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Abstract. The notion of indifferentiability, introduced by Maurer et al., is an important cri-
terion for the security of hash functions. Concretely, it ensures that a hash function has no
structural design flaws and thus guarantees security against generic attacks up to the exhibited
bounds. In this work we prove the indifferentiability of Grøstl, a second round SHA-3 hash func-
tion candidate. Grøstl combines characteristics of the wide-pipe and chop-Merkle-Damg̊ard it-
erations and uses two distinct permutations P and Q internally. Under the assumption that P
and Q are random l-bit permutations, where l is the iterated state size of Grøstl, we prove that
the advantage of a distinguisher to differentiate Grøstl from a random oracle is upper bounded
by O((Kq)4/2l), where the distinguisher makes at most q queries of length at most K blocks.
For the specific Grøstl parameters, this result implies that Grøstl behaves like a random oracle
up to q = O(2n/2) queries, where n is the output size.
Furthermore, we show that the output transformation of Grøstl, as well as ‘Grøstail’ (the
composition of the final compression function and the output transformation), are clearly dif-
ferentiable from a random oracle. This renders out indifferentiability proofs which rely on the
idealness of a final state transformation.

1 Introduction

Hash functions are a basic building block in cryptography. Formally, a hash function maps a
bit string of arbitrary length to an output string of fixed length, H : Z∗2 → Zl

2. An established
practice in the design of hash functions is to first construct a fixed input length compression
function, e.g. f : Zl

2×Zl
2 → Zl

2, and then iterate it to allow the processing of arbitrarily long
strings. The most popular iteration principle is the strengthened Merkle-Damg̊ard [13, 21]
design1. Common hash functions, such as members of the SHA and MD family, incorporate
the Merkle-Damg̊ard method in their design. However, recent attacks on the widely used
SHA-1 and MD5 [25, 26] have rendered these designs insecure. This grim situation has
triggered the launch of the SHA-3 competition [23] for the selection of a new secure hash
function algorithm by NIST (National Institute of Standards and Technology). In the current
second round of the competition, 14 candidates are under active evaluation.
These 14 candidates use a wide variety of iterative modes. Some of the designs still follow
the basic Merkle-Damg̊ard iteration. Others either add new features to it, or simply propose
different constructions. Candidates from the latter two classes include iterations based on the
chop-Merkle-Damg̊ard [14], HAIFA [7], wide-pipe [19] and Sponge [5] design strategies. The
main advantage of the basic Merkle-Damg̊ard construction is its collision security guarantee
under the assumption that the underlying compression function is collision resistant [13, 21].
Other important hash function security properties, such as second preimage and preimage
security are, however, not preserved by the Merkle-Damg̊ard iteration [1]. Moreover, the

1 Throughout, we will refer to it as the ‘Merkle-Damg̊ard design’.



extension attack shows that the Merkle-Damg̊ard hash function is clearly differentiable from
a monolithic random oracle [12].
A natural question that arises with the emerge of new iterative designs is to identify the
security properties achieved by these constructions. Other than the classical collision, second
preimage and preimage security properties, the indifferentiability property has gained more
recent attention due to the advancements in the theoretical differentiability model of Maurer
et al. [20] and their further development in the context of hashing [12, 2, 10, 18, 11, 15].
Indifferentiability is an important security criterion because it ensures that the hash function
has no structural design flaws in composition. Such a result provides a guarantee that no
generic attacks (attacks on the iteration which assume ideal behavior of the underlying
primitives) up to the proven bounds are possible.
In this work we analyze the indifferentiability of the Grøstl SHA-3 candidate [17]. Grøstl
borrows characteristics mainly from the wide-pipe and the chop-Merkle-Damg̊ard iterations:
the iterated state is wider than the final hash output, which classifies it as a type of a
wide-pipe design. The iterative message processing together with a final state truncation
in Grøstl resemble the chop-Merkle-Damg̊ard hash function with the added difference of
a present output transformation before truncation. More concretely, Grøstl processes its
inputs by first calling the compression function f iteratively, then applying a final output
transformation to the state and finally truncating the result to the desired output length.
The compression function f is built out of two permutations P and Q and the output
transformation is designed on top of the permutation P .

1.1 Our Result

Indifferentiability results on hash functions can be obtained following several different ap-
proaches. One way to argue indifferentiability is to assume ideal behavior of the first layer
components (i.e., the underlying compression functions), and prove the result for the concrete
composition of interest [12, 11]. Dodis et al. [16] relax the assumption on the internal com-
pression functions from a random oracle to preimage awareness. If a composition is preimage
aware, which they show is true for the Merkle-Damg̊ard iteration when the compression func-
tion is preimage aware itself, then they prove indifferentiability by assuming idealness only of
the final extra transformation. Both approaches turn out futile for the Grøstl hash function:
fixed points for the compression function can be found easily (as already observed in [17]),
and also the final output transformation is clearly differentiable from a random function.
Even stronger, if we consider the composition of the final compression function f and the
output transformation (with and without truncation), which we refer to as ‘Grøstail’, then
we prove that Grøstail is differentiable from a random function. We do so by demonstrating
an attack that tricks any simulator for the indifferentiability of Grøstail in only three oracle
queries. This result indicates that Grøstail is highly non-random and therefore the results of
[16] could not be applied directly.
The next attempt for an indifferentiability proof for the Grøstl hash function is to refine
the level of modularity and to explore the second layer integral components, i.e. the per-
mutations P and Q. In a similar fashion, Coron et al. [12] prove that the chop-Merkle-
Damg̊ard construction with Davies-Meyer (DM) [24] compression function is indifferentiable
from a random oracle assuming an ideal behavior from the block cipher underlying the DM
function. While the Grøstl iteration is a type of a DM chop-Merkle-Damg̊ard construction,



the latter result cannot be applied here due to clear design differences, such as the presence
of an output transformation. Instead, to prove indifferentiability of the Grøstl hash function
we start from scratch by assuming ideal behavior of the underlying permutations.
The proof is constructed following the indifferentiability theoretical framework by [20]. We
build a simulator for the permutations P and Q that is granted access to a random oracle.
The goal of the simulator is to answer its queries, such that it is hard for a distinguisher to
tell apart the interactions with the Grøstl hash functions and truly random permutations
from the ones with a random oracle and the simulator. The simulator is also consistent with
the outputs of the random oracle.
We prove that the advantage of a distinguisher to differentiate Grøstl from a random oracle
is upper bounded by O((Kq)4/2l), where the distinguisher makes at most q queries of length
at most K blocks to its oracles. Here, l is the iterated state size and n the output hash size
of Grøstl: l = 512 for n ≤ 256 and l = 1024 for n ≤ 512. Intuitively, this means that Grøstl
behaves like a random oracle up to q = O(2n/2) queries.
The JH [6], Keccak [4] and Shabal [8, 9] SHA-3 second round candidates have recently been
also proved indifferentiable. All of them claim security beyond the birthday bound (with re-
spect to the output length n). In particular, JH is proven indifferentiable up to O(q3/2l−m),
and Keccak and Shabal up to O((Kq)2/2l−m) where l is the size of the chaining value and m
the number of message bits compressed in one application of the compression function. We
notice however, that this is an unfair comparison: JH, Keccak and Shabal have iterated state
sizes l of 1024, 1600 and 1408 bits, respectively, which are significantly larger than the state
size of Grøstl. For comparison, Keccak-256 is indifferentiable up to bound O((Kq)2/2512),
while our result implies that Grøstl-256 would be indifferentiable up to O((Kq)4/21600), were
Grøstl be designed to have the same state size as Keccak.

