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Abstract. The operations addition modulo 2n and exclusive-or have recently been combined to obtain
an efficient mechanism for nonlinearity in block cipher design. In this paper, we show that ciphers using
this approach may be approximated by pseudo-linear expressions relating groups of contiguous bits of
the round key, round input, and round output. The bias of an approximation can be large enough for
known plaintext attacks. We demonstrate an application of this concept to a reduced-round version of
the Threefish block cipher, a component of the Skein entry in the secure hash function competition.
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1 Introduction

Modern block ciphers are expected to be resilient to linear cryptanalysis[1], one of the most powerful known
attacks against block ciphers. The attack relies on the existence of linear distinguishers of the cipher over
GF (2). A linear distinguisher is a linear equation over GF (2) relating bits of the plaintext, ciphertext, and
key that holds with probability distinct from 1

2 . In order to prevent linear cryptanalysis from being effective,
some block ciphers have employed a combination addition modulo 2n with exclusive-or. If one examines
addition modulo 2n in terms of its effect on bits, one observes that the carry function provides non-linearity;
that is, the carry function is not expressed as an exclusive-or function. Our contribution is a method for
approximating functions that use a combination of addition modulo 2n, rotation, and exclusive-or (ARX).
In this paper we demonstrate that the combination of addition modulo 2n and exclusive-or is not immune
to efficient approximation – even if the word size is large – and describe pseudo-linear approximations. We
illustrate the use of these approximations on reduced-round variants of Threefish [2]. We present an 8 round
approximation and use it in a key recovery attack on 11 rounds of Threefish-256, without whitening. We also
present a 12 round approximation that could be used on 15 rounds of Threefish-256, without whitening.

We examine a window (grouping of contiguous bits) of size w for w < n, and make the following simple
observations. First, addition modulo 2n on the window can be approximated by addition modulo 2w. Second,
this addition gives a perfect approximation if the carry into the window is estimated correctly. The probability
of correctness of the approximations depend exclusively on the probability distribution of the carry, and this
probability is independent of w. Third, the probability of correctness for a random guess of the value of the
window decreases exponentially with w. Hence, the influence of the carry decreases as w increases. Finally,
the bias of our approximation (the difference between the probability of correctness of our approximation
which depends completely on the carry and the probability of correctness of a random guess) increases with
w. Using these basic facts, we show that simple non-linear approximations (that are pseudo-linear in that
they are composed of exclusive-or and addition modulo 2w operations for w ≥ 1) are applicable to ARX
ciphers. In particular, we show that the most likely values of the output of such ciphers lie in an interval.
We also show that when data is permuted in large groups of contiguous bits, an approximation can address
different window sizes with trivial modifications to the approximation.

This paper is organized as follows. Section 2 describes related work. Section 3 presents our method of
approximation, and section 4 illustrates it using a reduced-round version of Threefish. Section 5 concludes.

⋆ Work supported in part by the National Science Foundation Scholarship for Service Program, grant DUE-0621334,
and National Science Foundation grant CCF 0830576

⋆⋆ Work supported in part by National Science Foundation grant CCF 0830576



2 Related Work

Several interesting properties of addition have been derived [3][4][5][6]. In particular, the linear properties of
addition and subtraction modulo 2n reduce to the linear properties of the carry function[5]. The addition of
two numbers modulo 2n can be expressed as x⊕ y ⊕ carry(x, y)[6], where the carry function can be defined
recursively[5], or as (x + y) ⊕ x ⊕ y[7]. Addition modulo 2n can be approximated by the inner product of
k-tuples of vectors representing inputs/outputs and linear masks [8].

The bias of linear relationships over integer addition are particularly important. The probability distri-
bution of the carry in addition with an arbitrary number of inputs has been explored[3]. The carry function
is biased, and has been used to form linear relationships between a bit in a sum and the carry-out from
addition of previous bits[9]. Bit-linear relationships between contiguous bits using this bias have also been
shown[10]. The probability distribution of the carry function in integer addition has been found to yield
different probabilities for even and odd number of inputs [3].

