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Abstract. We describe two improvements to Gentry's fully homomorphic scheme based on ideal lat-
tices and its analysis: we provide a re�ned analysis of one of the hardness assumptions (the one related
to the Sparse Subset Sum Problem) and we introduce a probabilistic decryption algorithm that can
be implemented with an algebraic circuit of low multiplicative degree. Combined together, these im-
provements lead to a faster fully homomorphic scheme, with a eO(λ3) bit complexity per elementary
binary add/mult gate, where λ is the security parameter. These improvements also apply to the fully
homomorphic schemes of Smart and Vercauteren [PKC'2010] and van Dijk et al. [Eurocrypt'2010].
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1 Introduction

A homomorphic encryption scheme allows any party to publicly transform a collection of cipher-
texts for some plaintexts π1, . . . , πn into a ciphertext for some function/circuit f(π1, . . . , πn) of the
plaintexts, without the party knowing the plaintexts themselves. Such schemes are well known to
be useful for constructing privacy-preserving protocols, for example as required in `cloud comput-
ing' applications: a user can store encrypted data on a server, and allow the server to process the
encrypted data without revealing the data to the server. For over 30 years, all known homomorphic
encryption schemes supported only a limited set of functions f , which restricted their applicability.
The theoretical problem of constructing a fully homomorphic encryption scheme supporting arbi-
trary functions f , was only recently solved by the breakthrough work of Gentry [11]. More recently,
two further fully homomorphic schemes were presented [27, 7], following Gentry's framework. The
underlying tool behind all these schemes is the use of Euclidean lattices, which have previously
proved powerful for devising many cryptographic primitives (see, e.g., [22] for a recent survey).

A central aspect of Gentry's fully homomorphic scheme (and the subsequent schemes) is the
ciphertext refreshing (Recrypt) operation. The ciphertexts in Gentry's scheme contain a random
`noise' component that grows in size as the ciphertext is processed to homomorphically evaluate a
function f on its plaintext. Once the noise size in the ciphertext exceeds a certain threshold, the
ciphertext can no longer be decrypted correctly. This limits the number of homomorphic operations
that can be performed. To get around this limitation, the Recrypt operation allows to `refresh' a
ciphertext, i.e., given a ciphertext ψ for some plaintext π, to compute a new ciphertext ψ′ for π
(possibly for a di�erent key), but such that the size of the noise in ψ′ is smaller than the size of the
noise in ψ. By periodically refreshing the ciphertext (e.g., after computing each gate in f), one can
then evaluate arbitrarily large circuits f .

The Recrypt operation is implemented by evaluating the decryption circuit of the encryption
scheme homomorphically, given `fresh' (low noise) ciphertexts for the bits of the ciphertext to be re-
freshed and the scheme's secret key. This homomorphic computation of the decryption circuit must



of course be possible without any ciphertext refreshing, a condition referred to as bootstrappability.
Thus, the complexity (in particular circuit depth, or multiplicative degree) of the scheme's decryp-
tion circuit is of fundamental importance to the feasibility and complexity of the fully homomorphic
scheme. Unfortunately, the relatively high complexity of the decryption circuit in the schemes [11,
27, 7], together with the tension between the bootstrappability condition and the security of the
underlying hard problems, implies the need for large parameters and leads to resulting encryption
schemes of high bit-complexity.

Our Contributions. We present improvements to Gentry's fully homomorphic scheme [11] and
its analysis, that reduce its complexity. Overall, letting λ be the security parameter (i.e., all known
attacks against the scheme take time at least 2λ), we obtain a Õ(λ3) bit complexity for refreshing
a ciphertext corresponding to a 1-bit plaintext. This is the cost per gate of the fully homomorphic
scheme. To compare with, Gentry [10, Ch. 12] claims a Õ(λ6) bit complexity for the same task,
although the proof is incomplete.3

Our improved complexity stems from two sources. First, we give a more precise security analysis
of the Sparse Subset Sum Problem (SSSP) against lattice attacks, compared to the analysis given
in [11]. The SSSP, along with the Ideal lattice Bounded Distance Decoding (BDD) problem, are the
two hard problems underlying the security of Gentry's fully homomorphic scheme. In his security
analysis of BDD, Gentry uses the best known complexity bound for the approximate shortest vector
problem (SVP) in lattices, but in analyzing SSSP, Gentry assumes the availability of an exact SVP
oracle. Our new �ner analysis of SSSP takes into account the complexity of approximate SVP,
making it more consistent with the assumption underlying the analysis of the BDD problem, and
leads to smaller parameter choices. Note that we actually use a vector variant of SSSP, which seems
more resistant to lattice attacks, but looks somewhat less natural.4 Second, we relax the de�nition of
fully homomorphic encryption to allow for a negligible but non-zero probability of decryption error.
We then show that, thanks to the randomness underlying Gentry's `SplitKey' key generation for his
squashed decryption algorithm (i.e., the decryption algorithm of the bootstrappable scheme), if one
allows a negligible decryption error probability, then the rounding precision used in representing
the ciphertext components can be approximately halved, compared to the precision in [11] which
guarantees zero error probability. The reduced ciphertext precision allows us to decrease the degree
of the decryption circuit. We mainly concentrate on Gentry's scheme [11], but our improvements
apply equally well to the other related schemes [27, 7].

Road-map. In Section 2, we provide the background that is necessary to the understanding of our
results. Section 3 contains a summary of Gentry's fully homomorphic encryption scheme. Section 4
contains our �rst contribution: an improved analysis of the hardness of the SSSP problem against
lattice attacks. In Section 5, we present our second contribution: an improvement to Gentry's ci-
phertext refreshing (`recrypt') algorithm. Then, in Section 6, we analyze the implications of our
improvements on the asymptotic e�ciency of Gentry's scheme, and �nally in Section 7 we discuss
how our work can be adapted to other fully homomorphic schemes.

3 This bound is claimed to hold for the scheme after Optimizations 1 and 2 of Section 12.3, but the analysis does not
include the cost of the ciphertext expansion nor details which decryption circuit is applied homomorphically. For
instance, evaluating the decryption circuit from [7, Le. 6.3] is too costly to derive the eO(λ6) bound. These gaps in

the complexity analysis can be �lled using the results of the present article, and the bound eO(λ6) indeed holds.
4 Our �ner analysis also gives an improved complexity assuming the hardness of the more natural integer SSSP
problem used by Gentry, but in this case the resulting ciphertext refreshing complexity is higher, namely eO(λ3.5)
bit operations.
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Notation. Vectors will be denoted in bold. If x ∈ Rn, then ‖x‖ denotes the Euclidean norm
of x. We make use of the Landau notations O(·), Õ(·), o(·), ω(·), Ω(·), Ω̃(·), Θ(·), Θ̃(·). If n grows to
in�nity, we say that a function f(n) is negligible if it is asymptotically ≤ n−c for any c > 0. If X is a
random variable, E[X] denotes its mean and Pr[X = x] denotes the probability of the event X = x.
We say that a sequence of events En holds with overwhelming probability if Pr[¬En] ≤ f(n) for a
negligible function f . If D1 and D2 are two probability distributions over a discrete domain E, their
statistical distance is 1

2

∑
x∈E |D1(x)−D2(x)|. We will use the following variant of the well-known

Hoe�ding bound [13, Th. 2].

Lemma 1.1. Let X1, . . . , Xt denote independent random variables with mean µ, where Xi ∈ [ai, bi]
for some real vectors a, b. Let X =

∑
iXi. Then, for any k ≥ 0, the following bound holds:

Pr [|X − tµ| ≥ k] ≤ 2 · exp(−2k2/‖b− a‖2).

