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Abstract. In this paper we study the lower bounds of second-order nonlinearities of bent functions
constructed by modifying certain cubic Maiorana-McFarland type bent functions.

1 Introduction

The set of all Boolean functions of n variables of degree at most r is said to be the Reed-Muller
code, RM(r, n), of length 2n and order r.

Definition 1. Suppose f ∈ Bn. For every integer r, 0 < r ≤ n, the minimum of the Hamming
distances of f from all the functions belonging to RM(r, n) is said to be the rth-order nonlinearity
of the Boolean function f . The sequence of values nlr(f), for r ranging from 1 to n− 1, is said to
be the nonlinearity profile of f .

The first-order nonlinearity (i.e., nonlinearity) of a Boolean function f , denoted nl(f), is related to
the immunity of f against “best affine approximation attacks” and “fast correlation attacks”, when
f is used as a combiner function or a filter function in a stream cipher. Attacks based on higher
order approximations of Boolean functions are found in Golić [6], Courtois [5]. For a complete
literature survey we refer to Carlet [4]. Unlike first-order nonlinearity there is no efficient algorithm
to compute second-order nonlinearities for n > 11. Most efficient algorithm due to Fourquet and
Tavernier [7] works for n ≤ 11 and, up to n ≤ 13 for some special functions. Thus, identifying
classes containing Boolean functions with “good” nonlinearity profile is an important problem. In
this paper we use Proposition 2 to obtain second-order nonlinearities of bent functions in the class
D0 derived from the cubic MMF type bent functions described in [8].

2 Preliminaries

2.1 Basic definitions

A function from Fn2 , or F2n to F2 is said to be a Boolean function on n-variables. Let Bn denote
the set of all Boolean functions on n variables. The algebraic normal form (ANF) of f ∈ Bn
is f(x1, x2, . . . , xn) =

∑
a=(a1,...,an)∈Fn2

µa(
∏n
i=1 x

ai
i ), where µa ∈ F2. The algebraic degree of f ,

deg(f) := max{wt(a) : µa 6= 0, a ∈ F2n}. For any two functions f, g ∈ Bn, d(f, g) = |{x : f(x) 6=
g(x), x ∈ F2n}| is said to be the Hamming distance between f and g. The trace function trn1 : F2n →
F2 is defined by

trn1 (x) = x+ x2 + x2
2

+ . . .+ x2
n−1

, for all x ∈ F2n .
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The inner product of x, y ∈ Fn2 is denoted by x · y. If we identify Fn2 with F2n then x · y = trn1 (xy).
Let An be the set of all affine functions on n variables. Nonlinearity of f ∈ Bn is defined as
nl(f) = minl∈An{d(f, l)}. The Walsh Transform of f ∈ Bn at λ ∈ Fn2 is defined as

Wf (λ) =
∑
x∈Fn2

(−1)f(x)+tr
n
1 (λx).

The multiset [Wf (λ) : λ ∈ Fn2 ] is said to be the Walsh spectrum of f . Following is the relationship
between nonlinearity and Walsh spectrum of f ∈ Bn

nl(f) = 2n−1 − 1

2
max
λ∈Fn2

|Wf (λ)|.

By Parseval’s identity ∑
λ∈Fn2

Wf (λ)2 = 22n.

it can be shown that |Wf (λ)| ≥ 2n/2 which implies that nl(f) ≤ 2n−1 − 2
n
2
−1.

Definition 2. Suppose n is an even integer. A function f ∈ Bn is said to be a bent function if and
only if nl(f) = 2n−1 − 2

n
2
−1 (i.e., Wf (λ) ∈ {2

n
2 ,−2

n
2 } for all λ ∈ Fn2 ).

For odd n ≥ 9, the tight upper bound of nonlinearities of Boolean functions in Bn is not known.

Definition 3. The derivative of f , f ∈ Bn, with respect to a, a ∈ Fn2 , is the function Daf ∈ Bn
defined as Daf : x→ f(x) + f(x+ a). The vector a ∈ Fn2 is called a linear structure of f if Daf is
constant.

The higher order derivatives are defined as follows.

Definition 4. Let V be an r-dimensional subspace of Fn2 generated by a1, . . . , ar, i.e., V = 〈a1, . . . , ar〉.
The r-th order derivative of f , f ∈ Bn with respect to V , is the function DV f ∈ Bn, defined by

DV f : x→ Da1 . . . Darf(x).

It is to be noted that the rth-order derivative of f depends only on the choice of the r-dimensional
subspace V and independent of the choice of the basis of V . Following result on Linearized poly-
nomials is used in this paper.

