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Abstract
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their inputs while preserving security properties such as privacy, correctness and independence
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two-party computation secure in the presence of malicious adversaries (where security is proven
under the standard simulation-based ideal/real model paradigm for defining security). In this
paper, we present a protocol for this task that follows the methodology of using cut-and-choose
to boost Yao’s protocol to be secure in the presence of malicious adversaries. Relying on specific
assumptions (DDH), we construct a protocol that is significantly more efficient and far simpler
than the protocol of Lindell and Pinkas (Eurocrypt 2007) that follows the same methodology.
We provide an exact, concrete analysis of the efficiency of our scheme and demonstrate that (at
least for not very small circuits) our protocol is more efficient than any other known today.
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1 Introduction

1.1 Background

Protocols for secure two-party computation enable a pair of parties P1 and P2 with private inputs
x and y, respectively, to compute a function f of their inputs while preserving a number of security
properties. The most central of these properties are privacy (meaning that the parties learn the
output f(x, y) but nothing else), correctness (meaning that the output received is indeed f(x, y) and
not something else), and independence of inputs (meaning that neither party can choose its input as
a function of the other party’s input). The standard way of formalizing these security properties is
to compare the output of a real protocol execution to an “ideal execution” in which the parties send
their inputs to an incorruptible trusted party who computes the output for the parties. Informally
speaking, a protocol is then secure if no real adversary attacking the real protocol can do more
harm than an ideal adversary (or simulator) who interacts in the ideal model [14, 15, 32, 2, 3]. An
important parameter when considering this problem relates to the power of the adversary. The
two most studied models are the semi-honest model (where the adversary follows the protocol
specification exactly but tries to learn more than it should by inspecting the protocol transcript)
and the malicious model (where the adversary can follow any arbitrary polynomial-time strategy).

In the 1980s powerful feasibility results were proven, showing that any probabilistic polynomial-
time two-party functionality can be securely computed in the presence of semi-honest adver-
saries [41] and in the presence of malicious adversaries [14]. These results showed that it is possible
to achieve such secure protocols, but did not demonstrate how to do so efficiently (where by effi-
ciency we mean a protocol that can be implemented and run in practice). To be more exact, the
protocol of [41] for semi-honest adversaries is efficient. However, achieving security efficiently for
the case of malicious adversaries is far more difficult. In fact, until recently, no efficient general
protocols were known at all, where a general protocol is one that can be used for computing any
functionality.

This situation has changed in the past few years, possibly due to increasing interest from
outside the cryptographic community in secure protocols that are efficient enough to be used in
practice. The result has been that a number of secure two-party protocols were presented that
are secure in the presence of malicious adversaries, where security is rigorously proven according
to the aforementioned ideal/real model paradigm [23, 29, 35, 21]. Interestingly, these protocols
all take novel, different approaches and so the secure-protocol skyline is more diverse than before,
providing the potential for taking the protocols a step closer to very high efficiency. These protocols
are discussed in more detail in Section 1.3.

We remark that the protocol of [29] has been implemented for the non-trivial problem of securely
computing the AES block cipher (pseudorandom function), where one party’s input is a secret key
and the other party’s input is a value to be “encrypted” [38]. A Boolean circuit for computing this
function was designed with approximately 33,000 gates, and the protocol of [29] was implemented
for this circuit. Experiments showed that the running-time of the protocol was between 18 and 40
minutes, depending on the assumptions taken on the primitives used to implement the protocol.
Although this is quite a long time, for some applications it can be reasonable. In addition, it
demonstrates that it is possible to securely compute functions with large circuits, and motivates the
search for finding even more efficient protocols that can widen the applicability of such computations
in real-world settings.
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1.2 Our Results

In this paper, we follow the construction paradigm of [29] and significantly simplify and improve
the efficiency of their construction. The approach of [29] is to carry out a basic cut-and-choose
on the garbled circuit construction of Yao [41]. (See also [33] for a different protocol based on the
cut-and-choose approach, but which does not provide security according to the standard ideal/real
model paradigm.) We assume familiarity with Yao’s protocol and refer to Appendix A for those
not familiar. The cut-and-choose approach works by party P1 constructing s copies of a garbled
circuit and sending them to P2, who then asks P1 to open half of them in order to verify that they
are correctly constructed. If all of the opened circuits are indeed correct, then it is guaranteed that
a majority of the unopened half are also correct, except with probability that is negligible in s.1

Thus, P1 and P2 evaluate the remaining s/2 circuits, and P2 takes the output that appears in most
of the evaluated circuits. As discussed in [29], P2 cannot abort in the case that not all of the s/2
circuits evaluate to the same value, even though in such a case it knows that P1 is cheating. The
reason for this is that P1 may construct a circuit that computes f in the case that P2’s first bit
equals 0, and otherwise it outputs random garbage. Now, with probability 1/2 this faulty circuit
is not opened and so is one of the circuits to be evaluated. In this case, if P2 would abort when
it saw random garbage then P1 would know that P2’s first input bit equals 1. For this reason, P2

takes the majority output and ignores minority values without aborting.
Although intuitively appealing, the cut-and-choose approach introduces a number of difficulties

which significantly affect the efficiency of the protocol of [29]. First, since the parties need to
evaluate s/2 circuits rather than one, there needs to be a mechanism to ensure that they use the
same input in all evaluations (the solution for this for P2’s inputs is easy, but for P1’s inputs turns
out to be hard). The mechanism used in [29] required constructing and sending 2s2` commitments,
where ` is the length of P2’s input. In the implementation by [38], they used s = 160 and ` = 128.
Thus, the overhead due to these consistency proofs alone is the computation and transmission of
6, 553, 600 commitments! Another problem that arises in the cut-and-choose approach is that a
malicious P1 can input an incorrect key into one of the oblivious transfers used for P2 to obtain
the keys associated with its input wires in the garbled circuit. For example, it can set all the keys
associated with 0 for P2’s first input bit to be garbage, thereby making it impossible for P2 to
decrypt any circuit if its first input bit indeed equals 0. In contrast, P1 can make all of the other
keys be correct. In this case, P1 is able to learn P2’s first input bit, merely by whether P2 obtains
an output or not. The important observation is that the checks on the garbled circuit carried out
by P2 do not detect this because there is a separation between the cut-and-choose checks and the
oblivious transfer. This adversarial strategy is called a selective failure attack [24]. The solution to
this problem in [29] requires making the circuit larger and significantly increasing the size of the
inputs by replacing each input bit with the exclusive-or of multiple random input bits. Finally, the
analysis of [29] yields an error of 2−s/17. Thus, in order to obtain an error level of 2−40 the parties
need to exchange 680 circuits. We remark that it has been conjectured in [38] that the true error
level of the protocol is 2−s/4; however, this has not been proven.

Our protocol. We solve the aforementioned problems in a way that is far simpler and far more
efficient than in [29]. In addition, we reduce the error probability to 2−0.311s, for large enough s.
A concrete calculation yields that for an error of 2−40 it suffices to send only 132 circuits. This

1The parameter s is a statistical security parameter, and it models the negligible probability that the adversary is
not caught in cut-and-choose type checks. Typically, this negligible probability is exponentially small, and the exact
constant in the exponent has a significant ramification on the efficiency of the protocol, because it influences how
many garbled circuits need to be sent in order to obtain a small enough error.
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is an important improvement because the experiments of [38] demonstrate that the bottleneck in
efficiency is not the exponentiations, but rather the number of circuits and the commitments for
proving consistency. Thus, in our protocol we moderately increase the number of exponentiations,
while reducing the number of circuits, completely removing the commitments, and also removing
the need to increase the size of the inputs. We remark that the price for these improvements is that
our protocol relies heavily on the decisional Diffie-Hellman (DDH) assumption, while the protocol
of [29] used general assumptions only. We now proceed to describe our two main techniques:

1. Our solution for ensuring consistency of P1’s inputs is to have P1 determine the keys associated
with its own input bits via a Diffie-Hellman pseudorandom synthesizer [34]. That is, P1

chooses values ga
0
1 , ga

1
1 , . . . , ga

0
` , ga

1
` and gr1 , . . . , grs and then sets the keys associated with

its ith input bit in the jth circuit to be ga
0
i ·rj , ga

1
i ·rj . Given all of the {ga0i , ga1i , grj} values

and any subset of keys of P1’s input generated in this way, the remaining keys associated
with its input are pseudorandom by the DDH assumption. Furthermore, it is possible for P1

to efficiently prove that it used the same input in all circuits when the keys have this nice
structure. We stress that the garbled values for the rest of the circuit are chosen as usual.
Thus, it is still possible to use garbled-circuit optimizations like that presented in [25].

2. As we have described, the reason that the inputs and circuits were needed to be made larger
in [29] is due to the fact that the cut-and-choose circuit checks were separated from the
oblivious transfer. In order to solve this problem, we introduce a new primitive called cut-
and-choose oblivious transfer. This is an ordinary oblivious transfer [39, 11] with the sender
inputting many pairs (x01, x

1
1), . . . , (x

0
s, x

1
s), and the receiver inputting many bits σ1, . . . , σs.

However, the receiver also inputs a set J ⊂ [s] of size exactly s/2. Then, the receiver
obtains xσii for every i (as in a regular oblivious transfer) along with both values (x0j , x

1
j )

for every j ∈ J , while the sender learns nothing about σ1, . . . , σs and J . The use of this
primitive in our protocol intertwines the oblivious transfer and the circuit checks and solves
the aforementioned problem. We also show how to implement this primitive in a highly
efficient way, under the DDH assumption. We believe that this primitive is of independent
interest, and could be useful in many cut-and-choose scenarios.

Efficiency analysis. Our entire protocol, including all subprotocols, is explicitly written and
analyzed in a concrete and exact way for efficiency. Considerable effort has been made to optimize
the constructions and reduce the constants throughout. We believe that this is of great importance
when the focus of a result is efficiency. See Section 1.3 for a summary of the exact complexity of
our protocol, and Section 4.3 for a complete analysis, with optimizations in Section 4.4.

Variants. Another advantage of our protocol over that of [29] is that we obtain a universally
composable [4] variant that is only slightly less efficient than the stand-alone version. This is
because our simulator only rewinds during zero-knowledge protocols. These protocols are also Σ
protocols and so can be efficiently transformed into universally composable zero-knowledge. As with
our basic protocol, we provide an explicit description of this transformation and analyze its exact
efficiency. In addition, we show how our protocol yields a more efficient construction for security
in the presence of covert adversaries [1], when high values of the deterrent factor ε are desired.

1.3 Comparison to Other Protocols

We provide an analysis of the efficiency of recent protocols for secure two-party computation. Each
protocol takes a different approach, and thus the approaches may yield more efficient instantiations
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in the future. Nevertheless, as we will show, our protocol is significantly more efficient than the
current best instantiations of the other approaches (at least, for not very small circuits).

• Committed input method (Jarecki-Shmatikov [23]): The secure two-party protocol
of [23] works by constructing a single circuit and proving that it is correct. The novelty
of this protocol is that this can be done with only a constant number of (large modulus)
exponentiations per gate of the circuit. Thus, for circuits that are relatively small, this can
be very efficient. However, an exact count gives that approximately 720 exponentiations are
required per gate. Thus, even for small circuits, this protocol is not yet practical. For large
circuits like AES with 33,000 gates, the number of exponentiations is very large (23, 760, 000),
and is not realistic. (The authors comment that if efficient batch proofs can be found for the
languages they require then this can be significantly improved. However, to the best of our
knowledge, no such improvements have yet been made.)

• LEGO (Nielsen-Orlandi [35]): The LEGO protocol [35] follows the cut-and-choose method-
ology in a completely different way. Specifically, the circuit constructor first sends the receiver
many gates, and the receiver checks that they are correctly constructed by asking for some to
be opened. After this stage, the parties interact in a way that enables the gates to be securely
soldered (like Lego blocks) into a correct circuit. Since it is not guaranteed that all of the
gates are correct, but just a vast majority, a fault tolerant circuit of size O(s · |C|/ log |C|) is
constructed, where s is a statistical security parameter. The error as a function of s is 2−s and
the constant inside the “O” notation for the number of exponentiations is 32 [36]. Thus, for
an error of 2−40 we have that the overall number of exponentiations carried out by the parties
is 1280 · |C|/ log |C|. For large circuits, like that of AES, this is unlikely to be practical. (For
example, for the AES circuit with 33,000 gates we have that the parties need to carry out
2, 816, 000 exponentiations. Observe that due to the size of the circuit, the log |C| factor is
significant in making the protocol more efficient than [23], as predicted in [35]. This protocol
also relies on the DDH assumption. It is worthy to note that exponentiations in this protocol
are in a regular “Diffie-Hellman” group and so Elliptic curves can be used, in contrast to [23]
who work in Z∗N .)

• Virtual multiparty method (Ishai et al. [21, 22]): This method works by having the
parties simulate a virtual multiparty protocol with an honest majority. The cost of the
protocol essentially consists of the cost of running a semi-honest protocol for computing
additive shares of the product of additive shares, for every multiplication carried out by a
party in a multiparty protocol with honest majority. Thus, the actual efficiency of the protocol
depends heavily on the multiparty protocol to be simulated, and the semi-honest protocols
used for simulating the multiparty protocol. An asymptotic analysis demonstrates that this
method may be competitive. However, no concrete analysis has been carried out, and it is
currently an open question whether or not it is possible to instantiate this protocol in a way
that will be competitive with other known protocols.

• Cut-and-choose on circuits (Lindell-Pinkas [29]): Since this protocol has been discussed
at length above, we just briefly recall that the complexity of the protocol is O(`) oblivious
transfers for input-length ` (where the constant inside here is not small because of the need
to increase the number of P2’s inputs), and the construction and computation of s garbled
circuits and of 2s2` commitments. In addition, the proven error of the protocol is 2−s/17 and
its conjectured error is 2−s/4. The actual error value has a significant impact on the efficiency.
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In contrast to the above, the complexity of our protocol is as follows. The parties need to
compute 15s` + 39` + 10s + 6 exponentiations, where ` is the input length and s is a statistical
security parameter discussed below. We further show that with optimizations the 15s` component
can be brought down to just 5.66s` full exponentiations, and if preprocessing can be used
then only s`/2 full exponentiations need to be computed after the inputs become known. (We
remark that with preprocessing, the protocols of [35] and [21, 22] are also much more efficient.)
In addition, the protocol requires the exchange of 7s` + 22` + 7s + 5 group elements, and
has 12 rounds of communication. Finally, there are 6.5|C|s symmetric encryptions for
constructing and decrypting the garbled circuits and 4|C|s ciphertexts sent for transmitting these
circuits. An important factor here is the value of s needed. The error of our protocol is 2−0.311s

for large enough s; a concrete calculation yields that for an error of 2−40 it suffices to set s = 132.
(The overhead of computing an AES circuit with |C| = 33, 000, ` = 128 and s = 132, is therefore
about 96, 000 exponentiations, 28, 300, 000 symmetric encryptions, and communicating 270 Mbytes,
where about 95% of the communication is spent on sending the garbled circuits.) Finally, we stress
also that all of our exponentiations are of the basic Diffie-Hellman type and so can be implemented
over Elliptic curves, which is much cheaper than RSA-type operations.

