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Abstract. Many real-world protocols, such as SSL/TLS, SSH, IPsec, IEEE
802.11i, DNSSEC, and Kerberos, derive new keys from other keys. To be able
to analyze such protocols in a composable way, in this paper we extend our ideal
functionality for symmetric and public-key encryption proposed in previous work
by a mechanism for key derivation. We also equip our functionality with message
authentication codes (MACs) and ideal nonce generation. We show that our ideal
functionality can be realized based on standard cryptographic assumptions and
constructions, hence, providing a solid foundation for faithful, composable cryp-
tographic analysis of real-world security protocols.
Based on our functionality, we identify sufficient criteria for protocols to pro-
vide universally composable key exchange and secure channels. Since these cri-
teria are based on our ideal functionality, checking the criteria requires merely
information-theoretic or even only syntactical arguments, rather than involved
reduction arguments.
As a case study, we use our method to analyze two central protocols of the IEEE
802.11i standard, namely the 4-Way Handshake Protocol and the CCM Protocol,
proving composable security properties. As to the best of our knowledge, this
constitutes the first rigorous cryptographic analysis of these protocols.

1 Introduction

Security protocols employed in practice, such as SSL/TLS, SSH, IPsec, IEEE 802.11i,
DNSSEC, and Kerberos, are very complex, and hence, hard to analyze. In order to tame
this complexity a viable approach is composable security analysis based on the frame-
work of simulation-based security, in particular universal composability/reactive sim-
ulatability [15, 40]: Higher-level components of a protocol are designed and analyzed
based on lower-level idealized components, called ideal functionalities. Composition
theorems then allow to replace the ideal functionalities by their realizations, altogether
resulting in a system without idealized components. Typically, the higher-level com-
ponents are shown to realize idealized functionalities themselves. By this, they can be
used as low-level idealized components in even more complex systems.

This appealing approach has, however, so far been rarely applied to real-world pro-
tocols (see the related work). One crucial obstacle is the lack of suitable idealized func-
tionalities and corresponding realizations for the most basic cryptographic primitives.
While functionalities for public-key encryption and digital signatures have been pro-
posed early on [15, 40, 3, 33], only recently we have proposed a functionality, denoted



Fenc, for symmetric encryption [35], which, however, by itself is still insufficient for
the analysis of real-world protocols. The functionality Fenc allows parties to generate
symmetric and public/private keys and to use them for ideal encryption and decryption.
The encrypted messages may contain symmetric keys and parties are given the actual
ciphertexts, as bit strings. To bootstrap encryption with symmetric keys, Fenc also en-
ables parties to generate and use pre-shared keys as well as public/private key pairs.

The main goal of our work is to augment our functionalities with further primitives
employed in real-word protocols and to develop suitable proof techniques in order to be
able to carry out manageable, composable, yet faithful analysis of such protocols.

Contribution of this Paper. The first main contribution of this paper is to extend Fenc
by a mechanism for key derivation, which is employed in virtually every real-word se-
curity protocol, as well as by MACs and nonce generation; we call the new functionality
Fcrypto. We show that Fcrypto can be realized based on standard cryptographic assump-
tions and constructions: IND-CCA secure or authenticated encryption, UF-CMA se-
cure MACs, and pseudo-random functions for key derivation, which are common also
in implementations of real-world protocols. Our proof requires a non-trivial extension
of the hybrid argument in [35]. Since Fcrypto is a rather low-level ideal functionality,
it is widely applicable (see below and [35, 34]) and allows for a precise modeling of
real-word security protocols, including precise modeling of message formats on the bit
level.

The second main contribution of our paper are criteria for protocols to provide uni-
versally composable key exchange and secure channels. These criteria are based on
our ideal functionality Fcrypto, and therefore, can be checked merely using information-
theoretic arguments, rather than much more involved and harder to manage reduction
proofs; often even purely syntactical arguments suffice, without reasoning about prob-
abilities. Indeed, the use of Fcrypto tremendously simplifies proofs in the context of
real-world security protocols, as demonstrated by our case study (see below), and in
other contexts (see, e.g., [35, 34]).

The third main contribution of this paper is a case study in which we analyze central
components of the wireless networking protocol WPA2, which implements the stan-
dard IEEE 802.11i [29, 28]. More precisely, we analyze the pre-shared key mode of
WPA2 (WPA2-PSK), which includes the 4-Way Handshake protocol (4WHS) for key
exchange and the CCM Protocol (CCMP) for secure channels. Based on Fcrypto and
our criteria, we show that 4WHS realizes a universally composable key exchange func-
tionality and that 4WHS with CCMP realizes a universally composable secure channel
functionality; we note that 4WHS with TKIP (instead of CCMP) has recently been
shown to be insecure [43, 39] (see also Section 5.2). Since we use standard crypto-
graphic assumptions and constructions, our modeling of WPA2-PSK, including the
message formats, is very close to the actual protocol. As to the best of our knowledge,
this constitutes the first rigorous cryptographic analysis of these protocols. The frame-
work presented in this paper would also allow us to analyze other real-world security
protocols in a similar way, including several modes of Kerberos, SSL/TLS, DNSSEC,
and EAP.

Structure of this Paper. In Section 2, we first recall the model for simulation-based
security that we use. The functionality Fcrypto and its realization are presented in Sec-
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tion 3. The criteria for secure key exchange and secure channel protocols are established
in Section 4. Our case study is presented in Section 5. We conclude with related work
in Section 6. Further details and proofs are provided in the appendix.

2 Simulation-based Security

In this section, we briefly recall the IITM model for simulation-based security (see
[32] for details). In this model, security notions and composition theorems are formal-
ized based on a relatively simple, but expressive general computational model in which
IITMs (inexhaustible interactive Turing machines) and systems of IITMs are defined.
While being in the spirit of Canetti’s UC model [17], the IITM model has several ad-
vantages over the UC model, as demonstrated and discussed in [32, 33, 35]. Since our
work is based on previous work carried out in the IITM model, we use this model here
too.

2.1 The General Computational Model

Our general computational model is defined in terms of systems of IITMs. An inex-
haustible interactive Turing machine (IITM) M is a probabilistic polynomial-time Tur-
ing machine with named input and output tapes. The names determine how different
IITMs are connected in a system of IITMs. An IITM runs in one of two modes, Check-
Address and Compute. The CheckAddress mode is used as a generic mechanism for
addressing copies of IITMs in a system of IITMs, as explained below. The runtime of
an IITM may depend on the length of the input received so far and in every activation an
IITM may perform a polynomial-time computation; this is why these ITMs are called
inexhaustible. However, in this extended abstract we omit the details of the definition
of IITMs, as these details are not necessary to be able to follow the rest of the paper.

A systemS of IITMs is of the formS = M1 | · · · |Mk | !M′1 | · · · | !M′k′ where the Mi

and M′j are IITMs such that the names of input tapes of different IITMs in the system are
disjoint. We say that the machines M′j are in the scope of a bang operator. This operator
indicates that in a run of a system an unbounded number of (fresh) copies of a machine
may be generated. Conversely, machines which are not in the scope of a bang operator
may not be copied. Systems in which multiple copies of machines may be generated
are often needed, e.g., in case of multi-party protocols or in case a system describes the
concurrent execution of multiple instances of a protocol.

In a run of a system S at any time only one IITM is active and all other IITMs
wait for new input; the first IITM to be activated in a run of S is the so-called master
IITM, of which a system has at most one. To illustrate runs of systems, consider, for
example, the system S = M1 | !M2 and assume that M1 has an output tape named c,
M2 has an input tape named c, and M1 is the master IITM. (There maybe other tapes
connecting M1 and M2.) Assume that in the run of S executed so far, one copy of M2,
say M′2, has been generated and that M1 just sent a message m on tape c. This message
is delivered to M′2 (as the first, and, in this case, only copy of M2). First, M′2 runs in the
CheckAddress mode with input m; this is a deterministic computation which outputs
“accept” or “reject”. If M′2 accepts m, then M′2 gets to process m and could, for example,
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send a message back to M1. Otherwise, a new copy M′′2 of M2 with fresh randomness is
generated and M′′2 runs in CheckAddress mode with input m. If M′′2 accepts m, then M′′2
gets to process m. Otherwise, M′′2 is removed again, the message m is dropped, and the
master IITM is activated, in this case M1, and so on. The master IITM is also activated
if the currently active IITM does not produce output, i.e., stops in this activation without
writing to any output tape. A run stops if the master IITM does not produce output (and
hence, does not trigger another machine) or an IITM outputs a message on a tape named
decision. Such a message is considered to be the overall output of the system.

We will consider so-called well-formed systems, which satisfy a simple syntactic
condition that guarantees polynomial runtime of a system.

Two systems P and Q are called indistinguishable (P ≡ Q) iff the difference be-
tween the probability that P outputs 1 (on the decision tape) and the probability that Q
outputs 1 (on the decision tape) is negligible in the security parameter.

2.2 Notions of Simulation-Based Security

We need the following terminology. For a system S, the input/output tapes of IITMs
in S that do not have a matching output/input tape are called external. We group these
tapes into I/O and network tapes. We consider three different types of systems, modeling
i) real and ideal protocols/functionalities, ii) adversaries and simulators, and iii) envi-
ronments: Protocol systems and environmental systems are systems which have an I/O
and network interface, i.e., they may have I/O and network tapes. Adversarial systems
only have a network interface. Environmental systems may contain a master IITM. We
can now define strong simulatability; other equivalent security notions, such as black-
box simulatability and (dummy) UC can be defined in a similar way [32].

Definition 1. Let P and F be protocol systems with the same I/O interface, the real
and the ideal protocol, respectively. Then, P realizes F (P ≤ F ) iff there exists an
adversarial system S (a simulator or ideal adversary) such that the systems P and
S |F have the same external interface and for all environmental systems E, connecting
only to the external interface of P (and hence, S |F ) it holds that E |P ≡ E | S | F .

2.3 Composition Theorems

We restate the composition theorems from [32]. The first composition theorem handles
concurrent composition of a fixed number of protocol systems. The second one guaran-
tees secure composition of an unbounded number of copies of a protocol system. These
theorems can be applied iteratively to construct more and more complex systems.

Theorem 1. Let P1,P2,F1,F2 be protocol systems such that P1 and P2 as well as F1
and F2 only connect via their I/O interfaces, P1 | P2 and F1 | F2 are well-formed, and
Pi ≤ Fi, for i ∈ {1, 2}. Then, P1 | P2 ≤ F1 | F2.

In the following theorem, F and P are the so-called session versions of F and P,
which allow an environment to address different sessions of F and P, respectively, in
the multi-session versions !F and !P of F and P.

Theorem 2. Let P,F be protocol systems such that P ≤ F . Then, !P ≤ !F .
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3 Our Crypto Functionality

In this section, we describe our ideal crypto functionality Fcrypto and show that it can be
realized under standard cryptographic assumptions.

As mentioned in the introduction, Fcrypto extends Fenc, proposed in [35], by key
derivation, MACs, and ideal nonce generation; also pre-shared keys can now be used
just as other symmetric keys. More precisely, parties can use Fcrypto i) to generate sym-
metric keys, including pre-shared keys, ii) to generate public/private keys, iii) to de-
rive symmetric keys from other symmetric keys, iv) to encrypt and decrypt bit strings
(public-key encryption and both unauthenticated and authenticated symmetric encryp-
tion is supported), v) to compute and verify MACs, and vi) to generate fresh nonces,
where all the above operations are done in an ideal way. All symmetric and public keys
can be part of plaintexts to be encrypted under other symmetric and public keys. We
emphasize that derived keys can be used just as other symmetric keys. We also note
that the functionality can handle an unbounded number of commands for an unbounded
number of parties with the messages, ciphertexts, MACs etc. being arbitrary bit strings
of arbitrary length. We leave it up to the protocol that uses Fcrypto how to interpret (parts
of) bit strings, e.g., as length fields, nonces, ciphertexts, MACs, digital signatures, non-
interactive zero-knowledge proofs etc. Since users of Fcrypto are provided with actual
bit strings, Fcrypto can be combined with other functionalities too, including those of
interest for real-word protocols, e.g., digital signatures (see, e.g., [33]) and certification
of public keys (see, e.g., [16]).

3.1 The Ideal Crypto Functionality

The ideal crypto functionality Fcrypto is parameterized by what we call a leakage al-
gorithm L, a probabilistic polynomial time algorithm which takes as input a security
parameter η and a message m, and returns the information that may be leaked about
m. Typical examples are i) L(1η,m) = 0|m| and ii) the algorithm that returns a random
bit string of length |m|. Both leakage algorithms leak exactly the length of m. We call a
leakage algorithm L length preserving if it always holds true that |L(1η,m)| = |m| for all
η and m. The functionality Fcrypto is also parameterized by a number n which defines the
number of roles in a protocol that uses Fcrypto (e.g., n = 3 for protocols with initiator,
responder, and key distribution server); Fcrypto has one I/O input and output tape for
every role.

In Fcrypto, symmetric keys are equipped with types. Keys that may be used for au-
thenticated encryption have type authenc-key, those for unauthenticated encryption
have type unauthenc-key. We have the types mac-key for MAC keys and pre-key for
keys from which new keys can be derived. All types are disjoint, i.e., a key can only
have one type, reflecting common practice that a symmetric key only serves one pur-
pose. For example, a MAC key is not used for encryption and keys from which other
keys are derived are typically not used as encryption/MAC keys.

While users of Fcrypto, and its realization, are provided with the actual public keys
generated within Fcrypto (the corresponding private keys remain in Fcrypto), they do not
get their hands on the actual symmetric keys stored in the functionality, but only on
pointers to these keys, since otherwise no security guarantees could be provided. These
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pointers may be part of the messages given to Fcrypto for encryption. Before a message is
actually encrypted, the pointers are replaced by the keys they refer to. Upon decryption
of a ciphertext, keys embedded in the plaintext are first turned into pointers before the
plaintext is given to the user. In order to be able to identify pointers/keys, we assume
pointers/keys in plaintexts to be tagged according to their types. To describe tagging
more formally and flexible, we introduce two extra types: tuple to structure messages
and data for every thing else, i.e., arbitrary bit strings.

To tag messages, any tagging function tag can be used that maps a type t and bit
strings x1, . . . , xn (where n might depend on t) to a tagged bit string tagt(x1, . . . , xn)
with the following properties: tag is injective, computable and invertible in polyno-
mial-time in the length of the input, and it is length regular, i.e., |tagt(x1, . . . , xn)| =

|tagt(x′1, . . . , x
′
n)| for every type t and bit strings x1, x′1, . . . , xn, x′n where |xi| = |x′i | for all

i ≤ n. Pointers are tagged with the type of the key they refer to. We say that a bit string
x is well-tagged if x = tagt(y) for some type t , tuple and a bit string y or (recursively
defined) x = tagtuple(x1, . . . , xn) for some n ≥ 1 and well-tagged bit strings x1, . . . , xn.
We say that a bit string x has type t if it is well-tagged and x = tagt(x1, . . . , xn) for
some n ≥ 1 and x1, . . . , xn. We will only require that plaintexts to be encrypted are
well-tagged; MACs, digital signature, decryption, and key derivation operations take
arbitrary bit strings as input.

We note that our tagging policy, which, as mentioned, is only required for plaintexts
anyway, is very liberal. We need to distinguish keys and tuples from other data, in order
to be able to parse plaintexts. Everything which is not a key or a tuple is considered to
be of type data. We leave it up to the protocol how to interpret these bit strings, e.g.,
as length fields, nonces, ciphertexts, MACs, digital signatures, non-interactive zero-
knowledge proofs etc. For real-world protocols, including those mentioned in the intro-
duction, it is typically possible to find a tagging function such that the message formats
used in these protocols are captured precisely on the bit level; see for example Section 5.

Within Fcrypto, a user is identified by the tuple (p, lsid, r), where p is a party name,
r ≤ n a role, and lsid a local session ID (LSID). How this mechanism is used is left to
the environment in which Fcrypto runs, e.g., see Section 4.

The functionality Fcrypto keeps track of which user has access to which keys (via
pointers) and which keys are known to the environment/adversary, i.e., have been cor-
rupted or have been encrypted under a known key, and as a result became known. For
this purpose, Fcrypto maintains a set K of all keys stored within the functionality, a set
Kknown ⊆ K of known keys and a set Kunknown := K \ Kknown of unknown keys. Every
key in K is of the form (t, k) for t ∈ {authenc-key, unauthenc-key,mac-key, pre-key}
and a bit string k; t is the type of the key and k the actual key. A partial function key
yields the key key(ptr, p, lsid, r) ∈ K pointer ptr refers to for user (p, lsid, r).

Before any cryptographic operation can be performed, Fcrypto expects to receive (de-
scriptions of) algorithms from the (ideal) adversary, also called simulator, say encauthenc,
decauthenc for encryption and decryption with keys of type authenc-key, encunauthenc,
decunauthenc for encryption and decryption with keys of type unauthenc-key, and mac,
mac-verify for creating and verifying MACs. These algorithms my fail, i.e., they either
return a bit string or the special error symbol ⊥. We do not put any restrictions on these
algorithms; all security guarantees that Fcrypto provides are made explicit within Fcrypto

6



in a rather syntactic way, without relying on specific properties of these algorithms. As
a result, when using Fcrypto in the analysis of more complex systems, one can abstract
from these algorithms entirely. When executing the algorithms, Fcrypto has to do this in
polynomial-time, hence, Fcrypto eventually has to abort the execution of the algorithms
after a given time. Therefore, Fcrypto additionally is parameterized by a polynomial q
and Fcrypto simulates the algorithms for at most q(l) steps where l is the length of the
input. If the algorithm would take more than q(l) steps, then the output of the compu-
tation is considered to be the error symbol ⊥. The random coins that might be used by
the algorithms are chosen by Fcrypto. The algorithms for decryption and verification of
MACs are simulated in a deterministic way. Even if they use random coins, Fcrypto uses
the zero bit string.