2 Preliminaries

For n ∈ N, where N is the set of natural numbers, let Zn
2 denote the set of bit strings of length

n, (Zn
2 )∗ the set of strings of length a multiple of n and Z∗2 the set of strings of arbitrary

length. If x, y are strings, then x‖y is the concatenation of x and y. If k, l ∈ N then 〈k〉l
is the encoding of k as an l-bit string. If S is a set, then x

$← S denotes the uniformly

random selection of an element from S. We let y ← A(x) and y
$← A(x) be the assignment

to y of the output of a deterministic and randomized algorithm A, respectively, when run
on input x. For a function f , by dom(f) and rng(f) we denote the domain and range of
f , respectively. Abusing notation, by (x, y) ∈ f , we denote that x ∈ dom(f) and y = f(x).
A random oracle [3] is a function which provides a random output for each new query. A
random l-bit permutation is a function that is taken uniformly at random from the set of all
l-bit permutations. A random primitive will also be called ‘ideal’.

2.1 Grøstl

On input of a message of arbitrary length, the Grøstl hash function Gr : Z∗2 → Zn
2 outputs

a digest of n bits, with n ∈ {224, 256, 384, 512} [17]. Grøstl is a type of a wide-pipe design
where the iterated state size l is significantly larger than the final hash output. More con-
cretely: for n = 224, 256, l = 512, and for n = 384, 512, l = 1024. The Grøstl hash function



makes use of the Merkle-Damg̊ard construction to process its inputs, then applies an output
transformation on the state value and finally truncates (chops) the result from l to n bits. The
Grøstl compression function f : Zl

2×Zl
2 → Zl

2 is defined as f(h,m) = P (h⊕m)⊕Q(m)⊕h,
where P,Q : Zl

2 → Zl
2 are two l-bit permutations. Throughout, P and Q are considered to

be independent random permutations.

Fig. 1. The Grøstl hash function Gr.

For a fixed initialization vector IVn the hash function Gr (see Fig. 1) processes an arbitrary
length message M as follows:

(M1, . . . ,Mk) = pad(M),

h0 = IVn,

hi = f(hi−1,Mi) for i = 1, . . . , k,

hk+1 = P (hk)⊕ hk,
Gr(M) = chopl−n(hk+1),

where chopl−n(x) chops off the l − n rightmost bits of x, and the padding function pad is
defined as pad(M) = M ′, with M ′ = M‖1‖0−|M |−65 mod l‖〈d(|M | + 65)/le〉64, parsed as a
sequence of l-bit blocks. On input of a message M ′ ∈

(
Zl

2

)∗
, the function depad(M ′) is defined

as follows: if M ′ = pad(M) for some message M , it outputs this M , otherwise it outputs ⊥.
Observe that the output is unique as the padding function is injective. For an M ∈

(
Zl

2

)∗
, we

denote by Z(M) the set of all values m ∈ Zl
2 that make (M,m) a valid padding. Formally:

Z(M) = {m ∈ Zl
2 | depad(M,m) 6= ⊥}. Apart from the indifferentiability of the Grøstl hash

function, we also consider the Grøstail function F : Zl
2 × Zl

2 → Zl
2, a composition of the last

compression function f with the final transformation (i.e., Grøstail is the ‘tail’ of Grøstl):

F(h,m) = P (f(h,m))⊕ f(h,m). (1)

2.2 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [20] is an extension of the
classical notion of indistinguishability. It proves that if a construction CG based on an ideal
subcomponent G is indifferentiable from an ideal primitive R, then CG can replace R in any
system.

Definition 1. A Turing machine C with oracle access to an ideal primitive G is said to be
(tD, tS , q, ε) indifferentiable from an ideal primitive R if there exists a simulator S, such that
for any distinguisher D it holds that:

Advpro
C,S(D) =

∣∣∣Pr
(
DCG ,G = 1

)
− Pr

(
DR,SR = 1

)∣∣∣ < ε.



The simulator has oracle access to R and runs in time at most tS. The distinguisher runs
in time at most tD and makes at most q queries.

In the remainder, we refer to CG ,G as the ‘real world’, and to R,SR as the ‘simulated world’;
the distinguisher D converses either with the real or the simulated world and its goal is to tell
both worlds apart. D can query both its ‘left oracle’ L (either C or R) and its ‘right oracle’ R
(either G or S). In the remainder, R has four interfaces, corresponding to forward and inverse
queries to permutations P and Q. These interfaces are denoted by RP , RP−1 , RQ, RQ−1 .

3 Differentiability of Grøstail

A recent result by Dodis et al. [16] prescribes how to prove indifferentiability of hash functions
by ways of preimage awareness. Loosely speaking, Dodis et al. proved that if H : Z∗2 → Zl

2

is a preimage aware hash function and RO : Zl
2 → Zl

2 is a random function, then the
composition RO ◦ H is indifferentiable from a random oracle. One might be tempted to
consider this approach for the indifferentiability analysis of Grøstl, i.e., by assuming that
the output transformation is a random oracle and then prove the Grøstl hash function
(without the output transformation) to be preimage aware. However, the behavior of the
output transformation P (x) ⊕ x deviates significantly from a random function: similarly
to the Davies-Meyer construction [22], fixed points P (x) ⊕ x = x are easy to compute by
making the inverse query P−1(0) = x. A second attempt is to go one step backwards in the
iteration and view the last compression function together with the output transformation,
i.e., Grøstail (1), as a random function. We show that this approach also fails since Grøstail
is easily differentiable from a random function.

Proposition 1. Let P,Q be two random l-bit permutations, let F be the Grøstail compression
function (1), and let RO : Zl

2 × Zl
2 → Zl

2 be a random function. For any simulator S that
makes at most q queries to RO, there exists a distinguisher D that makes at most 3 queries
to its oracle, such that:

Advpro
F,S(D) ≥ 1− q

2l
.

