On second-order nonlinearities of some \mathcal{D}_{0} type bent functions

Sugata Gangopadhyay, Brajesh Kumar Singh*
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667 INDIA
gsugata@gmail.com

Abstract

In this paper we study the lower bounds of second-order nonlinearities of bent functions constructed by modifying certain cubic Maiorana-McFarland type bent functions.

1 Introduction

The set of all Boolean functions of n variables of degree at most r is said to be the Reed-Muller code, $R M(r, n)$, of length 2^{n} and order r.

Definition 1. Suppose $f \in \mathcal{B}_{n}$. For every integer $r, 0<r \leq n$, the minimum of the Hamming distances of f from all the functions belonging to $R M(r, n)$ is said to be the rth-order nonlinearity of the Boolean function f. The sequence of values $n l_{r}(f)$, for ranging from 1 to $n-1$, is said to be the nonlinearity profile of f.

The first-order nonlinearity (i.e., nonlinearity) of a Boolean function f, denoted $n l(f)$, is related to the immunity of f against "best affine approximation attacks" and "fast correlation attacks", when f is used as a combiner function or a filter function in a stream cipher. Attacks based on higher order approximations of Boolean functions are found in Golić [6], Courtois [5]. For a complete literature survey we refer to Carlet [4]. Unlike first-order nonlinearity there is no efficient algorithm to compute second-order nonlinearities for $n>11$. Most efficient algorithm due to Fourquet and Tavernier [7] works for $n \leq 11$ and, up to $n \leq 13$ for some special functions. Thus, identifying classes containing Boolean functions with "good" nonlinearity profile is an important problem. In this paper we use Proposition 2 to obtain second-order nonlinearities of bent functions in the class \mathcal{D}_{0} derived from the cubic MMF type bent functions described in [8].

2 Preliminaries

2.1 Basic definitions

A function from \mathbb{F}_{2}^{n}, or $\mathbb{F}_{2^{n}}$ to \mathbb{F}_{2} is said to be a Boolean function on n-variables. Let \mathcal{B}_{n} denote the set of all Boolean functions on n variables. The algebraic normal form (ANF) of $f \in \mathcal{B}_{n}$ is $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{2}^{n}} \mu_{a}\left(\prod_{i=1}^{n} x_{i}^{a_{i}}\right)$, where $\mu_{a} \in \mathbb{F}_{2}$. The algebraic degree of f, $\operatorname{deg}(f):=\max \left\{w t(a): \mu_{a} \neq 0, a \in \mathbb{F}_{2^{n}}\right\}$. For any two functions $f, g \in \mathcal{B}_{n}, d(f, g)=\mid\{x: f(x) \neq$ $\left.g(x), x \in \mathbb{F}_{2^{n}}\right\} \mid$ is said to be the Hamming distance between f and g. The trace function $\operatorname{tr}_{1}^{n}: \mathbb{F}_{2^{n}} \rightarrow$ \mathbb{F}_{2} is defined by

$$
\operatorname{tr}_{1}^{n}(x)=x+x^{2}+x^{2^{2}}+\ldots+x^{2^{n-1}}, \text { for all } x \in \mathbb{F}_{2^{n}}
$$

[^0]The inner product of $x, y \in \mathbb{F}_{2}^{n}$ is denoted by $x \cdot y$. If we identify \mathbb{F}_{2}^{n} with $\mathbb{F}_{2^{n}}$ then $x \cdot y=t r_{1}^{n}(x y)$. Let \mathcal{A}_{n} be the set of all affine functions on n variables. Nonlinearity of $f \in \mathcal{B}_{n}$ is defined as $n l(f)=\min _{l \in \mathcal{A}_{n}}\{d(f, l)\}$. The Walsh Transform of $f \in \mathcal{B}_{n}$ at $\lambda \in \mathbb{F}_{2}^{n}$ is defined as

$$
W_{f}(\lambda)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+\operatorname{tr}_{1}^{n}(\lambda x)}
$$

The multiset $\left[W_{f}(\lambda): \lambda \in \mathbb{F}_{2}^{n}\right]$ is said to be the Walsh spectrum of f. Following is the relationship between nonlinearity and Walsh spectrum of $f \in \mathcal{B}_{n}$

$$
n l(f)=2^{n-1}-\frac{1}{2} \max _{\lambda \in \mathbb{F}_{2}^{n}}\left|W_{f}(\lambda)\right| .
$$

By Parseval's identity

$$
\sum_{\lambda \in \mathbb{F}_{2}^{n}} W_{f}(\lambda)^{2}=2^{2 n} .
$$

it can be shown that $\left|W_{f}(\lambda)\right| \geq 2^{n / 2}$ which implies that $n l(f) \leq 2^{n-1}-2^{\frac{n}{2}-1}$.
Definition 2. Suppose n is an even integer. A function $f \in \mathcal{B}_{n}$ is said to be a bent function if and only if $n l(f)=2^{n-1}-2^{\frac{n}{2}-1}$ (i.e., $W_{f}(\lambda) \in\left\{2^{\frac{n}{2}},-2^{\frac{n}{2}}\right\}$ for all $\lambda \in \mathbb{F}_{2}^{n}$).

For odd $n \geq 9$, the tight upper bound of nonlinearities of Boolean functions in \mathcal{B}_{n} is not known.
Definition 3. The derivative of $f, f \in \mathcal{B}_{n}$, with respect to a, $a \in \mathbb{F}_{2}^{n}$, is the function $D_{a} f \in \mathcal{B}_{n}$ defined as $D_{a} f: x \rightarrow f(x)+f(x+a)$. The vector $a \in \mathbb{F}_{2}^{n}$ is called a linear structure of f if $D_{a} f$ is constant.

