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Abstract. We prove beyond-birthday-bound security for most of the well-known types of generalized
Feistel networks: (1) unbalanced Feistel networks, where the n-bit to m-bit round functions may have
n 6= m; (2) alternating Feistel networks, where the round functions alternate between contracting and
expanding; (3) type-1, type-2, and type-3 Feistel networks, where n-bit to n-bit round functions are
used to encipher kn-bit strings for some k ≥ 2; and (4) numeric variants of any of the above, where one
enciphers numbers in some given range rather than strings of some given size. Using a unified analytic
framework, we show that, in any of these settings, for any ε > 0, with enough rounds, the subject
scheme can tolerate CCA attacks of up to q ∼ N1−ε adversarial queries, where N is the size of the
round functions’ domain (the larger domain for alternating Feistel). This is asymptotically optimal.
Prior analyses for most generalized Feistel networks established security to only q ∼ N0.5 queries.

Key words: block ciphers, coupling, Feistel networks, generalized Feistel networks, modes of operation,
provable security, symmetric techniques.

1 Introduction

Background. Feistel-like ciphers come in several flavors beyond the “classical” one used in DES
[7, 31]. In speaking of generalized Feistel networks we mean to encompass most all of them; see
Fig. 1. In particular, we include: unbalanced Feistel networks with either expanding or contracting
round functions, as described by Schneier and Kelsey [30]; alternating Feistel networks, where the
rounds alternate between contracting and expanding steps, as described by Anderson and Biham [1]
and by Lucks [11]; type-1, type-2, and type-3 Feistel networks, as described by Zheng, Matsumoto,
and Imai [35], each of which uses an n-bit to n-bit round function to create a kn-bit blockcipher
for some k ≥ 2; and numeric variants of any of the above, where one enciphers numbers in ZN , for
some N ∈ N, instead of enciphering binary strings. Well-known blockciphers that use generalized
Feistel networks include Skipjack (an unbalanced Feistel network), BEAR/LION (alternating),
CAST-256 (type-1), RC6 (type-2), and MARS (type-3).

The provable-security analysis of Feistel networks begins with the seminal work of Luby and
Rackoff [10]. The r round functions used are assumed to be selected uniformly and independently
at random (r = 3 or r = 4 in [10]). One then considers how close to a random permutation the
constructed cipher is. Subsequent work in this information-theoretic framework (still analyzing the
classical Feistel construction) includes Maurer [12], Naor and Reingold [19], Vaudenay [33], Maurer
and Pietrzak [13], and a sequence of papers by Patarin [21–24, 26]. The last culminates with the
claim that six rounds of (classical) Feistel on a 2n-bit string is enough to defeat (meaning the
advantage goes to 0 as n→∞) adaptive chosen-ciphertext attacks of 2n(1−ε) queries, for any ε > 0.

Information-theoretic analysis of generalized Feistel schemes is less mature. We postpone de-
scribing the known results except to say that they are either completely absent (alternating Feistel
with highly-imbalanced round functions), quantitatively weak (birthday bounds that generalize
Luby and Rackoff’s 25-year-old work), or highly specialized (unbalanced Feistel networks with
maximally unbalanced contracting round functions).
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Fig. 1. Generalized Feistel networks. The superscript r is the number of rounds. The illustrations show a single
round r = 1 except for the alternating schemes, where r = 2 rounds are shown. Scheme FEISTEL is the classical
balanced-Feistel scheme; all remaining schemes are generalizations of it. Schemes Feistel] and FeIsTeL] are numeric
variants of Feistel (unbalanced Feistel) and FeIsTeL (alternating Feistel); they encipher a number x = aN + b ∈ ZMN

(a ∈ ZM , b ∈ ZN ) instead of a string X ∈ {0, 1}m+n. Schemes Feistel1, Feistel2, and Feistel3 are the so-called
type-1, type-2, and type-3 Feistel networks. They are used in modern blockciphers like CAST-256, RC6, and MARS,
respectively. Variable k refers to the number of n-bit input blocks B1, . . . , Bk. The illustrations are for k = 4.
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scheme E = Advcca
E (q) ≤ where r = see cf

classical FEISTELr [n] 2q
r+1

(
4q / 2n

)r
6r − 1 Theorem 6 [10, 13, 26]

unbalanced Feistelr [m, n] Theorem 7 [17, 19]

with n > m 2q
r+1

(
(3dn/me + 3)q / 2n

)r
r(4dn/me + 4)

with n ≤ m 2q
r+1

(
4dm/neq / 2n

)r
r(2dm/ne + 4)

unbalanced] Feistelr] [M, N ] Theorem 8 [4, 32]

with N > M 2q
r+1

(
(9 dlogM Ne + 5)q / N

)r
r(6 dlogM Ne + 4)

with N ≤ M 2q
r+1

(
(7 dlogN Me + 7)q / N

)r
r(2 dlogN Me + 6)

alternating FeIsTeLr [m, n] 2q

r+1

(
(6dn/me + 3)q / 2n

)r
r (12dn/me + 8) Theorem 9 [1, 11]

alternating] FeIsTeLr] [M, N ] 2q

r+1

(
(6dlogM Ne + 3)q / N

)r
r (12dlogM Ne + 8) Theorem 9 [3, 4]

type-1 Feistel1r [k, n] 2q
r+1

(
2k(k − 1)q / 2n

)r
r(4k − 2) Theorem 10 [16, 35]

type-2 Feistel2r [k, n] 2q
r+1

(
2k(k − 1)q / 2n

)r
r(2k + 2) Theorem 10 [16, 35]

type-3 Feistel3r [k, n] 2q

r+1

(
4(k − 1)2q / 2n

)r
r(2k + 2) Theorem 10 [16, 35]

Fig. 2. Summary of CCA bounds in this paper. The rows correspond to the generalized Feistel networks
pictured in Fig. 1. Unbalanced schemes are distinguished by their using contracting (n > m) or expanding (n ≤ m)
round functions. Parameters k, m, n, M, N describe the scheme and r ≥ 1 determines the number of rounds r .

Contributions. Our CCA-security bounds for generalized Feistel networks are described in Fig. 2.
Let us briefly describe each result and how it compares with prior work.

For the classical Feistel network on 2n bits, our results are comparable to those of Maurer and
Pietrzak (henceforth “MP”) [13]. As with that work, the bounds get better as one increases the
number of rounds r . Asymptotically, for any ε > 0, there is a corresponding number of rounds r
(about 6/ε) such that any CCA-adversary has vanishing advantage if it asks at most q = 2n(1−ε)

forwards or backwards queries. Our actual results are concrete (as shown in the table above),
and are a little sharper than MP’s bounds; see Fig. 3 for a graphical comparison. Our proof is
much simpler than those of MP or Patarin. One reason for this is just that we employ the lovely
result of Maurer, Pietrzak, and Renner for passing from NCPA-security to CCA-security [14]. The
more important reason stems from our use of coupling, a well-known technique from the theory of
Markov chains.

Next we look at unbalanced Feistel networks; the round functions are maps Fi : {0, 1}
n →

{0, 1}m. For the contracting case (n>m) we prove CCA-security to 2n(1−ε) queries. Earlier work by
Naor and Reingold provided bounds that topped out at 2n/2 adversarial queries. Interpreting our
result, if one holds fixed the block length `=m+n, bounds improve with increasing imbalance, the
best bounds at m = 1, the setting earlier studied by Morris, Rogaway, and Stegers (“MRS”) [17].
In effect, we “connect up” MP’s bounds on balanced Feistel with MRS’s bounds on maximally
unbalanced Feistel, demonstrating a smooth increase in security with increasing imbalance. This
behavior is not an artifact of the analysis; corresponding information-theoretic attacks exist [22, 27].

For unbalanced Feistel networks with expanding random round functions (n ≤ m) our concrete-
security results (again see Fig. 2) can similarly be interpreted asymptotically to show CCA security
to 2n(1−ε) queries. But note that as imbalance increases in an expanding round functions the value
of n goes down, so provable security is effectively vanishing. Again this is no artifact; there are
corresponding information-theoretic attacks [22, 28].
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We next treat unbalanced Feistel networks that acts on numbers instead of strings, the blockci-
pher we denote Feistelr] [M,N ]. This situation is seen in the card-shuffling technique of Thorp [32]
(where M = 2) and is defined explicitly in the work of Bellare et al. [4]. While one might expect
unbalanced Feistel schemes to behave similarly in the number-based and string-based settings, be-
ing able to show this is something else: the number-based setting is considerably more complex. We
note that MRS only managed to deal with the case M = 2 and N = 2n, leaving the generalization
open. We show security to q ∼ N1−ε queries.

Unbalanced Feistel networks are unpleasant in requiring a “repartitioning” of each round’s
output before it can be treated as the next round’s input. An alternative is suggested by the
“ladder” way of drawing DES (the way that avoids wire-crossings, as in our illustration of FeIsTeL).
Information-theoretic security bounds for alternating Feistel networks [1, 3, 4, 11] were weak in two
ways: quantitatively, they top out at the birthday-bound; qualitatively, they depend on the domain
size of the round function with smaller domain, leading to a non-result for the highly imbalanced
setting. We overcome both issues. Our results cover the numeric as well as the string-based settings.
This time, the coupling we use, and its analysis, are quite complex.

Finally, we consider the well-known type-1, type-2, and type-3 Feistel networks [35], as used
in several modern blockciphers. For each we prove information-theoretically optimal bounds (as
the number of rounds becomes large). The proofs here are straightforward compared to those for
unbalanced and alternating Feistel, highlighting a strength of the coupling-based approach.