Lemma 1. [1] Let p(x) =
∑v

i=0 cix
2ik be a linearized polynomial over F2n, where gcd(n, k) = 1.

Then the equation p(x) = 0 has at most 2v solutions in F2n.

2.2 Quadratic Boolean functions

Suppose f ∈ Bn is a quadratic function. The bilinear form associated with f is defined by B(x, y) =
f(0) + f(x) + f(y) + f(x+ y). The kernel [2, 9] of B(x, y) is the subspace of Fn2 defined by

Ef = {x ∈ Fn2 : B(x, y) = 0 for all y ∈ Fn2}.

Any element c ∈ Ef is said to be a linear structure of f .



Lemma 2 ([2], Proposition 1). Let V be a vector space over a field Fq of characteristic 2 and
Q : V −→ Fq be a quadratic form. Then the dimension of V and the dimension of the kernel of Q
have the same parity.

Lemma 3 ([2], Lemma 1). Let f be any quadratic Boolean function. The kernel, Ef , is the
subspace of Fn2 consisting of those a such that the derivative Daf is constant. That is,

Ef = {a ∈ Fn2 : Daf = constant }.

The Walsh spectrum of any quadratic function f ∈ Bn is given below.

Lemma 4 ([2, 9]). If f : Fn2 → F2 is a quadratic Boolean function and B(x, y) is the quadratic
form associated with it, then the Walsh spectrum of f depends only on the dimension, k, of the
kernel, Ef , of B(x, y) . The weight distribution of the Walsh spectrum of f is:

Wf (α) number of α

0 2n − 2n−k

2(n+k)/2 2n−k−1 + (−1)f(0)2(n−k−2)/2

−2(n+k)/2 2n−k−1 − (−1)f(0)2(n−k−2)/2

Thus the Walsh spectrum of a quadratic Boolean function [2] is completely characterized by the
dimension of the kernel of the bilinear form associated with it.

2.3 Recursive lower bounds of higher-order nonlinearities

Carlet [4] for the first time has put the computation of lower bounds on nonlinearity profiles of
Boolean functions in a recursive framework. Following are some results proved by Carlet [4].

Proposition 1 ([4], Proposition 2). Let f ∈ Bn and r be a positive integer (r < n), then we
have

nlr(f) ≥ 1

2
max
a∈Fn2

nlr−1(Daf)

in terms of higher order derivatives,

nlr(f) ≥ 1

2i
max

a1,a2,...,ai∈Fn2
nlr−i(Da1Da2 . . . Daif)

for every non-negative integer i < r. In particular, for r = 2,

nl2(f) ≥ 1

2
max
a∈Fn2

nl(Daf).

Proposition 2 ([4], Proposition 3). Let f ∈ Bn and r be a positive integer (r < n), then we
have

nlr(f) ≥ 2n−1 − 1

2

√
22n − 2

∑
a∈Fn2

nlr−1(Daf).



Corollary 1 ([4], Corollary 2). Let f ∈ Bn and r be a positive integer (r < n). Assume that,
for some nonnegative integers M and m, we have nlr−1(Daf) ≥ 2n−1 −M2m for every nonzero
a ∈ Fn2 . Then

nlr(f) ≥ 2n−1 − 1
2

√
(2n − 1)M2m+1 + 2n

≈ 2n−1 −
√
M2

n+m−1
2 .

Carlet remarked that in general, the lower bound given by the Proposition 2 is potentially stronger
than that given in Proposition 1 [4].

3 Second-order nonlinearity of D0 type functions

In this section n = 2p. A Boolean function on n variables h : F2p × F2p −→ F2 is said to be a D0

type bent if h(x, y) = x ·π(y)+
∏p
j=1(xj +1) where π is a permutation on F2p and x = (x1, . . . , xn).

This class is constructed by Carlet [3] and shown to be distinct from the complete class of MMF
type bent functions.

3.1 Functions obtained by modifying trp1(xy2i+1)

Suppose π(y) = y2
i+1, where i is an integer such that, gcd(2i + 1, 2p − 1) = 1 and gcd(i, p) = e.

First we prove the following.

Lemma 5. Let hµ(x) = Trp1(µx2
i+1), µ, x ∈ F2p, µ 6= 0, i is integer such that 1 ≤ i ≤ p, gcd(2i +

1, 2p − 1) = 1, and gcd(i, p) = e, then the dimension of the kernel associated with the bilinear form
of hµ is e.

