functions. Journal
of Computer and System Sciences, 18(4):143–154, 1979.

[41] D. Chaum, C. Crpeau, and I. Damg̊ard. Multiparty Unconditionally Secure
Protocols (Extended Abstract). In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA. ACM 1988, pages 11–19. ACM Press, 1988.

383

[42] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty Computations
Ensuring Privacy of Each Party’s Input and Correctness of the Rsesult. In
C. Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Confer-
ence on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA, August 16-20, 1987, Proceedings, volume 293 of
Lecture Notes in Computer Science, pages 87–119. Springer Verlag, 1987.

[43] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret
Sharing and Achieving Simultaneity in the Presence of Faults (Extended
Abstract). In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 383–
395. ACM Press, 1985.

[44] B. A. Coan and J. L. Welch. Modular Construction of a Byzantine Agree-
ment protocol with Optimal Message Bit Complexity. Information and
Computation, 97(1):61–85, 1992.

[45] J. Considine, M. Fitzi, M. K. Franklin, L. A. Levin, U. M. Maurer, and
D. Metcalf. Byzantine Agreement Given Partial Broadcast. Journal of
Cryptology, 18(3):191–217, 2005.

[46] R. Cramer and I. Damg̊ard. Multiparty Computation, An Introduction.
Contemporary Cryptography. Birkhuser Basel, 2005.

[47] R. Cramer, I. Damg̊ard, and S. Dziembowski. On the Complexity of Ver-
ifiable Secret Sharing and Multiparty Computation. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-
23, 2000, Portland, OR, USA. ACM, pages 325–334. ACM Press, 2000.

[48] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Effi-
cient Multiparty Computations Secure Against an Adaptive Adversary. In
J. Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lec-
ture Notes in Computer Science, pages 311–326. Springer Verlag, 1999.

[49] R. Cramer, I. Damg̊ard, and S. Fehr. On the Cost of Reconstructing a
Secret, or VSS with Optimal Reconstruction Phase. In J. Kilian, editor,
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 503–
523. Springer Verlag, 2001.

[50] R. Cramer, I. Damg̊ard, and U. M. Maurer. General Secure Multi-party
Computation from any Linear Secret Sharing Scheme. In B. Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 316–334. Springer Verlag, 2000.

[51] I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous
Multiparty Computation: Theory and Implementation. In S. Jarecki and
G. Tsudik, editors, Proceedings of Public Key Cryptography - PKC 2009,

384

12th International Conference on Practice and Theory in Public Key Cryp-
tography, Irvine, CA, USA, volume 5443 of Lecture Notes in Computer
Science, pages 160–179. Springer Verlag, March 2009.

[52] I. Damg̊ard and J. B. Nielsen. Scalable and Unconditionally Secure Mul-
tiparty Computation. In A. Menezes, editor, Advances in Cryptology -
CRYPTO 2007, 27th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lec-
ture Notes in Computer Science, pages 572–590. Springer Verlag, 2007.

[53] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In G. Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages
307–315. Springer Verlag, 1989.

[54] D. Dolev. The Byzantine Generals Strike Again. Journal of Algorithms,
3(1):14–30, 1982.

[55] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly Secure Message
Transmission. Journal of ACM, 40(1):17–47, 1993.

[56] D. Dolev, M. J. Fischer, R. J. Fowler, N. A. Lynch, and H. R. Strong.
An Efficient Algorithm for Byzantine Agreement without Authentication.
Information and Control, 52(3):257–274, 1982.

[57] D. Dolev and R. Reischuk. Bounds on Information Exchange for Byzantine
Agreement. Journal of ACM, 32(1):191–204, 1985.

[58] D. Dolev, R. Reischuk, and H. R. Strong. ‘Eventual’ Is Earlier than ‘Imme-
diate’. In Proc. of 23rd Annual Symposium on Foundations of Computer
Science, 3-5 November 1982, Chicago, Illinois, USA, pages 196–203. IEEE
Press, 1982.

[59] D. Dolev, R. Reischuk, and H. R. Strong. Early Stopping in Byzantine
Agreement. Journal of ACM, 37(4):720–741, 1990.

[60] D. Dolev and H. R. Strong. Polynomial Algorithms for Multiple Processor
Agreement. In Proceedings of the 14th Annual ACM Symposium on Theory
of Computing, May 5-7, 1982, San Francisco, California, USA, pages 401–
407. ACM Press, 1982.