Multiple linear approximations have been used to perform linear cryptanalysis [11]. It has also previously
been proposed that non-linear approximations can replace linear approximations in linear cryptanalysis
[12]. Linear cryptanalysis has been generalized to include non-binary ciphers [13]. In particular, it has been
extended to apply to any additive group Z

r
m. The method was applied to SAFER[14], which uses a mixture

of addition operations in Z2 and Z256. This method was not applied to ARX ciphers with large word size,
such as 64-bit words using addition in Z264 .

Mod n cryptanalysis[15] is a partitioning attack that exploits weaknesses in ciphers based on addition
and rotation. An application of the technique showed that RC5 depends on the mixture of addition and
exclusive-or for security.

Rotational cryptanalysis [16] is a universal related-key technique that is applicable to add, rotate, xor
(ARX) ciphers. It follows the propagation of rotational pairs (X, X ≫ r) throughout the cipher, where
addition modulo 2n destroys these pairs with some probability. It was shown to be effective for related-key
attacks. At present, it is the strongest attack against Threefish.

The Skein hash function family[2] is currently under review as a candidate for the SHA-3 family of hash
functions. Skein contains a tweakable block cipher[17] called Threefish. Four and eight round differential
attacks on Threefish were presented in the submission, but linear attacks were not addressed beyond noting
that nonlinearity is provided by mixing the use of addition and exclusive or.

3 Pseudo-Linear Cryptanalysis

Linear cryptanalysis traditionally applies to linear equations in GF (2). Instead of single bits, we consider
larger groupings of contiguous bits, which we call windows. Consider the set G of all possible windows of size
w—that is, all 2w possible bits-strings of length w. We require the following two operations on G: bitwise
exclusive-or and addition modulo 2w. The two operations do not distribute and hence G, with the two
operations, is not a ring. We refer to this as a pseudo-linear system.

We may not be able to form linear equations over this system, but we can make approximations in
these pseudo-linear systems using windows of length w < n. Instead of performing addition modulo 2n,
approximations can be created with addition modulo 2w. This is useful for two reasons: (1) a carry into an
addition window from the addition of less significant bits preceding the window has the same effect regardless
of the window size, and (2) the success probability of a random guess decreases as window size increases.
This also means that the bias of our approximations increases with w.

To illustrate why this is an improvement over traditional linear cryptanalysis, consider the following
example depicted in figure 1. There are two n-bit words, added modulo 2n. Suppose only the value of the
dark square, labeled c, is needed. a and b are the operand windows in the same position. The square contains
w bits, and c can be approximated as a ⊞w b. Whether the approximation is correct or not will depend
on the value of the carry into the square. The probability that the carry is zero—and the approximation
is correct—is approximately 1

2 , and approximately equal to the probability that the carry is one and the
approximation is incorrect. If w = 1, the probability of guessing c correctly at random is also 1

2 and there
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is no benefit to approximating c by a ⊞w b. On the other hand, if w is large, the probability of guessing the
value of c correctly at random is 1

2w
, and the approximation, with a correctness probability of 1

2 , provides
considerable advantage. Thus, by looking at windows of several bits rather than a single bit, the effect of the

carry is diminished, and one is able to approximate several bits with high bias.

Any window in an ARX function can be approximated using pseudo-linear equations. Such approxima-
tions are called pseudo-linear approximations.

3.1 Notation

Fig. 1. Window addition

The following notation is used in this paper.

⊕ Exclusive-or
⊞ Addition modulo 2n

⊞i Addition modulo 2i

≪ (≫) Left (right) rotation on an n-bit word
≪ (≫) Left (right) shift on an n-bit word

3.2 Addition Windows: Simple Analytical Results

Several properties are useful for predicting carries. We start by assuming that the n-bit words that are
added come from a uniformly random distribution. We also assume throughout this paper that words are
represented as integers (most significant bit first).

