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Abstract. Impossible differential cryptanalysis is a very popular tool for
analyzing the security of modern block ciphers and the core of such at-
tack is based on the existence of impossible differentials. Currently, most
methods for finding impossible differentials are based on the miss-in-the-
middle technique and they are very ad-hoc. In this paper, we concentrate
SPN ciphers and propose several criteria on the linear transformation P
and its inversion P−1 to characterize the existence of 3/4-round im-
possible differentials. We further discuss the possibility to extend these
methods to analyze 5/6-round impossible differentials. Using these crite-
ria, impossible differentials for reduced-round Rijndael are found that are
consistent with the ones found before. New 4-round impossible differen-
tials are discovered for block cipher ARIA. And many 4-round impossible
differentials are firstly detected for a kind of SPN cipher that employs a
32× 32 binary matrix proposed at ICISC 2006 as its diffusion layer.
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1 Introduction

Many modern block ciphers are built using an iterative Substitution-Permutation
Network (SPN), such as Shark, Square, Rijndael, Anubis, Khazad, ARIA, etc.
These ciphers are generally designed to be immune against differential and linear
cryptanalysis. However, they may be vulnerable to another powerful cryptana-
lytic method, the so called impossible differential cryptanalysis.

The idea of using impossible differentials (differentials with probability 0) to
retrieve the secrete key of block cipehrs was firstly introduced by Knudsen [11]
against the DEAL cipher and further by Biham et al. [1] to attack Skipjack. In
fact, it is a kind of sieving attack that uses impossible differentials to exclude
wrong key candidates. Since its emergence, impossible differential cryptanalysis
has been used to attack many well-known block ciphers with very good results
(see e.g. [4, 12, 13, 18, 19]).
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The core of impossible differential cryptanalysis is based on the existence
of impossible differentials. The longer the impossible differential is, the better
the attack will be. Currently, most impossible differentials are found by miss-in-
the-middle technique [2]. To find impossible differentials, firstly two differential
characteristics from encryption and decryption directions both with probability
1 are constructed, and then they are connected together but with some inconsis-
tence. Thus this combined long differential that consists of those two short ones
is an impossible differential. Based on this idea, Kim et al. introduced U-method
[10] that could be used as an efficient tool to automatically find impossible dif-
ferentials of many known block cipher structures. However, the disadvantage is
that U-method is too general to detect longer impossible differentials in some
cases, because many information is lost during the calculation.

In a recent work [17], Wei et al. studied the impossible differential properties
of Feistel ciphers with SP and SPS round functions, where the linear trans-
formation P is defined over Fn×n

2 . They characterized the existence of some
6/7/8-round impossible differentials (the hamming weights of both the input
and output difference are 1) by presenting some sufficient conditions on P and
its inversion P−1. Using these criteria, impossible differentials of reduced-round
Feistel ciphers, such as Camellia, E2, etc., could be studied in a unified approach.

In this paper, we concentrate SPN ciphers whose linear transformation P
is defined over Fn×n

2d . Based on the theory of matrix on finite field, we pro-
pose several criteria on P and its inversion P−1 to characterize the existence of
3/4-round impossible differentials. We also show that, due to the symmetry of
the SPN structure, many similar criteria could be obtained. We further discuss
the possibility to extend these methods to analyze 5/6-round impossible differen-
tials. Using these criteria, impossible differentials for reduced-round Rijndael are
found that are consistent with the ones found before. New 4-round impossible
differentials are discovered for block cipher ARIA. And many 4-round impossible
differentials are firstly detected for a kind of SPN cipher that employs a 32× 32
binary matrix proposed at ICISC 2006 as its diffusion layer.

The advantage of the above two approaches is that one could discover some
impossible differentials of reduced-round SPN (Feistel) ciphers just by observ-
ing the linear transformation, unlike the traditional ad-hoc approach, where one
needs to follow the evolutional properties of the difference in both the encryp-
tion and decryption direction to detect some inconsistence by experience and
intuition, according to the concrete components of the underlying block ciphers.

The outline of this paper is as follows: some preliminaries are introduced in
Section 2. Section 3 and Section 4 present several criteria to characterize the
existence of 3 and 4 rounds impossible differentials of SPN ciphers, respectively.
Section 5 shows how to extend these methods to analyze 5/6-round SPN ciphers.
Finally, Section 6 concludes this paper.
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2 Preliminaries

In this section, we firstly describe SPN ciphers, and then introduce some no-
tations that are used throughout this paper. Finally, we give the definition of
χ-function that can be used as an useful tool to facilitate our cryptanalysis on
the impossible differentials of SPN ciphers.