Proof. hµ(x) = Trp1(µx2
i+1). Let a ∈ F2p , a 6= 0 be arbitrary.

Dahµ(x) = Trp1(µ(x+ a)2
i+1) + Trp1(µx2

i+1)

= Trp1(µ(x2
i
a+ xa2

i
+ a2

i+1))

= Trp1(aµx2
i

+ µa2
i
x) + Trp1(a2

i+1)

= Trp1((aµ)2
t−i

+ µa2
i
)x) + Trp1(a2

i+1)

Dahµ is constant if and only if

(aµ)2
t−i

+ µa2
i

= 0.

i.e., aµ+ (µa2
i
)2
i

= 0.

i.e., aµ+ µ2
i
a2

2i
= 0.

Assuming µ 6= 0
i.e., µ2

i−1a2
2i−1 = 1.

i.e., (µa2
i+1)2

i−1 = 1.

since (µa2
i+1)2

i−1 = 1 and gcd(i, p) = e, therefore

µa2
i+1 ∈ F∗2e



i.e., a2
i+1 ∈ (µ)−1F∗2e

Thus, the total number of ways in which a can be chosen so that Dahµ is constant is 2e (including
the case µ = 0). Hence by Lemma 3 we have the dimension of the kernel associated with hµ is e. ut

Remark 1. From Lemma 4 and Lemma 5 it is clear that the weight distribution of the Walsh
spectrum of hµ is:

Whµ(α) number of α

0 2n − 2n−e

2(n+e)/2 2n−e−1 + 2(n−e−2)/2

−2(n+e)/2 2n−e−1 − 2(n−e−2)/2

Lemma 6. Let h(x, y) = f(x, y) + g(x), where n = 2p, x, y ∈ Fp2, f(x, y) = x · π(y), g(x) =∏p
i=1(xi + 1) and π is a permutation on Fp2 then

– The Walsh transform of D(a,b)h at (µ, η) ∈ Fp2 × Fp2 is

WD(a,b)h(µ, η) = WD(a,b)f (µ, η)− 2[(−1)µ·a + (−1)η·b]Wa·π(η), and

– |WD(a,b)h(µ, η) |≤|WD(a,b)f (µ, η) | +4 |Wa·π(η) | .

Proof. Let h(x, y) = f(x, y) + g(x), g(x) =
∏p
i=1(xi + 1) and (a, b) ∈ Fp2 × Fp2 be arbitrary. Clearly

g(x) =

{
1, if (x, y) ∈ {0} × Fp2,
0, otherwise.

For a 6= 0 then

g(x+ a) =

{
1, if (x, y) ∈ {a} × Fp2,
0, otherwise.

Thus

g(x) + g(x+ a) =

{
1, if (x, y) ∈ {0} × Fp2

⋃
{a} × Fp2,

0, otherwise.



The Walsh transform of D(a,b)h at (µ, η) ∈ Fp2 × Fp2 is

WD(a,b)h(µ, η) =
∑

(x,y)∈Fp2×F
p
2

(−1)f(x+a,y+b)+f(x,y)+g(x+a)+g(x)+µ·x+η·y

=
∑

(x,y)∈Fp2×F
p
2\({0}×F

p
2

⋃
{a}×Fp2)

(−1)f(x+a,y+b)+f(x,y)+µ·x+η·y

−
∑

(x,y)∈{0}×Fp2
⋃
{a}×Fp2

(−1)f(x+a,y+b)+f(x,y)+µ·x+η·y

=
∑

(x,y)∈Fp2×F
p
2

(−1)f(x+a,y+b)+f(x,y)+µ·x+η·y

− 2
∑

(x,y)∈{0,a}×Fp2

(−1)f(x+a,y+b)+f(x,y)+µ·x+η·y

= WD(a,b)f (µ, η)− 2
∑

(x,y)∈{0,a}×Fp2

(−1)f(x+a,y+b)+f(x,y)+µ·x+η·y

= WD(a,b)f (µ, η)− 2[
∑
y∈Fp2

(−1)f(0,y+b)+f(a,y)+µ·a+η·y

+
∑
y∈Fp2

(−1)f(a,y+b)+f(0,y)+η·y ]

= WD(a,b)f (µ, η)− 2[ (−1)µ·a
∑
y∈Fp2

(−1)a·π(y)+η·y + (−1)η·b
∑
y∈Fp2

(−1)a·π(y+b)+η·(y+b) ]