We now describe the operations that Fcrypto provides in more detail (see Appendix B
for a formal specification of Fcrypto).

Generating fresh, symmetric keys [(New, t)]. A user (p, lsid, r) can ask Fcrypto to
generate a new key of type t ∈ {authenc-key, unauthenc-key,mac-key, pre-key}. The
request is forwarded to the adversary who is supposed to provide such a key, say k. The
adversary can decide to corrupt k right away, in which case (t, k) is added toKknown (and
K), and otherwise (t, k) is added toKunknown (andK). However, Fcrypto only accepts k if
(t, k) does not belong toK if k is uncorrupted, modeling that k is fresh, and does not be-
long toKunknown if k is corrupted, modeling that k cannot be guessed. If Fcrypto accepted
k, a new pointer ptr to (t, k) is created for user (p, lsid, r), i.e., key(ptr, p, lsid, r) := (t, k),
and ptr is returned to (p, lsid, r). The value of the pointer, i.e., ptr, does not need to be
secret. In fact, new pointers are created by increasing a counter. There is a different
counter for every user, i.e., a user cannot tell how many keys have been created by other
users from observing his pointers. If the adversary decided to corrupt k, then the pointer
ptr is recorded as corrupted for user (p, lsid, r). We emphasize that the difference be-
tweenKknown andKunknown is not whether or not the adversary knows the value of a key;
since it provides these values. The point is that if (t, k) ∈ Kunknown, cryptographic oper-
ations with it are performed ideally, e.g., the leakage of a message is encrypted under
the key k instead of the message itself. Conversely, if (t, k) ∈ Kknown, the cryptographic
operation is performed as in the real world, e.g., the actual message is encrypted un-
der k. So, no security guarantees are provided in this case. In the realization of Fcrypto,
however, keys corresponding to keys in Kunknown will of course not be known to the
adversary.

Generating public/private keys [(GetPKE)]. A user (p, lsid, r) can ask Fcrypto to gen-
erate the public/private key for party p. If Fcrypto has already recorded a public key pk
for party p, it gives pk to the user. Otherwise, the request is forwarded to the adversary
who is supposed to provide a (public-key) encryption algorithm enc, a decryption algo-
rithm dec, and a public key pk for party p. (The private key is part of the description of
the decryption algorithm.) The adversary can decide to corrupt the public/private key
for party p right away, in which case it is recorded as corrupted. The public key pk is
given to the user.

Establishing pre-shared keys [(GetPSK, t, name)]. A user (p, lsid, r) can ask Fcrypto to
obtain the pre-shared key of type t ∈ {authenc-key, unauthenc-key,mac-key, pre-key}
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with name (or identifier) name. If Fcrypto has recorded a key, say (t, k), for (t, name)
and (t, name) is not recorded as corrupted, then Fcrypto creates a new pointer ptr to (t, k)
for user (p, lsid, r) and returns the pointer ptr to the user. Otherwise, Fcrypto forwards
this request to the adversary who is supposed to provide such a key, say k. Similarly
to generating fresh keys, the adversary can decide to corrupt k right away, in which
case (t, k) is added to Kknown (and K). Otherwise, (t, k) is added to Kunknown (and K). If
(t, name) is already recorded as corrupted, the adversary is required to corrupt k. In case
k is not corrupted, Fcrypto only accepts k if (t, k) does not belong to K , modeling that k
is fresh. In case k is corrupted, (t, k) still may not belong to Kunknown, modeling that k
cannot be guessed.

After a key k has been provided by the adversary, a new pointer ptr to (t, k) is created
for user (p, lsid, r) and the pointer ptr is returned to the user. If the adversary decided to
corrupt k, then the pointer ptr is recorded as corrupted for user (p, lsid, r) and (t, name)
is recorded as corrupted.

For example, users (p, lsid, r) and (p′, lsid′, r′) can obtain pointers to a fresh key
k shared between p and p′ by each sending the request (GetPSK, t, (p, p′)) to Fcrypto.
While, by such a request, p (p′) gets a new pointer in every local session and role, this
pointer will point to the same key k. See Section 5 for another example of the usage of
pre-shared keys.

Key derivation [(Derive, ptr, t′, s)]. A user (p, lsid, r) can ask Fcrypto to derive a new
key of type t′ ∈ {authenc-key, unauthenc-key,mac-key, pre-key} (using a seed s) from
a key (t, k) = key(ptr, p, lsid, r) pointer ptr points to for user (p, lsid, r). The seed s is
an arbitrary bit string. It is required that the key from which the new key is derived is
of type pre-key, i.e., t = pre-key. If a key (t′, k′) exists that has been derived from (t, k)
with seed s—a fact that, as mentioned, Fcrypto keeps track of—, then Fcrypto creates a
new pointer to (t′, k′) and returns it to the user. Otherwise, this request is forwarded to
the adversary. Similar to generating fresh keys, the adversary is supposed to provide a
key, say k′. In case (t, k) ∈ Kunknown, Fcrypto only accepts k′ if (t′, k′) does not belong
to K , modeling that k′ is fresh. In case (t, k) ∈ Kknown, (t′, k′) still may not belong to
Kunknown, modeling that k′ cannot be guessed. After the key k′ has been provided by
the adversary, (t′, k′) is added to K and a new pointer to (t′, k′) is created and given
to the user. If (t, k) ∈ Kknown, then (t′, k′) is added to Kknown. Otherwise, it is added to
Kunknown.

Note that we do not put any restrictions on how the adversary chooses derived keys.
All security guarantees that Fcrypto provides do not rely on this. In Fcrypto, a key derived
from a key marked unknown is treated just like a freshly generated key which is marked
unknown. For example, if the derived key is an encryption key, then it is used for ideal
encryption, i.e., not the actual message is encrypted but its leakage, see below.

Store [(Store, t, k)]. A user (p, lsid, r) can ask Fcrypto to store some bit string k with
some type t ∈ {authenc-key, unauthenc-key,mac-key, pre-key} as a key. If (t, k) be-
longs to Kunknown, Fcrypto will return an error message to the user, modeling that k can
not be guessed. Otherwise, Fcrypto creates a new pointer to (t, k) which is given to the
user. The pair (t, k) is added to Kknown (and K).
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Retrieve [(Retrieve, ptr)]. A user (p, lsid, r) can ask Fcrypto to retrieve a key (t, k) =

key(ptr, p, lsid, r) pointer ptr points to for user (p, lsid, r). Then, Fcrypto returns k to the
user and adds (t, k) to Kknown.

Equality test [(Equal?, ptr, ptr′)]. A user (p, lsid, r) can ask Fcrypto whether two of its
pointers ptr, ptr′ refer to the same key.

Encryption under symmetric keys [(Enc, ptr,m)]. A user (p, lsid, r) can ask Fcrypto
to encrypt a well-tagged message m under a key (t, k) = key(ptr, p, lsid, r) pointer ptr
points to for user (p, lsid, r) where t ∈ {authenc-key, unauthenc-key}. For every pointer
tagt′ (ptr) in m (for some type t′ ∈ {authenc-key, unauthenc-key,mac-key, pre-key}),
Fcrypto checks whether ptr is a pointer of this user to a key of type t′, i.e., whether
key(ptr, p, lsid, r) is defined and yields (t′, k′) for some k′. If this check fails, Fcrypto
returns an error message to the user. If the check succeeds, tagt′ (ptr) in m is replaced by
tagt′ (k

′). This is done for every pointer of the form tagt′ (ptr) in m, resulting in a message
m′. We distinguish two cases:

i) If (t, k) ∈ Kunknown, the leakage m = L(1η,m′) of m′ is encrypted under k using
either encauthenc or encunauthenc (the encryption algorithms provided by the adversary) de-
pending on t. Let c denote the resulting ciphertext. Then, Fcrypto checks if the decryption
of c under k using either decauthenc or decunauthenc (the decryption algorithms provided by
the adversary), depending on t, yields the leakage m. If this check fails, Fcrypto returns
an error message to p.1 Otherwise, the pair (m′, c) is stored for the key (t, k) (for later
decryption) and c is given to the user.

ii) If (t, k) ∈ Kknown, all keys in m′ are added to Kknown, as they are encrypted
under a known key. Then, m′ is encrypted under k using either encauthenc or encunauthenc
depending on t. The resulting ciphertext is given to the user.

Decryption under symmetric keys [(Dec, ptr, c)]. A user (p, lsid, r) can ask Fcrypto
to decrypt a ciphertext c (an arbitrary bit string) under a key (t, k) = key(ptr, p, lsid, r)
pointer ptr points to for user (p, lsid, r) where t ∈ {authenc-key, unauthenc-key}. We
distinguish two cases:

i) If (t, k) ∈ Kunknown, Fcrypto checks whether there exists exactly one m′ such that
(m′, c) is stored for (t, k) (see above). If so,Fcrypto creates new pointers to every key in m′

and replaces the keys by the corresponding pointers. The resulting message m is given
to the user. If there is more than one m′ with (m′, c) stored for (t, k), an error is returned
to the user, since unique decryption is not possible. If there is no such m′, the following
is done: If t = authenc-key, an error is returned, since for authenticated encryption
it should not be possible to generate valid ciphertexts outside of the functionality. If
t = unauthenc-key, c is decrypted under k using decunauthenc the decryption algorithm
provided by the adversary) and the following is done (∗): If the resulting plaintext m′ is
not well-tagged, an error is returned. Furthermore, if m′ contains a key that belongs to
Kunknown, an error is returned, modeling that these keys cannot be guessed. Otherwise,

1 Because of this test, the ciphertext contains not only at most the information of m but exactly
the information of m, hence, if the leakage algorithm L has high entropy, i.e., collisions occur
only with negligible probability, then the adversary can guess ciphertexts not known to her
only with negligible probability. This is sometimes useful when reasoning about protocols that
use nested encryption, see [35, 34].
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Fcrypto adds all keys in m′ to Kknown (and K), creates new pointers to every key in m′,
and replaces the keys by the corresponding pointers. The resulting message m is given
to the user.

ii) If (t, k) ∈ Kknown, Fcrypto decrypts c under k with decauthenc or decunauthenc, depend-
ing on t, and proceeds as in (∗) above.

Encryption under public keys [(Enc, p′, pk,m)]. A user (p, lsid, r) can ask Fcrypto to
encrypt a well-tagged message m under the public key pk′ of party p′. Such an encryp-
tion request is handled similarly as symmetric encryption requests. First, pointers in m
are turned into keys, obtaining m′. Then, if pk is the recorded public key of party p′ and
it is not corrupted, the encryption is performed ideally, i.e., the leakage L(1η,m′) of m′

is encrypted using the public-key encryption algorithm provided by the adversary for
party p′ and the pair (m′, c) (where c is the ciphertext) is recorded for party p′ (for later
decryption). If pk is not the recorded public key of party p′ or the public key of party
p′ is corrupted, then all keys in m′ are marked known and m′ is encrypted using the
public-key encryption algorithm provided by the adversary for party p′. The resulting
ciphertext is returned to the user.

We note that Fenc [35] uses an ideal functionality Fpke for public-key encryption
(and decryption) and forwards public-key requests to (instances of) Fpke. While we
could have defined Fcrypto such that it is based on Fpke (nothing would change consider-
ing reasoning based on Fcrypto), we decided to directly describe public-key encryption
in Fcrypto, to have everything in one place.

Decryption under private keys [(Dec, c)]. A user (p, lsid, r) can ask Fcrypto to decrypt
a ciphertext c (an arbitrary bit string) under its private key (i.e., the private key of party
p). Such a decryption request is handled similarly as decryption requests under sym-
metric keys of type unauthenc-key. If the public/private key of p is corrupted or there
is no recorded pair (m′, c) for party p (for any m′), then c is decrypted using the public-
key decryption algorithm provided by the adversary for party p. Fcrypto returns an error
message to the user if the resulting plaintext, say m′, is not well-tagged or there exists
a key in m′ that belongs to Kunknown, modeling that these keys cannot be guessed. All
keys in m′ are added to Kknown (and K).

Otherwise, i.e., if the public/private key of p is not corrupted and there exists an m′

such that (m′, c) is recorded for party p (see above), Fcrypto checks whether there exists
exactly one such m′. If this check fails, an error is returned to the user, since unique
decryption is not possible.

Finally, Fcrypto creates new pointers to every key in m′ and replaces the keys by the
corresponding pointers. The resulting message m is given to the user.

MAC [(Mac, ptr,m)]. A user (p, lsid, r) can ask Fcrypto to MAC an arbitrary bit string
m under a key (t, k) = key(ptr, p, lsid, r) pointer ptr points to for user (p, lsid, r) where
t = mac-key. Then, Fcrypto computes the MAC of m under k using mac (the MAC
algorithm provided by the adversary). Let σ be the resulting MAC. If σ is not a valid
MAC for m under k, i.e., it does not verify using mac-verify (the MAC verification
algorithm provided by the adversary), then Fcrypto returns an error message to the user.
Otherwise, it gives σ to the user. If (t, k) ∈ Kunknown, Fcrypto records m for the key (t, k)
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(for later verification); we allow an adversary to derive a new MAC from a given one
on the same message, which is why Fcrypto does not record σ along with m.

Note that, since we leave the message m uninterpreted, one cannot use Fcrypto to
compute the MAC over a message that contains unknown keys. This restriction is moti-
vated by the fact that a MAC itself does not provide confidentiality. We could abandon
this restriction by extending our functionality further such that MACs are not directly
returned but only pointers to it. But this would make the functionality more complicated
while many real-world protocols, including SSL/TLS, SSH, IPsec, IEEE 802.11i, and
Kerberos do not require this. We note that MACs that take unknown keys could also be
approximated by modeling them as authenticated encryption.

Verify MAC [(MacVerify, ptr,m, σ)]. A user (p, lsid, r) can ask Fcrypto to verify a MAC
σ for some message m under a key (t, k) = key(ptr, p, lsid, r) pointer ptr points to for
user (p, lsid, r) where t = mac-key. Then, Fcrypto verifies the MAC using verify-mac
(the MAC verification algorithm provided by the adversary). If the MAC verifies but
(t, k) ∈ Kunknown and m has not been recorded for (t, k) (see above), Fcrypto returns an
error message to the user, preventing forgery. Otherwise, Fcrypto returns the result of the
verification to the user.

Generating fresh nonces [(NewNonce)]. A user (p, lsid, r) can ask Fcrypto to generate
a fresh nonce. The request is forwarded to the adversary who is supposed to provide
a nonce, say x. The adversary can decide to corrupt x right away, in which case x is
recorded as corrupted. In case x is not corrupted, Fcrypto only accepts x if it is not already
recorded as a nonce (for anybody), modeling that x is fresh. Then, Fcrypto records x as a
nonce and sends x to the user.

We note that nonces are not confidential, their actual bit string is directly given to
the user. Hence, Fcrypto only guarantees collisions of uncorrupted nonces. It would be
easy to extend Fcrypto to model confidential nonces. A nonce would be just a like a
symmetric key (of some extra type for nonces). Users could refer to nonces by pointers
and Fcrypto would record the known/unknown status of nonces. Of course, nonces could
not be used as a key (e.g., for encryption) but they could be part of plaintexts.

Corruption status request. The environment can ask, for a user (p, lsid, r), whether a
pointer ptr of this user is recorded as corrupted for this user. Similarly, the environment
can ask whether the public/private key of this user (i.e., of party p) or a nonce x is
recorded as corrupted.

This concludes the description of Fcrypto. As explained for encryption requests, if a mes-
sage m is encrypted under a known key (or by a corrupted public key), all keys in m
are marked known in Fcrypto. Yet, if in an application the ciphertext c for m is encrypted
again under an unknown key and c is always kept encrypted under an unknown key, the
keys in m might not be revealed from the point of view of the application. While in such
a case, Fcrypto would be too pessimistic concerning the known/unknown status of keys,
this case does typically not seem to occur: First, ciphertexts are typically sent unen-
crypted at some point. We are, in fact, not aware of any key exchange or secure channel
protocol where this is not the case. Second, if in a session of a protocol symmetric keys
known to the adversary are used, typically no security guarantees are provided for that
session anyway.
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As explained above, corruption is modeled on a per key basis. This allows to model
many types of corruption, including corruption of single sessions and of complete par-
ties (Section 5 provides details for our case study).