Unmentioned in all of the above is that our string-based results also work when the alphabet
is non-binary. This turns out to be useful; for example, one could encipher a 16-digit credit card
number (CCN) (the ciphertext again being a 16-digit number) using a scheme FEISTELr10[8] just
like FEISTELr [8] but over the decimal alphabet instead of the binary one [2] (re-interpret the xor
operator as, say, modular addition). Our security bounds for schemes with non-binary alphabets
are as given in Fig. 2 but with 2n replaced by dn, where d is the radix of the alphabet.

In general, finding a unified framework with which to analyze Feistel-like schemes—one that
gives concrete, asymptotically optimal, humanly-verifiable bounds—is a contribution we see as
being at least as important as all the improved bounds.

Additional related work. In work just subsequent to our own, Patarin provides a concrete
security bound for the classical Feistel construction FEISTEL6[n] [25]. He goes on to claim beyond-
birthday-bound security for the unbalanced scheme Feistel8[n, 2n]. Earlier versions of our paper
confessed an inability to extract concrete security bounds from Patarin’s body of work.

Nachef attacks a Feistel variant that she calls an alternating unbalanced Feistel scheme [18],
but the scheme is different from the more classical one that we study here. The specific rotation
operation used in Nachef’s scheme makes this Feistel variant highly insecure.

The first use of a coupling argument in cryptography that we know is due to Mirinov, who
used the technique to gave a lovely (even if slightly heuristic) analysis of RC4 [15]. As mentioned
earlier, Morris, Rogaway, and Stegers go on to use coupling to analyze the security of a maximally-
unbalanced (contracting round function) Feistel network. Our work builds on theirs, but our use of
coupling becomes considerably more complex.

Beyond their use in making conventional blockciphers, generalized Feistel networks have been
proposed as blockcipher modes-of-operation for format-preserving encryption (FPE) [3–5]. Here
one usually aims to encipher points within some arbitrary string-valued domain Σn, or within
some arbitrary numeric domain ZN . Commercial interest in doing this has been spurred by PCI
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regulations [29] that require vendors to encipher CCNs they store; an architecturally clean way to
do this is to encipher a column in a database without making any modification to the database’s
schema. There is now a NIST proposal for an FPE-providing mode of operation, FFX [2], that
employs an unbalanced or alternating Feistel network over a possibly non-binary alphabet.

2 Preliminaries

Notation. For finite nonempty sets A and B, let Func(A,B) be the set of all functions from A
to B and let Perm(A) be the set of all permutations on A. For numbers a, b ≥ 1, let Func(a, b) be
the set of all functions from {0, 1}a to {0, 1}b.

Blockciphers. Let E : K ×M →M be a blockcipher, meaning that each EK(·) = E(K, ·) is a
permutation on the finite nonempty setM. We emphasize thatM (and also K) need not consist of
binary strings of some particular length, as is often assumed to be the case. For any blockcipher E,
we let E−1 be its inverse blockcipher. For blockcipher E : K × M → M and adversary A the
advantage of A in carrying out an (adaptive) chosen-ciphertext attack (CCA) on E is Advcca

E (A)=

Pr[K
$
←K: AEK(·),E−1

K (·) ⇒ 1]−Pr[π
$
← Perm(M): Aπ(·),π−1(·) ⇒ 1]. We say that A carries out an

(adaptive) chosen-plaintext attack (CPA) if it asks no queries to its second oracle. Adversary A is
non-adaptive if it asks the same queries on every run. Let Advcca

E (q) be the maximum advantage
of any (adaptive) CCA adversary against E subject to the adversary asking at most q total oracle
queries. Similarly define Advncpa

E (q) for nonadaptive CPA attacks (NCPA).

For blockciphers F,G : K×M→M let F ◦G denote their cascade, with F ’s output fed into G’s
input; formally, F ◦G : K2×M→M is defined by (F ◦G)(K,K ′) = GK ′(FK(X)). To be consistent
with this left-to-right convention for composing blockciphers we define composition of permutations
by (f ◦ g)(x) = g(f(x)). (This won’t be used often and should not cause confusion for those used
to the opposite convention.)

Coupling arguments. The high-level idea for a coupling argument can be explained like this.
We have a Markov chain Xt that we want to analyze. For example, the Markov chain may consist
of the image of the distinct, fixed strings (x1, . . . , xq) ∈ ({0, 1}2n)q as each point is enciphered for t
rounds according to the classical Feistel network on 2n bits. We would like to show that, after t = r
rounds, the tuple of points Xt is pretty close to being uniformly distributed. For this purpose, we
introduce a second Markov chain Ut that, after any number of rounds t, is indisputably uniform. We
arrange so that Xt and Ut can be viewed as co-evolving on a common probability space; formally,
we create a joint distribution that yields the correct marginal distributions. We try to arrange
our joint distribution so that, usually, Xt and Ut quickly couple: for most random choices, it does
not take long until Xt = Ut. After Xt and Ut come together, they should remain so. The basic
observation underlying coupling is that the statistical distance between the distributions associated
to Xt and Ut is upperbounded by the probability that Xt 6= Ut.

More formally, let µ and ν be probability distributions on a finite event space Ω. The total

variation distance between distributions µ and ν is defined as

‖µ− ν‖ =
1

2

∑

x∈Ω

| µ(x)− ν(x) | = max
S⊂Ω
{µ(S)− ν(S)} .
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A coupling of µ and ν is a pair of random variables X,Y : Ω → R (the set R is arbitrary) such that
X ∼ µ and Y ∼ ν, that is, variables X and Y have marginal distributions µ and ν, respectively.
The coupling lemma we will use is as follows.

Lemma 1 (Coupling lemma) Let µ and ν be probability distributions on a finite event space Ω
and let (X,Y ) be a coupling of µ and ν. Then ‖µ− ν‖ ≤ Pr[X 6= Y ].

From coupling to ncpa-security. Suppose that an adversary asks some non-adaptive distinct
queries. The adversary’s NCPA advantage cannot exceed the total variation distance between the
distribution of the outputs from her queries and the uniform distribution. The uniform distribution
itself can be viewed as the distribution of outputs from a uniformly random choice of distinct queries.
Think of a coupling argument as a computer program that accepts as its input either the actual
adversarial queries or a pool of uniformly random, distinct queries. On each input, the program
implements a Feistel network and gives a random output. The program tries to produce the same
output on its two possible inputs. Hence the total variation distance between the distributions of
the program’s outputs is upperbounded by the program’s probability of failure (that is, its failure
to produce the same output in the two cases).

To ease the design of such a program, a hybrid argument is employed and a chain of inputs is
created—the first being the adversarial queries and the last being the pool of uniformly random,
distinct ones. The purpose of this hybrid argument is to reduce the difference between any pair of
adjacent inputs in the chain. Given an arbitrary pair of adjacent inputs, our goal now is to design
a coupling program that produces identical output on those two inputs with high probability. The
program runs both inputs, one after another. When the program starts running the second input,
it has finished the operations on the first input and now knows all the random choices of the
first Feistel network. It then uses this knowledge in implementing the second Feistel network. For
example, if at some step the second network needs a uniformly random string then the program may
reuse the corresponding string from the first network. The random choices in the second network
are geared toward the first output, but they are subject to the restriction that the round functions
in the second network must be independent and uniformly random.

From ncpa to cca-security. We bound the CCA-security of a Feistel network from its NCPA-
security by using the following result of Maurer, Pietrzak, and Renner [14, Corollary 5]. It is key
to our approach, effectively letting us assume that our adversaries are of the simple, NCPA breed.
Recall that in writing F ◦G, the blockciphers are, in effect, independently keyed.

Lemma 2 (Maurer-Pietrzak-Renner) If F and G are blockciphers on the same message space

then, for any q, Advcca
F◦G−1(q) ≤ Advncpa

F (q) + Advncpa
G (q).

3 Classical Feistel

This section provides a strong, concrete security bound for conventional, balanced Feistel networks.
It also serves as a pedagogical example for proving security of a Feistel network using coupling;
some later examples get much more complex.

Defining the scheme. Fix n ≥ 1 and let F : {0, 1}n → {0, 1}n be a function. Define from F
the permutation ΨF : {0, 1}2n → {0, 1}2n by way of ΨF (A,B) = (B,A ⊕ F (B)) where |A| =
|B| = n, and ⊕ denotes xor. Blockcipher FEISTELr [n] : K × {0, 1}2n → {0, 1}2n has key space
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K = (Func(n, n))r and a key (F1, . . . , Fr ) ∈ K names the permutation ΨF1
◦ · · · ◦ ΨFr on {0, 1}2n.

Each Fi is called the round function at round i. For an illustration, see Fig. 1.

Initial notation. Given a query X to E = FEISTELr [n], define its round-0 output to be X itself,
while the round-t output is (ΨF1

◦ · · · ◦ ΨFt)(X). The coin of the query X at round t is the string
A⊕ F (B), where F is the round function at round t and (A,B) is the round-(t− 1) output, with
|A| = |B| = n. Two queries collide at time t if their round-t outputs have the same final n bits.

NCPA-security. We will now prove the NCPA-security of E by way of coupling, afterwards
lifting this to show CCA-security using the result of [14] from Lemma 2. The lemma below will
help us bound the probability that we fail to couple.

Lemma 3 For the blockcipher E = FEISTELr [n], the chance that two distinct non-adaptive queries

collide at time t ≥ 1 is at most 2−n.