= WD(a,b)f (µ, η)− 2[ (−1)µ·aWa·π(η) + (−1)η·bWa·π(η) ]

= WD(a,b)f (µ, η)− 2[ (−1)µ·a + (−1)η·b ]Wa·π(η)

Thus

|WD(a,b)h(µ, η) |≤|WD(a,b)f (µ, η) | +4 |Wa·π(η) | .

ut

Theorem 1. Let h(x, y) = Trp1(xy2
i+1) +

∏p
i=1(xi + 1), where n = 2p, x, y ∈ Fp2, i is integer such

that 1 ≤ i ≤ p, gcd(2i + 1, 2p − 1) = 1, and gcd(i, p) = e, then nonlinearity of D(a,b)h is

nl(D(a,b)h) ≥


22p−1 − 2p+e−1, if a = 0 and b 6= 0,

22p−1 − 2p+e−1 − 2
p+e+2

2 , if a 6= 0 and b 6= 0,

22p−1 − 2
3p+e−2

2 − 2
p+e+2

2 , if a 6= 0 and b = 0.

Proof. h(x, y) = Trp1(xy2
i+1) +

∏p
i=1(xi + 1). Let f(x, y) = Trp1(xy2

i+1) and g(x) =
∏p
i=1(xi + 1),

then by Lemma 6 the Walsh Hadamard transform of D(a,b)h at any point (µ, η) ∈ Fp2 × Fp2 is

|WD(a,b)h(µ, η) |≤|WD(a,b)f (µ, η) | +4· |Wa·π(η) | (1)



It is given by Gangopadhyay, Sarkar and Telang [8] that the dimension of kernel k(a, b) of bilinear
form associated with D(a,b)f is

k(a, b) =

{
e+ p, if b = 0,
2e, if b 6= 0.

The above equation can be written as

k(a, b) =


e+ p, if a 6= 0, b = 0,
2e, if a = 0, b 6= 0.
2e, if a 6= 0, b 6= 0.

(2)

Case 1. Consider the case a = 0. From (1) and (2) we have

WD(0,b)h(µ, η) = WD(0,b)f (µ, η)

= 2p+e

Therefore for b 6= 0 nonlinearity of D(0,b)h is

nl(D(0,b)h) = 22p−1 − 1

2
max(µ,η)∈Fp2×F

p
2
|WD(0,b)f (µ, η) |

= 22p−1 − 2p+e−1 (3)

Case 2. Consider the case a 6= 0. Here a · π(y) = Trp1(ay2
i+1), Using (1) & Remark 1 we have

|WD(a,b)h(µ, η) |≤|WD(a,b)f (µ, η) | +2
p+e+4

2 .

From (2) we have

WD(a,b)f (µ, η) =

{
2p+e, if a 6= 0, b 6= 0,

2
3p+e

2 , if a 6= 0, b = 0.

Therefore,

WD(a,b)h(µ, η) ≤

{
2p+e + 2

p+e+4
2 , if a 6= 0, b 6= 0,

2
3p+e

2 + 2
p+e+4

2 , if a 6= 0, b = 0.

Therefore nonlinearity of D(a,b)h is

nl(D(a,b)h) ≥

{
22p−1 − 2p+e−1 − 2

p+e+2
2 , if a 6= 0, b 6= 0,

22p−1 − 2
3p+e−2

2 − 2
p+e+2

2 , if a 6= 0, b = 0.
(4)

Combining (3) and (4) we have

nl(D(a,b)h) ≥


22p−1 − 2p+e−1, if a = 0 and b 6= 0,

22p−1 − 2p+e−1 − 2
p+e+2

2 , if a 6= 0 and b 6= 0,

22p−1 − 2
3p+e−2

2 − 2
p+e+2

2 , if a 6= 0 and b = 0.

(5)

ut



Theorem 2. Let h(x, y) = Trp1(xy2
i+1) +

∏p
i=1(xi + 1), where n = 2p, x, y ∈ Fp2, i is integer such

that 1 ≤ i ≤ p, gcd(2i + 1, 2p − 1) = 1, and gcd(i, p) = e, then

nl2(h) ≥ 22p−1 − 1

2

√
23p+e + 22p(1− 2e) + 5(2

5p+e
2 − 2

3p+e
2 ).