2 Preliminaries and Definitions

Throughout the paper we denote the computational security parameter by n, the statistical security
parameter by s, and the length of inputs by `. The computational security parameter is the usual
one that is used to model the security of the underlying computational assumptions (e.g., the DDH
assumption). In contrast, the statistical security parameter models a probability of cheating that
is not due to any computational hardness, but rather holds in an information-theoretic sense. For
example, the probability that an adversary passes a “cut-and-choose test” depends on how large the
test is and how many items are opened, but does otherwise not directly depend on computational
hardness. The distinction between the two types of security parameters is important because the
size of the cut-and-choose test has a dramatic effect on the efficiency of the protocol and thus the
exact probability of cheating is important to analyze. For example, in our protocol, we prove that
the error due to the statistical security parameter s is approximately 2−0.311s. We define the notion
of indistinguishability with respect to n and s, so that the error due to s is allowed only to be
2−O(s) (if this does not hold, then there is probably no reason to differentiate between n and s).

We consider ensembles that are indexed by integers (security parameters) n and s, and by
arbitrary strings a. Security is required to hold for all a, and this value a represents the parties’
inputs; thus, we obtain security for all inputs, and for large enough values of n and s. All parties
are polynomial in the n (and so if a is very long, a party may not be able to read all of it). Formally,
we have the following definition:

Definition 2.1 Let X = {X(a, n, s)}n,s∈N;a∈{0,1}∗ and Y = {Y (a, n, s)}n,s∈N;a∈{0,1}∗ be probability
ensembles, so that for any n, s ∈ N the distribution X(a, n, s) (resp., Y (a, n, s)) ranges over strings

of length polynomial in n+s. We say that the ensembles are (n,s)-indistinguishable, denoted X
n,s
≡ Y ,

if there exists a constant 0 < c ≤ 1 such that for every non-uniform polynomial-time distinguisher
D, every s ∈ N, every polynomial p(·) and all large enough n ∈ N, it holds that for every a ∈ {0, 1}∗:∣∣∣Pr[D(X(a, n, s), a, n, s) = 1]− Pr[D(Y (a, n, s), a, n, s) = 1]

∣∣∣ < 1

p(n)
+

1

2c·s

Observe that the above is required to hold for all s and all large enough n. This reflects the
fact that we will be concrete in s and asymptotic only in n.
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Definitions of security. We refer the reader to [13, Chapter 7] for the definition of security
for two-party computation in the presence of malicious adversaries. The bulk of this paper is in
this model. The only difference is that we require (n, s)-indistinguishability between the ideal and
real distributions, rather than just regular computational indistinguishability. We also consider
the models of universal composability and covert adversaries, and refer the reader to [4] and [1],
respectively, for appropriate definitions.

3 Cut-and-Choose Oblivious Transfer

3.1 The Functionality and Construction Overview

Our protocol for secure two-party computation uses a new primitive that we call cut-and-choose
oblivious transfer. Loosely speaking, a cut-and-choose OT is a batch oblivious transfer protocol
(meaning an oblivious transfer for multiple pairs of inputs) with the additional property that the
receiver can choose a subset of the pairs (of a predetermined size) for which it learns both values.
This is a very natural primitive which has clear applications for protocols that are based on cut-
and-choose, as is our protocol here for general two-party computation.

The cut-and-choose OT functionality, denoted Fccot, with parameter s, is formally defined in
Figure 3.1, together with a variant functionality that we will need, which considers the case that
R is forced to use the same choice σ in every transfer. This variant is denoted FS

ccot.

FIGURE 3.1 (The cut-and-choose OT functionalities)

The cut-and-choose OT functionality Fccot:

• Inputs:

– S inputs a vector of pairs x = {(xi0, xi1)}si=1

– R inputs σ1, . . . , σs ∈ {0, 1} and a set of indices J ⊂ [s] of size exactly s/2.

• Output: If J is not of size s/2 then S and R receive ⊥ as output. Otherwise,

– For every j ∈ J the receiver R obtains the pair (xj0, x
j
1).

– For every j /∈ J the receiver R obtains xjσj .

The single-choice cut-and-choose OT functionality FS
ccot:

• Inputs: The same as above, but with R having only a single input bit σ.

• Output: The same as above, but with R obtaining the value xjσ for every j /∈ J .

In order to motivate the usefulness of this functionality, we describe its use in our protocol.
Oblivious transfer is used in Yao’s protocol so that the party computing the garbled circuit (call it
P2) can obtain the keys (garbled values) on the wires corresponding with its input while keeping its
input secret; see Appendix A. When applying cut-and-choose, many circuits are constructed and
then half of them are opened, where opening means that P2 receives all of the input keys to the
circuit. By using cut-and-choose OT, P2 receives all of its keys in the circuits to be opened directly,
in contrast to having P1 send them separately after the indices of the circuits to be opened are sent
from P2 to P1. The advantage of this approach is that P1 cannot use different keys in the OT and
when opening the circuit. See Section 4.1 for discussion on why this is important.

In cut-and-choose on Yao’s protocol, one oblivious transfer is needed for every bit of P2’s input,
and P2 should receive the keys associated with the bit in all of the circuits. In order to ensure
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that P2 uses the same input in all circuits, we use the single-choice variant. We present the basic
variant since it is of independent interest and may be useful in other applications.

Constructing cut-and-choose OT. The starting point for our construction of cut-and-choose
OT is the universally composable protocol of Peikert et al. [37]; we refer only to the instantiation
of their protocol based on the DDH assumption because this is the most efficient. However, our
protocol can use any of their instantiations. The protocol of [37] is cast in the common reference
string (CRS) model, where the CRS is a tuple (g0, g1, h0, h1) where g0 is a generator of a group of
order q (in which DDH is assumed to be hard), g1 = (g0)

y for some random y, and it holds that
h0 = (g0)

a and h1 = (g1)
b where a 6= b. We first observe that it is possible for the receiver to choose

this tuple itself, as long as it proves that it indeed fulfills the property that a 6= b. Furthermore,
this can be proven very efficiently by setting b = a + 1; in this case, the proof that b = a + 1 is
equivalent to proving that (g0, g1, h0,

h1
g1

) is a Diffie-Hellman tuple (note that the security of [37] is
based only on a 6= b and not on these values being independent of each other). We thus obtain a
highly efficient version of the protocol of [37] in the stand-alone model.

Next, observe that the protocol of [37] has the property that if (g0, g1, h0, h1) is a Diffie-Hellman
tuple (i.e., if a = b) then it is possible for the receiver to learn both values (of course, in a real
execution this cannot happen because the receiver proves that a 6= b). This property is utilized
by [37] to prove universal composability; in their case the simulator can choose the CRS so that
a = b and then obtain both inputs of the sender, something that is needed for proving simulation-
based security. However, in our case, we want the receiver to be able to sometimes learn both
inputs of the sender. We can therefore utilize this exact property and have the receiver choose s/2
pairs (h0, h1) for which a 6= b (ensuring that it learns only one input) and s/2 pairs (h0, h1) for
which a = b (enabling it to learn both inputs by actually running the simulator strategy of [37]).
This therefore provides the exact cut-and-choose property in the OT that is needed. Of course, the
receiver must also prove that it behaved in this way. Specifically, it proves in zero-knowledge that
s/2 out of s pairs are such that a 6= b. We show that this too can be computed at low cost using
the technique of Cramer et al. [7]; see Appendix B.2 for a full description and efficiency analysis of
the zero-knowledge protocol.

3.2 Background – The OT Protocol of Peikert et al. [37]

Our cut-and-choose oblivious transfer protocol is based on the oblivious transfer of [37]. Their
protocol is universally composable in the common reference string model. We present an efficient
instantiation of the protocol in the plain model, where there is no common reference string. This
protocol is secure against malicious parties, and forms the basis for our protocol. See Protocol 3.2
for a full description.

In order to see that the receiver obtains the correct values in the last step, observe that

wσ
(uσ)r

=
vσ · xσ
(uσ)r

=
gs · ht · xσ

((gσ)s · (hσ)t)r
=

gs · ht · xσ
((gσ)r)s · ((hσ)r)t

=
gs · ht · xσ
gs · ht

= xσ.

Regarding security, if (g0, g1, h0, h1) is not a DH tuple, then the receiver can learn only one of the
sender’s inputs, since in that case one of the two pairs (u0, w0), (u1, w1) is uniformly distributed
and therefore reveals no information about the corresponding input of the sender. This is due to
the property of the RAND function used in Step 4: upon receiving a non-Diffie-Hellman tuple,
the output of RAND is a pair of uniformly and independently distributed group elements. In
contrast, if (g0, g1, h0, h1) is a DH tuple, and the receiver knows y = logg0 g1, then the receiver can
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PROTOCOL 3.2 (The Oblivious Transfer Protocol of [37] – Plain-Model Variant)

• Inputs: The sender’s input is a pair (x0, x1) and the receiver’s input is a bit σ

• Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0), where G is an
efficient representation of a group of order q with a generator g0, and q is of length n.

• The protocol:

1. The receiver R chooses random values y, α0 ← Zq and sets α1 = α0 + 1. R then
computes g1 = (g0)y, h0 = (g0)α0 and h1 = (g1)α1 and sends (g1, h0, h1) to the sender
S.

2. R proves, using a zero-knowledge proof of knowledge, that (g0, g1, h0,
h1

g1
) is a DH

tuple; see Protocol B.1. ((g0, g1, h0, h1) is used as the common reference string in the
protocol of [37].)

3. R chooses a random value r and computes g = (gσ)r and h = (hσ)r, and sends (g, h)
to S.

4. The sender operates in the following way:

– Define the function RAND(w, x, y, z) = (u, v), where u = (w)s · (y)t and v =
(x)s · (z)t, and the values s, t← Zq are random.

– S computes (u0, v0) = RAND(g0, g, h0, h), and (u1, v1) = RAND(g1, g, h1, h).

– S sends the receiver the values (u0, w0) where w0 = v0 · x0, and (u1, w1) where
w1 = v1 · x1.

5. The receiver computes xσ = wσ/(uσ)r.

compute both inputs of the server. In order to see this, assume that σ = 0 and so g = (g0)
r and

h = (h0)
r. Then, it can compute x0 = w0/(u0)

r as in the protocol. In addition, it can compute
x1 = w1/(u1)

ry−1
. This works because

w1

(u1)ry
−1 =

gs · ht · x1
((g1)s · (h1)t)ry−1 =

gs · ht · x1
((g1)y

−1)s · ((h1)y−1)t·r
=

gs · ht · x1
((g0)s · (h0)t)r

=
gs · ht · x1
gs · ht

= x1 (1)

Similarly, if σ = 1 then x1 can be computed as in the protocol and x0 can be computed as w0/(u0)
ry.

In order to prevent a malicious receiver from doing this, the zero-knowledge proof of knowledge
that (g0, g1, h0,

h1
g1

) is a Diffie-Hellman tuple ensures the tuple (g0, g1, h0, h1) is not a DH tuple, and
so the receiver can only learn a single value of the sender’s input.

The proof of security takes advantage of the fact that a simulator can extract R’s input-bit
σ because it can extract the value α0 from the zero-knowledge proof of knowledge proven by R.
Given α0, the simulator can compute α1 = α0 + 1 and then check if h = gα0 (in which case σ = 0)
or if h = gα1 (in which case σ = 1). For simulation in the case that S is corrupted, the simulator
sets α0 = α1 and cheats in the zero-knowledge proof, enabling it to extract both sender inputs.
For the sake of completeness, we present a zero-knowledge proof of knowledge for DH tuples in
Protocol B.1 in Appendix B.

Exact efficiency. In the OT without the zero-knowledge proof, the sender computes 8 exponenti-
ations and the receiver computes 6. The zero-knowledge proof adds an additional 5 exponentiations
for the prover (who is played by the receiver) and 7 for the verifier (who is played by the sender).
In addition, the parties exchange 17 group elements (including the zero-knowledge proof), and the
protocol takes 6 rounds of communication (3 messages are sent by each party). In summary, there
are 26 exponentiations, 17 group elements sent and 6 rounds of communication.
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3.3 Constructing a Cut-and-Choose OT Protocol

The idea behind the cut-and-choose OT protocol is essentially to run s copies of Protocol 3.2 in
parallel, with the following important modification. Instead of requiring that (g0, g1, h0, h1) not be
a DH tuple in any of the executions, we actually allow the receiver to choose s/2 of the executions
in which it can set (g0, g1, h0, h1) to actually be a DH tuple. This means that in these executions,
the receiver obtains both of the sender’s inputs. Of course, this must be done without the sender
knowing for which of the executions the tuple is of the DH type and for which not. This is achieved
by applying the methodology of Cramer et al. [7] for proving a compound statement to the basic
DH zero-knowledge proof. The result is surprisingly efficient, and is described in Protocol B.2 in
Appendix B. The construction of cut-and-choose OT is described in Protocol 3.3.

PROTOCOL 3.3 (Cut-and-Choose Oblivious Transfer)

• Inputs: The sender’s input is a vector of s pairs (xj0, x
j
1) and the receiver’s input is com-

prised of s bits σ1, . . . , σs and a set J ⊂ [s] of size exactly s/2.

• Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0), where G is an
efficient representation of a group of order q with a generator g0, and q is of length n.

• Setup phase:

1. R chooses a random y ← Zq and sets g1 = (g0)y.

2. For every j ∈ J , R chooses a random αj ← Zq and computes hj0 = (g0)αj and

hj1 = (g1)αj .

3. For every j /∈ J , R chooses random αj ← Zq and computes hj0 = (g0)αj and hj1 =
(g1)αj+1.

4. R sends (g1, h
1
0, h

1
1, . . . , h

s
0, h

s
1) to S

5. R proves using a zero-knowledge proof of knowledge to S that s/2 of the tu-

ples (g0, g1, h
j
0,
hj1
g1

) are DH tuples. (R must actually prove that s/2 of the tuples

(g0, g1, h
j
0, h

j
1) are not DH tuples. In order to do this, it proves that the corresponding

tuples (g0, g1, h
j
0, h

j
1/g1) are Diffie-Hellman tuples.) See Protocol B.2 in Appendix B.