[61] D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agree-
ment. SIAM Journal of Computing, 12(4):656–666, 1983.

[62] C. Dwork. Strong Verifiable Secret Sharing (Extended Abstract). In J. van
Leeuwen and N. Santoro, editors, Distributed Algorithms, 4th International
Workshop, WDAG ’90, Bari, Italy, September 24-26, 1990, Proceedings,
volume 486 of Lecture Notes in Computer Science, pages 213–227. Springer
Verlag, 1990.

[63] C. Dwork. On Verification in Secret Sharing. In J. Feigenbaum, editor,
Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 11-15, 1991,

385

Proceedings, volume 576 of Lecture Notes in Computer Science, pages 114–
128. Springer Verlag, 1991.

[64] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Shar-
ing. In 28th Annual Symposium on Foundations of Computer Science, Los
Angeles, California, 27-29 October 1987, pages 427–437. IEEE Computer
Society, 1987.

[65] P. Feldman and S. Micali. Byzantine Agreement in Constant Expected
Time (and Trusting No One). In Proceedings of 26th Annual Symposium on
Foundations of Computer Science, Portland, Oregon, 21-23 October 1985,
pages 267–276. IEEE Computer Society, 1985.

[66] P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzan-
tine Agreemet. In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 639–
648. ACM Press, 1988.

[67] P. Feldman and S. Micali. An Optimal Probabilistic Protocol for Syn-
chronous Byzantine Agreement. SIAM Journal of Computing, 26(4):873–
933, 1997.

[68] M. J. Fischer. The Consensus Problem in Unreliable Distributed Systems
(A Brief Survey). In M. Karpinski, editor, Fundamentals of Computation
Theory, Proceedings of the 1983 International FCT-Conference, Borgholm,
Sweden, August 21-27, 1983, volume 158 of Lecture Notes in Computer
Science, pages 127–140. Springer Verlag, 1983.

[69] M. J. Fischer and N. A. Lynch. A Lower Bound on the Time to Assure In-
teractive Consistency. Information Processing Letters, 14(4):183–186, 1982.

[70] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy Impossibility Proofs for
Distributed Consensus Problems. In Fault-Tolerant Distributed Computing,
pages 147–170, 1986.

[71] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of ACM, 32(2):374–382, 1985.

[72] M. Fitzi. Generalized Communication and Security Models in Byzantine
Agreement. PhD thesis, ETH Zurich, 2002.

[73] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan.
Round-Optimal and Efficient Verifiable Secret Sharing. In S. Halevi and
T. Rabin, editors, Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceed-
ings, volume 3876 of Lecture Notes in Computer Science, pages 329–342.
Springer Verlag, 2006.

[74] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable
Byzantine Agreement Secure against Faulty Majorities. In Proceedings
of the Twenty-First Annual ACM Symposium on Principles of Distributed
Computing, July 21-24, 2002 Monterey, California, USA, pages 118–126.
ACM Press, 2002.

386

[75] M. Fitzi and M. Hirt. Optimally Efficient Multi-valued Byzantine Agree-
ment. In E. Ruppert and D. Malkhi, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2006, Denver, CO, USA, July 23-26, 2006, pages 163–168, 2006.

[76] M. Fitzi, M. Hirt, and U. M. Maurer. Trading Correctness for Pri-
vacy in Unconditional Multi-Party Computation (Extended Abstract). In
H. Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer
Science, pages 121–136. Springer Verlog, 1998.

[77] M. Fitzi, M. Hirt, and U. M. Maurer. General Adversaries in Unconditional
Multi-party Computation. In K. Lam, E. Okamoto, and C. Xing, editors,
ASIACRYPT, volume 1716 of Lecture Notes in Computer Science, pages
232–246. Springer, 1999.

[78] M. Fitzi and U. M. Maurer. From Partial Consistency to Global Broadcast.
In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, May 21-23, 2000, Portland, OR, USA, pages 494–503. ACM
Press, 2000.

[79] M. Fitzi and J. Buus Nielsen. On the Number of Synchronous Rounds
Sufficient for Authenticated Byzantine Agreement. In I. Keidar, editor,
Distributed Computing, 23rd International Symposium, DISC 2009, Elche,
Spain, September 23-25, 2009. Proceedings, volume 5805 of Lecture Notes
in Computer Science, pages 449–463. Springer Verlog, 2009.