3.2 A Realization of the Ideal Crypto Functionality

In this section, we provide a realization Pcrypto of the ideal crypto functionality Fcrypto.
Let Σauthenc, Σunauthenc, Σpub be schemes for symmetric and public-key encryption,

respectively, Σmac be a MAC scheme, and F = {Fη}η∈N be a family of pseudo-random
functions with Fη : {0, 1}η × {0, 1}∗ → {0, 1}η for all η ∈ N. For simplicity of presen-
tation, we assume all symmetric keys to be chosen uniformly at random from {0, 1}η

(where η is the security parameter). Considering the family of pseudo-random func-
tions F, we assume that the function Fη(k, ·) for a randomly chosen k ∈ {0, 1}η is in-
distinguishable from a random function, see Appendix A.4 for the precise definition of
pseudo-randomness. These schemes induce a realization Pcrypto of Fcrypto in the obvious
way where key derivation is realized by the family F of pseudo-random functions. The
realization Pcrypto maintains keys and pointers to keys in the same way as Fcrypto does,
but it does not maintain the setsKknown andKunknown. Pcrypto answers requests similarly
to Fcrypto as follows:

Generating fresh, symmetric keys [(New, t)]. Upon generation of fresh, symmetric
keys, the adversary is asked whether she wants to corrupt the key, in which case she pro-
vides the key and the pointer to this key is then marked corrupted in Pcrypto. Otherwise,
Pcrypto chooses the key uniformly at random from {0, 1}η.

Generating public/private keys [(GetPKE)]. Similarly, a key generation request for
public/private keys from a user is handled as follows: If a public/private key pair is
already recorded for the party of this user, then the public key is returned to the user.
Otherwise, the adversary is asked whether she wants to corrupt the public/private key,
in which case she provides the public/private key pair and it is recorded as corrupted.
Otherwise, Pcrypto generates the public/private key pair using the key generation algo-
rithm of Σpub. Then, the public/private key pair is stored for the party of this user and
the public key is returned to the user.

Establishing pre-shared keys [(GetPSK, t, name)]. Upon a request by a user to es-
tablish a pre-shared key of type t and with name name, Pcrypto, just as Fcrypto, checks
whether a key (t, k) is recorded for (t, name) and (t, name) is not corrupted. In this case,
Pcrypto creates a new pointer to (t, k) and returns it to the user. (We note that such a
setup assumption for pre-shared keys is often made, e.g., it models manual distribution
of keys by a system administrator.) Otherwise, i.e., no key is recorded for (t, name) or
(t, name) is corrupted, we distinguish the following cases:

If (t, name) is corrupted, the request is forwarded to the adversary who is supposed
to provide a key k. Then, Pcrypto creates a new pointer to (t, k), records this pointer as
corrupted, and returns it to the user.

If (t, name) is not corrupted but no key is recorded for (t, name), the request is for-
warded to the adversary who is asked whether the key is corrupted. In the case the key
is corrupted the adversary provides the key k and Pcrypto proceeds as in the case above.
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If the key is not corrupted, Pcrypto chooses the key k uniformly at random from {0, 1}η

and records (t, k) for (t, name). Then, Pcrypto creates a new pointer to (t, k) and returns it
to the user.

Key derivation [(Derive, ptr, t′, s)]. Upon a request by a user to derive a new key of
type t′ from a key k of type pre-key with seed s, Pcrypto computes k′ = Fη(k, tagt′ (s)),
creates a new pointer ptr to (t′, k′) for this user, and gives ptr to the user. Note that Fη

is used with the seed tagt′ (s), instead of just s. This guarantees that keys of different
types are derived with different seeds. This kind of tagging is common also in real-
world protocols in order to ensure that the same (derived) key is not used for different
cryptographic operations.

Store [(Store, t, k)], retrieve [(Retrieve, ptr)], equality test [(Equal?, ptr, ptr′)]. These
requests are handled as in Fcrypto except that Kknown and Kunknown are not maintained.

Encryption under symmetric and public keys [(Enc, ptr,m), (Enc, p′, pk,m)]. Upon
a request by a user to encrypt a well-tagged message m under a symmetric key k of type
t ∈ {authenc-key, unauthenc-key}, all pointers in m are replaced by the keys they refer
to (just as in Fcrypto). Unlike Fcrypto, the resulting message, say m′, is then encrypted
under k by running the encryption algorithm of Σauthenc or Σunauthenc, depending on t,
and the resulting ciphertext c is returned to the user. (Note that no extra randomness
or tagging is added.) Requests for encryption under public keys are handled similarly
using the encryption algorithm of Σpub and the public key contained in the request.

Decryption under symmetric and private keys [(Dec, ptr, c), (Dec, c)]. Requests for
the decryption of a ciphertext c under a symmetric key k of type t ∈ {authenc-key,
unauthenc-key} are answered by running decryption algorithm of Σauthenc or Σunauthenc,
depending on t, on the inputs k and c. If the decryption is successful and returns a
well-tagged message, say m′, then all keys in m′ are replaced by new pointers (just as
in Fcrypto) and the resulting message m is returned to the party. Otherwise, an error is
returned. Requests for decryption under private keys are handled similarly using the
decryption algorithm of Σpub and the private key recorded for this party.

Computing and verifying MACs [(Mac, ptr,m), (MacVerify, ptr,m, σ)]. Upon a re-
quest to MAC a message m under a key k of type mac-key, Pcrypto simply returns the
MAC computed using the MAC algorithm of Σmac. Upon MAC verify request, Pcrypto
simply returns the result of the MAC verification algorithm of Σmac.

Generating fresh nonces [(NewNonce)]. Upon generation of fresh, nonces, the ad-
versary is asked whether she wants to corrupt the nonce, in which case she provides the
nonce and it is then marked corrupted in Pcrypto. Otherwise, Pcrypto chooses the nonce
uniformly at random from {0, 1}η. The nonce is then given to the user.

Corruption status request. Similarly to Fcrypto, the environment can ask whether a
pointer of a user, a public/private key of a party, or a nonce is corrupted.

3.3 Proving that Pcrypto realizes Fcrypto

In this section, we prove that Pcrypto is in fact a realization of Fcrypto.
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As discussed in [35] for Fenc, we cannot prove that Pcrypto realizes Fcrypto (in the
presence of arbitrary environments) for standard assumptions about the symmetric en-
cryption schemes Σauthenc and Σunauthenc, namely authenticated encryption (IND-CPA
and INT-CTXT security) and IND-CCA security, respectively, because it is easy to see
that such a theorem does not hold in the presence of environments that may produce key
cycles or cause the commitment problem: It is well-known that standard assumptions
about symmetric encryption schemes are too weak to deal with key cycles [13, 5]. In the
context of symmetric encryption, the commitment problem occurs if a key is revealed
after it was used to encrypt a message. Before the key is revealed, messages encrypted
under this key are encrypted ideally, i.e., the leakage of the message is encrypted. After
the key has been revealed, the functionality would have to come up with a key such
that the ciphertexts produced so far decrypt to the original messages. However, this is
typically not possible (see, e.g., [4]). Therefore, as in [35] and similarly to [4], we re-
strict the class of environments that we consider basically to those environments that do
not produce key cycles or cause the commitment problem, where, unlike [35] and [4],
we now, when defining the class of environments, also need to be concerned about key
derivation.

To formulate such a class of environments that captures what is typically encoun-
tered in applications, we observe, as was first pointed out in [4], that once a key has
been used in a protocol to encrypt a message, this key is typically not encrypted any-
more in the rest of the protocol. Let us call these protocols standard. This observation
can be generalized to used-order respecting environments, which we formulate based
on Fcrypto: In what follows, we say that an unknown key k of type authenc-key, unauth-
enc-key, or pre-key has been used (for encryption or key derivation), if Fcrypto has been
instructed to encrypt a message under k or to derive a new key from k. If k is of type
unauthenc-key, we also consider k as used if it has successfully been used to decrypt
a message. Now, an environment is used-order respecting if runs of the following form
occur only with negligible probability: An unknown key k used for the first time at some
point is encrypted itself by an unknown key k′ used for the first time later than k. It is
clear from this definition that used-order respecting environments produce key cycles
(among unknown keys) only with negligible probability. (We do not need to prevent
key cycles among known keys.) Note that MAC keys are not problematic because they
cannot be used to MAC other keys.

We say that an environment does not cause the commitment problem (is non-com-
mitting), if runs of the following form occur only with negligible probability: After an
unknown key k has been used to encrypt a message or to derive a new key, k does not
become known later on in the run, i.e., is not marked known by Fcrypto. It is easy to
see that for standard protocols, as introduced above, the commitment problem does not
occur; see Section 5 for an example.

We can now state the theorem which shows that, given that F is a pseudo-random
function family, realizing Fcrypto by Pcrypto is equivalent to the encryption and MAC
schemes being IND-CCA, authenticated (IND-CPA and INT-CTXT), and UF-CMA
secure, respectively, where we use the standard definitions of these security notions.
(See Appendix A for a precise definition of these cryptographic security definitions.) In
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other words, Fcrypto exactly captures IND-CCA security, authenticated encryption, and
UF-CMA security.

In the theorem, stated below, instead of explicitly restricting the class of envi-
ronments described above, we introduce a functionality F ∗ that provides exactly the
same I/O interface as Fcrypto (and hence, Pcrypto), but before forwarding requests to
Fcrypto/Pcrypto checks whether the used-order is still respected and the commitment
problem is not caused. Otherwise, F ∗ raises an error flag and from then on blocks
all messages, i.e., effectively stops the run. It is easy to see that all information needed
to perform these checks can be obtained from observing the I/O interface of Fcrypto.

Theorem 3. Let Σauthenc, Σunauthenc, Σpub be encryption schemes as above, where the do-
main of plaintexts is the set of well-tagged bit strings. Let Σmac be a MAC scheme and
F be a pseudo-random function family as above. Let L be a leakage algorithm which
leaks exactly the length of a message. Then,

F ∗ | Pcrypto ≤ F
∗ | Fcrypto

if and only if Σunauthenc and Σpub are IND-CCA, Σauthenc is IND-CPA and INT-CTXT,
and Σmac is UF-CMA secure. (The direction from right to left holds for any plaintext
domains of the encryption schemes.)

One could suspect that the proof of the above theorem can be easily extended from
the proof in [35] for Fenc: One does the same hybrid argument and then in an extra
step replaces real key derivation by ideal key derivation. This, however, is not possible
because derived keys can be encrypted and used as encryption keys, so security of the
encryption depends on the security of the key derivation and vice versa. Instead, we
carry out a single, more complex hybrid argument, intertwining both encryption and
key derivation. Next, we present a sketch of proof; see Appendix C for the full proof.

Proof (sketch). The direction from left to right is easy to prove by standard crypto-
graphic reductions. Because the domain of plaintexts is the set of well-tagged bit strings,
using the store and retrieve commands, Fcrypto/Pcrypto can be used to encrypt any plain-
text.

To prove the direction from right to left, we proceed as follows. First, we introduce
an intermediate system P′crypto where we replace public-key encryption with Σpub by the
use of the ideal functionality Fpke for public-key encryption presented in [35]. More
precisely, P′crypto uses (instances of) Fpke as a sub-protocol. There will be one instance
of Fpke for every party which handles all requests for public/private keys of this party.
The addressing can be done using the session version Fpke of Fpke where the PID is used
as a session ID to address the different instances of Fpke; see [35] for details. In [35],
it has been shown that realizing Fpke by a public-key encryption scheme is equivalent
to the public-key encryption scheme being IND-CCA secure. From this, we obtain that
Pcrypto ≤ P

′
crypto.

Next, we show thatP′crypto ≤ Fcrypto which completes the proof. Note that public-key
encryption inP′crypto andFcrypto is already done identically in an ideal way. We define the
simulator Simcrypto, which simply provides the encryption, decryption, and MAC algo-
rithms to Fcrypto. Upon generation of fresh keys, pre-shared keys, and nonces, Simcrypto
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chooses keys/nonces as P′crypto. Upon key derivation from an unknown key, Simcrypto
chooses a fresh key uniformly at random from {0, 1}η. Otherwise, it uses the PRF F as
P′crypto does. We extend the hybrid argument in the proof of the realization for Fenc [35]
as follows: We define hybrid systems F (r)

crypto for every r ∈ N. In the r-th hybrid F (r)
crypto,

all (unknown) keys that have used-order less than r are treated ideal, i.e., as in Fcrypto,
while the others are treated real, i.e., as in P′crypto. All MAC keys are treated real; we
replace real MACs by ideal MACs in a second step. Then, we show that the 0-th hybrid
is indistinguishable from the real system (P′crypto) and that the p(η)-th hybrid (where p
is a polynomial that bounds the runtime of the environment) is indistinguishable from
the ideal system (Fcrypto). The latter requires a hybrid argument itself to replace real
MACs by ideal MACs but this a standard argument because the p(η)-th hybrid already
idealizes all derived keys, so, even derived MAC keys are chosen uniformly at random.
Finally, we show that the r-th hybrid is indistinguishable from the (r+1)-th hybrid which
completes the hybrid argument. To simplify the last step we introduce hybrids F̂ (r)

crypto

which behave like F (r)
crypto but use the machine Oracle to perform the cryptographic op-

erations with the r-th key, i.e., the key of used-order r. The machine Oracle (see Ap-
pendix A.5) provides cryptographic operations like Fcrypto/P′crypto but only for a single
key that is generated and that stays inside Oracle. It has a parameter ideal/real which
specifies whether Oracle behaves like Fcrypto or P′crypto. By standard cryptographic re-
ductions it can be shown that E | Oracle(real) ≡ E | Oracle(ideal) for any environment
E. Then, to show that F (r)

crypto and F (r+1)
crypto are indistinguishable it suffices to show that

F̂
(r)

crypto | Oracle(real) and F (r)
crypto and that F̂ (r)

crypto | Oracle(ideal) and F (r+1)
crypto are indistin-

guishable. Note that these systems are already very close because every key is treated
(real or ideal) in the same way, so, the proof is purely information-theoretical. In F (r)

crypto

the r-th key is handled inside F (r)
crypto while in F̂ (r)

crypto | Oracle it is handled inside Oracle.
But because the used-order is respected, the r-th key has only been encrypted ideally,
i.e., not the key itself is encrypted but its leakage. Furthermore, even if the r-th key is
a derived key, it has been derived ideally, i.e., chosen uniformly at random. Hence, the
only difference occurs upon key (and nonce) collisions (if a randomly chosen key or
nonce collides with some other key or nonce, respectively) or if the environment is able
to guess an (unknown) key of used-order ≤ r (respectively, ≤ r + 1). But because these
keys where only encrypted ideally we can show that this probability is negligible. ut

Theorem 3, together with the composition theorems, yields the following corol-
lary, which gets rid of the functionality F ∗, assuming that Fcrypto is used by what we
call a non-committing, used-order respecting protocol. A protocol system P that uses
Fcrypto is called non-committing, used-order respecting if the probability that in a run
of E |P | F ∗ | Fcrypto the functionality F ∗ raises the error flag, is negligible for any envi-
ronment E, connecting to both I/O and network interfaces. As mentioned above, most
protocols have this property and this can typically be easily checked by inspection of
the protocol. For example, standard protocols (see above) are non-committing and used-
order respecting because unknown keys are never encrypted (by other keys) after they
have been used. In particular, since corruption of keys is static, if the key is unknown at
the moment it is first used, it will remain unknown. We note that corruption of whole
parties (or users) where the adversary controls the party can be defined in such a way
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that a corrupted party cannot obtain a pointer to a key marked unknown. Thus, even for
such a modeling of corruption, a protocol can be standard, and hence, non-committing
and used-order respecting; see Section 5 and [35] for examples.

Corollary 1. Let Σauthenc, Σunauthenc, Σpub, Σmac, F, and L be given as in Theorem 3. Let
P be a non-committing, used-order respecting protocol system. Then,

P |Pcrypto ≤ P | Fcrypto

if Σunauthenc and Σpub are IND-CCA, Σauthenc is IND-CPA and INT-CTXT, and Σmac is
UF-CMA secure.

As demonstrated in the following sections, Theorem 3 and Corollary 1 allow to
analyze the protocol P w.r.t. Fcrypto, which, as mentioned, typically only requires infor-
mation-theoretic or even purely syntactical arguments, and then replace Fcrypto by its
realization Pcrypto.

4 Applications to Key Exchange and Secure Channels

In this section, we consider a general class of key exchange and secure channel pro-
tocols which use the functionality Fcrypto (or its realization Pcrypto) and develop crite-
ria to prove universally composable security for such protocols. Since our criteria are
based onFcrypto, proving the criteria merely requires information-theoretic arguments or
purely syntactical arguments (without reasoning about probabilities), rather than much
more involved cryptographic reduction proofs.

In order for our models to be very close to the actual (real-world) protocols, in this
paper, we formulate our criteria and analyze the protocols directly in the multi-session
setting. In particular, we do not use joint state theorems [20, 33]. In these joint state the-
orems, it is assumed that, in a session, the participating parties have already agreed on
a unique session identifier (SID); as shown in [6], this setup assumption can be realized
by a simple protocol where every party sends a nonce to the other parties and the SID
is the concatenation of the nonces and party names (PIDs). By this setup assumption, it
suffices to analyze single sessions and then use the joint state theorem [20, 33] to obtain
security w.r.t. multiple sessions. However, the step from single to multiple sessions re-
quires to add SIDs to messages before encryption, MAC, or signature generation (i.e.,
instead of the actual message, say m, the message (sid,m) is encrypted, MACed, or
signed, respectively, in the session with SID sid), which, while being a good design
principle, modifies the actual protocols. As mentioned above, in this paper, we do not
follow the above approach, but formulate our criteria and analyze the protocols directly
in the multi-session setting, without this setup assumption and without modifying the
protocols.

4.1 A Criterion for Universally Composable Key Exchange

We define an ideal functionality for (multi-session) key exchange Fke, formulate a gen-
eral class of key exchange protocols that use Fcrypto for cryptographic operations, and
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present a criterion which allows us to prove that a key exchange protocol in this class
realizes Fke.