If S rejects the proof then it outputs ⊥ and halts.

• Transfer phase (repeated in parallel for every j):

1. The receiver chooses a random value rj ← Zq and computes g̃j = (gσj )
rj , h̃j = (hjσj )

rj .

It sends (g̃j , h̃j) to the sender.

2. The sender operates in the following way:

– Define the function RAND(w, x, y, z) = (u, v), where u = (w)s · (y)t and v =
(x)s · (z)t, and the values s, t← Zq are random.

– S sets (uj0, v
j
0) = RAND(g0, g̃j , h

j
0, h̃j), and (uj1, v

j
1) = RAND(g1, g̃j , h

j
1, h̃j).

– S sends the receiver the values (uj0, w
j
0) where wj0 = vj0 · x

j
0, and (uj1, w

j
1) where

wj1 = vj1 · x
j
1.

• Output:

1. For every j (both j ∈ J and j /∈ J ), the receiver computes xjσj =
wjσj

(ujσj )
rj

.

2. For every j ∈ J , the receiver also computes xj1−σj =
wj1−σj

(uj1−σj
)rj ·z

, where z = y−1 mod q

if σ = 0, and z = y if σ = 1; see Eq. (1).
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The security of the protocol is stated in the following proposition.

Proposition 3.4 If the Decisional Diffie-Hellman assumption holds in the group G, then Proto-
col 3.3 securely realizes the Fccot functionality in the presence of malicious adversaries.

Proof: Let A be an adversary that controls R. We construct a simulator S that invokes A on its
input and works as follows:

1. S receives g1 and (h10, h
1
1, . . . , h

s
0, h

s
1) from A and verifies the zero-knowledge proof as the

honest sender would.

(a) If the verification fails, S sends ⊥ to the trusted party computing Fccot and halts.

(b) Otherwise, S runs the extractor that is guaranteed to exist for the proof of knowledge,

and extracts a witness set {(ij , αij )} such that for every ij it holds that h
ij
0 = (g0)

αij

and h
ij
1 = (g1)

αij+1. S defines the set J to be all of the indices not in the obtained

witness set. (Note that when a pair h
ij
0 , h

ij
1 is as above, then A can obtain only one of

the strings. Thus, the set J of the indices where A receives both strings are those that
are not included in this witness set.)

(We remark that the above procedure does not guarantee that S runs in expected polynomial-
time. Thus, formally S runs the witness-extended emulator of [26] that achieves the above
effect.)

2. S receives (g̃1, h̃1), . . . , (g̃s, h̃s) from A.

3. For every j /∈ J , simulator S has obtained αj . S then sets σj = 0 if h̃j = (g̃j)
αj , and otherwise

sets σj = 1.

4. For every j ∈ J , S sets σj arbitrarily; say to equal 0.

5. S sends J and σ1, . . . , σs to the trusted party. Then,

(a) For every j ∈ J , S receives back a pair (xj0, x
j
1)

(b) For every j /∈ J , S receives back xjσj

6. S concludes the execution by computing RAND as the honest sender would. Then,

(a) For every j ∈ J , S computes (uj0, w
j
0) and (uj1, w

j
1) exactly like the honest sender (it can

do this because it knows both xj0 and xj1).

(b) For every j /∈ J , S computes (ujσj , w
j
σj ) like the honest sender using xjσ, and sets

(uj1−σj , w
j
1−σj ) to be random elements of G.

7. S sends all of these values to A and outputs whatever A outputs.

If the extraction of the witness set succeeds whenever A succeeds in proving the zero-knowledge
proof, the output of the ideal execution with S is identical to the output of a real execution with A
and an honest sender. This is due to the fact that the only difference is with respect to the way the

(uj1−σj , w
j
1−σj ) are formed. However, if (g0, g1, h

j
0,
hj1
g1

) is a Diffie-Hellman tuple, then (g0, g1, h
j
0, h

j
1)

is not a Diffie-Hellman tuple. Now, if σj = 0 then h̃j = (g̃j)
αj where hj0 = (g0)

αj . This therefore

implies that (g1, g̃j , h
j
1, h̃j) is also not a Diffie-Hellman tuple and so RAND applied to this tuple
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yields a uniformly distributed pair (uj1, w
j
1). (Likewise, if σ = 1 we obtain that RAND applied to

(uj0, w
j
0) is uniformly distributed.) We conclude that the uniform choice of the pair (uj1−σj , w

j
1−σj )

by S yields exactly the same distribution as in a real execution. The proof of this corruption case
is concluded by noting that the probability that S does not succeed in extracting a witness when
A successfully proves is negligible.

We now proceed to the case that A controls the sender. We construct a simulator S as follows:

1. S computes g1 = (g0)
y for a random y ← Zq, and chooses random values (hj0, h

j
1) so that

(g0, g1, h
j
0, h

j
1) is a Diffie-Hellman tuple for every j, and sends the values to A.

2. S runs the simulator for the zero-knowledge proof of knowledge with the residual A as the
verifier.

3. For every j, S computes g̃j = (g0)
rj and h̃j = (h0)

rj and sends the pairs (g̃j , h̃j) to A.

4. Upon receiving back pairs (uj0, w
j
0) and (uj1, w

j
1), S computes xj0 =

wj0
(uj0)

rj
and xj1 =

wj1
(uj1)

rj ·z

where z = y−1 mod q; see Eq. (1).

5. S sends all pairs (xj0, x
j
1) to the trusted party, outputs whatever A outputs, and halts.

There are two main observations regarding the simulation. First, since all the (g0, g̃j , h0, h̃j)

and (g1, g̃j , h1, h̃j) tuples are Diffie-Hellman tuples, S learns all of the correct (xj0, x
j
1) values that

the honest receiver would receive in a real execution. Second, by the Decisional Diffie-Hellman
assumption, the output of a simulated execution with S in the ideal model is indistinguishable
from the output of a real execution between A and an honest receiver. Formally, we begin with
a real execution between the receiver R and A. Then, we modify R to be a simulator S1 that
works exactly as R does except that instead of honestly proving the zero-knowledge proof, it runs
the simulator instead. By the zero-knowledge property, the outcome of the two executions is
indistinguishable. Next, we modify S1 to S2 by having S2 work in the same way except that it
generates all of the hj0, h

j
1 pairs so that hj0 = (g0)

αj and hj1 = (g1)
αj (for all j). The fact that these

executions are indistinguishable is due to the DDH assumption. In particular, since the receiver
only uses the knowledge of αj to prove the zero-knowledge proof, both S1 and S2 can run their

executions without knowing the αj values at all, and even when they receive all of the hj0, h
j
1 values

as external input. A direct reduction to the DDH problem is then straightforward, and is thus
omitted. Finally, we modify S2 to S3 who instead of outputting the values as the receiver would
compute them, it extracts the pair (xj0, x

j
1) as the simulator S would and sets the receiver’s output to

be xjσj . Since S extracts the values in the same way as the honest receiver, this makes no difference

to the output. Finally, we modify S3 to S4 by having it compute g̃j = (g0)
rj and h̃j = (h0)

rj

irrespective of the real input σj . The output distribution generated by S4 is indistinguishable to
that generated by S3 by another direct reduction to the DDH problem. We conclude by noting
that the distribution generated by S4 is identical to that generated by S in an ideal execution;
specifically, it makes no difference if (xj0, x

j
1) are sent to the trusted party who then sends xjσj to

the receiver, or if S4 sets the receiver’s output directly to xjσj .

Exact efficiency. The setup phase requires 2s + 1 exponentiations and the exchange of 2s + 1
group elements, plus the zero-knowledge proof that adds an additional 7s+ 4 exponentiations and
3s + 4 group elements sent; see Appendix B.2. Overall, the setup requires 9s + 5 exponentiations
and the exchange of 5s+ 5 group elements. The transfer phase requires 11.5s exponentiations and
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the exchange of 6s group elements. Finally, the number of rounds remains unchanged at 6. In
summary, there are 20.5s+ 5 exponentiations, 11s+ 5 group elements sent and 6 rounds
of communication.

3.4 Single-Choice Cut-and-Choose Oblivious Transfer

The protocol for achieving the single-choice cut-and-choose OT functionality FSccot implements the
functionality that is defined formally in Figure 3.1; an intuitive description is provided in Figure 3.5.

FIGURE 3.5 (Single-Choice Cut-and-Choose OT)
The inputs of the sender are depicted below. The values learned by the receiver are marked in
bold. For every j ∈ J the receiver learns both values (xj0, x

j
1). In all pairs, the receiver learns one

of the values, depending on σ. In the example here σ = 0 and so the zero-values are in bold in all
pairs. (

(x1
0, x

1
1) (x2

0, x
2
1) . . . (xj

0, x
j
1) . . . (xs

0, x
s
1)
)

An example where j ∈ J and σ = 0.

The protocol FSccot is achieved by modifying Protocol 3.3 above in Step 1 of the transfer phase
so that the receiver R proves that it used the same σ in every tuple. In order to enable this proof
to be carried out efficiently, we modify Step 1 of the transfer phase of Protocol 3.3 as follows:

The receiver chooses a (single) random value r ← Zq and computes g′ = (gσ)r. Then,

for every j, it computes hj = (hjσ)r. It sends (g′, h1, . . . , hs) to the sender, and proves
in zero-knowledge that it computed this correctly.

The required zero-knowledge proof is that there exists an r ∈ Zq such that either g′ = (g0)
r and

hj = (hj0)
r for every 1 ≤ j ≤ s, or g′ = (g1)

r and hj = (hj1)
r for every 1 ≤ j ≤ s. Equivalently, the

required zero-knowledge proof is that either all of {(g0, g′, hj0, hj)}sj=1 are Diffie-Hellman tuples, or

all of {(g1, g′, hj1, hj)}sj=1 are Diffie-Hellman tuples. Thus, the zero-knowledge proof of Protocol B.4
in Appendix B.3 can be used at the exact additional cost of s+18 exponentiations and the exchange
of 10 group elements (no additional rounds are needed because this proof can be carried out in
parallel to the proof in the setup phase). By the soundness of the zero-knowledge proof, R must
use the same σ in every transfer. The other difference in the protocol is that instead of sending a
different (gj , hj) pair for every j, the receiver sends a single value g′. In the proof below, we show
that this does not leak any information to the sender.

Proposition 3.6 If the Decisional Diffie-Hellman assumption holds in the group G, then the mod-
ified protocol for single-choice cut-and-choose oblivious transfer, securely realizes the FSccot function-
ality in the presence of malicious adversaries.

Proof: The proof is identical to the proof of Proposition 3.4, except for the following modification.
When analyzing the case that the adversary controls the sender, the proof of Proposition 3.4
describes a sequence of simulators S1, . . . ,S4, which replace the operation of the receiver. We use the
same simulators except for simulator S4. This simulator now replaces the message (g′, h1, . . . , hs) =
((gσ)r, (h1σ)r, . . . , (hsσ)r)), with the message ((g0)

r, (h10)
r, . . . , (hs0)

r)), regardless of the value of σ.
It must be shown that the distributions of these two messages are indistinguishable by the sender.
Note that the sender also receives the values of the set S = (g0, g1, h

1
0, h

1
1, . . . , h

s
0, h

s
1), where ∀j hj0 =

(g0)
αj , hj1 = (g1)

αj . (In the original protocol, hj1 can also be equal to (g1)
αj+1, but in simulators S2

and S3 the input distribution is as we describe here.)
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Reordering the items in S, we can define it as S = S0 ∪ S1 where Sb = (gb, (gb)
α1 , . . . , (gb)

αs),
for b = 0, 1. Let us denote by Srb the set Srb = ((gb)

r, (gb)
α1r, . . . , (gb)

αsr). Note that Sr0 and Sr1
have exactly the same distribution when r is chosen at random. The sender receives either 〈S, Sr0〉
or 〈S, Sr1〉, and therefore cannot distinguish between these two options.

Exact efficiency. The efficiency of this protocol is the same as above except for the following
two changes: (1) There is no need to compute s different gj values (a single g′ is computed),
and therefore s − 1 exponentiations are eliminated. (2) An additional s + 18 exponentiations and
the exchange of 10 additional group elements are needed for the zero-knowledge protocol. We
therefore have 20.5s+ 24 exponentiations, 11s+ 15 group elements sent and 6 rounds of
communication.

3.5 Batch Single-Choice Cut-and-Choose OT

In our protocol we need to carry out cut-and-choose oblivious transfers for all wires in the circuit.
Furthermore, it is crucial that the subset of indices for which the receiver obtains both pairs is the
same in all transfers. We call a functionality that achieves this “batch single-choice cut-and-choose
OT” and denote it FS,Bccot. The functionality is formally defined in Figure 3.7, and an example is
given in Figure 3.8.

FIGURE 3.7 (The Batch Single-Choice Cut-and-Choose OT Functionality FS,B
ccot)

• Inputs:

– S inputs ` vectors of pairs ~xi of length s, for i = 1, . . . , `. (Every vector is a row of
s pairs. There are ` such rows. This can be viewed as an ` × s matrix of pairs; see
Figure 3.8.)

– R inputs σ1, . . . σ` ∈ {0, 1} and a set of indices J ⊂ [s] of size exactly s/2. (For every
row the receiver chooses a bit σi. It also chooses s/2 of the s “columns”.)

• Output: If J is not of size s/2 then S and R receive for output ⊥. Otherwise,

– For every i = 1, . . . , ` and for every j ∈ J , the receiver R obtains the jth pair in
vector ~xi. (For every column in J , the receiver obtains the two items of every pair,
in all rows.)

– For every i = 1, . . . , `, the receiver R obtains the σi value in every pair of the vector
~xi. (For every column not in J , the receiver obtains its choice σi of the two items in
the pair, where σi is the same for all entries in a row.)
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FIGURE 3.8 (Batch Single-Choice Cut-and-Choose OT)
Let the matrix below denote the inputs of the sender. Then, for j ∈ J the receiver learns both
values in the jth column (values in bold). Furthermore, in each row, the receiver learns one of
the values, depending on the receiver input associated with that row. For example, in the ith row
in the example here σi = 0 and so the zero-values are in bold in the ith row.

(x1,1
0 , x1,11 ) (x1,2

0 , x1,21 ) . . . (x1,j
0 , x1,j

1 ) . . . (x1,s
0 , x1,s1 )

(x2,10 ,x2,1
1 ) (x2,20 ,x2,2

1 ) . . . (x2,j
0 , x2,j

1 ) . . . (x2,s0 ,x2,s
1 )

...
...