2.1 SPN Ciphers

Substitution-Permutation Network (SPN) structure can be seen as a direct re-
alization of the concept of confusion and diffusion introduced by Shannon [16]
to protect ciphers against statistical cryptanalysis. A classical SPN cipher is a
kind of block cipher that alternatively iterates a substitution and a permutation
(usually a bit-based shuffle), one such good example is the light-weight block
cipher Present [3]. However, to achieve better and fast diffusion effects, many
modern SPN ciphers adopt linear transformation with good branch number.

The class of SPN cipher considered in this paper is described below. Its block
length is dn bits (or n-word with a word being d-bit), and the round function
consists of three basic operations: a substitution layer, a diffusion layer and a
round key addition layer.

The substitution layer is a non-linear transformation on Fn
2d defined by n

parallel non-linear bijective mappings on F2d , i.e. S : Fn
2d → Fn

2d is defined by
S(x1, x2, . . . , xn) = (s1(x1), s2(x2), . . . , sn(xn)), where each si is a non-linear
bijective mapping on F2d and all of them are not necessarily to be the same
at different rounds. The diffusion layer is an invertible linear transformation
P defined over Fn×n

2d . The round key addition layer is defined simply by the
exclusive or (XOR) of the round-key ki and the input x, i.e. σki(x) = x⊕ ki.

An r-round SPN cipher firstly applies a round key addition, and then iterates
the round function r − 1 times, the last round is the same but excludes the
diffusion layer. We can describe the encryption procedure by

Ek(·) = σkr ◦ S ◦ (©r−1
i=1 σki ◦ P ◦ S

) ◦ σk0(·),
where ki is the dn-bit round-key that may be generated from the key schedule
of the cipher. We omit the detail of the key schedule here since our impossible
differential cryptanalysis is not relevant to it.

More precisely, in this paper, we consider SPN ciphers, where the differential
branch number of the linear transformation doesn’t achieve the maximum (n+1).
In this situation, impossible differentials of any two-round SPN ciphers are easy
to identify. Thus in the following sections, SPN ciphers with more than 2 rounds
are in particular concentrated. We briefly describe three SPN ciphers in the
appendices, including AES [15], ARIA [9], and a special kind of block cipher
employing a binary matrix proposed in [8] as its diffusion layer.

2.2 Notations

We use X = (xi,1, xi,2, . . . , xi,n) to denote any n-word state, ∆X to denote
the difference of X and X ′. The difference used in this paper is the XOR(⊕)
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difference, i.e. ∆X = X ⊕X ′. Particulary, ej denotes an n-word state with the
j-th position being non-zero and all other positions being zero, and ej1,j2,...,jt

denotes an n-word state with the non-zero positions being j1, j2, . . . , jt. We use
(α, β) to denote some differential, where α is the input difference and β is the
output difference.

Note that the XOR difference is not influenced by the round-key addition
layer, we thus omit this transformation when studying the evolutional property
of difference in the encryption and decryption procedure. Moreover, it is well-
known that given an input difference ∆X, after the linear transformation P , the
output difference is P (∆X). Now if we denote S(X)⊕ S(X ⊕∆X) by S(∆X),
where S is the non-linear transformation in the substitution layer, then the
output difference of an r-round SPN cipher could be represented by

S ◦ P ◦ S ◦ . . . ◦ P ◦ S ◦ P ◦ S︸ ︷︷ ︸
(r−1)−round

(∆X).

In fact, given ∆X, S(∆X) represents several values according to the input X,
however one can just choose one such value for his related discussion.

2.3 χ-Function

Definition 1. (χ-function) χ : Fn
2d → F2 is defined as

χ(x1, x2, . . . , xn) = (θ(x1), θ(x2), . . . , θ(xn)),

where θ : F2d → F2 is defined by

θ(x) =

{
0 if x = 0
1 if x 6= 0

.

Given X = (x1, x2, . . . , xn), define χs : Fn
2d → F2 by χs(X) = θ(xs), then

χs(X) = 1 ⇔ xs 6= 0. This indicates that if we only consider whether there is
a difference or not at some position while do not pay attention to its concrete
value, then χ-function is an appropriate tool. Note that χ-function is well used
in truncated differential cryptanalysis.

The following properties of χ-function has been pointed out in [17].

Property 1. [17] (1) For any difference ∆X ∈ Fn
2d ,

χ(S(∆X)) = χ(∆X).

(2) Let P = (p1, p2, . . . , pn), where pi is i-th column of P . If ∆X = ei, then

χ(P ◦ S(∆X)) = χ(P (∆X)) = pi.

(3) Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn). If xs = 0, then

χs(X ⊕ Y ) = χs(Y ).

Definition 2. (Hamming Weight) Given X = (x1, x2, . . . , xn) ∈ Fn
2d , the ham-

ming weight of X is defined as the number of non-zero components of X:

Hw(X) = #{i|xi 6= 0, 1 ≤ i ≤ n}.
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3 Analysis of 3-Round SPN Ciphers

In this section, we present the following proposition to study the impossible
differential property of 3-round SPN ciphers.