[80] M. K. Franklin, M. Gondree, and P. Mohassel. Improved Efficiency for Pri-
vate Stable Matching. In M. Abe, editor, Topics in Cryptology - CT-RSA
2007, The Cryptographers’ Track at the RSA Conference 2007, San Fran-
cisco, CA, USA, February 5-9, 2007, Proceedings, volume 4377 of Lecture
Notes in Computer Science, pages 163–177. Springer Verlog, 2006.

[81] M. K. Franklin, M. Gondree, and P. Mohassel. Communication-Efficient
Private Protocols for Longest Common Subsequence. In M. Fischlin, edi-
tor, Topics in Cryptology - CT-RSA 2009, The Cryptographers’ Track at the
RSA Conference 2009, San Francisco, CA, USA, April 20-24, 2009. Pro-
ceedings, volume 5473 of Lecture Notes in Computer Science, pages 265–278.
Springer Verlog, 2009.

[82] M. K. Franklin and G. Tsudik. Secure Group Barter: Multi-party Fair
Exchange with Semi-Trusted Neutral Parties. In R. Hirschfeld, editor,
Financial Cryptography, Second International Conference, FC’98, Anguilla,
British West Indies, February 23-25, 1998, Proceedings, volume 1465 of
Lecture Notes in Computer Science, pages 90–102. Springer Verlog, 1998.

[83] M. K. Franklin and M. Yung. Communication Complexity of Secure Com-
putation (Extended Abstract). In Proceedings of the Twenty Fourth Annual
ACM Symposium on Theory of Computing, 4-6 May 1992, Victoria, British
Columbia, Canada, pages 699–710. ACM, 1992.

[84] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient Private Matching
and Set Intersection. In C. Cachin and J. Camenisch, editors, Advances

387

in Cryptology - EUROCRYPT 2004, International Conference on the The-
ory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer
Science, pages 1–19. Springer Verlag, 2004.

[85] Z. Galil, S. Haber, and M. Yung. Cryptographic Computation: Secure
Fault-Tolerant Protocols and the Public-Key Model. In C. Pomerance,
editor, Advances in Cryptology - CRYPTO ’87, A Conference on the Theory
and Applications of Cryptographic Techniques, Santa Barbara, California,
USA, August 16-20, 1987, Proceedings, volume 293 of Lecture Notes in
Computer Science, pages 135–155. Springer Verlag, 1987.

[86] Z. Galil, A. J. Mayer, and M. Yung. Resolving Message Complexity of
Byzantine Agreement and beyond. In Proceedings of 36th Annual Sympo-
sium on Foundations of Computer Science, Milwaukee, Wisconsin, 23-25
October 1995, pages 724–733. IEEE Computer Society, 1995.

[87] J. A. Garay and Y. Moses. Fully Polynomial Byzantine Agreement for
n > 3t Processors in t+1 Rounds. SIAM Journal of Computing, 27(1):247–
290, 1998.

[88] J. A. Garay and R. Ostrovsky. Almost-Everywhere Secure Computation.
In N. P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, vol-
ume 4965 of Lecture Notes in Computer Science, pages 307–323. Springer
Verlog, 2008.

[89] J. A. Garay and K. J. Perry. A Continuum of Failure Models for Distributed
Computing. In A. Segall and S. Zaks, editors, Distributed Algorithms, 6th
International Workshop, WDAG ’92, Haifa, Israel, November 2-4, 1992,
Proceedings, volume 647 of Lecture Notes in Computer Science, pages 153–
165. Springer Verlag, 1992.

[90] R. Genarro. Theory and Practice of Verifiable Secret Sharing. PhD thesis,
Massachussets Institute of Technilogy, USA, May, 1996.

[91] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complex-
ity of Verifiable Secret Sharing and Secure Multicast. In Proceedings on
33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece. ACM, pages 580–589. ACM Press, 2001.

[92] R. Gennaro and S. Micali. Verifiable Secret Sharing as Secure Computation.
In L. C. Guillou and J. Quisquater, editors, Advances in Cryptology - EU-
ROCRYPT ’95, International Conference on the Theory and Application
of Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995, Pro-
ceeding, volume 921 of Lecture Notes in Computer Science, pages 168–182.
Springer Verlag, 1995.