The Ideal Key Exchange Functionality. The basic idea of an ideal functionality for
key exchange Fke, see, e.g., [17], is that parties can send requests to Fke to exchange a
key with other parties and then, in response, receive a session key which is generated
by Fke and guaranteed to be i) the same for every party in the same session and ii)
only known to these parties. As mentioned above and unlike most other formulations,
our functionality directly allows to handle an unbounded number of sessions between
arbitrary parties.

More precisely, similarly to Fcrypto, our ideal key exchange functionality Fke is pa-
rameterized by a number n and has n I/O input and output tapes, one pair for each role.
A user of Fke, identified by the tuple (p, lsid, r) within Fke (similarly to Fcrypto), here
also called a local session, can initiate a key exchange by sending a session-start mes-
sage of the form (Start, p1, . . . , pn), with p = pr, to Fke, where the PIDs p1, . . . , pn are
the desired partners of p in the n roles for the key exchange. To address different users,
in fact, every message is prefixed by the local SID lsid and the PID p. The role is deter-
mined by the tape on which the message is sent/received. Thus, a session-start message
of user (p, lsid, r) is actually of the form (lsid, p, (Start, p1, . . . , pn)) and received on the
tape for role r. Upon such a request, Fke records this session-start message as a local
session for user (p, lsid, r). The (ideal) adversary is informed about such a request. The
adversary determines (at some point) to which global session local sessions belong, by
sending a session-create message of the form (Create, (p1, lsid1, 1), . . . , (pn, lsidn, n))
to Fke, containing one local session for every role. The functionality Fke only accepts
such a message if it is consistent with the local sessions: The mentioned local ses-
sions all exist, are not already part of another global session, and the desired partners
in the local sessions correspond to each other. For a global session, Fke creates a fresh
key—called the session key—according to some probability distribution. For a local
session (p, lsid, r) which is part of a global session in Fke, the adversary can send a
session-finish message of the form (Finish, (p, lsid, r)) to Fke, upon which Fke sends a
session-key-output message of the form (SessionKey, k) to the user (p, lsid, r) which
contains the session key k for this session.

The adversary can corrupt a local session (p, lsid, r) which is not already part of a
global session by sending a corrupt message of the form (Corrupt, (p, lsid, r)) to Fke.
For a corrupted local session, the adversary may determine the session key by sending a
session-finish message of the form (Finish, (p, lsid, r), k) to Fke, upon which Fke sends
a session-key-output message of the form (SessionKey, k) to the user (p, lsid, r) which
contains the session key k chosen by the adversary. As usual, the environment can ask
whether a local session is corrupted or not.

Key Exchange Protocols. An Fcrypto-key exchange protocol (Fcrypto-KE protocol) P is
of the form P = !M1 | . . . | !Mn | F1 | . . . | Fl for some n and machines (IITMs) M1, . . . ,
Mn and ideal functionalities F1, . . . ,Fl. Each machine (IITM) Mr represents one role
in the protocol and there can be multiple instances of each machine, namely, one in-
stance of Mr for each local session (p, lsid, r). An instance may arbitrarily communicate
with the adversary (the network) and may (but doesn’t have to) use Fcrypto and the ideal
functionalities F1, . . . ,Fl. The functionalities F1, . . . ,Fl may provide additional crypto-
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graphic operations such as digital signatures and public-key certification. Analogously
to Fke, a user (p, lsid, r) initiates a key exchange by sending a session-start message to
Mr (on the I/O interface), which creates a new instance of Mi. At some point, similar
to session-key-output messages from Fke, every instance of Mr may return a session-
key-pointer-output message of the form (SessionKeyPointer, ptr) to the user (p, lsid, r)
which contains a pointer ptr, called the session key pointer, to the actual session key
stored in Fcrypto. This instance then provides the user (p, lsid, r) with an interface to
Fcrypto where initially only the session key pointer ptr may be used (but subsequently
other pointers can be generated). More precisely, the user (p, lsid, r) may send any re-
quest for Fcrypto to Mr such as an encryption or decryption request. Upon such a request,
Mr forwards this request to Fcrypto and waits for receiving an answer from Fcrypto which
is forwarded to the user (p, lsid, r). However, we require that all pointers in this request
have been output by Mr to this user before; see below for an example. Before forward-
ing requests to Fcrypto, Mr checks whether this requirement is satisfied and if not, then,
instead of forwarding the request to Fcrypto, Mr returns an error message to the user
(p, lsid, r).

For example, after having received (SessionKeyPointer, ptr) from Mr, the user
(p, lsid, r) might send the request (New, t) to Mr upon which Mr will forward it to
Fcrypto. Then, Fcrypto will return a new pointer ptr′ to Mr which is forwarded by Mr to
the user (p, lsid, r). To encrypt a message m which contains the pointer ptr′ (and no other
pointer) under the session key pointer ptr, (p, lsid, r) sends the request (Enc, ptr,m) to
Mr. Then, Mr will forward this message to Fcrypto because all pointers in this request,
i.e., ptr and ptr′, have been output to this user before. Finally, the ciphertext returned
by Fcrypto is forwarded to the user (p, lsid, r).

We do not fix a special form of corruption but leave the modeling of corruption to
the definition of the protocol P, up to a the following conditions: i) the environment
can ask about the corruption status of local sessions (as in Fke), ii) once a local session
is corrupted, it stays corrupted, and iii) a local session cannot be corrupted after it has
returned a session-key-pointer-output message. See Section 5 for an example on how
corruption can be defined.

We also consider a variant P̂ of an Fcrypto-KE protocol P which is defined as fol-
lows. Instead of sending session-key-pointer-output messages, P̂ sends session-key-out-
put messages (asFke) which contain the actual key the session key pointer refers to. This
key is obtained using the retrieve command (Retrieve, ptr) of Fcrypto. Furthermore, in
contrast to P, P̂ does not provide the environment with an interface to Fcrypto, i.e., P̂
does not forward requests to Fcrypto. Note that the protocol P̂ has the same I/O inter-
face as the ideal functionality Fke; it is in fact meant to realize Fke (see below). The
advantage of P over P̂ is that a session key pointer can still be used for ideal crypto-
graphic operations, e.g., ideal encryption or even to establish an ideal secure channel
(see below).

Criterion for Secure Key Exchange Protocols. We now present a sufficient criterion
for an Fcrypto-KE protocol to realize Fke, and hence, to provide universally composable
key exchange. The criterion is based on partnering functions.
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A partnering function τ for an Fcrypto-KE protocol P is a polynomial-time com-
putable function that maps a sequence of configurations of P |Fcrypto to a set of tuples
of the form (s1, . . . , sn), where sr corresponds to an instance (p, lsid, r) of Mr (i.e., a
local session), for all r ≤ n. We say that the instances s1, . . . , sn form a (global) session
according to τ. We call τ valid for P if for any environment E for P |Fcrypto and any
run of E |P | Fcrypto the following holds: i) All instances occur in at most one session
(according to τ). ii) Instances in one session agree on the PIDs of the desired partners.
iii) τ is monotonic, i.e., once a session has been established according to τ, it continues
to exist. Now, we are ready to state our criterion.

Definition 2. We say that an Fcrypto-KE protocol P is strongly Fcrypto-secure (with type
t0 of a key) w.r.t. a partnering function τ and an environment E ofP |Fcrypto if for runs of
E |P | Fcrypto the following holds with overwhelming probability: For every uncorrupted
instance of Mr, say (p, lsid, r), which has output a session key pointer to say the key
(t, k) in Fcrypto it holds that:

i) The local session (p, lsid, r) belongs to some global session (according to τ).
ii) The key (t, k) is of type t0 and marked unknown in Fcrypto, i.e., t = t0 and (t, k) ∈
Kunknown.

iii) The key (t, k) has never been used byP itself as a key for encryption, key derivation,
or to compute a MAC. (It may, however, have been used through the interface
provided for the environment to Fcrypto after a session-key-pointer-output message.)

iv) Session key pointers (if any) of other instances point to the same key (t, k) if and
only if they belong to the same session as (p, lsid, r) (according to τ).

An Fcrypto-KE protocol P is strongly Fcrypto-secure if there exists a valid partnering
function τ for P and P is strongly Fcrypto-secure w.r.t. τ and E for every environment E
for P |Fcrypto.

The following theorem states that this criterion is indeed sufficient for an Fcrypto-KE
protocol to realize the ideal key exchange functionality Fke.

Theorem 4. Let P be an Fcrypto-KE protocol. If P is strongly Fcrypto-secure and P̂ is
used-order respecting and non-committing, then P̂ | Pcrypto ≤ Fke.

Proof. Let S = P̂ | Simcrypto | Fcrypto where Simcrypto is the simulator used to prove The-
orem 3. We note that, by Corollary 1, it holds that E | P̂ | Pcrypto ≡ E | S for every envi-
ronment E. Next, we define a simulator Sim for Fke and show that E | S ≡ E | Sim | Fke
for every environment E, which completes the proof.

Since P is strongly Fcrypto-secure, there exists a valid partnering function τ. The
simulator Sim emulates a local copy of the system S as follows. If Fke receives a ses-
sion-start message, Fke forwards it to Sim which forwards it to (the emulated) S. Hence,
every local sessions, say (p, lsid, i), in Fke corresponds to the instance (p, lsid, i) in S. If
an instance in S gets corrupted, i.e., would return corrupted upon a corruption request
from the environment, Sim corrupts the corresponding local session in Fke. If a cor-
rupted instance outputs a session key k, Sim instructs the corresponding local session in
Fke to output k. If an uncorrupted instance outputs a session key, Sim determines the ses-
sion, i.e., an instance for every role, by using the partnering function τ. Then, Sim sends
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two messages to Fke, first, a session-create message which contains the determined ses-
sion and, second, a session-finish message for the corresponding local session. Network
communication is forwarded directly between the environment and S.

By definition of Sim, upon corruption requests from the environment the systems
S and Sim | Fke do not differ. Since P is strongly Fcrypto-secure and E | Simcrypto can be
considered to be an environment for P̂ | Fcrypto, it is easy to see that (with overwhelming
probability) all instances of a session output the same session key. Let us consider the
first local session of a session that outputs a session key, say k. Since P is strongly
Fcrypto-secure, k has never been output by any local session before and, hence, was
marked unknown (in Fcrypto) just before it is output. Furthermore, k has never been used
as a key for encryption, MAC, or key derivation. But then, from the definition of Fcrypto
it follows that k has always been encrypted ideally, hence, the view of the environment
is independent of the value of k. By definition of Simcrypto, k has been chosen uniformly
at random from {0, 1}η, just as fresh session keys in Fke. Note that this includes the case
where k has been derived from another key, because also in this case Simcrypto chooses
a fresh key. From this, we obtain that E | S ≡ E | Sim | Fke. ut

We note that the concept of partnering functions has been used in game-based secu-
rity definitions and this has led to discussions whether the obtained security definitions
are reasonable, see, e.g., [10, 11, 9, 18, 21, 31]. Here, we use partnering functions only
as part of our criterion but not as part of the security definition itself; security means
realizing Fke.

4.2 Applications to Secure Channels

A secure channel, see, e.g., [19], between two parties provides confidentiality and au-
thenticity of the messages sent over the channel and prevents rearrangement and replay
of messages. Some secure channels also prevent message loss.

In this section, we first define two ideal functionalities for secure channels Fsc and
F +

sc , where, unlike Fsc, F +
sc prevents message loss. Just as Fke and in contrast to previ-

ous formulations, our functionalities directly allow to handle an unbounded number of
sessions between arbitrary parties.

Then, we consider two generic realizations of Fsc and F +
sc , namely Psc and P+

sc,
respectively, which use an Fcrypto-key exchange protocol P as a sub-protocol. Every
session of Psc (analogously for P+

sc) runs a session of P to exchange a session key. This
session key is then used to establish secure channels between the parties of the session;
one channel for each pair of parties in that session. For this purpose, before a message
is encrypted under the session key, the PIDs of the sender and receiver are added to the
plaintexts as well as a counter. While Psc tolerates message loss, P+

sc does not.
Finally, we provide a criterion for Fcrypto-KE protocols and show that Psc and P+

sc
realize Fsc and F +

sc , respectively, if the underlying Fcrypto-KE protocol P satisfies this
criterion. We could use the criterion “strongly Fcrypto-secure”, but in fact a weaker vari-
ant suffices, which we call α-Fcrypto-secure. Unlike strong Fcrypto-security, α-Fcrypto-
security allows that session keys are used in the key exchange protocol (e.g., for key
confirmation). But then, messages encrypted under these keys in the key exchange pro-
tocol should not interfere with messages sent over the secure channel. We therefore
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consider a set of messages α which contains at least all possible plaintexts that poten-
tially can occur in the key exchange protocol encrypted under the session key. Usually,
(an over-approximation of) α can be described based on the different message formats
in the protocols.

The Ideal Secure Channel Functionalities. We first describe Fsc. It has the same
I/O and network interface as Fke and is parameterized by a number n which defines
the number of roles in the protocol. Just as Fke, Fsc manages local sessions of users
and (global) sessions: A user (p, lsid, r) can send session-start messages which create
local sessions. The (ideal) adversary groups local sessions to form (global) sessions by
sending session-create messages and completes local sessions by sending session-finish
messages.

Upon a session-finish message, in contrast to Fke, which sends a session-key-point-
er-output message to the user, Fsc sends a session-established message to the user no-
tifying it that the secure channel has been established successfully. Now, this user, say
(p, lsid, r), can send messages to its partners in the same session by sending send re-
quests of the form (Send,m) to Fsc where m is the message that is supposed to be sent.
Upon receiving such a request, Fsc adds m to a queue for this local session and the
intended recipient, i.e., one of the partners in the local session. Then, Fsc forwards this
request to the adversary but replaces m by 0|m|, revealing the length of m but nothing
more. The adversary can now instruct Fsc to deliver or drop messages. If the adversary
sends a deliver message for a local session to Fsc, Fsc removes the first message from
the queue for this local session and intended recipient and sends it to the intended re-
cipient, i.e., to the user corresponding to it. If the adversary sends a drop message for
a local session to Fsc, then Fsc only removes the first message from the queue but does
not send it to the intended recipient.

Similarly to Fke, the adversary has the ability to corrupt a local session of a party if
it is not already part of a session. If a corrupted local session receives a send request,
this request is forwarded to the adversary unaltered, i.e., the message is revealed to the
adversary. Furthermore, the adversary can instruct Fsc to deliver arbitrary messages to
the user of a corrupted local session. (See below for the discussion of arbitrary network
input.)

The variant F +
sc coincides with Fsc, except that the adversary does not have the

ability to drop messages, i.e., F +
sc does not accept drop messages.

We note that, for an uncorrupted session both Fsc and F +
sc guarantee secrecy and

authenticity of messages and that messages arrive in the right order, without replay. But
Fsc allows message loss while F +

sc prevents this. Clearly, if a protocol realizes F +
sc , it

also realizes Fsc, because we have F +
sc ≤ Fsc.

Generic Secure Channel Protocols. We define two generic secure channel protocols
Psc and P+

sc of the form !M1 | . . . | !Mn which use an Fcrypto-KE protocol, say P =

!M′1 | . . . | !M′n | F1 | . . . | Fl, as a sub-protocol. In a nutshell, a session of Psc (and also
P+

sc) runs a session of P to exchange a session key. This session key is then used to
establish secure channels between the parties of the session, one channel for each pair
of parties in that session. For this purpose, before a message is encrypted under the
session key, the PIDs of the sender and receiver are added to the plaintexts as well as a
counter. While Psc tolerates message loss, P+

sc does not.
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The protocols Psc and P+
sc are parameterized by what we call a plaintext construc-

tion function f which takes two PIDs p1, p2, a counter v, and a message m and outputs
a plaintext f (p1, p2, v,m). We require that i) f (p1, p2, v,m) is a well-tagged bit string
which does not contain any pointers, for all p1, p2, v,m, ii) f is computable and invert-
ible in polynomial-time, and iii) f is length regular, i.e., | f (x1, . . . , x4)| = | f (x′1, . . . , x

′
4)|

for all bit strings x1, x′1, . . . , x4, x′4 where |x1| = |x′1|, . . . , |x4| = |x′4|.

Now, we describe Psc( f ) = !M1 | . . . | !Mn in more detail. Just as for Fcrypto-KE pro-
tocols, there is one machine Mi for every role i ≤ n which has an I/O input and output
tape to communicate with the parties and a network input and output tape to commu-
nicate with the adversary, modeling the the network. Note that Psc and Fsc have the
same I/O interface. Similarly to Fsc, Psc waits for session-start messages from users.
For simplicity, we require that the PIDs for the roles in the request are pairwise differ-
ent. For every such request, say from user (p, lsid, r), a new instance of Mi is created
which handles all requests of user (p, lsid, r). Upon receiving a session-start message,
Mi forwards it to M′i (the key exchange protocol) and waits for receiving a session-key-
pointer-output message from M′i . Then, Mi sends a session-established message to the
user.

Every instance of the Mi maintains counters S j and R j for counting messages send
to/received from role j, for all j ≤ n, j , i. All counters are initialized with 0.

After a session has been established and upon receiving a send request triggering
Mi, say for user (p, lsid, r), to send a message m to the party with role j (in the same
session), Mi constructs the message m′ = f (p, p′, S j,m) where p′ is the PID of the
receiver, increases S j by one, encrypts m′ with the session key pointer received from M′i
(using Fcrypto through M′i ), obtains a ciphertext c, and sends (p, p′, c) to the adversary
(network).