Proof. Let S be any simulator that makes at most q queries to RO. We construct a distin-
guisher D that with overwhelming probability distinguishes Grøstail from a random function
in 3 oracle queries. The distinguisher proceeds as follows. First, it makes inverse queries
x2 = RQ−1(0) and x1 = RP−1(x2). Then, it makes a query to the left oracle to obtain
y = L(x1 ⊕ x2, x2). If D converses with (FP,Q, (P,Q)), then, by construction:

y = FP,Q(x1 ⊕ x2, x2) = P (x1)⊕ x1 = x1 ⊕ x2.

If D converses with (RO, SRO), this equation holds only if the simulator can find x1, x2 such
that RO(x1 ⊕ x2, x2) = x1 ⊕ x2, i.e., only if the simulator can find a fixed point for RO. As
the probability for the simulator to find fixed points for RO is upper bounded by q/2l, the
advantage for D to distinguish, Advpro

F,S(D), is lower bounded by 1− q/2l. ut

If the final truncation is included in Grøstail as well, a lower bound 1−q/2n can be obtained
similarly.



4 Indifferentiability of Grøstl

In this section, we present the main result of this paper: we show that the Grøstl hash
function is indifferentiable from a random oracle, under the assumption that the underlying
permutations P,Q are ideal. Intuitively, we demonstrate that there exists a simulator such
that no distinguisher can differentiate the real world GrP,Q, (P,Q) from the simulated world
RO, SRO, except with negligible probability.

Theorem 1. Let P,Q be two random l-bit permutations, let Gr be the Grøstl hash function
(Sect. 2.1), and let RO be a random oracle. Let D be a distinguisher that makes at most qL
left queries of maximal length (K−1)l bits, where K ≥ 1, qP right queries to P and qQ right
queries to Q, and runs in time t. Then:

Advpro
Gr,S(D) ≤

58(qP + (K + 1)qL)2(qQ +KqL)2

2l
, (2)

where S makes at most qS ≤ qP queries to RO and runs in time O(max{qP , qQ}4).

The simulator S used in the proof mimics the behavior of random permutations P and Q
such that queries to S and queries to RO are ‘consistent’, which means that relations among
the query outputs in the real world hold in the simulated world as well. To this end, the
construction of the simulator is based on several designing decisions. In what remains, the
simulator used in the proof (Fig. 2) is introduced and explained in more detail. Then, Thm. 1
is proven in Sect. 4.3.

4.1 Initialization of the Simulator

The simulator maintains two, initially empty, databases P,Q that represent the permu-
tations it simulates. It has four interfaces, denoted by SP ,SP−1 , SQ,SQ−1 , and access to
RO. Furthermore, the simulator maintains a graph (V,E), initially ({IV }, ∅). The edges
e ∈ E are labeled by messages in Zl

2: any (x1, y1) ∈ P and (x2, y2) ∈ Q define an edge

x1⊕x2
x2−→ x1⊕x2⊕y1⊕y2 in (V,E). Intuitively, an edge in (V,E) corresponds to an evalu-

ation of the Grøstl compression function f , and if there is a path IV
M1−→ s1

M2−→ · · · Mk−→ sk in

(V,E), then f(. . . f(f(IV,M1),M2) . . . ,Mk) = sk. Abusing notation, we denote by s
M−→ t

that there is a path from s to t in (V,E) with the edges labeled by M ∈
(
Zl

2

)∗
. We say that

(V,E) contains colliding paths if there exists an s ∈ V such that IV
M−→ s and IV

M ′−→ s are
two paths in (V,E), for different M,M ′ ∈

(
Zl

2

)∗
.

Furthermore, by Vout, Vin we denote the set of vertices in V with an outgoing or ingo-
ing edge, respectively. Observe that after qP , qQ queries to P,Q, the sets Vout, Vin are of
size at most qP qQ. By r(V ), we denote the set of all rooted nodes in V , i.e.: r(V ) ={
v ∈ V

∣∣ ∃ M ∈ (Zl
2

)∗
such that IV

M−→ v
}

. By construction, r(V ) ⊆ Vin. Finally, we in-

troduce a specific subset of r(V ):

r̄(V ) =
{
v ∈ V

∣∣ ∃ M ∈ (Zl
2

)∗
such that IV

M−→ v and depad(M) 6= ⊥
}
.

For simplicity, V, r(V ) and r̄(V ) are updated by the simulator implicitly.



4.2 Intuition Behind the Simulator

In this section we take a closer look at the simulator of Fig. 2 by starting with an example.
Consider the case that a node x is a member of both r̄(V ) and dom(P ). This means that (1)

there exists an M such that IV
M−→ x and depad(M) 6=⊥, and (2) there exists a y ∈ rng(P ),

such that y = P (x). In the real world (where the left oracle is the Grøstl hash function),
these values satisfy Gr(depad(M)) = chopl−n(x ⊕ y) by construction. If the simulator does
not answer its queries wisely, this equality would hold with negligible probability in the
simulated world. More generally, the simulator can guarantee that this equation holds only
if x is added to dom(P ) after it was added to r̄(V ) (reflected in requirement R3 below)2.
Maintaining consistency, however, becomes harder when |r̄(V )| and |dom(P )| increase. The
idea behind the simulator is to answer its queries such that it can control the growth of r(V ),
and in particular the growth of r̄(V ) as a subset of r(V ), while still maintaining consistency
in its answers. Intuitively, the simulator responds to its queries, such that the following
requirements are satisfied:

R1. There are no colliding paths in (r(V ), E). Observe that two different paths to the same
node may lead to distinguishability for D as the simulator can be consistent with only
one of the paths. This requirement is satisfied if r(V ) is never increased with a node
that has two incoming edges in the updated3 graph;

R2. S increases r(V ) only if it is forced to do. In particular, r(V ) is never increased with
a node that has an outgoing edge in the updated graph. Observe that each path in
(r(V ), E) leads to a potential node in r̄(V );

R3. S never increases r̄(V ) with a node that is a member of the updated dom(P );

R4. S increases dom(P ) with a node in r̄(V ) only if it is forced to. Observe that in case of
inverse queries to P , the simulator can avoid outputting elements in r̄(V ). In forward
queries to P , the simulator may be forced to increase r̄(V ) ∩ dom(P ). In this case, it
consults its oracle RO to generate the answer.

The first two conditions are regarding the growth of r(V ), and the second two concern the
growth of r̄(V ) ∩ dom(P ). We show how these conditions occur in the description of the
simulator in Fig. 2. We first consider requirements R1 and R2, then we look at R3 and R4.

Restricting the growth of r(V )
Inverse queries. Consider an inverse query y1 to SP−1 . It is easy to see that both R1 and
R2 are satisfied if the simulator outputs its answer x1, such that none of the newly added
vertices {x1 ⊕ x2 | x2 ∈ dom(Q)} to Vout is already rooted. A similar observation holds for
queries to SQ−1 . These requirements translate to lines 3e and 4c in the description of the
simulator in Fig. 2.