The higher order derivatives are defined as follows.
Definition 4. Let V be an r-dimensional subspace of \mathbb{F}_{2}^{n} generated by a_{1}, \ldots, a_{r}, i.e., $V=\left\langle a_{1}, \ldots, a_{r}\right\rangle$. The r-th order derivative of $f, f \in \mathcal{B}_{n}$ with respect to V, is the function $D_{V} f \in \mathcal{B}_{n}$, defined by

$$
D_{V} f: x \rightarrow D_{a_{1}} \ldots D_{a_{r}} f(x)
$$

It is to be noted that the r th-order derivative of f depends only on the choice of the r-dimensional subspace V and independent of the choice of the basis of V. Following result on Linearized polynomials is used in this paper.
Lemma 1. [1] Let $p(x)=\sum_{i=0}^{v} c_{i} x^{2^{i k}}$ be a linearized polynomial over $\mathbb{F}_{2^{n}}$, where $\operatorname{gcd}(n, k)=1$. Then the equation $p(x)=0$ has at most 2^{v} solutions in $\mathbb{F}_{2^{n}}$.

2.2 Quadratic Boolean functions

Suppose $f \in \mathcal{B}_{n}$ is a quadratic function. The bilinear form associated with f is defined by $B(x, y)=$ $f(0)+f(x)+f(y)+f(x+y)$. The kernel $[2,9]$ of $B(x, y)$ is the subspace of \mathbb{F}_{2}^{n} defined by

$$
\mathcal{E}_{f}=\left\{x \in \mathbb{F}_{2}^{n}: B(x, y)=0 \text { for all } y \in \mathbb{F}_{2}^{n}\right\}
$$

Any element $c \in \mathcal{E}_{f}$ is said to be a linear structure of f.

Lemma 2 ([2], Proposition 1). Let V be a vector space over a field \mathbb{F}_{q} of characteristic 2 and $Q: V \longrightarrow \mathbb{F}_{q}$ be a quadratic form. Then the dimension of V and the dimension of the kernel of Q have the same parity.

Lemma 3 ([2], Lemma 1). Let f be any quadratic Boolean function. The kernel, \mathcal{E}_{f}, is the subspace of \mathbb{F}_{2}^{n} consisting of those a such that the derivative $D_{a} f$ is constant. That is,

$$
\mathcal{E}_{f}=\left\{a \in \mathbb{F}_{2}^{n}: D_{a} f=\text { constant }\right\} .
$$

The Walsh spectrum of any quadratic function $f \in \mathcal{B}_{n}$ is given below.
Lemma $4([\mathbf{2}, \mathbf{9}])$. If $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is a quadratic Boolean function and $B(x, y)$ is the quadratic form associated with it, then the Walsh spectrum of f depends only on the dimension, k, of the kernel, \mathcal{E}_{f}, of $B(x, y)$. The weight distribution of the Walsh spectrum of f is:

$W_{f}(\alpha)$	number of α
0	$2^{n}-2^{n-k}$
$2^{(n+k) / 2}$	$2^{n-k-1}+(-1)^{f(0)} 2^{(n-k-2) / 2}$
$-2^{(n+k) / 2}$	$2^{n-k-1}-(-1)^{f(0)} 2^{(n-k-2) / 2}$

Thus the Walsh spectrum of a quadratic Boolean function [2] is completely characterized by the dimension of the kernel of the bilinear form associated with it.

2.3 Recursive lower bounds of higher-order nonlinearities

Carlet [4] for the first time has put the computation of lower bounds on nonlinearity profiles of Boolean functions in a recursive framework. Following are some results proved by Carlet [4].

Proposition 1 ([4], Proposition 2). Let $f \in \mathcal{B}_{n}$ and r be a positive integer $(r<n)$, then we have

$$
n l_{r}(f) \geq \frac{1}{2} \max _{a \in \mathbb{F}_{2}^{n}} n l_{r-1}\left(D_{a} f\right)
$$

in terms of higher order derivatives,

$$
n l_{r}(f) \geq \frac{1}{2^{i}} \max _{a_{1}, a_{2}, \ldots, a_{i} \in \mathbb{F}_{2}^{n}} n l_{r-i}\left(D_{a_{1}} D_{a_{2}} \ldots D_{a_{i}} f\right)
$$

for every non-negative integer $i<r$. In particular, for $r=2$,

$$
n l_{2}(f) \geq \frac{1}{2} \max _{a \in \mathbb{F}_{2}^{n}} n l\left(D_{a} f\right)
$$

Proposition 2 ([4], Proposition 3). Let $f \in \mathcal{B}_{n}$ and r be a positive integer $(r<n)$, then we have

$$
n l_{r}(f) \geq 2^{n-1}-\frac{1}{2} \sqrt{2^{2 n}-2 \sum_{a \in \mathbb{F}_{2}^{n}} n l_{r-1}\left(D_{a} f\right)} .
$$

Corollary 1 ([4], Corollary 2). Let $f \in \mathcal{B}_{n}$ and r be a positive integer $(r<n)$. Assume that, for some nonnegative integers M and m, we have $n l_{r-1}\left(D_{a} f\right) \geq 2^{n-1}-M 2^{m}$ for every nonzero $a \in \mathbb{F}_{2}^{n}$. Then

$$
\begin{aligned}
n l_{r}(f) & \geq 2^{n-1}-\frac{1}{2} \sqrt{\left(2^{n}-1\right) M 2^{m+1}+2^{n}} \\
& \approx 2^{n-1}-\sqrt{M} 2^{\frac{n+m-1}{2}} .
\end{aligned}
$$

Carlet remarked that in general, the lower bound given by the Proposition 2 is potentially stronger than that given in Proposition 1 [4].

