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Abstract. This article discusses the analytic property of Riemann zeta func-
tion. The popular opinion is denied.

1. Introduction

ζ(s) is originally

ζ∗(s) =

∞∑
n=1

n−s,<(s) > 1

It is continuated by Riemann as:

(1.1) (1− ei2π(s−1))Γ(s)ζ(s) =

∫
C=C1+C2+C3

ts−1/(et − 1)dt

C1 = (−∞, r]e2iπ, C2 = reiθ, θ = (2π, π], C3 = (r,∞), 0 < r < 2π

Most of people think this function is analytic except s = 1[1]. There is still another
series for ζ(s) that ’s called the second definition in this article.

(1.2) ζ∗(s) =
1

1− 21−s

∞∑
n=1

(−1)n+1n−s,<(s) > 0

This is a continuation of the original ζ(s). Someone deduced that

(1.3) (1− ei2π(s−1))Γ(s)ζ(s) =
1

1− 21−s

∫
C

ts−1/(et + 1)dt

This expression is identical to Riemann’s definition. In this article the analytic
property is discussed.

2. Discussion

Theorem 2.1. The second definition of ζ(s) has divergent derivative near s = 0.

Proof.

F (s) :=

∞∑
n=5

(−1)n+1n−s,<(s) > 0

Set s ∈ (0, 0.1).

−F ′(s) =

∞∑
n=5,

(−1)n+1 ln(n)n−s
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=

∞∑
n=5,2|n+1

ln(n)(sn−s−1 − n−s−2s(s+ 1))θ), 0 < θ < 1

>
1

2

∫ ∞
n=5

ln(n)n−s−1sdn−
∞∑

n=5,2|n+1

ln(n)n−s−2s(s+ 1)θ

=
1

2

∫ ∞
5

s ln(x)x−s−1dx− Cs, |Cs| < C

>
1

2

∫ ∞
ln(5)

sxe−sxdx− Cs

>
1

2

∫ ∞
ln(5)

sxe−sxd(sx)

s
− Cs

It’s easy to find when s→ 0 this term approaches to infinity. �

There is coming up sharp controversy, as is commonly known the ζ(s) hasn’t
infinity derivative in near s = 0. But in this article the opinion inclines to find the
fault of the Riemann’s definition.

The first probe is on that the proposition for analytic function f(x), the simi-
larity of the middle value theorem, like

∃z′∀z(f(z)− f(0) = f ′(z′)z), |z′| ≤ |z|, |z| < r

is invalid. Here is a counterexample

f(x) = (1 + x)a, a ∈ R

If a is great it can be found a little x1, r : |x1| < r

ln(f(x1))− ln(f(x1)) = 2πi, f(x1) = f(x1)

but the derivative zero is at
a(1 + x)a−1 = 0

It’s impossible on |x| ≤ 3r.
The second probe is on the definition of integration of real function f(x, y) on

curve C.

Theorem 2.2. l ∈ [0, c] is any continuous finite parametrization of piecewise
smooth curve C(l). l is divided into the collection of ∆l. If the integration of the
real f(x, y) on C(l) is defined as the limit of the sum of f(x, y)∆C or f(x, y)||∆C||
when ∆l → 0. then this limit exists if f(x, y) is continuous uniformly in a neigh-
boring set of C.

This is nothing special.
The third probe is on Cauchy Integral Formula that said derivable function is

analytic. Integrations about the complex derivable function f(x) in the considered
domain is thought meeting

f(x) =
1

2πi

∮
C′

f(z)

z − x
dz

f (n)(x) =
n!

2πi

∮
C′

f(z)

(z − x)n+1
dz

C ′ = reiθ − x, 0 ≤ θ < 2π

Its famous proof of Cauchy’s [2] is incorrect.
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The first reason is that the limit of integral contours r → 0 causes the integrated
is not bounded (hence not continuous) uniformly in 0 < r < R. The second,
Cauchy’s first integral formula is interpreted as the following in effective

lim
r→0

lim
∆x→0

∑
∆x(∆rx)

g∆θ = lim
∆x→0

lim
r→0

∑
∆x(∆rx)

g∆θ

x = <(z), y = =(z), (∆x, r)→ ∆rx

Suitable and valid connection between ∆θ and (∆x,∆y) has been defined. This
implies that the convergence of the integrations for 0 < r < R is uniform for
0 < |∆x| < c.

Now it is critical to define the conception of Analytic as expandable to power
series. French mathematician J.Dieudonne use this definition consistently in his
famous book ”Foundations of Modern Analysis”.

Definition 2.3. 2-dimensional power series f(z) of real arguments as <(z),=(z),
its convergence is called wide convergence. In the 2-dimensional series, the same
degree terms is combined as one term to form an 1-dimensional series, convergence
of which is called narrow convergence. Complex smooth and narrowly convergent
power series is narrowly analytic, Complex smooth and widely convergent power
series is widely analytic.

Maybe somebody had said

Theorem 2.4. A smooth complex function is analytic if and only if both its real
part and its imaginary part have narrow convergent power series expressions.

It’s obvious that narrowly analytic is equivalent to analytic.
The analytic property of Γ(s) is discussed.

Γ(2k)(S) >

∫ x

x−1/2

ln2k xxs−1e−xdx, s > 0

> C

∫ x

x−1/2

ln2k xxδ−1dx = C

∫ ln x

− ln x/2

x2keδxdx, δ → 0+, C = Cx > 0

=
C

δ2k+1

∫ 1/2

−1/4

x2kexdx =
C

δ2k+1

2k∑
n=0

(−1)nx2k−nex(2k)!

(2k − n)!
|1/2−1/4

>
C ′δ(2k)!

δ2k+1
, C ′δ > 0

This means the convergent radium of Γ(s) is close to zero at any point on s > 0,
in the other words: non-analytic. Γ(s), R(s) > 0 is an example which is smooth
complexly but not analytic.

3. Conclusion

The function Γ(s)ζ(s) of Riemann’s definition is non-analytic on s > 0, hence
it can’t be continuated to the whole complex plane in Riemann’s method. And
Obviously ζ∗(s) is analytic on <(s) > 0.

The classical Cauchy integral formula implies that first order complex derivable
function is analytic. Its counterexample can be found through the solution of this
second order differential equation

∆f(x, y) = 0
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f(x, y) is unnecessary to be smooth, and by Cauchy-Riemann formula, g(x, y) +
if(x, y) is obtained as a function derivable complexly.

However, after the analytic function is defined as power series locally expand-
able, the Cauchy Integral Formula for analytic function is all right, hence the end-
points of the biggest analytic convergent radium stops at the non-analytic point.
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