...
...

(xi,1
0 , xi,11 ) (xi,2

0 , xi,21 ) . . . (xi,j
0 , xi,j

1 ) . . . (xi,s
0 , xi,s1 )

...
...

...
...

(x`,1
0 , x`,11 ) (x`,2

0 , x`,21 ) . . . (x`,j
0 , x`,j

1 ) . . . (x`,s
0 , x`,s1 )


An example where j ∈ J and σi = 0.

In order to realize this functionality it suffices to run the setup phase of Protocol 3.3 once,
and then the transfer phase of the protocol with single choice ` times in parallel (with receiver
inputs σ1, . . . , σ` where σi is the receiver’s choice in execution i). This ensures that the same set
J is used in all transfers, since J depends only on the values sent in the setup phase. We remark
that parallel composition holds here because the simulation only rewinds in the transfer phase for
the zero-knowledge protocol, and Protocol B.2 that forms the basis of the zero-knowledge proof is
zero-knowledge under parallel composition (as stated in Proposition B.3).

Proposition 3.9 Assuming that the Decisional Diffie-Hellman assumption holds in G, the above-
described protocol securely realizes FS,Bccot in the presence of malicious adversaries.

Exact efficiency. The setup phase here remains the same, and including the zero-knowledge
costs 9s + 5 exponentiations and the exchange of 5s + 5 group elements. The transfer phase is
repeated ` times, where each transfer incurs a cost of 11.5s+ 19 exponentiations and the exchange
of 5s+ 11 group elements. We conclude that there are 11.5s`+ 19`+ 9s+ 5 exponentiations,
5s`+ 11`+ 5s+ 5 group elements sent and 6 rounds of communication. In Section 4.4 we
observe that 9.5s` of the exponentiations are “fixed-base” and thus this can actually be reduced to
the equivalent of 5.166s` exponentiations.

4 The Protocol for Secure Two-Party Computation

4.1 Protocol Description

Before describing the protocol in detail, we first present an intuitive explanation of the different
steps, and their purpose:

Step 1: P1 constructs s copies of a Yao garbled circuit for computing the function. The keys
(garbled values) on the wires of the s copies of the circuit are all random, except for the keys
corresponding to P1’s input wires, which are chosen in a special way. Namely, P1 chooses
random values a01, a

1
1, . . . , a

0
` , a

1
` (where the length of P1’s input is `) and r1, . . . , rs, and sets

the keys on the wire associated with its ith input in the jth circuit to be ga
0
i ·rj and ga

1
i ·rj .

Note that the 2`+s values ga
0
1 , ga

1
1 , . . . , ga

0
` , ga

1
` , gr1 , . . . , grs constitute commitments to all 2`s

keys.2 (The keys are actually a pseudorandom synthesizer [34], and therefore if some of the
keys are revealed, the remaining keys remain pseudorandom.)

2The actual symmetric keys used are derived from the ga
0
i ·rj , ga

1
i ·rj values using a randomness extractor; a universal
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Step 2: The parties execute batch single-choice cut-and-choose OT. P1 inputs the key-pairs for all
wires associated with P2’s input, and P2 inputs its input and a random set J ⊂ [s] of size s/2.
The result is that P2 learns all the keys on the wires associated with its own input for s/2 of the
circuits as indexed by J (called check circuits), and in addition learns the keys corresponding
to its actual input in these wires in the remaining circuits (called evaluation circuits).

Step 3: P1 sends P2 the garbled circuits, and the values ga
0
1 , ga

1
1 , . . . , ga

0
` , ga

1
` , gr1 , . . . , grs which

are commitments to all the keys on the wires associated with P1’s input. At this stage P1 is
fully committed to all s circuits, but does not yet know which circuits are to be opened.

Step 4: P2 reveals to P1 its choice of check circuits and proves that this was indeed its choice by
sending both values on the wire associated with P2’s first input bit in each check circuit. Note
that P2 can know both these values only for circuits that are check circuits.

Step 5: To completely decrypt the check circuits in order to check that they were correctly con-
structed, P2 also needs to obtain all the keys on the wires associated with P1’s input. There-
fore, if the jth circuit is a check circuit, P1 sends rj to P2. Given all of the ga

0
i , ga

1
i values and

rj , P2 can compute all of the keys ga
0
i ·rj , ga

1
i ·rj in the jth circuit by itself (and P1 cannot change

the values). Furthermore, this reveals nothing about the keys in the evaluation circuits.

Step 6: Given all of the keys on all of the input wires, P2 checks the validity of the s/2 check
circuits. This ensures that P2 will catch P1 with high probability if many of the garbled circuits
generated by P1 do not compute the correct function. Thus, unless P2 detects cheating, it is
assured that a majority of the evaluation circuits are correct.

Step 7: All that remains is for P1 to send P2 the keys associated with its actual input, and then
P2 will be able to compute the evaluation circuits. This raises a problem as to how P2 can be
sure that P1 sends keys that correspond to the same input in all circuits. This brings us to the
way that P1 chose these keys (via the Diffie-Hellman pseudorandom synthesizer). Specifically,

for every wire i and evaluation-circuit j, party P1 sends P2 the value ga
xi
i ·rj where xi is the

ith bit of P1’s input. P1 then proves in zero-knowledge that the same axii exponent appears
in all of the values sent. Essentially, this is a proof that the values constitute an “extended”
Diffie-Hellman tuple and thus this statement can be proven very efficiently.

Step 8: Finally, given the keys associated with P1’s inputs and its own inputs, P2 evaluates the
evaluation circuits and obtains their output values. Recall, however, that the checks above
only guarantee that a majority of the circuits are correct, and not that all of them are.
Therefore, P2 outputs the value that is output from the majority of the evaluation circuits.
We stress that if P2 sees different outputs in different circuits, and thus knows for certain
that P1 has tried to cheat, it must ignore this observation and output the majority value (or
otherwise it might leak information to P1, as in the example described in Section 1.2).

hash function suffices for this [6, 18]. The only subtlety is that P1 must be fully committed to the garbled circuits,
including these symmetric keys, before it knows which circuits are to be checked. However, randomness extractors
are not 1–1 functions. This is solved by having P1 send the seed for the extractor before Step 4 below. Observe that

the {ga
0
i , ga

1
i , grj} values and the seed for the extractor fully determine the symmetric keys, as required.
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PROTOCOL 4.1 (Computing f(x, y))

Inputs: P1 has input x ∈ {0, 1}` and P2 has input y ∈ {0, 1}`.
Auxiliary input: a statistical security parameter s, the description of a circuit C such that C(x, y) =
f(x, y), and (G, q, g) where G is a cyclic group with generator g and prime order q, and q is of length n.

The protocol:

1. Input key choice and circuit preparation:

(a) P1 chooses random values a01, a
1
1, . . . , a

0
` , a

1
` ∈R Zq and r1, . . . , rs ∈R Zq.

(b) Let w1, . . . , w` be the input wires corresponding to P1’s input in C, and denote by wi,j the
instance of wire wi in the jth garbled circuit, and by kbi,j the key associated with bit b on
wire wi,j . Then, P1 sets the keys for its input wires to:

k0i,j = H(ga
0
i ·rj ) and k1i,j = H(ga

1
i ·rj )

where H is a suitable randomness extractor [6, 18]; see also [10].

(c) P1 constructs s independent copies of a garbled circuit of C, denoted GC1, . . . , GCs, using
random keys except for wires w1, . . . , w` for which the keys are as above; see Appendix A.

2. Oblivious transfers: P1 and P2 run batch single-choice cut-and-choose oblivious transfer (Pro-
tocol 3.7), with parameters ` (the number of parallel executions) and s (the number of pairs in
each execution):

(a) P1 defines vectors ~z1, . . . ~z` so that ~zi contains the s pairs of random symmetric keys associated
with P2’s ith input bit yi in all garbled circuits GC1, . . . , GCs.

(b) P2 inputs a random subset J ⊂ [s] of size exactly s/2 and bits σ1, . . . , σ` ∈ {0, 1}, where
σi = yi for every i.

(c) P2 receives all the keys associated with its input wires in all circuits GCj for j ∈ J , and
receives the keys associated with its input y on its input wires in all other circuits.

3. Send circuits and commitments: P1 sends P2 the garbled circuits (i.e., the gate and output
tables), the “seed” for the randomness extractor H, and the following “commitment” to the garbled
values associated with P1’s input wires:{

(i, 0, ga
0
i ), (i, 1, ga

1
i )
}`
i=1

and
{

(j, grj )
}s
j=1

4. Send cut-and-choose challenge: P2 sends P1 the set J along with the pair of keys associated
with its first input bit y1 in every circuit GCj for j ∈ J . If the values received by P1 are incorrect,
it outputs ⊥ and aborts. Circuits GCj for j ∈ J are called check-circuits, and for j /∈ J are called
evaluation-circuits.

5. Send all input garbled values in check-circuits: For every check-circuit GCj , party P1

sends the value rj to P2, and P2 checks that these are consistent with the pairs {(j, grj )}j∈J
received in Step 3. If not, P2 aborts outputting ⊥.

6. Correctness of check circuits: For every j ∈ J , P2 uses the ga
0
i , ga

1
i values it received in

Step 3, and the rj values it received in Step 5, to compute the values k0i,j = H(ga
0
i ·rj ), k1i,j =

H(ga
1
i ·rj ) associated with P1’s input in GCj . In addition it sets the garbled values associated with

its own input in GCj to be as obtained in the cut-and-choose OT. Given all the garbled values for
all input wires in GCj , party P2 decrypts the circuit and verifies that it is a garbled version of C.
If there exists a circuit for which this does not hold, then P2 aborts and outputs ⊥.

7. P1 sends its garbled input values in the evaluation-circuits:

(a) P1 sends the keys associated with its inputs in the evaluation circuits: For every j /∈ J and

every wire i = 1, . . . , `, party P1 sends the value k′i,j = ga
xi
i ·rj ; P2 sets ki,j = H(k′i,j).

(b) P1 proves that all input values are consistent: For every input wire i = 1, . . . , `, party P1

uses Protocol B.4 to prove in parallel that there exists a value σi ∈ {0, 1} such that for every

j /∈ J , k′i,j = ga
σi
i ·rj . (Namely, it proves that all garbled values of a wire are of the same

bit.) If any of the proofs fail, then P2 aborts and outputs ⊥.

8. Circuit evaluation: P2 uses the keys associated with P1’s input obtained in Step 7a and the
keys associated with its own input obtained in Step 2c to evaluate the evaluation circuits GCj for
every j /∈ J . If a circuit decryption fails, then P2 sets the output of that circuit to be ⊥. Party P2

takes the output that appears in most circuits, and outputs it.



4.2 Proof of Security

Before providing the full proof of security, we give some intuition regarding the security of the
protocol. We first show that the selective failure attack discussed in [24, 29] cannot be carried
out here. The concern there was that P1 would use correct keys for all of P2’s input bits when
opening the check circuit, but would use incorrect keys in some of the oblivious transfers. This is
problematic because if P1 input incorrect keys for the zero value of P2’s first input bit, and correct
keys for all other values, then P2 would not detect any misbehavior if its first input bit equals 1.
However, if its first input bit equals 0 then it would have to abort (because it would not be able
to decrypt any of the evaluation circuits). This results in P1 learning P2’s first input bit with
probability 1. In order to solve this problem in [29] it was necessary to split P2’s input bits into
random shares, thereby increasing the size of the input to the circuit and the size of the circuit
itself. In contrast, this attack does not arise here at all because P2 obtains all of the keys associated
with its input bits in the cut-and-choose oblivious transfer, and the values are not sent separately
for check and evaluation circuits. Thus, if P1 attempts a similar attack here for a small number of
circuits then it will not be the majority and so does not matter, and if it does so for a large number
of circuits then it will be caught with overwhelming probability.

Observe also that in Steps 3-5 P2 checks that half of the circuits, the check circuits, and their
corresponding input garbled values, were correctly constructed. This is done by first having P1

commit to all circuits and then having P2 choosing half of them. P2 is therefore assured that with
high probability the majority of the remaining circuits, and their input garbled values, are also
correct. Consequently, the result output by the majority of the remaining circuits must be correct.

The security of the protocol is expressed in the following theorem:

Theorem 4.2 Assume that the decisional Diffie-Hellman assumption is hard in G, that the pro-
tocol used in Step 2 securely computes the batch single-choice cut-and-choose oblivious transfer
functionality, that the protocol used in Step 7b is a zero-knowledge proof of knowledge, and that the
symmetric encryption scheme used to generate the garbled circuits is secure. Then, Protocol 4.1
securely computes the function f in the presence of malicious adversaries.

Proof: We prove Theorem 4.2 in a hybrid model where a trusted party is used to compute the
batch single-choice cut-and-choose oblivious transfer functionality and the zero-knowledge proof of
knowledge of Step 7b. We separately prove the case that P1 is corrupted and the case that P2 is
corrupted.

P1 is corrupted. Intuitively, P1 can only cheat by constructing some of the circuits in an in-
correct way. However, in order for this to influence the outcome of the computation, it has to be
that a majority of the evaluation circuits, or equivalently over one quarter of them, are incorrect.
Furthermore, it must hold that none of these incorrect circuits are check circuits. The reason why
this bad event occurs with such small probability is that P1 is committed to the circuits before
it learns which circuits are check circuits and which are evaluation circuits. In order to see this,
observe that in the cut-and-choose oblivious transfer, P2 receives all of the keys associated with
its own input wires for the check circuits in J (while P1 knows nothing about J ). Furthermore,
P1 sends all of the {(i, 0, ga0i ), (i, 1, ga1i )} and {(j, grj} values, and the garbled circuit tables, before
learning J . Thus, it can only succeed in cheating if it successfully guesses over s/4 circuits which
all happen to not be in J . As we will show, this occurs with probability of approximately 2−s/4.
(Recall also that P1 is required to prove that all its inputs to the evaluation circuits are consistent,
and therefore changing the circuits is its only option to changing the computed functionality.) We
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remark that it is also crucial that if P2 aborts by detecting cheating by P1, then this occurs inde-
pendently of P2’s input. However, this follows immediately from the protocol description. We now
proceed to the formal proof.