3 Second-order nonlinearity of \mathcal{D}_{0} type functions

In this section $n=2 p$. A Boolean function on n variables $h: \mathbb{F}_{2^{p}} \times \mathbb{F}_{2^{p}} \longrightarrow \mathbb{F}_{2}$ is said to be a \mathcal{D}_{0} type bent if $h(x, y)=x \cdot \pi(y)+\prod_{j=1}^{p}\left(x_{j}+1\right)$ where π is a permutation on $\mathbb{F}_{2^{p}}$ and $x=\left(x_{1}, \ldots, x_{n}\right)$. This class is constructed by Carlet [3] and shown to be distinct from the complete class of MMF type bent functions.

3.1 Functions obtained by modifying $t r_{1}^{p}\left(x y^{2^{i}+1}\right)$

Suppose $\pi(y)=y^{2^{i}+1}$, where i is an integer such that, $\operatorname{gcd}\left(2^{i}+1,2^{p}-1\right)=1$ and $\operatorname{gcd}(i, p)=e$. First we prove the following.
Lemma 5. Let $h_{\mu}(x)=\operatorname{Tr}_{1}^{p}\left(\mu x^{2^{i}+1}\right), \mu, x \in \mathbb{F}_{2^{p}}, \mu \neq 0, i$ is integer such that $1 \leq i \leq p, \operatorname{gcd}\left(2^{i}+\right.$ $\left.1,2^{p}-1\right)=1$, and $\operatorname{gcd}(i, p)=e$, then the dimension of the kernel associated with the bilinear form of h_{μ} is e.

Proof. $h_{\mu}(x)=\operatorname{Tr}_{1}^{p}\left(\mu x^{2^{i}+1}\right)$. Let $a \in \mathbb{F}_{2^{p}}, a \neq 0$ be arbitrary.

$$
\begin{aligned}
D_{a} h_{\mu}(x) & =\operatorname{Tr}_{1}^{p}\left(\mu(x+a)^{2^{i}+1}\right)+\operatorname{Tr}_{1}^{p}\left(\mu x^{2^{i}+1}\right) \\
& =\operatorname{Tr}_{1}^{p}\left(\mu\left(x^{2^{i}} a+x a^{2^{i}}+a^{2^{i}+1}\right)\right) \\
& =\operatorname{Tr}_{1}^{p}\left(a \mu x^{2^{i}}+\mu a^{2^{i}} x\right)+\operatorname{Tr}_{1}^{p}\left(a^{2^{i}+1}\right) \\
& \left.=\operatorname{Tr}_{1}^{p}\left((a \mu)^{2^{t-i}}+\mu a^{2^{i}}\right) x\right)+\operatorname{Tr}_{1}^{p}\left(a^{2^{i}+1}\right)
\end{aligned}
$$

$D_{a} h_{\mu}$ is constant if and only if

$$
\begin{gathered}
(a \mu)^{2^{t-i}}+\mu a^{2^{i}}=0 . \\
\text { i.e., } a \mu+\left(\mu a^{2^{i}}\right)^{2^{i}}=0 . \\
\text { i.e., } a \mu+\mu^{2^{i}} a^{2^{2 i}}=0 .
\end{gathered}
$$

Assuming $\mu \neq 0$

$$
\begin{aligned}
& \text { i.e., } \mu^{2^{i}-1} a^{2^{2 i}-1}=1 . \\
& \text { i.e., }\left(\mu a^{2^{i}+1}\right)^{2^{i}-1}=1 .
\end{aligned}
$$

since $\left(\mu a^{2^{i}+1}\right)^{2^{i}-1}=1$ and $\operatorname{gcd}(i, p)=e$, therefore

$$
\mu a^{2^{i}+1} \in \mathbb{F}_{2^{e}}^{*}
$$

$$
\text { i.e., } a^{2^{i}+1} \in(\mu)^{-1} \mathbb{F}_{2^{e}}^{*}
$$

Thus, the total number of ways in which a can be chosen so that $D_{a} h_{\mu}$ is constant is 2^{e} (including the case $\mu=0$). Hence by Lemma 3 we have the dimension of the kernel associated with h_{μ} is e.

Remark 1. From Lemma 4 and Lemma 5 it is clear that the weight distribution of the Walsh spectrum of h_{μ} is:

$$
\begin{array}{ll}
W_{h_{\mu}}(\alpha) & \text { number of } \alpha \\
\hline 0 & 2^{n}-2^{n-e} \\
2^{(n+e) / 2} & 2^{n-e-1}+2^{(n-e-2) / 2} \\
-2^{(n+e) / 2} & 2^{n-e-1}-2^{(n-e-2) / 2} \\
\hline
\end{array}
$$

Lemma 6. Let $h(x, y)=f(x, y)+g(x)$, where $n=2 p, x, y \in \mathbb{F}_{2}^{p}, f(x, y)=x \cdot \pi(y), g(x)=$ $\prod_{i=1}^{p}\left(x_{i}+1\right)$ and π is a permutation on \mathbb{F}_{2}^{p} then

- The Walsh transform of $D_{(a, b)} h$ at $(\mu, \eta) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}$ is

$$
\begin{aligned}
& W_{D_{(a, b)} h}(\mu, \eta)=W_{D_{(a, b)} f}(\mu, \eta)-2\left[(-1)^{\mu \cdot a}+(-1)^{\eta \cdot b}\right] W_{a \cdot \pi}(\eta), \quad \text { and } \\
& -\left|W_{D_{(a, b)} h}(\mu, \eta)\right| \leq\left|W_{D_{(a, b)} f}(\mu, \eta)\right|+4\left|W_{a \cdot \pi}(\eta)\right| .
\end{aligned}
$$