2 Observe that RO(depad(M)) = chopl−n(SP (x)⊕ x) should hold for IV
M−→ x. If x ∈ dom(P ) before it is

added to r̄(V ), this means that SP (hk)⊕ x is fixed before RO(depad(M)) is known.
3 This requirement should hold for the ‘updated’ graph, which can be seen as follows: suppose the distin-

guisher makes a forward query x1 to SP such that x1 ⊕ x2, x1 ⊕ x′2 ∈ r(V ) for different x2, x
′
2 ∈ dom(Q),

and both x1 ⊕ x2 ⊕ y1 ⊕ y2 and x1 ⊕ x′2 ⊕ y1 ⊕ y′2 are not in V yet. By construction, these nodes have zero
incoming edges in the non-updated (V,E), but it may accidentally be the case that these nodes are equal,
in which case they have two incoming edges in the updated graph.



Forward queries. In forward queries to SP , SQ, the simulator may be forced to increase
r(V ). Consider a query x1 to SP , and consider any x2 ∈ dom(Q) such that x1 ⊕ x2 ∈ r(V ).

Then, the edge x1⊕x2
x2−→ x1⊕x2⊕y1⊕y2 will be added to (V,E) by construction. Denote

by V ′ the multiset of updated nodes after the query. Then, we require that x1⊕x2⊕ y1⊕ y2

does not occur twice in V ′in (in order to establish R1), and moreover that it does not occur in
V ′out (in order to establish R2). If we define Vnew = {x1⊕x′2, x1⊕x′2⊕ y1⊕ y′2 | (x′2, y′2) ∈ Q}
to be the multiset of newly added nodes to V in the query to RP , both requirements are
satisfied if x1⊕ x2⊕ y1⊕ y2 6∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) holds for all (x2, y2) ∈ Q such
that x1⊕x2 ∈ r(V ). A similar condition can be derived for queries to SQ. These requirements
translate to lines 1k and 2e in the description of the simulator in Fig. 2.

Restricting the growth of r̄(V ) ∩ dom(P )
Inverse queries. As explained, S never increases r̄(V ) ⊆ r(V ) in inverse queries. Hence,
requirement R3 is naturally satisfied. Furthermore, R4 is guaranteed if queries to SP−1 are
never answered with a node in r̄(V ). This requirement translates to line 3c from Fig. 2.

Forward queries. First consider requirement R3. Let the distinguisher make a query to
SP or SQ, such that r̄(V ) gets increased. By construction and the fact that requirement R2

is satisfied, this means that an edge x1 ⊕ x2
x2−→ x1 ⊕ x2 ⊕ y1 ⊕ y2 is added to (V,E), such

that IV
M−→ x1 ⊕ x2 for some M ∈

(
Zl

2

)∗
, and x2 ∈ Z(M). The simulator needs to be

designed such that the newly added value to r̄(V ), x1 ⊕ x2 ⊕ y1 ⊕ y2, is not a member of
(the updated) dom(P ). This requirement translates to lines 1l and 2f in Fig. 2. Requirement
R4 is clearly not applicable to queries to SQ. Consider a query x1 to SP , where x1 ∈ r̄(V ).
Then, the simulator is forced to increase r̄(V ) ∩ dom(P ). As x1 ∈ r̄(V ), there exists an M

such that IV
M−→ x1 and depad(M) 6= ⊥. The output of the simulator needs to be consistent

with its random oracle, such that RO(depad(M)) = chopl−n(SP (x1)⊕x1). This requirement
translates to lines 1b-1e in the description of the simulator in Fig. 2.

4.3 Proof of Thm. 1

Thm. 1 will be proven via a game-playing argument, where the games are used to simulate
one of the worlds (left or right). It is inspired by the proofs of [12], but differs in several
aspects. Let S be the simulator of Fig. 2, and let D be any distinguisher that makes at most
qL left queries of maximal length (K − 1)l bits, where K ≥ 1, qP right queries to P and qQ
right queries to Q. Recall from Def. 1 that the goal is to bound:

Advpro
Gr,S(D) =

∣∣∣Pr
(
DGrP,Q,(P,Q) = 1

)
− Pr

(
DRO,SRO

= 1
)∣∣∣ . (3)

Game 1 (Fig. 3). The left oracle L1 of game 1 is a lazily-sampled random oracle, and
the four interfaces of the right oracle are the simulator of Fig. 2, except for the inclusion of
some failure conditions badi (i = 0, . . . , 4). In other words, we have G1 = (RO, SRO), and

in particular, Pr
(
DRO,SRO

= 1
)

= Pr
(
DG1 = 1

)
.

Game 2 (Fig. 4). Game 2 only differs from game 1 in the left oracle: L1 is replaced by a
relay oracle L2 that simply passes the queries made by the distinguisher to L1. The right
oracle remains unchanged, and still queries the subroutine L1. The distinguisher has identical



On query SP (x1):

1a if x1 ∈ dom(P ) ret y1 = P (x1)

1b if x1 ∈ r̄(V ) for IV
M−→ x1 :

1c h← RO(depad(M))

1d w
$← Zl−n

2

1e y1 ← x1 ⊕ (h‖w)

1f if y1 ∈ rng(P ) :

1g GOTO 1d

1h else y1
$← Zl

2\rng(P )

1i Vnew ← {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ Q} multiset

1j ∀ (x2, y2) ∈ Q s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

1k if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

1l
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P ) ∪ {x1}

)
:

1m GOTO 1b

1n ret P (x1)← y1

On query SQ(x2):

2a if x2 ∈ dom(Q) ret y2 = Q(x2)

2b y2
$← Zl

2\rng(Q)

2c Vnew ← {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y
′
1) ∈ P} multiset

2d ∀ (x1, y1) ∈ P s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

2e if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

2f
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P )

)
:

2g GOTO 2b

2h ret Q(x2)← y2

On query SP−1 (y1):

3a if y1 ∈ rng(P ) ret x1 = P−1(y1)

3b x1
$← Zl

2\dom(P )

3c if x1 ∈ r̄(V ) :

3d GOTO 3b

3e ∀ x2 ∈ dom(Q) : if x1 ⊕ x2 ∈ r(V ) :

3f GOTO 3b

3g ret P−1(y1)← x1

On query SQ−1 (y2):

4a if y2 ∈ rng(Q) ret x2 = Q−1(y2)

4b x2
$← Zl

2\dom(Q)

4c ∀ x1 ∈ dom(P ) : if x1 ⊕ x2 ∈ r(V ) :

4d GOTO 4b

4e ret Q−1(y2)← x2

Fig. 2. The simulator S for P and Q used in the proof of Thm. 1.

views in G1 and G2. Formally, we obtain Pr
(
DG1 = 1

)
= Pr

(
DG2 = 1

)
.