2 Reminders

For a detailed introduction to the computational aspects of lattices, we refer to [21]. The article [12]
provides an intuitive description of Gentry's fully homomorphic scheme.

2.1 Euclidean lattices

An n-dimensional lattice L is the set of all integer linear combinations of some linearly independent
vectors b1, . . . , bn ∈ Zn, i.e., L =

∑
Zbi. The bi's are called a basis of L. A basis B = (b1, . . . , bn) ∈

Zn×n is said to be in Hermite Normal Form (HNF) if bi,j = 0 for i > j and 0 ≤ bi,j < bi,i
otherwise. The HNF of a lattice is unique and can be computed in polynomial time given any basis,
which arguably makes it a worst-case basis [20]. To a basis B = (b1, . . . , bn) ∈ Zn×n for lattice L,
we associate the fundamental parallelepiped P(B) = {v =

∑
i yi · bi : yi ∈ (−1/2, 1/2]}. For a

vector v ∈ Rn, we denote by v mod B the unique vector v′ ∈ P(B) such that v−v′ ∈ L. Note that
v′ = v − BbB−1ve, where b·e rounds the coe�cients to the nearest integers (upwards in case of a
real that is equally distant to two consecutive integers).

The minimum λ1(L) is the norm of any shortest non-zero vector in L. We now de�ne two
parametrized families of algorithmic problems that are central for euclidean lattices. Let γ ≥ 1
be a function of the dimension. The γ-SVP (for Shortest Vector Problem) computational problem
consists in �nding a vector b ∈ L such that 0 < ‖b‖ ≤ γλ1(L), given as input an arbitrary basis
for L. The γ-BDD (for Bounded Distance Decoding) computational problem consists in �nding
a vector b ∈ L closest to t given as inputs an arbitrary basis for L and a target vector t whose
distance to L is ≤ γλ1(L). Solving γ-SVP and γ-BDD are computationally hard problem. The
best algorithms for solving them for γ = 1 ([14, 2, 3]) run in time exponential with respect to the
dimension. Oppositely, the smallest γ one can achieve in polynomial time is exponential, up to
poly-logarithmic factors in the exponent ([18, 25, 4]). For intermediate γ, the best strategy is the
hierarchical reductions of [25], and leads to the following conjecture.

Lattice `Rule of Thumb' Conjecture. There exists an absolute constant c such that for any λ
and any dimension n, one cannot solve γ-SVP (resp. γ-BDD) in time smaller 2λ, with γ = cn/λ.

There have been many improvements since the inventions of the algorithms above (see, e.g., [8, 23,
16]), but so far they have only lead to improved constants, without changing the overall framework.

3



The conjecture above also seems to hold even if one considers quantum computations [19]. In the
present work, we will consider this conjecture for several di�erent families of lattices: no algorithm
is known to perform non-negligibly better for these than for more general lattices.

For a lattice L, we de�ne det(L) as the magnitude of the determinant of any of its bases.
Minkowski's theorem provides a link between the minimum and the volume of a given lattice.

Theorem 2.1 ([6, III.2.2]). Let L be an n-dimensional lattice and V be a compact convex set that

is symmetric about the origin. Let m ≥ 1 be an integer. If vol(V ) ≥ m2n det(L)1/n, then V contains

at least m non-zero pairs of points ±b of L.

2.2 Ideal lattices

Let f ∈ Z[x] a monic degree n irreducible polynomial. Let R denote the polynomial ring Z[x]/f .
Let I be an (integral) ideal of R, i.e., a subset of R that is closed under addition, and multiplication
by arbitrary elements of R. By mapping polynomials to the vectors of their coe�cients, we see
that the ideal I corresponds to a sublattice of Zn: we can thus view I as both a lattice and an
ideal. An ideal lattice for f is a sublattice of Zn that corresponds to an ideal I ⊆ Z[x]/f . In the
following, an ideal lattice will implicitly refer to an f -ideal lattice. For v ∈ R we denote by ‖v‖ its
Euclidean norm (as a vector). We de�ne a multiplicative expansion factor γ×(R) for the ring R by

γ×(R) = maxu,v∈R
‖u×v‖
‖u‖·‖v‖ . A typical choice is f = xn+1 with n a power of 2, for which γ×(R) =

√
n

(see [11, Th. 9]).
We say that two ideals I and J of R are coprime if I + J = R, where I + J = {i + j :

i ∈ I, j ∈ J}. An ideal I is said prime of degree 1 if det(I) is prime. For an ideal J of R, we
de�ne J−1 = {v ∈ Q[x]/f : ∀u ∈ J,u × v ∈ R}. This is an ideal of the fraction �eld Q[x]/f of R,
and it is included in 1

det JR (since (det J) ·R ⊆ J). If f = xn + 1 with n a power of 2, then R is the
ring of integers of the (2n)th cyclotomic �eld and J−1×J = R for any integral ideal J (the product
of two ideals being de�ned similarly to the sum). An ideal I is said principal if it is generated by
a single element r ∈ I, and then we write I = (r). We de�ne rotf (r) ∈ Qn×n as the basis of I
consisting of the xkr(x) mod f 's, for k ∈ [0, n− 1].

If I is an ideal lattice for f = xn + 1, then we have λ1(I) ≥ det(I)1/n: an easy way to prove
it is to notice that the rotations xkv of any shortest non-zero vector v form a basis of a full-rank
sublattice of I, and to use the inequalities λ1(I)n =

∏
k ‖xkv‖ ≥ det((v)) ≥ det I.

2.3 Homomorphic encryption

In this section, we review de�nitions related to homomorphic encryption. Our de�nitions are based
on [11, 10], but we slightly relax the de�nition of decryption correctness, to allow a negligible prob-
ability of error. This is essential for our probabilistic improvement to Gentry's Recrypt algorithm.

De�nition 2.1 (Homomorphic Encryption). A homomorphic encryption scheme Hom consists

of four algorithms:

� KeyGen: Given security parameter λ, outputs a secret key sk and public key pk.
� Enc: Given plaintext π ∈ {0, 1} and public key pk, returns ciphertext ψ.
� Dec: Given ciphertext ψ and secret key sk, returns plaintext π.
� Eval: Given public key pk, a t-input circuit C (consisting of addition and multiplication gates

modulo 2), and a tuple of ciphertexts (ψ1, . . . , ψt) (corresponding to the t input bits of C), returns
a ciphertext ψ (corresponding to the output bit of C).

4



The scheme Hom is correct for a family of circuits C taking at most t = Poly(λ) input bits if

for any C ∈ C and for any input bits π1, . . . , πt, the following holds with overwhelming probability

over the randomness of KeyGen and Enc:

Dec(sk,Eval(pk,C, (ψ1, . . . , ψt))) = C(π1, . . . , πt),

where (sk, pk) = KeyGen(λ) and ψi = Enc(pk, πi) for i = 1, . . . , t.
The scheme Hom is compact if for any circuit C with at most t = Poly(λ) input bits, the size

of the ciphertext Eval(pk,C, (ψ1, . . . , ψt))) is bounded by a �xed polynomial b(λ).

Gentry [11] de�ned the powerful notion of a bootstrappable homomorphic encryption scheme: one
that can homomorphically evaluate a decryption of two ciphertexts followed by one gate applied to
the decrypted values. We again relax this notion to allow decryption errors.

De�nition 2.2 (Bootstrappable Homomorphic Encryption). Let Hom = (KeyGen,Enc,Dec,Eval)
denote a homomorphic encryption scheme. We de�ne two circuits:

� Dec− Add: Takes as inputs a secret key sk and two ciphertexts ψ1, ψ2, and computes Dec(sk, ψ1)+
Dec(sk, ψ2) mod 2.