Proof. Suppose that the Feistel network receives distinct nonadaptive queries X1 and X2. For each
i ∈ {1, 2}, let (Ai, Bi) be the output at round t − 1 of Xi, where |Ai| = |Bi| = n. The queries X1

and X2 collide at time t if and only if A1 ⊕F (B1) = A2 ⊕F (B2), with F being the round function
at round t. This occurs with probability 2−n if B1 and B2 differ, because F is uniformly random. If
B1 = B2 then so are A1 and A2, which contradicts the hypothesis that X1 and X2 are distinct. ut

Theorem 4. Let E = FEISTELr [n] where r = 3r. Then Advncpa
E (q) ≤ q

r+1 (4q / 2n)r
.

Proof. Suppose that E receives non-adaptive distinct queries X1, . . . ,Xq. For each ` ≤ q, consider
a vector of queries (Z1, . . . , Zq) such that Zi is Xi if i ≤ ` and Zi is chosen uniformly from
{0, 1}2n\{Z1, . . . , Zi−1} otherwise. Let µ` be the distribution of the vector of q outputs when E
receives queries Z1, . . . , Zq. We will show in a moment that the total variation distance between µ`

and µ`+1 is at most (4` / 2n)r for every ` ≤ q − 1. Assuming this, we have, by hybrid argument,

Advncpa
E (q) ≤

q−1∑

`=0

‖µ` − µ`+1‖ ≤

q−1∑

`=0

(4` / 2n)r ≤ 2r(2−n)

∫ q

0
xrdx =

q

r + 1
(4q / 2n)r .

Now we show the claim. Fix a value ` ≤ q − 1. We must bound the total variation distance
between µ` and µ`+1, each of them is a distribution of a vector of q outputs. However, only the
first `+1 components of the vector matter, because of the uniform sampling of the other. Consider
a 3r-round balanced Feistel network on n bits that receives queries X1, . . . ,X`+1. Let Xi(t) be the
output at round t from the query Xi.

The coupling. We construct another 3r-round balanced Feistel network on n bits with its non-
adaptive distinct queries U1, . . . , U`+1. Let Ui(t) be the output at round t of the new Feistel network
on input Ui. The construction of the new Feistel network will satisfy the following conditions:

• Query Uj equals to Xj for every j ≤ `, and U`+1 is uniformly chosen over {0, 1}2n\{U1, . . . , U`}.
• If for all i ≤ ` + 1, the outputs at round t of Xi and Ui are identical then so are their outputs

in any subsequent round.

Let T be the smallest round for which Xi and Ui have identical outputs for every i ≤ ` + 1. From
the second condition above and from Lemma 1, we have that

‖µ` − µ`+1‖ ≤ Pr[Xi(3r) 6= Ui(3r) for some i ≤ ` + 1] = Pr[T > 3r] .
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Now the first condition above describes how to initialize U1(0), . . . , U`+1(0). As the coin of Ui at
round t + 1 dictates how to update Ui(t + 1) from Ui(t), it suffices to show how to construct just
that coin.

• If Ui collides with some previous query Uj at time t then the coin at round t+1 of Ui is defined
so as to ensure consistency with the earlier query.

• Suppose that, in the new Feistel network, Ui does not collide with any previous query at time t.
If the query Xi collides with some previous query Xj at time t then we choose a string uniformly
from {0, 1}n to be the coin of Ui at round t + 1. Otherwise, the coin of Xi at round t + 1 is
uniformly distributed over {0, 1}n and Ui will use exactly the same coin at round t + 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ ` and every t. Consider
the event Coll that in either Feistel networks, the (` + 1)-th query collides with some previous
query at some time t ∈ {1, 2}. From Corollary 3, each such collision occurs with probability at
most 2−n. Summing over the two Feistel networks, two rounds, and ` previous queries shows that
the probability Coll occurs is at most 4` / 2n. Unless Coll occurs, U`+1 and X`+1 will share the
coins at the second and third rounds, and then have identical outputs at the third round. Hence
Pr[T > 3] ≤ Pr[Coll], which is at most 4` / 2n.

Now imagine that we run a sequence of trials. In each trial, we observe the outputs of X`+1

and U`+1 for an additional three rounds. The probability that X`+1 and U`+1 have different outputs
after the first trial is at most 4` / 2n. Since the round functions of both Feistel networks in each trial
are independent with those in previous trials, the conditional probability that X`+1 and U`+1 have
different outputs after the r-th trial, given that their outputs remain different after the first r − 1
trials, is again at most 4` / 2n. Hence Pr[T > 3r] ≤ (4` / 2n)r. ut

CCA-security. Let Rev denote the permutation on {0, 1}2n where Rev(A,B) = (B,A), for
|A| = |B| = n. The following observation is standard; see [13] for proof.

Lemma 5 If F and G are the blockcipher FEISTELr [n] then F ◦ G−1 ◦ Rev is the blockcipher

FEISTEL2r−1[n]. ut

Employing Lemma 2 we conclude the following.

Theorem 6. Let E = FEISTELr [n] where r = 6r − 1. Then Advcca
E (q) ≤ 2q

r+1 (4q / 2n)r.

Asymptotic interpretation. For an asymptotic interpretation of Theorem 6, fix r > 0. Suppose
that q = 2n(1−1/r). Let En be the blockcipher FEISTEL6r−1[n]. Then

Advcca
En

(q) ≤
2q

r + 1
(4q / 2n)r =

22r+1

r + 1
/ 2n/r,

which goes to 0 as n → ∞. Translating into English, CCA security is guaranteed to about q =
2n(1−ε) adversarial queries as long as one employs r ≥ 6/ε − 1 rounds. At a higher level still,
ignoring the 1 − ε multiplier in the exponent, an appropriate number of rounds lets one tolerate
nearly q = 2n adversarial queries.

Comparisons. Maurer and Pietrzak’s earlier work proves a security bound of Advcca
E (q) ≤

4q2 / 22n + 2q (8q / 2n)r for E = FEISTEL6r−1[n]. Our own bound is always tighter than this; see
Fig. 3 for a comparison of Theorem 6 and MP’s bound. Earlier versions of our paper explained
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Fig. 3. Proven CCA-security for the classical Feistel network: our own bounds and MP’s. The x-axis
gives the log base-2 of the number of adversarial queries and the y-axis gives upper bounds on an adversary’s CCA
advantage. In the left-hand plot (64-bit inputs), the dashed lines depict MP’s bounds for FEISTEL24[32] (left) and
FEISTEL96[32] (right); the solid lines depict our own. In the right-hand plot (128-bit inputs), the dashed lines likewise
depict MP’s bounds for FEISTEL24[64] (left) and FEISTEL96[64] (right); the solid lines depict our own.

that we were unable to plot Patarin’s latest bounds [26] due to the absence of a concrete secu-
rity statement. In very recent work [25] (subsequent to our own), Patarin bounds the security of
E = FEISTEL6[n] by Advcca

E (q) ≤ 8q / 2n + q2 / 22n+1 (assuming q ≤ 2n / 128n).

4 Unbalanced Feistel

Defining the scheme. Fix n,m ≥ 1 and let F : {0, 1}n → {0, 1}m be a function. Define from F
the permutation ΨF : {0, 1}m+n → {0, 1}m+n by way of ΨF (A,B) = (B,A⊕ F (B)) where |A| = m
and |B| = n, and ⊕ denotes xor. We call ΨF a Feistel (m,n)-permutation and F its round function.
Blockcipher Feistelr [m,n] : K × {0, 1}m+n → {0, 1}m+n has key space K = (Func(m,n))r and a
key (F1, . . . , Fr ) ∈ K names the permutation ΨF1

◦ · · · ◦ ΨFr on {0, 1}m+n. For an illustration, see
Fig. 1.

Security of unbalanced feistel schemes. The theorem below shows the CCA-security of
Feistelr [m,n]. The proof can be found in Appendix A. Interpreted asymptotically, the result says
that, with an adequate number of rounds, CCA security is guaranteed to about 2n adversarial
queries. Note that for expanding round functions this guarantee eventually becomes meaningless.
This is as it should be; expanding round functions with small domains give rise to information-
theoretically insecure schemes.

Theorem 7. Fix integers m,n, r ≥ 1.

1) Let E = Feistelr [m,n] where n > m and r = r(4dn/me+ 4).
Then Advcca

E (q) ≤ 2q
r+1

(
(3 dn/me+ 3)q/ 2n

)r
.

2) Let E = Feistelr [m,n] where n ≤ m and r = r(2dm/ne+ 4).
Then Advcca

E (q) ≤ 2q
r+1

(
4dm/neq / 2n

)r
.

Non-binary alphabets. We can replace the binary alphabet {0, 1} in an unbalanced Feistel
scheme with an arbitrary alphabet Σ where d = |Σ| ≥ 2. Regard the characters as numbers
{0, 1, . . . , d−1} and reinterpret ⊕ either as integer addition modulo dm or as characterwise addition
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Fig. 4. Unbalanced Feistel versus classical Feistel on a 128-bit string. Proven CCA-security of Feistelr [32, 96]
(bold lines) versus Feistelr [64, 64] = FEISTELr [64] (dashed lines) when r is 18, 36, 72, and 144 (the curves from left
to right). The x-axis gives the log base-2 of the number of queries; the y-axis gives an upper bound on an adversary’s
CCA advantage by Theorems 6 and 7.

modulo d. The analysis associated to Theorem 7 is trivially lifted to this setting; for example,
if E = Feistelrd [m,n], the radix of the alphabet indicated by the subscript, with n > m andr = r(4dn/me + 4), then Advcca

E (q) ≤ 2q
r+1

(
(3dn/me + 3)q / dn

)r
. We comment that our proof for

part (1) of Theorem 7 works for any group operator on Σm, but our proof for part (2) does not.