Proposition 1. Given an SPN cipher with diffusion layer P = (pij), let the
inversion of P be P−1 = (qij). If there exists i1, i2, . . . , ir, j1, j2, . . . , jt, and k,
such that

Hw(pk,i1 , pk,i2 , . . . , pk,ir
, qk,j1 , qk,j2 , . . . , qk,jt

) = 1,

then (ei1,i2,...,ir , ej1,j2,...,jt) is a 3-round impossible differential.

Proof. We finish this proof by contradiction. Assume (ei1,i2,...,ir
, ej1,j2,...,jt

) is a
3-round possible differential, then we have

S ◦ P ◦ S(ei1,i2,...,ir
) = P−1 ◦ S−1(ej1,j2,...,jt

). (1)

Since
Hw(pk,i1 , pk,i2 , . . . , pk,ir

, qk,j1 , qk,j2 , . . . , qk,jt
) = 1,

without loss of generality, assume pk,i1 6= 0, pk,l = 0, for l = i2, . . . , ir, and
qk,l = 0, for l = j1, . . . , jt.

Let α = S(ei1,i2,...,ir ), then the k-th component of P ◦ α is

n∑

l=1

pklαl =
∑

l∈{i1,i2,...,ir}
pklαl = pk,i1αi1 6= 0,

Let β = S−1(ej1,j2,...,jt), then the k-th component of P−1 ◦ β is

n∑

l=1

qklαl =
∑

l∈{j1,j2,...,jt}
qklαl = 0.

According to Property 1,

χk(S ◦ P ◦ S(ei1,i2,...,ir
)) = χk(P ◦ α) = 1,

χk(P−1 ◦ S−1(ej1,j2,...,jt
)) = χk(P−1 ◦ β) = 0,

which leads to a contradiction with Eq. (1). Thus (ei1,i2,...,ir
, ej1,j2,...,jt

) is a 3-
round impossible differential. ut
Example 1. (3-round impossible differential of AES) Given the following set
{1, 2, 3, 4; 1, 2, 3, 4; 4}, we find that p4,1 = 03, p4,2 = p4,3 = p4,4 = 0, and
q4,1 = q4,2 = q4,3 = q4,4 = 0, thus according to Proposition 1, (e1,2,3,4, e1,2,3,4) is
a 3-round impossible differential of AES.

Example 2. (3-round impossible differential of ARIA) Given the following set
{1, 2, 4, 5, 7; 11, 12, 14, 15, 16; 2}, we find that p2,1 = p2,2 = p2,4 = p2,5 = p2,7 = 0,
q2,11 = q2,12 = q2,14 = q2,15 = 0, and q2,16 = 1, thus (e1,2,4,5,7, e11,12,14,15,16) is a
3-round impossible differential of ARIA.
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4 Analysis of 4-Round SPN Ciphers

This section concentrates 4-round SPN ciphers. We present three kinds of suffi-
cient conditions to characterize the existence of 4-round impossible differentials,
where the hamming weights of both the input and output difference are 1. We
further show how to deal with the case when hamming weights exceed 1.

All proofs of the three propositions in the following sub-sections are finished
by contradiction. To verify whether a given 4-round differential (ei, ej) is impos-
sible, one firstly assume (ei, ej) is a possible one, then according to the encryption
(decryption) procedure, the following equation must hold:

P ◦ S ◦ P ◦ S(ei) = S−1 ◦ P−1 ◦ S−1(ej). (2)

Using this equation, he could deduce some contradiction with the conditions
that proposed in the proposition, and thus completes the proofs.

4.1 The First Criterion

The first criterion is the one that used especially in AES-like ciphers.

Proposition 2. Given an SPN cipher with diffusion layer P = (pij), let the
inversion of P be P−1 = (qij). For any 1 ≤ i, j ≤ n, let

Uj = {r|qrj = 0} = {r1, r2, . . . , ru},
Vi = {t|pti 6= 0} = {t1, t2, . . . , tv},

and

Mij = (pra,tb
)u×v =




m1

m2

...
mu


 ,

where each mi is the i-th row vector of Mij.
If Uj , Vi 6= ∅, and there exists an l ∈ {1, 2, . . . , u}, such that Hw(ml) = 1,

then (ei, ej) is a 4-round impossible differential.