� Dec−Mult: Takes as inputs a secret key sk and two ciphertexts ψ1, ψ2, and computes Dec(sk, ψ1)×
Dec(sk, ψ2) mod 2.

We say that Hom is bootstrappable if it is correct for C = {Dec− Add,Dec−Mult}.

Gentry discovered that a bootstrappable homomorphic encryption can be used to homomorphi-
cally evaluate arbitrary circuits. More precisely, he proved the following result (adapted to allow for
decryption error).

Theorem 2.2 ([11, Se. 2]). Given a bootstrappable homomorphic encryption scheme Hom, and

parameters d = Poly(λ), it is possible to construct another homomorphic encryption scheme Hom(d)

that is compact and correct for all circuits of size Poly(λ). Furthermore, if the scheme Hom is

semantically secure, then so is the scheme Hom(d).

The main idea of the transformation of Theorem 2.2 is as follows. The scheme Hom(d) as-
sociates independent key pairs (ski, pki) (for i ≤ d) of scheme Hom, one for each of the d lev-
els of circuit C. The secret key for Homd is (sk1, . . . , skd) and the public key is (pk1, . . . , pkd)
along with (sk1,2, . . . , skd−1,d), where ski,i+1 denotes a tuple of ` ciphertexts for the ` bits of

secret key ski encrypted under pki+1. The Eval(d) algorithm for Homd then works as follows.
The ciphertexts for the bits of C at level i are encrypted with pki (with level 1 corresponding
to the inputs). Given level i ciphertexts ψi,1, ψi,2, that we assume decrypt under ski to bit val-
ues π1 = Dec(ski, ψi,1) and π2 = Dec(ski, ψi,2), and are given as inputs to a multiply (resp.

add) gate mod 2, algorithm Eval(d) computes a level i + 1 ciphertext ψi+1 for the gate output
value π = π1 × π2 mod 2 as follows: It �rst individually encrypts the bits of ψi,1 and ψi,2 un-
der pki+1 to get a tuple of bit ciphertexts ψi,1 and ψi,2 (at this stage, the plaintexts are twice

encrypted); then it inputs all the pki+1-encrypted ciphertexts (ski,i+1, ψi,1, ψi,2) to the Eval al-
gorithm of Hom with public key pki+1 and circuit Dec−Mult; hence, by the bootstrappabil-
ity of Hom, except for negligible probability (over (ski+1, pki+1) and the randomness used to
compute the pki+1-encrypted ciphertexts ψi,1 and ψi,2), the resulting ciphertext ψi+1 decrypts
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to Dec(ski+1, ψi+1) = Dec(ski, ψ1) × Dec(ski, ψ2) mod 2, as required. By a union bound over all
gates in the circuit C, we see that Hom(d) is correct for all circuits of depth at most d.

Note that the above error probability analysis uses the fact that the bits of the ciphertexts ψi,1
and ψi,2 are independent of (ski+1, pki+1). Gentry also described in [10, Se. 4.3] a variant where
all d levels use the same key pair: the above probabilistic argument does not carry over to this
situation, but we circumvent this issue in Section 6.

3 Summary of Gentry's Fully Homomorphic Scheme

In this section, we review Gentry's fully homomorphic encryption scheme [11, 10].

3.1 The somewhat homomorphic scheme

We �rst recall Gentry's somewhat homomorphic encryption scheme (see [10, Se. 5.2 and Ch. 7])
which supports a limited number of multiplications. It is the basis for the bootstrappable scheme
presented later. The somewhat homomorphic scheme, described in Figure 1, produces ciphertexts
in the ring R = Z[x]/f for a suitable irreducible degree n monic polynomial f . In this paper, we
will assume f = xn + 1 with n a power of 2. Here n is a function of the security parameter λ.

The key generation procedure generates two coprime ideals I and J ofR. The ideal I has basisBI .
To simplify the scheme (and optimize its e�ciency), a convenient choice, which we assume in this
paper, is to take I = (2): Reduction of v modulo I corresponds to reducing the coe�cients of the
vector/polynomial v modulo 2. The ideal J is generated by an algorithm IdealGen, that given (λ, n),
generates a `good' secret basis Bsk

J (consisting of short, nearly orthogonal vectors) and computes

its HNF to obtain a `bad' public basis Bpk
J . Suggestions for concrete implementations of IdealGen

are given in [10, Se. 7.6], [10, Ch. 18] and [27]. To obtain our Õ(λ3) bit complexity bound, we will
assume that J is a degree 1 prime ideal, which is the case with the implementation of [27] and
can be obtained by rejection from the distribution considered in [10, Ch. 18]. The latter rejection
method can be shown e�cient by using Chebotarev's density theorem (see, e.g., [17]). Associated
with IdealGen is a parameter rDec, which is a lower bound on the radius of the largest origin-centered
ball which is contained inside P(Bsk

J ). In all cases we have rDec ≥ λ1(J)/Poly(n) (see, e.g., [10,
Le. 7.6.2]). Using Babai's rounding-o� algorithm [4] with Bsk

J , the decryptor can recover the point
of J closest to any target vector within distance rDec of J (see [10, Le. 7.6.1]).

The plaintext space is a subset of P(I), that we assume to be {0, 1}. The encryption algorithm
uses a sampling algorithm Samp, which given (BI ,x) for a vector x ∈ R, samples a `short' vector
in the coset x+ I. Concrete implementations of Samp are given in [10, Se. 7.5 and 14.1]. Associated
with Samp is a parameter rEnc, which is a (possibly probabilistic) bound on the norms of vectors
output by Samp. For both implementations, one can set rEnc = Poly(n). To encrypt a message π, a

sample π+i from the coset π+I is generated, and the result is reduced modulo the public basis Bpk
J :

ψ = π + i mod Bpk
J . It is assumed that rEnc < rDec. Therefore, by reducing ψ modulo the secret

basis Bsk
J one can recover π + i, and then plaintext π can be recovered by reducing modulo BI .

Homomorphic addition and multiplication of the encrypted plaintexts π1, π2 modulo BI are
supported by performing addition and multiplication respectively in the ring R on the corresponding
ciphertexts modulo Bpk

J . Namely, for ψ1 = π1 + i1 mod Bpk
J , ψ2 = π2 + i2 mod Bpk

J with i1, i2 ∈
I, we have ψ1 + ψ2 mod Bpk

J ∈ (π1 + π2) + I and ψ1 × ψ2 mod Bpk
J ∈ (π1 × π2) + I mod Bpk

J .
However, for correct decryption of these new ciphertexts, we need that ‖(π1 + i1) + (π2 + i2)‖
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and ‖(π1 + i1) × (π2 + i2)‖ are not larger than rDec. This limits the degree of polynomials that
can be evaluated homomorphically. Note that our choice for J implies that a ciphertext reduced
modulo Bpk

J is simply an integer modulo det(J) and thus homomorphic evaluations modulo Bpk
J

reduces to integer arithmetic modulo det(J) (such as in [27]).

� KeyGen(λ): Run IdealGen(λ, n) to generate private/public bases (BskJ , B
pk
J ) for ideal J such that P(BskJ ) contains

an origin-centered ball of radius rDec ≈ λ1(J). Return public key pk = BpkJ and secret key sk = BskJ .

� Enc(pk, π): Given plaintext π ∈ {0, 1} and public key pk, run Samp(I, π) to get π′ ∈ π + I with ‖π′‖ ≤ rEnc.
Return ciphertext ψ = π′ mod BpkJ .