Whenever an instance of Mi, say for user (p, lsid, r), receives a message from the
adversary (network) of the form (p′, p, c) where p′ is the PID of an intended partner of
(p, lsid, r) for some role, say j , i, Mi decrypts c using the session key pointer ptr. If
the decryption succeeds and the plaintext is of the form f (p′, p, v,m) for some number
v ≥ R j and some message m, then Mi sets R j = v+1 and outputs m to the user (p, lsid, r).
Otherwise, Mi silently discards the message.

An instance of Mi can directly be corrupted by the adversary in which case the ad-
versary controls the secure channel. However, the corruption needs to occur before Mi

has output the session-established message. The instance of Mi is also considered cor-
rupted if the corresponding local session of the key exchange protocol P is corrupted.
The environment may ask whether or not an instance of Mi has been corrupted.

Unlike Psc, P+
sc discards messages from the adversary if, when decrypted, they are

not of the form f (p′, p, v,m) for v = R j, i.e., message loss is not tolerated by P+
sc.

Note that the messages received by Mi from the network are again output (at least
parts of these messages) by Mi. Because the network input tapes are consuming, the
length of these message has to be bound by a polynomial in the security parameter
plus the length of messages received from the user (environment) so far. (Recall that
the messages received from the user are received on enriching tapes.) This aspect has
not been discussed in the description above. We can allow the environment to send
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resources to Mi. This way it is possible that arbitrary many network inputs of arbitrary
length can be processed. This mechanism has been first used in [33].

Criterion for Secure Channel Protocols. We now provide a criterion for Fcrypto-KE
protocols and prove that the generic secure channel protocols Psc and P+

sc realize Fsc
and F +

sc , respectively, if the underlying Fcrypto-KE protocol satisfies this criterion. As
mentioned above, we could use the criterion “strongly Fcrypto-secure”, but in fact a
weaker variant suffices where the session key may have been used by the key exchange
protocol, e.g., for key confirmation.

However, in order to be able to prove the desired property with this weaker criterion,
we need to require that messages sent over the secure channel cannot be confused with
messages exchanged in the key exchange protocol. This is typically the case because of
different message formats used in the key exchange and secure channel protocol, e.g.,
messages may be tagged with the protocol names. To capture this formally, we consider
a set of messages α which contains at least all possible plaintexts that potentially can
occur in the key exchange protocol encrypted under the session key. As mentioned,
(an over-approximation of) α can typically be described based on the different message
formats in the protocols.

Definition 3. Let α be a set of bit strings such that α can be decided in polynomial time.
We say that an Fcrypto-KE protocol P is α-Fcrypto-secure (with type t0 of a key) if it is
strongly Fcrypto-secure, except that we replace condition iii) for strong Fcrypto-security
by the following condition, with (p, lsid, i) and (t, k) as in Definition 2:

iii) The key (t, k) has only been used by instances of P itself that belong to the same
session as (p, lsid, i) (according to τ) to encrypt messages that belong to α. (The
key may, however, have been used to encrypt other messages through the interface
provided for the environment to Fcrypto after a session-key-pointer-output message.)

We note that strongly Fcrypto-secure protocols are α-Fcrypto-secure for all α, in particular
for α = ∅.

The following theorem states that if the plaintexts constructed by the secure channel
protocols Psc andP+

sc do not interfere with the plaintexts encrypted by the key exchange
protocol, then our criterion is sufficient for the secure channel protocols to realize the
ideal secure channel functionalities.

Theorem 5. Let P be an Fcrypto-KE protocol, α be a set of messages as above, and
f be a message construction function such that f (p1, p2, v,m) < α for all bit strings
p1, p2, v,m. If P is α-Fcrypto-secure with type authenc-key, then Psc( f ) | P | Fcrypto ≤ Fsc
and P+

sc( f ) | P | Fcrypto ≤ F
+

sc . (The leakage algorithm used in Fcrypto is assumed to leak
only the length of a message.)

Proof. First, we consider Fsc, see below for F +
sc . We define a simulator Sim for Fsc

which is similar to the one defined in the proof of Theorem 4. Given a partnering func-
tion τ which exists because P is Fcrypto-secure Sim emulates a local copy of the system
S = Psc | P | Fcrypto and establishes sessions using the partnering function τ. Message
send request are forwarded to (the emulated) S and if S delivers a message, then Sim
checks how many messages have been dropped and instructs Fsc to drop that many
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messages. More precisely, if the delivered message has count value v and R j is the
corresponding counter, then Sim instructs Fsc to drop v − R j messages. (Note that, by
definition of Psc, v ≥ R j, otherwise, the message would not have been delivered.) Then,
Sim instructs Fsc to deliver the next message. As in the proof of Theorem 4, Fsc and S
correspond on local sessions/instances, sessions, and corruption.

Upon corruption requests from the environment the systems S and Sim | Fsc do not
differ, i.e., the view of the environment is the same. The systems S and Sim | Fsc poten-
tially only differ i) upon a message send request for some message, say m, because in
S the message m gets encrypted while in Sim | Fsc the message 0|m| gets encrypted or ii)
upon delivery of messages to the parties because S outputs the decrypted received mes-
sage while Sim | Fsc drops some messages and outputs the next message in the queue.
Next, we show that the systems in fact do not differ.

ad i) Since P is α-Fcrypto-secure, every (uncorrupted) local session of a session uses
the session key and this is marked unknown (in Fcrypto). Then, from the definition of
Fcrypto it follows that in S not m but its leakage is encrypted. Similar, in Sim | Fsc not
0|m| but its leakage is encrypted. Since these messages have the same length and the
leakage algorithm leaks only the length of a message, the distribution of the produced
ciphertext is the same in both systems.

ad ii) Assume that E sends a network message that contains a ciphertext c. Then
both systems P and Sim | Fsc decrypt c using the session key pointer for the receiving
local session. If the obtained plaintext is not of the form f (p′, p, v,m) for some v ≥ R j

and some message m then both systems discard this message. Otherwise, S delivers m
to the user for party p while Sim instructs Fsc to drop v−R j messages and to deliver the
next message, say m′, to p. We need to show that m = m′. Since P is α-Fcrypto-secure,
the used session key is marked unknown (in Fcrypto) and of type authenc-key. Then, by
definition of Fcrypto, only plaintexts are returned that have been previously encrypted
under the same key using Fcrypto. Since P is α-Fcrypto-secure and f (p′, p, v,m) < α
for any r, some local session of this session must have encrypted this plaintext. They
are all uncorrupted and, hence, it must have been the user for party p′ when sending
the r-th message to p. Note that R j is exactly the number of messages p has already
received from p′ (in this session). Since v − R j messages are dropped, Fsc will deliver
the R j + (v − R j) = v-th message that party p′ has sent to p. We conclude that m = m′.

In the case of F +
sc we can use the same simulator Sim except that it emulates P+

sc | P |

Fcrypto instead of Psc | P | Fcrypto. Note that Sim will never try to instruct F +
sc to drop

messages because, by definition of P+
sc, v = R j if a message is delivered. The rest of the

proof is analogously to the case of Fsc. ut

5 Security Analysis of IEEE 802.11i

Using our results and methods developed in the previous sections, we now analyze two
central protocols of WPA2-PSK (IEEE 802.11i) [28, 29], namely the 4-Way Handshake
(4WHS) protocol and the CCM Protocol (CCMP). We prove that 4WHS provides uni-
versally composable key exchange and that 4WHS with CCMP provides universally
composable secure channels.
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1. A→ S : pA, nA, c1[,PMKID]
2. S → A: pS , nS , c2,MACKCK(nS , c2)
3. A→ S : pA, nA, c3,MACKCK(nA, c3)
4. S → A: pS , c4,MACKCK(c4)

Fig. 1. The 4-Way Handshake protocol.

5.1 The 4-Way Handshake Protocol

Description of the 4WHS Protocol. The 4-Way Handshake (4WHS) protocol consists
of two roles, an authenticator A, e.g., an access point, and a supplicant S , e.g., a lap-
top, which share a Pairwise Master Key (PMK). The authenticator may communicate
with several supplicants using the same PMK, which in WPA2-PSK is a pre-shared key
(PSK). On an abstract level, the message exchange between an authenticator A and a
supplicant S is shown in Figure 1 where pA and pS are the names (Media Access Con-
trol (MAC) addresses) of A and S , respectively, nA and nS are nonces generated by A and
S , respectively, and c1, . . . , c4 are constants used to indicate different messages. From
the PMK, A and S derive a Pairwise Transient Key PTK by computing PTK = F(PMK,
“Pairwise key expansion” ‖ min(pA, pS ) ‖ max(pA, pS ) ‖ min(nA, nS ) ‖ max(nA, nS )))
where F is an HMAC, which according to the IEEE 802.11i standard is assumed to be
pseudo-random. The PTK is then split into the Key Confirmation Key (KCK), the Key
Encryption Key (KEK), and the Temporary Key (TK), where TK is used in CCMP to
establish a secure channel between A and S (see below). By MACKCK(m) we denote
the MAC of the message m under the key KCK. The first message of the 4WHS option-
ally includes PMKID = F(PMK, “PMK Name”‖pA‖pS ) to indicate the corresponding
PMK.

Modeling the 4WHS Protocol. Modeling the 4WHS protocol as an Fcrypto-KE proto-
col is straightforward. We emphasize that, since Fcrypto provides a low-level interface to
basic cryptographic primitives with a very liberal use of tagging, our modeling of the
4WHS protocol, including message formats, the use of cryptographic primitives, and
cryptographic assumptions, is very close to the actual standard.

The Fcrypto-KE protocol 4WHS consists of two roles: 4WHS = !MA | !MS . As de-
fined in Section 4.1, there can be multiple instances of MA and MS and each instance is
addressed by a PID and a LSID.

A natural way to model the pre-shared key PSK would be the following: At first,
every instance (of MA or MS ) establishes a pre-shared key (in Fcrypto) using the PID of
the authenticator as the name of the pre-shared key. This way, all supplicants talking
to the same authenticator use the same pre-shared key. But this modeling yields that an
authenticator, say A, uses the same PSK in every session. For example, A cannot change
the PSK. Also, different authenticator would necessarily use different pre-shared keys.
Therefore, we model the pre-shared key PSK as follows: We allow the environment to
decide which instance uses which pre-shared key. To do so, we require that every LSID
is a pair (lsid′, psk-name) of the actual LSID lsid′ and the name of the pre-shared key
psk-name this instance uses. Whenever an instance (of MA or MS ) is first activated, it
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checks if its LSID is of the form (lsid′, psk-name) and obtains a pointer to the pre-shared
key with name psk-name using Fcrypto. (If this check fails, the instance terminates.)

After having received a session-start message and established the PSK (as described
above), every instance of MA and MS executes the 4WHS protocol as expected (see
Figure 1) using Fcrypto to generate nonces, derive keys (the key KCK is of type mac-key
and the key TK is of type authenc-key), and compute and verify MACs. Finally, the
pointer to TK (later used to establish a secure channel) is output as the session key
pointer.

Recall that in the 4WHS protocol, the keys KCK, KEK, and TK are derived from
PMK by first deriving PTK and then splitting it, as described above. We do not model
this directly because we do not model bit string operations like splitting of keys in
Fcrypto. Instead of deriving KCK‖KEK‖TK = PTK = F(PMK, seed) we derive ev-
ery key separately KCK = F(PMK, seed‖0), KEK = F(PMK, seed‖1), and TK =

F(PMK, seed‖2). Note that it is easy to show that F is a pseudo-random function if and
only if F′ is a pseudo-random function where F′ is defined by F′(k, s‖i) = πi(F(k, s))
for all k, s and i ∈ {0, 1, 2}where π0, π1, π2 partitions the input into disjoint parts. Hence,
our modeling is faithful.

We model corruption as follows. The adversary can corrupt an instance of MA and
MS by sending a special corrupt message to it. This has to be the first message this
instance receives from the adversary. A corrupted instance forwards all messages from
the user to the adversary and vice versa. (See Section 4.2 for the discussion of arbitrary
network input.) Furthermore, it allows the adversary to send requests to Fcrypto (the
responses are forwarded to the adversary) in the name of the user. We require that if an
instance is corrupted, then so are all pointers of this user to pre-shared keys and other
symmetric keys this user (on demand of the adversary) has created in Fcrypto. Also, all
nonces this user has created in Fcrypto are required to be corrupted. On the other hand, if
an instance is not corrupted, then we require that the pre-shared key PSK is uncorrupted
and that all nonces that this party has created in Fcrypto are uncorrupted (at the moment
they were created). An instance always checks if these requirement are fulfilled (by
asking Fcrypto) and terminates if they are not. We note that this modeling implies that a
corrupted local session has no pointer to an unknown key. Hence, the adversary can use
Fcrypto (through the corrupted local session) only with known keys. Of course, since the
adversary provided all algorithms and keys used in Fcrypto, she can encrypt and decrypt
messages on her own, i.e., outside of Fcrypto.

In the literature, (static) corruption is often modeled on a per party basis, i.e., if a
party is corrupted, then all its keys are corrupted and the adversary is in full control of
that party. We note that this is a special case of our modeling of corruption because the
adversary can decide to corrupt all keys and local sessions of a corrupted party.

The messages c1, . . . , c4 consist of several fields. For simplicity of the analysis, our
modeling ignores some of these fields or fixes them to be constants, as described next
(conceptually, it would not be a problem to model these fields precisely): The mes-
sages c1, . . . , c4 contain counters used for re-keying, which we ignore. The information
contained in c2 and c3 for negotiating cipher suites and avoiding version rollback at-
tacks is modeled as constants. Finally, we ignore an optional field in c3 for multicast
communication.
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Protocol Version
– 1 octet

Packet Type
– 1 octet

Packet Body Length
– 2 octets

Descriptor Type – 1 octet

Key Information – 2 octets Key Length – 2 octets

Key Replay Counter – 8 octets

Key Nonce – 32 octets

EAPOL-Key IV – 16 octets

Key RSC – 8 octets

Reserved – 8 octets
Key MIC – 16 octets

Key Data Length – 2 octets Key Data – n octets

Fig. 2. EAPOL-Key frame [28, Figure 8-23]

Next, we provide more insight into how message formats of the 4WHS protocol
are modeled on the bit level. All four 4WHS messages are EAPOL-Key frames, see
Figure 2, which are defined in the IEEE 802.11 standard, e.g., the field Key Nonce
contains the nonces of the authenticator or supplicant, respectively, and the field Key
MIC contains the MACs. Since every instance (of MA and MS ) knows the bit strings of
all parts of an EAPOL-Key frame, e.g., the nonces and MACs, it can easily construct
precisely these EAPOL-Key frames.

Security Analysis. First, we note that a simple reflection attack on the 4WHS protocol
is possible if there is a party playing both the role of an authenticator and a suppli-
cant using the same pre-shared key, see [26]. In fact, the protocol 4WHS, as modeled
above, is not strongly Fcrypto-secure because of this attack, see the proof of Theorem 6.
To prevent this unusual environment, we use a (polynomial-time computable) predicate
for the PIDs which separates PIDs for authenticators from PIDs for supplicants. Ev-
ery instance of MA and MS first checks (using the predicate) whether its own PID is
allowed for the role of an authenticator or supplicant, respectively. (If this check fails,
the instance terminates.) This guarantees that parties may not play both the role of an
authenticator and a supplicant with the same pre-shared key.

Now, we show that 4WHS is strongly Fcrypto-secure. The proof of the following
theorem only requires syntactic arguments.

Theorem 6. The protocol 4WHS is strongly Fcrypto-secure with type authenc-key.

Proof. First, we define a partnering function τ for 4WHS. An instance of role A and
an instance of role S is defined to form a session if i) they are both uncorrupted, ii)
the party names of the desired partner correspond to each other, iii) they use the same
pre-shared key, i.e., the second part of the LSID is the same in both instances, iv) the
values of the nonces correspond to each other, and v) one of them has already output
a session key pointer. Because Fcrypto guarantees that (uncorrupted) nonces are unique
for every instance, there are not more than two such instances and, hence, it is easy to
see that τ is a valid partnering function for 4WHS.
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Next, we show that 4WHS is strongly Fcrypto-secure w.r.t. τ and any environment E
of 4WHS | Fcrypto. Now, we consider any run of E | 4WHS | Fcrypto and any uncorrupted
local session (i.e., instance of Mr), say (p, lsid, r) where r ∈ {A, S }, in this run which
has output a session key pointer to a key, say k, in Fcrypto.

First, we show that (p, lsid, r) belongs to some session (according to τ). Since
(p, lsid, r) is uncorrupted, the pre-shared key PSK is uncorrupted (in the functionality
Fcrypto). Since uncorrupted local sessions only use PSK to derive new keys from it and
corrupted local session do not have a pointer to it (otherwise, it would be corrupted), it
is marked unknown (in Fcrypto). By definition of Fcrypto, the derived keys KCK and TK
(note that k = TK) are marked unknown as well. KCK and TK are derived using a seed
which contains the party names and nonces of the local session and its intended partner,
say p′. Because nonces are guaranteed to be unique and PSK is marked unknown, there
are at most two local sessions that have pointers to these keys (KCK and TK) and one
of them is (p, lsid, r).