Lemma 1. Consider two n-bit words, a and b, selected uniformly at random, and a window size w. Let

part(a, s, e) be a function which returns the bits of a in the range [s, e), where the range [0,w) represents the

least significant w bits and s < e ≤ n. Then part(a ⊞ b, i, i + w) = part(a, i, i + w) ⊞w part(b, i, i + w) with

probability greater than 1
2 .

Proof. If there is no carry into bit i, then the equation is true. If there is a carry into bit i, then the
equation is false. Let j = i − 1. For the addition of two j-bit integers, there are 22j−1 + 2j−1 of 22j operand
combinations that will not produce a carry in the output. Therefore the probability that the carry into bit
is 0 i is 1

2 + 2−j−1, which agrees with the bias presented in [9].

Corollary 1 part(a ⊞ b, 0, w) = part(a, 0, w) ⊞w part(b, 0, w) with probability 1.

Proof. Because this is the least significant window, there are no carry bits into the sum. Therefore the
probability of the equation being true is 1.

Corollary 2 part(a⊞b, i, (i+w) mod n) = part(a, i, (i+w) mod n)⊞wpart(b, i, (i+w) mod n) with probability

greater than 1
2 .

Proof. The key difference in this case is that the window may wrap around from the higher end of the n-bit
word to the lower end. If the window does not wrap around, this is equivalent to lemma 1. If it does, then
there is one carry that is not propagated; namely the carry out of the n-bit sum. To accomplish this, we split
the window in two: part(a, i, n) ⊞w part(b, i,n) and part(a, 0, (i + w) mod n) ⊞w part(b, 0, (i + w) mod n).
The first sum is true by lemma 1 and the second is true by corollary 1.

Corollary 3 part(a⊟b, i, (i+w) mod n) = part(a, i, (i+w) mod n)⊟wpart(b, i, (i+w) mod n) with probability

greater than 1
2 .

Proof. Let a⊟b = c. Then b⊞c = a, and part(b⊞c, i, (i+w) mod n) = part(b, i, (i+w) mod n)⊞wpart(c, i, (i+
w) mod n) with probability greater than 1

2 by lemma 1 and corollary 2. Then we have part(a, i, (i + w) mod
n) = part(b, i, (i + w) mod n) ⊞ part(c, i, (i + w) mod n), which is the same as part(a, i, (i + w) mod n) ⊟

part(b, i, (i + w) mod n) = part(c, i, (i + w) mod n), with probability greater than 1
2 .

3



Lemma 2. part(a⊕b, i, (i+w) mod n) = part(a, i, (i+w) mod n)⊕part(b, i, (i+w) mod n) with probability

1.

Proof. This follows directly from the bitwise nature of exclusive-or.

Rotations and shifts occur within a single word, and are easy to express as windows by shifting the
indices. For example, part(a ≫ c, i, (i+w) mod n) = part(a, (c+ i) mod n, (c+ i+w) mod n) and part(a ≫
c, i, i + w) = part(a, c + i, (c + i + w) mod n).

The addition window properties described above work quite well for window approximations where the
operands are from a uniformly random distribution. Once an addition on this data is performed, the distri-
bution is no longer random. It is easy to see why this is so. Consider four b-bit words sampled from a uniform
distribution: a, b, a′, b′. Let c = a + b mod 2k, similarly c′. If there is a carry out of a + b, then c is biased
towards the smaller values from 0 to 2k − 1. Similarly, if there is no carry out of a + b, c is biased towards
the larger values from 0 to 2k − 1. Thus the carry out of a + b and a′ + b′ characterizes the distribution of c

and c′, and hence of the carry out of their sum.

As an example, consider two 4-bit words, a and b, and sum c = a ⊞ b. Let a(i) be the 2-bit window
with i denoting the position of the least significant bit. Suppose w = 2 and the goal is to approximate
c(2) (the approximation window has the third bit as its least significant bit). The carry into this addition
window is determined entirely by the values in a(0) and b(0). There are 16 operand permutations, 6 of
which produce a carry and 10 which do not. If there was not a carry into c(2), then Pr[c(0) = 0] = 1

10 ,
Pr[c(0) = 1] = 2

10 , Pr[c(0) = 2] = 3
10 , and Pr[c(0) = 3] = 4

10 . If there was a carry into c(2), then
Pr[c(0) = 0] = 3

6 , Pr[c(0) = 1] = 2
6 , Pr[c(0) = 2] = 1

6 , and Pr[c(0) = 3] = 0.