� Dec(sk, ψ): Given ciphertext ψ and secret key sk, returns π = (ψ mod BskJ ) mod I.

� Eval(pk, C, (ψ1, . . . , ψt)): Given public key pk, circuit C and ciphertexts ψ1, . . . , ψt, for each add or multiply gate
in C, perform a + or × operation in R mod BpkJ , respectively, on the corresponding ciphertexts. Return the
ciphertext ψ corresponding to the output of C.

Fig. 1. Gentry's Somewhat Homomorphic Encryption Scheme SomHom.

3.2 A tweaked somewhat homomorphic scheme

Gentry [10, Ch. 8] introduced tweaks to SomHom to simplify the decryption algorithm towards
constructing a fully homomorphic scheme. The tweaked scheme SomHom′ di�ers from the original
scheme in the key generation and decryption algorithm, as detailed in Figure 2.

� KeyGen′(λ): Run KeyGen(λ) to obtain (BskJ , B
pk
J ). From BskJ , compute a vector vskJ ∈ J−1 such

that P(rotf (vskJ )−1) contains a ball of radius r′Dec = rDec/(8
√

2n2.5) (see [10, Le. 8.3.1]). Return public
key pk = BpkJ and secret key sk = BskJ .

� Dec′(sk, ψ): Given ciphertext ψ and secret key sk, returns π = ψ − bvskJ × ψe mod I.

Fig. 2. Algorithms of the Tweaked Somewhat Homomorphic Encryption Scheme SomHom′ that di�er from SomHom.

Gentry shows the following about the correctness of the tweaked decryption scheme.

Lemma 3.1 (Adapted from [10, Le. 8.3.1 and 8.4.2]). A ciphertext ψ = π + i mod Bpk
J with

‖π+ i‖ ≤ r′Dec is correctly decrypted to π by Dec′. Moreover, if ‖π+ i‖ ≤ r′Dec, then each coe�cient

of vskJ × ψ is within 1/8 of an integer.

Let C be a mod 2 circuit consisting of add and multiply gates with two inputs and one output.
We let g(C) denote the generalized circuit obtained from C by replacing the add and multiply
gates mod 2 by the + and × operations of the ring R, respectively. We say that circuit C is
permitted, if for any set of inputs x1, . . . ,xt to g(C) with ‖xk‖ ≤ rEnc for k = 1, . . . , t, we have
‖g(C)(x1, . . . ,xt)‖ ≤ r′Dec. A permitted circuit which is evaluated homomorphically on encryptions

of plaintexts π1, . . . , πt will yield a ciphertext ψ = g(C)(π1 + i1, . . . , πt + it) mod Bpk
J that correctly

decrypts to C(π1, . . . , πt), and such that the coe�cients of vskJ × ψ are within 1/8 of an integer.
As in [7, Le 3.4], we characterize the permitted circuits by the maximal degree of the polynomial
evaluated by the circuit. Note that Gentry [11, 10] considers the circuit depth, which is less �exible.

Lemma 3.2. Let C denote a mod 2 circuit, and let g(C) denote corresponding generalized circuit

over R, evaluating a polynomial h(x1, . . . , xt) ∈ Z[x1, . . . , xt] of (total) degree d. Then the circuit C
is permitted if γd−1

× ‖h‖1rdEnc ≤ r′Dec. In particular, assuming that h has coe�cients in {0, 1}, the
circuit C is permitted if d satis�es

d ≤
log r′Dec

log(rEnc · γ× · (t+ 1))
.
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Proof. As observed above, circuit C is permitted as long as ‖g(C)(π1 + i1, . . . , πt + it)‖ ≤ r′Dec
whenever ‖πk+ik‖ ≤ rEnc for k = 1, . . . , t. Since g(C) evaluates a polynomial h, and the norm of each
term in h is upper bounded by γd−1

× rdEnc, the triangle inequality implies that ‖g(C)(π1 + i1, . . . , πt+
it)‖ ≤ γd−1

× ‖h‖1rdEnc, as claimed. The bound on d follows from the fact that ‖h‖1 ≤ (t+ 1)d since h
has {0, 1} coe�cients and degree d and thus at most (t+ 1)d non-zero monomials. ut

Remark. The polynomial h referred to above is the one evaluated by the generalized circuit g(C).
For arbitrary circuits C mod 2, the polynomial h may di�er from the polynomial h′ evaluated by the
circuit C mod 2; in particular, the polynomial h may have non-binary integer coe�cients, and some
may be multiples of 2. However, for circuits C for which h has binary coe�cients (the condition in
the lemma), we have h = h′ (this condition on h is also needed, but is not explicitly stated in [7]).

3.3 Gentry's squashed bootstrappable scheme

To make it bootstrappable, Gentry [10, Ch. 10] modi�ed SomHom′ by `squashing' the decryption
circuit, i.e., moving some of the decryption computation to the encryption stage, by providing
additional information in the public key. The modi�cations to SomHom′ result in the squashed
bootstrappable scheme SqHom described in Figure 3. The scheme introduces three new integer
parameters (p, γset, γsub). Note that we incorporated Optimization 2 from [10, Ch. 12], which is
made possible thanks to the choice I = (2).

� KeyGen′′(λ):
• Run KeyGen′ to get BpkJ and vskJ .
• Generate a uniform γset-bit vector s = (s1, . . . , sγset) with Hamming weight γsub and sγset = 1.
• Generate t1, . . . , tγset−1 uniformly and independently from J−1 mod BI . Compute tγset = vskJ −

P
k<γset

sktk.

• Return sk = s and pk = (BpkJ ; t1, . . . , tγset).
� Enc′′(pk, π): Run Enc of SomHom′ to generate ciphertext ψ. For k = 1, . . . , γset, compute ck on p+ 1 bits (1 bit

before the binary point, and p bits after) such that |ck − [tk ×ψ]0 mod 2| ≤ 2−p, where [g]0 denotes the constant
coe�cient of the polynomial g ∈ R. Return ciphertext (ψ; c1, . . . , cγset).

� Dec′′(sk, (ψ; c1, . . . , cγset)): Given expanded ciphertext (ψ; c1, . . . , cγset) and secret key sk, return π = [ψ]0 −
b
P
k skcke mod 2.

� Eval′′: Same as for SomHom′ (while recomputing the ck's, like in algorithm Enc′′).

Fig. 3. Algorithms of the Squashed Scheme SqHom.

Note that
∑

k skck ≈
∑

k sk[tk × ψ]0 mod 2 = ([(
∑

k sktk) × ψ]0) mod 2 = [vskJ × ψ]0 mod 2.
Hence, in terms of decryption correctness, SqHom di�ers from SomHom′ only due to the rounding
errors. The following lemma provides a su�cient precision p (see also [7, Le. 6.1]). In Section 5, we
will show that the precision p may be almost halved, using a probabilistic error analysis.

Lemma 3.3 (Adapted from [7, Le. 6.1]). If p ≥ 3 + log2 γsub, a ciphertext (ψ; c1, . . . , cγset)
of SqHom with ψ = π + i mod Bpk

J and ‖π + i‖ ≤ r′Dec is correctly decrypted by the decryption

algorithm Dec′′, and
∑

k skck is within 1/4 of an integer.