Graphical illustration. Fig. 4 illustrates our CCA-security bounds for Feistelr [32, 96] versus
Feistelr [64, 64]. Given an adequate number of rounds, imbalance helps. The same point is illustrated
differently in Appendix E, Fig. 6; when rounds are scarce, balanced-Feistel wins; but as rounds
become more plentiful, imbalance becomes increasingly helpful for good bounds.

Unbalanced numeric feistel. We now go on to show security for the numeric variant of
the unbalanced Feistel scheme. We begin by defining this. Let M ≥ 2 and N ≥ 2 be numbers
and let F have signature F : ZN → ZM . Let � : ZM × ZM → ZM represent addition modulo M ,
that is, a � b = (a + b) mod M . Consider the permutation ΨF : ZMN → ZMN that maps Na + b to
Mb+(a�F (b)) for every (a, b) ∈ ZM×ZN . We call ΨF a numeric Feistel (M,N)-permutation and F
its round function. Blockcipher Feistelr] [M,N ] : K×ZMN → ZMN has key space (Func(ZN , ZM ))r .
A key (F1, . . . , Fr ) ∈ K names the permutation ΨF1

◦ · · · ◦ ΨFr on ZMN , permutations composing
from the left. For an illustration, see Fig. 1.

Security of numeric feistel schemes. The following theorem establishes CCA-security for
Feistel]. Interpreted asymptotically, the result implies that, with an adequate number of rounds,
unbalanced numeric Feistel with a ZN → ZM round function withstands a chosen-ciphertext attack
to nearly N queries.

Theorem 8. Fix M,N ≥ 2, r ≥ 1.

1) Let E = Feistelr] [M,N ] where N > M and r = r(6 dlogM Ne+ 4).

Then Advcca
E (q) ≤ 2q

r+1

(
(9 dlogM Ne+ 5)q / N

)r
.

2) Let E = Feistelr] [M,N ] where N ≤M and r = r(2 dlogN Me+ 6).

Then Advcca
E (q) ≤ 2q

r+1

(
(7 dlogN Me+ 7)q / N

)r
.
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Proof ideas. Let us briefly give an overview of the proof; see Appendix B for the complete proof.
We begin by extending the concepts of coin and collision of Section 3. The coupling method in
Section 3 requires that every pair of queries share coins at each round, if possible. But this does not
work here because if M and N are relatively prime, we may find two deterministic queries that never

yield the same output under such a coupling strategy. Instead, think of coupling as a computer
program trying to produce the same output for two different inputs by manipulating the coins. The
program first creates a rule for coin-renaming. For example, suppose that each Feistel network is
programmed to create a sequence of uniformly random, independent coins. The rule will map each
possible value of the random sequence in the first network to a unique value of the corresponding
sequence in the second network. The program then runs the first input. Now, knowing the exact
value of the sequence of coins in the first network, it runs the second input and uses the rule above
to specify how the coins of the second network are created. The uniqueness property is to ensure
that the round functions in the second network are independent and uniformly random.

5 Alternating Feistel

Defining the schemes. Let m and n be positive integers such that m ≤ n. The blockci-
pher FeIsTeLr [m,n] : K × {0, 1}m+n → {0, 1}m+n consists of r rounds in which the odd rounds
are Feistel (m,n)-permutations (contracting) and the even rounds are Feistel (n,m)-permutations
(expanding). For simplicity, we assume that r is even. The key space of FeIsTeLr [m,n] is then
K = (Func(n,m)× Func(m,n))r/2. Given integers M and N such that 2 ≤M ≤ N , we define the
blockcipher FeIsTeLr] [M,N ] : K×ZMN → ZMN , with numeric Feistel (M,N) permutations at odd
rounds and numeric Feistel (N,M) permutations at even rounds. See Fig. 1 for illustration. We
comment that it does not much matter whether one starts with a contracting or expanding round
because a security bound with respect to one notion implies the same security bound with respect
to the other after one additional round.

Security of alternating feistel schemes. The information-theoretic security of blockciphers
FeIsTeL and FeIsTeL] are established by the following results. Interpreted asymptotically, the result
says that, with an adequate number of rounds, alternating Feistel can withstand a chosen-ciphertext
attack to nearly N adversarial queries.

Theorem 9. Fix r > 0, 1 ≤ m ≤ n, and 2 ≤M ≤ N .

1) Let E = FeIsTeLr [m,n] where r = r (12 dn/me+ 8).
Then Advcca

E (q) ≤ 2q
r+1

(
(6 dn/me+ 3)q / 2n

)r
.

2) Let E = FeIsTeLr] [M,N ] where r = r (12 dlogM Ne+ 8).

Then Advcca
E (q) ≤ 2q

r+1

(
(6 dlogM Ne+ 3)q / N

)r
.

Proof ideas. We give an overview; see Appendix C for all details.We consider the generalization of
FeIsTeL] in which the operator � is replaced by any two group operators on ZM and ZN , regarding
FeIsTeL as a special case. While we still follow the framework of Section 3, extending the concepts
of coin and collision is tricky. Following the birthday-bound proof of Black and Rogaway [3] and
using the simple coupling method for classical Feistel, one may be tempted to define two types of
coins, one for odd rounds and one for even rounds; and, likewise, two types of collisions. This will
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indeed give rise to a bound, which however falls off with min(N,M) queries instead of max(N,M)
queries; that is, the approach is only good in the nearly-balanced setting. Instead, we define coins
only at odd rounds, and collisions only at even rounds.

We are left with the task of coupling two pools of queries. Coins alone cannot completely
determine the outputs, because they dictate only the randomness at odd rounds. However, if we
require that the two pools use the same expanding round functions (that control the randomness at
even rounds), it suffices to specify how coins evolve. While some specific choice of expanding round
functions may give us a poor chance of coupling, the expected value of the success probability is
good when those functions are uniformly chosen.

6 Type-1, Type-2, and Type-3 Feistel

Defining the schemes. For illustrations, refer again to Fig. 1.

1) Fix k ≥ 2 and n ≥ 1, and let F : {0, 1}n → {0, 1}n name a permutation ΨF : {0, 1}kn →
{0, 1}kn by way of setting ΨF

(
B1, · · · , Bk) = (B2⊕F (B1), B3, . . . , Bk, B1

)
, where |Bi| = n. Then

Feistel1r [k, n] : K × {0, 1}kn → {0, 1}kn is the blockcipher obtained by the r-fold composition
of ΨF permutations, the key space being K = (Func(n, n))r .

2) Assume k ≥ 2 is even, n ≥ 1, and fi : {0, 1}
n → {0, 1}n for every i ≤ k/2. Let F = (f1, . . . , fk/2)

name a permutation ΨF : {0, 1}kn → {0, 1}kn by ΨF (B1, . . . , Bk) =
(
B2 ⊕ f1(B1), B3, B4 ⊕

f2(B3), B5, . . . , Bk ⊕ fk/2(Bk−1), B1

)
where |Bi| = n. Then the blockcipher Feistel2r [k, n] : K×

{0, 1}kn → {0, 1}kn is obtained by the r-fold composition of ΨF permutations, the key space
being K = (Func(n, n))kr/2.

3) Finally, with k ≥ 2 and n ≥ 1, consider fi : {0, 1}
n → {0, 1}n for every i ≤ k − 1. Let F =

(f1, . . . , fk−1) name a permutation ΨF : {0, 1}kn → {0, 1}kn by way of ΨF (B1, · · · , Bk) =
(
B2 ⊕

f1(B1), B3 ⊕ f2(B2), . . . , Bk ⊕ fk−1(Bk−1), B1

)
, where |Bi| = n. Then Feistel3r [k, n] : K ×

{0, 1}kn → {0, 1}kn is the blockcipher obtained by the r-fold composition of ΨF permutations,
the key space being K = (Func(n, n))(k−1)r .

Security results. The following results show CCA-security of type-1, type-2, type-3 Feistel
variants to 2n(1−ε) queries. Of course this may be a disappointing bound when n is small—and the
type-i Feistel variants are in part motivated by a desire to keep n small despite a long block length.
But the bound is the best possible, up to the asymptotic behavior, and substantially improves the
prior bound in the literature [35].

Theorem 10. Fix k, r ≥ 1.

(1) Let E = Feistel1r [k, n] and r = r(4k − 2). Then Advcca
E (q) ≤ 2q

r+1

(
2k(k − 1)q / 2n

)r
.

2) Let E = Feistel2r [k, n] with r = r(2k + 2). Then Advcca
E (q) ≤ 2q

r+1

(
2k(k − 1)q / 2n

)r
.

(3) Let E = Feistel3r [k, n] with r = r(2k + 2). Then Advcca
E (q) ≤ 2q

r+1

(
4(k − 1)2q / 2n

)r
.

The proofs for the results above can be found in Appendix D.
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A Proof for Unbalanced Feistel — Theorem 7

Given a query X to Feistelr [m,n], its coin at round t is the string A⊕F (B), where F is the round
function at round t and (A,B) is the round-(t− 1) output, with |A| = m and |B| = n. We say that
two queries collide at time t if their outputs at round t have the same last n bits. We begin with
the following.