Proof. Let λ = S ◦P ◦S(ei) and γ = S−1 ◦P−1 ◦S−1(ej), then Eq. (2) becomes

Pλ = γ. (3)

According to the definition of Vi, for any t ∈ Vi, χt(λ) = 1, and for t 6∈ Vi,
χt(λ) = 0, which implies that λt 6= 0 ⇔ t ∈ Vi, thus the left side of Eq. (3)
becomes

Pλ =
v∑

a=1

Ptaλta ,

where Pi is the i-th column vector of P and λi is the i-th component of λ.
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Now consider the right side of Eq.(3), according to the definition of Uj , for
any r ∈ Uj , χr(γ) = 0, which tells that χr(P ◦ λ) = 0. Thus,

pr1,t1λt1 + pr1,t2λt2 + . . . + pr1,tv
λtv

= 0
pr2,t1λt1 + pr2,t2λt2 + . . . + pr2,tv

λtv
= 0 (4)

...
...

pru,t1λt1 + pru,t2λt2 + . . . + pru,tv
λtv

= 0

The above linear equation system could be represented as

Mij λ̃ = 0, (5)

where Mij = (pra,tb
)u×v, and λ̃ = (λt1 , . . . , λtv )T, with each λti being non-zero.

Since there exists an l ∈ {1, 2, . . . , u}, such that Hw(ml) = Hw(prl,t1 , prl,t2 , . . .,
prl,tv ) = 1, we have ml · λ̃ 6= 0 which is a contraction with the l-th equation of
the linear system (4). ut
Example 3. (4-round impossible differential of AES) Given i = j = 1, then
Ui = {2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15}, and Vj = {1, 2, 3, 4}, thus

M11 =




1 0 0 0
1 0 0 0
3 0 0 0
0 0 0 1
0 0 0 3
0 0 0 2
0 0 1 0
0 0 3 0
0 0 1 0
0 3 0 0
0 2 0 0
0 1 0 0




.

Since for each l ∈ {1, 2, . . . , 12}, Hw(ml) = 1, (e1, e1) is a 4-round impossible
differential of AES.

4.2 The Second Criterion

For many SPN ciphers, the sub-matrix Mij usually doesn’t satisfy the condition
in Proposition 2, thus we propose the following criterion, which generalizes the
idea in [17], to characterize the existence of 4-round impossible differentials.

Proposition 3. Given an SPN cipher with diffusion layer P = (pij), let the
inversion of P be P−1 = (qij). For any 1 ≤ i, j ≤ n, let

Uj = {r|qrj = 0} = {r1, r2, . . . , ru},
Vi = {t|pti 6= 0} = {t1, t2, . . . , tv},

and
Mij = (pra,tb

)u×v = (m1,m2, . . . , mv),

where each mi is the i-th column vector of Mij.
If Uj , Vi 6= ∅, and there exists an l ∈ {1, 2, . . . , v}, such that

rank{{m1,m2, . . . , mv}\{ml}} < rank{m1,m2, . . . , mv},
then (ei, ej) is a 4-round impossible differential.
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Proof. According to Eq. (5),
∑v

j=1 λtj
·mj = 0, where each λti

is non-zero. Since
λtl

6= 0, we get

ml =
v∑

b=1,b 6=l

λtb

λtl

·mj ,

which implies that ml could be represented by {m1, . . . , ml−1,ml+1, . . . , mv},
thus

rank{{m1,m2, . . . , ml}\{ml}} = rank{m1,m2, . . . , ml},
which is a contraction with the condition as described in the proposition. Thus
we end the proof. ut

Example 4. (4-round impossible differential of ARIA) Given i = j = 1, then
U1 = {1, 2, 3, 6, 8, 11, 12, 13, 16}, and V1 = {4, 5, 7, 9, 10, 14, 15}, thus

M1,1 =




1 1 1 1 1 1 1
0 0 0 1 1 0 0
0 1 1 0 0 0 0
1 1 0 0 1 0 1
1 0 1 1 0 1 0
1 0 1 1 0 1 0
1 1 0 0 1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0


 , (m1,m2, . . . , m7).

One can verify that

rank{{m1,m2, . . . , m7}\{m1}} = 5 < 6 = rank{m1,m2, . . . , m7},

thus (e1, e1) is a 4-round impossible differential of ARIA.

Using this method, we can further find many similar 4-round impossible
differentials of ARIA, and the results are listed in Table 1.

Table 1. 4-Round Impossible Differential (ei, ej) of ARIA

i j i j

1 1, 2, 3, 6, 8, 11, 12, 13, 16 9 3, 4, 6, 7, 9, 10, 12, 13, 15
2 1, 2, 4, 5, 7, 11, 12, 14, 15 10 3, 4, 5, 8, 9, 10, 11, 14, 16
3 1, 3, 4, 6, 8, 9, 10, 14, 15 11 1, 2, 5, 8, 10, 11, 12, 13, 15
4 2, 3, 4, 5, 7, 9, 10, 13, 16 12 1, 2, 6, 7, 9, 11, 12, 14, 16
5 2, 4, 5, 7, 8, 10, 11, 13, 14 13 1, 4, 5, 6, 9, 11, 14, 15, 16
6 1, 3, 6, 7, 8, 9, 12, 13, 14 14 2, 3, 5, 6, 10, 12, 13, 15, 16
7 2, 4, 5, 6, 7, 9, 12, 15, 16 15 2, 3, 7, 8, 9, 11, 13, 14, 16
8 1, 3, 5, 6, 8, 10, 11, 15, 16 16 1, 4, 7, 8, 10, 12, 13, 14, 15