Let A be an adversary controlling P1 in an execution of Protocol 4.1 where a trusted party
is used to compute the cut-and-choose OT functionality FS,Bccot and the zero-knowledge proof of
knowledge of Step 7b. We construct a simulator S who runs in the ideal model with a trusted
party computing f . S runs A internally and simulates the honest P2 for A as well as the trusted
party computing the oblivious transfer and zero-knowledge functionalities. In addition, S interacts
externally with the trusted party computing f . S works as follows:

1. S invokes A upon its input and auxiliary input and receives the inputs that A sends to the
trusted party computing the cut-and-choose OT functionality. These inputs constitute an
n× s matrix of pairs {(zi,j0 , zi,j1 )} for i = 1, . . . , n and j = 1, . . . , s.

2. S receives from A the s garbled circuits GC1, . . . , GCs and values {(i, 0, u0i )}, (i, 1, ui1)} and
{(j, hj)} (consistent with Step 3 of the protocol).

3. S chooses a subset J ⊂ [s] of size s/2 uniformly at random amongst all such subsets. For
every j ∈ J , S hands A the values {(z1,j0 , z1,j1 )}, as it expects to receive from the honest P2

in Step 4 of the protocol.

4. S receives the set {rj}j∈J from A, and checks that for every j ∈ J it holds that hj = grj . If
not, it sends ⊥ to the trusted party, simulates P2 aborting, and outputs whatever A outputs.

5. S verifies that all garbled circuits GCj for j ∈ J are correctly constructed (it does this in
the same way that an honest P2 would). If not, it sends ⊥ to the trusted party, simulates P2

aborting, and outputs whatever A outputs.

6. S receives keys k′i,j from A, for every j /∈ J and i = 1, . . . , `.

7. S receives the witnesses that S sends to the trusted party computing the zero-knowledge
proof of knowledge functionality of Step 7b. Thus, for every i = 1, . . . , `, S receives a value ai
such that k′i,j = (hj)

ai for every j /∈ J , and either u0i = gai or u1i = gai (this is the witness).

(a) If for some i, S does not receive a valid witness, then it sends ⊥ to the trusted party,
simulates P2 aborting, and outputs whatever A outputs.

(b) Otherwise, for every i = 1, . . . , `, if u0i = gai then S sets xi = 0, and if u1i = gai then S
sets xi = 1.

8. S sends x = x1 · · ·x` to the trusted party computing f , outputs whatever A outputs and
halts.

Denoting Protocol 4.1 by π, we now show that for every A corrupting P1 and every s it holds
that {

idealf,S(x, y, z, n, s)
}
x,y,z∈{0,1}∗;n,s∈N

n,s
≡
{
realπ,A(x, y, z, n, s)

}
x,y,z∈{0,1}∗;n,s∈N

where |x| = |y|. (Note that here we prove (n, s)-indistinguishability, and so the probability of
distinguishing must be at most µ(n) + 2−O(s) for some negligible function µ.)

We begin by defining the notion of a bad circuit. For a garbled circuit GCj we define the circuit
input keys as follows:
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1. Circuit input keys associated with P1’s input: Let (i, 0, ga
0
i ), (i, 1, ga

1
i ), (j, grj ) be the values

sent by P1 to P2 in Step 3 of the protocol. Then, the circuit input keys associated with P1’s
input in GCj are the keys (ga

0
1·rj , ga

1
1·rj ), . . . , (ga

0
` ·rj , ga

1
` ·rj ).

2. Circuit input keys associated with P2’s input: Let (z1,j0 , z1,j1 ), . . . , (z`,j0 , z`,j1 ) be the set of
symmetric keys input by P1 to the cut-and-choose oblivious transfer of Step 2. (These keys
are the jth pair in each vector ~z1, . . . , ~z`.) These values are called the circuit input keys
associated with P2’s input in GCj .

Before proceeding, we stress that all of the above circuit keys are fully determined after Step 3 of
the protocol, as are the garbled circuits GCj . This is because P1 sends the {ga0i , ga1i , grj} values,
the garbled circuits and the seed to the randomness extractor in this step (note that once the seed
to the randomness extractor is fixed, the symmetric keys derived from the Diffie-Hellman values are
fully determined). Now, simply stated, a garbled circuit GCj is bad if the circuit keys associated
with both P1’s and P2’s input do not open it to the correct circuit C. We stress again that after
Step 3 of the protocol, each circuit is either “bad” or “not bad”, and this is fully determined.

Our aim is now to bound the probability that P2 does not abort and yet the majority of the
evaluation circuits are bad. In order to do this, note first that the set J is completely hidden in
an information-theoretic sense from P1 until Step 4 of the protocol (this holds in an information-
theoretic sense in the hybrid model where a trusted party computes the cut-and-choose oblivious
transfer, which is the model in which we carry out our analysis). Thus, for the sake of computing
the probabilities we can consider the case that J is chosen randomly after Step 3. Now, let badMaj
denote the event that at least s/4 of the garbled circuits are bad, and let noAbort denote the event
that P2 does not abort in Step 6 of the protocol. We now bound the probability of the event that
both badMaj and noAbort occur.

Claim 4.3 For every s ∈ N it holds that

Pr[noAbort ∧ badMaj] =

( 3s
4

+ 1
s
2

+ 1

)
(

s
s/2

) <
1

2
s
4
−1 ,

and for large enough s (depending on Stirling’s approximation), it holds that

Pr[noAbort ∧ badMaj] ≈ 1

20.311s
.

Proof: Let badTotal be the number of bad circuits. First observe that

Pr[noAbort ∧ badMaj] =

s
2∑

i= s
4

Pr[noAbort ∧ badTotal = i]

because if badTotal > s/2 then P2 always aborts, and if badTotal < s
4 then badMaj is false. Recall

that |J | = s/2 and so if i circuits are bad and no abort takes place, then it must be that s/2 of
the s− i not-bad circuits were chosen to be checked. Thus,

s/2∑
i=s/4

Pr[noAbort ∧ badTotal = i] =

s/2∑
i=s/4

(
s− i
s/2

)
(

s
s/2

)
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=
1(
s
s/2

) s/2∑
i=s/4

(
s− i
s/2

)
=

1(
s
s/2

) s/4∑
i=0

(
s/2 + i
s/2

)

=
1(
s
s/2

) 3s/4∑
i=0

(
i
s/2

)
=

1(
s
s/2

) · ( 3s/4 + 1
s/2 + 1

)
,

where the second last equality is due to the fact that for i < s/2 it holds that
(

i
s/2

)
= 0, and the

last equality can be found in [17, Page 174]. We now bound this last value:( 3s
4

+ 1
s
2

+ 1

)
(
s
s
2

) =

(
3s
4 + 1

)
!(

s
2 + 1

)
!
(
s
4

)
!
·
(
s
2

)
!
(
s
2

)
!

s!
=

(
3s
4 + 1

)
!

s!
·
(
s
2

)
!(

s
4

)
!
·
(
s
2

)
!(

s
2 + 1

)
!

=

(
s
2

) (
s
2 − 1

)
· · ·
(
s
4 + 1

)
s(s− 1) · · ·

(
3s
4 + 2

) · 1
s
2 + 1

=

(
s
2

)
s
·
(
s
2 − 1

)
s− 1

· · ·
(
s
4 + 2

)(
3s
4 + 2

) · ( s4 + 1
)(

s
2 + 1

) .
Letting t = s/4, we have that the above equals

2t

4t
· 2t− 1

4t− 1
· · · t+ 2

3t+ 2
· t+ 1

2t+ 1
=

(
t∏
i=2

t+ i

3t+ i

)
· t+ 1

2t+ 1
.

Now, for every i < t it holds that t+i
3t+i <

1
2 and thus the above is upper bound by 1

2t−1 . Stated
directly, we have that for every s,

Pr[noAbort ∧ badMaj] <
1

2
s
4
−1 (2)

completing the first part of the claim. We now proceed to the second part by using approximations
that hold for values of s that are not too small. (Note that the above bound is quite wasteful
because t+2

3t+2 is close to 1/3 and we bounded it by 1/2.) Writing

t∏
i=2

(t+ i) =
(2t)!

(t+ 1)!
and

t∏
i=2

(3t+ i) =
(4t)!

(3t+ 1)!

we have:
t∏
i=2

t+ i

3t+ i
=

(2t)!

(t+ 1)!
· (3t+ 1)!

(4t)!
.

By Stirling’s approximation t! ≈
√

2πt
(
t
e

)t
. Thus,

(2t)!

(t+ 1)!
≈

√
2π2t

(
2t
e

)2t√
2π(t+ 1)

(
t+1
e

)t+1 =

√
2t

t+ 1
· (2t)2t

(t+ 1)t+1
· e

t+1

e2t

and
(3t+ 1)!

(4t)!
≈
√

3t+ 1

4t
· (3t+ 1)3t+1

(4t)4t
· e4t

e3t+1
.

20



Putting the above together we have that

t∏
i=2

t+ i

3t+ i
≈

√
2t

4t
· 3t+ 1

4t
· (2t)2t

(4t)4t
· (3t+ 1)3t+1

(t+ 1)t+1
· e

4t

e2t
· e

t+1

e3t+1

≈ 22t

28t
· t

2t

t4t
· (3t)3t

tt
· e

5t+1

e5t+1
=

1

26t
· 1

t2t
· 33t · t

3t

tt

=
1

26t
· 1

t2t
· 33t · t2t =

33t

26t

=

(
3

4

)3t

≈ 1

21.245t

where the second “approximate equality” is just due to removing the value in the square-root
(which equals exactly

√
3/8) and some “+1” terms. Recalling that t = s/4 we conclude that

Pr[noAbort ∧ badMaj] ≈ 1

21.245t
=

1

20.311s
. (3)

completing the proof of the claim.

We stress that the approximate bound is significantly better than 2−s/4. In particular, in order
to obtain security of 2−40, it suffices to set s = 128 rather than s = 160 (based on the fact that
0.311× 128 = 39.81). Nevertheless, we proved the exact bound that holds for all s in order to later
analyze a covert version of our protocol; see Section 5.2. Finally, before proceeding with the proof
we remark that we checked the accuracy of this approximation by calculating the exact result. For
s = 128 we have that ( 3s

4
+ 1

s
2

+ 1

)
(
s
s
2

) =
1

238.975

which is very close to what we expect. We stress that for an error of 2−40 using the exact bound,
we have that s must actually be set to 132.

We now use Claim 4.3 to prove that the result of an ideal-model execution with S is (n, s)-
indistinguishable from a real execution of the protocol with adversary A. Specifically, we claim
that as long as the event (noAbort ∧ badMaj) does not occur, the result of the ideal and hybrid
executions (where the oblivious transfer and zero-knowledge are ideal) are identically distributed.
In order to see this, observe that if less than s/4 circuits are bad, then the majority of circuits
evaluated by P2 compute the correct circuit C which in turn computes f . In addition, by the
ideal zero-knowledge and the fact that the ga

0
i , ga

1
i , grj values fully determine the garbled values

associated with P1’s input bits, the input x derived by the simulator S and sent to the trusted
party computing f corresponds exactly to the input x in the computation of every not-bad garbled
circuit GCj . Thus, in every not-bad circuit P2 outputs f(x, y), and these are a majority of the
evaluation circuits. We conclude that as long as an abort does not occur, P2 outputs f(x, y) in
both the real and ideal executions, and this corresponds exactly to the view of A in the executions.
Finally, we observe that S sends ⊥ to the trusted party whenever P2 would abort and output ⊥.
(One subtlety to note is that an honest P2 also outputs ⊥ if circuit decryption fails for a majority
of the evaluation circuits. However, this can only occur in the event of noAbort∧ badMaj which we
are assuming does not occur.) This completes the proof of this corruption case.
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P2 is corrupted. The intuition behind the security in this corruption case is simple. P2 receives
s/2 opened check circuits and s/2 evaluation circuits. For each of the evaluation circuits it receives
only a single set of keys for decrypting the circuit. Furthermore, the keys that it receives for each
of the s/2 evaluation circuits are associated with the same pair of inputs x and y. Regarding x,
this is due to the fact that P1 is honest. Regarding y, this is due to the fact that the oblivious
transfer enforces “single choice” for the receiver. The above implies that P2 can do nothing but
decrypt s/2 circuits, where in each it obtains the same value f(x, y) and learns nothing else. We
stress one subtlety which is due to the fact that P2 can try and send P1 a different set J ′ to the
set J that it input to the cut-and-choose oblivious transfer. If it succeeds in doing this, then there
will be at least one evaluation circuit for which P2 knows all of the keys associated with its input
wires. In such a case, it could compute f(x, y) for multiple values of y, and thus learn more than
allowed about x. However, in order to successfully do this, a corrupt P2 must send P1 both of the
keys associated with the input bit y1 for a circuit GCj where j /∈ J . Since both of these keys are
random, and P2 only learns one of them in the oblivious transfer (in the hybrid model the other key
is completely unknown), it follows that it succeeds in doing this with only negligible probability.
We now proceed to the formal proof.

LetA be an adversary controlling P2 in an execution of Protocol 4.1 where a trusted party is used
to compute the cut-and-choose OT functionality FS,Bccot and the zero-knowledge proof of knowledge
of Step 7b. We construct a simulator S for the ideal model with a trusted party computing f as
follows:

1. S invokes A upon its input and auxiliary input and receives the inputs that A sends to
the trusted party computing the cut-and-choose OT functionality. These inputs consist of a
subset J ⊂ [s] of size exactly s/2 and bits σ1, . . . , σ`. (If J is not of size exactly s/2 then
S simulates P1 aborting, sends ⊥ to the trusted party computing f , and halts outputting
whatever A outputs.)

2. S chooses an ` × s matrix of random pairs of garbled values of length n: (x0i,j , x
1
i,j) for

i = 1, . . . , ` and j = 1, . . . , s. Then, S hands A the appropriate values as its output from the
oblivious transfers. Specifically, for every i = 1, . . . , ` and j ∈ J the simulator S hands A the
pair (x0i,j , x

1
i,j), and for every i = 1, . . . , ` and j /∈ J the simulator S hands A the value xσii,j .

3. S sends y = σ1 · · ·σ` to the trusted party computing f and receives back an output z.

4. For every j ∈ J , S constructs GCj as a correct garbled circuit, in the same way that an
honest P1 would construct it.

5. For every j /∈ J , S uses Lemma A.1 to construct a fake garbled circuit G̃Cj which always
outputs z (where z is the output that S received from the trusted party). The keys associated
with P1’s inputs in these fake garbled circuits are consistent with the ga

0
i , ga

1
i , grj values, as

an honest party would use them.

6. S sends the garbled circuits and (i, 0, ga
0
i ), (i, 1, ga

1
i ) and (j, grj ) values to A.

7. S receives back a set J ′ along with a pair of values (x01,j , x
1
1,j) for every j ∈ J :

(a) If J ′ 6= J and yet the values received are all correct then S outputs fail and halts. (This
event happens with negligible probability.)