Furthermore, (p, lsid, r) verified a MAC of a message containing the nonce of the
intended partner and the constant c2 if r = A (and c3 if r = S ) under the key KCK.
This MAC has not been created by (p, lsid, r) itself because (p, lsid, r) never MACs
such a message. Furthermore, this MAC could only be created by some local session
(p′′, lsid′, r′) where a) p′′ = p and r , r′ (i.e., r = A and r′ = S or vice versa) or b)
p′′ = p′ and r , r′. (Otherwise, a different seed would be used to derive KCK.) Case a)
cannot occur because the same party (with some PID) cannot play different roles using
the same pre-shared key PSK; see above. (We note that the reflection attack presented
in [26] exploits that case a) can occur in a general setting but our modeling of 4WHS
prevents this.) Hence, there exists an uncorrupted local session, say (p′′, lsid′, r′), where
r′ , r (i.e., r = A and r′ = S or vice versa) and p′′ = p′ which has created this MAC.
Thus, it corresponds to (p, lsid, r) w.r.t. names, nonces, and roles and, so, (p, lsid, r) and
(p, lsid, r) belong to the same session (according to τ).

As shown above, only (p, lsid, r) and its partner (as defined by τ) have a pointer to
the key k (recall that k = TK). Furthermore, k is marked unknown (in Fcrypto) and it is
of type authenc-key because, by definition of the protocol, k has been derived as a key
of this type. Also, neither (p, lsid, r) nor its partner have used k. Since no other local
session (including corrupted local sessions) have a pointer to k, k has never been used.
We conclude that 4WHS is strongly Fcrypto-secure with type authenc-key. ut

Trivially, ̂4WHS (recall that ̂4WHS outputs the session key instead of a pointer to
it) is a standard protocol (as defined in Section 3) because it never encrypts an unknown
key after it has been first used. We note that, by our modeling of corruption, corrupted
local sessions do not have pointers to unknown keys and, hence, even upon corruption,
no unknown key is encrypted after it has been first used. It is easy to see that ̂4WHS
is used-order respecting and non-committing. Using Theorem 4 and 6 we immediately
obtain that ̂4WHS is a universally composable key exchange protocol.

Corollary 2. ̂4WHS | Pcrypto ≤ Fke.
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5.2 The CCM Protocol

Description of the CCM Protocol. WPA2-PSK uses CCMP with the Temporal Key
(TK), exchanged by running the 4WHS protocol, to establish a secure channel between
the authenticator and the supplicant. In CCMP, both parties maintain and use counters
for the messages they send and received just like Psc. Encryption is done using the
block cipher AES (with the key TK) in the CCM (Counter with CBC-MAC) encryption
mode.

Modeling the CCM Protocol. CCMP can be modeled faithfully by Psc( f ) (see Sec-
tion 4.2) using a message construction function f that closely models the message
formats of CCMP. More precisely, we define the function f such that the plaintexts
f (p, p′, v,m) (recall that p/p′ is the PID of the sender/receiver, v is the value of a counter,
and m the actual message that is sent over the secure channel) are well-tagged and do
not contain any pointer. Furthermore, we define tagging in Fcrypto such that f (p, p′, v,m)
precisely models the format of plaintexts in the CCMP protocol, see [28, Section 8.3.3]
for a definition of these message formats. The CCM encryption mode is a secure authen-
ticated encryption mode [30] and, hence, the used encryption scheme can be modeled
as an authenticated encryption scheme. Altogether, the protocol CCMP | 4WHS | Pcrypto
is very close to the actual cryptographic implementation of CCMP using 4WHS for key
exchange.

Security Analysis. By Theorem 5 and 6 we obtain that CCMP using 4WHS and Fcrypto
is a universally composable secure channel protocol.

Corollary 3. CCMP | 4WHS | Fcrypto ≤ Fsc.

Moreover, it is easy to see that CCMP | 4WHS is a standard protocol (as defined in
Section 3), and hence, it is used-order respecting and non-committing. By Corollary 1
and 3 (and the composition theorems), we then obtain that WPA2-PSK modeled as the
protocol CCMP | 4WHS | Pcrypto is a universally composable secure channel protocol.

Corollary 4. CCMP | 4WHS | Pcrypto ≤ Fsc.

As mentioned in the introduction, it has been recently shown that 4WHS with TKIP
(instead of CCMP) is insecure [43, 39]. The attacks exploit that TKIP uses the stream
cipher RC4 in an encryption mode which does not yield an authenticated encryption
scheme.

6 Related Work

Backes et al. (see, e.g., [4]) proposed a Dolev-Yao style cryptographic library. The
main purpose of the library is to provide a Dolev-Yao style abstraction to the user,
in the spirit of computational soundness results [37, 23, 2, 34]. In contrast, our function-
ality provides a much lower-level idealization, aiming at wide applicability and faithful
treatment of cryptographic primitives. More specifically, unlike Fcrypto, based on the
Dolev-Yao library only those protocols can be analyzed which merely use operations
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provided by the library (since the user, except for payload data, only gets his/her hand
on pointers to Dolev-Yao terms in the library, rather than on the actual bit strings, in-
ternally everything is represented as terms too) and these protocols can only be shown
to be secure w.r.t. non-standard encryption schemes (since, e.g., extra randomness and
tagging with key identifiers is assumed for encryption schemes) and assuming specific
message formats (all types of messages—nonces, ciphertexts, pairs of messages etc.—,
are tagged in the realization). While the Dolev-Yao library considers symmetric encryp-
tion (key derivation is not considered at all) [4], it is an open problem whether there is
a reasonable realization; the original proof of the realization of the crypto library in [4]
is flawed, as examples presented in [22] illustrate (see also [35]).

Our criteria for secure key exchange and secure channel protocols presented in Sec-
tion 4 are related to the concept of secretive protocols proposed by Roy et al. [41, 42]
(see also [35]). However, unlike our criteria, which can be checked based on informa-
tion-theoretic/syntactical arguments, checking whether a protocol is secretive requires
involved cryptographic reduction proofs. Also, Roy et al. do not prove implications for
composable security and they do not consider secure channels.

The only work we are aware of that attempts to perform a cryptographic analysis of
the 4-Way Handshake protocol of IEEE 802.11i is [44]; secure channels are not consid-
ered. However, this work is quite preliminary: The security assumptions and theorems
are not formulated precisely and no security proofs or proof sketches are provided. In
He et al. [27], the first symbolic analysis of IEEE 802.11i has been presented, based
on their Protocol Composition Logic (PCL). There are only a few other papers on the
analysis of real-world protocols that involve key derivation: (fragments of) TLS were
analyzed in [24, 38, 12], assuming session identifiers in ciphertexts [24] or the random
oracle for key derivation [38, 12]. Cryptographic analysis of Kerberos was carried out
in [1, 14], where in [14] key derivation is modeled by pseudo-random functions within
CryptoVerif. However, this analysis considers more abstract message formats and does
not yield composable security guarantees.
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A Security Definitions for Cryptographic Primitives

In this section we present the standard cryptographic schemes and security notions
which we use to realize our ideal crypto functionality.

A.1 Symmetric Encryption

In this section we recall the notion of [7, 8] for symmetric encryption schemes.
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Definition 4. A symmetric encryption scheme Σ = (gen, enc, dec) with plaintext do-
main dom(Σ) ⊆ {0, 1}∗ consists of three polynomial-time algorithms. The probabilistic
key generation algorithm gen expects a security parameter η and returns a key gen(1η).
The probabilistic encryption algorithm enc expects a key k and a plaintext m and returns
a ciphertext enc(k,m) ∈ {0, 1}∗ or enc(k,m) = ⊥ (where ⊥ < {0, 1}∗ is a special error
symbol) if encryption fails. The deterministic decryption algorithm dec expects a key k
and a ciphertext c ∈ {0, 1}∗ and returns the plaintext dec(k, c) ∈ {0, 1}∗ or dec(k, c) = ⊥

if decryption fails.
It is required that for every security parameter η and key k generated by gen(1η) it

holds that i) enc(k,m) = ⊥ if and only if m < dom(Σ) and ii) dec(k, enc(k,m)) = m for
every plaintext m ∈ dom(Σ).

We assume that every encryption scheme is associated with a polynomial q that
bounds the runtime of the algorithms and the length of there description in some stan-
dard encoding. We say that Σ is q-bounded. For all symmetric encryption schemes
considered in this paper, we assume that the key generation algorithm chooses keys
uniformly at random from {0, 1}η.

We define LR(m0,m1, b) = mb for every b ∈ {0, 1} and m0,m1 ∈ {0, 1}∗ of same
length. If m0 and m1 are not of same length, we define LR(m0,m1, b) = ⊥.

Definition 5 (IND-CPA secure). A symmetric encryption scheme Σ is called IND-CPA
secure if for every probabilistic polynomial-time algorithm AO(·,·) with access to an or-
acle O, the IND-CPA advantage of A with respect to Σ

Advind-cpa
A,Σ (1η, a) = Pr[k ← gen(1η) : Aenc(k,LR(·,·,1))(1η, a) = 1]

− Pr[k ← gen(1η) : Aenc(k,LR(·,·,0))(1η, a) = 1]

is negligible as a function in η and a.2

Definition 6 (IND-CCA secure). A symmetric encryption scheme Σ is called IND-
CCA secure if for every probabilistic polynomial-time algorithm AO1(·,·),O2(·) with access
to two oracles O1,O2 which never queries O2 with a bit string returned by O1, the
IND-CCA advantage of A with respect to Σ

Advind-cca
A,Σ (1η, a) = Pr[k ← gen(1η) : Aenc(k,LR(·,·,1)),dec(k,·)(1η, a) = 1]

− Pr[k ← gen(1η) : Aenc(k,LR(·,·,0)),dec(k,·)(1η, a) = 1]

is negligible as a function in η and a.

Definition 7 (INT-CTXT secure). A symmetric encryption scheme Σ is INT-CTXT
secure if for every probabilistic polynomial-time algorithm AO1(·),O2(·) with access to

2 A function f : {1}∗ × {0, 1}∗ → R≥0 is called negligible if for all polynomials p and q there
exists η0 ∈ N such that for all η > η0 and all bit strings a ∈ {0, 1}∗ with length |a| ≤ q(η) we
have that f (1η, a) ≤ 1/p(η).
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two oracles O1,O2, the INT-CTXT advantage of A with respect to Σ

Advint-ctxt
A,Σ (1η, a) = Pr[k ← gen(1η) : Aenc(k,·),dec(k,·)(1η, a) makes a query c

to dec(k, ·) such that dec(k, c) , ⊥ and

c was not previously returned by enc(k, ·)]

is negligible as a function in η and a.

A.2 Public-Key Encryption

In this section we recall the notion of [7] for public-key encryption schemes.

Definition 8. A public-key encryption scheme Σ = (gen, enc, dec) with plaintext do-
main dom(Σ) ⊆ {0, 1}∗ consists of three polynomial-time algorithms. The probabilistic
key generation algorithm gen expects a security parameter η and returns a pair of keys
(kd, ke), the secret (or decryption) key kd and the public (or encryption) key ke. The
probabilistic encryption algorithm enc expects a public key ke and a plaintext m and re-
turns a ciphertext enc(ke,m) ∈ {0, 1}∗ or enc(ke,m) = ⊥ (where ⊥ < {0, 1}∗ is a special
error symbol) if encryption fails. The deterministic decryption algorithm dec expects a
private key kd and a ciphertext c ∈ {0, 1}∗ and returns the plaintext dec(kd, c) ∈ {0, 1}∗

or dec(kd, c) = ⊥ if decryption fails.
It is required that for every security parameter η and key pair (ke, kd) generated

by gen(1η) the following holds: i) enc(ke,m) = ⊥ if and only if m < dom(Σ) and ii)
dec(kd, enc(ke,m)) = m for every plaintext m ∈ dom(Σ).

We assume that every encryption scheme is associated with a polynomial q that
bounds the runtime of the algorithms and the length of there description in some stan-
dard encoding. We say that Σ is q-bounded.

As above, we define LR(m0,m1, b) = mb for every b ∈ {0, 1} and m0,m1 ∈ {0, 1}∗ of
same length. If m0 and m1 are not of same length, we define LR(m0,m1, b) = ⊥.

Definition 9 (IND-CCA secure). A public-key encryption scheme Σ is called IND-
CCA secure if for every probabilistic polynomial-time algorithm AO1(·,·),O2(·) with access
to two oracles O1,O2 which never queries O2 with a bit string returned by O1, the
IND-CCA advantage of A with respect to Σ

Advind-cca
A,Σ (1η, a) = Pr[(ke, kd)← gen(1η) : Aenc(ke,LR(·,·,1)),dec(kd ,·)(1η, a, ke) = 1]

− Pr[(ke, kd)← gen(1η) : Aenc(ke,LR(·,·,0)),dec(kd ,·)(1η, a, ke) = 1]

is negligible as a function in η and a.

A.3 Message Authentication Codes

In this section we recall the notions of [25] for message authentication codes.
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Definition 10. A message authentication code (MAC) scheme Σ = (gen,mac,mac-
verify) consists of three polynomial-time algorithms. The probabilistic key generation
algorithm gen expects a security parameter η and returns a key gen(1η). The (pos-
sibly) probabilistic MAC algorithm mac expects a key k and a message m and re-
turns a message authentication code mac(k,m). The deterministic verification algo-
rithm mac-verify expects a key k, a message m, and a message authentication code σ
and returns mac-verify(k,m, σ) ∈ {false, true}.

It is required that for every η ∈ N, key k generated by gen(1η), and message m ∈
{0, 1}∗ it holds that mac-verify(k,m,mac(k,m)) = true.

For all MAC schemes considered in this paper, we assume that the key generation
algorithm chooses keys uniformly at random from {0, 1}η.

Definition 11. A MAC scheme Σ is called existentially unforgeable under adaptive cho-
sen-message attacks (UF-CMA secure) if for every probabilistic polynomial-time algo-
rithm AO1(·),O2(·,·) with access to two oracles O1,O2, the advantage of A with respect to
Σ

Advmac
A,Σ (1η, a) = Pr[k ← gen(1η), (m, σ)← Amac(k,·),mac-verify(k,·,·)(1η, a) :

mac-verify(k,m, σ) = true and

A has not previously called mac(k,m)]

is negligible as a function in η and a.

A.4 Pseudo-Random Functions

Let h : {0, 1}∗ → {0, 1}η be the following probabilistic, stateful algorithm. It maintains
a set H which is initially empty. Upon input s ∈ {0, 1}∗, h returns x if there exists an
x such that (x, s) ∈ H. Otherwise, h chooses x uniformly at random from {0, 1}η, adds
(x, s) to H, and returns x.

Definition 12. A family of functions F = {Fη}η∈N with Fη : {0, 1}η × {0, 1}∗ → {0, 1}η

for all η ∈ N is called a pseudo-random function family if it is efficiently computable
and for any probabilistic polynomial-time adversary AO(·) with access to an oracle O,
the advantage of A with respect to F

Advprf
A,F(1η, a) = Pr

[
k

R
←{0, 1}η : AFη(k,·)(1η, a) = 1

]
− Pr

[
Ah(·)(1η, a) = 1

]
is negligible as a function in η and a.

A.5 Oracle Functionality

To link the game based definitions and our ideal functionality more easy, we define the
IITM Oracle (Figure 3) which is parametrized by a variable b ∈ {real, ideal}, two sym-
metric encryption schemes Σauthenc and Σunauthenc, a public-key encryption scheme Σpub,
a message authentication scheme Σmac, a pseudo-random function family F, and a leak-
age algorithm L. The machine Oracle is used in the proof of Theorem 3. The variable
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b specifies the behavior; real or ideal behavior. The IITM has an enriching I/O input
tape T in

oracle and an I/O output tape T out
oracle. First, Oracle waits for receiving a initializa-

tion message which contains a type t for which Oracle then generates a key. Then, the
environment of Oracle can use it to perform the chosen cryptographic operation with it.

Oracle(b, Σauthenc, Σunauthenc, Σpub, Σmac, F, L)

Tapes: enriching I/O input tape T in
oracle, I/O output tape T out

oracle
State: state ∈ {init, authenc, unauthenc, pke,mac, prf} (initially init),

k, ke, kd ∈ {0, 1}∗ ∪ {⊥} (initially ⊥), Table ⊆ {0, 1}∗ × {0, 1}∗ (initially ∅)

1. Upon receiving (Init, t) from T in
oracle where state = init and

t ∈ {authenc, unauthenc, pke,mac, prf} do: Set state := t. If t = pke, then
(ke, kd)← gen(1η) (where gen is the key generation algorithm of Σpub) and send (Ack, ke)
to T out

oracle. Otherwise, choose k←R{0, 1}η and set ke := k and kd := k. Send (Ack) to T out
oracle.

2. Upon receiving (Enc,m) from T in
oracle where state ∈ {authenc, unauthenc, pke} and

m ∈ dom(L)η do: If b = real, then compute c← enc(ke,m) (where enc is the encryption
algorithm of Σauthenc, Σunauthenc, or Σpub depending on t) and send c to Toracle. Otherwise,
compute m← L(1η,m) and c← enc(ke,m). Then, add (m, c) to Table and send c to T out

oracle.
3. Upon receiving (Dec, c) from T in

oracle where state ∈ {authenc, unauthenc, pke} and
c ∈ {0, 1}∗ do: If b = real, then compute m := dec(kd, c) (where dec is the decryption
algorithm of Σauthenc, Σunauthenc, or Σpub depending on t) and send m to T out

oracle. Otherwise,
compute

m :=


m′ if ∃!m′ : (m′, c) ∈ Table (exists unique m′)
dec(kd, c) if state ∈ {unauthenc, pke} and ∀m′ : (m′, c) < Table
⊥ otherwise

and send m to T out
oracle.