[93] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and Fact-Track
Multiparty Computations with Applications to Threshold Cryptography.
In Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing, June 28 - July 2, 1998, Puerto Vallarta, Mexico,
pages 101–111. ACM Press, 1998.

388

[94] O. Goldreich. Secure Multiparty Computation.
www.wisdom.weizman.ac.il/∼oded/pp.html, 2007.

[95] O. Goldreich, S. Micali, and A. Wigderson. How to Play a Mental Game– A
Completeness Theorem for Protocols with Honest Majority. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 218–229. ACM Press, 1987.

[96] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing
but Their Validity for All Languages in NP have Zero-Knowledge Proof
Systems. Journal of ACM, 38(3):691–729, 1991.

[97] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Secret Shar-
ing Or: How to Cope with Perpetual Leakage. In D. Coppersmith, editor,
Advances in Cryptology - CRYPTO ’95, 15th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 27-31, 1995,
Proceedings, volume 963 of Lecture Notes in Computer Science, pages 339–
352. Springer Verlag, 1995.

[98] M. Hirt, U. Maurer, and B. Przydatek. Efficient Secure Multiparty Compu-
tation. In T. Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000,
6th International Conference on the Theory and Application of Cryptology
and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings,
volume 1976 of Lecture Notes in Computer Science, pages 143–161. Springer
Verlag, 2000.

[99] M. Hirt and U. M. Maurer. Complete Characterization of Adversaries Tol-
erable in Secure Multi-Party Computation. In Proceedings of the Sixteenth
Annual ACM Symposium on Principles of Distributed Computing, Santa
Barbara, California, USA, August 21-24, 1997, pages 25–34. ACM Press,
1997.

[100] M. Hirt and U. M. Maurer. Player Simulation and General Adversary Struc-
tures in Perfect Multiparty Computation. Journal of Cryptology, 13(1):31–
60, 2000.

[101] M. Hirt and U. M. Maurer. Robustness for Free in Unconditional Multi-
party Computation. In J. Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 101–118. Springer Verlag, 2001.

[102] M. Hirt, U. M. Maurer, and V. Zikas. MPC vs. SFE : Unconditional and
Computational Security. In J. Pieprzyk, editor, Advances in Cryptology
- ASIACRYPT 2008, 14th International Conference on the Theory and
Application of Cryptology and Information Security, Melbourne, Australia,
December 7-11, 2008. Proceedings, volume 5350 of Lecture Notes in Com-
puter Science, pages 1–18. Springer Verlag, 2008.

[103] M. Hirt and J. B. Nielsen. Upper Bounds on the Communication Com-
plexity of Optimally Resilient Cryptographic Multiparty Computation. In
B. K. Roy, editor, Advances in Cryptology - ASIACRYPT 2005, 11th In-
ternational Conference on the Theory and Application of Cryptology and

389

Information Security, Chennai, India, December 4-8, 2005, Proceedings,
volume 3788 of Lecture Notes in Computer Science, pages 79–99. Springer
Verlag, 2005.

[104] M. Hirt and J. B. Nielsen. Robust Multiparty Computation with Linear
Communication Complexity. In C. Dwork, editor, Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2006, Proceedings, volume 4117 of
Lecture Notes in Computer Science, pages 463–482. Springer Verlag, 2006.

[105] M. Hirt, J. B Nielsen, and B. Przydatek. Cryptographic Asynchronous
Multi-party Computation with Optimal Resilience (Extended Abstract).
In R. Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, vol-
ume 3494 of Lecture Notes in Computer Science, pages 322–340. Springer
Verlag, 2005.

[106] M. Hirt, J. B Nielsen, and B. Przydatek. Asynchronous Multi-Party Com-
putation with Quadratic Communication. In L. Aceto, I. Damg̊ard, L. A.
Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors,
Automata, Languages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II -
Track B: Logic, Semantics, and Theory of Programming & Track C: Secu-
rity and Cryptography Foundations, volume 5126 of Lecture Notes in Com-
puter Science, pages 473–485. Springer Verlag, 2008.