Proof. Let $h(x, y)=f(x, y)+g(x), g(x)=\prod_{i=1}^{p}\left(x_{i}+1\right)$ and $(a, b) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}$ be arbitrary. Clearly

$$
g(x)=\left\{\begin{array}{l}
1, \text { if }(x, y) \in\{0\} \times \mathbb{F}_{2}^{p}, \\
0, \text { otherwise } .
\end{array}\right.
$$

For $a \neq 0$ then

$$
g(x+a)=\left\{\begin{array}{l}
1, \text { if }(x, y) \in\{a\} \times \mathbb{F}_{2}^{p} \\
0, \text { otherwise }
\end{array}\right.
$$

Thus

$$
g(x)+g(x+a)=\left\{\begin{array}{l}
1, \text { if }(x, y) \in\{0\} \times \mathbb{F}_{2}^{p} \bigcup\{a\} \times \mathbb{F}_{2}^{p} \\
0, \text { otherwise }
\end{array}\right.
$$

The Walsh transform of $D_{(a, b)} h$ at $(\mu, \eta) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}$ is

$$
\begin{aligned}
W_{D_{(a, b)}}(\mu, \eta) & =\sum_{(x, y) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}}(-1)^{f(x+a, y+b)+f(x, y)+g(x+a)+g(x)+\mu \cdot x+\eta \cdot y} \\
= & \sum_{(x, y) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p} \backslash\left(\{0\} \times \mathbb{F}_{2}^{p} \cup\{a\} \times \mathbb{F}_{2}^{p}\right)}(-1)^{f(x+a, y+b)+f(x, y)+\mu \cdot x+\eta \cdot y} \\
& -\sum_{(x, y) \in\{0\} \times \mathbb{F}_{2}^{p}} \cup\{a\} \times \mathbb{F}_{2}^{p} \\
& =\sum_{(x, y) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}}(-1)^{f(x+a, y+b)+f(x, y)+\mu \cdot x+\eta \cdot y \cdot y} \\
& -2 \sum_{(x, y) \in\{0, a\} \times \mathbb{F}_{2}^{p}}(-1)^{f(x+a, y+b)+f(x, y)+\mu \cdot x+\eta \cdot y}+\mu \cdot x+\eta \cdot y \\
= & W_{D_{(a, b)} f}(\mu, \eta)-2 \sum_{(x, y) \in\{0, a\} \times \mathbb{F}_{2}^{p}}(-1)^{f(x+a, y+b)+f(x, y)+\mu \cdot x+\eta \cdot y} \\
= & W_{D_{(a, b)} f}(\mu, \eta)-2\left[\sum_{y \in \mathbb{F}_{2}^{p}}(-1)^{f(0, y+b)+f(a, y)+\mu \cdot a+\eta \cdot y}\right. \\
& \left.+\sum_{y \in \mathbb{F}_{2}^{p}}(-1)^{f(a, y+b)+f(0, y)+\eta \cdot y}\right] \\
= & W_{D_{(a, b)} f}(\mu, \eta)-2\left[(-1)^{\mu \cdot a} \sum_{y \in \mathbb{F}_{2}^{p}}(-1)^{a \cdot \pi(y)+\eta \cdot y}+(-1)^{\eta \cdot b} \sum_{y \in \mathbb{F}_{2}^{p}}(-1)^{a \cdot \pi(y+b)+\eta \cdot(y+b)}\right] \\
= & W_{D_{(a, b)} f}(\mu, \eta)-2\left[(-1)^{\mu \cdot a} W_{a \cdot \pi}(\eta)+(-1)^{\eta \cdot b} W_{a \cdot \pi}(\eta)\right] \\
= & W_{D_{(a, b)} f}(\mu, \eta)-2\left[(-1)^{\mu \cdot a}+(-1)^{\eta \cdot b}\right] W_{a \cdot \pi}(\eta)
\end{aligned}
$$

Thus

$$
\left|W_{D_{(a, b)} h}(\mu, \eta)\right| \leq\left|W_{D_{(a, b)} f}(\mu, \eta)\right|+4\left|W_{a \cdot \pi}(\eta)\right| .
$$

Theorem 1. Let $h(x, y)=T r_{1}^{p}\left(x y^{2^{i}+1}\right)+\prod_{i=1}^{p}\left(x_{i}+1\right)$, where $n=2 p, x, y \in \mathbb{F}_{2}^{p}$, i is integer such that $1 \leq i \leq p, \operatorname{gcd}\left(2^{i}+1,2^{p}-1\right)=1$, and $\operatorname{gcd}(i, p)=e$, then nonlinearity of $D_{(a, b)} h$ is

$$
n l\left(D_{(a, b)} h\right) \geq \begin{cases}2^{2 p-1}-2^{p+e-1}, & \text { if } a=0 \text { and } b \neq 0 \\ 2^{2 p-1}-2^{p+e-1}-2^{\frac{p+e+2}{2},}, & \text { if } a \neq 0 \text { and } b \neq 0 \\ 2^{2 p-1}-2^{\frac{3 p+e-2}{2}}-2^{\frac{p+e+2}{2}}, & \text { if } a \neq 0 \text { and } b=0\end{cases}
$$