Game 3 (Fig. 5). Game 3 differs from game 2 in the fact that the left oracle L2 is replaced
by the Grøstl hash function, which makes queries to the right oracle. The right oracle itself
remains unchanged, and still queries subroutine L1. It is proven in Prop. 2 that, until bad :=∨4

i=0 badi occurs in any of the two games, both are identical. Formally, we obtain:∣∣Pr
(
DG2 = 1

)
− Pr

(
DG3 = 1

)∣∣ ≤ Pr
(
DG2 sets bad

)
+ Pr

(
DG3 sets bad

)
. (4)

Game 4 (Fig. 6). Game 4 differs from game 3 in the fact that the right oracle does not
query subroutine L1 anymore, but rather, it generates the outcomes itself. Concretely, in
line 1c, h is now randomly sampled from Zn

2 . The distinguisher cannot notice the difference:
as the padding rule is injective, in game 3 the right oracle RP will never query its left oracle

twice on the same value, and hence it will always receive h
$← Zn

2 . Formally, we obtain
Pr
(
DG3 = 1

)
= Pr

(
DG4 = 1

)
.

Game 5 (Fig. 6). Game 5 only differs from game 4 in the fact that the GOTO-statements
are removed. In other words, game 5 and game 4 proceed identically until bad occurs. As a
consequence: ∣∣Pr

(
DG4 = 1

)
− Pr

(
DG5 = 1

)∣∣ ≤ Pr
(
DG4 sets bad

)
. (5)

Game 6 (Fig. 7). The left oracle of game 6 is the Grøstl algorithm, and the four interfaces
of the right oracle perfectly mimic two lazily-sampled random permutations P and Q. In



other words, we have G6 = (GrP,Q, (P,Q)), and thus Pr
(
DG6 = 1

)
= Pr

(
DGrP,Q,(P,Q) = 1

)
.

The only difference between games 6 and 5 is in the forward queries to RP : in game 5, some
queries to RP are answered with uniform random samples from Zl

2. Therefore, distinguishing
game 6 from game 5 is at least as hard as distinguishing a random permutation from a random
function. As RP will be queried at most qP + (K + 1)qL =: rP times, we obtain:

∣∣Pr
(
DG5 = 1

)
− Pr

(
DG6 = 1

)∣∣ ≤ r2
P

2l
. (6)

Finally, observe that Pr
(
DG2 sets bad

)
≤ Pr

(
DG3 sets bad

)
= Pr

(
DG4 sets bad

)
. Now,

we conclude that (3) reduces to:

Advpro
Gr,S(D) ≤

r2
P

2l
+ 3 · Pr

(
DG4 sets bad

)
.

Game 7 (Fig. 8). Game 7 is used to simplify the computation of the probability that
DG4 sets bad. In game 7, the failure conditions for bad0, . . . ,bad4 of game 4 are rewritten
into sets A0, . . . , A4. By the straightforward definition of A0, A3 and A4, it is clear that for
i = 0, 3, 4, DG4 sets badi if and only if DG7 sets badi. Now, suppose DG4 sets bad1. This
means that for some (x2, y2) ∈ Q such that x1 ⊕ x2 ∈ r(V ) either one of the following two
cases occurred:

y1 =

{
x1 ⊕ x2 ⊕ y2 ⊕ s, for some s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) ,
x1 ⊕ x2 ⊕ y2 ⊕ x′1, for some x′1 ∈ dom(P ) ∪ {x1}.

By definition of A1, this means that y1 ∈ A1. In other words, DG7 sets bad1 if DG4

sets bad1. A similar observation holds for bad2. As a consequence, Pr
(
DG4 sets bad

)
≤

Pr
(
DG7 sets bad

)
, and therefore we obtain:

Advpro
Gr,S(D) ≤

r2
P

2l
+ 3 · Pr

(
DG7 sets bad1 | ¬bad0

)
+ 3

4∑
i=0
i 6=1

Pr
(
DG7 sets badi

)
. (7)

In the remainder, we concentrate on the computation of these probabilities. Observe that the
distinguisher makes at most qP + (K + 1)qL =: rP queries to RP , RP−1 and qQ +KqL =: rQ
queries to RQ, RQ−1 .

Pr
(
DG7 sets bad0

)
. Consider the jth query to RP , 1 ≤ j ≤ rP . The probability that bad0

is set in this query, badj
0, equals the probability that y1 hits A0. But as y1 is taken

uniformly at random from a set of size 2l, and A0 is of size at most rP , badj
0 occurs with

probability at most rP
2l

. By the union bound, we obtain:

Pr
(
DG7 sets bad0

)
≤
r2
P

2l
; (8)

Pr
(
DG7 sets bad1 | DG7 sets ¬bad0

)
. Consider the jth query to RP , 1 ≤ j ≤ rP . The

probability that bad1 is set in this query, badj
1, equals the probability that y1 hits A1.

But as y1 is taken uniformly at random from a set of size at least 2l − rP (because DG7



sets ¬bad0), and A1 is of size at most rQ(2rP rQ + rP ), badj
1 occurs with probability at

most
rP rQ(2rQ+1)

2l−rP
. By the union bound, we obtain:

Pr
(
DG7 sets bad1 | DG7 sets ¬bad0

)
≤
r2
P rQ(2rQ + 1)

2l − rP
; (9)

Pr
(
DG7 sets bad2

)
. Consider the jth query to RQ, 1 ≤ j ≤ rQ. The probability that

bad2 is set in this query, badj
2, equals the probability that y2 hits A2. But as y2 is

taken uniformly at random from a set of size at least 2l − rQ, and A2 is of size at most

rP (2rP rQ + rP ), badj
2 occurs with probability at most

r2P (2rQ+1)

2l−rQ
. By the union bound,

we obtain:

Pr
(
DG7 sets bad2

)
≤
r2
P rQ(2rQ + 1)

2l − rQ
; (10)

Pr
(
DG7 sets bad3

)
. Consider the jth query to RP−1 , 1 ≤ j ≤ rP . The probability that

bad3 is set in this query, badj
3, equals the probability that x1 hits A3. But as x1 is

taken uniformly at random from a set of size at least 2l − rP , and A3 is of size at most

rP rQ + rP r
2
Q, badj

3 occurs with probability at most
rP rQ(rQ+1)

2l−rP
. By the union bound, we

obtain:

Pr
(
DG7 sets bad3

)
≤
r2
P rQ(rQ + 1)

2l − rP
; (11)

Pr
(
DG7 sets bad4

)
. Consider the jth query to RQ−1 , 1 ≤ j ≤ rQ. The probability that

bad4 is set in this query, badj
4, equals the probability that x2 hits A4. But as x2 is taken

uniformly at random from a set of size at least 2l − rQ, and A4 is of size at most r2
P rQ,

badj
4 occurs with probability at most

r2P rQ
2l−rQ

. By the union bound, we obtain:

Pr
(
DG7 sets bad4

)
≤

r2
P r

2
Q

2l − rQ
. (12)

Combining (7) and (8)-(12), under the assumption that rP , rQ < 2l−1, we obtain:

Advpro
Gr,S(D) ≤

58(qP + (K + 1)qL)2(qQ +KqL)2

2l
.