Now consider e = c⊞d, where d is the sum of two other 4-bit values chosen at random. If c(2) = a(2)⊞2b(2)
(there was no carry), then there is a greater chance that e(2) = c(2)⊞2 d(2)⊞2 1. If c(2) = a(2)⊞2 b(2)⊞2 1,
then there is a greater chance that e(2) = c(2) ⊞2 d(2).

3.3 Approximations of ARX round functions

Base Approximations Using the windowing method described above, it is straightforward to create an
approximation for an ARX round function by following the windows. An approximation that simply follows
the windows is equivalent to assuming that the carry into all windows is 0. We refer to this approximation
as the base approximation.

Although the carry is biased, one still expects a carry for approximately half of the window additions.
That is, every other round of approximated window additions, one expects a carry into the window. To allow
for a carry approximately every other round of approximation, we use carry patterns and offsets.

Carry Patterns A carry pattern is a series of carry values, ci ∈ {0, 1}, where each i denotes an approximated
addition window that may have a carry into it. Stated differently, there is a ci for every approximated
addition window that does not start with the least significant bit of the word. One can construct multiple
carry patterns that overlay the base approximation such that 1 is added to approximated addition window
i if ci = 1.

Let Cj = (c0 . . . cm−1) represent the carry pattern for m approximated addition windows. Then each
base approximation overlaid with a distinct carry pattern, base + Cj , represents a distinct approximation.
By applying several carry patterns to the same input/output pairs, one can increase the probability of a
correct approximation, which in turn increases the bias.

Offsets Another method of compensating for mis-predicted carries is through the use of offsets. Consider
an integer offset∈ {−(2w−1− 1), · · · , 2w−1 − 1} that is added (or subtracted) from an approximated window
value, approx. If every valid value of offset is tried and the number of observed correct guesses are plotted,
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the result is a bell-shaped curve with a peak at offset = 0, like the one shown in figure 2 1. The horizontal
line shows the probability of guessing correctly at random (in this case, 1

256 ).
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Fig. 2. Observed probability of correctly guessing window of ARX target over several offsets

Instead of considering an approximation correct only if it matches the target window, we consider it
correct if it falls within the range approx ± offset. In figure 2, the approximation is correct with offset = 1
with probability 0.039571+0.038652+0.038726 = 0.116949. This will increase the number of correct guesses
even though carries were guessed incorrectly.

Using this technique improves our results with lower overhead than the application of more carry patterns.
However, carry patterns are still important. In particular, we observe that the carry pattern used determines
the height of the curve, so a carefully chosen pattern improves the bias for approximations when the target
falls in the range approx ± offset. This is because guessing the carry pattern correctly is not equivalent to
guessing a correct number to add at the end after the base case. (This number could be, for example, the
sum of all the carries that were ignored.) Rotation changes the impact of a single carry, and the value of the
carry affects the value of several later additions. Thus guessing the carry correctly each time is superior to
guessing the effective sum of all the carries.

Empirical examples with Threefish-256 are presented in section 4.

Computing Bias The improvements outlined above increase the probability of the approximation being
correct, but also increase the probability of guessing correctly at random. That is, a random guess with cp

different carry patterns will be correct with probability cp
2w

instead of 1
2w

since each pattern represents a

different approximation. Thus to get the bias, compute bias = times correct − # patterns

2w
× pairs. Similarly,

when offsets are used, the bias is computed as times correct − ((2×offset)+1)
2w

× pairs. If both are used, bias =

times correct − # patterns×((2×offset)+1)
2w

× pairs.

Flexibility The techniques described above lead to flexible approximations. Once a base approximation has
been established, it can easily be modified through the use of offsets and carry patterns. It is also trivial to
change the window size, since it is the start of the window that is important. The end of the window can be
computed dynamically based on the desired w.