Proof. We know by Lemma 3.1 that when ‖π + i‖ ≤ r′Dec, then π = ψ − bvskJ × ψe mod 2 and
each coe�cient of vskJ × ψ is within 1/8 of an integer. Hence it su�ces to show that |[vskJ × ψ]0 −∑

k skck mod 2| ≤ 1/8. Since ck = [tk × ψ]0 +∆k mod 2 with |∆k| ≤ 2−p for k ≤ γset, we have:∣∣∣∣∣[vskJ × ψ]0 −
∑
k

skck mod 2

∣∣∣∣∣ ≤
∣∣∣∣∣[vskJ × ψ]0 −

∑
k

sk · [tk × ψ]0 mod 2

∣∣∣∣∣+

∣∣∣∣∣∑
k

sk∆k

∣∣∣∣∣
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≤
∣∣∣[vskJ × ψ]0 − [vskJ × ψ]0 mod 2

∣∣∣+
∑
k

sk |∆k|

≤ γsub · 2−p.

The condition on p provides the result. ut

For bootstrappability, we need the augmented decryption circuits Dec−Mult and Dec− Add to
be implementable by a circuit with degree d′ less than the degree capacity of the scheme. This is
summarized in the following, in terms of the size γsub of the hidden subset in the secret key.

Theorem 3.1 (Adapted from [7, Th. 6.2]). Assuming that
∑

k skck is within 1/4 of an integer,

the augmented decryption circuits Dec−Mult and Dec− Add for scheme SqHom with precision

parameter p can be evaluated by a circuit of degree d′ ≤ γsub · 29p1.71.

Proof. To decrypt ψ, we have to compute π = [ψ]0 − b
∑

k skcke mod 2. We proceed as follows:

1- Compute ak = sk · ck for k = 1, . . . , γset.
2- Let ak,0.ak,1 . . . ak,p denote the binary representation of ak. To sum the ak's:

2.1- For j = 0, . . . , p, compute Wj , the Hamming weight of the bit vector (a0,j , . . . , aγset,j).
2.2- Compute π = [ψ]0 −

∑
j≤pWj · 2−j mod 2.

Note that because only γsub of the ak's are non-zero, each Hamming weight Wj is at most γsub
and hence its binary representation has at most dlog2(γsub + 1)e bits. Step 1 requires only a single
multiplication mod 2 for each output bit, hence has degree 2. For Step 2.1, we use the following.

Lemma 3.4 (Adapted from [7, Le. 6.3]). Let (σ1, . . . , σt) be a binary vector, andW = Wn . . .W0

be the binary representation of its Hamming weight. Then for any k, the bit Wk can be expressed as

a the evaluation in the σj's of an integer polynomial of degree exactly 2k.

We conclude that Step 2.1 can be computed by a circuit of degree 2dlog2(γsub+1)e ≤ 2γsub. Using
the `three-for-two' trick [15], van Dijk et al. [7] show that Step 2.2 can be done with a circuit
of degree ≤ 2dlog3/2(p+1)e+4 ≤ 26p1.71. The total degree of the decryption circuit is therefore ≤
γsub · 28p1.71, and hence that of Dec−Mult (resp. Dec− Add) is at most γsub · 29p1.71. ut

Combining Theorem 3.1 with Lemmata 3.2 and 3.3, we get:

Corollary 3.1. If p = d3 + log2 γsube, the scheme SqHom is bootstrappable as long as

γsub · 29 log1.71(γsub + 4) ≤
log r′Dec

log(rEnc · γ× · (t+ 1))
.

In this article, we are concerned with the total bit-complexity of refreshing a ciphertext (Recrypt)
and homomorphically evaluating an elementary gate, as this is the most important step in the fully
homomorphic scheme derived via Theorem 2.2. This consists in: expanding a ciphertext (i.e., the
second part of Enc′′); re-encrypting the bits of the expanded ciphertext under a new public key
(with Enc); homomorphically evaluating Dec; and homomorphically evaluating either Add or Mult.
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4 A Less Pessimistic Hardness Analysis of the SSSP

The semantic (CPA) security of Gentry's somewhat homomorphic schemes SomHom and SomHom′

relies on the hardness of a bounded distance decoding problem. As explained in Section 2, this hard-
ness assumption is asymptotically well understood (with the lattice reduction `rule of the thumb').
When converted into the bootstrappable scheme SqHom, another hardness assumption is added,
namely that of the so-called SplitKey distinguishing problem. To be precise, a semantic attack
against SqHom either leads to an e�cient ideal lattice BDD algorithm or to an e�cient algorithm
for the SplitKey distinguishing problem (see [11, Th. 10]). In [11, Th. 11.1.3], the following Sparse
Vector Subset Sum Problem (SVSSP) is shown to reduce to the SplitKey distinguishing problem.

De�nition 4.1 (SVSSPγsub,γset). Let γsub and γset be functions of the hardness parameter λ. Let J
be as generated by KeyGen, and BIJ be the HNF of ideal IJ . The decisional SVSSP is as follows:

Distinguish between (a1, . . . ,aγset) chosen uniformly in R ∩ P(BIJ) and the same but conditioned

on the existence of a vector s ∈ {0, 1}γset of Hamming weight γsub with
∑

k skak = 0 mod IJ .

For our choice I = (2), we have BIJ = 2Bpk
J , where Bpk

J is the HNF of J . This choice of I is
important here, as otherwise, for some J 's, the matrix BIJ has all but one of its diagonal entries equal
to 1, and the lattice to be de�ned below can be canonically embedded into a γset-dimensional lattice.
In the following, we use q = det(BIJ) = 2n det(J). Note that the problem becomes interesting only
when

(
γset
γsub

)
= o(q). The exhaustive search algorithm runs in time

(
γset
γsub

)
, whereas a simple birthday

paradox attack runs in time ≈
(
γset
γsub

)1/2
. To achieve 2λ hardness, we require that

(
γset
γsub

)1/2 ≥ 2λ, or,
more simply, that γsub = Ω(λ) and γsub ≤ γset/2. We now consider a third attack, based on lattice
reduction. Consider the lattice L de�ned by the columns of the following block matrix:(

Idγset 0
A BIJ

)
,

where Idγset is the identity matrix and the columns ofA are the ak's. This lattice has dimension γset+
n and determinant q. Furthermore, the existence of the solution vector s implies that λ1(L) ∈
[1,
√
γsub], because the vector s′ := (s1, . . . , sγset , 0, . . . , 0)t belongs to L and ‖s′‖ =

√
γsub.

Suppose we are limited to a computational power of 2λ. The lattice reduction rule of the thumb

suggests that we cannot �nd vectors in L of norms signi�cantly smaller than U := c
γset+n

λ . There

are ≤ m := U = 2
γset+n

λ pairs of non-zero multiples ±k · s′ of s′ with norm ≤ U . At the same time,
Minkowski's theorem (Theorem 2.1) asserts that there are far more lattice vectors of norm ≤ U .

Lemma 4.1. Assuming that π
γset+n

2

Γ( γset+n+2
2 )

·Uγset+n ≥ (2λm)·2γset+n ·q, we have |L∩B(0, U)| ≥ 2λ ·m.

It is reasonable to assume that the lattice points that are not multiples of s′ do not provide
information towards solving SVSSP. Also, there is no reason to expect lattice reduction to �nd one
of these relevant vectors rather than any lattice vector of norm ≤ U . Under these assumptions, if
the computational e�ort of lattice reduction is limited to 2λ and if we wish to bound the likeliness
of �nding a relevant vector by 2−λ, it su�ces to set the parameters so that:

c
(γset+n)2

λ ≥ 2λ · (γset + n)Ω(γset+n) · q.

10



As γset, n = Ω(λ), the above is implied by (γset+n)2

λ = Ω̃(γset + log q). Also, we will always

have n + γset = Ω̃(λ), so that the condition can be simpli�ed into (γset+n)2

λ = Ω̃(log q). Note that
this condition is less restrictive than the corresponding one used in [11, 27, 7] (i.e., γset = Ω(log q)).