This completes the proof of Thm. 1.

Proposition 2. Until bad occurs in either game 2 or game 3, both games are identical.
Formally, we have Pr

(
DG2 = 1

∣∣ DG2 sets ¬bad
)

= Pr
(
DG3 = 1

∣∣ DG3 sets ¬bad
)
.

Proof. We need to prove that the query outcomes in game 2 and 3 are identically distributed,
until the distinguisher sets bad in either one of the games. As the right oracles of the games
are the same, D can differentiate game 2 and 3 only if it discovers any inconsistencies in
the answers by the left oracles (L2 for game 2 and L3 for game 3), given any list of queries
made by D to the right oracle. Denote by P,Q the query history to the right oracles RP , RQ,
and denote by (V,E) the graph defined by these queries (cf. Sect. 4.1). Denote any query
history to Li (i = 2, 3) by L. Furthermore, denote by P̃ , Q̃ the set of queries to the right
oracles that are observed by the distinguisher4, and denote by (Ṽ , Ẽ) the subgraph defined

4 In game 3, the right oracles RP , RQ are also queried in each call to the left oracle, via lines 6d, 6e and 6g,
but the distinguisher does not observe these queries.



by these. We focus on the outcomes of the left oracle: we need to prove that given the views
P̃ , Q̃, and given query history L, the outcomes of new queries to the left oracle are identically
distributed in game 2 and 3. Concretely, for α ∈ Zn

2 , we analyze the probability

Pr
(
Li(M) = α in Gi | P̃ , Q̃,L; M 6∈ dom(L); DGi sets ¬bad

)
. (13)

Define M ′ = (M ′1, . . . ,M
′
k) = pad(M) to be the padding of M . The query Li(M) is called

‘evaluatable’ by P̃ , Q̃ if there exists an hk in r̄(Ṽ ) such that IV
M ′−→ hk, and hk ∈ dom(P̃ ).

We will show that for both games the following holds: if Li(M) is evaluatable by P̃ , Q̃,
the query answer can be obtained deterministically from this history. On the other hand,
if it is not evaluatable by P̃ , Q̃, (13) holds with probability 1/2n only. In other words, this
probability is the same in both games i = 2, 3, which proves the claim that the answers by
L2, L3 are identically distributed.
For the purpose of the proof, we also consider evaluatability by P,Q, which is defined similarly
as before. Observe that Hi(M) is evaluatable by P,Q if it is evaluatable by P̃ , Q̃. We now
analyze (13). First we consider the case Li(M) is evaluatable by P̃ , Q̃. Then we consider the
case it is not evaluatable by these views (but it may be evaluatable by P,Q).

(1) Li(M) (i = 2, 3) is evaluatable by P̃ , Q̃. In both games, this means that there exists

an hk in r̄(Ṽ ) such that IV
M ′−→ hk, and hk ∈ dom(P̃ ). By Claim 2 below, there are no

colliding paths and in particular the described path M ′ is unique. Furthermore, due to
Claim 3 below, hk had been added to dom(P̃ ) in a forward query, after it was added
to r̄(Ṽ ). Therefore, by line 1c, we have RP (hk) = hk ⊕ (h‖w), where h = L1(M). As a
consequence, L1(M), and thus L2(M) and L3(M), is fully determined by P̃ , Q̃, which
means that the outcomes in game 2 and 3 are identically distributed;

(2) Li(M) (i = 2, 3) is not evaluatable by P̃ , Q̃, but it is evaluatable by P,Q. This
event is excluded for game 2 as (P̃ , Q̃) = (P,Q) in this game. In game 3, P,Q also
includes queries made to the right oracle via the left oracle L3. We will show, however,
that (13) holds with probability 1/2n then. Similarly to case (1), there exists an hk in

r̄(V ) ∩ dom(P ) such that IV
M ′−→ hk and RP (hk) = hk ⊕ (h‖w), where h = L1(M).

But L3(M) is not evaluatable by P̃ , Q̃, which means that hk had been queried to RP

independently of P̃ , Q̃. Furthermore, L3(M) is also independent of L.5 Concluding, (13)
holds with probability 1/2n in this case;

(3) Li(M) (i = 2, 3) is not evaluatable by P,Q. As a consequence, there either exists no

hk ∈ r̄(V ) such that IV
M ′−→ hk, or there exists such hk, but it is no element of dom(P ).

For game 2, as M 6∈ dom(L) this implies that M had not been queried to L1 before
(L1 is queried in lines 6a and 1c only). Therefore, in this case L2(M) outputs a value
h randomly sampled from Zn

2 . For game 3, let j ≤ k be the maximal index such that

IV = h0
M ′1−→ · · ·

M ′j−→ hj is a path in (V,E). We consider the following cases:

(i) j = k. Then, there exists an hk ∈ r̄(V ) such that IV
M ′−→ hk, but as L3(M) is

not evaluatable, we have hk 6∈ dom(P ). In line 6h of the oracle query of L3(M),

5 Observe that in game 3, L consists of pairs (M̄, h̄) such that h̄ = chopl−n(RP (h̄k) ⊕ h̄k) for some h̄k ∈
r̄(V ) ∩ dom(P ), where, by Claim 3, RP (h̄k) had been generated via lines 1b-1e. As there are no colliding
paths in (V,E) by Claim 2, hk differs from all such h̄k’s, and in particular L reveals nothing about L3(M).



RP (hk) will then be computed via lines 1b-1e:RP (hk) = hk⊕(h‖w) for h
$← Zn

2 . The
outcome L3(M) thus equals L3(M) = chopl−n(RP (hk)⊕hk) = h. As a consequence,
the outcomes of L2 and L3 are identically distributed in this case;

(ii) j < k. Then, there exists a path IV → hj labeled by (M ′1, . . . ,M
′
j), but (V,E)

contains no edge hj → hj+1 labeled by M ′j+1. By virtue of Claim 2, in the (j+ 1)th

iteration of lines 6c-6f, a new node hj+1 will be added to r(V ) such that hj+1 was
not rooted yet and there is no outgoing edge from hj+1 in the updated graph. The
same holds for all subsequent iterations, and in particular hk will be newly added to
r̄(V ) in the kth iteration. Due to Claim 3, this newly added note is not an element
of dom(P ) after this last round. Now, the same analysis as in (3i) applies. ut

Claim 2. Suppose DGi sets ¬bad (for i = 2, 3). Consider a node s ∈ r(V ), and a right
oracle query in which an edge (s, t) will be added to (V,E). Denote by (V ′, E′) the updated
graph (after the query). Then, t has no incoming or outgoing edge in (V ′, E′\{(s, t)}).
As a consequence, after the execution of Gi, the final graph contains no colliding paths.