1 The results in figure 2 were obtained from approximating x(0) in the first word of the 8th round of Threefish-256
with the base approximation. Further details in section 4.
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Comparison to Linear Cryptanalysis Though this attack is clearly inspired by linear cryptanalysis,
there is a difference that should be noted. Currently, we cannot concatenate and simplify the effect of
several approximations. This is because the two operations — exclusive-or and addition modulo 2w —
do not commute. Because of this, we cannot combine all key bits into a single function of the key. With
linear cryptanalysis, on the other hand, the use of a single operation — exclusive-or — allows all key bits
to be combined into a single function of key bits. Our approximation requires us to try all key bits used
in the approximation. Even so, we are able to obtain attacks more efficient than brute force because our
approximations enable us to reduce the number of key bits from those required by the cipher. We can
approximate one operation using the other, but this only works reasonably well when w is small, which is
precisely when pseudo-linear approximations provide the weakest assistance.

4 Application to Threefish-256

Threefish is a tweakable block cipher that is part of the Skein hash function family[2]. There are three
variants designed for 256, 512, and 1024-bit blocks and keys. Instead of using substitution boxes, Threefish
relies on combining addition modulo 264 and exclusive-or to obtain non-linearity. In this paper, we examine
2 Threefish-256.

Fig. 3. Four rounds of Threefish-256

Threefish-256 is comprised of 72 rounds over a 256-bit block with a 256-bit key. State is maintained
throughout the cipher in four 64-bit words.

Each round of Threefish-256 contains two parallel mix functions followed by a permutation. Each mix
function takes two words as inputs, a and b, and outputs the words a⊞b and (a⊞b)⊕(b ≪ constant), where
the rotation constant is specific to a particular mix function. The permutation (1 3) is then applied. That
is, if we label the first state word as word 0 and the last state word as word 3, words 1 and 3 are swapped
in the permutation function.

If we label the four input words as x0, x1, x2, x3, and four output words as y0, y1, y2, y3, respectively,
a round of mix and permutation functions can be expressed as

2 as described in the original submission to NIST
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y0 = x0 ⊞ x1

y2 = x2 ⊞ x3

y1 = (x2 ⊞ x3) ⊕ (x3 ≪ r1,round−1)

y3 = (x0 ⊞ x1) ⊕ (x1 ≪ r0,round−1)

Every fourth round (4, 8, 12, etc.), a word of the round key is injected into each state word by addition
modulo 264. Figure 3 depicts four rounds of Threefish-256.

Skein’s UBI mode changes the key for each block, so a computationally intensive key schedule would
have caused high performance overhead for the hash function. This was not desirable, so Threefish has a
very simple key schedule and relies on high diffusion over many rounds to provide protection from attacks.
The key schedule is generated from a combination of key words and tweak words. There are four 64-bit key
words (k0 to k3) and a fifth parity word (k4) derived by equation 1. There are two 64-bit tweak words (t0
and t1), and a tweak parity word (t2 = t0 ⊕ t1). In each key injection, four of the key words are used in
conjunction with two of the tweak words. In this work, we fix the tweak schedule to all zeros. The resulting
key schedule is shown in equation 2.

k4 = ⌊
264

3
⌋ ⊕

⊕

0≤i≤3

ki (1)

roundKeyi = ki mod 5||k(i+1) mod 5||k(i+2) mod 5||k(i+3) mod 5 + i (2)

Because of the parity relation in the key schedule, it is easy to calculate a portion of one key word given
the corresponding bits in the other four key words.

Using techniques described in the previous section, we can create approximations of windows throughout
the cipher. Because the operations are performed on 64-bit words, 1 ≤ w ≤ 64.

4.1 Threefish-256 Approximations

We present two approximations on modified versions of Threefish-256. The first is for the least significant
window of the first state word after round 8. The second approximates several words in the output of round
12. Both modifications do not include the injection of a whitening key.