4.3 The Third Criterion

We propose here another criterion to analyze 4-round impossible differentials.
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Proposition 4. Given an SPN cipher with diffusion layer P = (pij), let the
inversion of P be P−1 = (qij). For any 1 ≤ i, j ≤ n, let

Uj = {r|qrj = 0} = {r1, r2, . . . , ru},
Wj = {s|qsj 6= 0} = {s1, s2, . . . , sw},
Vi = {t|pti 6= 0} = {t1, t2, . . . , tv},

and

Mij = (pra,tb
)u×v =




m1

m2

...
mu


 , M ′

ij = (pra,tb
)w×v =




m′
1

m′
2

...
m′

w


 ,

where each mi (resp. m′
i) denotes the i-th row vector of Mij (resp. M ′

ij).
If Uj ,Wj , Vi 6= ∅, and there exists an l ∈ {1, 2, . . . , w}, such that

rank{m1,m2, . . . , mu,m′
l} = rank{m1,m2, . . . , mu},

then (ei, ej) is a 4-round impossible differential.

Proof. According to Eq. (5), let (λt1 , λt2 , . . . , λtv
)T = λ̃ , (λ̃1, . . . , λ̃v)T, with

each λ̃b 6= 0, where b = 1, 2, . . . , v, and let ma = (ma,1,ma,2, . . . , ma,v), where
a = 1, 2, . . . , u, then ma · λ̃ = 0.

Assume m′
a = (m′

a,1,m
′
a,2, . . . , m

′
a,v), where a = 1, 2, . . . , w, then according

to the definition M ′
ij , for any a ∈ {1, 2, . . . , w}, m′

a · λ̃ 6= 0.
Since there exists an l ∈ {1, 2, . . . , w}, such that m′

l could be represented
by {m1,m2, . . . , mu}, we have m′

l =
∑u

a=1 ca ma, where c1, c2, . . . , cu are some
constants, thus m′

lb =
∑u

a=1 ca mab, where b = 1, 2, . . . , v.
Now we get

m′
l · λ̃ =

v∑

b=1

m′
lb · λ̃b =

v∑

b=1

(
u∑

a=1

ca mab

)
λ̃b

=
u∑

a=1

ca

(
v∑

b=1

mab λ̃b

)

=
u∑

a=1

ca ·
(
ma · λ̃

)
=

u∑
a=1

ca · 0 = 0,

which leads to a contradiction. ut
Example 5. (4-round Impossible Differential of ARIA) Given i = j = 1, then
U1 = {1, 2, 3, 6, 8, 11, 12, 13, 16}, W1 = {4, 5, 7, 9, 10, 14, 15}, and V1 = {4, 5, 7, 9,
10, 14, 15}, thus

M1,1 =




1 1 1 1 1 1 1
0 0 0 1 1 0 0
0 1 1 0 0 0 0
1 1 0 0 1 0 1
1 0 1 1 0 1 0
1 0 1 1 0 1 0
1 1 0 0 1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0


 , M ′

1,1 =




0 0 0 0 0 1 1
0 0 0 1 0 0 1
0 0 0 0 1 1 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 1


 .



10

One can see that the last row vector of M ′
11 is equal to the seventh row vector

of M11, or the last second row vector of M ′
11 is equal to the fifth row vector of

M11, thus we obtain the same 4-round impossible differential (e1, e1).

An interesting result is that, by using the criterion as described in Proposition
4, we find the same impossible differentials as described in Table 1, which are
found based on Proposition 3.

Example 6. (4-round Impossible Differential of a Kind of SPN Cipher) In [8], a
special kind of 32×32 binary matrix was introduced that could be used to serve
as the diffusion part of some 256-bit SPN ciphers. The designs showed that such
binary matrix had good branch number and could be efficiently implemented.
They further claimed that it could resist truncated and impossible differential
cryptanalysis, especially that there would not exist any impossible differentials
with more than 3-rounds. However, using the methods proposed in Proposition
3 or 4, we can demonstrate that for any given 1 ≤ i, j ≤ 32, (ei, ej) is a 4-round
impossible differential.