Remark. In our variant of algorithm KeyGen′′, our instances of SVSSP always satisfy sγset = 1.
This does not result in any security reduction, as an attacker can always e�ciently guess an i such
that si = 1 and then permute indices i and γset.

Remark. Our analysis di�ers in three ways from the one from [11] relying on [24]: for consistency
with the hardness analysis of the ideal BDD, we consider an approximate SVP solver rather than an
exact SVP solver; furthermore, we do not consider the `replay' attack from [24] (which would lead to
larger O(·) constants), as contrarily to the case of server-aided RSA, only one instance of the SSSP

is given; �nally, the ai's are vectors rather than integers, because the HNF matrix BIJ = 2Bpk
J has

no trivial diagonal coe�cients (i.e., diagonal coe�cients equal to 1).

5 Improved Ciphertext Refreshing Algorithm

The main component in the degree of the decryption algorithm comes from (as explained in the
proof of Theorem 3.1) the addition of the rationals skck = [sktk × ψ]0 mod 2. This accounts for
degree γsub, and all other components of degree are negligible compared to this one.

Recall that t1, . . . , tγset−1, and hence also [t1×ψ]0 mod 2, . . . , [tγset−1×ψ]0 mod 2's are chosen
independently with identical distribution (iid), and that tγset = vskJ −

∑
k<γset

sktk mod 2. We are to
exploit the iid-ness of the �rst ti's to obtain a su�cient precision p that is essentially half of that
of Section 3.3. This will have the e�ect of taking the square root of the decryption circuit degree.

5.1 Using less precision

We start by summing the sk[tk × ψ]0's for k < γset, since they are iid, and then we add the
remaining cγset . The �rst sum will be represented on 6 bits (1 bit before the point, and 5 bits after)
and we will ensure that it is within 1/16 of

∑
k<γset

sk[tk × ψ]0 mod 2, with high probability. We
take cγset within distance 1/16 of [tγset−1 ×ψ]0 mod 2 and represent it also on 6 bits. The last sum
will provide a result within distance 1/8 of

∑
k≤γset sk[tk × ψ]0 mod 2, and can be done with a

circuit of constant degree. Using Lemma 3.1, we obtain that the result is within 1/4 of an integer.
We now concentrate on the �rst sum. Let the ck's be �xed-point approximations to the [tk×ψ]0's,

with some precision p. We have εk ≤ 2−p with εk = ck − [tk × ψ]0. As the ck's for k < γset
are independent, so are the corresponding εk's. Furthermore, we will ensure that E[εk] = 0 for
any k < γset. The following lemma leads to a probabilistic error bound for the sum of the ck's.

Lemma 5.1. Let ε1, . . . , εt be iid variables with values in [−ε, ε] and such that E[εk] = 0 for all k.
Then |

∑
k≤t εk| ≤

√
tε · ω(

√
log λ) with probability negligibly small with respect to λ.

Proof. We apply Hoe�ding's inequality to the εi's. We have that Pr[|
∑
εk| ≥ x] ≤ exp

(
− x2

2ε2

)
, for

any x > 0. Taking x =
√
tε · ω(

√
log λ) leads to the result. ut

We use this lemma with ε = 2−p and t = γsub−1 (i.e., the number of non-zero skεk's for k < γsub).
It indicates that taking p = 1

2 log2 γsub+ω(log log λ) su�ces to ensure that with probability negligibly
close to 1 we have |

∑
k<γset

sk(ck − [tk ×ψ]0) mod 2| ≤ 1/32. Truncating the result to 5 bits after
the binary point cannot add more than an error of 1/32.
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5.2 Expliciting the computation of the ck's in Enc′′

In order to be able apply Lemma 5.1, we have to ensure that E[εk] = 0 for any k < γset. To
guarantee that this is the case and that this computation enjoys a limited complexity bound, the
computation of the ck's needs to be implemented carefully.

We are given tk and ψ, and wish to compute a (1 + p)-bit approximation ck to [tk ×ψ]0 mod 2.
As J is a degree 1 prime ideal, vector ψ is in fact an integer modulo det(J). We are thus interested
in computing [tk]0 · ψ modulo 2. We explicit this computation in Figure 4.

Inputs: Vectors tk and ψ, and precision p.
Output: A precision (1 + p) number ck ∈ [−1, 1] such that |ck − ([tk ×ψ]0 mod 2)| ≤ 2−p.
1. p′ := log2 det(J) + p+ 1;
2. Compute the closest precision (1 + p′) number t̄k ∈ [−1, 1] to [tk]0.
3. Compute c′k := t̄kψ exactly.
4. Reduce c′k modulo 2, while preserving its sign (the result belongs to [−1, 1]).
5. Round c′k to the closest precision (1 + p) number ck ∈ [−1, 1].

Fig. 4. Computing coe�cient ck for algorithm Enc′′.

Lemma 5.2. The algorithm of Figure 4 is correct. Furthermore, if the vector tk is chosen uniformly

in J−1 mod 2 with uniformly random choice of sign when a coordinate of tk belongs to {−1, 1},
then E[εk] = 0, where εk = ck − ([tk ×ψ]0 mod 2).

Proof. At Step 2 of the algorithm, we have |t̄k − [tk]0| ≤ 2−p
′−1. As ψ is exact and belongs

to [0, det(J)), we have |t̄kψ − [tk]0ψ| ≤ 2−p
′−1 det(J) ≤ 2−p−1. Thus, at Step 3, we have |c′k −

[tk×ψ]0| ≤ 2−p−1. The rounding of Step 5 leads to |ck− ([tk×ψ]0 mod 2)| ≤ 2−p−1 +2−p−1 = 2−p.
To prove the second statement, we use the symmetry of the distribution of tk: a given sample tk

is as likely as its opposite −tk. This implies that E[[tk × ψ]0 mod 2] = 0. We now use the same
property to show that E[ck] = 0. At Step 2, changing tk into −tk has the e�ect of changing t̄k
into −t̄k. This implies that at Step 3, changing tk into −tk has the e�ect of changing c′k into −c′k.
Due to the symmetry of the rounding to nearest, this carries over to ck and εk at Step 5. ut

Note that the choice of rounding to nearest is not benign: the rounding mode needs to be
symmetric with respect to 0 for the above proof to hold. Rounding downwards or upwards, two
other standard rounding modes [1], would break the proof.

5.3 Decreasing the decryption circuit depth

We now want to compute
∑

k<γset
skck mod 2, where the ck's are �xed-point reals with precision p =

1
2 log2 γsub + ω(log log λ). Instead of computing the Hamming weights Wj for j ∈ {0, . . . , p} as in
the proof of Theorem 3.1, we compute only the bits Wj,` (for 0 ≤ ` ≤ dlog2 γsube) that are going
to contribute to

∑
k<γset

skck mod 2: the most signi�cant bits are rendered useless by the reduction
modulo 2. Most interestingly, these unnecessary most signi�cant bits were the ones requiring the
higher degree circuits to evaluate. More precisely, we have:

∑
k<γset

skck =
p∑
j=0

Wj2−j =
p∑
j=0

dlog2 γsube∑
`=0

Wj,`2−j+` =
p∑
j=0

j+1∑
`=0

Wj,`2−j+` mod 2.
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Lemma 3.4 now implies that the desired sum mod 2 can be computed correctly with probability
negligibly close to 1 with respect to λ, by evaluating an arithmetic circuit of size Poly(γsub) corre-
sponding to a polynomial of degree exactly 2p+1 =

√
γsub ·ω(

√
log λ). This concludes the description

of the improved decryption circuit. Overall, we get:

Theorem 5.1. Assuming that
∑

k sk · [tk × ψ]0 is within 1/8 of an integer, the augmented de-

cryption circuits Dec−Mult and Dec− Add for scheme SqHom with precision parameter p′ =√
γsub · ω(

√
log λ) can be evaluated by a circuit of degree d′ ≤ √γsub · ω(

√
log λ).