Our 12-round approximation can be used on up to 15 rounds of the modified Threefish-256. Because there
is no whitening key, rounds 1 to 4, up to the key addition, are known. Similarly, decryption from rounds 15
through 13 is known because the key plays no role in those rounds. Effectively, this approximation covers
the cipher from the key injection of round 4 to the key injection at round 12, inclusive.

The modified cipher for the 8-round approximation is similar. The cipher is reduced to 11 rounds, and
decryption from rounds 11 to 8 is known because there are no key injections. Therefore this approximation
covers the modified cipher from the key injection of round 4 to the key injection at round 8, inclusive.

Let xi denote the ith word of the plaintext and x
j
i the ith word after round j. Let x

j
i (m) denote the window

of word x
j
i with its least significant bit in position m. In other words, it represents the window returned by

part(xj
i , m, (m + w) mod 64) since our windows grow from the least significant to most significant bit. In

rounds that contain key injections, x
j
i (m)∗ represents the window after the permutation, but before the key

injection occurs. ki(m) denotes the window starting at m of the ith word of the key schedule.
The approximation for x8

0(0) is presented in table 1 as an example. It is broken down by round for clarity.
Computations before the fourth round key addition can be performed by following the cipher operations,
and are not included here. The number of key bits needed in this approximation depend on the window size.
For example, w = 3 requires 58 key bits, w = 4 requires 75 key bits, and w = 5 requires 92 key bits.

The 12-round approximation computes a window from both the plaintext and the ciphertext. In the
encryption direction, we approximate the least significant window of the first word after the 10th round,
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x10
0 (0). From the ciphertext, we then approximate the same word, denoted d10

0 (0), and then check that
x10

0 (0) = d10
0 (0).

For the complete 12-round approximation, see appendix B.

x5

0(0) = (x4

0(0)
∗

⊞w k1(0)) ⊞w (x4

1(0)
∗

⊞w k2(0)) x6

0(0) = x5

0(0) ⊞w x5

1(0)
x5

0(22) = (x4

0(22)
∗

⊞w k1(22)) ⊞w (x4

1(22)
∗

⊞w k2(22)) x6

0(22) = x5

0(22) ⊞w x5

1(22)
x5

0(29) = (x4

0(29)
∗

⊞w k1(29)) ⊞w (x4

1(29)
∗

⊞w k2(29)) x6

2(0) = x5

2(0) ⊞w x5

3(0)
x5

2(0) = (x4

2(0)
∗

⊞w k3(0)) ⊞w (x4

3(0)
∗

⊞w k4(0)) x6

3(0) = x6

0(0) ⊕ x5

1(11)
x5

2(11) = (x4

2(11)
∗

⊞w k3(11)) ⊞w (x4

3(11)
∗

⊞w k4(11)) x6

3(22) = x6

0(22) ⊕ x5

1(33)
x5

2(22) = (x4

2(22)
∗

⊞w k3(22)) ⊞w (x4

3(22)
∗

⊞w k4(22)) x6

1(0) = x6

2(0) ⊕ x5

3(29)
x5

2(33) = (x4

2(33)
∗

⊞w k3(33)) ⊞w (x4

3(33)
∗

⊞w k4(33))
x5

3(0) = x5

0(0) ⊕ (x4

1(38)
∗

⊞w k2(38)) x7

0(0) = x6

0(0) ⊞w x6

1(0)
x5

3(29) = x5

0(29) ⊕ (x4

1(3)
∗

⊞w k2(3)) x7

2(0) = x6

2(0) ⊞w x6

3(0)
x5

1(0) = x5

2(0) ⊕ (x4

3(44)
∗

⊞w k4(44)) x7

1(0) = x7

2(0) ⊕ x6

3(22)
x5

1(11) = x5

2(11) ⊕ (x4

3(55)
∗

⊞w k4(55))
x5

1(22) = x5

2(22) ⊕ (x4

3(2)
∗

⊞w k4(2)) x8

0(0) = (x7

0(0) ⊞w x7

1(0)) ⊞w k2(0)
x5

1(33) = x5

2(33) ⊕ (x4

3(13)
∗

⊞w k4(13))