(b) If J ′ = J and any of the values received are incorrect, then S sends ⊥ to the trusted
party, simulates P1 aborting, and halts outputting whatever A outputs.
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(c) Otherwise, S proceeds as below.

8. S hands A the values {rj}j∈J , where rj is as chosen above.

9. S hands A the keys k′i,j = ga
0
i ·rj for every j /∈ J and i = 1, . . . , `, and proves in zero-knowledge

that all these keys are consistent with a single input. (Observe that these are the keys that A
expects to receive in Step 7a of the protocol. However, instead of being the keys corresponding
to x – which S does not know – they are the zero keys.)

10. After concluding, S outputs whatever A outputs and halts.

Denoting Protocol 4.1, we now show that for every A corrupting P2 and every s it holds that{
idealf,S(x, y, z, n, s)

}
x,y,z∈{0,1}∗;n,s∈N

c≡
{
realπ,A(x, y, z, n, s)

}
x,y,z∈{0,1}∗;n,s∈N

where |x| = |y|. (Note that here we prove standard indistinguishability in n, that holds for all
values of s. That is, the value of s has no effect on the ability to distinguish.) We first remark that
the probability that S outputs fail is negligible because for every j /∈ J the adversary A receives
only one of x01,j , x

1
1,j and these are random keys (note that the garbled circuits contain encryptions

under these keys; however, by the security of encryption the probability that such a key can be
obtained is negligible). We therefore ignore this event from now on and show that the ideal and
real distributions are computationally indistinguishable conditioned on the event not happening.

Observe that the only difference with respect to A’s view between the simulation and a real
execution is regarding the construction of the garbled circuits GCj for j /∈ J : in the simulation

these are fake garbled circuits G̃Cj outputting z (as received from the trusted party) and in the
real execution these are real garbled circuits GCj computing f(x, y). Thus, by Lemma A.1 indis-
tinguishability follows as long as in a real execution A obtains the garbled values corresponding to
x for P1’s input wires and to y for P2’s input wires, where z = f(x, y). Regarding y, this follows
directly from the fact that S defines y to be the values σ1 · · ·σ` which define exactly which garbled
values A receives from the oblivious transfers. However, the case for x is more problematic since A
receives all of the ga

0
i , ga

1
i , grj values which fully determine the garbled values corresponding to all

of P1’s input wires. We therefore first modify S to S ′ so that in every G̃Cj for j /∈ J , S ′ uses ga
0
i ·rj

to derive the value k′i,j that S hands A in Step 9 of the simulation, but uses a completely random
value for the other key on that wire. The indistinguishability of these two simulations follows via
a straightforward reduction to the decisional Diffie-Hellman problem. Once the simulation is with
the modified S ′ we can apply Lemma A.1 and complete the proof. (Formally a hybrid argument
is required for this step because here there are s/2 fake garbled circuits whereas Lemma A.1 refers
to a single fake garbled circuit. Nevertheless observing that indistinguishability must hold even
given x and y, this is a completely standard hybrid argument and so is omitted.) We stress that in
order for the proof to hold, it must be that in every evaluation circuit A learns the garbled value
associated with the same bit, for every input wire associated with P2’s input. However, this is
guaranteed by the security of the single-choice cut-and-choose oblivious transfer. This completes
the proof.

4.3 Exact Efficiency

An analysis of the protocol yields the following number of exponentiations: (1) 2s`+ s+ 2` for the
input-key preparation and commitments to the ga and gr values in Step 1, (2) 11.5s`+ 19`+ 9s+ 5
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for the oblivious transfer of Step 2 (see analysis in Section 3.5), (3) s` for P2 to recompute in Step 6
the input keys associated with P1’s input, and (4) s`/2 + 18` for the 2` proofs of consistency for
P1’s input bits in Step 7 (see analysis in Appendix B.3). Overall, we have 15s` + 39` + 10s + 5
exponentiations.

Regarding the bandwidth, a similar count yields the exchange of 7s` + 22` + 7s + 5 group
elements and s copies of the garbled circuit. Finally, the protocol takes 12 rounds of communication
(including the oblivious transfer and zero-knowledge proof). We conclude that there are 15s` +
39`+ 10s+ 5 exponentiations, 7s`+ 22`+ 7s+ 5 group elements sent and 12 rounds of
communication. In addition, there are 6.5|C|s symmetric encryptions, comprised of 4|C|s
encryptions for constructing all s garbled circuits, 4|C|0.5s encryptions for P2 to check s/2 of them,
and |C|0.5s encryptions for P2 to compute the s/2 evaluation circuits. Finally, there are 4|C|s
ciphertexts sent for transmitting these circuits.

We stress that this analysis describes the overhead of the basic protocol. The overhead can be
substantially improved by different optimizations, as shown in Section 4.4 below.

4.4 Optimizations

Fixed-base exponentiations. Exponentiations are commonly computed by repeated squaring,
which for a group of order q of length n bits requires on average 1.5n multiplications for a full
exponentiation. If multiple exponentiations of the same base are computed, then the repeated
binary powers of the base can be computed once for all exponentiations, reducing the amortized
overhead of an exponentiation on average to 0.5n multiplications (see [31], 14.6.3). Let us examine
how this affects the overhead of the protocol (taking into account only the s` component of the
overhead, which is the most significant): (1) P1 preparing its input keys in Step 1 requires 2s`
exponentiations which are fixed base. Their amortized overhead is therefore equivalent to that of
about 2/3s` exponentiations. (2) Of the 11.5s` exponentiations of the batch single-choice cut-
and-choose OT of Step 2, 10.5s` exponentiations are performed with fixed bases (these are the
exponentiations in the RAND operation, the computation of hj by the receiver and half of the
exponentiations in the zero-knowledge protocol in the transfer phase of the single-choice cut-and-
choose oblivious transfer). Therefore the amortized overhead is equivalent to that of about (10.5/3+
1)s` = 4.5s` exponentiations. (3) In Step 6, P2 uses s` exponentiations to compute P1’s input keys
in check circuits. They are all fixed base and therefore are equivalent to about s`/3 exponentiations.
(4) P1 proving the consistency of its inputs in Step 7 takes about s`/2 exponentiations which are
all fixed base. They are therefore equivalent to s`/6 full exponentiations. The overall overhead of
the exponentiations is therefore equivalent to that of about 5.66s` full exponentiations.

Reducing the computation of P2 in Step 6. In Step 6 of Protocol 4.1, P2 performs s`
exponentiations in order to compute the garbled values associated with P1’s input in the check
circuits. Namely, given the (i, 0, ga

0
i ), (i, 1, ga

1
i ) tuples and rj for every j ∈ J , party P2 computes

ga
0
i ·rj , ga

1
i ·rj for all i = 1 . . . ` and j ∈ J . This step costs s` exponentiations (2` exponentiations for

each of the s/2 check circuits). As we will see, we can reduce this to about a quarter by having
P1 send the ga

0
i ·rj , ga

1
i ·rj values to P2 and prove that they are correct (not in zero-knowledge). We

remark that P1 has to compute these values in order to construct the circuit and so this results in
no additional computation overhead by P1 (the only addition is in communication bandwidth).

The protocol is modified by changing Step 6 as follows (recall that P2 already has all of the
(i, 0, ga

0
i ), (i, 1, ga

1
i ) tuples and rj values):

1. P1 sends P2 all of the values k′0i,j = ga
0
i ·rj and k′1i,j = ga

1
i ·rj for i = 1, . . . , ` and j ∈ J .
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2. P2 chooses random values γ0i , γ
1
i ∈ [1, 2L] for i = 1, . . . , `.

3. For every j ∈ J , party P2 computes the following two values

αj =

(∏̀
i=1

(ga
0
i )γ

0
i · (ga1i )γ1i

)rj
and βj =

∏̀
i=1

(k′
0
i,j)

γ0i · (k′1i,j)γ
1
i

Note that computing αj requires only a single full exponentiation since the value (ga
0
i )γ

0
i ·

(ga
1
i )γ

1
i can be computed once for all j.

4. P2 accepts P1’s input if and only if αj = βj for all j ∈ J .

We first prove that this method is secure:

Claim 4.4 The probability that P2 accepts if there exists an i ∈ {1, . . . , `} and j ∈ J such that
k′0i,j 6= ga

0
i ·rj or k′1i,j 6= ga

1
i ·rj is at most s

2 · 2
−L.

Proof: Assume there exists an i∗ ∈ {1, . . . , `} and j ∈ J such that k′0i∗,j 6= ga
0
i∗ ·rj or k′1i∗,j 6= ga

1
i∗ ·rj .

Let

α¬i
∗

j =

∏
i 6=i∗

(ga
0
i )γ

0
i · (ga1i )γ1i

rj

and β¬i
∗

j =
∏
i 6=i∗

(k′
0
i,j)

γ0i · (k′1i,j)γ
1
i

implying that

αj = α¬i
∗

j ·
(
ga

0
i∗ ·γ

0
i∗ · ga1i∗ ·γ1i∗

)rj
= α¬i

∗
j ·

(
ga

0
i∗ ·rj

)γ0
i∗ ·
(
ga

1
i∗ ·rj

)γ1
i∗

and
βj = β¬i

∗
j · (k′0i∗,j)γ

0
i∗ · (k′1i∗,j)γ

1
i∗ .

Now, αj = βj if and only if

α¬i
∗

j ·
(
ga

0
i∗ ·rj

)γ0
i∗ ·
(
ga

1
i∗ ·rj

)γ1
i∗

= β¬i
∗

j · (k′0i∗,j)γ
0
i∗ · (k′1i∗,j)γ

1
i∗

which in turn holds if and only if(
ga

0
i∗ ·rj

k′0i∗,j

)γ0
i∗

·

(
ga

1
i∗ ·rj

k′1i∗,j

)γ1
i∗

=
β¬i

∗
j

α¬i
∗

j

.

Assume now that ga
0
i∗ ·rj 6= k′0i∗,j . Equality holds if and only if(

ga
0
i∗ ·rj

k′0i∗,j

)γ0
i∗

=
β¬i

∗
j

α¬i
∗

j

·

(
k′1i∗,j

ga
1
i∗ ·rj

)γ1
i∗

.

Fixing all of the γ values first, and then choosing γ0i∗ at random, we have that this holds with

probability at most 2−L. (Note that this assumes that ga
0
i∗ ·rj/k′0i∗,j is a generator. However, in a

group of prime order, all elements apart from the unity are generators.) Applying the union bound
for all j ∈ J we obtain the claim.
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We now analyze the efficiency improvement gained by this method. The communication over-
head is slightly increased over the basic version of the protocol, since s` values, namely all garbled
values of P1’s inputs in the check circuits, are sent. This is not significant when the circuit is
not very small. Regarding the computation overhead, we have that P2 now has to perform s`
exponentiations in order to compute the βj values (2` exponentiations for s/2 values of j) with
an exponent which is only L bits long. (Unfortunately, these exponentiations are not fixed base.)
Assuming that exponentiations are carried out in an elliptic curve group of order 2160 and that
L = 40, we have that the cost of the exponentiations is reduced by a factor of 4. Thus, instead of
s` exponentiations, we effectively have s`/4 exponentiations. This is a mild improvement over the
s`/3 cost when using the fixed-base optimization.

Preprocessing. The bulk of the exponentiations performed in the protocol can be precomputed.
Step 1 of the protocol, where P1 computes its input keys, can clearly be computed before P1 receives
its inputs. Step 2 executes the oblivious transfers. It can be slightly changed to be run before P2

receives its inputs: P2 can execute this step with random inputs σ1, . . . , σ`. Then, when it receives
its input bits y1, . . . , y`, it sends P1 a string of correction bits y1 ⊕ σ1, . . . , y` ⊕ σ`. P1 exchanges
the roles of the two keys of input wires of P2 for which it receives a correction bit with the value 1.
(The security proof can be easily adapted for this variant of the protocol.) Given this change, both
Steps 1 and 2 can be precomputed. These steps account for 13.5s` of the 15s` exponentiations
of the protocol, where the remaining 1.5s` exponentiations are fixed base. This means that if
preprocessing is used, then after receiving their inputs the parties need to effectively compute only
s`/2 full exponentiations.

Parallel computation by the two parties. Many of the computations can be carried out in
parallel by the different parties. For example, in the oblivious transfer protocol (Protocol 3.3), after
the sender receives the g0, g1, h

j
0, h

j
1 values from the receiver in Step 4 of the setup phase it can begin

carrying out half of the RAND computations while the receiver continues its other computations.
Similarly, in each transfer phase the sender can send its messages to the receiver one by one, as it
computes them. The receiver can begin decrypting the first message immediately as it arrives, in
parallel to the sender computing the following messages.

Bandwidth vs. Computation It was shown in [16] that it is possible to reduce the bandwidth of
sending the circuits by about 50%, in the following way: P1 generates each circuit as a deterministic
function of a different seed; P1 first commits to the circuits, and then, instead of sending the tables
of check circuits, it only sends the seeds from which these circuits were computed. This reduction in
communication comes at the cost of P2 having to generate long pseudo-random strings from seeds,
and repeating P1’s task of generating the circuits. This optimization might be useful, though, in
settings in which communication is expensive (e.g., for a roaming cellular user).

5 Variants – Universal Composability and Covert Adversaries

5.1 Universally Composable Two-Party Computation

We observe that the simulators in the proof of Theorem 4.2 carry out no rewinding, and likewise the
intermediate simulators used to prove the reductions. Thus, if the protocols used to compute the
batch cut-and-choose oblivious transfer functionality and the zero-knowledge proof of knowledge of
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Step 7b are universally composable, then so is Protocol 4.1. Furthermore, the protocol for comput-
ing the oblivious transfer is universally composable if the zero-knowledge proof carried out by the
receiver in the setup phase is universally composable. Both that proof and the proof of Step 7b are
essentially the proof of Protocol B.2. Thus, all we need is a universally composable variant of the
zero-knowledge proof of Protocol B.2 and the entire protocol is universally composable. In order
to do this, we need an efficient transformation from Σ protocols to universally composable zero-
knowledge proofs of knowledge. Efficient constructions of universally composable zero-knowledge
have been considered in [12, 30, 9], but do not work efficiently for all Σ protocols. Another approach
was presented recently in [20]. We use this protocol, and for the sake of completeness (and to fa-
cilitate an exact complexity analysis) we present it in Appendix C. As we will see below, the cost
of the exponentiations is dominated by 2s2 Diffie-Hellman group exponentiations. We summarize
the above in the following theorem (the number of rounds is fewer here because the zero-knowledge
protocol has fewer rounds in the model of universal composability):

Theorem 5.1 Assume that the decision Diffie-Hellman assumption holds. Then, for every effi-
ciently computable two-party function f with inputs of length `, there exists a universally composable
protocol that securely computes f in the presence of malicious adversaries in the common reference
string model, with 8 rounds of computation and O(s`+ s2) exponentiations.