Proof. h(x, y) = Trp1(xy2
i+1) +

∏p
i=1(xi + 1) Let f(x, y) = Trp1(xy2

i+1) and g(x) =
∏p
i=1(xi + 1)

Using (5) and Proposition 1 we have

nl2(h) ≥ 22p−2 − 2p+e−2. (6)

Using (5) we have∑
(a,b)∈F2p×F2p

nl(D(a,b)h)

= nl(D(0,0)h) +
∑

b∈F2p ,b 6=0

nl(D(0,b)h) +
∑

a∈F2p ,a 6=0

nl(D(a,0)h) +
∑

(a,b)∈F2p×F2p ,a6=0,b 6=0

nl(D(a,b)h)

≥ (2p − 1)(22p−1 − 2p+e−1) + (2p − 1)(22p−1 − 2
3p+e−2

2 − 2
p+e+2

2 )

+(2p − 1)(2p − 1)(22p−1 − 2p+e−1 − 2
p+e+2

2 )

= (2p − 1){22p + 23p−1 − 22p+e−1 − 22p−1 − 23p+e+2
2 − 23p+e−2

2 }
= (2p − 1){22p−1 + 23p−1 − 22p+e−1 − 23p+e+2

2 − 23p+e−2
2 }

= 24p−1 − 22p−1 − 23p+e−1 + 22p+e−1 + 23p+e+2
2 + 23p+e−2

2 − 25p+e+2
2 − 25p+e−2

2

= 24p−1 − 23p+e−1 − 22p−1(1− 2e)− 5(2
5p+e−2

2 − 2
3p+e−2

2 )

Using Proposition 2 we have

nl2(h) ≥ 22p−1 − 1

2

√
24p − 2{24p−1 − 23p+e−1 − 22p−1(1− 2e)− 5(2

5p+e−2
2 − 2

3p+e−2
2 )}

= 22p−1 − 1

2

√
23p+e + 22p(1− 2e) + 5(2

5p+e
2 − 2

3p+e
2 ) (7)

ut

If f(x, y) = trp1(xy2
i+1), where i is an integer such that 1 ≤ i ≤ p, gcd(2i + 1, 2p − 1) = 1, then

from ([8], Theorem 2) we obtain

nl2(f) ≥ 2n−1 − 1
2

√
2(

3n
2
+e) − 2(

3n
4
+ e

2
) + 2n(2(

n
4
+ e

2
) − 2e + 1).

Thus, nl2(h) and nl2(f) are asymptotically equal. Below we provide comparisons among the lower
bounds obtained from Theorem 2 and ([8], Theorem 2) and maximum known Hamming distances
as computed in [7].

n = 2p 6 10 12

i 1, 2 1, 2, 3, 4 2, 4

e = gcd(i, p) 1 1 2

Lower bounds in Theorem 2 10 351 1466

Lower bounds in [8] 15 378 1524

Hamming distances in [7] 18 400 1760



The inequality in Proposition 2 involves nonlinearities of Daf , the first derivative of f , at each
a ∈ Fn2 . If f is a cubic function then Daf is at most quadric. The nonlinearities of quadratic
and affine functions are well known ([9], Chap. 15). Therefore Proposition 2 is readily applicable
to cubic Boolean functions. This is exploited in [4, 8, 11] to compute lower bounds of second-order
nonlinearities for particular functions. In this paper we show that it is possible to use this knowledge
in some cases to obtain information related to second-order nonlinearities of functions in the class
D0, which are bent functions with maximum possible algebraic degree, p, for any given n = 2p.

3.2 Functions obtained by modifying Trp1(x(y2m+1+1 + y3 + y))

Theorem 3. Let h(x, y) = Trp1(x(y2
m+1+1 + y3 + y)) +

∏p
i=1(xi + 1), where n = 2p, x, y ∈ Fp2, m

is integer such that p = 2m+ 1, then

nl2(h) ≥ 22p−1 − 1

2

√
23p+2 − 3 · 22p + 5 · (2

5p+3
2 − 2

3p+3
2 ).

Proof. h(x, y) = Trp1(x(y2
m+1+1 + y3 + y)) +

∏p
i=1(xi + 1). Let φ(x, y) = Trp1(x(y2

m+1+1 + y3 + y))

and φµ(y) = µ · π(y) = Trp1(µ(y2
m+1+1 + y3 + y)), 0 6= µ ∈ Fp2. Then by Lemma 6 Walsh transform

of D(a,b)h at (µ, η) ∈ Fp2 × Fp2 is

|WD(a,b)h(µ, η) |≤|WD(a,b)φ(µ, η) | +4 |Wa·π(η) | . (8)

The first order derivative of φµ w. r. t. a, a ∈ F2p is

Daφµ(x) = Trp1(µ((x+ a)2
m+1+1 + (x+ a)3 + (x+ a))) + Trp1(µ(x2

m+1+1 + x3 + x))