Table 1. Approximation for x8

0(0), without whitening

4.2 Empirical Results for Approximations
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Fig. 4. Base approximation with window isolation, x8

0(0)

We obtained empirical results for bias with varying window sizes, using 20,000,000 pseudorandomly
generated (data, key) pairs and tweak schedule fixed to 0. We used [2], where differential biases were computed
using 20,000,000 pseudorandom (data, key, tweak) tuples, as a model. Two implementation strategies were
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used – window isolation and word isolation. Window isolation stores each window in a separate word. Word
isolation stores all windows located the same word of the state in one word. For further details regarding
implementation, see appendix A.

For simplicity, we represented carry pattern Ci as an array Ci
jk, where j is the round number and k is

the word number. Each window in word k of round j was treated the same in these experiments.

Figure 4 demonstrates the effect of offsets on an approximation, with both the correct and incorrect key
values. Offsets increase the probability of correctness for wrong values quite a bit when the range covers a
large portion of the possible values, but the correct values still have a higher bias on average. The same is
true when multiple carry patterns are used. Figure 4 also shows that there is a maximum bias that can be
achieved with window isolation, where the maximum is less than 1.

Figure 5 demonstrates the improvements that can be gained by using word isolation over window isolation,
when compared against figure 4 when offset=0. This figure also demonstrates that the bias grows to 1 as w

increases using word isolation. Finally, it shows how different carry patterns can affect the approximation.
The two carry patterns used here were:

C0
j k = 0, C1

j k =

{

0 if j is even
1 if j is odd
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Fig. 5. x8

0(0) approximation with word isolation and different carry patterns (cp)

When enough key bits are guessed, the bias for different carry patterns converge (here, this happens at
w = 12). If multiple carry patterns are used that have dissimilar biases, like the two used here, the bias of
multiple patterns may be smaller than the bias obtained by using a single, stronger carry pattern.

Figure 6 contains results from the 12 round approximation with carry pattern C1 and different offsets
using word isolation. It shows that the correct key bits are indistinguishable for w < 5. With w = 5, 232 bits
of key need to be guessed. This approximation is computationally impractical for key recovery; however it
may be possible to derive a better approximation that uses more of the same windows in rounds 4 and 12,
thus reducing the number of key bits needed.

The empirical results presented in this section show that this method can be used to approximate a
window with accuracy better than random. In the next section, we present a key recovery attack using the
8-round approximation.
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Fig. 6. 12 round approximation

4.3 Key Recovery

These approximations can be used for key recovery with known plaintext and ciphertext. Because there is no
key injection in rounds 15 through 13, the output of round 15 can be decrypted to derive the output of round
12 correctly. The input up to the fourth round key injection can also be computed precisely because the
modified cipher does not include the whitening key injection. In this scenario, the 12 round approximation
could be used to determine some of the key bits from 15 rounds.

To demonstrate key recovery using pseudo-linear approximations, a smaller attack was performed with
the 8 round approximation for x8

0(0). Again, this could be used for 11 rounds of Threefish-256, since there
is not another key injection until round 12.

If w = 3, then the attack requires 58 bits of key (as compared to 256 bits for a brute force attack) to
be guessed. Suppose that 40 bits needed in this attack were obtained by some other means, such as side
channels. We show that the remaining 18 bits can be found using our approximations. In particular, we find
the values of k1(0), k2(0), k3(0), k4(0), k2(3), and k4(11). This assumption that other bits are known prior
to this attack was made due to limited time and resources. It is not a limitation of this technique.