Proof. In a right query to RP−1 or RQ−1 , none of the newly added edges have a rooted
node as starting point, by ¬(bad3 ∨ bad4) (lines 3f and 4c). Consider a query x1 to RP ,
and let (V,E) be the graph before the query. An outgoing edge from s ∈ r(V ) will only be
added if s = x1 ⊕ x2 for some x2 ∈ dom(Q). By construction, the end node of the edge is
x1⊕x2⊕ y1⊕ y2 =: t. By line 1l and ¬bad1, we have (a) t 6∈ V , (b) none of the newly added
edges will leave from t and (c) apart from (s, t), none of the newly added edges will arrive
at t. As a consequence, t is an isolated node in (V ′, E′\{(s, t)}). A similar argument holds
for queries to RQ, by line 2e and ¬bad2.
We prove that the final graph contains no colliding paths by mathematical induction. Before
the first query is made, E = ∅ and hence no colliding paths occur. Assume (V,E) contains
no colliding paths and consider a right oracle query. We can sequentially apply the above
reasoning and discard all newly added edges (s, t) for s ∈ r(V ), in order to observe that
colliding paths in (V ′, E′) imply colliding paths in (V,E). By the induction hypothesis, these
do not occur. ut

Claim 3. Suppose DGi sets ¬bad (for i = 2, 3). Consider a right oracle query in which a
node t will be added to r̄(V ). Then, t is no element of (the updated) dom(P ). Furthermore,
r̄(V ) ∩ dom(P ) will only be increased in forward queries to RP .

Proof. As a direct consequence of Claim 2, r̄(V ) will be increased only if an edge x1⊕x2
x2−→

x1⊕x2⊕ y1⊕ y2 is added such that IV
M−→ x1⊕x2 is a path in (V,E), and x2 ∈ Z(M). Due

to lines 1m and 2f, and by ¬(bad1 ∨bad2), this newly added node is not an element of (the
updated) dom(P ). Furthermore, an inverse query to RP will never be answered with a node
already in r̄(V ), by line 3c and ¬bad3, and therefore r̄(V ) ∩ dom(P ) will only be increased
in forward queries to P . ut
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On right query RP (x1):

1a if x1 ∈ dom(P ) ret y1 = P (x1)

1b if x1 ∈ r̄(V ) for IV
M−→ x1 :

1c h← L1(depad(M))

1d w
$← Zl−n

2

1e y1 ← x1 ⊕ (h‖w)

1f if y1 ∈ rng(P ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(P )

1j Vnew ← {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ Q} multiset

1k ∀ (x2, y2) ∈ Q s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

1l if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

1m
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P ) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret P (x1)← y1

On right query RQ(x2):

2a if x2 ∈ dom(Q) ret y2 = Q(x2)

2b y2
$← Zl

2\rng(Q)

2c Vnew ← {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y
′
1) ∈ P} multiset

2d ∀ (x1, y1) ∈ P s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

2e if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

2f
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P )

)
:

2g bad2 ← true

2h GOTO 2b

2i ret Q(x2)← y2

On right query RP−1 (y1):

3a if y1 ∈ rng(P ) ret x1 = P−1(y1)

3b x1
$← Zl

2\dom(P )

3c if x1 ∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2 ∈ dom(Q) : if x1 ⊕ x2 ∈ r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret P−1(y1)← x1

On right query RQ−1 (y2):

4a if y2 ∈ rng(Q) ret x2 = Q−1(y2)

4b x2
$← Zl

2\dom(Q)

4c ∀ x1 ∈ dom(P ) : if x1 ⊕ x2 ∈ r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret Q−1(y2)← x2

On left query L1(M):

5a if M ∈ dom(H) ret h = H(M)

5b h
$← Zn

2

5c ret H(M)← h

Fig. 3. Game 1. The distinguisher has access to L1, R
L1 .



On right query RP (x1):

1a if x1 ∈ dom(P ) ret y1 = P (x1)

1b if x1 ∈ r̄(V ) for IV
M−→ x1 :

1c h← L1(depad(M))

1d w
$← Zl−n

2

1e y1 ← x1 ⊕ (h‖w)

1f if y1 ∈ rng(P ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(P )

1j Vnew ← {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ Q} multiset

1k ∀ (x2, y2) ∈ Q s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

1l if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

1m
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P ) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret P (x1)← y1

On right query RQ(x2):

2a if x2 ∈ dom(Q) ret y2 = Q(x2)

2b y2
$← Zl

2\rng(Q)

2c Vnew ← {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y
′
1) ∈ P} multiset

2d ∀ (x1, y1) ∈ P s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

2e if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

2f
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P )

)
:

2g bad2 ← true

2h GOTO 2b

2i ret Q(x2)← y2

On right query RP−1 (y1):

3a if y1 ∈ rng(P ) ret x1 = P−1(y1)

3b x1
$← Zl

2\dom(P )

3c if x1 ∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2 ∈ dom(Q) : if x1 ⊕ x2 ∈ r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret P−1(y1)← x1

On right query RQ−1 (y2):

4a if y2 ∈ rng(Q) ret x2 = Q−1(y2)

4b x2
$← Zl

2\dom(Q)

4c ∀ x1 ∈ dom(P ) : if x1 ⊕ x2 ∈ r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret Q−1(y2)← x2

Subroutine L1(M):

5a if M ∈ dom(H) ret h = H(M)

5b h
$← Zn

2

5c ret H(M)← h

On left query L2(M):

6a ret h← L1(M)

Fig. 4. Game 2. The distinguisher has access to LL1
2 , RL1 .