[107] Z. Huang, W. Qiu, Q. Li, and K. Chen. Efficient Secure Multiparty Com-
putation Protocol in Asynchronous Network. In J. H. Park, H. Chen,
M. Atiquzzaman, C. Lee, T. Kim, and S. Yeo, editors, Proceedings of Ad-
vances in Information Security and Assurance, Third International Con-
ference and Workshops, ISA 2009, Seoul, Korea, volume 5576 of Lecture
Notes in Computer Science, pages 152–158. Springer Verlag, June 2009.

[108] Y. Ishai and E. Kushilevitz. Randomizing Polynomials: A New Represen-
tation with Applications to Round-Efficient Secure Computation. In 41st
Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-
14 November 2000, Redondo Beach, California, pages 294–304. IEEE Com-
puter Society, 2000.

[109] J. Katz, C. Koo, and R. Kumaresan. Improving the Round Complexity of
VSS in Point-to-Point Networks. In L. Aceto, I. Damg̊ard, L. A. Goldberg,
M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryp-
tography Foundations, volume 5126 of Lecture Notes in Computer Science,
pages 499–510. Springer Verlag, 2008.

[110] J. Katz and C. Y. Koo. On Expected Constant-Round Protocols for Byzan-
tine Agreement. In C. Dwork, editor, Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, Santa Barbara,

390

California, USA, August 20-24, 2006, Proceedings, Lecture Notes in Com-
puter Science, pages 445–462. Springer Verlag, 2006.

[111] J. Katz and C. Y. Koo. Round-Efficient Secure Computation in Point-
to-Point Networks. In M. Naor, editor, Advances in Cryptology - EURO-
CRYPT 2007, 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24,
2007, Proceedings, volume 4515 of Lecture Notes in Computer Science,
pages 311–328. Springer Verlag, 2007.

[112] J. Katz, R. Kumaresan, A. Choudhary, S. Narayanan, A. Patra, A. Raghu-
nathan, and C. Pandu Rangan. The Round Complexity of Verifiable Secret
Sharing: The Statistical Case. Manuscript, 2010.

[113] L. Kissner and D. X. Song. Privacy-Preserving Set Operations. In V. Shoup,
editor, Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,
pages 241–257. Springer Verlag, 2005.

[114] L. Lamport. The Weak Byzantine Generals Problem. Journal of ACM,
30(3):668–676, 1983.

[115] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.

[116] R. Li and C. Wu. An Unconditionally Secure Protocol for Multi-Party
Set Intersection. In J. Katz and M. Yung, editors, Applied Cryptography
and Network Security, 5th International Conference, ACNS 2007, Zhuhai,
China, June 5-8, 2007, Proceedings, volume 4521 of Lecture Notes in Com-
puter Science, pages 222–236. Springer Verlag, 2007.

[117] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the Composition of Au-
thenticated Byzantine Agreement. In Proceedings on 34th Annual ACM
Symposium on Theory of Computing, May 19-21, 2002, Montral, Qubec,
Canada, pages 514–523. ACM Press, 2002.

[118] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[119] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting
Codes. North-Holland Publishing Company, 1978.

[120] U. M. Maurer. Secure Multi-party Computation made Simple. Discrete
Applied Mathematics, 154(2):370–381, 2006.

[121] R. J. McEliece and D. V. Sarwate. On Sharing Secrets and Reed-Solomon
Codes. Communications of the ACM, 24(9):583–584, 1981.

[122] Y. Moses and O. Waarts. Coordinated Traversal: (t + 1)-Round Byzan-
tine Agreement in Polynomial Time. Journal of Algorithms, 17(1):110–156,
1994.

391

[123] W. Ogata and K. Kurosawa. Optimum Secret Sharing Scheme Secure
against Cheating. In U. M. Maurer, editor, Advances in Cryptology - EU-
ROCRYPT ’96, International Conference on the Theory and Application
of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceed-
ing, volume 1070 of Lecture Notes in Computer Science, pages 200–211.
Springer Verlag, 1996.

[124] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In
Proceedings of the Tenth Annual ACM Symposium on Princiles of Dis-
tributed Computing, Montreal, Quebec, Canada, August 19-21, 1991, pages
51–61. ACM Press, 1991.

[125] A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan. The Round
Complexity of Verifiable Secret Sharing Revisited. In S. Halevi, editor,
Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings, volume 5677 of Lecture Notes in Computer Science, pages 487–504.
Springer Verlag, 2009.