Efficiency of the UC variant of protocol 4.1. We begin by translating the above into the
cost of running a universally composable zero-knowledge protocol for subset DH tuples (see Pro-
tocol B.2). However, note that we only need to obtain security of 2−s/4 and therefore we use
L = s/4 in the transformation of Appendix C. Now, the number of exponentiations in the s/2
out of s variant Protocol B.2 without the verifier commitment (because we only need the basic Σ
protocol portion of it) is exactly 7s. As we have seen in Appendix C, the cost of converting this to
a universally-composable zero-knowledge protocol, using the UC commitment scheme of [27], is L
times the cost of the Σ protocol plus 57L group exponentiations. Thus, with L = s/4 we have that
the zero-knowledge protocols costs 7sL+ 57L = 7

4 · s
2 + 57

4 · s exponentiations.
Our protocol for two-party computation also uses a 1-out-of-2 variant of Protocol B.2. In this

case, the cost is 14 group exponentiations for a single execution of the Σ protocol. Setting L = s/4
we have 14L + 57L = 71L = 71s

4 < 18s group exponentiations. In Protocol 4.1 the s/2 out of s
variant is run once, while the 1-out-of-2 variant is run ` times. We therefore conclude that the
universally composable version of Protocol 4.1 has an additional 7

4
· s2 + 57

4
· s + 18s` group

exponentiations, beyond the cost of the basic version that is only secure in the stand-alone model.
Although this is certainly not “for free” it is not overly prohibitive. We remark that the universally
composable zero-knowledge proofs require three rounds of communication, rather than five rounds
for the stand-alone versions. Since two of these are run at separate phases, we have that this takes
four rounds off the round complexity of Protocol 4.1, yielding a total of 8 rounds.

5.2 Covert Security

In the model of security in the presence of covert adversaries [1], the requirement is that any
cheating by an adversary will be caught with some probability ε. The value of ε taken depends on
the application, the ramifications to an adversary being caught, the value to an adversary when
it cheats successfully (if not caught) and so on. The analysis of our protocol shows that for every
value of s (even if s is very small) the probability that an adversary can cheat without being caught
is at most 2−

s
4
+1; see Claim 4.3 and a discussion below. This immediately yields a protocol that is

secure in the presence of covert adversaries, as stated in the following theorem.
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Theorem 5.2 Assume that the decisional Diffie-Hellman assumption is hard in G, that the pro-
tocol used in Step 2 securely computes the batch single-choice cut-and-choose oblivious transfer
functionality, that the protocol used in Step 7b is a zero-knowledge proof of knowledge, and that the
symmetric encryption scheme used to generate the garbled circuit is secure. Then, for any integer
s > 4, Protocol 4.1 securely computes the function f in the presence of covert adversaries with
ε-deterrent (under the strong explicit cheat formulation), for ε = 1− 2−

s
4
+1.

We stress that our protocol is significantly more efficient than the protocols of [1] and [16] when
values of ε that are greater than 1/2 are desired. For example, in order to obtain an ε-deterrent of
0.99, the protocol of [1] requires using 100 garbled circuits. However, taking s = 30 in our protocol
here yields an ε-deterrent of about 0.99, and so it suffices to send 30 circuits and not 100, reducing
the cost by more than a factor of 3.

A tighter analysis. As we saw in the proof of Claim 4.3, the probability of cheating is actually
significantly lower than 2−s/4+1. For small values of s the exact probability of cheating, given in

Claim 4.3, is
(

3s/4 + 1
s/2 + 1

)
/
(

s
s/2

)
. Based on this formula, with s = 24 we obtain an ε-deterrent of

0.99, and so the cost is actually less than 1/4 of the protocol of [1], which is very significant.
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A Yao’s Protocol – Semi-Honest Adversaries

We describe here the construction of secure two-party computation (for semi-honest adversaries)
which is described in [41]. This construction is based on Yao construction. It is proved in [28] to
be secure against semi-honest adversaries.

Let C be a Boolean circuit that receives two inputs x, y ∈ {0, 1}` and outputs C(x, y) ∈ {0, 1}`
(for simplicity, we assume that the input length, output length and the security parameter are all
of the same length `). We also assume that C has the property that if a circuit-output wire comes
from a gate g, then gate g has no wires that are input to other gates.3 (Likewise, if a circuit-input
wire is itself also a circuit-output, then it is not input into any gate.)

We begin by describing the construction of a single garbled gate g in C. The circuit C is
Boolean, and therefore any gate is represented by a function g : {0, 1} × {0, 1} → {0, 1}. Now,
let the two input wires to g be labeled w1 and w2, and let the output wire from g be labeled
w3. Furthermore, let k01, k

1
1, k

0
2, k

1
2, k

0
3, k

1
3 be six keys obtained by independently invoking the key-

generation algorithm G(1`); for simplicity, assume that these keys are also of length `. Intuitively,

we wish to be able to compute k
g(α,β)
3 from kα1 and kβ2 , without revealing any of the other three

values k
g(1−α,β)
3 , k

g(α,1−β)
3 , k

g(1−α,1−β)
3 . The gate g is defined by the following four values

c0,0 = Ek01

(
Ek02(k

g(0,0)
3 )

)
c0,1 = Ek01

(
Ek12(k

g(0,1)
3 )

)
c1,0 = Ek11

(
Ek02(k

g(1,0)
3 )

)
c1,1 = Ek11

(
Ek12(k

g(1,1)
3 )

)
where E is from a private key encryption scheme (G,E,D) that has indistinguishable encryptions
for multiple messages, and has an elusive efficiently verifiable range. Informally, this means (1)
that for any two (known) messages x and y, no polynomial-time adversary can distinguish between
the encryptions of x and y, and (2) that there is a negligible probability that an encryption under
one key falls into the range of encryptions under another key, and given a key k it is easy to verify
whether a certain ciphertext is in the range of encryptions with k. See [28] for a detailed discussion
of these properties, and for examples of easy implementations satisfying them. For example, the
encryption scheme could be Ek(m) = 〈r, fk(r)⊕m0n〉, where fk is a pseudo-random function keyed
by k whose output is |m|+ n bits long, and r is a randomly chosen value.

Now, the actual gate is defined by a random permutation of the above values, denoted as
c0, c1, c2, c3; from here on we call them the garbled table of gate g. Notice that given kα1 and kβ2 ,

and the values c0, c1, c2, c3, it is possible to compute the output of the gate k
g(α,β)
3 as follows. For

every i, compute D
kβ2

(Dkα1
(ci)). If more than one decryption returns a non-⊥ value, then output

abort. Otherwise, define kγ3 to be the only non-⊥ value that is obtained. (Notice that if only a

single non-⊥ value is obtained, then this will be k
g(α,β)
3 because it is encrypted under the given

keys kα1 and kβ2 . Later we will show that except with negligible probability, only one non-⊥ value
is indeed obtained.)

We are now ready to show how to construct the entire garbled circuit. Let m be the number
of wires in the circuit C, and let w1, . . . , wm be labels of these wires. These labels are all chosen
uniquely with the following exception: if wi and wj are both output wires from the same gate g,
then wi = wj (this occurs if the fan-out of g is greater than one). Likewise, if an input bit enters
more than one gate, then all circuit-input wires associated with this bit will have the same label.
Next, for every label wi, choose two independent keys k0i , k

1
i ← G(1`); we stress that all of these

3This requirement is due to our labeling of gates described below, that does not provide a unique label to each
wire (see [28] for more discussion). We note that this assumption on C increases the number of gates by at most `.
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keys are chosen independently of the others. Now, given these keys, the four garbled values of
each gate are computed as described above and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply consist of the
values (0, k0i ) and (1, k1i ) where wi is a circuit-output wire. (Alternatively, output gates can just
compute 0 or 1 directly. That is, in an output gate, one can define cα,β = Ekα1 (E

kβ2
(g(α, β))) for

every α, β ∈ {0, 1}.)
The entire garbled circuit of C, denoted GC, consists of the garbled table for each gate and

the output tables. We note that the structure of C is given, and the garbled version of C is simply
defined by specifying the output tables and the garbled table that belongs to each gate. This
completes the description of the garbled circuit.

Let x = x1 · · ·x` and y = y1 · · · y` be two `-bit inputs for C. Furthermore, let w1, . . . , w` be
the input labels corresponding to x, and let w`+1, . . . , w2` be the input labels corresponding to
y. It is shown in [28] that given the garbled circuit GC and the strings kx11 , . . . , k

x`
` , k

y1
`+1, . . . , k

y`
2` ,

it is possible to compute C(x, y), except with negligible probability. The way that these values
are obtained is as follows. For every bit of P1’s input, party P1 just sends P2 the appropriate
keys kx11 , . . . , k

x`
` . Furthermore, for every bit yi of P2’s input, the parties run an oblivious transfer

protocol where P1 inputs (k0`+i, k
1
`+i) and P2 inputs yi. The result is that P2 obtains the keys

ky1`+1, . . . , k
y`
2` and can therefore compute the garbled circuit. The crucial observation is that P1

learns nothing of P2’s input by the security of the oblivious transfer, and P2 learns nothing but
the output because the circuit is encrypted and the keys kx11 , . . . , k

x`
` keep the identity of the bits

x1, . . . , x` secret.

A useful lemma. In [29], the following lemma is proven (that is actually implicit already in [28]).
The lemma states that it is possible to build a fake garbled circuit that outputs a fixed value
z = f(x, y), and this is indistinguishable to an adversary who has only a single set of keys that
correspond to the inputs x and y. The simulator that we construct in order to prove the security
of our protocol constructs such “fake” circuits, and we therefore rely on this lemma in our proof.

Lemma A.1 Given a circuit C and an output value z (of the same length as the output of C) it

is possible to construct a garbled circuit G̃C such that:

1. The output of G̃C is always z, regardless of the garbled values that are provided for P1 and
P2’s input wires, and

2. If z = f(x, y), then no non-uniform prob. polynomial-time adversary A can distinguish be-

tween the distribution ensemble consisting of G̃C and a single arbitrary garbled value for every
input wire, and the distribution ensemble consisting of a real garbled version of C, together
with garbled values that correspond to x for P1’s input wires and to y for P2’s input wires.

B Zero-Knowledge Proofs of Knowledge

In this section we present zero-knowledge proofs that we need in our protocols. The reason for
presenting the protocols in full detail is to facilitate an exact efficiency analysis.

B.1 Zero-Knowledge Proof of Knowledge – Diffie-Hellman Tuples

A zero-knowledge proof of knowledge of Diffie-Hellman tuples is presented in Figure B.1. The fact
that this is a proof of knowledge (and not just a zero-knowledge proof system) has been proven
in [19, Chapter 6].
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PROTOCOL B.1 (ZK Proof of Knowledge of Diffie-Hellman Tuples)

• Joint statement: The values (G, g0, g1, u, v) that are elements of a group G of known
order q, and g is the generator.

• Auxiliary input for the prover: A witness w such that u = (g0)w and v = (g1)w.

• The protocol:

1. P chooses a random a ∈ {1, . . . , q}, computes α = (g0)a and sends α to V .

2. The verifier V chooses random s, t ∈ {1, . . . , q}, computes c = (g0)s · αt and sends c
to P (this is a perfectly-hiding commitment to s).

3. P chooses a random r ∈ {1, . . . , q} and computes A = (g0)r and B = (g1)r. It then
sends (A,B) to V .

4. V sends s and t as above to P .

5. P verifies that c = (g0)s · αt. If no, it aborts. Otherwise, it sends z = s · w + r to V .
In addition, it sends a as chosen above.

6. V accepts if and only if α = (g0)a, A = (g0)z/us and B = (g1)z/vs.

Exact efficiency. The overall number of exponentiations in the protocol is 12. However, 8 of these
are of the form xa · yb (observe that the verification of A and B by V in the last step is actually
also of this form). Each of these double exponentiations costs only 1.25 the cost of a standard
exponentiation [31, Alg. 14.88], and thus we conclude that the protocol requires 9 exponentiations
overall. In addition, it takes 5 rounds of communication and involves the exchange of 8 group
elements (where we count s, t, z, a as group elements even though they are actually smaller).

B.2 Zero-Knowledge for Subset DH

The protocol below uses the technique of [7] in order to prove that half of a given set of values
are of the Diffie-Hellman form. We assume familiarity with the technique of [7] here. We remark
that in Protocol B.2, it is possible to use any perfect secret sharing with the properties that are
defined in [7]. The secret-sharing scheme of Shamir [40] works for example, but [7] have a more
efficient scheme based on matrix multiplication. The following proposition is common knowledge
and follows from [7], and the proof is therefore omitted.
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PROTOCOL B.2 (ZK Proof of Knowledge of Subset of Diffie-Hellman Tuples)

[The set I that is used here is the complement of the set J in Protocol 3.3.]

• Joint statement: The description G of a group of order q with generators g0, g1. In
addition, s pairs (h10, h

1
1), . . . , (hs0, h

s
1)

• Auxiliary input for the prover: A witness set of s/2 values W = {(ij , wij )} where the

set of indices ij , denoted I, are such that for every ij ∈ I it holds that h
ij
0 = (g0)wij and

h
ij
1 = (g1)wij .

• The protocol:

1. Set up commitment to verifier challenge:

(a) The prover P chooses a random a← Zq, computes α = (g0)a and sends α to V .

(b) The verifier V chooses random t, c ← Zq, computes C = (g0)c · αt and sends C
to P (this is a perfectly-hiding commitment to c).

2. Prover message 1:

(a) For every i /∈ I, the prover P chooses random values ci ← Zq and zi ← Zq and

sets Ai = (g0)
zi

(hi0)
ci

and Bi = (g1)
zi

(hi1)
ci

.

(b) For every i ∈ I, the prover chooses random ρi ← Zq and sets Ai = (g0)ρi and
Bi = (g1)ρi .

(c) P sends (A1, B1), . . . , (As, Bs) to V .

3. Verifier query: V sends t, c as above.

4. Prover message 2:

(a) P checks that C = (g0)c ·αt and aborts if not. Otherwise, it takes c as the verifier
query.

(b) The values {ci}i/∈I and the verifier query c are interpreted as s/2 shares {ci} and
a secret c in a secret sharing scheme with s participants and threshold s/2 + 1.
Thus, these values fully define all shares for all participants (when an appropriate
secret sharing scheme is used). The prover computes these shares c1, . . . , cs and
sends them to the verifier V .