Proof. $h(x, y)=\operatorname{Tr}_{1}^{p}\left(x y^{2^{i}+1}\right)+\prod_{i=1}^{p}\left(x_{i}+1\right)$. Let $f(x, y)=\operatorname{Tr}_{1}^{p}\left(x y^{2^{i}+1}\right)$ and $g(x)=\prod_{i=1}^{p}\left(x_{i}+1\right)$, then by Lemma 6 the Walsh Hadamard transform of $D_{(a, b)} h$ at any point $(\mu, \eta) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}$ is

$$
\begin{equation*}
\left|W_{D_{(a, b)} h}(\mu, \eta)\right| \leq\left|W_{D_{(a, b)} f}(\mu, \eta)\right|+4 \cdot\left|W_{a \cdot \pi}(\eta)\right| \tag{1}
\end{equation*}
$$

It is given by Gangopadhyay, Sarkar and Telang [8] that the dimension of kernel $k(a, b)$ of bilinear form associated with $D_{(a, b)} f$ is

$$
k(a, b)= \begin{cases}e+p, & \text { if } b=0, \\ 2 e, & \text { if } b \neq 0 .\end{cases}
$$

The above equation can be written as

$$
k(a, b)= \begin{cases}e+p, & \text { if } a \neq 0, b=0, \tag{2}\\ 2 e, & \text { if } a=0, b \neq 0 . \\ 2 e, & \text { if } a \neq 0, b \neq 0 .\end{cases}
$$

Case 1. Consider the case $a=0$. From (1) and (2) we have

$$
\begin{aligned}
W_{D_{(0, b)} h}(\mu, \eta) & =W_{D_{(0, b)} f}(\mu, \eta) \\
& =2^{p+e}
\end{aligned}
$$

Therefore for $b \neq 0$ nonlinearity of $D_{(0, b)} h$ is

$$
\begin{align*}
n l\left(D_{(0, b)} h\right) & =2^{2 p-1}-\frac{1}{2} \max _{(\mu, \eta) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}}\left|W_{D_{(0, b)} f}(\mu, \eta)\right| \\
& =2^{2 p-1}-2^{p+e-1} \tag{3}
\end{align*}
$$

Case 2. Consider the case $a \neq 0$. Here $a \cdot \pi(y)=T r_{1}^{p}\left(a y^{2^{i}+1}\right)$, Using (1) \& Remark 1 we have

$$
\left|W_{D_{(a, b)} h}(\mu, \eta)\right| \leq\left|W_{D_{(a, b)} f}(\mu, \eta)\right|+2^{\frac{p+e+4}{2}} .
$$

From (2) we have

$$
W_{D_{(a, b)} f}(\mu, \eta)= \begin{cases}2^{p+e}, & \text { if } a \neq 0, b \neq 0, \\ 2^{\frac{3 p+e}{2}}, & \text { if } a \neq 0, b=0 .\end{cases}
$$

Therefore,

$$
W_{D_{(a, b)} h}(\mu, \eta) \leq \begin{cases}2^{p+e}+2^{\frac{p+e+4}{2}}, & \text { if } a \neq 0, b \neq 0, \\ 2^{\frac{3 p+e}{2}}+2^{\frac{p+e+4}{2}}, & \text { if } a \neq 0, b=0\end{cases}
$$

Therefore nonlinearity of $D_{(a, b)} h$ is

$$
n l\left(D_{(a, b)} h\right) \geq \begin{cases}2^{2 p-1}-2^{p+e-1}-2^{\frac{p+e+2}{2}}, & \text { if } a \neq 0, b \neq 0, \tag{4}\\ 2^{2 p-1}-2^{\frac{3 p+e-2}{2}}-2^{\frac{p+e+2}{2}}, & \text { if } a \neq 0, b=0\end{cases}
$$

Combining (3) and (4) we have

$$
n l\left(D_{(a, b)} h\right) \geq \begin{cases}2^{2 p-1}-2^{p+e-1}, & \text { if } a=0 \text { and } b \neq 0, \tag{5}\\ 2^{2 p-1}-2^{p+e-1}-2^{\frac{p+e+2}{p+2},} & \text { if } a \neq 0 \text { and } b \neq 0, \\ 2^{2 p-1}-2^{\frac{3 p+e-2}{2}}-2^{\frac{p+e+2}{2}}, & \text { if } a \neq 0 \text { and } b=0 .\end{cases}
$$

Theorem 2. Let $h(x, y)=\operatorname{Tr}_{1}^{p}\left(x y^{2^{i}+1}\right)+\prod_{i=1}^{p}\left(x_{i}+1\right)$, where $n=2 p, x, y \in \mathbb{F}_{2}^{p}$, i is integer such that $1 \leq i \leq p, \operatorname{gcd}\left(2^{i}+1,2^{p}-1\right)=1$, and $\operatorname{gcd}(i, p)=e$, then

$$
n l_{2}(h) \geq 2^{2 p-1}-\frac{1}{2} \sqrt{2^{3 p+e}+2^{2 p}\left(1-2^{e}\right)+5\left(2^{\frac{5 p+e}{2}}-2^{\frac{3 p+e}{2}}\right)}
$$

Proof. $h(x, y)=\operatorname{Tr}_{1}^{p}\left(x y^{2^{i}+1}\right)+\prod_{i=1}^{p}\left(x_{i}+1\right)$ Let $f(x, y)=\operatorname{Tr}_{1}^{p}\left(x y^{2^{i}+1}\right)$ and $g(x)=\prod_{i=1}^{p}\left(x_{i}+1\right)$ Using (5) and Proposition 1 we have

$$
\begin{equation*}
n l_{2}(h) \geq 2^{2 p-2}-2^{p+e-2} \tag{6}
\end{equation*}
$$