[126] A. Patra, A. Choudhary, and C. Pandu Rangan. Round Efficient Uncon-
ditionally Secure Multiparty Computation Protocol. In D. R. Chowdhury,
V. Rijmen, and A. Das, editors, Progress in Cryptology - INDOCRYPT
2008, 9th International Conference on Cryptology in India, Kharagpur, In-
dia, December 14-17, 2008. Proceedings, volume 5365 of Lecture Notes in
Computer Science, pages 185–199. Springer Verlag, 2008.

[127] A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient Asynchronous
Byzantine Agreement with Optimal Resilience. Submitted to Distributed
Computing Journal. A preliminary version of this article appeared in Pro-
ceedings of the 28th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2009, Calgary, Alberta, Canada, August 10-12, pages
92-101, 2009.

[128] A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient Statistical Asyn-
chronous Verifiable Secret Sharing with Optimal Resilience. In K. Kuro-
sawa, editor, Information Theoretic Security, Fourth International Con-
ference, ICITS 2009, Shizuoka, Japan, December 3-6, 2009, Proceedings,
volume 5973 of Lecture Notes in Computer Science. Springer Verlag, 2009.

[129] A. Patra, A. Choudhary, and C. Pandu Rangan. Information Theoretically
Secure Multi Party Set Intersection Re-visited. In M. J. Jacobson Jr.,
V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in Cryptography,
16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada,
August 13-14, 2009, Revised Selected Papers, volume 5867 of Lecture Notes
in Computer Science. Springer Verlag, 2009.

[130] A. Patra, A. Choudhary, and C. Pandu Rangan. Round Efficient Uncon-
ditionally Secure MPC and Multiparty Set Intersection with Optimal Re-
silience. In Progress in Cryptology - INDOCRYPT 2009, 10th Interna-
tional Conference on Cryptology in India, New Delhi, India, December 13-
16, 2009. Proceedings, volume 5922 of Lecture Notes in Computer Science,
pages 398–417. Springer Verlog, 2009.

392

[131] A. Patra, A. Choudhary, and C. Pandu Rangan. Communication Efficient
Perfectly Secure VSS and MPC in Asynchronous Networks with Optimal
Resilience. In D.J. Bernstein and T. Lange, editors, Advances in Cryptol-
ogy - AFRICACRYPT’10, Third International Conference in Cryptology
in Africa, Stellenbosch, South Africa, May 3-6, 2009, Proceedings, volume
6055 of Lecture Notes in Computer Science, pages 184–202. Springer Verlag,
2010.

[132] M. Pease, R. E. Shostak, and L. Lamport. Reaching Agreement in the
Presence of Faults. Journal of ACM, 27(2):228–234, 1980.

[133] T. Pedersen. Non-interactive and Information-theoretic Secure Verifiable
Secret Sharing. In Advances in Cryptology - CRYPTO ’91, Santa Bar-
bara, California, USA, 1991, Proceedings, volume 576 of Lecture Notes in
Computer Science, pages 129–140. Springer Verlag, 1991.

[134] B. Pfitzmann and M. Waidner. Unconditional Byzantine Agreement for any
number of faulty processors. In A. Finkel and M. Jantzen, editors, STACS
92, 9th Annual Symposium on Theoretical Aspects of Computer Science,
Cachan, France, February 13-15, 1992, Proceedings, volume 577 of Lecture
Notes in Computer Science, pages 339–350. Springer Verlag, 1992.

[135] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading Players for Effi-
ciency in Unconditional Multiparty Computation. In S. Cimato, C. Galdi,
and G. Persiano, editors, Security in Communication Networks, Third In-
ternational Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002.
Revised Papers, volume 2576 of Lecture Notes in Computer Science, pages
342–353. Springer Verlag, 2002.

[136] M. O. Rabin. Randomized Byzantine Generals. In 34th Annual Symposium
on Foundations of Computer Science, Palo Alto California, 3-5 November
1993, pages 403–409. IEEE Computer Society, 1983.

[137] T. Rabin. Robust Sharing of Secrets when the Dealer is Honest or Cheating.
Journal of ACM, 41(6):1089–1109, 1994.