Consequently, we have the following bootstrap condition.

Corollary 5.1. If p = 1
2 log2 γsub + ω(log log λ), the scheme SqHom is bootstrappable as long as

√
γsub · ω(

√
log λ) ≤

log r′Dec
log(rEnc · γ× · (t+ 1))

.

6 Asymptotic E�ciency

We now use the background results and the improvements described in the previous sections to
derive bounds for the asymptotic complexity of Gentry's fully homomorphic scheme.

6.1 Optimizing the parameters in Gentry's fully homomorphic encryption

The table below summarizes and compares the conditions on the parameters γset, γsub, n, . . . for
Gentry's fully homomorphic encryption scheme to be 2λ-secure and correct.

The semantic security of the somewhat homomorphic scheme is related to the hardness of γ-
BDD for γ = r′Dec/rEnc. More precisely, in the case of [11], the decisional variant of γ-BDD reduces
to the semantic security. There is no known algorithm that performs better for the decisional variant
of γ-BDD than for the computational variant. Recall that r′Dec = rDec/Poly(n) = λ1(J)/Poly(n).
Recall also that J is an ideal lattice, and thus we have λ1(J) ≥ det(J)1/n = q1/n/2 (where q is
the SVSSP determinant of Section 4). As a consequence, it su�ces to ensure that γ-BDD is hard
to solve for γ = q1/n/(rEncPoly(n)). We use the lattice reduction rule of the thumb to derive a
su�cient condition.

As the encryptor is limited to polynomial-time algorithms, we can safely assume that n =
Poly(λ). Also, since f = xn + 1, we have γ× =

√
n. Finally, by choosing rEnc = Poly(λ), the

ciphertexts have su�cient entropy to prevent any exhaustive search.

Condition [11] This article

BDD resistant to lattice attacks q1/n

Poly(λ) ≤ 2n/λ

SSSP resistant to birthday paradox
(
γset
γsub

)1/2 ≥ 2λ

SSSP resistant to lattice attacks γset = Ω̃(log q) (γset+n)2

λ = Ω̃(γset + n+ log q)

Bootstrappability achieved γsub ≤ log(q1/n)
Θ(log λ)

√
γsub ≤ log(q1/n)

Poly(log λ)
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To ful�ll these conditions, we choose γsub = Θ(λ) (for the second row). We can then choose n =
Θ̃(λ1.5) and log q = Θ̃(λ2) (for the �rst and last rows). Finally, we set5 γset = Θ(λ). These values may
be compared to the corresponding values in [10, Ch. 12], namely n ≈ λ2, log q ≈ λ3 and γset ≈ λ3.

6.2 Bit complexity

The Recrypt procedure consists in expanding the ciphertext ψ as described in algorithm Enc′′

of SqHom, encrypting the bits of the expanded ciphertext with the new public key pk2, and then
applying algorithm Dec′′ homomorphically, using the encrypted ciphertext bits and the encrypted
secret key sk1 (under pk2). We also consider the cost of homomorphically evaluating an elementary
add/mult gate.

Let us �rst bound the cost of computing the ck's in Enc′′, calling γset times the algorithm from
Figure 4. First, note that Steps 1 and 2 should not be done within Enc′′, but at the key generation
time, i.e., in KeyGen′′. Note that during the third step of KeyGen′′, one should also pay attention to
perform the reduction modulo (2) such that the assumption of Lemma 5.2 holds. The quantity c′k
obtained at Step 3 of the algorithm from Figure 4 is encoded on O(log q) bits, and its computation
can be performed in Õ(log q) bit operations, using fast integer arithmetic [26]. The costs of Steps 4
and 5 are negligible. Overall, the computation of the ck's in Enc′′ can be done in Õ(γset log q) = Õ(λ3)
bit operations.

The secret key is made of γset = Θ(λ) bits. The bit-length of the encrypted secret key is γset log q =
Õ(λ3). To encrypt the bits of the ck's under pk2, we use Samp = 0, as explained in [10, Re. 4.1.1],
i.e., we consider as encrypted values the bits themselves.

Let us now explain how algorithm Dec′′ is implemented. We concentrate on the most expensive
part, i.e., the (homomorphic) computations of O(log γsub) = Õ(1) Hamming weights of vectors
in {0, 1}γset . Let (α1, . . . , αγset) be such a vector. As explained in [11, Le. 5] (which relies on [5,
Le. 11]), it su�ces to compute the developed form of the polynomial

∏
k≤γset(x− αk). Recall that

in Section 5 we showed that we are interested in only a few coe�cients of the result, corresponding
to monomials of degrees Õ(

√
γsub). We are to compute the full developed form anyway, and then

throw away the spurious coe�cients. Note that our circuit is over the integers, and evaluates an
integer polynomial whose coe�cients of interest have small multiplicative degrees in the inputs. We
compute the developed form of

∏
k≤γset(x− αk) with a binary tree:

� At level 0 of the tree, we have the linear factors (x− αk).
� At level i of the tree, we have γset/2i polynomials of degree 2i that are the products of the linear
factors corresponding to their binary subtrees.

� A father of two nodes is obtained by multiplying his two sons, with a quasi-linear time multi-
plication for polynomials over rings that uses only ring operations (see, e.g., [9, Th. 8.23]).

The size of each circuit that allows to move from sons at level i − 1 to father at level i is Õ(2i).
The overall number of add/mult integer gates is therefore Õ(γset). While evaluating this circuit

homomorphically, each gate corresponds to a multiplication/addition modulo Bpk
J , i.e., thanks to

our choice for J , to a multiplication/addition of two integers modulo det(J), whose bit-length
is O(log q). The overall complexity of Dec′′ is Õ(γset log q) = Õ(λ3).

5 Note that we have γset/γsub = O(1), versus O(λ2) for Gentry's choice of parameters [10, Ch. 12]. Thus, in our
version of the SSSP, the hidden subset is not really `sparse' anymore, which intuitively seems to be a weakening
of the SSSP hardness assumption.
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To summarize, the complexity of Recrypt for 1 bit of plaintext is Õ(λ3) bit operations (compared
to the complexity bound Õ(λ6) claimed in [10, Ch. 12]). And the cost of homomorphically evaluating
an elementary add/mult gate is also Õ(λ3). The secret key is encoded on Θ(λ) bits and the public

key is (Bpk
J ; t̄1, . . . , t̄γset) is encoded on Õ(n log q + γset log q) = Õ(λ3.5) bits.

7 Other Fully Homomorphic Schemes

We now show how our improvements can be adapted to variants of Gentry's fully homomorphic
scheme and to the scheme of van Dijk et al..

7.1 Smaller keys

In [10, Se. 4.3], Gentry suggests to re-use the same key-pair for all levels of the fully homomor-
phic scheme derived from Theorem 2.2. This allows one to signi�cantly decrease the key-sizes of
the boostrapped fully homomorphic scheme. This strategy can be proved secure if the underlying
bootstrappable homomorphic encryption scheme is assumed/known KDM-secure [10, Th. 4.3.2].
Our lower-degree decryption may fail with non-negligible probability after the �rst refreshing of a
ciphertext, as our technique does not handle the non-independence of the ciphertext and the secret
key. To circumvent this issue, we randomize the ciphertext to waive its possible non-independence
with the secret key. Note that this technique is similar in �avor to Gentry's modi�ed scheme pro-
viding circuit privacy [11, Se. 7].