= Trp1(µ(x2
m+1

a+ a2
m+1

x+ ax2 + a2x))

= Trp1(x2
m+1

aµ+ a2
m+1

µx+ aµx2 + a2µx)

= Trp1(x2
m+1

aµ) + Trp1(aµx2) + Trp1((a2µ+ a2
m+1

µ)x)

= Trp1((a2
m
µ2

m
+ a2

2m
µ2

2m
+ a2

m+1
µ+ a2µ)x)

Daφµ is constant if and only if

a2
m
µ2

m
+ a2

2m
µ2

2m
+ a2

m+1
µ+ a2µ = 0

i.e., (a2
m
µ2

m
+ a2

2m
µ2

2m
+ a2

m+1
µ+ a2µ)2

2m
= 0

i.e., a2
4m
µ2

4m
+ a2

3m
µ2

3m
+ a2

m
µ2

2m
+ µ2

2m
a = 0 . (9)

Thus, for any nonzero a ∈ F2p , a
24mµ2

4m
+ a2

3m
µ2

3m
+ a2

m
µ2

2m
+ µ2

2m
a is a linearized polynomial,

then by Lemma 1, (9) have at most 24 solutions in F2p . Hence by Lemma 3 we have the dimension
of the kernel k associated with φµ is at most 4 i.e., k ≤ 4. Since p is odd integer so that k ≤ 3.
Thus the walsh transform of φµ at any point α ∈ F2p is

Wφµ(α) = Wµ·π(α) ≤ 2
p+3
2 . (10)



It is given by Sarkar and Gangopadhyay [10] that the dimension of kernel k(a, b) of bilinear form
associated with D(a,b)φ is

k(a, b) =

{
i+ p, 0 ≤ i ≤ 4, if b = 0,
r + j, 0 ≤ r ≤ 20 ≤ j ≤ 2, if b 6= 0.

Since the kernel of the bilinear form associated with D(a,b)φ is the subspace of F22p . therefore the
kernel is k(a, b) even. Thus,

k(a, b) ≤
{
p+ 3, if b = 0,
4, if b 6= 0.

The above equation can be written as

k(a, b) ≤


p+ 3, if a 6= 0, b = 0,
4, if a = 0, b 6= 0.
4, if a 6= 0, b 6= 0.

Thus we have

WD(a,b)φ(µ, η) ≤


2p+2, if a 6= 0, b 6= 0,
2p+2, if a = 0, b 6= 0,

2
3p+3

2 , if a 6= 0, b = 0.

(11)

Using (8), (10) and (11) we have

WD(a,b)h(µ, η) ≤


2p+2 + 2

p+7
2 , if a 6= 0, b 6= 0,

2p+2, if a = 0, b 6= 0,

2
3p+4

2 + 2
p+7
2 , if a 6= 0, b = 0.

Therefore nonlinearity of D(a,b)h is

nl(D(a,b)h) ≥


22p−1 − 2p+1 − 2

p+5
2 , if a 6= 0, b 6= 0,

22p−1 − 2p+1, if a = 0, b 6= 0,

22p−1 − 2
3p+1

2 − 2
p+5
2 , if a 6= 0, b = 0.∑

(a,b)∈F2p×F2p

nl(D(a,b)h)

= nl(D(0,0)h) +
∑

b∈F2p ,b 6=0

nl(D(0,b)h) +
∑

a∈F2p ,a 6=0

nl(D(a,0)h) +
∑

(a,b)∈F2p×F2p ,a6=0,b 6=0

nl(D(a,b)h)

≥ (2p − 1)(22p−1 − 2p+1) + (2p − 1)(22p−1 − 2
3p+1

2 − 2
p+5
2 )

+(2p − 1)(2p − 1)(22p−1 − 2p+1 − 2
p+5
2 )

= (2p − 1){23p−1 + 22p−1 − 5 · 2
3p+1

2 − 22p+1}
= 24p−1 − 23p+1 − 5(2

5p+1
2 − 2

3p+1
2 ) + 3 · 22p−1

Using Proposition 2 we have

nl2(h) ≥ 22p−1 − 1

2

√
24p − 2{24p−1 − 23p+1 − 5(2

5p+1
2 − 2

3p+1
2 ) + 3 · 22p−1}

= 22p−1 − 1

2

√
23p+2 − 3 · 22p + 5 · (2

5p+3
2 − 2

3p+3
2 ).

ut
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