Using (5) we have

$$
\begin{aligned}
& \quad \sum_{(a, b) \in \mathbb{F}_{2} p \times \mathbb{F}_{2} p} n l\left(D_{(a, b)} h\right) \\
& =n l\left(D_{(0,0)} h\right)+\sum_{b \in \mathbb{F}_{2^{p}, b \neq 0}} n l\left(D_{(0, b)} h\right)+\sum_{a \in \mathbb{F}_{2^{p}, a \neq 0}} n l\left(D_{(a, 0)} h\right)+\sum_{(a, b) \in \mathbb{F}_{2} p \times \mathbb{F}_{2} p, a \neq 0, b \neq 0} n l\left(D_{(a, b)} h\right) \\
& \geq\left(2^{p}-1\right)\left(2^{2 p-1}-2^{p+e-1}\right)+\left(2^{p}-1\right)\left(2^{2 p-1}-2^{\frac{3 p+e-2}{2}}-2^{\frac{p+e+2}{2}}\right) \\
& +\left(2^{p}-1\right)\left(2^{p}-1\right)\left(2^{2 p-1}-2^{p+e-1}-2^{\frac{p+e+2}{2}}\right) \\
& =\left(2^{p}-1\right)\left\{2^{2 p}+2^{3 p-1}-2^{2 p+e-1}-2^{2 p-1}-2^{\left.\frac{3 p+e+2}{2}-2 \frac{3 p+e-2}{2}\right\}}\right. \\
& =\left(2^{p}-1\right)\left\{2^{2 p-1}+2^{3 p-1}-2^{2 p+e-1}-2 \frac{3 p+e+2}{2}-2^{\left.\frac{3 p+e-2}{2}\right\}}\right. \\
& =2^{4 p-1}-2^{2 p-1}-2^{3 p+e-1}+2^{2 p+e-1}+2 \frac{3 p+e+2}{2}+2 \frac{3 p+e-2}{2}-2 \frac{5 p+e+2}{2}-2^{\frac{5 p+e-2}{2}} \\
& =2^{4 p-1}-2^{3 p+e-1}-2^{2 p-1}\left(1-2^{e}\right)-5\left(2^{\frac{5 p+e-2}{2}}-2^{\frac{3 p+e-2}{2}}\right)
\end{aligned}
$$

Using Proposition 2 we have

$$
\begin{align*}
n l_{2}(h) & \geq 2^{2 p-1}-\frac{1}{2} \sqrt{2^{4 p}-2\left\{2^{4 p-1}-2^{3 p+e-1}-2^{2 p-1}\left(1-2^{e}\right)-5\left(2^{\frac{5 p+e-2}{2}}-2^{\frac{3 p+e-2}{2}}\right)\right\}} \\
& =2^{2 p-1}-\frac{1}{2} \sqrt{2^{3 p+e}+2^{2 p}\left(1-2^{e}\right)+5\left(2^{\frac{5 p+e}{2}}-2^{\frac{3 p+e}{2}}\right)} \tag{7}
\end{align*}
$$

If $f(x, y)=\operatorname{tr} r_{1}^{p}\left(x y^{2^{i}+1}\right)$, where i is an integer such that $1 \leq i \leq p, \operatorname{gcd}\left(2^{i}+1,2^{p}-1\right)=1$, then from ([8], Theorem 2) we obtain

$$
n l_{2}(f) \geq 2^{n-1}-\frac{1}{2} \sqrt{2^{\left(\frac{3 n}{2}+e\right)}-2^{\left(\frac{3 n}{4}+\frac{e}{2}\right)}+2^{n}\left(2^{\left(\frac{n}{4}+\frac{e}{2}\right)}-2^{e}+1\right)}
$$

Thus, $n l_{2}(h)$ and $n l_{2}(f)$ are asymptotically equal. Below we provide comparisons among the lower bounds obtained from Theorem 2 and ([8], Theorem 2) and maximum known Hamming distances as computed in [7].

$n=2 p$	6	10	12
i	1,2	$1,2,3,4$	2,4
$e=\operatorname{gcd}(i, p)$	1	1	2
Lower bounds in Theorem 2	10	351	1466
Lower bounds in $[8]$	15	378	1524
Hamming distances in $[7]$	18	400	1760

The inequality in Proposition 2 involves nonlinearities of $D_{a} f$, the first derivative of f, at each $a \in \mathbb{F}_{2}^{n}$. If f is a cubic function then $D_{a} f$ is at most quadric. The nonlinearities of quadratic and affine functions are well known ([9], Chap. 15). Therefore Proposition 2 is readily applicable to cubic Boolean functions. This is exploited in $[4,8,11]$ to compute lower bounds of second-order nonlinearities for particular functions. In this paper we show that it is possible to use this knowledge in some cases to obtain information related to second-order nonlinearities of functions in the class \mathcal{D}_{0}, which are bent functions with maximum possible algebraic degree, p, for any given $n=2 p$.