Lemma 11 In the blockcipher Feistelr [m,n], the chance that two distinct non-adaptive queries

have the same coin at round t ≥ 1 is at most 2−m.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries X1 and X2. For
each i ∈ {1, 2}, let (Ai, Bi) be the output at round t − 1 of Xi, where |Ai| = m and |Bi| = n.
The queries X1 and X2 collide at time t if and only if A1 ⊕ F (B1) = A2 ⊕ F (B2), with F being
the round function at round t. This occurs with probability 2−m if B1 and B2 differ, because F is
uniformly random. If B1 = B2 then so are A1 and A2, which contradicts the hypothesis that the
two queries are distinct. ut

Contracting round functions. We first consider the security of the blockcipher Feistelr [m,n]
with n > m (that is, the round functions are contracting). Later we show how to deal with expanding
round functions.

Lemma 12 In the blockcipher Feistelr [m,n] with n > m, the chance that two distinct non-adaptive

queries collide at time t > dn/me is at most 3/2n+1.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries X1 and X2. We shall
prove by induction on b that for any b ≤ n, the probability that outputs at round t > db/me of the
two queries have the same last b bits is at most 3/2b+1. The claim of this lemma corresponds to
the special case b = n.

First consider the base case b < m. For each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1
of Xi, where |Ai| = m and |Bi| = n. The last m-bit substring of the round-t output of Xi is
Ai ⊕ F (Bi), with F being the round function at round t. If B1 and B2 differ then the probability
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that outputs at round t of the two queries have the same last b bits is at most 2−b, because F is
uniformly random. If B1 = B2 then the two queries have the same coin at round t − 1, which by
Lemma 11 occurs with probability at most 2−m. Hence, by union bound, the chance that the two
queries have the same last b bits is at most 2−b + 2−m ≤ 3/2b+1.

Next consider b ≥ m and assume that the chance round-(t− 1) outputs of the two queries have
the same last b−m bits is at most 3/2b−m+1. The outputs at round t of the two queries have the
same last b bits if and only if (i) they have the same coin at round t, which by Lemma 11 occurs with
probability at most 2−m, and (ii) their output at round t−1 have the same lat b−m bits, which occurs
with probability at most 3/2b−m+1 by induction hypothesis. As the round functions in the network
are independent, the chance that both (i) and (ii) occur is at most 2−m · 3 / 2b−m+1 = 3/2b+1. ut

We now prove NCPA-security of Feistelr(2dn/me+2)[m,n]. Employing Lemma 2 then yields the de-
sired result. Let b = dn/me + 1. Suppose that the network receives nonadaptive distinct queries
X1, . . . ,Xq. We shall use a similar strategy as in the proof of Theorem 4. Fix an integer ` ≤ q − 1.
For every i ≤ `, let Ui = Xi and let U`+1 be chosen uniformly from {0, 1}n+m \

{
U1, . . . , U`

}
. We

shall construct another Feistel2rb[m,n] for the queries U1, . . . , U`. Let Xi(t) and Ui(t) be the outputs
at round t of Xi and Ui respectively. It suffices to define the coupling in the first 2b rounds, and
then show that the probability that Xi(2b) 6= Ui(2b) for some i ≤ ` + 1 is at most 3b` / 2n.

The coupling. In the first b rounds, for every i ≤ `, we use the same coin to update Xi(t)
and Ui(t), and couple X`+1(t) and U`+1(t) in an arbitrary way. In the next b rounds, we couple as
follows.

• If Ui collides with some previous query Uj at time t then the coin at round t+1 of Ui is defined
so as to ensure consistency with the earlier query.

• Suppose that, in the new Feistel network, Ui does not collide with any previous query at time t.
If the query Xi collides with some previous query Xj at time t then we choose a string uniformly
from {0, 1}n+m to be the coin of Ui at round t + 1. Otherwise, the coin of Xi at round t + 1 is
uniformly distributed over {0, 1}n+m and Ui will use exactly the same coin at round t + 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ ` and every t. Consider
the event Coll that in either Feistel networks, the (`+1)-th query collides with some previous query
at some time t ∈ {b, . . . , 2b − 1}. From Lemma 12, each such collision occurs with probability at
most 3/2n+1. Summing over the two Feistel networks, b rounds, and ` previous queries shows that
the probability Coll occurs is at most 3b` / 2n. Unless Coll occurs, U`+1 and X`+1 will share the
coins at rounds b + 1, . . . , 2b, and then have identical outputs at round 2b. Hence the chance that
we fail to couple at round 2b cannot exceed 3b` / 2n.

Expanding round functions. We follow the same proof as before, but Lemma 12 is replaced
by the following result.

Lemma 13 In the blockcipher Feistelr [m,n] with n ≤ m, the chance that two distinct non-adaptive

queries collide at time t ≥ dm/ne is at most dm/ne / 2n.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries X1 and X2. For
each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1 of Xi, where |Ai| = m and |Bi| = n. The
queries X1 and X2 collide at time t if and only if the two strings A1⊕F (B1) and A2⊕F (B2) have
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the same last n bits, with F being the round function at round t. This occurs with probability 2−n

if B1 and B2 differ, because F is uniformly random. If B1 = B2 then A1 and A2 must have the
same last n bits. In other words, the round-(t − 1) outputs of the two queries must agree at the
last 2n bits. Repeating this argument leads us to examine the case that for every j < dm/ne the
round-(t− j) outputs of the two queries must agree at the last (j + 1)n bits. When this chain of
reasoning stops at round t−dm/ne+ 1, the outputs at that round must have the same last m bits.
In other words, the queries have the same coin at that round, which by Lemma 11 occurs with
probability at most 2−m ≤ 2−n. Hence by union bound, the chance that the two queries collide at
time t is at most dm/ne / 2n. ut

B Proof for Unbalanced Numeric Feistel — Theorem 8

Given a query to the blockcipher Feistelr] [M,N ], its coin at round t is the number a�F (b), where F
is the round function at round t and aN + b is the output at round t−1. We say that two queries x
and x∗ collide at time t if y ≡ y∗ (mod N), with y and y∗ being the outputs at round t of x
and x∗ respectively. For any sequence of coins C = (c1, . . . , cb), let 〈C〉M be the base-M number
represented by the digits c1, . . . , cb, with c1 as the most significant digit. More precisely,

〈C〉M = 〈c1, . . . , cb〉M =
b∑

i=1

M b−ici .

Consider an encryption of a number x by Feistelr] [M,N ] in which ci is the coin of x at round i. By

induction of b, we can prove that the round-b output of x is xM b + 〈c1, . . . , cb〉M mod NM . Two
technical results below are needed; the first is the well-known rearrangement inequality.

Lemma 14 (Rearrangement inequality) Let x1, . . . , xp be real numbers and let (y1, . . . , yp) be

a permutation of (x1, . . . , xp) . Then
∑p

i=1 xiyi ≤
∑p

i=1 x2
i . ut

Lemma 15 Fix m,n ≥ 2. Let x, x∗ be fixed integers and let c, c∗
$
← Zm independently. Then the

chance that x + c ≡ x∗ + c∗ (mod n) is at most 9/(8n) if m > n, and at most 1/m if m ≤ n.

Proof. Let pi and p∗i be the probability that x+c and x∗+c∗ take value i respectively. Let m = an+s,
with s ∈ Zn. Note that exactly s components of (pi)i∈ZN

are (a + 1)/m while the others are a/m,
and the similar claim holds for (p∗i )i∈ZN

. Hence the chance that x + c ≡ x∗ + c∗ (mod n) is

∑

i∈ZN

pi · p
∗
i ≤

∑

i∈ZN

p2
i = s(a + 1)2 /m2 + (n− s)a2 /m2, (1)

which is exactly 1/m if m ≤ n; the inequality is due to the rearrangement inequality. On the other
hand, if m > n then by simple algebraic manipulations, the right side of (1) can be simplified as

1/n +
s− s2/n

(an + s)2
≤ 1/n +

s− s2/n

(n + s)2
=

9

8n
−

(n− 3s)2

8n(s + n)2
≤

9

8n
. ut

Contracting round functions. We first consider the security of the blockcipher Feistelr] [M,N ]
with N > M (that is, round functions are contracting), and then show how to deal with expanding
round functions later. Let us start with a simple fact of Feistelr] [M,N ].
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Lemma 16 In the blockcipher Feistelr] [M,N ], if two queries collide at some round then they cannot

collide again within the next dlogM Ne − 1 rounds.

Proof. We need only consider the case that two queries collide at round 0. Suppose that the network
receives two queries x and x∗ that collide at time 0 and then collide again at time b ≤ dlogM Ne−1.
Let ci be the coin at round i of x, and let y and y∗ be the round-b outputs of x and x∗ respectively.
Recall that y ≡ xM b + 〈c1, . . . , cb〉M (mod N). Since 〈c1, . . . , cb〉M cannot exceed M b < N , the
number (y −M bx) mod N uniquely determines the coins of x at rounds 1, . . . , b. A similar claim
holds for x∗. As x and x∗ collide at time 0 and b, we have x ≡ x∗ (mod N) and y ≡ y∗ (mod N).
In other words, x and x∗ share the same coins in rounds 1, . . . , b. However, because x and x∗ are
distinct, if they collide at time 0 then they cannot have the same coin at round 1, which is a
contradiction. ut

Lemma 17 In the blockcipher Feistelr] [M,N ] with N > M , the chance that two distinct non-

adaptive queries collide at time t > dlogM Ne is at most 17 / (8N).

Proof. Let b = dlogM Ne + 1. We need only prove for t = b. Suppose that the Feistel network
receives two distinct non-adaptive queries x and x∗ that collide at round b. From Lemma 16, those
queries cannot collide at time 2, 3, . . . , b− 1. Hence their coins at rounds 3, 4, . . . , b are independent
and uniformly random. Let yi and y∗i be the outputs at round i of x and x∗ respectively, and let ci

and c∗i be the coins at round i of x and x∗ respectively. We consider the following cases.