(c) For every i /∈ I, P sends zi as chosen above.

(d) For every i ∈ I, P sends zi = ci · wi + ρi.

(e) Finally, P sends a as chosen in the first step.

5. Verifier validation: V accepts if and only if all the following hold:

(a) α = ga

(b) The shares c1, . . . , cs define the secret c

(c) For all i = 1, . . . , s it holds that Ai = (g0)
zi

(hi0)
ci

and Bi = (g1)
zi

(hi1)
ci

.

Proposition B.3 Protocol B.2 is a zero-knowledge proof of knowledge that is secure under parallel
composition, for the relation

R =
{

(G, q, g0, g1, (h10, h11), . . . , (hs0, hs1))
}

where G is a group of order q with generators g0, g1, and there exists a set of at least s/2 values

wi1 , . . . , wis/2 such that for every j = 1, . . . , s/2 it holds that h
ij
0 = (g0)

wij and h
ij
1 = (g1)

wij .
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A one-out-of-two variant. We also need to prove that one out of two tuples is a Diffie-Hellman
tuple. The idea is basically as in Protocol B.2 with s = 2. This case is simpler since instead of
using a secret sharing scheme the parties work in the following way:

1. The prover chooses ci as it wishes for the statement i whose proof it wants to forge;

2. The verifier sends the receiver a random c;

3. The prover sets c2−i = ci + c.

Exact efficiency. The overall cost of the protocol is 7s+ 4 exponentiations and the exchange of
3s + 4 group elements. In addition, it takes 5 rounds of communication (note that the first and
last round of communication can be combined with messages from the calling protocol). In the
one-out-of-two variant, the count is identical by setting s = 2.

B.3 ZK Proof for Extended Diffie-Hellman Tuples

A zero-knowledge proof of an extended Diffie-Hellman tuple is given in Protocol B.4. The input
is a tuple (g0, g1, h0, h1, u1, v1, . . . , uη, vη) such that either all {(g0, h0, ui, vi)}ηi=1 are Diffie-Hellman
tuples, or all {(g1, h1, ui, vi)}ηi=1 are Diffie-Hellman tuples. This zero-knowledge proof is used twice;
once in the single-choice cut-and-choice oblivious transfer protocol in Section 3.4, and once in the
main protocol itself (Protocol 4.1 in Section 4.1). In the latter use (in Protocol 4.1), the same g is
used in all tuples. That is, one sets g = g0 = g1 in Protocol B.4 below.

PROTOCOL B.4 (ZK Proof of Knowledge of Extended Diffie-Hellman Tuple)

• Common input: (g0, g1, h0, h1, u1, v1, . . . , uη, vη) where g0 and g1 are generators of a group
of prime order q.

• Prover witness: a such that either h0 = (g0)a and vi = (ui)
a for all i, or h1 = (g1)a and

vi = (ui)
a for all i.

• The protocol:

1. The verifier V chooses γ1, . . . , γη ∈R {0, 1}L where 2L < q, and sends the values to
the prover.

2. The prover and verifier locally compute

u =

η∏
i=1

(ui)
γi and v =

η∏
i=1

(vi)
γi

3. The prover proves in zero-knowledge that either (g0, h0, u, v) or (g1, h1, u, v) is a Diffie-
Hellman tuple, and V accepts if and only it accepts in this subproof. (This subproof
is the 1-out-of-2 variant of Protocol B.2.)

The zero-knowledge property of the protocol follows directly from the zero-knowledge property
of the subprotocol for proving Diffie-Hellman. The soundness follows from the following claim:

Claim B.5 If there exists an index 1 ≤ j ≤ η such that (g, h, uj , vj) is not a Diffie-Hellman
tuple, then for every choice of {γi}i 6=j there exists at most one value γj such that (g, h, u, v) is a
Diffie-Hellman tuple.

The proof of this claim is almost identical to the proof of Claim 4.4 and is therefore omitted.
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Corollary B.6 The soundness error of Protocol B.4 is 2−L + µ(n), where µ(n) is the soundness
error of the Diffie-Hellman tuple sub-proof.

Exact efficiency. The cost of this protocol is exactly the cost of the 1-out-of-2 variant of Proto-
col B.2 (which costs 18 exponentiations and the exchange of 10 group elements) together with an
additional 2η “short” 40-bit exponentiations by each party. Under the assumption that we work
in an elliptic curve group with order q of length 160 bits, we have that this is equivalent to η/2
exponentiations by each party. Thus, the result is η additional exponentiations overall. We remark
that no additional rounds are needed because the γ values can be sent together with the verifier’s
first message (this is because the prover’s first message is independent of the input statement). We
conclude that there are η + 18 exponentiations, the exchange of 10 group elements and 5
rounds of communication. When this zero-knowledge protocol is used in Protocol 4.1, we have
that η = s/2 and so there are s/2 + 18 exponentiations; when it is used in Section 3.4 then η = s
and so there are s+ 18 exponentiations.

Remark. Recall that this zero-knowledge proof is called ` times in Protocol 4.1, each time proving
an extended Diffie-Hellman tuple of η = s/2 pairs. Specifically, for every i = 1, . . . , `, party P1

proves that (g, grj , ga
0
i , k′i,j) is a Diffie-Hellman tuple for all j /∈ J . The cost of this is therefore

s`+ 18` exponentiations. However, an alternative and equivalent way of carrying out these proofs
is for P1 to prove that for every j = 1, . . . , s it holds that (g, ga

0
i , grj , k′i,j) is a Diffie-Hellman tuple

for all 1 ≤ i ≤ `. In this case, each proof costs 2` + 18 exponentiations and so the overall cost is
2s`+ 18s exponentiations. Thus, the way these proofs should be carried out depends on the values
of ` and s (recall that ` is the length of P2’s input and s is the number of circuits sent).

C Simple UC Zero-Knowledge from any Σ Protocol

For the sake of completeness, we present the simple general transformation from Σ protocols [8]
to universally composable zero-knowledge arguments [4], as appearing in [20]. This transformation
is applied to the Σ protocol underlying Protocol B.2 (as described, Protocol B.2 is a stand-alone
zero-knowledge proof of knowledge derived by applying a general transformation to a Σ protocol).
Loosely speaking, a Σ protocol π for a relation R is a 3-round public-coin proof with the following
two properties:

1. For any x in the language defined by R, and any pair of accepting conversations (α, β, γ),
(α, β′, γ′) with the same first prover message α, it is possible to efficiently compute w such
that (x,w) ∈ R.

2. There exists a simulator Sπ who upon input x and β generates a transcript (α, β, γ) that is
indistinguishable from a real proof with a verifier who replies with β upon receiving α.

A universally composable protocol is one that remains secure under arbitrary composition. Es-
sentially, it suffices here to present a straight-line simulator and extractor in order to demonstrate
universal composability. We omit a formal definition of Σ protocols and universal composability
and refer to [8] and [4], respectively, for details. Our transformation uses universally composable
commitment schemes [5] which can be constructed efficiently. Using the scheme of [27] that is
secure under the DDH assumption and in the common reference string model, the cost of commit-
ting to n bits is 5 Diffie-Hellman group exponentiations and the cost of decommitting is 21 such
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exponentiations (where the size of the group is at least 2n). The universally composable (multiple)
commitment functionality Fcom is formally defined in Figure C.1.

FIGURE C.1 (The Fcom Multiple-Commitment Functionality)

Fcom proceeds as follows, running with parties P1 and P2, and an adversary S:

1. Upon receiving a value (Commit, sid, cid, Pi, Pj , w) from Pi (i ∈ {1, 2}) where w ∈ {0, 1}n,
record the tuple (cid, Pi, Pj , w) and send the message (Receipt, sid, cid) to Pj and S (where
j = 3− i). Ignore subsequent (Commit, sid, cid, Pi, Pj , . . .) values.

2. Upon receiving a value (Open, sid, cid, Pi, Pj) from Pi, proceed as follows. If the tuple
(cid, Pi, Pj , b) is recorded then send the message (Open, sid, cid, Pi, Pj , w) to Pj and S.
Otherwise, do nothing.

The idea behind the transformation. Let π be a Σ-protocol for a relation R. Then, in order
to achieve simulation in the case of a corrupted verifier, we need to know the verifier query β before
sending α. Although this may seem impossible it is easily achieved by having the verifier first
commit to β using the universally composable commitment functionality Fcom. Then, the prover
sends α, the verifier decommits to β, and the prover answers with γ. Now, in the simulation, the
simulator is able to learn β before the commitment is opened and thus before it sends α. Thus, it
is possible to use Sπ to simulate the proof after β has been committed to. This takes care of the
problem of simulating in the case of a corrupted verifier. However, in the case of a corrupted prover,
we need to extract the witness used by the prover without rewinding. This is difficult because the Σ
protocol only provides a method for extraction when two different accepting conversations with the
same first-prover message are observed. This seems to require rewinding. We solve this problem as
follows. Assume for now that β is a single bit. Then, for any α, define γ0 to be an accepting prover
response when β = 0, and define γ1 analogously for β = 1. Then, after receiving the verifier’s
commitment to β, the prover sends α together with a commitment to γ0 and a commitment to γ1.
After the verifier reveals β, the prover reveals γβ. Now, if the prover indeed sent commitments to
two accepting responses γ0 and γ1 it follows that the simulator can extract the witness without any
rewinding (recall that the simulator can open all commitments). This yields soundness of one half;
in order to improve this, we repeat L times and obtain a soundness error of 2−L. Observe that if
the original Σ protocol had soundness of 1/2, then the transformation is extraordinarily efficient.
However, if it had negligible soundness – which is often the case – then the transformation costs
L times the original protocol. Nevertheless, since the error is 2−L, the value of L can be set to be
quite small. We remark that if β comes from a large domain, then we arbitrarily fix two values
from the domain to be used in the protocol. Finally, we note that once the prover commits first to
its γ values, there is no need to have the verifier commit to β ahead of time. See Protocol C.2 for
a formal description.
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PROTOCOL C.2 (Transformation from Σ-Protocols to UC-ZK)
Let π be a 3-round Σ protocol for a relation R. Let β0, β1 be two arbitrary distinct values in the
domain of verifier queries. Denote by Π the protocol as follows:

• Inputs: The prover P and verifier V both hold a common statement x; the prover P has
a witness w such that (x,w) ∈ R.

• Session identifier: Both parties have the same sid

• The protocol:

1. First prover message:

(a) P runs the prover instructions L times for the Σ protocol π in order to obtain L
first prover message α1, . . . , αL. The prover P commits to all of these values by
sending (Commit, sid, i, P, V, αi) to Fcom, for every i.

(b) For every i = 1, . . . , L, the prover P computes the second prover message in the
case that the verifier query after αi is β0 and in the case that it is β1; we denote
these messages by γ0i and γ1i , respectively.

(c) P commits to all of the γ0i , γ
1
i values by sending (Commit, sid, i‖0, P, V, γ0i ) and

(Commit, sid, i‖1, P, V, γ1i ) to Fcom, for every i = 1, . . . , L.

2. Verifier message: Upon receiving (Receipt, sid, i), (Receipt, sid, i‖0) and
(Receipt, sid, i‖1) from Fcom for every i = 1, . . . , L, the verifier V chooses L
independent random values β1, . . . , βL ∈ {β0, β1} and sends them to P .

3. Second prover message: Upon receiving β1, . . . , βL from V , the prover P decommits
to all αi values, as well as the appropriate γβii values, for every i. Formally, P sends
(Open, sid, i, P, V ) to Fcom for every i. In addition, let σi be such that βi = βσi . Then
P sends (Open, sid, i‖σi, P, V ) to Fcom for every i = 1, . . . , L.

4. Accept/reject decision: Upon receiving (Open, sid, i, P, V, αi) and
(Open, sid, i‖σi, P, V, γi) for every i = 1, . . . , L, the verifier V checks that for
every i the value σi is such that βi = βσi and that (αi, βi, γi) is an accepting
transcript according to the Σ protocol π. V accepts if and only if this holds for
every i.

We have the following theorem:

Theorem C.3 If π is a Σ protocol for a relation R, then the protocol Π obtained by applying the
transformation of Protocol C.2 to π is a universally composable zero-knowledge proof of knowledge
for R with soundness error 2−L.

Proof Sketch: In the case that the adversary A controls the prover P , the simulator S receives
(Commit, sid, i, αi), (Commit, sid, i‖0, γ0i ), (Commit, sid, i‖1, γ1i ) from A. Then, S chooses random
β1, . . . , βL, hands them to A as if coming from V , and verifies that for every i the transcript
(αi, βi, γ

βi
i ) is accepting; if not, it sends an invalid witness w′ to Fzk (i.e., w′ such that (x,w′) /∈ R).

Otherwise, if for every i, at most one of (αi, 0, γ
0
i ) and (αi, 1, γ

1
i ) is an accepting transcript in the

Σ protocol, then S outputs fail and halts. Otherwise, it uses the extractor of the Σ protocol to
obtain a witness w such that (x,w) ∈ R and sends this to Fzk. In addition, S sends all messages
that it receives from the environment Z to A, and vice versa. The fact that this simulation is
indistinguishable follows from the fact that the only difference between the real and ideal executions
is when S outputs fail, which occurs in the case that all (αi, βi, γ

βi
i ) are accepting (and so V would

accept), and yet at most one of all (αi, 0, γ
0
i ) and (αi, 1, γ

1
i ) is accepting (and so S does not obtain

a valid witness). However, this event occurs with probability at most 2−L, which is negligible.
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In the case that the adversary A controls the verifier V , the simulator S works by handing the
appropriate Receipt messages to A. Then, S receives from A values β1, . . . , βL. S then hands the
Σ protocol simulator all of the βi messages and obtains accepting transcripts (αi, βi, γi). Finally, S
hands A all of the commitment openings to be to the αi, γi values generated by the simulator.As
above, it also sends all messages that it receives from the environment Z to A, and vice versa.
The indistinguishability here follows immediately from the indistinguishability of the Σ protocol
simulated transcripts.

Exact efficiency of the transformation. The complexity of the universally composable zero-
knowledge protocol is the cost of the initial Σ protocol plus 3L universally-composable commit-
ments, 2L of which are opened. As we have mentioned, the commitment scheme of [27] is such
that a commitment to n bits requires 5 exponentiations and a decommitment requires 21. Thus,
the cost of Protocol C.2 is L times the initial Σ protocol plus (3 × 5 + 2 × 21) · L = 57L regular
Diffie-Hellman group exponentiations.
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