4. Upon receiving (Mac,m) from T in
oracle where state = mac do: Compute σ← mac(k,m), add

(m, σ) to Table, and send σ to T out
oracle.

5. Upon receiving (MacVerify,m, σ) from T in
oracle where state = mac do: If b = ideal,

mac-verify(k,m, σ) = true, and ∀σ′ : (m, σ′) < Table, then send ⊥ to T out
oracle. (This indicates

forgery.) Otherwise, send the result of mac-verify(k,m, σ) to T out
oracle.

6. Upon receiving (PRF, s) from T in
oracle where state = prf and s ∈ {0, 1}∗ do: If b = real, then

compute x := Fη(k, s) and send x to T out
oracle. Otherwise, if ∃x : (s, x) ∈ Table, then send x to

T out
oracle. (Note that if such an x exists, it is unique.) Otherwise, choose x←R{0, 1}η, add

(s, x) to Table, and send x to T out
oracle.

Fig. 3. The IITM Oracle is parameterized by a variable b ∈ {real, ideal}, two symmetric encryp-
tion schemes Σauthenc and Σunauthenc, a public-key encryption scheme Σpub, a message authentication
scheme Σmac, a pseudo-random function family F, and a leakage algorithm L.

If Σauthenc, Σunauthenc, Σpub, Σmac, F, and L are clear from the context, we abbreviate
Oracle(b, Σauthenc, Σunauthenc, Σpub, Σmac, F, L) by Oracle(b) for b ∈ {real, ideal}.

The following lemma can be proven by standard cryptographic reductions, see [35]
for the case of symmetric encryption.
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Lemma 1. Let Σauthenc, Σunauthenc, Σpub be encryption schemes as above. Let Σmac be a
MAC scheme and F be a function family as above. Let L be a leakage algorithm which
leaks exactly the length of a message. Then,

E | Oracle(real) ≡ E | Oracle(ideal)

for every environment E for Oracle if and only if Σunauthenc and Σpub are IND-CCA,
Σauthenc is IND-CPA and INT-CTXT, and Σmac is UF-CMA secure, and F is a pseudo-
random function family. (The direction from right to left holds for any length preserving
leakage algorithm L.)

B Formal Specification of the Ideal Crypto Functionality

Our ideal crypto functionality Fcrypto is formally defined in Figure 4 to 8. Next, we
describe some notation and terminology which is used in these figures.

The description of Fcrypto is divided into three parts: Tapes, State, and Compute.
The first part is used to describe the input and output tapes. The second part is used to
describe the variables that describe the state of Fcrypto and also the initial state while
the last describes the behavior of Fcrypto in mode Compute. (In mode CheckAddress,
Fcrypto accepts all messages.) The description in mode Compute, consists of a sequence
of blocks where every block is of the form 〈condition〉 : 〈actions〉. Upon activation, the
conditions of the blocks are checked one after the other. If a condition is satisfied the
corresponding actions are carried out.

A condition is often of the form “receive m on t” for a message m and a tape t. This
condition is satisfied if a message is received on tape t and the message is of the form
m.

In the description of actions we often write “send m on t”. This means that Fcrypto
outputs message m on tape t and stops for this activation. In the next activation the
IITM will not proceed at the point where it stopped, but again go through the list of
conditions, starting with the first one, as explained above. However, if we write “send
m on t and wait for receiving m′ on t′”, then Fcrypto does the following: It outputs m on
tape t and stops for this activation. In the next activation with a message for the same
user, it will check whether it received a message on input tape t′ and check whether
this message matches with m′. If it does, the computation continues. Otherwise, Fcrypto
stops for this activation without producing output. In the next activation, it will again
check whether it received a message on input tape t′ and whether this message matches
with m′ and behaves as before, and so on, until it receives the expected message on t′.

Given a configuration of Fcrypto, by “create a new pointer ptr (for (p, lsid, r)) to
(t, k) ∈ K” we denote the algorithm that finds the lexicographically smallest bit string
ptr such that key(ptr, p, lsid, r) is not defined and sets key(ptr, p, lsid, r) := (t, k).

A bit string x is called a valid user plaintext (for party p in role r with LSID
lsid) if x is well-tagged and for every bit string tagt(ptr) contained in x where t ∈
{authenc-key, unauthenc-key,mac-key, pre-key} it holds that key(ptr, p, lsid, r) is de-
fined and key(ptr, p, lsid, r) = (t, k) for some k.
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Fcrypto(q, n, L)

Tapes: input: T in
r for all r ∈ {1, . . . , n} (enriching I/O tapes), T in

adv (network tape)
output: T out

r for all r ∈ {1, . . . , n} (I/O tapes), T out
adv (network tape)

We say that “m is received from (p, lsid, r)” if (lsid, p,m) is received on tape T in
r . By

“send m to (p, lsid, r)” we denote that (lsid, p,m) is sent on tape T out
r . Similarly, we

say that “m is received from/sent to Tadv” if m is received on tape T in
adv or m is sent on

tape T out
adv, respectively.

State: The state consists of the following variables:
encunauthenc, decunauthenc, encauthenc, decauthenc,mac,mac-verify ∈ {0, 1}∗ ∪ {⊥} (initially ⊥)
K ⊆ {authenc-key, unauthenc-key,mac-key, pre-key} × {0, 1}∗ (initially ∅)
Kknown ⊆ K (initially ∅; Kunknown = K \ Kknown)
key : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × R → K ∪ {⊥} (initially key(ptr, p, lsid, r) := ⊥ for all
ptr, p, lsid, r)
encpke, decpke, pk : {0, 1}∗ → {0, 1}∗ ∪ {⊥} (initially p 7→ ⊥ for all p)
N ⊆ {0, 1}∗ (initially ∅)

• Network input: Upon receiving (Algorithms, e, d, e′, d′,m, v) from Tadv where
|e|, |d|, |e′|, |d′|, |m|, |v| ≤ q(η) and encunauthenc = ⊥ do: Set encunauthenc := e, decunauthenc := d,
encauthenc := e′, decauthenc := d′, mac := m, mac-verify := v, and send (Ack) to Tadv.

• I/O input: Upon receiving a message m from (p, lsid, r) do:
1. Symmetric key generation: If m = (New, t) for some

t ∈ {authenc-key, unauthenc-key,mac-key, pre-key}, then:
(a) Send (p, lsid, r,New, t) to Tadv and wait for receiving

(p, lsid, r,Continue, corrupt, k) from Tadv where |k| ≤ q(η),
corrupt ∈ {false, true}, and ((t, k) < K or (corrupt = true and (t, k) ∈ Kknown)).

(b) Add (t, k) to K (if (t, k) < K). Create a new pointer ptr for (p, lsid, r) to (t, k).
(c) If corrupt = true, then record (ptr, (p, lsid, r)) as corrupted and add (t, k) to
Kknown.

(d) Send (New, ptr) to (p, lsid, r).
2. Public/private key generation: If m = (GetPKE), then:

(a) If pk(p) , ⊥ (i.e., the public key of p is defined), then send (GetPKE, pk(p)) to
(p, lsid, r). Otherwise, continue.

(b) Send (p, lsid, r,GetPKE) to Tadv and wait for receiving
(p, lsid, r,Continue, corrupt, e, d, pk′) from Tadv where |e|, |d|, |pk′| ≤ q(η),
corrupt ∈ {false, true}.

(c) If corrupt = true, then record the public/private key of p as corrupted.
(d) Set encpke(p) := e, decpke(p) := d, and pk(p) := pk′. Send (GetPKE, pk′) to

(p, lsid, r).
3. Nonce generation: If m = (NewNonce), then:

(a) Send (p, lsid, r,NewNonce) to Tadv and wait for receiving
(p, lsid, r,Continue, corrupt, x) from Tadv where |x| ≤ q(η) and
corrupt ∈ {false, true}.

(b) If corrupt = true, then record x as corrupted.
(c) Add x to N (if x < N). Send (NewNonce, x) to (p, lsid, r).

Fig. 4. Ideal Crypto Functionality Fcrypto; parameterized by a polynomial q, a number n ∈ N
which defines the I/O interface, and a leakage algorithm L.
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Fcrypto(q, n, L)

4. Pre-shared keys: If m = (GetPSK, t, name) for some
t ∈ {authenc-key, unauthenc-key,mac-key, pre-key} and name ∈ {0, 1}∗, then:
(a) If there exists (t, k) ∈ K such that (t, k) is recorded as the pre-shared key name,

then create a new pointer ptr for (p, lsid, r) to (t, k) and send (GetPSK, ptr) to
(p, lsid, r). Otherwise, continue.

(b) Send (p, lsid, r,GetPSK, t, name) to Tadv and wait for receiving
(p, lsid, r,Continue, corrupt, k) from Tadv where |k| ≤ q(η),
corrupt ∈ {false, true}, corrupt = true if (t, name) is corrupted, ((t, k) < K or
(corrupt = true and (t, k) ∈ Kknown)).

(c) If corrupt = true, then record (ptr, (p, lsid, r)) and (t, name) as corrupted and add
(t, k) to Kknown.
Otherwise, record (t, k) as the pre-shared key name.

(d) Add (t, k) to K . Create a new pointer ptr for (p, lsid, r) to (t, k). Send
(GetPSK, ptr) to (p, lsid, r).

5. Key derivation: If m = (Derive, ptr, t′, s) for some ptr where
(t, k) = key(ptr, p, lsid, r) for some k and t = pre-key,
t′ ∈ {authenc-key, unauthenc-key,mac-key, pre-key}, and seed s ∈ {0, 1}∗, then:
(a) If there exists a bit string k′ such that (t′, k′) has been derived from (t, k) with seed

s, then create a new pointer ptr′ for (p, lsid, r) to (t′, k′) and send (Derive, ptr′) to
(p, lsid, r). Otherwise, continue.

(b) Send (p, lsid, r,Derive, t, k, t′, s, known) to Tadv where known = true iff
(t, k) ∈ Kknown and wait for receiving (p, lsid, r,Continue, k′) from Tadv where
|k′| ≤ q(η) and ((t′, k′) < K or ((t, k) ∈ Kknown and (t′, k′) ∈ Kknown)).

(c) If (t, k) ∈ Kknown, then add (t′, k′) to Kknown.
(d) Add (t′, k′) to K . Record (t′, k′) as derived from (t, k) with seed s. Create a new

pointer ptr′ for (p, lsid, r) to (t′, k′). Send (Derive, ptr′) to (p, lsid, r).
6. Store: If m = (Store, t, k) for some

t ∈ {authenc-key, unauthenc-key,mac-key, pre-key} and k ∈ {0, 1}∗, then: If
(t, k) ∈ Kunknown, then send (Store,⊥) to (p, lsid, r). Otherwise: Add (t, k) to K and
Kknown. Create a new pointer ptr for (p, lsid, r) to (t, k). Send (Store, ptr) to (p, lsid, r).

7. Retrieve: If m = (Retrieve, ptr) for some ptr where (t, k) = key(ptr, p, lsid, r) for some
t, k, then: Add (t, k) to Kknown. Send (Retrieve, k) to (p, lsid, r).

8. Equality test: If m = (Equal?, ptr, ptr′) for some ptr, ptr′ where
(t, k) = key(ptr, p, lsid, r) and (t′, k′) = key(ptr′, p, lsid, r) for some t, k, t′, k′, then: If
t = t′ and k = k′, send (Equal, true) to (p, lsid, r), otherwise, send (Equal, false) to
(p, lsid, r).

Fig. 5. Ideal Crypto Functionality Fcrypto; parameterized by a polynomial q, a number n ∈ N
which defines the I/O interface, and a leakage algorithm L. (continued)
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Fcrypto(q, n, L)

9. Encryption under symmetric keys: If m = (Enc, ptr, x) for some ptr, x where
(t, k) = key(ptr, p, lsid, r) for some t ∈ {authenc-key, unauthenc-key} and some k, x is
a valid user plaintext, and enct , ⊥ (i.e., the encryption algorithm is defined), then:
(a) In the following let e(·) = enct(k, ·), d(·) = dect(k, ·), and

decTable = decTable(t, k). If (t, k) ∈ Kunknown, then let ideal = true, otherwise, let
ideal = false.

(b) Translate pointers in x to keys, obtain x′: Obtain x′ from x by replacing every
pointer tagt′ (ptr′) in x (i.e., where
t′ ∈ {authenc-key, unauthenc-key,mac-key, pre-key}) by tagt′ (k

′) where
(t′, k′) = key(ptr′, p, lsid, r).

(c) Encrypt x′, obtain ciphertext y:
if x′ < dom(L)η then
y := ⊥

else if ideal = true then
x← L(1η, x′) , y← e(x) {simulate e(x); if more than q(η + |x|) steps are
needed, set y := ⊥}
if d(y) = x then {simulate d(y) deterministically; if more than q(η + |y|)
steps are needed, return ⊥}

add (x′, y) to decTable
else
y := ⊥

else {ideal = false}
y← e(x′) {simulate e(x′); if more than q(η + |x′|) steps are needed, set
y := ⊥}

(d) Update Kknown: If y , ⊥ and ideal = false, then: For every key tagt′ (k
′) in x′ (i.e.,

where t′ ∈ {authenc-key, unauthenc-key,mac-key, pre-key}), add (t′, k′) to
Kknown.

(e) Return ciphertext: Send (Enc, y) to (p, lsid, r).
10. Encryption under public keys: If m = (Enc, p′, pk′, x) for some p′, pk′, x where x is

a valid user plaintext, and pk(p′) , ⊥ (i.e., the public key of p′ is defined), then
perform the encryption as the encryption under symmetric keys where
e(·) = (encpke(p′))(pk′, ·), d(·) = (decpke(p′))(·), and decTable = decTablePKE(p′). If
pk′ = pk(p′) and p′ < CorruptPKE, then let ideal = true, otherwise, let ideal = false.

Fig. 6. Ideal Crypto Functionality Fcrypto; parameterized by a polynomial q, a number n ∈ N
which defines the I/O interface, and a leakage algorithm L. (continued)

42



Fcrypto(q, n, L)

11. Decryption under symmetric keys: If m = (Dec, ptr, y) for some ptr, y where
(t, k) = key(ptr, p, lsid, r) for some t ∈ {authenc-key, unauthenc-key} and some k,
y ∈ {0, 1}∗, and enct , ⊥, then:
(a) In the following let d(·) = dect(k, ·) and decTable = decTable(t, k). If

(t, k) ∈ Kknown or (t = unauthenc-key and there exists no x such that
(x, y) ∈ decTable), then let ideal = false, otherwise, let ideal = true.

(b) Decrypt y, obtain plaintext x′:
if ideal = true then

if ∃x1, x2 : x1 , x2 ∧ (x1, y), (x2, y) ∈ decTable then
x′ := ⊥

else if ∃x′′ : (x′′, y) ∈ decTable then
x′ := x′′

else {in case t = unauthenc-key, this cannot occur by definition of ideal}
x′ := ⊥

else {ideal = false}
x′ ← d(y) {simulate d(y) deterministically; if more than q(η + |y|) steps are
needed, set x′ := ⊥}
if x′ is not well-tagged then

x′ := ⊥
(c) Prevent guessing: If x′ , ⊥, ideal = false, and there exists a key tagt′ (k

′) in x′

such that (t′, k′) ∈ Kunknown, then set x′ := ⊥.
(d) Update Kknown: If x′ , ⊥ and ideal = false, then for every key tagt′ (k

′) in x′, add
(t′, k′) to K and Kknown.

(e) Translate keys in x′ to pointers, obtain x: Let x be the bit string obtained from x′

by doing the following for every key tagt′ (k
′) in x′: Create a new pointer ptr′ for

(p, lsid, r) to (t′, k′), and replace tagt′ (k
′) by tagt′ (ptr′) in x′.

(f) Return plaintext: Send (Dec, x) to (p, lsid, r).
12. Decryption under private keys: If m = (Dec, y) for some y ∈ {0, 1}∗ and pk(p) , ⊥

(i.e., the public key of p is defined), then perform the decryption as the decryption
under symmetric keys of type t = unauthenc-key where d(·) = (decpke(p))(·) and
decTable = decTablePKE(p). If p ∈ CorruptPKE or there exists no x such that
(x, y) ∈ decTable, then let ideal = false, otherwise, let ideal = true.

Fig. 7. Ideal Crypto Functionality Fcrypto; parameterized by a polynomial q, a number n ∈ N
which defines the I/O interface, and a leakage algorithm L. (continued)
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13. MAC: If m = (Mac, ptr, x) for some ptr, x where (t, k) = key(ptr, p, lsid, r) for some k
and t = mac-key, x ∈ {0, 1}∗, and mac , ⊥, then:
(a) Compute MAC: Compute σ← mac(k, x) (i.e., simulate mac(k, x); if more than

q(|k| + |x|) steps are needed, set σ := ⊥). If mac-verify(k, x, σ) , true (i.e.,
simulate mac-verify(k, x, σ) deterministically; if more than q(|k| + |x| + |σ|) steps
are needed, return ⊥), then set σ := ⊥.
If (t, k) ∈ Kunknown and σ , ⊥, then add ((t, k), x) to macTable.