3.2 Functions obtained by modifying $\operatorname{Tr}_{1}^{p}\left(x\left(y^{2^{m+1}+1}+y^{3}+y\right)\right)$

Theorem 3. Let $h(x, y)=\operatorname{Tr}_{1}^{p}\left(x\left(y^{2^{m+1}+1}+y^{3}+y\right)\right)+\prod_{i=1}^{p}\left(x_{i}+1\right)$, where $n=2 p, x, y \in \mathbb{F}_{2}^{p}, m$ is integer such that $p=2 m+1$, then

$$
n l_{2}(h) \geq 2^{2 p-1}-\frac{1}{2} \sqrt{2^{3 p+2}-3 \cdot 2^{2 p}+5 \cdot\left(2^{\frac{5 p+3}{2}}-2^{\frac{3 p+3}{2}}\right)} .
$$

Proof. $h(x, y)=\operatorname{Tr}_{1}^{p}\left(x\left(y^{2^{m+1}+1}+y^{3}+y\right)\right)+\prod_{i=1}^{p}\left(x_{i}+1\right)$. Let $\phi(x, y)=\operatorname{Tr}_{1}^{p}\left(x\left(y^{2^{m+1}+1}+y^{3}+y\right)\right)$ and $\phi_{\mu}(y)=\mu \cdot \pi(y)=\operatorname{Tr}_{1}^{p}\left(\mu\left(y^{2^{m+1}+1}+y^{3}+y\right)\right), 0 \neq \mu \in \mathbb{F}_{2}^{p}$. Then by Lemma 6 Walsh transform of $D_{(a, b)} h$ at $(\mu, \eta) \in \mathbb{F}_{2}^{p} \times \mathbb{F}_{2}^{p}$ is

$$
\begin{equation*}
\left|W_{D_{(a, b)} h}(\mu, \eta)\right| \leq\left|W_{D_{(a, b)} \phi}(\mu, \eta)\right|+4\left|W_{a \cdot \pi}(\eta)\right| . \tag{8}
\end{equation*}
$$

The first order derivative of ϕ_{μ} w. r. t. $a, a \in \mathbb{F}_{2^{p}}$ is

$$
\begin{aligned}
D_{a} \phi_{\mu}(x) & =\operatorname{Tr}_{1}^{p}\left(\mu\left((x+a)^{2^{m+1}+1}+(x+a)^{3}+(x+a)\right)\right)+\operatorname{Tr}_{1}^{p}\left(\mu\left(x^{2^{m+1}+1}+x^{3}+x\right)\right) \\
& =\operatorname{Tr}_{1}^{p}\left(\mu\left(x^{2^{m+1}} a+a^{2^{m+1}} x+a x^{2}+a^{2} x\right)\right) \\
& =\operatorname{Tr}_{1}^{p}\left(x^{2^{m+1}} a \mu+a^{2^{m+1}} \mu x+a \mu x^{2}+a^{2} \mu x\right) \\
& =\operatorname{Tr}_{1}^{p}\left(x^{2^{m+1}} a \mu\right)+\operatorname{Tr}_{1}^{p}\left(a \mu x^{2}\right)+\operatorname{Tr}_{1}^{p}\left(\left(a^{2} \mu+a^{2^{m+1}} \mu\right) x\right) \\
& =\operatorname{Tr}_{1}^{p}\left(\left(a^{2^{m}} \mu^{2^{m}}+a^{2^{2 m}} \mu^{2^{2 m}}+a^{2^{m+1}} \mu+a^{2} \mu\right) x\right)
\end{aligned}
$$

$D_{a} \phi_{\mu}$ is constant if and only if

$$
\begin{gather*}
\quad a^{2^{m}} \mu^{2^{m}}+a^{2^{2 m}} \mu^{2^{2 m}}+a^{2^{m+1}} \mu+a^{2} \mu=0 \\
\text { i.e., } \quad\left(a^{2^{m}} \mu^{2^{2 m}}+a^{2^{2 m}} \mu^{2^{2 m}}+a^{2^{m+1}} \mu+a^{2} \mu\right)^{2^{2 m}}=0 \\
\text { i.e., } \quad a^{2^{4 m}} \mu^{2^{4 m}}+a^{2^{3 m}} \mu^{2^{3 m}}+a^{2^{m}} \mu^{2^{2 m}}+\mu^{2^{2 m}} a=0 . \tag{9}
\end{gather*}
$$

Thus, for any nonzero $a \in \mathbb{F}_{2^{p}}, a^{2^{4 m}} \mu^{2^{4 m}}+a^{2^{3 m}} \mu^{2^{3 m}}+a^{2^{m}} \mu^{2^{2 m}}+\mu^{2^{2 m}} a$ is a linearized polynomial, then by Lemma $1,(9)$ have at most 2^{4} solutions in $\mathbb{F}_{2^{p}}$. Hence by Lemma 3 we have the dimension of the kernel k associated with ϕ_{μ} is at most 4 i.e., $k \leq 4$. Since p is odd integer so that $k \leq 3$. Thus the walsh transform of ϕ_{μ} at any point $\alpha \in \mathbb{F}_{2^{p}}$ is

$$
\begin{equation*}
W_{\phi_{\mu}}(\alpha)=W_{\mu \cdot \pi}(\alpha) \leq 2^{\frac{p+3}{2}} . \tag{10}
\end{equation*}
$$

It is given by Sarkar and Gangopadhyay [10] that the dimension of kernel $k(a, b)$ of bilinear form associated with $D_{(a, b)} \phi$ is

$$
k(a, b)=\left\{\begin{array}{lr}
i+p, 0 \leq i \leq 4, & \text { if } b=0 \\
r+j, 0 \leq r \leq 20 \leq j \leq 2, & \text { if } b \neq 0 .
\end{array}\right.
$$

Since the kernel of the bilinear form associated with $D_{(a, b)} \phi$ is the subspace of $\mathbb{F}_{2^{2 p}}$. therefore the kernel is $k(a, b)$ even. Thus,

$$
k(a, b) \leq \begin{cases}p+3, & \text { if } b=0, \\ 4, & \text { if } b \neq 0\end{cases}
$$

The above equation can be written as

$$
k(a, b) \leq \begin{cases}p+3, & \text { if } a \neq 0, b=0 \\ 4, & \text { if } a=0, b \neq 0 \\ 4, & \text { if } a \neq 0, b \neq 0\end{cases}
$$