On right query RP (x1):

1a if x1 ∈ dom(P ) ret y1 = P (x1)

1b if x1 ∈ r̄(V ) for IV
M−→ x1 :

1c h← L1(depad(M))

1d w
$← Zl−n

2

1e y1 ← x1 ⊕ (h‖w)

1f if y1 ∈ rng(P ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(P )

1j Vnew ← {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ Q} multiset

1k ∀ (x2, y2) ∈ Q s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

1l if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

1m
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P ) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret P (x1)← y1

On right query RQ(x2):

2a if x2 ∈ dom(Q) ret y2 = Q(x2)

2b y2
$← Zl

2\rng(Q)

2c Vnew ← {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y
′
1) ∈ P} multiset

2d ∀ (x1, y1) ∈ P s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

2e if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

2f
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P )

)
:

2g bad2 ← true

2h GOTO 2b

2i ret Q(x2)← y2

On right query RP−1 (y1):

3a if y1 ∈ rng(P ) ret x1 = P−1(y1)

3b x1
$← Zl

2\dom(P )

3c if x1 ∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2 ∈ dom(Q) : if x1 ⊕ x2 ∈ r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret P−1(y1)← x1

On right query RQ−1 (y2):

4a if y2 ∈ rng(Q) ret x2 = Q−1(y2)

4b x2
$← Zl

2\dom(Q)

4c ∀ x1 ∈ dom(P ) : if x1 ⊕ x2 ∈ r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret Q−1(y2)← x2

Subroutine L1(M):

5a if M ∈ dom(H) ret h = H(M)

5b h
$← Zn

2

5c ret H(M)← h

On left query L3(M):

6a (M ′1, . . . ,M
′
k)← pad(M)

6b h0 ← IVn

6c for i = 1, . . . , k :

6d a← RQ(M ′i)

6e b← RP (hi−1 ⊕M ′i)

6f hi ← a⊕ b⊕ hi−1

6g d← RP (hk)

6h h← chopl−n(d⊕ hk)

6i ret h

Fig. 5. Game 3. The distinguisher has access to LRL1

3 , RL1 .



On right query RP (x1):

1a if x1 ∈ dom(P ) ret y1 = P (x1)

1b if x1 ∈ r̄(V ) :

1c h
$← Zn

2

1d w
$← Zl−n

2

1e y1 ← x1 ⊕ (h‖w)

1f if y1 ∈ rng(P ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(P )

1j Vnew ← {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ Q} multiset

1k ∀ (x2, y2) ∈ Q s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

1l if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

1m
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P ) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret P (x1)← y1

On right query RQ(x2):

2a if x2 ∈ dom(Q) ret y2 = Q(x2)

2b y2
$← Zl

2\rng(Q)

2c Vnew ← {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y
′
1) ∈ P} multiset

2d ∀ (x1, y1) ∈ P s.t. x1 ⊕ x2 ∈ r(V ) for IV
M−→ x1 ⊕ x2 :

2e if x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) or

2f
(
x2 ∈ Z(M) and x1 ⊕ x2 ⊕ y1 ⊕ y2 ∈ dom(P )

)
:

2g bad2 ← true

2h GOTO 2b

2i ret Q(x2)← y2

On right query RP−1 (y1):

3a if y1 ∈ rng(P ) ret x1 = P−1(y1)

3b x1
$← Zl

2\dom(P )

3c if x1 ∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2 ∈ dom(Q) : if x1 ⊕ x2 ∈ r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret P−1(y1)← x1

On right query RQ−1 (y2):

4a if y2 ∈ rng(Q) ret x2 = Q−1(y2)

4b x2
$← Zl

2\dom(Q)

4c ∀ x1 ∈ dom(P ) : if x1 ⊕ x2 ∈ r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret Q−1(y2)← x2

On left query L3(M):

5a (M ′1, . . . ,M
′
k)← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M ′i)

5e b← RP (hi−1 ⊕M ′i)

5f hi ← a⊕ b⊕ hi−1

5g d← RP (hk)

5h h← chopl−n(d⊕ hk)

5i ret h

Fig. 6. Game 4 (including the boxed statements) and game 5 (with the boxed statements
removed). In both games, the distinguisher has access to LR

3 , R.

On right query RP (x1):

1a if x1 ∈ dom(P ) ret y1 = P (x1)

1b y1
$← Zl

2\rng(P )

1c ret P (x1)← y1

On right query RQ(x2):

2a if x2 ∈ dom(Q) ret y2 = Q(x2)

2b y2
$← Zl

2\rng(Q)

2c ret Q(x2)← y2

On right query RP−1 (y1):

3a if y1 ∈ rng(P ) ret x1 = P−1(y1)

3b x1
$← Zl

2\dom(P )

3c ret P−1(y1)← x1

On right query RQ−1 (y2):

4a if y2 ∈ rng(Q) ret x2 = Q−1(y2)

4b x2
$← Zl

2\dom(Q)

4c ret Q−1(y2)← x2

On left query L3(M):

5a (M ′1, . . . ,M
′
k)← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M ′i)

5e b← RP (hi−1 ⊕M ′i)

5f hi ← a⊕ b⊕ hi−1

5g d← RP (hk)

5h h← chopl−n(d⊕ hk)

5i ret h

Fig. 7. Game 6. The distinguisher has access to LR
3 , R.



On right query RP (x1):

1a if x1 ∈ dom(P ) ret y1 = P (x1)

1b if x1 ∈ r̄(V ) :

1c h
$← Zn

2

1d w
$← Zl−n

2

1e y1 ← x1 ⊕ (h‖w)

1f if y1 ∈ A0 :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(P )

1j if y1 ∈ A1 :

1k bad1 ← true

1l GOTO 1b

1m ret P (x1)← y1

On right query RQ(x2):

2a if x2 ∈ dom(Q) ret y2 = Q(x2)

2b y2
$← Zl

2\rng(Q)

2c if y2 ∈ A2 :

2d bad2 ← true

2e GOTO 2b

2f ret Q(x2)← y2

On right query RP−1 (y1):

3a if y1 ∈ rng(P ) ret x1 = P−1(y1)

3b x1
$← Zl

2\dom(P )

3c if x1 ∈ A3 :

3d bad3 ← true

3e GOTO 3b

3f ret P−1(y1)← x1

On right query RQ−1 (y2):

4a if y2 ∈ rng(Q) ret x2 = Q−1(y2)

4b x2
$← Zl

2\dom(Q)

4c if x2 ∈ A4 :

4d bad4 ← true

4e GOTO 4b

4f ret Q−1(y2)← x2

On left query L3(M):

5a (M ′1, . . . ,M
′
k)← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M ′i)

5e b← RP (hi−1 ⊕M ′i)

5f hi ← a⊕ b⊕ hi−1

5g d← RP (hk)

5h h← chopl−n(d⊕ hk)

5i ret h

A0 = rng(P );

A1 =
⋃

(x2,y2)∈Q

( {
x1 ⊕ x2 ⊕ y2 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}
∪{

x1 ⊕ x2 ⊕ y2 ⊕ x′1| x′1 ∈ dom(P ) ∪ {x1}
})

,

where Vnew = {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ Q} is a multiset;

A2 =
⋃

(x1,y1)∈P

( {
x1 ⊕ x2 ⊕ y1 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}
∪{

x1 ⊕ x2 ⊕ y1 ⊕ x′1| x′1 ∈ dom(P )
})

,

where Vnew = {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y
′
1) ∈ P} is a multiset;

A3 = r̄(V ) ∪ {x2 ⊕ s | x2 ∈ dom(Q), s ∈ r(V )} ;

A4 = {x1 ⊕ s | x1 ∈ dom(P ), s ∈ r(V )} .

Fig. 8. Game 7. The distinguisher has access to LR
3 , R.
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