[138] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Pro-
tocols with Honest Majority (Extended Abstract). In Proceedings of the
21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA, pages 73–85. ACM Press, 1989.

[139] D. V. S. Ravikant, M. Venkitasubramaniam, V. Srikanth, K. Srinathan, and
C. Pandu Rangan. On Byzantine Agreement over (2, 3)-Uniform Hyper-
graphs. In R. Guerraoui, editor, Distributed Computing, 18th International
Conference, DISC 2004, Amsterdam, The Netherlands, October 4-7, 2004,
Proceedings, volume 3274 of Lecture Notes in Computer Science, pages 450–
464. Springer Verlog, 2004.

[140] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[141] K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal Perfectly
Secure Message Transmission. In M. K. Franklin, editor, Advances in Cryp-
tology - CRYPTO 2004, 24th Annual International CryptologyConference,

393

Santa Barbara, California, USA, August 15-19, 2004, Proceedings, volume
3152 of Lecture Notes in Computer Science, pages 545–561. Springer Verlag,
2004.

[142] K. Srinathan, A. Patra, A. Choudhary, and C. Pandu Rangan. Uncondi-
tionally Secure Message Transmission in Arbitrary Directed Synchronous
Networks Tolerating Generalized Mixed Adversary. In W. Li, W. Susilo,
U. K. Tupakula, R. Safavi-Naini, and V. Varadharajan, editors, Proceed-
ings of the 2009 ACM Symposium on Information, Computer and Commu-
nications Security, ASIACCS 2009, Sydney, Australia, March 10-12, 2009,
pages 171–182. ACM, 2009.

[143] K. Srinathan and C. Pandu Rangan. Efficient Asynchronous Secure Mul-
tiparty Distributed Computation. In B. K. Roy and E. Okamoto, editors,
Progress in Cryptology - INDOCRYPT 2000, First International Confer-
ence in Cryptology in India, Calcutta, India, December 10-13, 2000, Pro-
ceedings, volume 1977 of Lecture Notes in Computer Science, pages 117–129.
Springer Verlag, 2000.

[144] K. Srinathan and C. Pandu Rangan. Possibility and Complexity of Proba-
bilistic Reliable Communication in Directed Networks. In E. Ruppert and
D. Malkhi, editors, Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC 2006, Denver, CO,
USA, July 23-26, 2006, pages 265–274. ACM, 2006.

[145] M. Stadler. Publicly Verifiable Secret Sharing. In U. M. Maurer, editor,
Advances in Cryptology - EUROCRYPT ’96, International Conference on
the Theory and Application of Cryptographic Techniques, Saragossa, Spain,
May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer
Science, pages 190–199. Springer Verlag, 1996.

[146] M. Tompa and H. Woll. How to Share a Secret with Cheaters. In A. M.
Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Com-
puter Science, pages 261–265. Springer Verlag, 1986.

[147] M. Tompa and H. Woll. How to Share a Secret with Cheaters. Journal of
Cryptology, 1(2):133–138, 1988.

[148] S. Toueg. Randomized Byzantine Agreements. In Proceedings of the Third
Annual ACM Symposium on Princiles of Distributed Computing, Vancou-
ver, B. C., Canada, August 27-29, 1984, pages 163–178. ACM Press, 1984.

[149] S. Toueg, K. J. Perry, and T. K. Srikanth. Fast Distributed Agreement.
SIAM Journal of Computing, 16(3):445–457, 1987.

[150] R. Turpin and B. A. Coan. Extending Binary Byzantine Agreement to Mul-
tivalued Byzantine Agreement. Information Processing Letters, 18(2):73–
76, 1984.

[151] A. C. Yao. Protocols for Secure Computations. In Proceedings of 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
3-5 November 1982, pages 160–164. IEEE Computer Society, 1982.

394

[152] H. Zheng, G. Zheng, and L. Qiang. Batch Secret Sharing for Secure Multi-
party Computation in Asynchronous Network. Journal of Shanghai Jiao-
tong Univ. (Sci.), 14(1):112–116, 2009.

[153] V. Zikas, S. Hauser, and U. M. Maurer. Realistic Failures in Secure Multi-
party Computation. In O. Reingold, editor, Theory of Cryptography, 6th
Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA,
March 15-17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer
Science, pages 274–293. Springer Verlag, 2009.

395