Consider algorithm Enc′′ of SqHom. The condition required for the probabilistic technique de-
scribed in Section 5 to work is that the ciphertextψ = π+r mod Bpk

J (where r ∈ (2) and ‖r‖ ≤ r′Dec)
is independent of the ti's. This fact, together with the iid-ness of the ti's, implies that the rounding
errors εi in computing the ci's, are iid, as required to apply Hoe�ding's bound. In the key-reuse
application, the internal randomness r of ψ may depend on the ti's (due to a previous refresh-

ing). To circumvent this, we randomize the ciphertext ψ = π + r mod Bpk
J into another ciphertext

ψ′ = π+r′ mod Bpk
J for the same message π but with internal randomness r′ ∈ (2) which is almost

independent of the ti's. More precisely, given the ti's, the distribution of r′ is within negligible sta-
tistical distance from the (ti-independent) distribution 2U , where U is the uniform distribution on
the origin-centered ball of radius r′Dec/ρ with ρ any negligible function of λ such that log ρ = Õ(1)
(e.g., ρ = λ− log λ).

We compute ψ′ by adding to ψ an encryption of 0 with su�ciently large randomness compared
to the randomness in ψ, i.e., we set ψ′ = ψ + ζ mod Bpk

J , where ζ is sampled from 2U . If we

replace the decryption radius r′Dec by r′′Dec = r′Dec
1+2/ρ in Lemma 3.2, then the correctness of the

scheme is preserved, as ψ and ψ′ both decode to the same plaintext via algorithm Dec′. This has
a negligible e�ect for the asymptotic e�ciency (see Section 6.1). Assume that ψ = π + r mod Bpk

J

with ‖r‖ ≤ r′Dec. Let us consider the statistical distance between the distributions r + 2U and 2U .
As a ball of radius r′Dec/ρ − r′Dec is contained in the intersection of the two balls of radius r′Dec/ρ
corresponding to U and r + U , we obtain that the statistical distance under scope is at most n · ρ,
and hence negligible.

7.2 Gentry's provably secure scheme

In his PhD thesis [10], Gentry describes an instantiation of the scheme from [11] that enjoys strong
security proofs. First, in Chapter 11, the computational SSSP is shown to reduce to the Splitkey
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distinguishing problem, which is more natural than the decisional SVSSP we considered in Section 4,
and had already been studied in other contexts, such as server-aided RSA [24]. Second, in Chap-
ters 14�19, the somewhat homomorphic scheme is shown semantically secure under the worst-case
assumption that solving variants of the Shortest Vector Problem for ideal lattices is hard. Two cru-
cial assumptions for these security proofs to hold are that J is a prime ideal with prime determinant
(such as in [27]), and that I is an ideal with prime determinant and small norm (polynomial in n).
These requirements are not met by the choice I = (2) that we assumed above, since det I = 2n.

A workaround consists in taking I to be a factor of the ideal (2) that satis�es the requirements.
For instance in the case f = xn + 1 with n a power of 2, one has xn + 1 = (x + 1)n mod 2, which
means that (2) = pn, where p = 〈2, x+ 1〉 is a prime ideal with det p = 2. We still choose J to be
a degree 1 ideal. In this context, the obtained SVSSP has dimension γset + 1 (instead of γset + n),
because the trailing n − 1 diagonal coe�cients of the HNF BIJ are all 1 (see the proof of [10,
Th. 11.1.5]). This leads to the following stronger condition for ensuring that the SSSP remains

hard:
γ2
set
n = Ω̃(γset + log q). As the other conditions of Section 6.1 remain unchanged, the lowest

value we can choose for γset becomes Θ(λ1.5).
Encryption and homomorphic evaluation can be performed with p replacing (2). Decryption

requires more care. In algorithm Dec′ (of the tweaked somewhat homomorphic scheme), one needs
to evaluate bvskJ ×ψe mod I. This can be done by �rst computing π′ = bvskJ ×ψe mod (2) = π+i mod
(2) and then reducing π′ modulo p to get plaintext π. Since p = 〈2, x+ 1〉, the quantity π′ mod p is
the sum of the coe�cients of π′ mod 2. As explained in [10, Le. 12.3.3], since ideal p is of degree 1,
we may also �rst compute the sum of the coe�cients of vskJ × ψ modulo 2, and then round the
result to the closest integer (this requires to decrease the decryption radius by a factor of n, which
is negligible). Now, since J is a degree-1 prime ideal and since ψ is reduced modulo the HNF BJ ,
ciphertext ψ is just an integer modulo det J . Overall, the operation bvskJ ×ψe mod I can be performed

by �rst multiplying every component of vskJ by ψ, rounding the results modulo 2 and keeping Õ(1)
bits after the rounding point, and then summing the latter quantities modulo 2 and rounding to the
closest integer. This requires Õ(n log q) bit operations. The ciphertext expansion can be performed
in essentially the same way, except that it is now performed γset times instead of 1. This dominates
the cost of the decryption procedure, and leads to a bit-complexity of Õ(γsetn log q) = Õ(λ5) for
the Recrypt procedure.

7.3 Fully homomorphic encryption over the integers

In [7], van Dijk et al. describe another fully homomorphic scheme, whose security relies on the
hardness of the Approximate Greatest Common Divisor Problem (as well as the hardness of the
SSSP, for the corresponding squashed scheme).

We assume that we use the tree-based decryption circuit that we described in Section 6.2 and
gates over the integers (for the generalized circuit). Then without our improvements, the best set
of parameters making all known attacks cost at least 2λ leads to a Õ(λ17) bit-complexity of the
Recrypt procedure (for a single plaintext bit). An easy improvement consists in evaluating the
gates of the generalized circuit modulo 2κ, where κ is a known upper bound for the bit-lengths
of the integer ciphertexts corresponding to the coe�cients of the Hamming weights that are used
for decrypting (with the tree-based decryption, the most signi�cant bits are also computed, but
are useless). This leads to a Õ(λ16) bit-complexity. By using our improvements, the parameters of
the scheme can now be chosen so that the bit-complexity of Recrypt is lowered to Õ(λ7.25). To
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obtain that bound, we use the binary tree decryption circuit with gates modulo 2κ, and we do not
re-encrypt the bits of the expanded ciphertext (as explained in [10, Re. 4.1.1]).

It might also be possible to combine our improvements with the variant described in [7, Se. 3.3].
However, this requires some care, as the bootstrappability of this variant depends on the speci�c
decryption circuit that is used, rather than the evaluated function.

Open Problems

Our improved decryption strongly relies on the choices of f = xn+1 and I|(2). It would be interesting
to waive these assumptions, in case other choices for f and I prove interesting. An important open
question is to assess whether the improvements described in the present article help making Gentry's
fully homomorphic scheme more practical (see [27, Se. 6] for a practical study of Gentry's original
scheme).

At the end of [10, Se. 12.3], Gentry suggests using non-independent SplitKey vectors ti to
decrease the computational costs. The idea is to encode n vectors ti,j = xjti mod xn + 1 using
only ti. This leads to a faster Recrypt procedure when several bits are encoded, using the plaintext
domain Z2[x]/f(x) (more precisely, it becomes faster in the sense of amortized cost per plaintext
bit). However, it is not clear how to homomorphically decrypt with such a variant, as one is now
restricted to more complex circuit gates than addition and multiplication modulo 2.
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