4.4 The Dual Case

We use the notion “dual case” to describe the phenomenon that, due to the sym-
metric property of the SPN structure, many similar criteria could be proposed
to characterize the existence of impossible differentials. For example, Eq. (2) is
equivalent to

S ◦ P ◦ S(ei) = P−1 ◦ S−1 ◦ P−1 ◦ S−1(ej),

which indicates that if we exchange the role of P and P−1 as well as i and j as
shown in Proposition 2, 3 and 4, we could obtain another criterion. The same
case exists when analyzing the general case and 5/6-round SPN ciphers.

4.5 The General Case

We show how to analyze 4-round impossible differentials whose input difference
and (or) output difference are (is) with hamming weight(s) exceeding 1.

In general, given an input difference α 6= 0 and an output difference β 6= 0,
the criterion that we want to propose will be based on the following equation

P ◦ S ◦ P ◦ S(α) = S−1 ◦ P−1 ◦ S−1(β),

or equivalently,
Pλ = γ, (6)

with λ = S ◦ P ◦ S(α) and γ = S−1 ◦ P−1 ◦ S−1(β).
Note that, the left side of Eq. (6) is equivalent to

∑n
l=1 Pl ·λl, thus if λk = 0,

then the contribution of Pk · λk in the summation could be omitted.
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Properties of λ = S ◦ P ◦ S(α) and γ = S−1 ◦ P −1 ◦ S−1(β). We
concentrate the components of λ and γ. Take λ = S ◦ P ◦ S(α) as an example:
each component of λ has three possible states, the zero state (0), the non-zero
state (*), and the unknown state (?). The unknown state is such state that
one could not definitely determine whether its value is zero or non-zero, that
is sometimes the value of the component could be non-zero, while sometimes
it could be zero. In fact, we can classify the components of λ according to the
input difference α.

(1) If α = ei, according to Property 1,

χk(λ) = χk(S ◦ P ◦ S(ei)) = χk(P ◦ S(ei)) = χk(P (ei)) = θ(pki),

which implies that λk is either zero or non-zero, and thus the unknown state
never appears in this situation.

(2) If Hw(α) > 1, without loss of generality, assume α = ei1,i2,...,ir
, then

χk(λ) = χk(S ◦ P ◦ S(ei1,i2,...,ir
))

= χk(P ◦ S(ei1,i2,...,ir
))

= θ

(
r∑

l=1

pk,il
· δil

)
, (7)

where δil
is a possible output difference of the i1-th s-box in the substitution

layer. Thus λk could be either *, 0, or ?. However, from Eq. (7), we can discuss
the state of λk according to the hamming weight of (pk,i1 , pk,i2 , . . . , pk,ir ).

– If Hw(pk,i1 , pk,i2 , . . . , pk,ir ) = 0, then λk is 0,
– If Hw(pk,i1 , pk,i2 , . . . , pk,ir ) = 1, then λk is *,
– If Hw(pk,i1 , pk,i2 , . . . , pk,ir

) > 1, then λk is ?.

Similarly, we can analyze the component state of γ = S−1 ◦ P−1 ◦ S−1(β)
when β = (ej1,j2,...,jt

).

Motivations of Proposition 2, 3 and 4. Let’s further discuss why we could
propose the former three criteria to characterize the existence of 4-round im-
possible differentials of SPN ciphers when (α, β) = (ei, ej). Recall that, in this
situation, all components of both λ and γ are either 0 or ∗.
– Proposition 2 and 3 are based on the existence of two non-empty sets Uj

and Vi. Uj chooses the positions of all zero difference of γ and Vi chooses
the positions of all non-zero difference of λ. Then (Uj , Vi) is used to select a
sub-matrix Mij from P , where some inconsistence are detected which leads
to some 4-round impossible differentials.

– Proposition 4 needs another non-empty set Wj to choose the positions of all
non-zero difference of γ. Then (Wj , Vi) is used to select another sub-matrix
M ′

ij from P , and some inconsistence are detected between Mij and M ′
ij .
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Generalized Methods. If we turn to the general case (α, β) = (ei1,i2,...,ir
,

ej1,j2,...,jt
), the components of both λ = S ◦P ◦S(α) and γ = S−1 ◦P−1 ◦S−1(β)

will have three possible states. Thus, in order to generalize the former three
propositions (Proposition 2, 3 and 4) into this situation, the definitions of Uj ,
Wj , and Vi must be modified to the followings:

Uβ = {k|Hw(qk,j1 , qk,j2 , . . . , qk,jt
) = 0},

Wβ = {k|Hw(qk,j1 , qk,j2 , . . . , qk,jt
) = 1}, and

Vα = {1, 2, . . . , n} − {k|Hw(pk,i1 , pk,i2 , . . . , pk,ir
) = 0}.

Now, (Uβ , Vα) could be used to generalize Proposition 2 and 3, while (Uβ ,Wβ , Vα)
could be adopted to generalize Proposition 4.