Thus we have

$$
W_{D_{(a, b)} \phi}(\mu, \eta) \leq \begin{cases}2^{p+2}, & \text { if } a \neq 0, b \neq 0, \tag{11}\\ 2^{p+2}, & \text { if } a=0, b \neq 0, \\ 2^{\frac{3 p+3}{2},}, & \text { if } a \neq 0, b=0 .\end{cases}
$$

Using (8), (10) and (11) we have

$$
W_{D_{(a, b)} h}(\mu, \eta) \leq \begin{cases}2^{p+2}+2^{\frac{p+7}{2}}, & \text { if } a \neq 0, b \neq 0 \\ 2^{p+2}, & \text { if } a=0, b \neq 0 \\ 2^{\frac{3 p+4}{2}}+2^{\frac{p+7}{2}}, & \text { if } a \neq 0, b=0\end{cases}
$$

Therefore nonlinearity of $D_{(a, b)} h$ is

$$
\begin{aligned}
& n l\left(D_{(a, b)} h\right) \geq \begin{cases}2^{2 p-1}-2^{p+1}-2^{\frac{p+5}{2}}, & \text { if } a \neq 0, b \neq 0, \\
2^{2 p-1}-2^{p+1}, & \text { if } a=0, b \neq 0, \\
2^{2 p-1}-2^{\frac{3 p+1}{2}}-2^{\frac{p+5}{2}}, & \text { if } a \neq 0, b=0 .\end{cases} \\
& \sum_{(a, b) \in \mathbb{F}_{2^{p} p} \times \mathbb{F}_{2^{p}}} n l\left(D_{(a, b)} h\right) \\
& =n l\left(D_{(0,0)} h\right)+\sum_{b \in \mathbb{F}_{2} p, b \neq 0} n l\left(D_{(0, b)} h\right)+\sum_{a \in \mathbb{F}_{2} p, a \neq 0} n l\left(D_{(a, 0)} h\right)+\sum_{(a, b) \in \mathbb{F}_{2} p \times \mathbb{F}_{2^{p}, a \neq}} n l\left(D_{(a, b)} h\right) \\
& \geq\left(2^{p}-1\right)\left(2^{2 p-1}-2^{p+1}\right)+\left(2^{p}-1\right)\left(2^{2 p-1}-2^{\frac{3 p+1}{2}}-2^{\frac{p+5}{2}}\right) \\
& +\left(2^{p}-1\right)\left(2^{p}-1\right)\left(2^{2 p-1}-2^{p+1}-2^{\frac{p+5}{2}}\right) \\
& =\left(2^{p}-1\right)\left\{2^{3 p-1}+2^{2 p-1}-5 \cdot 2^{\frac{3 p+1}{2}}-2^{2 p+1}\right\} \\
& =2^{4 p-1}-2^{3 p+1}-5\left(2^{\frac{5 p+1}{2}}-2^{\frac{3 p+1}{2}}\right)+3 \cdot 2^{2 p-1}
\end{aligned}
$$

Using Proposition 2 we have

$$
\begin{aligned}
n l_{2}(h) & \geq 2^{2 p-1}-\frac{1}{2} \sqrt{2^{4 p}-2\left\{2^{4 p-1}-2^{3 p+1}-5\left(2^{\frac{5 p+1}{2}}-2^{\frac{3 p+1}{2}}\right)+3 \cdot 2^{2 p-1}\right\}} \\
& =2^{2 p-1}-\frac{1}{2} \sqrt{2^{3 p+2}-3 \cdot 2^{2 p}+5 \cdot\left(2^{\frac{5 p+3}{2}}-2^{\frac{3 p+3}{2}}\right) .}
\end{aligned}
$$

References

1. C. Bracken, E. Byrne, N. Markin and Gary MacGuire, Determining the Nonlinearity a New Family of APN Functions, AAECC, LNCS 4851, springer, 2007, pp. 72-79.
2. A. Canteaut, P. Charpin and G. M. Kyureghyan, A new class of monomial bent functions, Finite Fields and their Applications 14 (2008) 221-241.
3. C. Carlet, Two new classes of bent functions, in Proc. EUROCRYPT '93, LNCS vol. 765, Springer, 1994, pp. 77-101.
4. C. Carlet, Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications, IEEE Trans. Inform. Theory 54 (3) (2008) 1262-1272.
5. N. Courtois, Higher order correlation attacks, XL algorithm and cryptanalysis of Toyocrypt, in: Proceedings of the ICISC'02, LNCS, vol. 2587, Springer, 2002, pp. 182-199.
6. J. Golić, Fast low order approximation of cryptographic functions, in: Proceedings of the EUROCRYPT'96, LNCS, vol. 1996, Springer, 1996, pp. 268-282.
7. R. Fourquet and C. Tavernier, An improved list decoding algorithm for the second order Reed Muller codes and its applications, Designs Codes and Cryptography 49 (2008) 323-340.
8. S. Gangopadhyay, S. Sarkar and R. Telang, On the lower bounds of the second order nonlinearities of some Boolean functions, Information Sciences 180 (2010) 266-273.
9. F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes, North-Holland, Amsterdam, 1977.
10. S. Sarkar and S. Gangopadhyay, On the Second Order Nonlinearity of a Cubic Maiorana-McFarland Bent Function, Finite Fields and their Applications, Fq 9, Dublin, Ireland, July 13-17, 2009.
11. G. Sun and C. Wu, The lower bounds on the second order nonlinearity of three classes of Boolean functions with high nonlinearity, Information Sciences 179 (3) (2009) 267-278.

[^0]: * Research supported by CSIR, India