Because the carry function is difficult to determine with incomplete knowledge of the operands, the
correct value of the key does not always bubble to the top of the list. However, it should still be near the top.
In these experiments, the goal was to eliminate 90% of the possible key values, with the hope that the correct
value is in the remaining 10%. We also note when the correct key value has the maximum bias. We ran 500
independent key recovery attacks, each with a pseudorandomly generated key and 10,000 pseudorandomly
generated plaintexts. The results are summarized in table 2.

offset=0 offset=1 offset=2 offset=3

correct 11% 12.2% 14.4% 7.2%

in top 10% 92.6% 97.4% 96.8% 92.2%
Table 2. 500 attacks, 10,000 pairs

These results show that it is possible to eliminate many of the incorrect values while keeping the correct
key bits with high probability, using only a portion of the key. While a larger value of the offset always helps
in the task of approximating the output of the cipher, it does not always help in estimating key bits. This
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is because a larger offset is not necessarily more accurate, it simply encompasses a larger number of values.
This will be true for incorrect key bits as well as correct key bits. For this reason, a larger windows does not
always help to effectively distinguish among correct and incorrect key bits. This can be seen in table 2 when
the offset increases from 2 to 3. At offset=3, the number of values is so large that it becomes less effective
in distinguishing the correct key bits.

5 Conclusion and Future Work

We have shown that pseudo-linear approximations are applicable to ARX ciphers. When permutation is
performed on the word level, approximations may be constructed that apply to windows with size less than
or equal to the word size. By increasing the size of the window, the expected number of times a random
guess is correct decreases, while the number of times the approximation for a window is correct remains
unchanged. Hence, the bias increases. Eight and twelve round approximations for the Threefish-256 block
cipher were presented as examples.

Our results show that pseudo-linear approximations can be used to distinguish an ARX function from a
random permutation. These approximations can also be used for key recovery, as demonstrated in section
4.3.

It is important to note that, as with traditional linear cryptanalysis, high diffusion and a large enough
number of rounds cause approximations over an entire cipher to become infeasible. In this situation, too
many key bits would typically need to be guessed, and the search space would swiftly approach that of a
brute force search.

In ongoing work, we are applying the attack to Threefish-512 and Threefish-1024, and expect it to work
until full diffusion is achieved in each variant. We plan to search for better approximations and improvements,
and use them to mount key recovery attacks. This technique will also be applied to several hash functions
and their building blocks, including Skein[2], Blue Midnight Wish[18], CubeHash [19], and BLAKE[20].

It would be interesting to understand the generality of such attacks, and the types of ciphers that are
more and less resilient to these attacks. It would also be interesting to understand if linearity over a larger
field is of use in the analysis of other primitives.
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A Window Implementation

We have implemented our windows in two different ways:

1. Each window stored in its own word (window isolation)
2. All windows for a word stored in the same word (word isolation)

We find that the first is useful for developing approximations, but the latter is much better in practice.
This is because the first case provides window isolation that allows easier debugging. However, when windows
are adjacent or overlap, there is carry information that is not used due to the high level of isolation. In the
second method, we take advantage of that extra information to obtain stronger biases.

The first approach also has another drawback. Because there is an addition performed for each addition
window, the number of additions increases rapidly with each round added. The second method uses at most
twice the number of additions (1 for word addition, 1 for carry addition).

It is also essential that window position is preserved. When an addition is performed on windows that
wrap around a word, it is important that the carry out of position 63 is not propagated. Both implementation
methods respect this. We stored windows in 64-bit words (regardless of isolation) in the following manner.
The bits in a window were set the their correct value in the corresponding position, and all other bits set
to 0. For example, x(4) =0x2E would be represented as 00000000 00002E00. With word isolation and two
16-bit windows, x(8) = 0x5678 and x(40) = 0x1234, the word would be represented as 00123400 00567800.

When using word isolation, the inactive bits may all be set to zero after each addition. Alternatively,
they may remain after all operations, and be used throughout the cipher. The latter may be difficult to
implement correctly depending on the method of deciding whether or not to add 1 when a carry is guessed.
Both techniques were used in these experiments. In particular, inactive bits were zeroed out for the key
recovery attack, and were not altered in figure 4. We found the first approach to be more beneficial overall,
although there were drops in bias at certain w values.

B 12-round Approximations

The full 12-round approximation described is detailed below. It is broken down by round for clarity. It is
shown in word isolation format, where x

j
i (a, b, c) indicates windows a, b, and c in word i of round j. To

simplify the expressions, win
j
i is used to represent long lists of windows in x

j
i .
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