Case 1: The queries x and x∗ collide at time 1. From Lemma 16, those queries cannot collide at
time 0. Hence their coins at rounds 1 are also independent and uniformly random. Since x and x∗

collide at time 1, thus Mx + c1 ≡ Mx∗ + c∗1 (mod N). By using Lemma 15, this occurs with
probability at most at most 1 / M because M ≤ N . Similarly, since x and x∗ collide at time b, thus

M b−2y2 + 〈c3, . . . , cb〉M ≡M b−2y∗2 + 〈c∗3, . . . , c
∗
b〉M (mod N) .

Again by using Lemma 15 this occurs with probability at most M2−b, because M b−2 < N . Hence
the chance that the two queries collide at time 1 and b is at most M1−b ≤ 1/N .

Case 2: The queries x and x∗ do not collide at time 1. Hence their coins at rounds 2 are also
independent and uniformly random. The two queries collide at time b if and only if

M b−1y1 + 〈c2, . . . , cb〉M ≡M b−1y∗1 + 〈c∗2, . . . , c
∗
b〉M (mod N) .

Again by Lemma 15, this occurs with probability at most 9 / (8N), because M b−1 ≥ N .

Hence by union bound, the chance that either Case 1 or Case 2 occurs is at most 17/(8N). ut

The technical lemma below is needed to define the coupling.

Lemma 18 For any two numbers x and x∗ in ZNM and any integer b > 0, there exists a per-

mutation ϕ on Z
b
M such that if C

$
← Z

b
M then the chance that xM b + 〈C〉M 6≡ x∗M b + 〈ϕ(C)〉M

(mod NM) is at most N/M b−1.

Proof. Let M b = aNM + s, with s ∈ ZNM . Sort the sequences in Z
b
M by lexicographic order.

Consider the set D of the first aNM sequences of Z
b
M . Given two queries x and x∗, we construct ϕ
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as a permutation on D, and as the identity on Z
b
M\D. Note that {xM b + 〈C〉M | C ∈ D} is actually

the set of exactly aNM consecutive integers starting at xM b, and the similar claim holds for x∗.
For each C in D, let ϕ(C) be the unique sequence C∗ in D such that xM b + 〈C〉M ≡ x∗M b + 〈C∗〉M
(mod aNM). Hence xM b + 〈C〉M 6≡ x∗M b + 〈ϕ(C)〉M (mod NM) only if C is one of the last s
sequences of Z

b
M , which occurs with probability s/M b < N/M b−1. ut

We now prove NCPA-security of Feistel
r(3dlogM Ne+2)
] [M,N ]. Using Lemma 2 then yields the result.

Let a = dlogM Ne. Suppose that the network receives nonadaptive distinct queries x1, . . . , xq. We
shall use a similar strategy as in the proof of Theorem 4. Fix an integer ` ≤ q − 1. For every i ≤ `,
let ui = xi, and let u`+1 be chosen uniformly from ZNM\{u1, . . . , u`}. We shall construct another

Feistel
r(3a+2)
] [M,N ] for queries u1, . . . , u`. Let xi(t) and ui(t) be the outputs at round t of xi and ui

respectively. It suffices to define the coupling in the first 3a+2 rounds, and show that the probability
that xi(3a + 2) 6= ui(3a + 2) for some i ≤ ` + 1 is at most (9a + 4)`/N + 1/N .

The coupling. For every i ≤ `, we use the same coin to update xi(t) and ui(t). For the (` + 1)th
queries, we couple them in an arbitrary way during the first a+1 rounds. Let C be a random vector
denoting the sequence of coins of x`+1 in the next 2a + 1 rounds, and define C∗ for u`+1 similarly.
If we think of coupling as a computer program that runs its two inputs simultaneously, upon this
point, except for C and C∗, everything else is fixed. Then, let ϕ be the resulting permutation by
applying Lemma 18 with x and x∗ being the round-(a + 1) outputs of x`+1 and u`+1 respectively,
and b = 2a+1. Consider the event Coll that in either network, the (`+1)th query collides with some
previous query at some time t ∈ {a + 1, . . . , 3a + 1}. Let S be the set of fixed values C̃ of C such
that using C̃ and ϕ(C̃) to update x`+1 and u`+1 respectively does not result in Coll. So whenever
C ∈ S, we let C∗ = ϕ(C), otherwise we couple arbitrarily. This coupling strategy is sound, because
both Pr[C = C̃] and Pr[C∗ = ϕ(C̃)] are M−(2a+1) for any C̃ ∈ S.

Thus from Lemma 18, conditioning on Coll, the chance that x`+1 and u`+1 fail to have the same
output at round 3a + 2 is at most 1/N . From Lemma 17, the chance that each collision occurs
cannot exceed 17/(8N). Summing over two Feistel networks, 2a + 1 rounds, and ` queries shows
that the probability Coll occurs is at most (9a + 4)`/N . Hence the chance that we fail to couple at
round 3a + 2 is at most (9a + 4)`/N + 1/N .

Expanding round functions. For the expanding case, use exactly the same proof as in the
contracting case, except that Lemma 17 is replaced by Lemma 20. The result below is needed.

Lemma 19 In the blockcipher Feistelr] [M,N ] with N ≤ M , the chance that two distinct non-

adaptive queries collide at all rounds t ≤ dlogN Me is at most 1/N .

Proof. Let λ = dlogN Me. Suppose that the network receives two nonadaptive, distinct queries x1

and x2 that collide at every round t ≤ λ. Without loss of generality, assume that the two queries
are deterministic. Let s be the largest integer such that M is divisible by N s. For each i ∈ {1, 2},
let the output at round t of xi be represented as Nai,t + bt with ai,t ∈ ZM and bt ∈ ZN . Then for
any t > 0,

Nai,t + bt = Mbt−1 +
(
ai,t � F (bt−1)

)
,

where F is the round function at round t. Hence

N |a1,t − a2,t| =
∣∣∣
(
a1,t−1 � F (bt−1)

)
−

(
a2,t−1 � F (bt−1)

)∣∣∣ . (2)
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Let us examine the right side of (2) through an example. Consider a1,t−1 = 7, a2,t−1 = 5, and
M = 18. In this case, for any integers x and y, the number x � y is either x + y or x + y − 18. So
our examined expression is either 2 or 16. The latter occurs if and only if F (bt−1) ∈ {11, 12}.

What about the general case? Let υt = |a1,t − a2,t|. The right side of (2) is either υt−1 or
M − υt−1. If the latter occurs, there are only υt−1 possible values for F (bt−1). This event then
happens with probability υt−1 /M because F is uniformly random. The equation (2) also implies
that Nυt ≡ υt−1 (mod N s) for any t > 0, and thus υt ≡ 0 (mod N s) for every t ≤ λ − s. From
now on, we implicitly assume that t ≤ λ − s. From (2), note that if υt−1 ≡ 0 (mod N s+1) then
υt = υt−1/N ; otherwise υt = (M − υt−1) /N . In other words, υt is deterministic. We consider the
following cases.

Case 1: There exists some t > 1 such that υt = (M − υt−1) /N , and thus the right side of (2) for
this round t takes value M − υt−1, which occurs with probability

υt−1/M ≤
1

MN
max{υt−2,M − υt−2} ≤ 1/N .

Case 2: υt = υt−1 /N for every t > 1. Hence υ1 ≡ 0 (mod Nλ−1). Since the two queries are
distinct, so υ0 > 0. Therefore, from (2),

0 <
1

N
min{υ0,M − υ0} ≤ υ1 ≤

1

N
max{υ0,M − υ0} < M/N ≤ Nλ−1,

which contradicts the fact that υ1 ≡ 0 (mod Nλ−1). ut

Lemma 20 In the blockcipher Feistelr] [M,N ] with N ≤ M , the chance that two distinct non-

adaptive queries collide at time t ≥ dlogN Me is at most 9 dlogN Me /(8N) + 1/N .

Proof. Suppose that the network receives two queries x1 and x2. We need only consider the case
the two queries collide at time t = dlogN Me. For each i ∈ {1, 2}, let round-(t− 1) output of xi be
represented as aiN + bi with ai ∈ ZM and bi ∈ ZN . Since the two queries collide at time t, thus

b1M +
(
a1 � F (b1)

)
≡ b2M +

(
a2 � F (b2)

)
(mod N),

where F is the round function at round t. By Lemma 15, this occurs with probability at most 9/(8N)
if b1 and b2 differ, because F is uniformly random. If b1 = b2 then the two queries collide at
round t− 1. Repeating this argument eventually leads us to examine the case that the two queries
collide at any time i ≤ t, which occurs with probability at most 1/N by Lemma 19. By union
bound, the total probability is at most 9 dlogN Me /(8N) + 1/N . ut

C Proof for Alternating Feistel — Theorem 9

We consider the generalization of FeIsTeL] in which the operator � is replaced by any two group
operators in ZM and ZN , leaving the security of FeIsTeL as a consequence. During this section �

represents the operators on ZN and ZM instead of modular addition. Given a query to the block-
cipher FeIsTeLr] [M,N ], its coin at an odd round t is the number a � F (b) where F is the round
function at round t and aN + b is the output at round t− 1, with a ∈ ZM and b ∈ ZN . We say that
two queries x and x∗ collide at an even round t if y ≡ y∗ (mod N), with y and y∗ being the outputs
at round t of x and x∗ respectively. We emphasize that coins are defined only at odd rounds and
collisions only at even rounds. Let us start with a simple fact of FeIsTeLr] [M,N ], which is analogous
to Lemma 3 and can be proved similarly.
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Fig. 5. Illustration for proof of Lemma 23. The figure shows a permutation over a multiset S = {1, 1, 2, 3, 3, 3}.
We iterate through the elements of S from left to right. Each top circle is mapped to a bottom one, illustrated by a
solid arrow (first iteration) or a dashed arrow (second iteration). A number i in S should be mapped to i∗ whenever
possible, where i∗ denotes the number in ZN such that x � i = x∗

� i∗. In this example, x, x∗, and � are chosen so
that 1∗ = 2, and 2∗ = 3, and 3∗ = 1.