However, a crucial stage when generalizing Proposition 2 and 3 must be em-
phasized. In these two situations, the following set should be defined in advance,

L = {k|Hw(pk,i1 , pk,i2 , . . . , pk,ir
) = 1}.

Once the sub-matrix Mα,β =




m1

m2

...
mu


 is selected by (Uβ , Vα) from P , then to

detect some inconsistence, the generalization of Proposition 2 should be
“If L 6= ∅, and there exists an l ∈ {1, 2, . . . , u}, such that Hw(ml) = 1 and

the non-zero proposition of ml belongs to L, then (α, β) is a 4-round impossible
differential.”

While, if the selected sub-matrix is Mα,β = (m1,m2, . . . , mv), then the gen-
eralization of Proposition 3 should be

“If L 6= ∅ and there exists a l ∈ L, such that

rank{{m1,m2, . . . , mv}\{ml}} = rank{m1,m2, . . . , mv},

then (α, β) is a 4-round impossible differential.”

Example 7. (4-Round Impossible Differential of ARIA) Given (α, β) = (e1,6, e1,7,9,11),
one can calculate that Uβ = {12}, Wβ = {2, 4, 6, 13, 15}, and Vα = {2, 4, 5, 7, 9, 10,
11, 14, 15, 16}, thus

Mα,β = ( 0 1 1 0 0 1 0 0 1 0 ) , M ′
α,β =

(
0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0
1 1 1 0 0 1 1 0 1 1
1 0 0 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0 1 0

)
.

Since the last row vector of M ′
α,β is equal to the only row vector of Mα,β , (α, β)

is a 4-round impossible differential of ARIA.

Remark 1. Ref. [14] proposed an efficient algorithm to find many 4-round im-
possible differentials of ARIA. In fact, this algorithm is based on a special case
of the sufficient condition presented in Proposition 4 (and its generalized case
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as discussed in this sub-section) and thus could be seen as an application of our
criteria. For the SPN cipher as described in Appendix C, many impossible differ-
entials with hamming weights of both the input and output difference exceeding
1 could also be found by adopting these generalized methods.

Remark 2. As explained before, there exist many “dual cases” when analyzing
4-round impossible differentials of ARIA. Moreover, due to the involutional prop-
erty of the linear transformation P in the diffusion layer, we can easily identify
these dual cases. For instance, given a 4-round impossible differential of ARIA,
if we exchange the role of its input difference and output difference, the result
differential is also impossible. This indicates that 4-round impossible differentials
of ARIA are huge.

5 How to Extend to 5/6-Round SPN Ciphers?

In this section, we discuss the possibility to extend the above methods to analyze
5/6-round impossible differentials of SPN ciphers. Note that due to the diffusion
effect of the linear transformation, we only focus on the differential (ei, ej).

5.1 Analysis of 5-Round SPN Ciphers

Case 1. We use the following equation

P ◦ S ◦ P ◦ S ◦ P ◦ S(ei) = S−1 ◦ P−1 ◦ S−1(ej), (8)

to analyze 5-round SPN ciphers.
Let α = P ◦ S(ei), β = ej , then Eq. (8) becomes

P ◦ S ◦ P ◦ S(α) = S−1 ◦ P−1 ◦ S−1(β),

thus the analysis of 5-round impossible differentials is degenerated into the 4-
round case through (α, β) = (P ◦ S(ei), ej).

Case 2. We could also use the following equation

P ◦ S ◦ P ◦ S(ei) = S−1 ◦ P−1 ◦ S−1 ◦ P−1 ◦ S−1(ej), (9)

to analyze 5-round impossible differentials of SPN ciphers.
Let α = ei, β = P−1 ◦ S(ej), then Eq. (9) becomes

P ◦ S ◦ P ◦ S(α) = S−1 ◦ P−1 ◦ S−1(β),

thus it is also equivalent to analyze 4-round impossible differentials through
(α, β) =

(
ei, P

−1 ◦ S−1(ej)
)
.
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5.2 Analysis of 6-Round SPN Ciphers

The following equation

P ◦ S ◦ P ◦ S ◦ P ◦ S(ei) = S−1 ◦ P−1 ◦ S−1 ◦ P−1 ◦ S−1(ej) (10)

could be used to analyze 6-round SPN ciphers.
Let α = P ◦ S(ei) and β = P−1 ◦ S−1(ej), then Eq. (10) becomes

P ◦ S ◦ P ◦ S(α) = S−1 ◦ P−1 ◦ S−1(β),

thus the analysis of 6-round impossible differentials is degenerated into the 4-
round case through (α, β) =

(
P ◦ S(ei), P−1 ◦ S−1(ej)

)
.

Remark 3. According to the above analysis, we do some experiments on Rijndael-
256, the large block version of the Rijndael block cipher family [5], and find many
5/6-round impossible differentials. These impossible differentials include the ones
that found in [6] and [20].