(b) Return MAC: Send (Mac, σ) to (p, lsid, r).
14. Verify MAC: If m = (MacVerify, ptr, x, σ) for some ptr, x, σ where

(t, k) = key(ptr, p, lsid, r) for some k and t = mac-key, x, σ ∈ {0, 1}∗, and
mac-verify , ⊥, then:
(a) Verify MAC: Compute b := mac-verify(k, x, σ) (i.e., simulate mac-verify(k, x, σ)

deterministically; if more than q(|k| + |x| + |σ|) steps are needed, set b := ⊥).
(b) Prevent forgery: If (t, k) ∈ Kunknown, b = true, and ((t, k), x) < macTable, then set

b := ⊥.
(c) Return verification result: Send (MacVerify, b) to (p, lsid, r).

15. Corruption request for a symmetric key: If m = (Corrupted?, ptr) for some ptr
where key(ptr, p, lsid, r) , ⊥, then: If (ptr, p, lsid, r) ∈ Corrupt, send (Corrupted, true)
to (p, lsid, r), otherwise, send (Corrupted, false) to (p, lsid, r).

16. Corruption request for a public/private key: If m = (CorruptedPKE?) and
pk(p) , ⊥ (i.e., the public key of p is defined), then: If p ∈ CorruptPKE, send
(Corrupted, true) to (p, lsid, r), otherwise, send (Corrupted, false) to (p, lsid, r).

17. Corruption request for a nonce: If m = (CorruptedNonce?, x) and x ∈ N , then: If
x ∈ Ncorrupt, send (Corrupted, true) to (p, lsid, r), otherwise, send (Corrupted, false) to
(p, lsid, r).

Fig. 8. Ideal Crypto Functionality Fcrypto; parameterized by a polynomial q, a number n ∈ N
which defines the I/O interface, and a leakage algorithm L. (continued)
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C Proof of Theorem 3

The direction from left to right is easy to prove by standard cryptographic reductions.
Because the domain of plaintexts is the set of well-tagged bit strings, using the store and
retrieve commands, Fcrypto/Pcrypto can be used to encrypt any plaintext. Now, it is easy
to see that Fcrypto offers at least the possibilities as Oracle, defined in Appendix A.5. By
Lemma 1, we can conclude that if F ∗ | Pcrypto ≤ F

∗ | Fcrypto, then Σunauthenc and Σpub are
IND-CCA secure, Σauthenc is IND-CPA and INT-CTXT secure, and Σmac is UF-CMA
secure.

To prove the direction from right to left we use a hybrid argument, see Section 3.3
for a sketch of this proof. As mentioned in the proof sketch, we first introduce an in-
termediate system P′crypto where we replace public-key encryption with Σpub by the use
of the ideal functionality Fpke for public-key encryption presented in [35]. More pre-
cisely, P′crypto uses (instances of) Fpke as a sub-protocol. There will be one instance of
Fpke for every party which handles all requests for public/private keys of this party. The
addressing can be done using the session version Fpke of Fpke where the PID is used
as a session ID to address the different instances of Fpke; see [35] for details. In [35],
it has been shown that realizing Fpke by a public-key encryption scheme is equivalent
to the public-key encryption scheme being IND-CCA secure. From this, we obtain that
Pcrypto ≤ P

′
crypto.

Next, we show that P′crypto ≤ Fcrypto which completes the proof. Note that public-
key encryption in P′crypto and Fcrypto is already done identically in an ideal way. In the
following, we do not consider keys of type unauthenc-key. For such keys the presen-
tation of the proof is slightly more complicated because a key of type unauthenc-key
which is marked unknown could be used for decryption before it is used for encryption.
Now, if this is the r-th key than this decryption in the hybrid F̂ (r)

crypto will be handled by
Oracle. But then, the r-th key might become known (F ∗ does not prevent this because
it is not a commitment problem) and F̂ (r)

crypto needs to have the ability to extract the key
from Oracle; see [36] for details.

Formulation of the Simulator. The simulator Simcrypto is defined as follows: On the
first activation it provides the encryption, decryption, and MAC algorithms to Fcrypto.
Upon generation of fresh keys, pre-shared keys, and nonces, Simcrypto chooses keys and
nonces as P′crypto. Upon key derivation from an unknown key, Simcrypto chooses a fresh
key uniformly at random from {0, 1}η. Otherwise, it uses the pseudo-random function F
as P′crypto does. Furthermore, Simcrypto simulates the network interface of (instances of)
Fpke as it exists in P′crypto.

Formulation of Hybrid Systems. We define the hybrid systems F (r)
crypto and F̂ (r)

crypto for
all r ∈ N.

The system F (r)
crypto behaves like Fcrypto except that the order in which unknown keys are

used is tracked, as in F ∗. All keys with order < r are treated ideal (as in Fcrypto) but keys
with order ≥ r are treated real (as in the realization P′crypto). In Fcrypto the adversary was
not able to insert keys (upon key generation, store, decryption, or key derivation with
corrupted or known keys) that collide with unknown objects (guessing of objects that
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are ideally not known). Here, this is only guaranteed for keys of order ≤ r or as long as
there are no keys of order > r.

More formally: The system F (r)
crypto has an additional variable nextused ∈ N (initially

1) and maintains a partial function used from keys (K) to numbers (N) to keep track
of the order in which unknown keys are used. Preventing key guessing is relaxed as
follows:

1. For symmetric key generation [(New, t)], when receiving a key from the adversary,
the condition “(t, k) < K or (corrupt = true and (t, k) ∈ Kknown)” is replaced by
“(t, k) < K or (corrupt = true and Guess(r)(t, k) = false)” where Guess(r)(t, k) :=
true iff (t, k) ∈ Kunknown and (⊥ , used(t, k) ≤ r or nextused ≤ r).
We note that for every pair (t, k) we have that Guess(p)(t, k) = true iff (t, k) ∈
Kunknown where p bounds the runtime of the environment that uses Fcrypto. Fur-
thermore, Guess(0)(t, k) = false for every pair (t, k).

2. For storing keys [(Store, t, k)], the statement “If (t, k) ∈ Kunknown, then send (Store,
⊥) to (p, lsid, r).” is replaced by “If Guess(r)(t, k) = true, then send (Store,⊥) to
(p, lsid, r).”

3. For symmetric and public-key decryption [(Dec, ptr, y) and (Dec, y)], in Preventing
guessing, the condition “(t′, k′) ∈ Kunknown” is replaced by “Guess(r)(t′, k′) = true”.

Furthermore, for encryption and decryption under symmetric keys [(Enc, ptr, x) and
(Dec, ptr, y)] the definition of ideal (which determines whether encryption/decryption
is performed ideal or real) is modified:

1. For symmetric encryption:
if (t, k) ∈ Kunknown then

if used(t, k) = ⊥ then used(t, k) := nextused++
if used(t, k) < r then

ideal := true
else

ideal := false
else

ideal := false
2. For symmetric decryption:

if (t, k) ∈ Kunknown then
if ⊥ , used(t, k) < r or nextused ≤ r then

ideal := true
else

ideal := false
else

ideal := false

Finally, also key derivation [(Derive, ptr, t′, s)] changes:
Key Derivation: If m = (Derive, ptr, t′, s) for some ptr where (t, k) = key(ptr, p, lsid, r) for

some k and t = pre-key, t′ ∈ {authenc-key, unauthenc-key,mac-key, pre-key}, and seed
s ∈ {0, 1}∗, then:
(a) If there exists a bit string k′ such that (t′, k′) has been derived from (t, k) with seed s

(i.e., ((t′, k′), s) ∈ derived(t, k)), then create a new pointer ptr′ for (p, lsid, r) to (t′, k′)
and send (Derive, ptr′) to (p, lsid, r). Otherwise, continue.
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(b) If (t, k) ∈ Kknown, then set k′ := Fη(k, tagt(s)).
Otherwise, if used(t, k) is undefined (i.e., used(t, k) = ⊥), then used(t, k) := nextused++.
If used(t, k) < r, then choose k′←R{0, 1}η. Otherwise, set k′ := Fη(k, tagt′ (s)).

(c) If (t, k) ∈ Kknown and Guess(r)(t, k) = true, then send (Derive,⊥) to (p, lsid, r).
Otherwise, add (t′, k′) to K and ((t′, k′), s) to derived(t, k). If (t, k) ∈ Kknown, then add
(t′, k′) to Kknown. Create a new pointer ptr′ for (p, lsid, r) to (t′, k′). Send (Derive, ptr′)
to (p, lsid, r).

The system F̂ (r)
crypto behaves like F (r)

crypto except that it connects to Oracle and the key with
order r is relayed out and handled by calls to Oracle.

More formally: F̂ (r)
crypto has the additional I/O output tape T in

oracle and I/O input tape
T out

oracle. When a key gets assigned order r, i.e., used(t, k) := r is computed (either
upon encryption or key derivation), then Oracle is initialized, i.e., (Init, authenc) or
(Init, prf), respectively, is sent to Oracle. (Recall that we do not consider keys of type
unauthenc-key in this proof, see above.) Now, upon encryption [(Enc, ptr, x)] every
thing is exactly as in F (r)

crypto except that if (t, k) ∈ Kunknown and used(t, k) = r, then the
ciphertext y is obtained by sending (Enc, x′) to Oracle and waiting to receive y from
Oracle. Similarly, upon decryption [(Dec, ptr, y)] every thing is exactly as in F (r)

crypto ex-
cept that if (t, k) ∈ Kunknown and used(t, k) = r, then the plaintext x′ is obtained by send-
ing (Dec, y) to Oracle and waiting to receive x′ from Oracle. Likewise, upon key deriva-
tion [(Derive, ptr, t′, s)] every thing is exactly as in F (r)

crypto except that if (t, k) ∈ Kunknown
and used(t, k) = r, then the key k′ is obtained by sending (PRF, tagt′ (s)) to Oracle and
waiting to receive k′ from Oracle.

Proof of Theorem 3. After having defined the simulator Simcrypto and the hybrid sys-
tems F (r)

crypto and F̂ (r)
crypto, we now proof Theorem 3.

Let E be an environment for F ∗ | P′crypto and pE be a polynomial such that the overall
length of all messages output by E in any run of E |Q(1η, a) for any system Q, security
parameter η ∈ N and initial input a ∈ {0, 1}∗ is bound by pE(η + |a|). Since E is an
environmental system (all input tapes are consuming) such a polynomial always exists.

For all r ∈ N, b ∈ {real, ideal} we define the following combined systems:

C(r) = E | Simcrypto | F
∗ | F

(r)
crypto

Ĉ
(r)
b = E | Simcrypto | F

∗ | F̂
(r)

crypto | Oracle(b) .

Next, we define an error set (i.e., a negligible set of runs we do not want to consider)
for collisions of honestly generated keys and nonces. Let B(r)

coll(1
η, a) be the set of runs

of C(r)(1η, a) where the simulator Simcrypto or F (r)
crypto generates a new key of some type,

say t, or a nonce, that collides with some key in K or a nonce in N , respectively.
The following lemma is used in the proofs of Lemma 3 and 4. It is easy to prove

because we assume that all keys and nonces are chosen uniformly at random. But even
without this assumption the lemma is simple to prove because key collisions with non-
negligible probability can be used to construct an adversary with non-negligible advan-
tage.

Lemma 2. There exists a negligible function fcoll such that for all r ∈ N, η ∈ N and
a ∈ {0, 1}∗

Pr
[
B(r)

coll(1
η, a)

]
≤ fcoll(1η, a) . (1)
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In the following, we call two systems P and Q f -indistinguishable (P ≡ f Q) iff
the difference between the probability that P outputs 1 (on the decision tape) and the
probability that Q outputs 1 (on the decision tape) is bounded from above by f (1η, a)
for all security parameter η ∈ N and external input a ∈ {0, 1}∗.

Lemma 3. There exists a negligible function f0 such that

C(0) ≡ f0 E | F
∗ | P′crypto (2)

C(pE) ≡ f0 E | Simcrypto | F
∗ | Fcrypto . (3)

Proof. Let fcoll(1η, a) = Pr
[
B(0)

coll(1
η, a)

]
. By Lemma 2 we have that fcoll is negligible.

ad (2): Now, we show that E | F ∗ | P′crypto ≡ fcoll C
(0). Note that in every run of

C(0)(1η, a) it always holds that nextused ≥ 1 and for any (t, k) ∈ K it holds that
used(t, k) = ⊥ or used(t, k) > 0. In particular this implies that Guess(0)(t, k) = false
for all (t, k) ∈ K . One easily verifies that every run of C(0)(1η, a) where B(0)

coll(1
η, a) does

not occur corresponds, i.e., can be injectively mapped, to a run of E | F ∗ | P′crypto(1η, a)
with the same overall output and probability. We conclude that∣∣∣ Pr

[
E | F ∗ | P′crypto(1η, a){ 1

]
− Pr

[
C(0)(1η, a){ 1

]∣∣∣ ≤ fcoll(1η, a) .3

ad (3): First, we define an intermediate system Q which is defined exactly like the
ideal system E | Simcrypto | F

∗ | Fcrypto except that verification of a MAC is done as in the
real system, i.e., the request (MacVerify, ptr, x, σ) is handled as in P′crypto.

In every run of C(pE(η+|a|))(1η, a) it always holds that nextused ≤ pE(η + |a|), hence,
for all pairs (t, k) we have that Guess(pE(η+|a|))(t, k) = true iff (t, k) ∈ Kunknown. One
easily verifies that every run of C(pE(η+|a|))(1η, a) where B(pE(η+|a|))

coll (1η, a) does not occur
corresponds, i.e., can be injectively mapped, to a run of Q(1η, a) with the same overall
output and probability. We conclude that∣∣∣Pr

[
Q(1η, a){ 1

]
− Pr

[
C(pE(η+|a|))(1η, a){ 1

]∣∣∣ ≤ fcoll(1η, a) .

Next, by a hybrid argument, we prove that Q ≡ E | Simcrypto | F
∗ | Fcrypto which com-

pletes the proof. Therefore, we define the hybrid systemsQ(r) for r ∈ Nwhich connect to
Oracle. The system Q(r) is defined like Q except that we order the keys of type mac-key
in the order they are created (i.e., generated upon request of the form (New, t) or
(Derive, ptr, t′, s)). Note that this order is independent of the used-order defined above.
Now, Q(r) handles every MAC key of order < r as in Q, every key with order > r as in
E | Simcrypto | F

∗ | Fcrypto, and the key of order r is externally handled in Oracle. Using
Lemma 1, by a standard hybrid argument we obtain that Q ≡ E | Simcrypto | F

∗ | Fcrypto.

By defining appropriate error sets which basically exclude runs where the r-th key
is guessed by the environment we can prove the following lemma. The proof is similar
to the proof in [36] for Fenc.

3 By Pr[S(1η, a){ 1] we denote the probability that system S outputs 1 (on the decision tape)
upon external input a and security parameter η.
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Lemma 4. There exist negligible functions freal, fideal such that

C(r) ≡ freal Ĉ
(r)
real for all r ∈ N and (4)

C(r+1) ≡ fideal Ĉ
(r)
ideal for all r ∈ N . (5)

Finally, using the lemmas above, we complete the proof of Theorem 3. Let E′ be
the system that upon initial input a first chooses r ∈ {0, . . . , pE(η + |a|) − 1} uniformly
at random and then behaves exactly like E | Simcrypto | F

∗ | F̂
(r)

crypto(1η, a). Clearly, E′ is an
environment for Oracle and, hence, by Lemma 1 we find a negligible function fO such
that

E′ | Oracle(real) ≡ fO E
′ | Oracle(ideal) . (6)

By definition, for all η ∈ N, a ∈ {0, 1}∗, r < pE(η+ |a|), and b ∈ {real, ideal} it holds that

Pr
[
Ĉ

(r)
b (1η, a){ 1

]
= Pr

[
(E′ |Oracle(b))(1η, a){ 1

∣∣∣E′ chooses r
]

= pE(η + |a|) · Pr
[
(E′ |Oracle(b))(1η, a){ 1 and E′ chooses r

]
.

(7)

In the following, we abbreviate Pr[Q] = Pr[Q(1η, a){ 1] for all systems Q, pE =

pE(η + |a|), and fx = fx(1η, a) for all x. Now, for all η ∈ N and a ∈ {0, 1}∗ it holds that:∣∣∣Pr[E | F ∗ | P′crypto] − Pr[E | Simcrypto | F
∗ | Fcrypto]

∣∣∣
(2),(3)
≤

∣∣∣Pr
[
C(0)] − Pr

[
C(pE)]∣∣∣ + 2 f0 =

∣∣∣∣∑
r<pE

Pr
[
C(r)] − Pr

[
C(r+1)]∣∣∣∣ + 2 f0

(4),(5)
≤

∣∣∣∣∑
r<pE

Pr
[
Ĉ

(r)
real

]
− Pr

[
Ĉ

(r)
ideal

]∣∣∣∣ + 2 f0 + pE( freal + fideal)

(7)
= pE ·

∣∣∣∣ ∑
r<pE

Pr
[
E′ | Oracle(real) and E′ chooses r

]
− Pr

[
E′ | Oracle(ideal) and E′ chooses r

]∣∣∣∣ + 2 f0 + pE( freal + fideal)

= pE ·
∣∣∣Pr

[
E′ | Oracle(real)

]
− Pr

[
E′ | Oracle(ideal)

]∣∣∣ + 2 f0 + pE( freal + fideal)
(6)
≤ 2 f0 + pE( freal + fideal + fO) .

Since 2 f0 + pE( freal + fideal + fO) is negligible, F ∗ | P′crypto ≤ F
∗ | Fcrypto. This concludes

the proof. ut
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