Lemma 21 In the blockcipher FeIsTeLr] [M,N ], the chance that two distinct non-adaptive queries

collide at time t ≥ 2 is at most 1/N . ut

Consider the encryption of a number x by FeIsTeLr] [M,N ] in which ci is the coin at round 2i − 1
and gi is the expanding round function at round 2i. Let C = (c1, . . . , cb) and G = (g1, . . . , gb).
Let G(C) denote g1(c1) � · · · � gb(cb). By induction on b, we can prove that the if y is the output
of x at round 2b then y mod N = (x mod N) � G(C). The technical lemmas below will help us to
define coupling later.

Lemma 22 (Law of total variance) Let X and Y be random variables on the same probability

space, with Var(X) <∞. Then Var(X) = E(Var(X | Y )) + Var(E(X | Y )). ut

Lemma 23 Given x, x∗ in ZN and an integer b > 0, let G
$
← Funcb(ZM , ZN ). Then there exists a

random permutation ϕ on Z
b
M , which depends solely on G, such that for any independent C

$
← Z

b
M ,

the chance that x � G(C) 6= x∗
� G(ϕG(C)) is at most

√
N/M b.

Proof. Let S be the multiset
{
G(C) | C ∈ Z

b
M

}
. We shall define ϕ by creating a permutation over S,

and if G(C) is mapped to G(C∗) then ϕ(C) = C∗. For each i ∈ ZN , let i∗ denote the number in ZN

such that x � i = x∗
� i∗. Our purpose is to map i to i∗ whenever possible, and thus the following

greedy algorithm is employed. We iterate through the elements of S, and map each number i in S
to another number i∗ as long as one-to-one property is not violated. Some element i may fail to be
mapped, because there are more i than i∗ in S. In those cases, we simply ignore the current element
and continue to process the next one. After the first iteration terminates, we shall map the ignored
elements of S arbitrarily as long as this mapping is still one-to-one. See Fig. 5 for illustration. In
this example, if we iterate from left to right, we are unable to map the second and the last elements
in the first iteration, and have to defer mapping them to the second iteration.

To evaluate the probability that x�G(C) 6= x∗
�G(ϕ(C)), we condition on G and examine the

chance that an element i uniformly chosen from S is not mapped to i∗. For each number i ∈ ZN ,

let iG be Pr[G(C) = i | G], where C
$
← Z

b
M . Note that iG is a random variable and E(iG) = 1/N .
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Back to the prior example in Fig. 5, we have two 1s but only one 1∗, so in the first iteration we ignore
one element 1. Likewise, we have three 3s but only two 3∗s, so we have to ignore one element 3.
Hence in this example, our examined probability is 1/6 + 1/6 = 1/3. In general,

Pr[x � G(C) 6= x∗
� G(ϕ(C) | G] =

∑

iG>i∗G

(iG − i∗G) =
1

2

∑

i∈ZN

|iG − i∗G| , (3)

where the second identity is due to
∑

i∈ZN
iG =

∑
i∈ZN

i∗G. Moreover, by triangle inequality,

∑

i∈ZN

|iG − i∗G| ≤
∑

i∈ZN

|iG − 1/N |+ |1/N − i∗G| = 2
∑

i∈ZN

|iG − 1/N | . (4)

Taking expectation for (3) and (4) gives us

Pr[x � G(C) 6= x∗
� G(ϕ(C)] ≤

∑

i∈ZN

E |iG − 1/N | . (5)

To bound the right side of (5), by Cauchy-Schwarz inequality,

( ∑

i∈ZN

E |iG − 1/N |
)2
≤ N

∑

i∈ZN

(E|iG − 1/N |)2 ≤ N
∑

i∈ZN

E
[
(iG − 1/N)2

]
. (6)

From (5) and (6), what remains is to show that

∑

i∈ZN

E
[
(iG − 1/N)2

]
≤ 1/M b .

We shall prove this by induction on b, including the degenerate case b = 0, in which G(C) is
defined as the identity of the group (ZN ,�). In the degenerate case, iG = 1 if i is the identity of
the group (ZN ,�); otherwise iG = 0. The base case b = 0 is trivial, because the left hand side
is 1 − 1/N and the right hand side is 1. Suppose that the claim holds for b − 1. For clarity, we

write Cb and Gb. Express Gb as (Gb−1, g), with g
$
← Func(ZM , ZN ). Likewise, let Cb = (Cb−1, c),

with c
$
← ZM . Consider any arbitrary element j of ZN . Note that E[(jGb

−1/N)2] = Var(jGb
), and

E(jGb
| Gb−1) = 1/N , because g is uniformly random. It suffices to show that

Var(jGb
| Gb−1) =

1

MN

∑

i∈ZN

(iGb−1
− 1/N)2,

as using law of total variance and then summing for all j give us the desired result. For each s ∈ ZM ,
let ps = Pr[Gb−1(Cb−1) � g(s) = j | Gb]. Since g is uniformly random, for each fixed Gb−1, all
variables ps are independent and uniformly distributed over the multiset {iGb−1

|i ∈ ZN}. As c is
uniformly random and Gb(Cb) = Gb−1(Cb−1) � g(c), thus jGb

= 1
M

∑
s∈ZM

ps. Hence

Var (jGb
| Gb−1) = Var

[ 1

M

∑

s∈ZM

ps

∣∣Gb−1

]
=

1

M2

∑

s∈ZM

Var(ps | Gb−1) =
1

MN

∑

i∈ZN

(iGb−1
− 1/N)2,

where the second identity is from the conditional independence of ps, and the third identity is due
to their uniform distribution over the multiset {iGb−1

| i ∈ ZN}. ut
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We now prove NCPA-security of FeIsTeL
r(6dlogM Ne+4)
] [M,N ]. Using Lemma 2 then yields the

desired result. Suppose that the network receives nonadaptive distinct queries x1, . . . , xq. Let
b = 3dlogM Ne. We shall use a similar strategy as in the proof of Theorem 4. Fix an integer
` ≤ q − 1. For every i ≤ `, let ui = xi, and let u`+1 be chosen uniformly from ZNM\{u1, . . . , u`}.

We shall construct another FeIsTeL
r(2b+4)
] [M,N ] for queries u1, . . . , u`. Let xi(t) and ui(t) be the

outputs at round t of xi and ui respectively. It suffices to define the coupling in the first 2b + 4
rounds, and show that the probability that xi(2b + 4) 6= ui(2b + 4) for some i ≤ ` + 1 is at most
(2b + 2)` /N + 1/N .

The coupling. At each even round, both networks will use the same expanding round function.
Hence we need only show how to couple the coins at odd rounds. For every i ≤ `, we use the
same coin to update ui(t) and xi(t). We couple x`+1 and u`+1 arbitrarily in the first two rounds.
Let gi be the expanding round function at round 2i + 2, and let G = (g1, . . . , gb). Now, let ϕ be
the random permutation obtained by applying Lemma 23 with x and x∗ being x`+1(2) mod N and
u`+1(2) mod N respectively. Consider the event Coll that in either Feistel network, the (` + 1)-th
query collides with some previous query at some time t ∈ {2, 4, . . . , 2b + 2}. Let C be the random
vector denoting the sequence of coins of x`+1 at rounds 3, 5, . . . , 2b + 1, and define C∗ for u`+1

similarly. Similar to the coupling argument in Appendix B, we can couple so that conditioning on
Coll, we have C∗ = ϕ(C), and x`+1 and u`+1 have the same coins at rounds 2b+3 and 2b+4. Hence
from Lemma 23, the conditional probability that x`+1 and u`+1 disagree on their outputs at round
2b + 4 is at most 1/N .

From Lemma 21, each collision occurs with probability at most 1/N . Summing over two Feistel
networks, b+1 rounds, and ` queries shows that the probability Coll occurs is at most (2b+2)` / N .
Hence the chance that xi(2b + 4) 6= ui(2b + 4) for some i ≤ ` + 1 is at most (2b + 2)` /N + 1/N .

D Proofs for Type-1, Type-2, and Type-3 Feistel – Theorem 10

Type-1 feistel. Given some query X to Feistel1r [k, n], its coin at round t is the first block of
the round-t output. Two queries collide at time t if they have the same coin at round t.

Lemma 24 In the blockcipher Feistel1r [k, n], the chance that two distinct non-adaptive queries

collide at time t ≥ k − 1 is at most (k − 1)/2n.