6 Conclusion

This paper studies the impossible differential properties of SPN ciphers. It is
shown that the existence of 3/4/5/6-round impossible differentials are strongly
related to some properties of the linear transformation. Based on the theory of
matrix on finite field, some sufficient conditions on linear transformations are
proposed that can be used to verify whether a given differential is impossible.
We point out that these properties should be carefully considered when designing
the linear part of an SPN cipher.
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A Brief Description of AES

AES [15] is a well-known SPN block ciphe with 128-bit block length, and 128/192/
256-bit key length. The basic round function of AES consists of four operations:
SubBytes, ShiftRows, MixColumns, and AddRoundKey. Here we give an equiv-
alent description of AES, where the SubBytes and AddRoundKey are the same
as the original one, while ShitRows and Mixcolumns are combined together to
form a new linear transformation as the diffusion layer.

It should be noted that this equivalent description is a bit different from the
original one, since the last round in the former does not contain the ShitRows
transformation while the latter one does. However, this doesn’t influence our
analysis of impossible differentials, since any impossible differential could be
easily transformed with each other. Thus, we only focus on the equivalent cipher
in this paper and remain to denote it by AES.

Given an input X = (x1, x2, . . . , x16) ∈ F16
28 , if we treat X as the following

4× 4 state,

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16

then the linear transformation P and its inversion P−1 of AES could be repre-
sented by

P =




02 00 00 00 00 03 00 00 00 00 01 00 00 00 00 01
01 00 00 00 00 02 00 00 00 00 03 00 00 00 00 01
01 00 00 00 00 01 00 00 00 00 02 00 00 00 00 03
03 00 00 00 00 01 00 00 00 00 01 00 00 00 00 02
00 00 00 01 02 00 00 00 00 03 00 00 00 00 01 00
00 00 00 01 01 00 00 00 00 02 00 00 00 00 03 00
00 00 00 03 01 00 00 00 00 01 00 00 00 00 02 00
00 00 00 02 03 00 00 00 00 01 00 00 00 00 01 00
00 00 01 00 00 00 00 01 02 00 00 00 00 03 00 00
00 00 03 00 00 00 00 01 01 00 00 00 00 02 00 00
00 00 02 00 00 00 00 03 01 00 00 00 00 01 00 00
00 00 01 00 00 00 00 02 03 00 00 00 00 01 00 00
00 03 00 00 00 00 01 00 00 00 00 01 02 00 00 00
00 02 00 00 00 00 03 00 00 00 00 01 01 00 00 00
00 01 00 00 00 00 02 00 00 00 00 03 01 00 00 00
00 01 00 00 00 00 01 00 00 00 00 02 03 00 00 00




,

P−1 =




0e 0b 0d 09 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 09 0e 0b 0d
00 00 00 00 00 00 00 00 0d 09 0e 0b 00 00 00 00
00 00 00 00 0b 0d 09 0e 00 00 00 00 00 00 00 00
00 00 00 00 0e 0b 0d 09 00 00 00 00 00 00 00 00
09 0e 0b 0d 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 0d 09 0e 0b
00 00 00 00 00 00 00 00 0b 0d 09 0e 00 00 00 00
00 00 00 00 00 00 00 00 0e 0b 0d 09 00 00 00 00
00 00 00 00 09 0e 0b 0d 00 00 00 00 00 00 00 00
0d 09 0e 0b 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 0b 0d 09 0e
00 00 00 00 00 00 00 00 00 00 00 00 0e 0b 0d 09
00 00 00 00 00 00 00 00 09 0e 0b 0d 00 00 00 00
00 00 00 00 0d 09 0e 0b 00 00 00 00 00 00 00 00
0b 0d 09 0e 00 00 00 00 00 00 00 00 00 00 00 00




.
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B Brief Description of ARIA

ARIA [9] is an SPN style block cipher, and the number of the rounds are
12/14/16 corresponding to key of 128/192/256-bit. The substitution layer of
ARIA consists of two kinds of non-linear transformations in order to get a sim-
ilar encryption and decryption. The linear transformation in the diffusion layer
is an involutional binary matrix [7] defined by

P =




0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1




.

C A Kind of SPN Cipher

This kind of SPN cipher is described below: the substitution layer is not defini-
tively given, i.e., it could be arbitrary 32 parallel bijective non-linear mappings,
while a specially designed binary matrix P as introduced in [8] is employed as
the diffusion layer. The definition of P and P−1 are

P =




1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1
1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1
0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0
1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0
1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1
1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0
1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0
0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1
0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1
1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1
0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0
1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0
1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1
0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1
1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0
1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0
1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1
0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1
1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1




,
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P−1 =




1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1
0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1
0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0
1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1
0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1
0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0
1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1
1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1
1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1
1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0




.