Proof. Suppose that the network receives two non-adaptive queries X and X ′. Let Bi and B′
i be

the i-th block of the round-(t− 1) outputs of X and X ′ respectively. The queries X and X ′ collide
at time t if and only if F (B1)⊕B2 = F (B′

1)⊕B′
2, where F is the round function at round t. If B1

and B′
1 differ then the prior equation occurs with probability at most 2−n, because F is uniformly

random. If B1 = B′
1, this implies that B2 = B′

2. Repeating this argument leads us to examine the
case when the round-(t− 2) outputs of the two queries agree at the first three blocks, and then the
round-(t− 3) output at first four blocks, and so on. When this chain of reasoning stops at round
t− k + 1, the outputs at this round of the two queries must be identical, which is a contradiction.
Hence by union bound, the chance the the two queries collide at round t is at most (k− 1)/2n. ut

We now prove NCPA-security of Feistel1r(2k−1)[k, n]. We then conclude the result by Lemma 2.
Suppose that E receives non-adaptive distinct queries X1, . . . ,Xq. We shall use a similar strategy
as in the proof of Theorem 4. Fix an integer ` ≤ q − 1. For every i ≤ `, let Ui = Xi and let U`+1
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be chosen uniformly from {0, 1}kn\{U1, . . . , U`}. We shall construct another Feistel1r(2k−1)[k, n]
for queries U1, . . . , U`. Let Xi(t) and Ui(t) be the outputs at round t of Xi and Ui respectively.
It suffices to define the coupling in the first 2k − 1 rounds, and show that the probability that
Xi(2k − 1) 6= Ui(2k − 1) for some i ≤ ` + 1 is at most 2k(k − 1)` / 2n.

The coupling. In the first k−1 rounds, for every i ≤ `, each coin of Ui will be borrowed from that
of Xi, and X`+1(t) and U`+1(t) are coupled in an arbitrary way. In the next k rounds, we couple
as follows.

• If Ui collides with some previous query Uj at time t then the coin at round t+1 of Ui is defined
so as to ensure consistency with the earlier query.

• Suppose that, in the new Feistel network, Ui does not collide with any previous query at time t.
If the query Xi collides with some previous query Xj at time t then we choose a string uniformly
from {0, 1}n to be the coin of Ui at round t + 1. Otherwise, the coin of Xi at round t + 1 is
uniformly distributed over {0, 1}n and Ui will use exactly the same coin at round t + 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ ` and every t. Consider
the event Coll that in either Feistel networks, the (`+1)-th query collides with some previous query
at some time t ∈ {k − 1, . . . , 2k − 2}. From Lemma 24, each such collision occurs with probability
at most (k−1)/2n. Summing over the two Feistel networks, k rounds, and ` previous queries shows
that the probability Coll occurs is at most 2k(k − 1)` / 2n. Unless Coll occurs, U`+1 and X`+1 will
share the coins at rounds k, . . . , 2k− 1, and then have identical outputs at round 2k− 1. Hence the
chance that we fail to couple at round 2k − 1 cannot exceed 2k(k − 1)` / 2n.

Type-2 feistel. For each i ≤ k/2, a query’s ith coin at round t is the (2i−1)th block of its round-t
output. Two queries collide at round t if they have the same ith coin at round t, for some i ≤ k/2.

Lemma 25 In the blockcipher Feistel2r [k, n], the chance that two distinct non-adaptive queries

collide at time t ≥ k − 1 is at most k(k − 1)/2n+1.

Proof. Suppose that the network receives two non-adaptive queries X and X ′. Let Bi and B′
i be

the i-th block of the round-(t−1) outputs of X and X ′ respectively. We shall show that the chance
the two queries share the ith coin at round t is at most (k − 1)/2n. Hence by union bound, the
chance that X and X ′ collide at round t is at most k(k − 1)/2n+1.

Suppose the two queries share the ith coin at round t. This implies that F (B2i−1) ⊕ B2i =
F (B′

2i−1)⊕B′
2i, where F is the round function of the (2i−1)th block at round t. If B2i−1 and B′

2i−1

differ then the prior equation occurs with probability at most 2−n, because F is uniformly random.
Otherwise, B2i and B′

2i must be equal. Repeating this argument eventually leads us to examine
the case when for every j < k, the round-(t − j) outputs of the two queries agree on the blocks
2i−1, 2i, . . . , (2i−1+ j) mod k. When this chain of reasoning stops at round t−k +1, the outputs
at this round of the two queries must be identical, which is a contradiction. Hence by union bound,
the chance that X and X ′ share the ith coin at round t is at most (k − 1)/2n. ut

We now prove NCPA-security of Feistel2r(k+1)[k, n]. Applying Lemma 2 then yields the result. Sup-
pose that the network receives nonadaptive distinct queries X1, . . . ,Xq. We shall use a similar strat-
egy as in the proof of Theorem 4. Fix an integer ` ≤ q−1. For every i ≤ `, let Ui = Xi and let U`+1

be chosen uniformly from {0, 1}kn\{U1, . . . , U`}. We shall construct another Feistel2r(k+1)[k, n]
for queries U1, . . . , U`. Let Xi(t) and Ui(t) be the outputs at round t of Xi and Ui respectively.
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It suffices to define the coupling in the first k + 1 rounds, and show that the probability that
Xi(k + 1) 6= Ui(k + 1) for some i ≤ ` + 1 is at most 2k(k − 1)` / 2n.

The coupling. In the first k − 1 rounds, for every i ≤ `, each coin of Ui will be borrowed from
the corresponding coin of Xi, and X`+1(t) and U`+1(t) are coupled in an arbitrary way. In the next
two rounds, we couple as follows.

• If Ui collides with some previous query Uj at time t then its coins at round t + 1 are generated
to ensure consistency with earlier queries.

• Suppose that, in the new Feistel network, Ui does not collide with any previous query at time t.
If the query Xi collides with some previous query Xj at time t then the coins of Ui at round
t+1 are generated independently from those of Xi. Otherwise, Ui will share each corresponding
coin with Xi at round t + 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ ` and every t. Consider
the event Coll that in either Feistel networks, the (`+1)-th query collides with some previous query
at some time t ∈ {k − 1, k}. From Lemma 25, each such collision occurs with probability at most
k(k − 1)/2n+1. Summing over the two Feistel networks, two rounds, and ` previous queries shows
that the probability Coll occurs is at most 2k(k − 1)` / 2n. Unless Coll occurs, U`+1 and X`+1 will
share the coins at rounds k and k + 1, and then have identical outputs at round k + 1. Hence the
chance that we fail to couple at round k + 1 cannot exceed 2k(k − 1)` / 2n.

Type-3 feistel. For each i ≤ k − 1, a query’s ith coin at round t is the ith block of its round-t
output. Two queries collide at round t if they have the same ith coin at round t, for some i ≤ k−1.
We use similar proof as in type-2 case, except that Lemma 25 is replaced by the following result.

Lemma 26 In the blockcipher Feistel3r [k, n], the chance that two distinct non-adaptive queries

collide at time t ≥ k − 1 is at most (k − 1)2/2n.

Proof. Suppose that the network receives two non-adaptive queries X and X ′. Let Bi and B′
i be

the i-th block of the outputs at round t−1 of X and X ′ respectively. We shall show that the chance
the two queries share the ith coin at round t is at most (k − 1)/2n. Hence by union bound, the
chance that X and X ′ collide at round t is at most (k − 1)2/2n.

Suppose that the two queries share the ith coin at round t. This implies that F (Bi)⊕ Bi+1 =
F (B′

i) ⊕ B′
i+1, where F is the round function of the ith block at round t. If Bi and B′

i differ
then the prior equation occurs with probability at most 2−n, because F is uniformly random.
Otherwise, Bi+1 and B′

i+1 must be equal. Repeating this argument eventually leads us to examine
the case when for every j < k, the outputs at round t − j of the two queries agree on the blocks
i, i + 1, . . . , (i + j) mod k. When this chain of reasoning stops at round t − k + 1, the outputs at
this round of the two queries must be identical, which is a contradiction. Hence by union bound,
the chance that X and X ′ share the ith coin at round t is at most (k − 1)/2n. ut

E Unbalanced Feistel on Decimal Strings

To help illustrate what the unbalanced Feistel results say, in a concrete setting, consider the problem
of enciphering US social security numbers (9 digits), credit card numbers (16–19 digits), or credit
card “cores” (6–8 digits) by unbalanced Feistel of a decimal string. (Recall that all of our string-
based results directly lift to arbitrary alphabets.) For a given string length n and number of rounds r
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Fig. 6. CCA threshold for unbalanced Feistel over a decimal alphabet. The scheme is Feistelr10[m, n] with r
ranging from 12 to 60, and m + n ranging from 6 to 19. Each entry shows the “best” choice of m and then the
log2 of the corresponding CCA-threshold, according to Section 4. For example, the entry at the last row and last
column indicates that to encrypt 19-digit numbers with 60 rounds (AES calls), the best bound we get occurs with
Feistel6010[4, 15], which yields a CCA-threshold q = 234.44 queries.

we compute, for each m, our bound on the CCA-threshold for Feistelr10[m,n]—the largest number
of queries that an adversary can ask so that its CCA-advantage provably remains less than 0.5.

In a practical implementation, each round of Feistelr10[m,n] would probably be instantiated by
a single AES call, making the number of rounds the number of AES calls. Fig. 6 then shows the
parameter m that achieves the best proven CCA-threshold with the given number of AES calls.
After, it shows the log, base-2, of the number of queries this demonstrably tolerates. With a larger
budget of AES calls one profits from increasing the imbalance.

We do not suggest that, in practice, the most desirable choice of imbalance is what is given
by the table: the particular value specified is an artifact of present bounds. And we remind the
reader that balanced Feistel schemes with a secure-PRF round function are not known to admit
remotely practical attacks even for small n and modest numbers of rounds; there remains a huge
gap between lower and upper bounds on every kind of generalized Feistel network, the best known
attacks with sufficient round counts (meet-in-the-middle attacks) taking doubly exponential time.


